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"La Dynamique est la science des forces accéléra-

trices or retardatrices, et des mouvemens variés

qu'elles doivent produire. Cette science est due

entièrement aux modernes, et Galilée est celui qui

en a jeté les premiers fondemens." Lagrange Mec.

Anal. I. 221.

TRANSLATORS' PREFACE

F

OR more than a century English speaking

students have been placed in the anomalous

position of hearing Galileo constantly re-

ferred to as the founder of modern physical

science, without having any chance to read,

in their own language, what Galileo himself

Archimedes has been madehas to say.

availableby Heath; Huygens' Lighthas been

turned into English by Thompson, while Motte has put the

Principia of Newton back into the language in which it was

conceived. To render the Physics of Galileo also accessible to

English and American students is the purpose of the following

translation .

The last of the great creators of the Renaissance was not a

prophet without honor in his own time; for it was only one

group of his country-men that failed to appreciate him. Even

during his life time, his Mechanics had been rendered into French

by one ofthe leading physicists of the world, Mersenne.

Within twenty-five years after the death of Galileo, his Dia-

logues on Astronomy, and those on Two New Sciences, had been

done into English by Thomas Salusbury and were worthily

printed in two handsome quarto volumes. The Two New

Sciences, which contains practically all that Galileo has to sayon

the subject of physics, issued from the English press in 1665.

270929



vi TRANSLATORS' PREFACE

It is supposed that most of the copies were destroyed in the great

London fire which occurred in the year following. We are not

aware ofany copy in America : even that belonging to the British

Museum is an imperfect one.

Again in 1730 the Two New Sciences was done into English

by Thomas Weston ; but this book, now nearly two centuries

old, is scarce and expensive. Moreover, the literalness with

which this translation was made renders many passages either

ambiguous or unintelligible to the modern reader. Other than

these two, no English version has been made.

Quite recently an eminent Italian scholar, after spending

thirty of the best years of his life upon the subject, has brought

to completion the great National Edition of the Works of

Galileo. We refer to the twenty superb volumes in which Pro-

fessor Antonio Favaro of Padua has given a definitive presenta-

tion of the labors of the man who created the modern science of

physics.

The following rendition includes neither Le Mechaniche of

Galileo nor his paper De Motu Accelerato, since the former of

these contains little but the Statics which was current before

the time of Galileo, and the latter is essentially included in the

Dialogue of the Third Day. Dynamics was the one subject to

which under various forms, such as Ballistics, Acoustics, As-

tronomy, he consistently and persistently devoted his whole

life . Into the one volume here translated he seems to have

gathered, during his last years, practically all that is of value

either to the engineer or the physicist. The historian, the

philosopher, and the astronomer will find the other volumes

replete with interesting material .

It is hardly necessary to add that we have strictly followed the

text of the National Edition—essentially the Elzevir edition of

1638. All comments and annotations have been omitted save

here and there a foot-note intended to economize the reader's

time. To each of these footnotes has been attached the signa-

ture [Trans. ] in order to preserve the original as nearly intact as

possible.

Much of the value of any historical document lies in the lan-

guage employed, and this is doubly true when one attempts to



TRANSLATORS' PREFACE vii

trace the rise and growth of any set of concepts such as those

employed in modern physics. We have therefore made this

translation as literal as is consistent with clearness and modern-

ity. In cases where there is any important deviation from this

rule, and in the case of many technical terms where there is no

deviation from it, we have given the original Italian or Latin

phrase in italics enclosed in square brackets. The intention

here is to illustrate the great variety of terms employed by the

early physicists to describe a single definite idea, and conversely,

to illustrate the numerous senses in which, then as now, a single

word is used. For the few explanatory English words which are

placed in square brackets without italics, the translators alone

are responsible. The paging of the National Edition is indicated

in square brackets inserted along the median line of the page.

The imperfections of the following pages would have been

many more but for the aid of three of our colleagues. Professor

D. R. Curtiss was kind enough to assist in the translation of

those pages which discuss the nature of Infinity: Professor O. H.

Basquin gave valuable help in the rendition of the chapter on

Strength of Materials ; and Professor O. F. Long cleared up the

meaning of a number of Latin phrases.

To Professor A. Favaro of the University of Padua the trans-

lators share, with every reader, a feeling of sincere obligation

for his Introduction.

H. C.

A. de S.

Evanston, Illinois,

15 February, 1914.
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INTRODUCTION

RITING to his faithful friend Elia Diodati,

Galileo speaks of the "NewSciences " which

he had in mind to print as being " superior

to everything else of mine hitherto pub-

lished" ; elsewhere he says "they contain

results which I consider the most important

of all my studies"; and this opinion which

he expressed concerning his own work has

been confirmed by posterity : the "New Sciences" are, indeed,

the masterpiece of Galileo who at the time when he made the

above remarks had spent upon them more than thirty laborious

years.

One who wishes to trace the history of this remarkable work

will find that the great philosopher laid its foundations during

the eighteen best years of his life those which he spent at

Padua. As we learn from his last scholar, Vincenzio Viviani,

the numerous results at which Galileo had arrived while in this

city, awakened intense admiration in the friends who had wit-

nessed various experiments by means of which he was accus-

tomed to investigate interesting questions in physics . Fra Paolo

Sarpi exclaimed : To give us the Science of Motion, God and

Nature have joined hands and created the intellect of Galileo.

And when the "New Sciences" came from the press one of his

foremost pupils, Paolo Aproino, wrote that the volume contained

much which he had "already heard from his own lips " during

student days at Padua.

Limiting ourselves to only the more important documents

which might be cited in support of our statement, it will suffice

to mention the letter, written to Guidobaldo del Monte on the

29th ofNovember, 1602, concerning the descent of heavy bodies
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along the arcs of circles and the chords subtended by them; that

to Sarpi, dated 16th of October, 1604, dealing with the free fall

of heavy bodies ; the letter to Antonio de' Medici on the 11th

of February, 1609, in which he states that he has "completed all

the theorems and demonstrations pertaining to forces and re-

sistances of beams of various lengths, thicknesses and shapes,

proving that they are weaker at the middle than near the ends,

that they can carry a greater load when that load is distributed

throughout the length of the beam than when concentrated at

one point, demonstrating also what shape should be given to a

beam in order that it may have the same bending strength at

every point," and that he was now engaged "upon some ques-

tions dealing with the motion of projectiles"; and finally in the

letter to Belisario Vinta, dated 7th of May, 1610, concerning

his return from Padua to Florence, he enumerates various pieces

of work which were still to be completed, mentioning explicitly

three books on an entirely new science dealing with the theory

of motion. Although at various times after the return to his

native state he devoted considerable thought to the work which,

even at that date, he had in mind as is shown by certain frag-

ments which clearly belong to different periods of his life and

which have, for the first time, been published in the National

Edition ; and although these studies were always uppermost in

his thought it does not appear that he gave himself seriously to

them until after the publication of the Dialogue and the com-

pletion of that trial which was rightly described as the disgrace

of the century. In fact as late as October, 1630, he barely men-

tions to Aggiunti his discoveries in the theory of motion, and

onlytwo years later, in a letter to Marsili concerning the motion

of projectiles, he hints at a book nearly ready for publication in

which he will treat also of this subject ; and only a year after

this he writes to Arrighetti that he has in hand a treatise on the

resistance of solids.

But the work was given definite form by Galileo during his

enforced residence at Siena : in these five months spent quietly

with the Archbishop he himself writes that he has completed

"a treatise on a new branch of mechanics full of interesting and

useful ideas "; so that a few months later he was able to send
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word to Micanzio that the "work was ready"; as soon as his

friends learned of this, they urged its publication. It was, how-

ever, no easy matter to print the work of a man already con-

demned by the Holy Office : and since Galileo could not hope to

print it either in Florence or in Rome, he turned to the faithful

Micanzio asking him to find out whether this would be possible

in Venice, from whence he had received offers to print the Dia-

logue on the Principal Systems, as soon as the news had reached

there that he was encountering difficulties. At first everything

went smoothly ; so that Galileo commenced sending to Micanzio

some of the manuscript which was received by the latter with

an enthusiasm in which he was second to none of the warmest

admirers of the great philosopher. But when Micanzio con-

sulted the Inquisitor, he received the answer that there was

an express order prohibiting the printing or reprinting of any

work of Galileo, either in Venice or in any other place, nullo

excepto.

As soon as Galileo received this discouraging news he began

to look with more favor upon offers which had come to him from

Germany where his friend, and perhaps also his scholar, Gio-

vanni Battista Pieroni, was in the service of the Emperor, as

military engineer; consequently Galileo gave to Prince Mattia

de' Medici who was just leaving for Germany the first two Dia-

logues to be handed to Pieroni who was undecided whether to

publish them at Vienna or Prague or at some place in Moravia;

in the meantime, however, he had obtained permission to print

both at Vienna and at Olmütz. But Galileo recognized danger

at every point within reach of the long arm of the Court of

Rome; hence, availing himself of the opportunity offered by the

arrival of Louis Elzevir in Italy in 1636, also of the friendship

between the latter and Micanzio, not to mention a visit at

Arcetri, he decided to abandon all other plans and entrust to

the Dutch publisher the printing of his new work the manu-

script of which, although not complete, Elzevir took with him

on his return home.

In the course of the year 1637, the printing was finished, and

at the beginning of the following year there was lacking only

the index, the title-page and the dedication. This last had,
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through the good offices of Diodati, been offered to the Count of

Noailles, a former scholar of Galileo at Padua, and since 1634

ambassador of France at Rome, a man who did much to alleviate

the distressing consequences of the celebrated trial ; and the

offer was gratefully accepted. The phrasing of the dedication

deserves brief comment. Since Galileo was aware, on the one

hand, of the prohibition against the printing of his works and

since, on the other hand, he did not wish to irritate the Court

of Rome from whose hands he was always hoping for complete

freedom, he pretends in the dedicatory letter (where, probably

through excess of caution, he gives only main outlines) that he

had nothing to do with the printing of his book, asserting that

he will never again publish any of his researches, and will at

most distribute here and there a manuscript copy. He even

expresses great surprise that his new Dialogues have fallen into

the hands of the Elzevirs and were soon to be published ; so

that, having been asked to write a dedication, he could think of

no man more worthy who could also on this occasion defend

him against his enemies.

As to the title which reads : Discourses and Mathematical

Demonstrations concerning Two New Sciences pertaining to Me-

chanics and Local Motions, this only is known, namely, that the

title is not the one which Galileo had devised and suggested ; in

fact he protested against the publishers taking the liberty of

changing it and substituting "a low and common title for the

noble and dignified one carried upon the title-page."

In reprinting this work in the National Edition, I have fol-

lowed the Leyden text of 1638 faithfully but not slavishly, be-

cause I wished to utilize the large amount of manuscript ma-

terial which has come down to us, for the purpose of correcting

a considerable number of errors in this first edition, and also

for the sake of inserting certain additions desired by the author

himself. In the Leyden Edition, the four Dialogues are followed

by an "Appendix containing some theorems and their proofs, deal-

ing with centers of gravity of solid bodies, written by the same

Author at an earlier date," which has no immediate connection

with the subjects treated in the Dialogues ; these theorems were

found by Galileo, as he tells us, “at the"at the age of twenty-two and
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after two years study ofgeometry" and were here inserted only

to save them from oblivion.

But it was not the intention of Galileo that the Dialogues

on the New Sciences should contain only the four Days and the

above-mentioned appendix which constitute the Leyden Edi-

tion ; while, on the one hand, the Elzevirs were hastening the

printing and striving to complete it at the earliest possible date,

Galileo, on the other hand, kept on speaking of another Day,

besides the four, thus embarrassing and perplexing the printers.

From the correspondence which went on between author and

publisher, it appears that this Fifth Day was to have treated

"of the force of percussion and the use of the catenary "; but

as the typographical work approached completion, the printer

became anxious for the book to issue from the press without

further delay ; and thus it came to pass that the Discorsi e

Dimostrazioni appeared containing only the four Days and the

Appendix, in spite of the fact that in April, 1638, Galileo had

plunged more deeply than ever "into the profound question of

percussion" and "had almost reached a complete solution ."

The "New Sciences " now appear in an edition following the

text which I, after the most careful and devoted study, deter-

mined upon for the National Edition. It appears also in that

language in which, above all others, I have desired to see it. In

this translation, the last and ripest work of the great philosopher

makes its first appearance in the New World: if toward this

important result I may hope to have contributed in some meas-

ure I shall feel amply rewarded for having given to this field of

research the best years of my life.

UNIVERSITY OF Padua,

27th ofOctober, 1913.

ANTONIO FAVARO.
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TO THE MOST ILLUSTRIOUS LORD

COUNT OF NOAILLES

Counsellor of his Most Christian Majesty, Knight of the Order

of the Holy Ghost, Field Marshal and Commander,

Seneschaland Governor ofRouergue, and His

Majesty's Lieutenant in Auvergne, my

Lord and Worshipful Patron

M

POST ILLUSTRIOUS LORD:—

In the pleasure which you derive from

the possession of this work of mine I rec-

ognize your Lordship's magnanimity. The

disappointment and discouragement I have

felt over the ill-fortune which has followed

my other books are already known to you.

Indeed, I had decided not to publish any

more of my work. And yet in order to save it from com-

plete oblivion, it seemed to me wise to leave a manuscript

copy in some place where it would be available at least to those

who follow intelligently the subjects which I have treated.

Accordingly I chose first to place my work in your Lordship's

hands, asking no more worthy depository, and believing that,

on account ofyour affection for me, you would have at heart the

preservation of my studies and labors. Therefore, when you

were returning home from your mission to Rome, I came to pay

my respects in person as I had already done many times before

by letter. At this meeting I presented to your Lordship a copy

ofthese two works which at that time I happened tohave ready.

In the gracious reception which you gave these I found assurance

of
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of their preservation . The fact ofyour carrying them to France

and showing them to friends of yours who are skilled in these

sciences gave evidence that my silence was not to be interpreted

as complete idleness . A little later, just as I was on the point of

[44]

sending other copies to Germany, Flanders, England, Spain and

possibly to some places in Italy, I was notified by the Elzevirs

that they had these works of mine in press and that I ought to

decide upon a dedication and send them a reply at once. This

sudden and unexpected news led me to think that the eagerness

of your Lordship to revive and spread my name by passing

these works on to various friends was the real cause of their

falling into the hands of printers who, because they had already

published other works of mine, now wished to honor me with a

beautiful and ornate edition of this work. But these writings of

mine must have received additional value from the criticism of

so excellent a judge as your Lordship, who by the union of

many virtues has won the admiration of all . Your desire to

enlarge the renown ofmy work shows your unparalleled generos-

ity and your zeal for the public welfare which you thought

would thus be promoted. Under these circumstances it is

eminently fitting that I should, in unmistakable terms, grate-

fully acknowledge this generosity on the part of your Lordship,

who has given to my fame wings that have carried it into regions

more distant than I had dared to hope. It is, therefore, proper

that I dedicate to your Lordship this child of my brain . To

this course I am constrained not only by the weight of obliga-

tion under which you have placed me, but also, if I may so

speak, by the interest which I have in securing your Lordship

as the defender of my reputation against adversaries who may

attack it while I remain under your protection.

And now, advancing under your banner, I pay my respects

toyou by wishing that you may be rewarded for these kindnesses

by the achievement of the highest happiness and greatness.

I am your Lordship's

Most devoted Servant,

Galileo Galilei.

Arcetri, 6March, 1638.
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INCE society is held together by the mutual

services which men render one to another,

and since to this end the arts and sciences

have largely contributed, investigations in

these fields have always been held in great

esteem and havebeen highly regardedbyour

wise forefathers. The larger the utility and

excellence of the inventions, the greater has

been the honor and praise bestowed upon the inventors . Indeed,

men have even deified them and have united in the attempt to

perpetuate the memory of their benefactors by the bestowal of

this supreme honor.

Praise and admiration are likewise due to those clever in-

tellects who, confining their attention to the known, have

discovered and corrected fallacies and errors in many and

many a proposition enunciated by men of distinction and

accepted for ages as fact. Although these men have only pointed

out falsehood and have not replaced it by truth, they are never-

theless worthy of commendation when we consider the well-

known difficulty of discovering fact, a difficulty which led the

prince of orators to exclaim: Utinam tam facile possem vera

reperire, quam falsa convincere.* And indeed, these latest

centuries merit this praise because it is during them that the

arts and sciences, discovered by the ancients, have been reduced

to so great and constantly increasing perfection through the

investigations and experiments of clear-seeing minds. This

development is particularly evident in the case of the mathe-

matical sciences . Here, without mentioning various men who

have achieved success, we must without hesitation and with the

* Cicero. de Natura Deorum, I , 91. [Trans.]
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unanimous approval of scholars assign the first place to Galileo

Galilei, Member of the Academy ofthe Lincei. This he deserves

not only because he has effectively demonstrated fallacies in

many of our current conclusions, as is amply shown by his

published works, but also because by means of the telescope

(invented in this country but greatly perfected by him) he has

discovered the four satellites of Jupiter, has shown us the true

character of the Milky Way, and has made us acquainted with

spots on the Sun, with the rough and cloudy portions of the

lunar surface, with the threefold nature of Saturn, with the

phases of Venus and with the physical character of comets.

These matters were entirely unknown to the ancient astronomers

and philosophers; so that we may truly say that he has restored

to the world the science of astronomy and has presented it in a

new light.

Remembering that the wisdom and power and goodness ofthe

Creator are nowhere exhibited so well as in the heavens and

celestial bodies, we can easily recognize the great merit of him

who has brought these bodies to our knowledge and has, in

spite of their almost infinite distance, rendered them easily

visible. For, according to the common saying, sight can teach

more and with greater certainty in a single day than can precept

even though repeated a thousand times ; or, as another says,

intuitive knowledge keeps pace with accurate definition .

But the divine and natural gifts of this man are shown to

best advantage in the present work where he is seen to have

discovered, though not without many labors and long vigils ,

two entirely new sciences and to have demonstrated them in a

rigid, that is, geometric, manner : and what is even more re-

markable in this work is the fact that one of the two sciences

deals with a subject of never-ending interest, perhaps the most

important in nature, one which has engaged the minds of all the

great philosophers and one concerning which an extraordinary

number of books have been written. I refer to motion [moto

locale] , a phenomenon exhibiting very many wonderful proper-

ties, none ofwhich has hitherto been discovered or demonstrated

by any one. The other science which he has also developed from

its
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its very foundations deals with the resistance which solid bodies

offer to fracture by external forces [per violenza] , a subject of

great utility, especially in the sciences and mechanical arts,

and one also abounding in properties and theorems not hitherto

observed.

In this volume one finds the first treatment of these two

sciences, full of propositions to which, as time goes on, able

thinkers will add many more; also by means of a large number

of clear demonstrations the author points the way to many

other theorems as will be readily seen and understood by all in-

telligent readers.

22
9
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FIRST DAY

INTERLOCUTORS : SALVIATI , SA-

GREDO AND SIMPLICIO

S

ALV . The constant activity which you Vene-

tians display in your famous arsenal suggests

to the studious mind a large field for investi-

gation, especially that part of the work

which involves mechanics ; forin this depart-

ment all types of instruments and machines

are constantly being constructed by many

artisans, among whom there must be some

who, partly by inherited experience and partly by their own ob-

servations, have become highly expert and clever in explanation .

SAGR. You are quite right. Indeed, I myself, being curious

by nature, frequently visit this place for the mere pleasure of

observing the work of those who, on account of their superiority

over other artisans, we call "first rank men." Conference with

them has often helped me in the investigation of certain effects

including not only those which are striking, but also those which

are recondite and almost incredible. At times also I have been

put to confusion and driven to despair of ever explaining some-

thing for which I could not account, but which my senses told

me to be true. And notwithstanding the fact that what the old

man told us a little while ago is proverbial and commonly

accepted, yet it seemed to me altogether false, like many another

saying which is current among the ignorant ; for I think they

introduce these expressions in order to give the appearance of

knowingsomething about matters which they do not understand.

Salv.
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SALV. You refer, perhaps, to that last remark of his when we

asked the reason why they employed stocks, scaffolding and

bracing of larger dimensions for launching a big vessel than they

do for a small one; and he answered that they did this in order to

avoid the danger of the ship parting under its own heavy weight

[vasta mole] , a danger to which small boats are not subject?

SAGR. Yes, that is what I mean ; and I refer especially to his

last assertion which I have always regarded as a false, though

current, opinion ; namely, that in speaking of these and other

similar machines one cannot argue from the small to the large,

because many devices which succeed on a small scale do not

work on a large scale. Now, since mechanics has its foundation

in geometry, where mere size cuts no figure, I do not see that the

properties of circles, triangles, cylinders, cones and other solid

figures will change with their size. If, therefore, a large machine

be constructed in such a way that its parts bear to one another

the same ratio as in a smaller one, and if the smaller is sufficiently

strong for the purpose for which it was designed, I do not see

why the larger also should not be able to withstand any severe

and destructive tests to which it may be subjected.

SALV. The common opinion is here absolutely wrong. Indeed,

it is so far wrong that precisely the opposite is true, namely,

that many machines can be constructed even more perfectly on a

large scale than on a small ; thus, for instance, a clock which indi-

cates and strikes the hour can be made more accurate on a large

scale than on a small. There are some intelligent people who

maintain this same opinion, but on more reasonable grounds,

when they cut loose from geometry and argue that the better

performance of the large machine is owing to the imperfections

and variations of the material. Here I trust you will not charge

[51]

me with arrogance if I say that imperfections in the material,

even those which are great enough to invalidate the clearest

mathematical proof, are not sufficient to explain the deviations

observed between machines in the concrete and in the abstract.

Yet I shall say it and will affirm that, even if the imperfections

did
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did not exist and matter were absolutely perfect, unalterable and

free from all accidental variations, still the mere fact that it is

matter makes the larger machine, built of the same material

and in the same proportion as the smaller, correspond with

exactness to the smaller in every respect except that it will not

be so strong or so resistant against violent treatment; the

larger the machine, the greater its weakness. Since I assume

matter to be unchangeable and always the same, it is clear that

we are no less able to treat this constant and invariable property

in a rigid manner than if it belonged to simple and pure mathe-

matics. Therefore, Sagredo, you would do well to change the

opinion which you, and perhaps also many other students of

mechanics, have entertained concerning the ability of machines

and structures to resist external disturbances, thinking that

when they are built of the same material and maintain the same

ratio between parts, they are able equally, or rather propor-

tionally, to resist or yield to such external disturbances and

blows. For we can demonstrate by geometry that the large

machine is not proportionately stronger than the small. Finally,

we may say that, for every machine and structure, whether

artificial or natural, there is set a necessary limit beyond which

neither art nor nature can pass ; it is here understood, of course,

that the material is the same and the proportion preserved.

SAGR. My brain already reels. My mind, like a cloud momen-

tarily illuminated by a lightning-flash, is for an instant filled

with an unusual light, which now beckons to me and which now

suddenly mingles and obscures strange, crude ideas. From

what you have said it appears to me impossible to build two

similar structures of the same material, but of different sizes and

have them proportionately strong ; and if this were so, it would

[52]

not be possible to find two single poles made of the same wood

which shall be alike in strength and resistance but unlike in

size.

SALV. So it is, Sagredo. And to make sure that we understand

each other, I say that if we take a wooden rod of a certain

length and size, fitted, say, into a wall at right angles, i. e.,

parallel
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parallel to the horizon, it may be reduced to such a length that

it will just support itself; so that if a hair's breadth be added to

its length it will break under its own weight and will be the only

rod of the kind in the world.* Thus if, for instance, its length be

a hundred times its breadth, you will not be able to find another

rod whose length is also a hundred times its breadth and which,

like the former, is just able to sustain its own weight and no

more: all the larger ones will break while all the shorter ones will

be strong enough to support something more than their own

weight. And this which I have said about the ability to support

itself must be understood to apply also to other tests ; so that if a

piece of scantling [corrente] will carry the weight of ten similar to

itself, a beam [trave] having the same proportions will not be

able to support ten similar beams.

Please observe, gentlemen, how facts which at first seem

improbable will, even on scant explanation, drop the cloak

which has hidden them and stand forth in naked and simple

beauty. Who does not know that a horse falling from a height

of three or four cubits will break his bones, while a dog falling

from the same height or a cat from a height of eight or ten cubits

will suffer no injury? Equally harmless would be the fall of a

grasshopper from a tower or the fall of an ant from the distance

of the moon. Do not children fall with impunity from heights

which would cost their elders a broken leg or perhaps a fractured

skull? And just as smaller animals are proportionately stronger

and more robust than the larger, so also smaller plants are able

to stand up better than larger. I am certain you both know that

an oak two hundred cubits [braccia] high would not be able to

sustain its own branches if they were distributed as in a tree of

ordinary size ; and that nature cannot produce a horse as large as

twenty ordinary horses or a giant ten times taller than an

[53]

ordinary man unless by miracle or by greatly altering the

proportions of his limbs and especially of his bones, which would

have to be considerably enlarged over the ordinary. Likewise

the current belief that, in the case of artificial machines the very

* The author here apparently means that the solution is unique.

[Trans.]
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large and the small are equally feasible and lasting is a manifest

error. Thus, for example, a small obelisk or column or other

solid figure can certainly be laid down or set up without danger

ofbreaking, while the very large ones will go to pieces under the

slightest provocation, and that purely on account of their own

weight. And here I must relate a circumstance which is worthy

ofyour attention as indeed are all events which happen contrary

to expectation, especially when a precautionary measure turns

out to be a cause of disaster. A large marble column was laid

out so that its two ends rested each upon a piece of beam; a

little later it occurred to a mechanic that, in order to be doubly

sure of its not breaking in the middle by its own weight, it would

be wise to lay a third support midway; this seemed to all an

excellent idea; but the sequel showed that it was quite the oppo-

site, for not many months passed before the column was found

cracked and broken exactly above the new middle support.

SIMP. A very remarkable and thoroughly unexpected acci-

dent, especially if caused by placing that new support in the

middle.

SALV. Surely this is the explanation, and the moment the

cause is known our surprise vanishes ; for when the two pieces

of the column were placed on level ground it was observed that

one of the end beams had, after a long while, become decayed

and sunken, but that the middle one remained hard and strong,

thus causing one half of the column to project in the air without

any support. Under these circumstances the body therefore

behaved differently from what it would have done if supported

only upon the first beams ; because no matter how much they

might have sunken the column would have gone with them.

This is an accident which could not possibly have happened to a

small column, even though made of the same stone and having a

length corresponding to its thickness, i. e ., preserving the ratio

between thickness and length found in the large pillar.

[54]

SAGR. I am quite convinced of the facts of the case, but I do

not understand why the strength and resistance are not multi-

plied in the same proportion as the material; and I am the more

puzzled
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puzzled because, on the contrary, I have noticed in other cases

that the strength and resistance against breaking increase in a

larger ratio than the amount of material. Thus, for instance, if

two nails be driven into a wall, the one which is twice as big

as the other will support not only twice as much weight as the

other, but three or four times as much.

SALV. Indeed you will not be far wrong if you say eight times

as much; nor does this phenomenon contradict the other even

though in appearance they seem so different.

SAGR. Will you not then, Salviati, remove these difficulties

and clear away these obscurities if possible: for I imagine that

this problem of resistance opens up a field of beautiful and useful

ideas ; and if you are pleased to make this the subject of to-day's

discourse you will place Simplicio and me under many obliga-

tions.

SALV. I am at your service if only I can call to mind what I

learned from our Academician who had thought much upon

this subject and according to his custom had demonstrated

everything by geometrical methods so that one might fairly

call this a new science. For, although some of his conclusions

had been reached by others, first of all by Aristotle, these are

not the most beautiful and, what is more important, they had

not been proven in a rigid manner from fundamental principles.

Now, since I wish to convince you by demonstrative reasoning

rather than to persuade you by mere probabilities, I shall sup-

pose that you are familiar with present-day mechanics so far as

it is needed in our discussion. First of all it is necessary to

consider what happens when a piece of wood or any other solid

which coheres firmly is broken ; for this is the fundamental

fact, involving the first and simple principle which we must take

for granted as well known.

To grasp this more clearly, imagine a cylinder or prism, AB,

made of wood or other solid coherent material. Fasten the

upper end, A, so that the cylinder hangs vertically. To the

lower end, B, attach the weight C. It is clear that however

great they may be, the tenacity and coherence [tenacità e

* I. e. Galileo : The author frequently refers to himself under this

name. [Trans.]
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[55]

coerenza] between the parts of this solid, so long as they are not

infinite, can be overcome by the pull of the weight C, a weight

which can be increased indefinitely until finally the solid breaks

like a rope. And as in the case of the rope whose strength we

know to be derived from a multitude of hemp threads which

compose it, so in the case of the wood, we observe its fibres and

filaments run lengthwise and render it much stronger than a

hemp rope of the same thickness. But in the

case of a stone or metallic cylinder where the

coherence seems to be still greater the cement

which holds the parts together must be some-

thing other than filaments and fibres; and yet

even this can be broken by a strong pull.

A

B

SIMP. If this matter be as you say I can well

understand that the fibres of the wood, being as

long as the piece of wood itself, render it strong

and resistant against large forces tending to

break it. But how can one make a rope one

hundred cubits long out of hempen fibres which

are not more than two or three cubits long, and

still give it so much strength? Besides, I should

be glad to hear your opinion as to the manner in

which the parts of metal, stone, and other ma-

terials not showing a filamentous structure are

put together; for, if I mistake not, they exhibit even greater

tenacity.

Fig. 1

SALV. To solve the problems which you raise it will be neces-

sary to make a digression into subjects which have little bearing

upon our present purpose.

SAGR. But if, by digressions, we can reach new truth, what

harm is there in making one now, so that we may not lose

this knowledge, remembering that such an opportunity, once

omitted, may not return ; remembering also that we are not tied

down to a fixed and brief method but that we meet solely for our

own entertainment ? Indeed, who knows but that we may thus

[56]

frequently
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frequently discover something more interesting and beautiful

than the solution originally sought ? I beg of you, therefore, to

grant the request of Simplicio, which is also mine ; for I am no

less curious and desirous than he to learn what is the binding

material which holds together the parts of solids so that they

can scarcely be separated. This information is also needed to

understand the coherence of the parts of fibres themselves of

which some solids are built up.

SALV. I am at your service, since you desire it . The first

question is, How are fibres, each not more than two or three

cubits in length, so tightly bound together in the case of a rope

one hundred cubits long that great force [violenza] is required to

break it?

Now tell me, Simplicio, can you not hold a hempen fibre so

tightly between your fingers that I, pulling by the other end,

would break it before drawing it away from you ? Certainly

you can. And nowwhen the fibres of hemp are held not only at

the ends, but are grasped by the surrounding medium through-

out their entire length is it not manifestly more difficult to tear

them loose from what holds them than to break them? But in

the case of the rope the very act of twisting causes the threads

to bind one another in such a way that when the rope is stretched

with a great force the fibres break rather than separate from

each other.

At the point where a rope parts the fibres are, as everyone

knows, very short, nothing like a cubit long, as they would be if

the parting of the rope occurred, not by the breaking of the

filaments, but by their slipping one over the other.

SAGR. In confirmation of this it may be remarked that ropes

sometimes break not by a lengthwise pull but by excessive

twisting. This, it seems to me, is a conclusive argument because

the threads bind one another so tightly that the compressing

fibres do not permit those which are compressed to lengthen the

spirals even that little bit by which it is necessary for them to

lengthen in order to surround the rope which, on twisting, grows

shorter and thicker.

SALV. You are quite right. Now see how one fact suggests

another
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another. The thread held between the fingers does not yield

[57]

E

L F

to one who wishes to draw it away even when pulled with con-

siderable force, but resists because it is held back by a double

compression, seeing that the upper finger presses against the

lower as hard as the lower against the upper. Now, if we could

retain only one of these pressures there is no doubt that only

half the original resistance would remain ; but since we are

not able, by lifting, say, the upper finger, to remove one of

these pressures without also removing the other, it becomes

necessary to preserve one of them by means of a new device

which causes the thread to press itself against the finger or

against some other solid body upon which it rests ; and thus it is

brought about that the very force which pulls

it in order to snatch it away compresses it

more and more as the pull increases . This

is accomplished by wrapping the thread

around the solid in the manner of a spiral ;

and will be better understood by means of a

figure. Let AB and CD be two cylinders be-

tween which is stretched the thread EF: and

for the sake of greater clearness we will im-

agine it to be a small cord. If these two

cylinders be pressed strongly together, the

cord EF, when drawn by the end F, will un-

doubtedly stand a considerable pull before it

slips between the two compressing solids.

But if we remove one of these cylinders the D

cord, though remaining in contact with the

other, will not thereby be prevented from

slipping freely. On the other hand, if one

holds the cord loosely against the top of the

cylinder A, winds it in the spiral form AFLOTR, and then

pulls it by the end R, it is evident that the cord will begin to

bind the cylinder; the greater the number of spirals the more

tightly will the cord be pressed against the cylinder by any

given pull. Thus as the number of turns increases, the line of

T

B
R

Fig. 2

contact
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contact becomes longer and in consequence more resistant ; so

that the cord slips and yields to the tractive force with increas-

ing difficulty.

[58]

Is it not clear that this is precisely the kind of resistance which

one meets in the case of a thick hemp rope where the fibres form

thousands and thousands of similar spirals? And, indeed, the

binding effect of these turns is so great that a few short rushes

woven together into a few interlacing spirals form one of the

strongest of ropes which I believe they call pack rope [susta] .

SAGR. What you say has cleared up two points which I did

not previously understand. One fact is how two, or at most

three, turns of a rope around the axle of a windlass cannot only

hold it fast, but can also prevent it from slipping when pulled

by the immense force of the weight [forza del peso] which it

sustains ; and moreover how, by turning the windlass, this same

axle, by mere friction of the rope around it, can wind up and

lift huge stones while a mere boy is able to handle

the slack of the rope. The other fact has to do with

a simple but clever device, invented by a young kins-

man of mine, for the purpose of descending from a

window by means of a rope without lacerating the

palms of his hands, as had happened to him shortly

before and greatly to his discomfort. A small sketch

will make this clear. He took a wooden cylinder,

AB, about as thick as a walking stick and about one

span long: on this he cut a spiral channel of about

one turn and a half, and large enough to just receive

the rope which he wished to use. Having introduced

the rope at the end A and led it out again at the end

B, he enclosed both the cylinder and the rope in a

case of wood or tin, hinged along the side so that it

Fig. 3
could be easily opened and closed . After he had

fastened the rope to a firm support above, he could, on grasp-

ing and squeezing the case with both hands, hang by his arms.

The pressure on the rope, lying between the case and the cyl-

inder, was such that he could, at will, either grasp the case

B

more
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more tightly and hold himself from slipping, or slacken his

hold and descend as slowly as he wished.

[59]

SALV. A truly ingenious device ! I feel, however, that for

a complete explanation other considerations might well enter;

yet I must not now digress upon this particular topic since you

are waiting to hear what I think about the breaking strength of

other materials which, unlike ropes and most woods, do not

show a filamentous structure. The coherence of these bodies

is, in my estimation, produced by other causes which may be

grouped under two heads. One is that much-talked-of repug-

nance which nature exhibits towards a vacuum; but this horror

of a vacuum not being sufficient, it is necessary to introduce

another cause in the form of a gluey or viscous substance which

binds firmly together the component parts of the body.

First I shall speak of the vacuum, demonstrating by definite

experiment the quality and quantity of its force [virtù] . If you

take two highly polished and smooth plates of marble, metal, or

glass and place them face to face, one will slide over the other

with the greatest ease, showing conclusively that there is noth-

ing of a viscous nature between them. But when you attempt

to separate them and keep them at a constant distance apart,

you find the plates exhibit such a repugnance to separation that

the upper one will carry the lower one with it and keep it lifted

indefinitely, even when the latter is big and heavy.

This experiment shows the aversion of nature for empty

space, even during the brief moment required for the outside air

to rush in and fill up the region between the two plates. It is

also observed that if two plates are not thoroughly polished,

their contact is imperfect so that when you attempt to separate

them slowly the only resistance offered is that of weight ; if,

however, the pull be sudden, then the lower plate rises, but

quickly falls back, having followed the upper plate only for that

very short interval of time required for the expansion of the

small amount of air remaining between the plates, in conse-

quence of their not fitting, and for the entrance of the surround-

ing air. This resistance which is exhibited between the two

plates
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plates is doubtless likewise present between the parts of a solid,

and enters, at least in part, as a concomitant cause of their

coherence.

[60]

SAGR. Allow me to interrupt you for a moment, please ; for

I want to speak of something which just occurs to me, namely,

when I see how the lower plate follows the upper one and how

rapidly it is lifted, I feel sure that, contrary to the opinion of

many philosophers, including perhaps even Aristotle himself,

motion in a vacuum is not instantaneous. If this were so the

two plates mentioned above would separate without any re-

sistance whatever, seeing that the same instant of time would

suffice for their separation and for the surrounding medium to

rush in and fill the vacuum between them. The fact that the

lower plate follows the upper one allows us to infer, not only

that motion in a vacuum is not instantaneous, but also that,

between the two plates, a vacuum really exists, at least for a

very short time, sufficient to allow the surrounding medium to

rush in and fill the vacuum; for if there were no vacuum there

would be no need of anymotion in the medium. One must admit

then that a vacuum is sometimes produced by violent motion

[violenza] or contrary to the laws of nature, (although in my

opinion nothing occurs contrary to nature except the impossible,

and that never occurs) .

But here another difficulty arises . While experiment con-

vinces me of the correctness of this conclusion, my mind is not

entirely satisfied as to the cause to which this effect is to be

attributed. For the separation of the plates precedes the

formation of the vacuum which is produced as a consequence

of this separation ; and since it appears to me that, in the order of

nature, the cause must precede the effect, even though it ap-

pears to follow in point of time, and since every positive effect

must have a positive cause, I do not see how the adhesion of

two plates and their resistance to separation—actual facts—can

be referred to a vacuum as cause when this vacuum is yet to

follow. According to the infallible maxim of the Philosopher,

the non-existent can produce no effect.

Simp.
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SIMP. Seeing that you accept this axiom of Aristotle, I hardly

think you will reject another excellent and reliable maxim of his,

namely, Nature undertakes only that which happens without

resistance ; and in this saying, it appears to me, you will find the

solution of your difficulty. Since nature abhors a vacuum, she

prevents that from which a vacuum would follow as a necessary

consequence. Thus it happens that nature prevents the separa-

tion of the two plates.

[61 ]

SAGR. Nowadmitting that what Simplicio says is an adequate

solution of my difficulty, it seems to me, if I may be allowed to

resume my former argument, that this very resistance to a

vacuum ought to be sufficient to hold together the parts either

of stone or of metal or the parts of any other solid which is knit

together more strongly andwhich is more resistant to separation.

If for one effect there be only one cause, or if, more being as-

signed, they can be reduced to one, then why is not this vacuum

which really exists a sufficient cause for all kinds of resistance ?

SALV. I do not wish just now to enter this discussion as to

whether the vacuum alone is sufficient to hold together the

separate parts of a solid body; but I assure you that the vacuum

which acts as a sufficient cause in the case of the two plates is not

alone sufficient to bind together the parts of a solid cylinder of

marble or metal which, when pulled violently, separates and

divides. And now if I find a method of distinguishing this well

known resistance, depending upon the vacuum, from every

other kind which might increase the coherence, and if I show

you that the aforesaid resistance alone is not nearly sufficient

for such an effect, will you not grant that we are bound to

introduce another cause? Help him, Simplicio, since he does

not knowwhat reply to make.

SIMP. Surely, Sagredo's hesitation must be owing to another

reason, for there can be no doubt concerning a conclusion which

is at once so clear and logical.

SAGR. You have guessed rightly, Simplicio. I was wondering

whether, if a million of gold each year from Spain were not

sufficient to pay the army, it might not be necessary to

make



14 THE TWO NEW SCIENCES OF GALILEO

make provision other than small coin for the pay of the

soldiers.*

But go ahead, Salviati ; assume that I admit your conclusion

and show us your method of separating the action of the vacuum

from other causes ; and by measuring it show us how it is not

sufficient to produce the effect in question.

SALV. Your good angel assist you. I will tell you how to

separate the force of the vacuum from the others, and after-

wards how to measure it. For this purpose let us consider a

continuous substance whose parts lack all resistance to separa-

tion except that derived from a vacuum, such as is the case with

water, a factfully demonstrated by our Academician in one ofhis

treatises . Whenever a cylinder of water is subjected to a pull and

[62]

A

E

G

B

offers a resistance to the separation of its parts this can be attrib-

uted to noothercause than the resistance ofthe

vacuum. In order to try such an experiment

I have invented a device which I can better

explain by means of a sketch than by mere

words. Let CABD represent the cross section

of a cylinder either of metal or, preferably,

of glass, hollow inside and accurately turned.

Into this is introduced a perfectly fitting

Dcylinder of wood, represented in cross section

by EGHF, and capable of up-and-down mo-

tion. Through the middle of this cylinder is

bored a hole to receive an iron wire, carrying

a hook at the end K, while the upper end

of the wire, I , is provided with a conical

head. The wooden cylinder is countersunk

Fig. 4 at the top so as to receive, with a perfect

fit, the conical head I of the wire, IK, when pulled down by

the end K.

K

Nowinsert thewooden cylinder EH in the hollow cylinderAD,

so as not to touch the upper end of the latter but to leave free a

space of two or three finger-breadths ; this space is to be filled

* The bearing of this remark becomes clear on reading what Salviati

says on p. 18 below. [Trans.]
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with water by holding the vessel with the mouth CD upwards,

pushing down on the stopper EH, and at the same time keeping

the conical head of the wire, I, away from the hollow portion of

the wooden cylinder. The air is thus allowed to escape alongside

the iron wire (which does not make a close fit) as soon as one

presses down on the wooden stopper. The air having been

allowed to escape and the iron wire having been drawn back so

that it fits snugly against the conical depression in the wood,

invert the vessel, bringing it mouth downwards, and hang on the

hook K a vessel which can be filled with sand or any heavy

material in quantity sufficient to finally separate the upper

surface of the stopper, EF, from the lower surface of the water

to which it was attached only by the resistance of the vacuum.

Next weigh the stopper and wire together with the attached

vessel and its contents ; we shall then have the force of the

vacuum [forza del vacuo] . If one attaches to a cylinder of marble

[63]

or glass a weight which, together with the weight of the marble

or glass itself, is just equal to the sum of the weights before

mentioned, and if breaking occurs we shall then be justified in

saying that the vacuum alone holds the parts of the marble and

glass together; but if this weight does not suffice and if breaking

occurs only after adding, say, four times this weight, we shall

then be compelled to say that the vacuum furnishes only one

fifth ofthe total resistance [resistenza].

SIMP. No one can doubt the cleverness of the device ; yet it

presents many difficulties which make me doubt its reliability.

Forwhowill assure us that the air does not creep in between the

glass and stopper even if it is well packed with tow or other

yielding material ? I question also whether oiling with wax or

turpentine will suffice to make the cone, I , fit snugly on its seat .

Besides, may not the parts of the water expand and dilate?

Why may not the air or exhalations or some other more subtile

substances penetrate the pores of the wood, or even of the glass

itself?

SALV. With great skill indeed has Simplicio laid before us the

difficulties ; and he has even partly suggested how to prevent the

air
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air from penetrating the wood or passing between the wood and

the glass. But now let me point out that, as our experience in-

creases, we shall learn whether or not these alleged difficulties

really exist. For if, as is the case with air, water is by nature

expansible, although only under severe treatment, we shall see

the stopper descend; and if we put a small excavation in the

upper part of the glass vessel, such as indicated by V, then the

air or any other tenuous and gaseous substance, which might

penetrate the pores of glass or wood, would pass through the

water and collect in this receptacle V. But if these things do not

happen we may rest assured that our experiment has been per-

formed with proper caution ; and we shall discover that water

does not dilate and that glass does not allow any material,

however tenuous, to penetrate it.

SAGR. Thanks to this discussion, I have learned the cause of a

certain effect which I have long wondered at and despaired of

understanding. I once saw a cistern which had been provided

with a pump under the mistaken impression that the water

might thus be drawn with less effort or in greater quantity than

by means of the ordinary bucket. The stock of the pump car-

[64]

ried its sucker and valve in the upper part so that the water was

lifted by attraction and not by a push as is the case with pumps

in which the sucker is placed lower down. This pump worked

perfectly so long as the water in the cistern stood above a certain

level ; but below this level the pump failed to work. When I

first noticed this phenomenon I thought the machine was out of

order; but the workman whom I called in to repair it told me

the defect was not in the pump but in the water which had

fallen too low to be raised through such a height; and he added

that it was not possible, either by a pump or by any other

machine working on the principle of attraction, to lift water a

hair's breadth above eighteen cubits ; whether the pump be

large or small this is the extreme limit of the lift. Up to this

time I had been so thoughtless that, although I knew a rope, or

rod of wood, or of iron, if sufficiently long, would break by its

own weight when held by the upper end, it never occurred to me

that
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that the same thing would happen, only much more easily, to a

column of water. And really is not that thing which is at-

tracted in the pump a column of water attached at the upper

end and stretched more and more until finally a point is reached

where it breaks, like a rope, on account of its excessive weight?

SALV. That is precisely the way it works ; this fixed elevation

of eighteen cubits is true for any quantity of water whatever, be

the pump large or small or even as fine as a straw. We may

therefore say that, on weighing the water contained in a tube

eighteen cubits long, no matter what the diameter, we shall

obtain the value of the resistance of the vacuum in a cylinder of

any solid material having a bore of this same diameter. And

having gone so far, let us see how easy it is to find to what

length cylinders of metal, stone, wood, glass, etc., of any diam-

eter can be elongated without breaking by their own weight.

[65]

Take for instance a copper wire of any length and thickness ;

fix the upper end and to the other end attach a greater and

greater load until finally the wire breaks ; let the maximum load

be, say, fifty pounds. Then it is clear that if fifty pounds of

copper, in addition to the weight of the wire itself which may

be, say, 1/8 ounce, is drawn out into wire of this same size we

shall have the greatest length of this kind of wire which can sus-

tain its own weight. Suppose the wire which breaks to be one

cubit in length and 1⁄8 ounce in weight; then since it supports

50 lbs. in addition to its own weight, i. e., 4800 eighths-of-an-

ounce, it follows that all copper wires, independent of size, can

sustain themselves up to a length of 4801 cubits and no more.

Since then a copper rod can sustain its own weight up to a

length of 4801 cubits it follows that that part of the breaking

strength [ resistenza] which depends upon the vacuum, comparing

it with the remaining factors of resistance, is equal to the weight

of a rod ofwater, eighteen cubits long and as thick as the copper

rod. If, for example, copper is nine times as heavy as water, the

breaking strength [resistenza allo strapparsi] of any copper rod,

in so far as it depends upon the vacuum, is equal to the weight

of two cubits of this same rod. By a similar method one can

find
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find the maximum length of wire or rod of any material which

will just sustain its own weight, and can at the same time dis-

cover the part which the vacuum plays in its breaking strength.

SAGR. It still remains for you to tell us upon what depends

the resistance to breaking, other than that of the vacuum ; what

is the gluey or viscous substance which cements together the

parts of the solid? For I cannot imagine a glue that will not

burn up in a highly heated furnace in two or three months, or

certainly within ten or a hundred . For if gold, silver and glass

are kept for a long while in the molten state and are removed

from the furnace, their parts, on cooling, immediately reunite

and bind themselves together as before. Not only so, but

whatever difficulty arises with respect to the cementation of the

parts of the glass arises also with regard to the parts of the glue ;

in other words, what is that which holds these parts together so

firmly?

[66]

SALV. A little while ago, I expressed the hope that your good

angel might assist you. I now find myself in the same straits.

Experiment leaves no doubt that the reason why two plates

cannot be separated, except with violent effort, is that they are

held together by the resistance of the vacuum ; and the same

can be said of two large pieces of a marble or bronze column.

This being so, I do not see why this same cause may not explain

the coherence of smaller parts and indeed of the very smallest

particles of these materials. Now, since each effect must have

one true and sufficient cause and since I find no other cement, am

I not justified in trying to discover whether the vacuum is not a

sufficient cause?

SIMP. But seeing that you have already proved that the re-

sistance which the large vacuum offers to the separation of

two large parts of a solid is really very small in comparison with

that cohesive force which binds together the most minute parts,

why do you hesitate to regard this latter as something very

different from theformer?

SALV. Sagredo has already [p. 13 above] answered this ques-

tion when he remarked that each individual soldier was being

paid
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paid from coin collected by a general tax of pennies and farth-

ings, while even a million of gold would not suffice to pay the

entire army. And who knows but that there may be other

extremely minute vacua which affect the smallest particles so

that that which binds together the contiguous parts is through-

out of the same mintage? Let me tell you something which has

just occurred to me and which I do not offer as an absolute fact,

but rather as a passing thought, still immature and calling for

more careful consideration. You may take of it what you like;

and judge the rest as you see fit. Sometimes when I have ob-

served how fire winds its way in between the most minute

particles of this or that metal and, even though these are solidly

cemented together, tears them apart and separates them, and

when I have observed that, on removing the fire, these particles

reunite with the same tenacity as at first, without any loss of

quantity in the case of gold and with little loss in the case of

other metals, even though these parts have been separated for a

long while, I have thought that the explanation might lie in the

fact that the extremely fine particles of fire, penetrating the

slender pores of the metal (too small to admit even the finest

particles of air or of many other fluids) , would fill the small

intervening vacua and would set free these small particles from

the attraction which these same vacua exert upon them and

which prevents their separation. Thus the particles are able to

[67]

move freely so that the mass [massa] becomes fluid and remains

so as long as the particles of fire remain inside ; but if they depart

and leave the former vacua then the original attraction [attraz-

zione] returns and the parts are again cemented together.

In reply to the question raised by Simplicio, one may say that

although each particular vacuum is exceedingly minute and

therefore easily overcome, yet their number is so extraordinarily

great that their combined resistance is, so to speak, multipled

almost without limit. The nature and the amount of force

[forza] which results [risulta ] from adding together an immense

number of small forces [debolissimi momenti] is clearly illus-

trated by the fact that a weight of millions of pounds, suspended

by
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by great cables, is overcome and lifted, when the south wind

carries innumerable atoms of water, suspended in thin mist,

which moving through the air penetrate between the fibres ofthe

tense ropes in spite of the tremendous force of the hanging

weight. When these particles enter the narrow pores they

swell the ropes, thereby shorten them, and perforce lift the

heavy mass [mole].

SAGR. There can be no doubt that any resistance, so long as

it is not infinite, may be overcome by a multitude of minute

forces. Thus a vast number of ants might carry ashore a ship

laden with grain. And since experience shows us daily that

one ant can easily carry one grain, it is clear that the number of

grains in the ship is not infinite, but falls below a certain limit.

If you take another number four or six times as great, and if

you set to work a corresponding number of ants they will carry

the grain ashore and the boat also. It is true that this will call

for a prodigious number of ants, but in my opinion this is pre-

cisely the case with the vacua which bind together the least

particles of a metal.

SALV. But even if this demanded an infinite number would

you still think it impossible?

SAGR. Not if the mass [mole] of metal were infinite; other-

wise..

[68]

SALV. Otherwise what? Now since we have arrived at

paradoxes let us see if we cannot prove that within a finite ex-

tent it is possible to discover an infinite number ofvacua. Atthe

same time we shall at least reach a solution of the most remark-

able of all that list of problems which Aristotle himself calls

wonderful; I refer to his Questions in Mechanics. This solution

may be no less clear and conclusive than that which he himself

gives and quite different also from that so cleverly expounded by

the most learned Monsignor di Guevara.*

First it is necessary to consider a proposition, not treated by

others, but upon which depends the solution of the problem and

from which, if I mistake not, we shall derive other new and

remarkable facts. For the sake of clearness let us draw an

Bishop of Teano; b. 1561 , d.1641 . [ Trans.]
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accurate figure. About G as a center describe an equiangular

and equilateral polygon of any number of sides, say the hexagon

ABCDEF. Similar to this and concentric with it, describe

another smaller one which we shall call HIKLMN. Prolong the

DE

M

R
F

N K

Y z T

B X

A

D

B

Fig. 5

side AB, of the larger hexagon, indefinitely toward S; in like

manner prolong the corresponding side HI of the smaller hex-

agon, in the same direction, so that the line HT is parallel to

AS; and through the center draw the line GV parallel to the

other two. This done, imagine the larger polygon to roll upon

[69]

the line AS, carrying with it the smaller polygon . It is evident

that, if the point B, the end of the side AB, remains fixed at the

beginning of the rotation, the point A will rise and the point C

will fall describing the arc CQ until the side BC coincides with

the line BQ, equal to BC. But during this rotation the point I,

on the smaller polygon, will rise above the line IT because IB is

oblique to AS ; and it will not again return to the line IT until the

point C shall have reached the position Q. The point I, having

described the arc IO above the line HT, will reach the position

O at
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O at the same time the side IK assumes the position OP; but in

the meantime the center G has traversed a path above GV and

does not return to it until it has completed the arc GC. This

step having been taken, the larger polygon has been brought to

rest with its side BC coinciding with the line BQ while the side

IK of the smaller polygon has been made to coincide with the

line OP, having passed over the portion IO without touching it ;

also the center G will have reached the position C after having

traversed all its course above the parallel line GV. And finally

the entire figure will assume a position similar to the first, so

that if we continue the rotation and come to the next step, the

side DC of the larger polygon will coincide with the portion QX

and the side KL of the smaller polygon, having first skipped the

arc PY, will fall on YZ, while the center still keeping above the

line GV will return to it at R after having jumped the interval

CR. At the end of one complete rotation the larger polygon will

have traced upon the line AS, without break, six lines together

equal to its perimeter; the lesser polygon will likewise have

imprinted six lines equal to its perimeter, but separated by the

interposition of five arcs, whose chords represent the parts

ofHT not touched by the polygon: the center G never reaches

the line GV except at six points. From this it is clear that the

space traversed by the smaller polygon is almost equal to that

traversed by the larger, that is, the line HT approximates the

line AS, differing from it only by the length of one chord of one

of these arcs, provided we understand the line HT to include the

five skipped arcs.

Now this exposition which I have given in the case of these

hexagons must be understood to be applicable to all other

polygons, whatever the number of sides, provided only they are

[70]

similar, concentric, and rigidly connected, so that when the

greater one rotates the lesser will also turn however small it may

be. You must also understand that the lines described by these

two are nearly equal provided we include in the space traversed

by the smaller one the intervals which are not touched by any

part ofthe perimeter of this smaller polygon.

Let
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Let a large polygon of, say, one thousand sides make one

complete rotation and thus lay off a line equal to its perimeter;

at the same time the small one will pass over an approximately

equal distance, made up of a thousand small portions each

equal to one of its sides, but interrupted by a thousand spaces

which, in contrast with the portions that coincide with the sides

of the polygon, we may call empty. So far the matter is free

from difficulty or doubt.

But now suppose that about any center, say A, we describe

two concentric and rigidly connected circles ; and suppose that

from the points C and B, on their radii, there are drawn the

tangents CE and BF and that through the center A the line AD

is drawn parallel to them, then if the large circle makes one

complete rotation along the line BF, equal not only to its cir-

cumference but also to the other two lines CE and AD, tell me

what the smaller circle will do and also what the center will do.

As to the center it will certainly traverse and touch the entire

line AD while the circumference of the smaller circle will have

measured off by its points of contact the entire line CE, just as

was done by the above mentioned polygons. The only difference

is that the line HT was not at every point in contact with the

perimeter of the smaller polygon, but there were left untouched

as many vacant spaces as there were spaces coinciding with the

sides. But here in the case of the circles the circumference ofthe

smaller one never leaves the line CE, so that no part of the latter

is left untouched, nor is there ever a time when some point on the

circle is not in contact with the straight line. How now can the

smaller circle traverse a length greater than its circumference

unless it go by jumps?

SAGR. It seems to me that one may say that just as the center

of the circle, by itself, carried along the line AD is constantly in

contact with it, although it is only a single point, so the points on

the circumference of the smaller circle, carried along by the

motion of the larger circle, would slide over some small parts of

the line CE.

[71]

SALV. There are two reasons why this cannot happen. First

because
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because there is no ground for thinking that one point of con-

tact, such as that at C, rather than another, should slip over

certain portions of the line CE. But if such slidings along CE

did occur they would be infinite in number since the points of

contact (being mere points) are infinite in number : an infinite

number of finite slips will however make an infinitely long line,

while as a matter of fact the line CE is finite. The other reason

is that as the greater circle, in its rotation, changes its point of

contact continuously the lesser circle must do the same because

B is the only point from which a straight line can be drawn toA

and pass through C. Accordingly the small circle must change

its point of contact whenever the large one changes : no point of

the small circle touches the straight line CE in more than one

point. Not only so, but even in the rotation of the polygons

there was no point on the perimeter of the smaller which coin-

cided with more than one point on the line traversed by that

perimeter; this is at once clear when you remember that the

line IK is parallel to BC and that therefore IK will remain above

IPuntil BC coincides with BQ, and that IK will not lie upon IP

except at the very instant when BC occupies the position BQ; at

this instant the entire line IK coincides with OP and immediately

afterwards rises above it.

SAGR. This is a very intricate matter. I see no solution. Pray

explain it to us.

SALV. Let us return to the consideration of the above men-

tioned polygons whose behavior we already understand. Now

in the case of polygons with 100000 sides, the line traversed by

the perimeter of the greater, i. e. , the line laid down by its

100000 sides one after another, is equal to the line traced out by

the 100000 sides of the smaller, provided we include the 100000

vacant spaces interspersed. So in the case of the circles, poly-

gons having an infinitude of sides, the line traversed by the

continuously distributed [continuamente disposti] infinitude of

sides is in the greater circle equal to the line laid down by the

infinitude of sides in the smaller circle but with the exception

that these latter alternate with empty spaces; and since the

sides are not finite in number, but infinite, so also are the inter-

vening
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vening empty spaces not finite but infinite. The line traversed

by the larger circle consists then of an infinite number of points

which completely fill it ; while that which is traced by the smaller

circle consists of an infinite number of points which leave empty

spaces and only partly fill the line. And here I wish you to

observe that after dividing and resolving a line into a finite

numberof parts, that is, into a numberwhich can be counted, it

[72]

is not possible to arrange them again into a greater length than

that which they occupied when they formed a continuum [con-

tinuate] and were connected without the interposition of as

many empty spaces. But if we consider the line resolved into

an infinite number of infinitely small and indivisible parts, we

shall be able to conceive the line extended indefinitely by the

interposition, not of a finite, but of an infinite number of in-

finitely small indivisible empty spaces.

Now this which has been said concerning simple lines must be

understood to hold also in the case of surfaces and solid bodies,

it being assumed that they are made up of an infinite, not a

finite, number of atoms. Such a body once divided into a

finite numberofparts it is impossible to reassemble them so as to

occupy more space than before unless we interpose a finite

number of empty spaces, that is to say, spaces free from the

substance of which the solid is made. But if we imagine the

body, by some extreme and final analysis, resolved into its

primary elements, infinite in number, then we shall be able to

think of them as indefinitely extended in space, not by the

interposition of a finite, but of an infinite number of empty

spaces. Thus one can easily imagine a small ball of gold ex-

panded into a very large space without the introduction of a

finite number of empty spaces, always provided the gold is

made up of an infinite number of indivisible parts.

SIMP. It seems to me that you are travelling along toward

thosevacua advocated by a certain ancient philosopher.

SALV. But you have failed to add, "whodenied Divine Provi-

dence," an inapt remark made on a similar occasion by a cer-

tain antagonist of our Academician.

Simp.
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SIMP. I noticed, and not without indignation, the rancor of

this ill-natured opponent ; further references to these affairs I

omit, not only as a matter of good form, but also because I

know how unpleasant they are to the good tempered and well

ordered mind of one so religious and pious, so orthodox and

God-fearing as you.

But to return to our subject, your previous discourse leaves

with me many difficulties which I am unable to solve. First

among these is that, if the circumferences of the two circles are

equal to the two straight lines, CE and BF, the latter con-

sidered as a continuum, the former as interrupted with an in-

finity of empty points, I do not see how it is possible to say that

the line AD described by the center, and made up of an infinity

of points, is equal to this center which is a single point. Besides,

this building up of lines out of points, divisibles out of indivisi-

bles, and finites out of infinites, offers me an obstacle difficult to

avoid ; and the necessity of introducing a vacuum , so conclu-

sively refuted by Aristotle, presents the same difficulty.

[73]

SALV. These difficulties are real ; and they are not the only

ones. But let us remember that we are dealing with infinities

and indivisibles, both of which transcend our finite under-

standing, the former on account of their magnitude, the latter

because of their smallness. In spite of this, men cannot refrain

from discussing them, even though it must be done in a round-

about way.

Therefore I also should like to take the liberty to present some

of my ideas which, though not necessarily convincing, would,

on account of their novelty, at least, prove somewhat startling.

But such a diversion might perhaps carry us too far away from

the subject under discussion and might therefore appear to you

inopportune and not very pleasing.

SAGR. Pray let us enjoy the advantages and privileges which

come from conversation between friends, especially upon sub-

jects freely chosen and not forced upon us, a matter vastly

different from dealing with dead books which give rise to many

doubts but remove none. Share with us, therefore, the thoughts

which



FIRST DAY 27

which our discussion has suggested to you ; for since we are free

from urgent business there will be abundant time to pursue the

topics already mentioned; and in particular the objections

raised by Simplicio ought not in any wise to be neglected.

SALV. Granted, since you so desire. The first question was,

How can a single point be equal to a line ? Since I cannot do

more at present I shall attempt to remove, or at least diminish,

one improbability by introducing a similar or a greater one,

just as sometimes a wonder is diminished by a miracle.*

And this I shall do by showing you two equal surfaces, to-

gether with two equal solids located upon these same surfaces

as bases, all four of which diminish continuously and uniformly

in such a way that their remainders always preserve equality

among themselves, and finally both the surfaces and the solids

terminate theirprevious constant equality by degenerating, the

one solid and the one surface into a very long line, the other

solid and the other surface into a single point ; that is, the

latter to one point, the former to an infinite numberofpoints.

[74]

SAGR. This proposition appears to me wonderful, indeed ;

but let us hear the explanation and demonstration.

SALV. Since the proof is purely geometrical we shall need

a figure. Let AFB be a semicircle with center at C; about it

describe the rectangle ADEB and from the center draw the

straight lines CD and CE to the points D and E. Imagine the

radius CF to be drawn perpendicular to either of the lines AB or

DE, and the entire figure to rotate about this radius as an axis.

It is clear that the rectangle ADEB will thus describe a cylinder,

the semicircle AFB a hemisphere, and the triangle CDE, a cone.

Next let us remove the hemisphere but leave the cone and the

rest of the cylinder, which, on account of its shape, we will call a

"bowl." First we shall prove that the bowl and the cone are

equal ; then we shall show that a planedrawn parallel tothe circle

which forms the base of the bowl and which has the line DE for

diameter and F for a center—a plane whose trace is GN—cuts

thebowl in the points G, I, O, N, and the cone in the pointsH, L,

so that the part of the cone indicated by CHL is always equal to

* Cf. p. 30 below. [Trans.]
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the part ofthe bowl whose profile is represented by the triangles

GAI and BON. Besides this we shall prove that the base of the

cone, i. e., the circle whose diameter is HL, is equal to the circular

A

H

P

B surface which forms the base of

this portion of the bowl, or as

onemight say, equal to a ribbon

whose width is GI. (Note by

the way the nature of mathe-

matical definitions which con-

sist merely in the imposition of

E names or, ifyou prefer, abbrevi-

ations of speech established and

introduced in order to avoid the tedious drudgery which you

and I now experience simply because we have not agreed

to call this surface a "circular band" and that sharp solid

portion of the bowl a "round razor.") Now call them by

D F

Fig. 6

[75]

what name you please, it suffices to understand that the plane,

drawn at any height whatever, so long as it is parallel to

the base, i. e., to the circle whose diameter is DE, always cuts

thetwo solids so that the portion CHLof the cone is equal to the

upper portion of the bowl ; likewise the two areas which are the

bases of these solids, namely the band and the circle HL, are also

equal. Here we have the miracle mentioned above ; as the cut-

ting plane approaches the line AB the portions of the solids cut

off are always equal, so also the areas of their bases. And as the

cutting plane comes near the top, the two solids (always equal)

as well as their bases (areas which are also equal) finally vanish,

one pair of them degenerating into the circumference of a circle,

the other into a single point, namely, the upper edge of the bowl

and the apex of the cone. Now, since as these solids diminish

equality is maintained between them up to the very last, we are

justified in saying that, at the extreme and final end of this

diminution, they are still equal and that one is not infinitely

greater than the other. It appears therefore that we may

equate the circumference of a large circle to a single point. And

this which is true of the solids is true also of the surfaces which

form
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form their bases ; for these also preserve equality between them-

selves throughout their diminution and in the end vanish, the

one into the circumference of a circle, the other into a single

point. Shall we not then call them equal seeing that they are the

last traces and remnants of equal magnitudes? Note also that,

even if these vessels were large enough to contain immense

celestial hemispheres, both their upper edges and the apexes of

the cones therein contained would always remain equal and

would vanish, the former into circles having the dimensions of

the largest celestial orbits, the latter into single points. Hence

in conformity with the preceding we may say that all circum-

ferences of circles, however different, are equal to each other,

and are each equal to a single point.

SAGR. This presentation strikes me as so clever and novel

that, even if I were able, I would not be willing to oppose it;

for to deface so beautiful a structure by a blunt pedantic attack

would be nothing short of sinful. But for our complete satisfac-

[76]

tion pray give us this geometrical proof that there is always

equality between these solids and between their bases ; for it

cannot, I think, fail to be very ingenious, seeing how subtle is

the philosophical argument based upon this result.

SALV. The demonstration is both short and easy. Referring

to the preceding figure, since IPC is a right angle the square of

the radius IC is equal to the sum of the squares on the two sides

IP, PC; but the radius IC is equal to AC and also to GP, while

CP is equal to PH. Hence the square of the line GP is equal to

the sum ofthe squares of IP and PH, or multiplying through by

4, we have the square of the diameterGN equal to the sum of the

squares on IO and HL. And, since the areas of circles are to

each other as the squares of their diameters, it follows that the

area of the circle whose diameter is GN is equal to the sum ofthe

areas of circles having diameters IOandHL, so that ifwe remove

the common area of the circle having IO for diameter the re-

maining area of the circle GN will be equal to the area of the

circle whose diameter is HL. So much for the first part. As for

the other part, we leave its demonstration for the present, partly

because
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because those who wish to follow it will find it in the twelfth

proposition of the second book of De centro gravitatis solidorum

by the Archimedes of our age, Luca Valerio,* who made use of it

for a different object, and partly because, for our purpose, it

suffices to have seen that the above-mentioned surfaces are

always equal and that, as they keep on diminishing uniformly,

they degenerate, the one into a single point, the other into the

circumference of a circle larger than any assignable ; in this fact

lies our miracle.†

SAGR. The demonstration is ingenious and the inferences

drawn from it are remarkable. And now let us hear something

concerning the other difficulty raised by Simplicio, if you have

anything special to say, which, however, seems to me hardly

possible, since the matter has already been so thoroughly dis-

cussed.

SALV. But I do have something special to say, and will first

of all repeat what I said a little while ago, namely, that in-

finity and indivisibility are in their very nature incomprehensi-

ble to us; imagine then what they are when combined. Yet if

[77]

we wish to build up a line out of indivisible points, we must

take an infinite number of them, and are, therefore, bound to

understand both the infinite and the indivisible at the same

time. Many ideas have passed through my mind concerning this

subject, some of which, possibly the more important, I may not

be able to recall on the spur of the moment; but in the course

of our discussion it may happen that I shall awaken in you, and

especially in Simplicio, objections and difficulties which in

turn will bring to memory that which, without such stimulus,

would have lain dormant in my mind. Allow me therefore the

customary liberty of introducing some of our human fancies, for

indeed we may so call them in comparison with supernatural

truth which furnishes the one true and safe recourse for deci-

sion in our discussions and which is an infallible guide in the

dark and dubious paths of thought.

* Distinguished Italian mathematician ; born at Ferrara about 1552 ;

admitted to the Accademia dei Lincei 1612 ; died 1618. [Trans.]

† Cf. p. 27 above. [Trans.]
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One of the main objections urged against this building up

of continuous quantities out of indivisible quantities [continuo

d' indivisibili] is that the addition of one indivisible to an-

other cannot produce a divisible, for if this were so it would

render the indivisible divisible. Thus if two indivisibles, say

two points, can be united to form a quantity, say a divisible

line, then an even more divisible line might be formed by the

union of three, five, seven, or any other odd number of points.

Since however these lines can be cut into two equal parts, it

becomes possible to cut the indivisible which lies exactly in the

middle of the line. In answer to this and other objections of the

same type we reply that a divisible magnitude cannot be con-

structedout oftwo or ten or a hundred or a thousand indivisibles ,

but requires an infinite number of them.

SIMP. Here a difficulty presents itself which appears to me

insoluble. Since it is clear that we may have one line greater

than another, each containing an infinite number of points,

we are forced to admit that, within one and the same class,

we may have something greater than infinity, because the in-

finity of points in the long line is greater than the infinity of

points in the short line. This assigning to an infinite quantity

a value greater than infinity is quite beyond my comprehension.

SALV. This is one of the difficulties which arise when we

attempt, with our finite minds, to discuss the infinite, assigning

to it thoseproperties which we give to the finite and limited; but

[78]

this I think is wrong, for we cannot speak of infinite quantities

as being the one greater or less than or equal to another. To

prove this I have in mind an argument which, for the sake of

clearness, I shall put in the form of questions to Simplicio who

raised this difficulty.

I take it for granted that you know which of the numbers are

squares and which are not.

SIMP. I amquite aware that a squared number is one which re-

sults from the multiplication of another number by itself ; thus

4, 9, etc., are squared numbers which come from multiplying 2, 3 ,

etc. , by themselves.

Salv.



32 THE TWO NEW SCIENCES OF GALILEO

SALV. Very well ; and you also know that just as the products

are called squares so the factors are called sides or roots ; while

on the other hand those numbers which do not consist of two

equal factors are not squares. Therefore if I assert that all

numbers, including both squares and non-squares, are more

than the squares alone, I shall speak the truth, shall I not?

SIMP. Most certainly.

SALV. If I should ask further howmany squares there are one

might reply truly that there are as many as the corresponding

number of roots, since every square has its own root and every

root its own square, while no square has more than one root

and no root more than one square.

SIMP. Precisely so.

SALV. But if I inquire how many roots there are, it cannot

be denied that there are as many as there are numbers because

every number is a root of some square. This being granted

we must say that there are as many squares as there are num-

bers because they are just as numerous as their roots, and all

the numbers are roots. Yet at the outset we said there are

many more numbers than squares, since the larger portion of

them are not squares. Not only so, but the proportionate

number of squares diminishes as we pass to larger numbers.

Thusup to 100 we have 10 squares, that is, the squares constitute

1/10 part of all the numbers ; up to 10000, we find only 1/100

[79]

part to be squares ; and up to a million only 1/1000 part ; on the

other hand in an infinite number, if one could conceive of such a

thing, he would be forced to admit that there are as many

squares as there are numbers all taken together.

SAGR. What then must one conclude under these circum-

stances ?

SALV. So far as I see we can only infer that the totality of

all numbers is infinite, that the number of squares is infinite,

and that the number of their roots is infinite ; neither is the

number of squares less than the totality of all numbers, nor

the latter greater than the former; and finally the attributes

"equal," "greater," and " less," are not applicable to infinite,

but
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but only to finite, quantities. When therefore Simplicio in-

troduces several lines of different lengths and asks me how it

is possible that the longer ones do not contain more points

than the shorter, I answer him that one line does not contain

more or less or just as many points as another, but that each

line contains an infinite number. Or if I had replied to him

that the points in one line were equal in number to the squares;

in another, greater than the totality of numbers ; and in the little

one, as many as the number of cubes, might I not, indeed, have

satisfied him by thus placing more points in one line than in

another and yet maintaining an infinite number in each ? So

much forthe first difficulty.

SAGR. Pray stop a moment and let me add to what has al-

ready been said an idea which just occurs to me. If the pre-

ceding be true, it seems to me impossible to say either that one

infinite number is greater than another or even that it is greater

than a finite number, because if the infinite number were greater

than, say, a million it would follow that on passing from the

million to higher and higher numbers we would be approach-

ing the infinite ; but this is not so ; on the contrary, the lar-

ger the number to which we pass, the more we recede from

[this property of] infinity, because the greater the numbers the

fewer [relatively] are the squares contained in them ; but the

squares in infinity cannot be less than the totality of all the

numbers, as we have just agreed ; hence the approach to greater

and greater numbers means a departure from infinity.*

SALV. And thus from your ingenious argument we are led to

[80]

conclude that the attributes "larger," "smaller," and "equal"

have no place either in comparing infinite quantities with each

other or in comparing infinite with finite quantities.

I pass now to another consideration . Since lines and all

continuous quantities are divisible into parts which are them-

selves divisible without end, I do not see how it is possible

*Acertain confusion of thought appears to be introduced here through

a failure to distinguish between the number n and the class of the first n

numbers; and likewise from a failure to distinguish infinity as a number

from infinity as the class of all numbers. [Trans .]
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to avoid the conclusion that these lines are built up of an in-

finite number of indivisible quantities because a division and a

subdivision which can be carried on indefinitely presupposes

that the parts are infinite in number, otherwise the subdivision

would reach an end ; and if the parts are infinite in number, we

must conclude that they are not finite in size, because an in-

finite number of finite quantities would give an infinite magni-

tude. And thus we have a continuous quantity built up of an

infinite number of indivisibles.

SIMP. But if we can carry on indefinitely the division into

finite parts what necessity is there then for the introduction

ofnon-finite parts?

SALV. The very fact that one is able to continue, without

end, the division into finite parts [in parti quante] makes it nec-

essary to regard the quantity as composed of an infinite num-

ber of immeasurably small elements [di infiniti non quanti] .

Now in order to settle this matter I shall ask you to tell me

whether, in your opinion, a continuum is made up of a finite

or of an infinite number of finite parts [parti quante] .

SIMP. My answer is that their number is both infinite and

finite; potentially infinite but actually finite [infinite, in po-

tenza; e finite, in atto] ; that is to say, potentially infinite before

division and actually finite after division ; because parts cannot

be said to exist in a body which is not yet divided or at least

marked out; if this is not done we say that they exist potentially.

SALV. So that a line which is, for instance, twenty spans

long is not said to contain actually twenty lines each one span

in length except after division into twenty equal parts ; before

division it is said to contain them only potentially. Suppose

the facts are as you say; tell me then whether, when the division

is once made, the size of the original quantity is thereby in-

creased, diminished, or unaffected.

SIMP. It neither increases nor diminishes.

SALV. That is my opinion also. Therefore the finite parts

[parti quante] in a continuum, whether actually or potentially

present, do not make the quantity either larger or smaller; but

it is perfectly clear that, if the number of finite parts actually

contained
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contained in the whole is infinite in number, they will make the

magnitude infinite. Hence the number of finite parts, although

existing only potentially, cannot be infinite unless the magnitude

containing them be infinite; and conversely if the magnitude is

[81 ]

finite it cannot contain an infinite number of finite parts either

actually or potentially.

SAGR. How then is it possible to divide a continuum without

limit into parts which are themselves always capable of subdivi-

sion?

SALV. This distinction of yours between actual and potential

appears to render easy by one method what would be impossible

by another. But I shall endeavor to reconcile these matters

in another way; and as to the query whether the finite parts

of a limited continuum [continuo terminate] are finite or in-

finite in number I will, contrary to the opinion of Simplicio,

answer that they are neither finite nor infinite.

SIMP. This answer would never have occurred to me since I

did not think that there existed any intermediate step between

the finite and the infinite, so that the classification or distinc-

tion which assumes that a thing must be either finite or infinite

is faulty and defective.

SALV. So it seems to me. And if we consider discrete quanti-

ties I think there is, between finite and infinite quantities, a

third intermediate term which corresponds to every assigned

number; so that if asked, as in the present case, whether the

finite parts of a continuum are finite or infinite in number the

best reply is that they are neither finite nor infinite but corre-

spond to every assigned number. In order that this may be

possible, it is necessary that those parts should not be included

within a limited number, for in that case they would not corre-

spond to a number which is greater; nor can they be infinite in

number since no assigned number is infinite; and thus at the

pleasure of the questioner we may, to any given line, assign a

hundred finite parts, a thousand, a hundred thousand , or indeed

any number we may please so long as it be not infinite. I grant,

therefore, to the philosophers, that the continuum contains as

many
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many finite parts as they please and I concede also that it con-

tains them, either actually or potentially, as they may like; but

I must add that just as a line ten fathoms [canne] in length con-

tains ten lines each of one fathom and forty lines each of one

cubit [braccia] and eighty lines each of half a cubit, etc., so it

contains an infinite number of points ; call them actual or po-

tential, as you like, for as to this detail, Simplicio, I defer to your

opinion and to your judgment.

[82]

SIMP. I cannot help admiring your discussion ; but I fear

that this parallelism between the points and the finite parts

contained in a line will not prove satisfactory, and that you will

not find it so easy to divide a given line into an infinite num-

ber of points as the philosophers do to cut it into ten fathoms or

forty cubits ; not only so, but such a division is quite impossible

to realize in practice, so that this will be one of those poten-

tialities which cannot be reduced to actuality.

SALV. The fact that something can be done only with effort

or diligence or with great expenditure of time does not render it

impossible; for I think that you yourself could not easily divide

a line into a thousand parts, and much less if the number of

parts were 937 or any other large prime number. But if I

were to accomplish this division which you deem impossible as

readily as another person would divide the line into forty parts

would you then be more willing, in our discussion, to concede the

possibility of such a division?

SIMP. In general I enjoy greatly your method; and replying

to your query, I answer that it would be more than sufficient

if it prove not more difficult to resolve a line into points than to

divide it into a thousand parts .

SALV. I will now say something which may perhaps astonish

you; it refers to the possibility of dividing a line into its in-

finitely small elements by following the same order which one

employs in dividing the same line into forty, sixty, or a hundred

parts, that is, by dividing it into two, four, etc. He who thinks

that, by following this method, he can reach an infinite number

of points is greatly mistaken ; for if this process were followed to

eternity
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eternity there would still remain finite parts which were un-

divided.

Indeed by such a method one is very far from reaching the

goal of indivisibility; on the contrary he recedes from it and

while he thinks that, by continuing this division and by multi-

plying the multitude of parts, he will approach infinity, he is,

in my opinion, getting farther and farther away from it. My

reason is this. In the preceding discussion we concluded that,

in an infinite number, it is necessary that the squares and cubes

should be as numerous as the totality of the natural numbers

[tutti i numeri], because both of these are as numerous as their

roots which constitute the totality of the natural numbers .

Nextwesawthat the larger the numbers taken the more sparsely

distributed were the squares, and still more sparsely the cubes;

therefore it is clear that the larger the numbers to which we pass

the farther we recede from the infinite number; hence it follows

[83]

that, since this process carries us farther and farther from the

end sought, if on turning back we shall find that any number

can be said to be infinite, it must be unity. Here indeed are

satisfied all those conditions which are requisite for an infinite

number; I mean that unity contains in itself as many squares as

there are cubes and natural numbers [tutti i numeri] .

SIMP. I do not quite grasp the meaning ofthis.

SALV. There is no difficulty in the matter because unity is at

once a square, a cube, a square of a square and all the other

powers [dignitā] ; nor is there any essential peculiarity in squares

or cubes which does not belong to unity; as, for example, the

property of two square numbers that they have between them a

mean proportional ; take any square number you please as the

first term and unity for the other, then you will always find a

number which is a mean proportional. Consider the two square

numbers, 9 and 4; then 3 is the mean proportional between

9 and 1 ; while 2 is a mean proportional between 4 and 1 ; between

and 4we have 6 as a mean proportional. A property of cubes

is that they must have between them two mean proportional

numbers; take 8 and 27; between them lie 12 and 18 ; while

9

between
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between I and 8 we have 2 and 4 intervening; and between 1 and

27 there lie 3 and 9. Therefore we conclude that unity is the

only infinite number. These are some of the marvels which our

imagination cannot grasp and which should warn us against the

serious error of those who attempt to discuss the infinite by

assigning to it the same properties which we employ for the

finite, the natures of the two having nothing in common.

With regard to this subject I must tell you of a remarkable

property which just now occurs to me and which will explain

the vast alteration and change of character which a finite quan-

tity would undergo in passing to infinity. Let us draw the

straight line AB of arbitrary length and let the point C divide

it into two unequal parts ; then I say that, if pairs of lines be

drawn, one from each of the terminal points A and B, and if

the ratio between the lengths of these lines is the same as that

between AC and CB, their points of intersection will all lie upon

the circumference of one and the same circle. Thus, for ex-

[84]

ample, AL and BLdrawn from A and B, meeting at the point L,

bearing to one another the same ratio as AC to BC, and the

H

A C B D

G

F

pair AK and BK

meeting at K also

bearing to one an-

other the same ratio,

and likewise the pairs

E AI, BI, AH, BH,AG,

BG, AF, BF, AE,

BE, have their points

of intersection L, K,

I, H, G, F, E, all ly-

ing upon the circum-

ference ofone and the same circle. Accordingly if we imagine

thepoint C to move continuously in such a manner that the lines

drawnfrom it to the fixed terminal points, A and B, always main-

tain the same ratio between their lengths as exists between the

original parts, AC and CB, then the point C will, as I shall pres-

ently prove, describe a circle. And the circle thus described will

increase

Fig. 7

M
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increase in size without limit as the point C approaches the mid-

dle point which we may call O; but it will diminish in size as C

approaches the end B. So that the infinite number of points lo-

cated in the line OBwill, if the motion be as explained above, de-

scribe circles of every size, some smaller than the pupil of the eye

ofa flea, others largerthan the celestial equator. Nowifwemove

anyof the points lying between the two ends O and B they will

all describe circles, those nearest O, immense circles ; but if we

move the point O itself, and continue to move it according to

the aforesaid law, namely, that the lines drawn from O to the

terminal points, A and B, maintain the same ratio as the original

lines AO and OB, what kind of a line will be produced? A circle

will be drawn larger than the largest of the others, a circle which

is therefore infinite. But from the pointO a straight line will also

be drawn perpendicular to BA and extending to infinity with-

out ever turning, as did the others, to join its last end with its

first ; for the point C, with its limited motion, having described

[85]

the upper semi-circle, CHE, proceeds to describe the lower

semicircle EMC, thus returning to the starting point. But the

point O having started to describe its circle, as did all the other

points in the line AB, (for the points in the other portion OA

describe their circles also, the largest being those nearest the

point O) is unable to return to its starting point because the

circle it describes, being the largest of all, is infinite; in fact, it

describes an infinite straight line as circumference of its infinite

circle. Think nowwhat a difference there is between a finite and

an infinite circle since the latter changes character in such a

manner that it loses not only its existence but also its possibility

of existence; indeed, we already clearly understand that there

can be no such thing as an infinite circle ; similarly there can be

no infinite sphere, no infinite body, and no infinite surface of

any shape. Nowwhat shall we say concerning this metamorpho-

sis in the transition from finite to infinite? And why should we

feel greater repugnance, seeing that, in our search after the

infinite among numbers we found it in unity? Having broken

up a solid into many parts, having reduced it to the finest of

powder
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powder and having resolved it into its infinitely small indivisible

atoms why may we not say that this solid has been reduced to a

single continuum [un solo continuo] perhaps a fluid like water or

mercury or even a liquified metal? And do we not see stones

melt into glass and the glass itself under strong heat become more

fluid than water?

SAGR. Are we then to believe that substances become fluid in

virtue of being resolved into their infinitely small indivisible

components ?

SALV. I am not able to find any better means of accounting

for certain phenomena of which the following is one. When I

take a hard substance such as stone or metal and when I reduce

it by means of a hammer or fine file to the most minute and

impalpable powder, it is clear that its finest particles, although

when taken one by one are, on account of their smallness, im-

perceptible to our sight and touch, are nevertheless finite in

size, possess shape, and capability of being counted. It is also

true that when once heaped up they remain in a heap ; and if an

excavation be made within limits the cavity will remain and the

surrounding particles will not rush in to fill it ; if shaken the

particles come to rest immediately after the external disturbing

agent is removed; the same effects are observed in all piles of

[86]

larger and larger particles, of any shape, even if spherical, as is

the case with piles of millet, wheat, lead shot, and every other

material. But if we attempt to discover such properties in

water we do not find them; for when once heaped up it imme-

diately flattens out unless held up by some vessel or other exter-

nal retaining body; when hollowed out it quickly rushes in to fill

the cavity; and when disturbed it fluctuates for a long time

and sends out its waves through great distances.

Seeing that water has less firmness [consistenza] than the

finest of powder, in fact has no consistence whatever, we may,

it seems to me, very reasonably conclude that the smallest

particles into which it can be resolved are quite different from

finite and divisible particles ; indeed the only difference I am

able to discover is that the former are indivisible. The exquisite

transparency
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transparency of water also favors this view; for the most trans-

parent crystal when broken and ground and reduced to powder

loses its transparency; the finer the grinding the greater the loss ;

but in the case of water where the attrition is of the highest

degree we have extreme transparency . Gold and silver when

pulverized with acids [acque forti] more finely than is possible

with any file still remain powders,* and do not become fluids

until the finest particles [gl' indivisibili] of fire or of the rays of

the sun dissolve them, as I think, into their ultimate, indivisible,

and infinitely small components.

SAGR. This phenomenon of light which you mention is one

which I have many times remarked with astonishment. I have,

for instance, seen lead melted instantly by means of a concave

mirror only three hands [palmi] in diameter. Hence I think

that if the mirror were very large, well-polished and of a para-

bolic figure, it would just as readily and quickly melt any other

metal, seeing that the small mirror, which was not well polished

and had only a spherical shape, was able so energetically to melt

lead and burn every combustible substance. Such effects as

these render credible to me the marvels accomplished by the

mirrors of Archimedes.

SALV. Speaking of the effects produced by the mirrors of

Archimedes, it was his own books (which I had already read and

studied with infinite astonishment) that rendered credible to me

all the miracles described by various writers. And if any doubt

had remained the book which Father Buenaventura Cavalieri†

[87]

has recently published on the subject of the burning glass

[specchio ustorio] and which I have read with admiration would

have removed the last difficulty.

SAGR. I also have seen this treatise and have read it with

* It is not clear what Galileo here means by saying that gold and

silver when treated with acids still remain powders. [ Trans.]

† One ofthe most active investigators among Galileo's contemporaries ;

born at Milan 1598 ; died at Bologna 1647 ; a Jesuit father, first to intro-

duce the use of logarithms into Italy and first to derive the expression for

the focal length of a lens having unequal radii of curvature. His "method

of indivisibles " is to be reckoned as a precursor of the infinitesimal

calculus. [Trans.]
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pleasure and astonishment ; and knowing the author I was con-

firmed in the opinion which I had already formed of him that

he was destined to become one of the leading mathematicians

of our age. But now, with regard to the surprising effect of

solar rays in melting metals, must we believe that such a furious

action is devoid of motion or that it is accompanied by the most

rapid of motions?

SALV. We observe that other combustions and resolutions are

accompanied by motion, and that, the most rapid ; note the ac-

tion of lightning and of powder as used in mines and petards ;

note also how the charcoal flame, mixed as it is with heavy and

impure vapors, increases its power to liquify metals whenever

quickened by a pair of bellows. Hence I do not understand how

the action of light, although very pure, can be devoid of motion

and that of the swiftest type.

SAGR. But of what kind and how great must we consider this

speed of light to be? Is it instantaneous or momentary or does

it like other motions require time? Can we not decide this by

experiment ?

SIMP. Everyday experience shows that the propagation of

light is instantaneous; for when we see a piece of artillery fired,

at great distance, the flash reaches our eyes without lapse of

time; but the sound reaches the ear only after a noticeable

interval.

ear,

SAGR. Well, Simplicio, the only thing I am able to infer from

this familiar bit of experience is that sound, in reaching our

travels more slowly than light ; it does not inform me whether

the coming of the light is instantaneous or whether, although

extremely rapid, it still occupies time. An observation of this

kind tells us nothing more than one in which it is claimed that

"As soon as the sun reaches the horizon its light reaches our

eyes"; but who will assure me that these rays had not reached

this limit earlier than they reached our vision?

SALV. The small conclusiveness of these and other similar

observations once led me to devise a method by which one might

accurately ascertain whether illumination, i . e., the propagation

of light, is really instantaneous. The fact that the speed of

sound
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sound is as high as it is, assures us that the motion of light

cannot fail to be extraordinarily swift. The experiment which I

devised was as follows :

Let each of two persons take a light contained in a lantern, or

other receptacle, such that by the interposition of the hand, the

one can shut off or admit the light to the vision of the other.

Next let them stand opposite each other at a distance of a few

cubits and practice until they acquire such skill in uncovering

and occulting their lights that the instant one sees the light of his

companion he will uncover his own. After a few trials the

response will be so prompt that without sensible error [svario]

the uncovering of one light is immediately followed by the un-

covering of the other, so that as soon as one exposes his light he

will instantly see that of the other. Having acquired skill at this

short distance let the two experimenters, equipped as before,

take up positions separated by a distance of two or three miles

and let them perform the same experiment at night, noting care-

fully whether the exposures and occultations occur in the same

manner as at short distances ; if they do, we may safely conclude

that the propagation of light is instantaneous ; but if time is

required at a distance of three miles which, considering the

going of one light and the coming of the other, really amounts

to six, then the delay ought to be easily observable. If the

experiment is to be made at still greater distances, say eight

or ten miles, telescopes may be employed, each observer ad-

justing one for himself at the place where he is to make the

experiment at night; then although the lights are not large and

are therefore invisible to the naked eye at so great a distance,

they can readily be covered and uncovered since by aid of the

telescopes, once adjusted and fixed, they will become easily

visible.

SAGR. This experiment strikes me as a clever and reliable in-

vention. But tell us what you conclude from the results.

SALV. In fact I have tried the experiment only at a short

distance, less than a mile, from which I have not been able to

ascertain with certainty whether the appearance of the op-

posite
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posite light was instantaneous or not; but if not instantaneous

it is extraordinarily rapid—I should call it momentary ; and for

the present I should compare it to motion which we see in the

lightning flash between clouds eight or ten miles distant from us.

We see the beginning of this light—I might say its head and

[89]

source—located at a particular place among the clouds ; but it

immediately spreads to the surrounding ones, which seems to be

an argument that at least some time is required for propagation ;

for if the illumination were instantaneous and not gradual, we

should not be able to distinguish its origin—its center, so to

speak—from its outlying portions. What a sea we are grad-

ually slipping into without knowing it ! With vacua and in-

finities and indivisibles and instantaneous motions, shall we

ever be able, even by means of a thousand discussions , to reach

dry land?

SAGR. Really these matters lie far beyond our grasp. Just

think; when we seek the infinite among numbers we find it in

unity ; that which is ever divisible is derived from indivisibles ;

the vacuum is found inseparably connected with the plenum;

indeed the views commonly held concerning the nature of these

matters are so reversed that even the circumference of a circle

turns out to be an infinite straight line, a fact which, if my

memory serves me correctly, you, Salviati, were intending to

demonstrate geometrically. Please therefore proceed without

further digression.

SALV. I am at your service ; but for the sake of greater clear-

ness let me first demonstrate the following problem:

Given a straight line divided into unequal parts which bear

to each other any ratio whatever, to describe a circle such

that two straight lines drawn from the ends of the given

line to any point on the circumference will bear to each

other the same ratio as the two parts of the given line, thus

making those lines which are drawn from the same terminal

points homologous .

Let AB represent the given straight line divided into any two

unequal parts by the point C; the problem is to describe a circle

such
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such that two straight lines drawn from the terminal points,

A and B, to any point on the circumference will bear to each

other the same ratio as the part AC bears to BC, so that lines

drawn from the same terminal points are homologous. About

C as center describe a circle having the shorter part CB of the

given line, as radius. Through A draw a straight line AD which

[90]

shall be tangent to the circle at D and indefinitely prolonged

toward E. Draw the radius CD which will be perpendicular

to AE. At B erect a perpendicular to AB; this perpendicular

will intersect AE at

some point since the

angle at A is acute;

call this point of in-

tersection E, and

from it draw a per-

pendicular to AE

which will intersect

AB prolonged in F.

Now I say the two

straight lines FE and

FC are equal. For

if we join E and C,

we shall have two

A

M

E

G

B

H

Fig. 8

triangles, DEC and BEC, in which the two sides of the one,

DE and EC, are equal to the two sides of the other, BE

and EC, both DE and EB being tangents to the circle DB

while the bases DC and CB are likewise equal ; hence the

two angles, DEC and BEC, will be equal. Now since the

angle BCE differs from a right angle by the angle CEB, and the

angle CEF also differs from a right angle by the angle CED, and

since these differences are equal, it follows that the angle FCE

is equal to CEF; consequently the sides FE and FC are equal.

Ifwe describe a circle with F as center and FE as radius it will

pass through the point C; let CEG be such a circle. This is the

circle sought, for if we draw lines from the terminal points A and

B to any point on its circumference they will bear to each other

the
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the same ratio as the two portions AC and BC which meet at the

point C. This is manifest in the case of the two lines AE and

BE, meeting at the point E, because the angle E of the triangle

AEB is bisected bythe line CE, and therefore AC: CB =AE : BE.

The same may be proved of the two lines AG and BG terminat-

ing in the point G. For since the triangles AFE and EFB are

similar, we have AF : FE =EF : FB, or AF : FC =CF : FB, and

dividendo AC: CF =CB : BF, or AC: FG =CB : BF ; also com-

ponendo we have both AB : BG=CB : BF and AG : GB=CF : FB

=AE: EB=AC: BC.

[91]

Q. E. D.

Take now any other point in the circumference, say H,

where the two lines AH and BH intersect ; in like manner we

shall have AC: CB=AH: HB. Prolong HB until it meets the

circumference at I and join IF ; and since we have already

found that AB : BG =CB : BF it follows that the rectangle

AB.BF is equal to the rectangle CB.BG or IB.BH. Hence AB :

BH=IB : BF. But the angles at B are equal and therefore

AH: HB= IF : FB =EF : FB =AE: EB.

Besides, I may add, that it is impossible for lines which main-

tain this same ratio and which are drawn from the terminal

points, A and B, to meet at any point either inside or outside the

circle, CEG. For suppose this were possible ; let AL and BLbe

two such lines intersecting at the point L outside the circle :

prolong LB till it meets the circumference at M and join MF.

If AL: BL=AC: BC=MF : FB, then we shall have two tri-

angles ALB and MFB which have the sides about the two

angles proportional, the angles at the vertex, B, equal, and the

two remaining angles, FMB and LAB, less than right angles

(because the right angle at M has for its base the entire diameter

CG and not merely a part BF: and the other angle at the point

A is acute because the line AL, the homologue ofAC, is greater

than BL, the homologue of BC) . From this it follows that the

triangles ABL and MBF are similar and therefore AB : BL=

MB : BF, making the rectangle AB.BF =MB.BL; but it has

been demonstrated that the rectangle AB.BF is equal to CB.BG;

whence it would follow that the rectangle MB.BL is equal to the

rectangle
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rectangle CB.BGwhich is impossible ; therefore the intersection

cannot fall outside the circle. And in like manner we can show

that it cannot fall inside ; hence all these intersections fall on the

circumference.

But now it is time for us to go back and grant the request of

Simplicio by showing him that it is not only not impossible to

resolve a line into an infinite number of points but that this is

quite as easy as to divide it into its finite parts . This I will do

under the following condition which I am sure, Simplicio, you

will not deny me, namely, that you will not require me to sep-

arate the points, one from the other, and show them to you,

[92]

one by one, on this paper; for I should be content that you,

without separating the four or six parts of a line from one an-

other, should show me the marked divisions or at most that you

should fold them at angles forming a square or a hexagon : for,

then, I am certain you would consider the division distinctly

and actually accomplished .

SIMP. I certainly should.

SALV. If now the change which takes place when you bend a

line at angles so as to form now a square, now an octagon, now a

polygon of forty, a hundred or a thousand angles, is sufficient

to bring into actuality the four, eight, forty, hundred, and

thousand parts which, according to you, existed at first only

potentially in the straight line, may I not say, with equal right,

that, when I have bent the straight line into a polygon having an

infinite number of sides, i . e . , into a circle, I have reduced to

actuality that infinite number of parts which you claimed, while

it was straight, were contained in it only potentially? Nor can

one deny that the division into an infinite number of points is

just as truly accomplished as the one into four parts when the

square is formed or into a thousand parts when the millagon is

formed; for in such a division the same conditions are satisfied as

in the case of a polygon of a thousand or a hundred thousand

sides. Such a polygon laid upon a straight line touches it with

one of its sides, i . e., with one of its hundred thousand parts ;

while the circle which is a polygon of an infinite number of sides

touches
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touches the same straight line with one of its sides which is a

single point different from all its neighbors and therefore sep-

arate and distinct in no less degree than is one side of a polygon

from the other sides. And just as a polygon, when rolled along

a plane, marks out upon this plane, by the successive contacts

of its sides, a straight line equal to its perimeter, so the circle

rolled upon such a plane also traces by its infinite succession of

contacts a straight line equal in length to its own circumference.

I am willing, Simplicio, at the outset, to grant to the Peripatetics

the truth of their opinion that a continuous quantity [il con-

tinue] is divisible only into parts which are still further divisible

so that however far the division and subdivision be continued no

end will be reached ; but I am not so certain that they will

concede to me that none of these divisions of theirs can be a

final one, as is surely the fact, because there always remains

"another"; the final and ultimate division is rather one which

resolves a continuous quantity into an infinite number of in-

divisible quantities, a result which I grant can never be reached

by successive division into an ever-increasing number of parts .

But if they employ the method which I propose for separating

[93]

and resolving the whole of infinity [tutta la infinità], at a single

stroke (an artifice which surely ought not to be denied me),

I think that they would be contented to admit that a continuous

quantity is built up out of absolutely indivisible atoms, es-

pecially since this method, perhaps better than any other,

enables us to avoid many intricate labyrinths, such as cohesion

in solids, already mentioned, and the question of expansion and

contraction, without forcing upon us the objectionable admission

ofempty spaces [in solids] which carries with it the penetrability

of bodies. Both ofthese objections, it appears tome, are avoided

if we accept the above-mentioned view of indivisible con-

stituents.

SIMP. I hardly know what the Peripatetics would say since

the views advanced byyou would strike them as mostly new, and

as such we must consider them. It is however not unlikely that

they would find answers and solutions for these problems which

I,
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I, for want of time and critical ability, am at present unable to

solve. Leaving this to one side for the moment, I should like

to hear how the introduction of these indivisible quantities

helps us to understand contraction and expansion avoiding at

the same time the vacuum and the penetrability of bodies.

SAGR. I also shall listen with keen interest to this same matter

which is far from clear in my mind ; provided I am allowed to

hear what, a moment ago, Simplicio suggested we omit, namely,

the reasons which Aristotle offers against the existence of the

vacuum and the arguments which you must advance in rebuttal.

SALV. I will do both. And first, just as, for the production

of expansion, we employ the line described by the small circle

during one rotation of the large one—a line greater than the

circumference of the small circle—so, in order to explain con-

traction, we point out that, during each rotation of the smaller

circle, the larger one describes a straight line which is shorter

than its circumference.

For the better understanding of this we proceed to the con-

sideration of what happens in the case of polygons. Employing

[94]

a figure similar to the earlier one, construct the two hexagons,

ABC and HIK, about the common center L, and let them roll

along the parallel lines HOM and ABc. Now holding the vertex

I fixed, allow the smaller polygon to rotate until the side IK

lies upon the parallel, during which motion the point K will

describe the arc KM, and the side KI will coincide with IM.

Let us see what, in the meantime, the side CB of the larger

polygon has been doing. Since the rotation is about the point I,

the terminal point B, of the line IB, moving backwards, will

describe the arc Bb underneath the parallel cA so that when the

side KI coincides with the line MI, the side BC will coincide with

bc, having advanced only through the distance Bc, but having

retreated through a portion of the line BA which subtends the

arc Bb. Ifwe allow the rotation of the smaller polygon to go on

it will traverse and describe along its parallel a line equal to its

perimeter; while the larger one will traverse and describe a line

less than its perimeter by as many times the length bB as there

are
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are sides less one; this line is approximately equal to that de-

scribed by the smaller polygon exceeding it only by the distance

bB. Here now we see, without any difficulty, why the larger

C

K

H OM

A
b B C

A

B

C

Fig. 9

polygon, when carried by

the smaller, does not

measure off with its sides

a line longer than that

traversed by the smaller

one ; this is because a por-

tion of each side is super-

posed upon its immedi-

ately preceding neighbor.

Let us next consider

two circles, having a com-

mon center at A, and ly-

ing upon their respective

parallels, the smaller be-

ing tangent to its parallel

at the point B; the larger,

at the point C. Here when

the small circle commen-

ces to roll the point B

[95]

does not remain at rest

for a while so as to allow

BC to move backward

and carry with it the point C, as happened in the case of the

polygons, where the point I remained fixed until the side KI

coincided with MI and the line IB carried the terminal point B

backward as far as b, so that the side BC fell upon bc, thus super-

posing upon the line BA, the portion Bb, and advancing by an

amount Bc, equal to MI, that is, to one side of the smaller

polygon. On account of these superpositions, which are the

excesses of the sides of the larger over the smaller polygon, each

net advance is equal to one side of the smaller polygon and, dur-

ing one complete rotation, these amount to a straight line equal

in length to the perimeter of the smaller polygon.

But
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But now reasoning in the same way concerning the circles,

we must observe that whereas the number of sides in any poly-

gon is comprised within a certain limit, the number of sides in a

circle is infinite ; the former are finite and divisible; the latter

infinite and indivisible. In the case of the polygon, the vertices

remain at rest during an interval of time which bears to the

period of one complete rotation the same ratio which one side

bears to the perimeter; likewise, in the case of the circles, the

delay of each of the infinite number of vertices is merely in-

stantaneous, because an instant is such a fraction of a finite

interval as a point is of a line which contains an infinite number

of points. The retrogression of the sides of the larger polygon is

not equal to the length of one of its sides but merely to the

excess of such a side over one side of the smaller polygon, the

net advance being equal to this smaller side ; but in the circle, the

point or side C, during the instantaneous rest of B, recedes by an

amount equal to its excess over the side B, making a net progress

equal to B itself. In short the infinite number of indivisible

sides of the greater circle with their infinite number of indivisible

retrogressions, made during the infinite number of instantaneous

delays of the infinite number of vertices of the smaller circle,

together with the infinite number of progressions, equal to the

infinite number of sides in the smaller circle—all these, I say,

add up to a line equal to that described by the smaller circle,

a line which contains an infinite number of infinitely small

superpositions, thus bringing about a thickening or contraction

without any overlapping or interpenetration of finite parts.

This result could not be obtained in the case of a line divided

[96]

into finite parts such as is the perimeter of any polygon, which

when laid out in a straight line cannot be shortened except by

the overlapping and interpenetration of its sides. This contrac-

tion of an infinite number of infinitely small parts without the

interpenetration or overlapping of finite parts and the previously

mentioned [p. 70, Nat. Ed. ] expansion of an infinite number of

indivisible parts by the interposition of indivisible vacua is, in

my opinion, the most that can be said concerning the contraction

and
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and rarefaction of bodies, unless we give up the impenetrability

of matter and introduce empty spaces of finite size. If you find

anything here that you consider worth while, pray use it ; if not

regard it, together with my remarks, as idle talk ; but this

remember, we are dealing with the infinite and the indivisible.

SAGR. I frankly confess that your idea is subtle and that it

impresses me as new and strange ; but whether, as a matter of

fact, nature actually behaves according to such a law I am

unable to determine ; however, until I find a more satisfactory

explanation I shall hold fast to this one. Perhaps Simplicio

can tell us something which I have not yet heard, namely, how

to explain the explanation which the philosophers have given

of this abstruse matter; for, indeed, all that I have hitherto

read concerning contraction is so dense and that concerning ex-

pansion so thin that my poor brain can neither penetrate the

former nor grasp the latter.

SIMP. I am all at sea and find difficulties in following either

path, especially this new one ; because according to this theory

an ounce of gold might be rarefied and expanded until its size

would exceed that of the earth, while the earth, in turn, might be

condensed and reduced until it would become smaller than a

walnut, something which I do not believe ; nor do I believe that

you believe it. The arguments and demonstrations which you

have advanced are mathematical, abstract, and far removed

from concrete matter ; and I do not believe that when applied to

the physical and natural world these laws will hold.

SALV. I am not able to render the invisible visible, nor do

I think that you will ask this. But now that you mention gold,

do not our senses tell us that that metal can be immensely ex-

panded? I do not knowwhether you have observed the method

[97]

employed by those who are skilled in drawing gold wire, of which

really only the surface is gold, the inside material being silver.

The way they draw it is as follows : they take a cylinder or, if

you please, a rod of silver, about half a cubit long and three or

four times as wide as one's thumb; this rod they cover with

gold-leaf which is so thin that it almost floats in air, putting on

not
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not more than eight or ten thicknesses. Once gilded they begin

to pull it, with great force, through the holes of a draw-plate ;

again and again it is made to pass through smaller and smaller

holes, until, after very many passages, it is reduced to the

fineness of a lady's hair, or perhaps even finer; yet the surface

remains gilded. Imagine now howthe substance of this gold has

been expanded and towhat fineness it has been reduced.

SIMP. I do not see that this process would produce, as a

consequence, that marvellous thinning of the substance of the

gold which you suggest : first, because the original gilding con-

sisting often layers ofgold-leaf has a sensible thickness ; secondly,

because in drawing out the silver it grows in length but at the

same time diminishes proportionally in thickness ; and, since

one dimension thus compensates the other, the area will not be

so increased as to make it necessary during the process of gilding

to reduce the thinness of the gold beyond that of the original

leaves.

SALV. You are greatly mistaken, Simplicio, because the sur-

face increases directly as the square root of the length, a fact

which I can demonstrate geometrically.

SAGR. Please give us the demonstration not only for my own

sake but also for Simplicio provided you think we can under-

stand it.

SALV. I'll see if I can recall it on the spur of the moment.

At the outset, it is clear that the original thick rod of silver and

the wire drawn out to an enormous length are two cylinders of

the same volume, since they are the same body of silver. So

[98]

that, if I determine the ratio between the surfaces of cylinders of

the same volume, the problem will be solved. I say then,

The areas of cylinders of equal volumes, neglecting the

bases, bear to each other a ratio which is the square root

of the ratio of their lengths.

Take two cylinders of equal volume having the altitudes AB

and CD, between which the line E is a mean proportional. Then

I claim that, omitting the bases of each cylinder, the surface of

the cylinder AB is to that of the cylinder CD as the length AB

is
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E

is to the line E, that is, as the square root ofAB is to the square

root of CD. Now cut off the cylinder AB at F so that the alti-

tude AF is equal to CD. Then since the bases of cylinders of

equal volume bear to one another the inverse ratio of their

heights, it follows that the area of the circular base of the

cylinder CD will be to the area of the circular base of AB as the

altitude BA is to DC: moreover, since circles are to one another

as the squares of their diameters, the said squares will be to

each other as BA is to CD. But BA is to CD as the square of

BA is to the square of E: and, therefore, these

four squares will form a proportion ; and like-

wise their sides ; so the line AB is to E as the

diameter of circle C is to the diameter of the

circle A. But the diameters are proportional

to the circumferences and the circumferences

are proportional to the areas of cylinders of

equal height ; hence the line AB is to E as the

surface of the cylinder CD is to the surface of

the cylinder AF. Now since the height AF is to

AB as the surface of AF is to the surface of AB;

and since the height AB is to the line E as the

surface CD is to AF, it follows, ex æquali in

Fig. 10
proportione perturbata,* that the height AF is

to E as the surface CD is to the surface AB, and convertendo,

the surface of the cylinder AB is to the surface of the cyl-

inder CD as the line E is to AF, i. e., to CD, or as AB is to

E which is the square root of the ratio of AB to CD. Q. E. D.

If now we apply these results to the case in hand, and assume

that the silver cylinder at the time of gilding had a length of

only half a cubit and a thickness three or four times that of

[99]

F

B

D

one's thumb, we shall find that, when the wire has been reduced

to the fineness of a hair and has been drawn out to a length of

twenty thousand cubits (and perhaps more), the area of its

surface will have been increased not less than two hundred

times. Consequently the ten leaves of gold which were laid on

* See Euclid, Book V, Def. 20. , Todhunter's Ed. , p. 137 (London , 1877.)

[Trans.]
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have been extended over a surface two hundred times greater,

assuring us that the thickness of the gold which now covers the

surface of so many cubits of wire cannot be greater than one

twentieth that of an ordinary leaf of beaten gold. Consider

nowwhat degree of fineness it must have and whether one could

conceive it to happen in any other way than by enormous ex-

pansion of parts ; consider also whether this experiment does not

suggest that physical bodies [materie fisiche] are composed of

infinitely small indivisible particles, a view which is supported

by other more striking and conclusive examples.

SAGR. This demonstration is so beautiful that, even if it does

not have the cogency originally intended, although to my

mind, it is very forceful—the short time devoted to it has

nevertheless been most happily spent.

SALV. Since you are so fond of these geometrical demonstra-

tions, which carry with them distinct gain, I will give you a

companion theorem which answers an extremely interesting

query. We have seen above what relations hold between equal

cylinders of different height or length; let us now see what holds

when the cylinders are equal in area but unequal in height,

understanding area to include the curved surface, but not the

upper and lower bases. The theorem is :

The volumes of right cylinders having equal curved sur-

faces are inversely proportional to their altitudes.

Let the surfaces of the two cylinders, AE and CF, be equal but

let the height of the latter, CD, be greater than that of the

former, AB: then I say that the volume of the cylinder AE is

to that of the cylinder CF as the height CD is to AB. Now

since the surface of CF is equal to the surface of AE, it fol-

lows that the volume of CF is less than that of AE; for, if they

were equal, the surface of CF would, by the preceding proposi-

tion, exceed that of AE, and the excess would be so much the

greater if the volume of the cylinder CF were greater than that

[100]

ofAE. Let us now take a cylinder ID having a volume equal to

that of AE; then, according to the preceding theorem, the sur-

face of the cylinder ID is to the surface of AE as the altitude

IF
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IF is to the mean proportional between IF and AB. But since

one datum of the problem is that the surface of AE is equal

to that of CF, and since the surface ID is to the surface CF

as the altitude IF is to the altitude CD, it follows that CD is a

A

E B

C

mean proportional between IF and AB.

Not only so, but since the volume of the

cylinder ID is equal to that of AE, each

will bear the same ratio to the volume of

the cylinder CF; but the volume ID is to

the volume CF as the altitude IF is to the

altitude CD; hence the volume of AE is

to the volume of CF as the length IF is

to the length CD, that is, as the length CD

is to the length AB. Q. E. D.

This explains a phenomenon upon which

the common people always look with

wonder, namely, if we have a piece of stuff

which has one side longer than the other,

we can make from it a cornsack, using the

customary wooden base, which will hold

DF more when the short side of the cloth is

used for the height of the sack and the long

Fig. 11
side is wrapped around the wooden base,

than with the alternative arrangement. So that, for instance,

from a piece of cloth which is six cubits on one side and twelve

on the other, a sack can be made which will hold more when the

side of twelve cubits is wrapped around the wooden base, leav-

ing the sack six cubits high than when the six cubit side is

put around the base making the sack twelve cubits high. From

what has been proven above we learn not only the general fact

that one sack holds more than the other, but we also get specific

and particular information as to how much more, namely,

just in proportion as the altitude of the sack diminishes the

contents increase and vice versa. Thus if we use the figures

given which make the cloth twice as long as wide and if we use

the long side for the seam, the volume of the sack will be just

one-half as great as with the opposite arrangement. Likewise

if
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[101]

ifwe have a piece of matting which measures 7 x 25 cubits and

make from it a basket, the contents of the basket will, when the

seam is lengthwise, be seven as compared with twenty-five when

the seam runs endwise.

SAGR. It is with great pleasure that we continue thus to ac-

quire new and useful information. But as regards the subject

just discussed, I really believe that, among those who are not

already familiar with geometry, you would scarcely find four per-

sons in a hundred who would not, at first sight, make the mistake

of believing that bodies having equal surfaces would be equal in

other respects. Speaking of areas, the same error is made when

one attempts, as often happens, to determine the sizes of various

cities by measuring their boundary lines, forgetting that the

circuit of one may be equal to the circuit of another while the

area of the one is much greater than that of the other. And

this is true not only in the case of irregular, but also of regular

surfaces, where the polygon having the greater number of sides

always contains a larger area than the one with the less number

of sides, so that finally the circle which is a polygon of an in-

finite number of sides contains the largest area of all polygons of

equal perimeter. I remember with particular pleasure having

seen this demonstration when I was studying the sphere of

Sacrobosco * with the aid of a learned commentary.

SALV. Very true ! I too came across the same passage which

suggested to me a method of showing how, by a single short

demonstration, one can prove that the circle has the largest

content of all regular isoperimetric figures ; and that, of other

[102]

figures, the one which has the larger number of sides contains a

greater area than that which has the smaller number.

SAGR. Being exceedingly fond of choice and uncommon propo-

sitions, I beseech you to let us have your demonstration.

SALV. I can do this in a few words by proving the following

theorem :

The area of a circle is a mean proportional between any

* See interesting biographical note on Sacrobosco [John Holywood]

in Ency. Brit., 11th Ed. [Trans.]
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two regular and similar polygons of which one circum-

scribes it and the other is isoperimetric with it. In addition,

the area of the circle is less than that of any circumscribed

polygon and greater than that ofany isoperimetric polygon.

And further, of these circumscribed polygons, the one which

has the greater numberof sides is smaller than the one which

has a less number; but, on the other hand, that isoperi-

metric polygon which has the greater number of sides is

the larger.

LetA and B be two similar polygons of whichA circumscribes

the given circle and B is isoperimetric with it. The area of the

circle will then be a mean proportional between the areas of the

polygons. For if we indicate the radius of the circle by AC and

if we remember that the area of the circle is equal to that of a

right-angled triangle in which one of the sides about the right

angle is equal to the radius, AC, and the other to the circum-

ference ; and if likewise we remember that the area of the poly-

gon A is equal to the area of a right-angled triangle one of

[103]

whose sides about the right angle has the same length as AC and

the other is equal to the perimeter of the polygon itself; it is then

I

C

A

E

A
B

Fig. 12

manifest that the circumscribed polygon bears to the circle the

same ratio which its perimeter bears to the circumference of the

circle, or to the perimeter of the polygon B which is, by hypoth-

esis, equal to the circumference of the circle. But since the

polygons A and B are similar their areas are to each other as the

squares of their perimeters ; hence the area of the circle A is a

mean



FIRST DAY 59

mean proportional between the areas of the two polygons A and

B. And since the area of the polygon A is greater than that of

the circle A, it is clear that the area of the circle A is greater

than that of the isoperimetric polygon B, and is therefore the

greatest of all regular polygons having the same perimeter as

the circle.

We now demonstrate the remaining portion of the theorem,

which is to prove that, in the case of polygons circumscribing

a given circle, the one having the smaller number of sides has

a larger area than one having a greater number of sides ; but

that on the other hand, in the case of isoperimetric polygons,

the one having the more sides has a larger area than the one

with less sides. To the circle which has O for center and OA

for radius draw the tangent AD; and on this tangent lay off,

say, AD which shall represent one-half of the side of a circum-

scribed pentagon and AC which shall represent one-half of the

side of a heptagon ; draw the straight lines OGC and OFD; then

with O as a center and OC as radius draw the arc ECI. Now

since the triangle DOC is greater than the sector EOC and since

the sector COI is greater than the triangle COA, it follows that

the triangle DOC bears to the triangle COA a greater ratio than

the sector EOC bears to the sector COI, that is, than the sector

FOG bears to the sector GOA. Hence, componendo et per-

mutando, the triangle DOA bears to the sector FOA a greater

ratio than that which the triangle COA bears to the sector

GOA, and also 10 such triangles DOA bear to 10 such sectors

FOA a greater ratio than 14 such triangles COA bear to 14 such

sectors GOA, that is to say, the circumscribed pentagon bears

to the circle a greater ratio than does the heptagon. Hence the

pentagon exceeds the heptagon in area.

But now let us assume that both the heptagon and the penta-

gon have the same perimeter as that of a given circle. Then I

say the heptagon will contain a larger area than the pentagon.

For since the area of the circle is a mean proportional between

areas of the circumscribed and of the isoperimetric pentagons,

[104]

and since likewise it is a mean proportional between the cir-

cumscribed
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cumscribed and isoperimetric heptagons, and since also we have

proved that the circumscribed pentagon is larger than the

circumscribed heptagon, it follows that this circumscribed pen-

tagon bears to the circle a larger ratio than does the heptagon,

that is, the circle will bear to its isoperimetric pentagon a

greater ratio than to its isoperimetric heptagon. Hence the

pentagon is smaller than its isoperimetric heptagon. Q. E. D.

SAGR. A very clever and elegant demonstration ! But how did

we come to plunge into geometry while discussing the objections

urged by Simplicio, objections of great moment, especially that

one referring to density which strikes me as particularly difficult ?

SALV. If contraction and expansion [condensazione e rare-

fazzione] consist in contrary motions, one ought to find for each

great expansion a correspondingly large contraction. But our

surprise is increased when, every day, we see enormous expan-

sions taking place almost instantaneously. Think what a

tremendous expansion occurs when a small quantity of gun-

powder flares up into a vast volume of fire ! Think too of the

almost limitless expansion of the light which it produces !

Imagine the contraction which would take place if this fire and

this light were to reunite, which, indeed, is not impossible since

only a little while ago they were located together in this small

space. You will find, upon observation, a thousand such expan-

sions for they are more obvious than contractions since dense

matter is more palpable and accessible to our senses. We can

take wood and see it go up in fire and light, but we do not see

[105]

them recombine to form wood; we see fruits and flowers and a

thousand other solid bodies dissolve largely into odors, but we

do not observe these fragrant atoms coming together to form

fragrant solids. But where the senses fail us reason must step

in ; for it will enable us to understand the motion involved in the

condensation of extremely rarefied and tenuous substances just

as clearly as that involved in the expansion and dissolution of

solids. Moreover we are trying to find out how it is possible to

produce expansion and contraction in bodies which are capable

of such changes without introducing vacua and without giving

up
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up the impenetrability of matter ; but this does not exclude the

possibility of there being materials which possess no such prop-

erties and do not, therefore, carry with them consequences

which you call inconvenient and impossible. And finally,

Simplicio, I have, for the sake ofyou philosophers, taken pains

to find an explanation of how expansion and contraction can

take place without our admitting the penetrability of matter and

introducing vacua, properties which you deny and dislike ; if

you were to admit them, I should not oppose you so vigorously.

Now either admit these difficulties or accept my views or sug-

gest something better.

SAGR. I quite agree with the peripatetic philosophers in

denying the penetrability of matter. As to the vacua I should

like to hear a thorough discussion of Aristotle's demonstration

in which heopposes them, and what you, Salviati, have to say in

reply. I beg of you, Simplicio, that you give us the precise

proof of the Philosopher and that you, Salviati, give us the

reply.

SIMP. So far as I remember, Aristotle inveighs against the

ancient view that a vacuum is a necessary prerequisite for

motion and that the latter could not occur without the former.

In opposition to this view Aristotle shows that it is precisely

the phenomenon of motion, as we shall see, which renders

untenable the idea of a vacuum. His method is to divide the

argument into two parts. He first supposes bodies of different

weights to move in the same medium ; then supposes, one and the

same body to move in different media. In the first case, he

[106]

supposes bodies of different weight to move in one and the same

medium with different speeds which stand to one another in the

same ratio as the weights ; so that, for example, a body which is

ten times as heavy as another will move ten times as rapidly as

the other. In the second case he assumes that the speeds of one

and the same body moving in different media are in inverse

ratio to the densities of these media ; thus, for instance, if the

density ofwaterwere ten times that of air, the speed in air would

be ten times greater than in water. From this second supposi-

tion,
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tion, he shows that, since the tenuity of a vacuum differs in-

finitely from that of any medium filled with matter however

rare, any body which moves in a plenum through a certain

space in a certain time ought to move through a vacuum in-

stantaneously; but instantaneous motion is an impossibility;

it is therefore impossible that a vacuum should be produced by

motion.

SALV. The argument is, as you see, ad hominem, that is, it is

directed against those who thought the vacuum a prerequisite

for motion. Now if I admit the argument to be conclusive and

concede also that motion cannot take place in a vacuum, the

assumption of a vacuum considered absolutely and not with

reference to motion, is not thereby invalidated. But to tell you

what the ancients might possibly have replied and in order to

better understand just how conclusive Aristotle's demonstra-

tion is, we may, in my opinion, deny both of his assumptions.

And as to the first, I greatly doubt that Aristotle ever tested by

experiment whether it be true that two stones, one weighing ten

times as much as the other, if allowed to fall, at the same in-

stant, from a height of, say, 100 cubits, would so differ in speed

that when the heavier had reached the ground, the other would

not have fallen more than 10 cubits.

SIMP. His language would seem to indicate that he had tried

the experiment, because he says : We see the heavier; now the

word see shows that he had made the experiment.

SAGR. But I, Simplicio, who have made the test can assure

[107]

you that a cannon ball weighing one or two hundred pounds, or

even more, will not reach the ground by as much as a span ahead

of a musket ball weighing only half a pound, provided both are

dropped from a height of 200 cubits.

SALV. But, even without further experiment, it is possible to

prove clearly, by means of a short and conclusive argument,

that a heavier body does not move more rapidly than a lighter

one provided both bodies are of the same material and in short

such as those mentioned by Aristotle. But tell me, Simplicio,

whether you admit that each falling body acquires a definite

speed
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speed fixed by nature, a velocity which cannot be increased or

diminished except by the use of force [violenza] or resistance.

SIMP. There can be no doubt but that one and the same body

moving in a single medium has a fixed velocity which is deter-

mined by nature and which cannot be increased except by the

addition of momentum [impeto] or diminished except by some

resistance which retards it.

SALV. If then we take two bodies whose natural speeds are

different, it is clear that on uniting the two, the more rapid one

will be partly retarded by the slower, and the slower will be

somewhat hastened by the swifter. Do you not agree with me

in this opinion?

SIMP. You are unquestionably right.

SALV. But if this is true, and if a large stone moves with a

speed of, say, eight while a smaller moves with a speed of four,

then when they are united, the system will move with a speed

less than eight; but the two stones when tied together make a

stone larger than that which before moved with a speed of eight.

Hence the heavier body moves with less speed than the lighter;

an effect which is contrary to your supposition. Thus you see

[108]

how, from your assumption that the heavier body moves more

rapidly than the lighter one, I infer that the heavier body moves

more slowly.

SIMP. I am all at sea because it appears to me that the smaller

stonewhen added to the larger increases its weight and by adding

weight I do not see how it can fail to increase its speed or, at

least, not to diminish it.

SALV. Here again you are in error, Simplicio, because it is

not true that the smaller stone adds weight to the larger.

SIMP. This is, indeed, quite beyond my comprehension.

SALV. It will not be beyond you when I have once shown you

the mistake under which you are laboring. Note that it is

necessary to distinguish between heavy bodies in motion and the

same bodies at rest. A large stone placed in a balance not only

acquires additional weight by having another stone placed upon

it, but even by the addition of a handful of hemp its weight is

augmented
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augmented six to ten ounces according to the quantity of hemp.

But if you tie the hemp to the stone and allow them to fall

freely from some height, do you believe that the hemp will

press down upon the stone and thus accelerate its motion or do

you think the motion will be retarded by a partial upward

pressure? One always feels the pressure upon his shoulders

when he prevents the motion of a load resting upon him; but if

one descends just as rapidly as the load would fall how can it

gravitate or press upon him? Doyou not see that this would be

the same as trying to strike a man with a lance when he is run-

ning away from you with a speed which is equal to, or even

greater, than that with which you are following him? You must

therefore conclude that, during free and natural fall, the small

stone does not press upon the larger and consequently does not

increase its weight as it does when at rest.

SIMP. But what if we should place the larger stone upon

the smaller?

[109]

SALV. Its weight would be increased if the larger stone moved

more rapidly ; but we have already concluded that when the

small stone moves more slowly it retards to some extent the

speed of the larger, so that the combination of the two, which is

a heavierbody than the larger of the two stones, would move less

rapidly, a conclusion which is contrary to your hypothesis.

We infer therefore that large and small bodies move with the

same speed provided they are of the same specific gravity.

SIMP. Your discussion is really admirable ; yet I do not find it

easy to believe that a bird-shot falls as swiftly as a cannon ball.

SALV. Why not say a grain of sand as rapidly as a grindstone?

But, Simplicio, I trust you will not follow the example of many

others who divert the discussion from its main intent and fasten

upon some statement ofmine which lacks a hair's-breadth of the

truth and, under this hair, hide the fault of another which is as

big as a ship's cable. Aristotle says that "an iron ball of one

hundred pounds falling from a height of one hundred cubits

reaches the ground before a one-pound ball has fallen a single

cubit." I say that they arrive at the same time. You find, on

making
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making the experiment, that the larger outstrips the smaller by

two finger-breadths, that is, when the larger has reached the

ground, the other is short of it by two finger-breadths ; now you

would not hide behind these two fingers the ninety-nine cubits of

Aristotle, nor would you mention my small error and at the same

time pass over in silence his very large one. Aristotle declares

that bodies of different weights, in the same medium, travel

(in so far as their motion depends upon gravity) with speeds

which are proportional to their weights ; this he illustrates byuse

of bodies in which it is possible to perceive the pure and un-

adulterated effect of gravity, eliminating other considerations,

for example, figure as being of small importance [minimi mo-

menti], influences which are greatly dependent upon the medium

which modifies the single effect of gravity alone. Thus we ob-

serve that gold, the densest of all substances, when beaten out

into a very thin leaf, goes floating through the air; the same

thing happens with stone when ground into a very fine powder.

But if you wish to maintain the general proposition you will

have to show that the same ratio of speeds is preserved in the

[110]

case of all heavy bodies, and that a stone of twenty pounds

moves ten times as rapidly as one of two ; but I claim that this

is false and that, if they fall from a height of fifty or a hundred

cubits, they will reach the earth at the same moment.

SIMP. Perhaps the result would be different if the fall took

place not from a few cubits but from some thousands of cubits.

SALV. If this were what Aristotle meant you would burden

him with another error which would amount to a falsehood ;

because, since there is no such sheer height available on earth, it

is clear that Aristotle could not have made the experiment ; yet

he wishes to give us the impression of his having performed it

when he speaks of such an effect as one which we see.

SIMP. In fact, Aristotle does not employ this principle, but

uses the other one which is not, I believe, subject to these same

difficulties.

SALV. But the one is as false as the other; and I am surprised

that you yourself do not see the fallacy and that you do not

perceive
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perceive that if it were true that, in media of different densities

and different resistances, such as water and air, one and the

same body moved in air more rapidly than in water, in propor-

tion as the density of water is greater than that of air, then it

would follow that any body which falls through air ought also

to fall through water. But this conclusion is false inasmuch as

many bodies which descend in air not only do not descend in

water, but actually rise.

SIMP. I do not understand the necessity of your inference ;

and in addition I will say that Aristotle discusses only those

bodies which fall in both media, not those which fall in air but

rise in water.

SALV. The arguments which you advance for the Philos-

opher are such as he himself would have certainly avoided so as

not to aggravate his first mistake. But tell me now whether the

density [corpulenza] of the water, or whatever it may be that

[111]

retards the motion, bears a definite ratio to the density of air

which is less retardative ; and if so fix a value for it at your

pleasure.

SIMP. Such a ratio does exist ; let us assume it to be ten; then,

for a body which falls in both these media, the speed in water will

be ten times slower than in air.

SALV. I shall now take one of those bodies which fall in air

but not in water, say a wooden ball, and I shall ask you to assign

to it any speed you please for its descent through air.

SIMP. Let us suppose it moves with a speed of twenty.

SALV. Very well. Then it is clear that this speed bears to

some smaller speed the same ratio as the density of water bears

to that of air; and the value of this smaller speed is two. So

that really if we follow exactly the assumption of Aristotle we

ought to infer that the wooden ball which falls in air, a sub-

stance ten times less-resisting than water, with a speed oftwenty

would fall in water with a speed of two, instead ofcoming to the

surface from the bottom as it does ; unless perhaps you wish to

reply, which I do not believe you will, that the rising of the wood

through the water is the same as its falling with a speed of two.

But
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But since the wooden ball does not go to the bottom, I think you

will agree with me that we can find a ball of another material,

not wood, which does fall in water with a speed oftwo.

SIMP. Undoubtedly we can; but it must be of a substance

considerably heavier than wood.

SALV. That is it exactly. But if this second ball falls in water

with a speed of two, what will be its speed of descent in air?

If you hold to the rule of Aristotle you must reply that it will

move at the rate of twenty; but twenty is the speed which you

yourself have already assigned to the wooden ball ; hence this

and the other heavier ball will each move through air with the

same speed. But now how does the Philosopher harmonize

this result with his other, namely, that bodies of different weight

move through the same medium with different speeds—speeds

which are proportional to their weights? But without going

into the matter more deeply, how have these common and

[112]

obvious properties escaped your notice ? Have you not observed

that two bodies which fall in water, one with a speed a hundred

times as great as that of the other, will fall in air with speeds so

nearly equal that one will not surpass the other by as much as

one hundredth part ? Thus, for example, an egg made of marble

will descend in water one hundred times more rapidly than a

hen's egg, while in air falling from a height of twenty cubits the

one will fall short of the other by less than four finger-breadths .

In short, a heavy body which sinks through ten cubits of water

in three hours will traverse ten cubits of air in one or two pulse-

beats ; and if the heavy body be a ball of lead it will easily

traverse the ten cubits of water in less than double the time

required for ten cubits of air. And here, I am sure, Simplicio,

you find no ground for difference or objection. We conclude,

therefore, that the argument does not bear against the existence

of a vacuum; but if it did, it would only do away with vacua of

considerable size which neither I nor, in my opinion, the ancients

ever believed to exist in nature, although they might possibly be

produced by force [violenza] as may be gathered from various ex-

periments whose description would here occupy too much time.

Sagr.
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SAGR. Seeing that Simplicio is silent, I will take the opportu-

nity ofsaying something. Since you have clearly demonstrated

that bodies of different weights do not move in one and the same

medium with velocities proportional to their weights, but that

they all move with the same speed, understanding of course

that they are of the same substance or at least of the same

specific gravity ; certainly not of different specific gravities, for I

hardly think you would have us believe a ball of cork moves

[113]

with the same speed as one of lead ; and again since you have

clearly demonstrated that one and the same body moving

through differently resisting media does not acquire speeds which

are inversely proportional to the resistances, I am curious to

learn what are the ratios actually observed in these cases.

SALV. These are interesting questions and I have thought

much concerning them. I will give you the method of approach

and the result which I finally reached. Having once established

the falsity of the proposition that one and the same body moving

through differently resisting media acquires speeds which are

inversely proportional to the resistances of these media, and

having also disproved the statement that in the same medium

bodies of different weight acquire velocities proportional to their

weights (understanding that this applies also to bodies which

differ merely in specific gravity), I then began to combine these

two facts and to consider what would happen if bodies of differ-

ent weight were placed in media of different resistances ; and I

found that the differences in speed were greater in those media.

which were more resistant, that is, less yielding. This difference

was such that two bodies which differed scarcely at all in their

speed through air would, in water, fall the one with a speed ten

times as great as that of the other. Further, there are bodies

which will fall rapidly in air, whereas if placed in water not only

will not sink but will remain at rest or will even rise to the top:

for it is possible to find some kinds of wood, such as knots and

roots, which remain at rest in water but fall rapidly in air.

SAGR. I have often tried with the utmost patience to add

grains of sand to a ball of wax until it should acquire the same

specific
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specific gravity as water and would therefore remain at rest in

this medium. But with all my care I was never able to accom-

plish this. Indeed, I do not know whether there is any solid

substance whose specific gravity is, by nature, so nearly equal

to that of water that if placed anywhere in water it will remain

at rest.

SALV. In this, as in a thousand other operations, men are

surpassed by animals. In this problem of yours one may learn

much from the fish which are very skillful in maintaining their

equilibrium not only in one kind of water, but also in waters

which are notably different either by their own nature or by

[114]

some accidental muddiness or through salinity, each of which

produces a marked change. So perfectly indeed can fish keep

their equilibrium that they are able to remain motionless in any

position. This they accomplish, I believe, by means of an

apparatus especially provided by nature, namely, a bladder

located in the body and communicating with the mouth by

means of a narrow tube through which they are able, at will, to

expel a portion of the air contained in the bladder: by rising to

the surface they can take in more air; thus they make themselves

heavier or lighter than water at will and maintain equilibrium.

SAGR. By means of another device I was able to deceive some

friends to whom I had boasted that I could make up a ball of

wax that would be in equilibrium in water. In the bottom of a

vessel I placed some salt water and upon this some fresh water;

then I showed them that the ball stopped in the middle of the

water, and that, when pushed to the bottom or lifted to the

top, would not remain in either of these places but would return

to the middle.

SALV. This experiment is not without usefulness . For when

physicians are testing the various qualities of waters, especially

their specific gravities, they employ a ball of this kind so ad-

justed that, in certain water, it will neither rise nor fall. Then

in testing another water, differing ever so slightly in specific

gravity [peso], the ball will sink if this water be lighter and rise

if it be heavier. And so exact is this experiment that the addi-

tion
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tion of two grains of salt to six pounds of water is sufficient to

make the ball rise to the surface from the bottom to which it had

fallen. To illustrate the precision of this experiment and also to

clearly demonstrate the non-resistance of water to division,

I wish to add that this notable difference in specific gravity can

be produced not only by solution of some heavier substance,

but also by merely heating or cooling ; and so sensitive is water

to this process that by simply adding four drops of another water

which is slightly warmer or cooler than the six pounds one can

cause the ball to sink or rise ; it will sink when the warm water is

poured in and will rise upon the addition of cold water. Now you

[115]

can see how mistaken are those philosophers who ascribe to water

viscosity or some other coherence of parts which offers resistance

to separation ofparts and to penetration.

SAGR. With regard to this question I have found many con-

vincing arguments in a treatise by our Academician ; but there is

one great difficulty of which I have not been able to rid myself,

namely, if there be no tenacity or coherence between the particles

ofwater how is it possible for those large drops of water to stand

out in relief upon cabbage leaves without scattering or spreading

out?

SALV. Although those who are in possession of the truth are

able to solve all objections raised, I would not arrogate to myself

such power; nevertheless my inability should not be allowed to

becloud the truth. To begin with let me confess that I do not

understand how these large globules of water stand out and hold

themselves up, although I know for a certainty, that it is not

owing to any internal tenacity acting between the particles of

water; whence it must follow that the cause of this effect is

external. Beside the experiments already shown to prove that

the cause is not internal, I can offer another which is very con-

vincing. Ifthe particles of water which sustain themselves in a

heap, while surrounded by air, did so in virtue of an internal

cause thentheywould sustain themselves much more easily when

surrounded by a medium in which they exhibit less tendency to

fall than they do in air; such a medium would be any fluid

heavier
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heavier than air, as, for instance, wine: and therefore if some

wine be poured about such a drop of water, the wine might rise

until the drop was entirely covered, without the particles of

water, held together by this internal coherence, ever parting

company. But this is not the fact ; for as soon as the wine

touches the water, the latter without waiting to be covered

scatters and spreads out underneath the wine if it be red. The

cause of this effect is therefore external and is possibly to be

found in the surrounding air. Indeed there appears to be a

considerable antagonism between air and water as I have ob-

served in the following experiment. Having taken a glass globe

which had a mouth of about the same diameter as a straw, I

filled it with water and turned it mouth downwards ; neverthe-
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less, the water, although quite heavy and prone to descend, and

the air, which is very light and disposed to rise through the

water, refused, the one to descend and the other to ascend

through the opening, but both remained stubborn and defiant.

On the other hand, as soon as I apply to this opening a glass

of red wine, which is almost inappreciably lighter than water,

red streaks are immediately observed to ascend slowly through

the water while the water with equal slowness descends through

the wine without mixing, until finally the globe is completely

filled with wine and the water has all gone down into the vessel

below. What then can we say except that there exists, between

water and air, a certain incompatibility which I do not under-

stand, but perhaps. ·

SIMP. I feel almost like laughing at the great antipathy which

Salviati exhibits against the use of the word antipathy ; and yet

it is excellently adapted to explain the difficulty.

SALV. Alright, if it please Simplicio, let this word antipathy

be the solution ofour difficulty. Returning from this digression,

let us again take up our problem. We have already seen that

the difference of speed between bodies of different specific

gravities is most marked in those media which are the most

resistant: thus, in a medium of quicksilver, gold not merely

sinks to the bottom more rapidly than lead but it is the only

substance
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substance that will descend at all; all other metals and stones rise

to the surface and float. On the other hand the variation of

speed in air between balls of gold, lead, copper, porphyry, and

other heavy materials is so slight that in a fall of 100 cubits a

ball of gold would surely not outstrip one of copper by as much

as four fingers. Having observed this I came to the conclusion

that in a medium totally devoid of resistance all bodies would

fall with the same speed.

SIMP. This is a remarkable statement, Salviati. But I shall

never believe that even in a vacuum, if motion in such a place

were possible, a lock of wool and a bit of lead can fall with the

same velocity.

SALV. A little more slowly, Simplicio. Your difficulty is not

so recondite nor am I so imprudent as to warrant you in

believing that I have not already considered this matter and

found the proper solution. Hence for my justification and

[117]

for your enlightenment hear what I have to say. Our problem

is to find out what happens to bodies of different weight moving

in a medium devoid of resistance, so that the only difference in

speed is that which arises from inequality of weight. Since no

medium except one entirely free from air and other bodies, be it

ever so tenuous and yielding, can furnish our senses with the

evidence we are looking for, and since such a medium is not

available, we shall observe what happens in the rarest and

least resistant media as compared with what happens in denser

and more resistant media. Because if we find as a fact that the

variation of speed among bodies of different specific gravities is

less and less according as the medium becomes more and more

yielding, and if finally in a medium of extreme tenuity, though

not a perfect vacuum, we find that, in spite of great diversity of

specific gravity [peso] , the difference in speed is very small and

almost inappreciable, then we are justified in believing it highly

probable that in a vacuum all bodies would fall with the same

speed. Let us, in view of this, consider what takes place in air,

where for the sake of a definite figure and light material imagine

an inflated bladder. The air in this bladder when surrounded by

air
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air will weigh little or nothing, since it can be only slightly com-

pressed; its weight then is small being merely that of the skin

which does not amount to the thousandth part of a mass of

lead having the same size as the inflated bladder. Now, Sim-

plicio, if we allow these two bodies to fall from a height of four

or six cubits, by what distance do you imagine the lead will

anticipate the bladder? You may be sure that the lead will not

travel three times, or even twice, as swiftly as the bladder,

although you would have made it move a thousand times as

rapidly.

SIMP. It may be as you say during the first four or six cubits

of the fall; but after the motion has continued a long while, I

believe that the lead will have left the bladder behind not only

six out of twelve parts of the distance but even eight or

ten.

SALV. I quite agree with you and doubt not that, in very

long distances, the lead might cover one hundred miles while the

[118]

bladderwas traversing one; but, my dear Simplicio, this phenom-

enon which you adduce against my proposition is precisely the

one which confirms it. Let me once more explain that the

variation of speed observed in bodies of different specific gravi-

ties is not caused by the difference of specific gravity but de-

pends upon external circumstances and, in particular, upon the

resistance of the medium, so that if this is removed all bodies

would fall with the same velocity; and this result I deduce

mainly from the fact which you have just admitted and which is

very true, namely, that, in the case of bodies which differ

widely in weight, their velocities differ more and more as the

spaces traversed increase, something which would not occur if

the effect depended upon differences of specific gravity. For

since these specific gravities remain constant, the ratio between

the distances traversed ought to remain constant whereas the

fact is that this ratio keeps on increasing as the motion con-

tinues. Thus a very heavy body in a fall of one cubit will not

anticipate a very light one by so much as the tenth part of this

space; but in a fall of twelve cubits the heavy body would out-

strip
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strip the other by one-third, and in a fall of one hundred cubits

by 90/100, etc.

SIMP. Very well : but, following your own line of argument,

if differences of weight in bodies of different specific gravities

cannot produce a change in the ratio of their speeds, on the

ground that their specific gravities do not change, how is it

possible for the medium, which also we suppose to remain con-

stant, to bring about any change in the ratio of these velocities ?

SALV. This objection with which you oppose my statement

is clever; and I must meet it. I begin by saying that a heavy

body has an inherent tendency to move with a constantly and

uniformly accelerated motion toward the common center of

gravity, that is, toward the center of our earth, so that during

equal intervals of time it receives equal increments ofmomentum

and velocity. This, you must understand, holds whenever all

external and accidental hindrances have been removed ; but of

these there is one which we can never remove, namely, the

medium which must be penetrated and thrust aside by the

falling body. This quiet, yielding, fluid medium opposes motion

[119]

through it with a resistance which is proportional to the rapidity

with which the medium must give way to the passage of the

body; which body, as I have said, is by nature continuously

accelerated so that it meets with more and more resistance in

the medium and hence a diminution in its rate of gain of speed

until finally the speed reaches such a point and the resistance of

the medium becomes so great that, balancing each other, they

prevent any further acceleration and reduce the motion of the

body to one which is uniform and which will thereafter maintain

a constant value. There is, therefore, an increase in the resist-

ance of the medium, not on account of any change in its essential

properties, but on account of the change in rapidity with which

it must yield and give way laterally to the passage ofthe falling

body which is being constantly accelerated.

Now seeing how great is the resistance which the air offers to

the slight momentum [momento] of the bladder and how small

that which it offers to the large weight [peso] of the lead, I

am
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am convinced that, if the medium were entirely removed, the

advantage received by the bladder would be so great and that

coming to the lead so small that their speeds would be equalized.

Assuming this principle, that all falling bodies acquire equal

speeds in a medium which, on account of a vacuum or something

else, offers no resistance to the speed of the motion, we shall be

able accordingly to determine the ratios of the speeds of both

similar and dissimilar bodies moving either through one and the

same medium or through different space-filling, and therefore

resistant, media. This result we may obtain by observing how

much the weight of the medium detracts from the weight of the

moving body, whichweight is themeans employed by the falling

body to open a path for itself and to push aside the parts of the

medium, something which does not happen in a vacuum where,

therefore, no difference [of speed] is to be expected from a

difference of specific gravity. And since it is known that the

effect of the medium is to diminish the weight ofthe body by the

weight of the medium displaced, we may accomplish our purpose

by diminishing in just this proportion the speeds of the falling

bodies, which in a non-resisting medium we have assumed to be

equal.

Thus, for example, imagine lead to be ten thousand times as

heavy as air while ebony is only one thousand times as heavy.

[120]

Here we have two substances whose speeds of fall in a medium

devoid of resistance are equal : but, when air is the medium, it

will subtract from the speed ofthe lead one part in ten thousand,

and from the speed of the ebony one part in one thousand, i . e.

ten parts in ten thousand. While therefore lead and ebony

would fall from any given height in the same interval of time,

provided the retarding effect of the air were removed, the lead

will, in air, lose in speed one part in ten thousand ; and the ebony,

ten parts in ten thousand. In other words, if the elevation from

which the bodies start be divided into ten thousand parts, the

lead will reach the ground leaving the ebony behind by as much

as ten, or at least nine, of these parts. Is it not clear then that a

leaden ball allowed to fall from a tower two hundred cubits

high
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high will outstrip an ebony ball by less than four inches ? Now

ebony weighs a thousand times as much as air but this inflated

bladder only four times as much; therefore air diminishes the

inherent and natural speed of ebony by one part in a thousand;

while that of the bladder which, if free from hindrance, would

be the same, experiences a diminution in air amounting to one

part in four. So that when the ebony ball, falling from the

tower, has reached the earth, the bladder will have traversed

only three-quarters of this distance. Lead is twelve times as

heavy as water; but ivory is only twice as heavy. The speeds of

these two substances which, when entirely unhindered, are equal

will be diminished in water, that of lead by one part in twelve,

that of ivory by half. Accordingly when the lead has fallen

through eleven cubits of water the ivory will have fallen through

only six. Employing this principle we shall, I believe, find a

much closer agreement of experiment with our computation than

with that of Aristotle.

In a similar manner we may find the ratio of the speeds ofone

and the same body in different fluid media, not by comparing the

different resistances of the media, but by considering the excess

of the specific gravity of the body above those of the media.

Thus, for example, tin is one thousand times heavier than air

and ten times heavier than water; hence, if we divide its un-

hindered speed into 1000 parts, air will rob it of one of these

parts so that it will fall with a speed of 999, while in water its

speed will be 900, seeing that water diminishes its weight by one

part in ten while air by only one part in a thousand.

Again take a solid a little heavier than water, such as oak, a

ball of which will weigh let us say 1000 drachms ; suppose an

[121]

equal volume of water to weigh 950, and an equal volume of air,

2; then it is clear that if the unhindered speed of the ball is 1000,

its speed in air will be 998, but in water only 50, seeing that the

water removes 950 of the 1000 parts which the body weighs,

leaving only 50.

Such a solid would therefore move almost twenty times as

fast in air as in water, since its specific gravity exceeds that of

water



FIRST DAY 77

water by one part in twenty. And here we must consider the

fact that only those substances which have a specific gravity

greater than water can fall through it—substances which must,

therefore, be hundreds of times heavier than air; hence when we

try to obtain the ratio of the speed in air to that in water, we

may, without appreciable error, assume that air does not, to any

considerable extent, diminish the free weight [assoluta gravità] ,

and consequently the unhindered speed [assoluta velocità] of such

substances. Having thus easily found the excess ofthe weight of

these substances over that of water, we can say that their speed

in air is to their speed in water as their free weight [totale gravità]

is to the excess of this weight over that of water. For example,

a ball of ivory weighs 20 ounces ; an equal volume of water

weighs 17 ounces ; hence the speed of ivory in air bears to its

speed in water the approximate ratio of20:3.

SAGR. I have made a great step forward in this truly interest-

ing subject upon which I have long labored in vain. In order

to put these theories into practice we need only discover a

method of determining the specific gravity of air with reference

to water and hence with reference to other heavy substances.

SIMP. But if we find that air has levity instead of gravity

what then shall we say of the foregoing discussion which, in

other respects, is very clever?

SALV. I should say that it was empty, vain, and trifling.

But can you doubt that air has weight when you have the clear

testimony ofAristotle affirming that all the elements have weight

including air, and excepting only fire? As evidence of this he

cites the fact that a leather bottle weighs more when inflated

than when collapsed.

[122]

SIMP. I am inclined to believe that the increase of weight

observed in the inflated leather bottle or bladder arises, not from

the gravity of the air, but from the many thick vapors mingled

with it in these lower regions. To this I would attribute the

increase ofweight in the leather bottle.

SALV. I would not have you say this, and much less attribute

it to Aristotle ; because, if speaking of the elements, he wished to

persuade
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persuade me by experiment that air has weight and were to say

to me: "Take a leather bottle, fill it with heavy vapors and ob-

serve how its weight increases," I would reply that the bottle

would weigh still more if filled with bran; and would then add

that this merely proves that bran and thick vapors are heavy,

but in regard to air I should still remain in the same doubt as

before. However, the experiment of Aristotle is good and the

proposition is true. But I cannot say as much of a certain other

consideration, taken at face value ; this consideration was of-

fered by a philosopher whose name slips me; but I know I have

read his argument which is that air exhibits greater gravity than

levity, because it carries heavy bodies downward more easily

than it does light ones upward.

SAGR. Fine indeed ! So according to this theory air is much

heavier than water, since all heavy bodies are carried downward

more easily through air than through water, and all light bodies

buoyed up more easily through water than through air; further

there is an infinite number of heavy bodies which fall through

air but ascend in water and there is an infinite number of sub-

stances which rise in water and fall in air. But, Simplicio, the

question as to whether the weight of the leather bottle is owing

to thick vapors or to pure air does not affect our problem which

is to discover how bodies move through this vapor-laden atmos-

phere ofours . Returning now to the question which interests me

more, I should like, for the sake of more complete and thorough

knowledge of this matter, not only to be strengthened in my

belief that air has weight but also to learn, if possible, how great

its specific gravity is. Therefore, Salviati, if you can satisfy my

curiosity on this point pray do so.

SALV. The experiment with the inflated leather bottle of

Aristotle proves conclusively that air possesses positive gravity

and not, as some have believed, levity, a property possessed

possibly by no substance whatever; for if air did possess this

quality of absolute and positive levity, it should on compression

[123]

exhibit greater levity and, hence, a greater tendency to rise ;

but experiment shows precisely the opposite.

As
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As to the other question, namely, how to determine the

specific gravity of air, I have employed the following method.

I took a rather large glass bottle with a narrow neck and at-

tached to it a leather cover, binding it tightly about the neck of

the bottle : in the top of this cover I inserted and firmly fastened

the valve of a leather bottle, through which I forced into the

glass bottle, by means of a syringe, a large quantity of air.

And since air is easily condensed one can pump into the bottle

two or three times its own volume of air. After this I took an

accurate balance and weighed this bottle of compressed air with

the utmost precision, adjusting the weight with fine sand. I

next opened the valve and allowed the compressed air to escape;

then replaced the flask upon the balance and found it per-

ceptibly lighter: from the sand which had been used as a counter-

weight I now removed and laid aside as much as was necessary

to again secure balance. Under these conditions there can be no

doubt but that the weight of the sand thus laid aside represents

theweight ofthe airwhich had been forced into the flask and had

afterwards escaped . But after all this experiment tells me

merely that the weight of the compressed air is the same as that

of the sand removed from the balance ; when however it comes to

knowing certainly and definitely the weight of air as compared

with that of water or any other heavy substance this I cannot

hope to do without first measuring the volume [quantità] of

compressed air; for this measurement I have devised the two

following methods.

According to the first method one takes a bottle with a narrow

neck similar to the previous one; over the mouth of this bottle is

slipped a leather tube which is bound tightly about the neck of

the flask; the other end of this tube embraces the valve attached

to the first flask and is tightly bound about it. This second

flask is provided with a hole in the bottom through which an

iron rod can be placed so as to open, at will, the valve above

mentioned and thus permit the surplus air of the first to escape

after it has once been weighed : but his second bottle must be

filled with water. Having prepared everything in the manner

[124]

above
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above described, open the valve with the rod ; the air will rush

into the flask containing the water and will drive it through the

hole at the bottom, it being clear that the volume [quantità] of

water thus displaced is equal to the volume [mole e quantità] of

air escaped from the other vessel. Having set aside this dis-

placed water, weigh the vessel from which the air has escaped

(which is supposed to have been weighed previously while

containing the compressed air) , and remove the surplus of sand

as described above ; it is then manifest that the weight of this

sand is precisely the weight of a volume [mole] of air equal to the

volume ofwater displaced and set aside ; this water we can weigh

and find how many times its weight contains the weight of the

removed sand, thus determining definitely how many times

heavier water is than air; and we shall find, contrary to the

opinion of Aristotle, that this is not 10 times, but, as our experi-

ment shows, more nearly 400 times.

The second method is more expeditious and can be carried

out with a single vessel fitted up as the first was. Here no air

is added to that which the vessel naturally contains but water is

forced into it without allowing any air to escape ; the water thus

introduced necessarily compresses the air. Having forced into

the vessel as much water as possible, filling it, say, three-fourths

full, which does not require any extraordinary effort, place it

upon the balance and weigh it accurately ; next hold the vessel

mouth up, open the valve, and allow the air to escape ; the

volume of the air thus escaping is precisely equal to the volume

of water contained in the flask. Again weigh the vessel which

will have diminished in weight on account of the escaped air;

this loss in weight represents the weight of a volume of air equal

to the volume ofwater contained in the vessel.

SIMP. No one can deny the cleverness and ingenuity of your

devices; but while they appear to give complete intellectual

satisfaction they confuse me in another direction. For since it is

undoubtedly true that the elements when in their proper places

have neither weight nor levity, I cannot understand how it is

possible for that portion of air, which appeared to weigh, say,

4 drachms of sand, should really have such a weight in air as the

sand
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sand which counterbalances it. It seems to me, therefore, that

the experiment should be carried out, not in air, but in a medium

[125]

in which the air could exhibit its property of weight if such it

really has.

SALV. The objection of Simplicio is certainly to the point and

must therefore either be unanswerable or demand an equally

clear solution. It is perfectly evident that that air which, under

compression, weighed as much as the sand, loses this weight

when once allowed to escape into its own element, while, indeed,

the sand retains its weight. Hence for this experiment it be-

comes necessary to select a place where air as well as sand can

gravitate; because, as has been often remarked, the medium

diminishes the weight of any substance immersed in it by an

amount equal to the weight of the displaced medium; so that

air in air loses all its weight. If therefore this experiment is to be

made with accuracy it should be performed in a vacuum where

every heavy body exhibits its momentum without the slightest

diminution. If then, Simplicio, we were to weigh a portion of

air in a vacuum would you then be satisfied and assured of the

fact?

SIMP. Yes truly: but this is to wish or ask the impossible.

SALV. Your obligation will then be very great if, for your

sake, I accomplish the impossible. But I do not want to sell you

something which I have already given you; for in the previous

experiment we weighed the air in vacuum and not in air or other

medium. The fact that any fluid medium diminishes the

weight of a mass immersed in it, is due, Simplicio, to the resist-

ance which this medium offers to its being opened up, driven

aside, and finally lifted up. The evidence for this is seen in the

readiness with which the fluid rushes to fill up any space for-

merly occupied by the mass ; if the medium were not affected by

such an immersion then it would not react against the immersed

body. Tell me now, when you have a flask, in air, filled with its

natural amount of air and then proceed to pump into the vessel

more air, does this extra charge in any way separate or divide or

change the circumambient air? Does the vessel perhaps expand

SO
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so that the surrounding medium is displaced in order to give

more room? Certainly not. Therefore one is able to say that

[126]

this extra charge of air is not immersed in the surrounding

medium for it occupies no space in it, but is, as it were, in a

vacuum. Indeed, it is really in a vacuum; for it diffuses into the

vacuities which are not completely filled by the original and

uncondensed air. In fact I do not see any difference between

the enclosed and the surrounding media : for the surrounding

medium does not press upon the enclosed medium and, vice versa,

the enclosed medium exerts no pressure against the surrounding

one; this same relationship exists in the case of any matter in a

vacuum, as well as in the case of the extra charge of air com-

pressed into the flask. The weight of this condensed air is

therefore the same as that which it would have if set free in a

vacuum. It is true of course that the weight of the sand used as

a counterpoise would be a little greater in vacuo than in free air.

We must, then, say that the air is slightly lighter than the sand

required to counterbalance it, that is to say, by an amount equal

to the weight in vacuo of a volume of air equal to the volume of

the sand.

At this point in an annotated copy of the original edition the following

note by Galileo is found.

[SAGR. A very clever discussion, solving a wonderful problem, because

it demonstrates briefly and concisely the manner in which one may

find the weight of a body in vacuo by simply weighing it in air. The

explanation is as follows : when a heavy body is immersed in air it loses in

weight an amount equal to the weight of a volume [mole] of air equivalent

to the volume [mole] of the body itself. Hence if one adds to a body,

without expanding it, a quantity of air equal to that which it displaces

and weighs it, he will obtain its absolute weight in vacuo, since, without

increasing it in size, he has increased its weight by just the amount which

it lost through immersion in air.

When therefore we force a quantity of water into a vessel which al-

ready contains its normal amount of air, without allowing any of this

air to escape it is clear that this normal quantity of air will be compressed

and condensed into a smaller space in order to make room for the water

which is forced in : it is also clear that the volume of air thus com-

pressed is equal to the volume of water added. If now the vessel be

weighed
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weighed in air in this condition, it is manifest that the weight of the

water will be increased by that of an equal volume of air ; the total weight

of water and air thus obtained is equal to the weight of the water alone

in vacuo.

Now record the weight of the entire vessel and then allow the com-

pressed air to escape; weigh the remainder; the difference of these two

weights will be the weight of the compressed air which, in volume, is

equal to that of the water. Next find the weight of the water alone and

add to it that of the compressed air; we shall then have the water alone

in vacuo. To find the weight of the water we shall have to remove it

from the vessel and weigh the vessel alone ; subtract this weight from

that of the vessel and water together. It is clear that the remainder will

bethe weight of the water alone in air.]

[127]

SIMP. The previous experiments, in my opinion, left some-

thing to be desired : but now I amfully satisfied.

SALV. The facts set forth by me up to this point and, in

particular, the one which shows that difference of weight, even

whenvery great, is without effect in changing the speed of falling

bodies, so that as far as weight is concerned they all fall with

equal speed : this idea is, I say, so new, and at first glance so

remote from fact, that if we do not have the means of making it

just as clear as sunlight, it had better not be mentioned ; but

having once allowed it to pass mylips I must neglect no experi-

ment or argument to establish it .

SAGR. Not only this but also many other of your views are

so far removed from the commonly accepted opinions and

doctrines that if you were to publish them you would stir up

a large number of antagonists ; for human nature is such that

men do not look with favor upon discoveries—either of truth or

fallacy in their own field, when made by others than them-

selves. They call him an innovator of doctrine, an unpleasant

title, by which they hope to cut those knots which they cannot

untie, and by subterranean mines they seek to destroy struc-

tures which patient artisans have built with customary tools .

[128]

But as for ourselves who have no such thoughts, the experi-

ments and arguments which you have thus far adduced are

fully satisfactory; however if you have any experiments which

are
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are more direct or any arguments which are more convincing

we will hear them with pleasure.

SALV. The experiment made to ascertain whether two bodies,

differing greatly in weight will fall from a given height with the

same speed offers some difficulty; because, if the height is con-

siderable, the retarding effect of the medium, which must be

penetrated and thrust aside by the falling body, will be greater

in the case of the small momentum of the very light body than

in the case of the great force [violenza] of the heavy body; so

that, in a long distance, the light body will be left behind; if the

height be small, one may well doubt whether there is any

difference ; and if there be a difference it will be inappreciable.

It occurred to me therefore to repeat many times the fall

through a small height in such a way that I might accumulate

all those small intervals of time that elapse between the arrival

of the heavy and light bodies respectively at their common

terminus, so that this sum makes an interval of time which is

not only observable, but easily observable. In order to employ

the slowest speeds possible and thus reduce the change which the

resisting medium produces upon the simple effect of gravity it

occurred to me to allow the bodies to fall along a plane slightly

inclined to the horizontal. For in such a plane, just as well as in

a vertical plane, one may discover howbodies ofdifferent weight

behave: and besides this, I also wished to rid myself of the

resistance which might arise from contact of the moving body

with the aforesaid inclined plane. Accordingly I took two

balls, one of lead and one of cork, the former more than a hun-

dred times heavier than the latter, and suspended themby means

of two equal fine threads, each four or five cubits long. Pulling

each ball aside from the perpendicular, I let them go at the same

instant, and they, falling along the circumferences of circles

having these equal strings for semi-diameters, passed beyond the

perpendicular and returned along the same path. This free

vibration [per lor medesime le andate e le tornate] repeated a

hundred times showed clearly that the heavy body maintains so

[129]

nearly the period of the light body that neither in a hundred

swings



FIRST DAY 85

swings nor even in a thousand will the former anticipate the

latter by as much as a single moment [minimo momento] , so

perfectly do they keep step. We can also observe the effect of

the medium which, by the resistance which it offers to motion,

diminishes the vibration of the cork more than that of the lead,

but without altering the frequency of either; even when the arc

traversed by the cork did not exceed five or six degrees while that

of the lead was fifty or sixty, the swings were performed in equal

times.

SIMP. If this be so, why is not the speed of the lead greater

than that of the cork, seeing that the former traverses sixty de-

grees in the same interval in which the latter covers scarcely six?

SALV. But what would you say, Simplicio, if both covered

their paths in the same time when the cork, drawn aside through

thirty degrees, traverses an arc of sixty, while the lead pulled

aside only two degrees traverses an arc of four? Would not

then the cork be proportionately swifter? And yet such is the

experimental fact. But observe this: having pulled aside the

pendulum of lead, say through an arc of fifty degrees, and set it

free, it swings beyond the perpendicular almost fifty degrees,

thus describing an arc of nearly one hundred degrees ; on the

return swing it describes a little smaller arc; and after a large

number of such vibrations it finally comes to rest. Each vibra-

tion, whether of ninety, fifty, twenty, ten, or four degrees

occupies the same time : accordingly the speed of the moving

body keeps on diminishing since in equal intervals of time, it

traverses arcs which grow smaller and smaller.

Precisely the same things happen with the pendulum of cork,

suspended by a string of equal length, except that a smaller

number of vibrations is required to bring it to rest, since on

account of its lightness it is less able to overcome the resistance

ofthe air ; nevertheless the vibrations, whether large or small, are

all performed in time-intervals which are not only equal among

themselves, but also equal to the period of the lead pendulum.

Hence it is true that, if while the lead is traversing an arc of

fifty degrees the cork covers one of only ten, the cork moves

more slowly than the lead; but on the other hand it is also true

that
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[130]

that the cork may cover an arc of fifty while the lead passes over

one of only ten or six ; thus, at different times, we have now

the cork, now the lead, moving more rapidly. But if these same

bodies traverse equal arcs in equal times we may rest assured

that their speeds are equal.

SIMP. I hesitate to admit the conclusiveness of this argument

because of the confusion which arises from your making both

bodies move now rapidly, now slowly and now very slowly,

which leaves me in doubt as to whether their velocities are

always equal.

SAGR. Allow me, if you please, Salviati, to say just a few

words. Now tell me, Simplicio, whether you admit that one

can say with certainty that the speeds of the cork and the lead

are equal whenever both, starting from rest at the same moment

and descending the same slopes, always traverse equal spaces

in equal times ?

SIMP. This can neither be doubted nor gainsaid.

SAGR. Nowit happens, in the case of the pendulums, that each

ofthem traverses now an arc of sixty degrees, now one offifty, or

thirty or ten or eight or four or two, etc.; and when they both

swing through an arc of sixty degrees they do so in equal inter-

vals of time ; the same thing happens when the arc is fifty degrees

or thirty or ten or any other number; and therefore we conclude

that the speed of the lead in an arc of sixty degrees is equal to the

speed of the cork when the latter also swings through an arc of

sixty degrees; in the case of a fifty-degree arc these speeds are

also equal to each other; so also in the case of other arcs.

But this is not saying that the speed which occurs in an arc of

sixty is the same as that which occurs in an arc of fifty; nor is

the speed in an arc of fifty equal to that in one of thirty, etc.; but

the smaller the arcs, the smaller the speeds; the fact observed is

that one and the same moving body requires the same time for

traversing a large arc of sixty degrees as for a small arc of fifty

or even a very small arc of ten ; all these arcs, indeed, are covered

in the same interval of time. It is true therefore that the lead

[131]

and
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and the cork each diminish their speed [moto] in proportion as

their arcs diminish ; but this does not contradict the fact that

they maintain equal speeds in equal arcs.

My reason for saying these things has been rather because I

wanted to learn whether I had correctly understood Salviati,

than because I thought Simplicio had any need of a clearer ex-

planation than that given by Salviati which like everything else

of his is extremely lucid, so lucid, indeed, that when he solves

questions which are difficult not merely in appearance, but in

reality and in fact, he does so with reasons, observations and

experiments which are common and familiar to everyone.

In this manner he has, as I have learned from various sources,

given occasion to a highly esteemed professor for undervaluing

his discoveries on the ground that they are commonplace, and

established upon a mean and vulgar basis ; as if it were not a

most admirable and praiseworthy feature of demonstrative

science that it springs from and grows out of principles well-

known, understood and conceded by all.

But let us continue with this light diet; and if Simplicio is

satisfied to understand and admit that the gravity inherent

[interna gravità] in various falling bodies has nothing to do with

the difference of speed observed among them, and that all

bodies, in so far as their speeds depend upon it, would move

with the same velocity, pray tell us, Salviati, how you explain

the appreciable and evident inequality of motion ; please reply

also to the objection urged by Simplicio an objection in which

I concur namely, that a cannon ball falls more rapidly than a

bird-shot. From my point of view, one might expect the differ-

ence of speed to be small in the case of bodies of the same sub-

stance moving through any single medium, whereas the larger

ones will descend, during a single pulse-beat, a distance which

the smaller ones will not traverse in an hour, or in four, or even

in twenty hours; as for instance in the case of stones and fine

sand and especially that very fine sand which produces muddy

water and which in many hours will not fall through as much as

two cubits, a distance which stones not much larger will traverse

in a single pulse-beat.

Salv.
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SALV. The action of the medium in producing a greater

retardation upon those bodies which have a less specific gravity

has already been explained by showing that they experience a

diminution of weight. But to explain how one and the same

[132]

medium produces such different retardations in bodies which

are made of the same material and have the same shape, but

differ only in size, requires a discussion more clever than that

by which one explains how a more expanded shape or an op-

posing motion of the medium retards the speed of the moving

body. The solution of the present problem lies, I think, in the

roughness and porosity which are generally and almost neces-

sarily found in the surfaces of solid bodies. When the body is in

motion these rough places strike the air or other ambient me-

dium. The evidence for this is found in the humming which

accompanies the rapid motion of a body through air, even when

that body is as round as possible. One hears not only humming,

but also hissing and whistling, whenever there is any appreciable

cavity or elevation upon the body. We observe also that a

round solid body rotating in a lathe produces a current of air.

But what more do we need? When a top spins on the ground at

its greatest speed do we not hear a distinct buzzing of high

pitch? This sibilant note diminishes in pitch as the speed of

rotation slackens, which is evidence that these small rugosities

on the surface meet resistance in the air. There can be no doubt,

therefore, that in the motion of falling bodies these rugosities

strike the surrounding fluid and retard the speed; and this they

do so much the more in proportion as the surface is larger, which

is the case of small bodies as compared with greater.

SIMP. Stop a moment please, I am getting confused. For al-

though I understand and admit that friction of themediumupon

the surface of the body retards its motion and that, if other

things are the same, the larger surface suffers greater retarda-

tion, I do not see on what ground you say that the surface of the

smaller body is larger. Besides if, as you say, the larger surface

suffers greater retardation the larger solid should move more

slowly, which is not the fact. But this objection can be easily

met
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met by saying that, although the larger body has a larger sur-

face, it has also a greater weight, in comparison with which the

resistance of the larger surface is no more than the resistance of

the small surface in comparison with its smaller weight ; so that

the speed of the larger solid does not become less. I therefore

see no reason for expecting any difference of speed so long as the

driving weight [gravità movente] diminishes in the same proper-

[133]

tion as the retarding power [facoltà ritardante] of the surface.

SALV. I shall answer all your objections at once. You will

admit, of course, Simplicio, that if one takes two equal bodies, of

the same material and same figure, bodies which would therefore

fall with equal speeds, and if he diminishes the weight of one of

them in the same proportion as its surface (maintaining the

similarity of shape) he would not thereby diminish the speed of

this body.

SIMP. This inference seems to be in harmony with yourtheory

which states that the weight of a body has no effect in either

accelerating or retarding its motion.

SALV. I quite agree with you in this opinion from which it

appears to follow that, if the weight of a body is diminished in

greater proportion than its surface, the motion is retarded to a

certain extent; and this retardation is greater and greater in

proportion as the diminution of weight exceeds that of the sur-

face.

SIMP. This I admit without hesitation.

SALV. Nowyou must know, Simplicio, that it is not possible

to diminish the surface of a solid body in the same ratio as the

weight, and at the same time maintain similarity of figure.

For since it is clear that in the case of a diminishing solid the

weight grows less in proportion to the volume, and since the

volume always diminishes more rapidly than the surface, when

the same shape is maintained, the weight must therefore dimin-

ish more rapidly than the surface. But geometry teaches us

that, in the case of similar solids, the ratio of two volumes is

greater than the ratio of their surfaces ; which, for the sake of

better understanding, I shall illustrate by a particular case.

Take,
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Take, for example, a cube two inches on a side so that each

face has an area of four square inches and the total area, i. e.,

the sum of the six faces, amounts to twenty-four square inches;

now imagine this cube to be sawed through three times so as to

divide it into eight smaller cubes, each one inch on the side, each

face one inch square, and the total surface of each cube six

square inches instead of twenty-four as in the case of the larger

[134]

cube. It is evident therefore that the surface of the little cube is

only one-fourth that of the larger, namely, the ratio of six to

twenty-four; but the volume of the solid cube itself is only one-

eighth; the volume, and hence also the weight, diminishes there-

fore much more rapidly than the surface. Ifwe again divide the

little cube into eight others we shall have, for the total surface

of one of these, one and one-half square inches, which is one-

sixteenth of the surface of the original cube; but its volume is

only one-sixty-fourth part. Thus, by two divisions, you see that

the volume is diminished four times as much as the surface.

And, if the subdivision be continued until the original solid be

reduced to a fine powder, we shall find that the weight of one of

these smallest particles has diminished hundreds and hundreds of

times as much as its surface. And this which I have illustrated

in the case of cubes holds also in the case of all similar solids,

where the volumes stand in sesquialteral ratio to their surfaces .

Observe then howmuch greater the resistance, arising from con-

tact of the surface of the moving body with the medium, in the

case of small bodies than in the case of large; and when one

considers that the rugosities on the very small surfaces of fine

dust particles are perhaps no smaller than those on the surfaces

of larger solids which have been carefully polished, he will see

how important it is that the medium should be very fluid and

offer no resistance to being thrust aside, easily yielding to a small

force. You see, therefore, Simplicio, that I was not mistaken

when, not long ago, I said that the surface of a small solid is

comparatively greater than that of a large one.

SIMP. I am quite convinced ; and, believe me, if I were again

beginning my studies, I should follow the advice of Plato and

start
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start with mathematics, a science which proceeds very cautiously

and admits nothing as established until it has been rigidly dem-

onstrated.

SAGR. This discussion has afforded me great pleasure; but

before proceeding further I should like to hear the explanation of

a phrase ofyours which is newto me, namely, that similar solids

are to each other in the sesquialteral ratio of their surfaces ; for

although I have seen and understood the proposition in which it

is demonstrated that the surfaces of similar solids are in the

[135]

duplicate ratio of their sides and also the proposition which

proves that the volumes are in the triplicate ratio of their sides,

yet I have not so much as heard mentioned the ratio of the

volume ofa solid to its surface.

SALV. You yourself have suggested the answer to your ques-

tion and have removed every doubt. For if one quantity is

the cube of something of which another quantity is the square

does it not follow that the cube is the sesquialteral of the square?

Surely. Now if the surface varies as the square of its linear

dimensions while the volume varies as the cube of these dimen-

sions may we not say that the volume stands in sesquialteral

ratio to the surface?

SAGR. Quite so. And now although there are still some de-

tails, in connection with the subject under discussion, con-

cerning which I might ask questions yet, if we keep making one

digression after another, it will be long before we reach the

main topic which has to do with the variety of properties found

in the resistance which solid bodies offer to fracture; and,

therefore, if you please, let us return to the subject which we

originally proposed to discuss.

SALV. Very well ; but the questions which we have already

considered are so numerous and so varied, and have taken up

so much time that there is not much of this day left to spend

upon our main topic which abounds in geometrical demonstra-

tions calling for careful consideration. May I, therefore, suggest

that we postpone the meeting until to-morrow, not only for the

reason just mentioned but also in order that I may bring with

me
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me some papers in which I have set down in an orderly way the

theorems and propositions dealing with the various phases of

this subject, matters which, from memory alone, I could not

present in the proper order.

SAGR. I fully concur in your opinion and all the more will-

ingly because this will leave time to-day to take up some of

my difficulties with the subject which we have just been dis-

cussing. One question is whether we are to consider the re-

sistance of the medium as sufficient to destroy the acceleration

of a body of very heavy material, very large volume, and
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spherical figure. I say spherical in order to select a volumewhich

is contained within a minimum surface and therefore less sub-

ject to retardation.

Another question deals with the vibrations of pendulums

which may be regarded from several viewpoints ; the first is

whether all vibrations, large, medium, and small, are performed

in exactly and precisely equal times : another is to find the ratio

of the times of vibration of pendulums supported by threads of

unequal length.

SALV. These are interesting questions : but I fear that here, as

in the case of all other facts, ifwe take up for discussion any one

ofthem, it will carry in its wake so many other facts and curious

consequences that time will not remain to-day for the discussion

of all.

SAGR. If these are as full of interest as the foregoing, I would

gladly spend as many days as there remain hours between now

and nightfall ; and I dare say that Simplicio would not be

wearied by these discussions.

SIMP. Certainly not; especially when the questions pertain

to natural science and have not been treated by other philos-

ophers.

SALV. Now taking up the first question, I can assert without

hesitation that there is no sphere so large, or composed of

material so dense but that the resistance of the medium, al-

though very slight, would check its acceleration and would, in

time reduce its motion to uniformity; a statement which is

strongly
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strongly supported by experiment. For if a falling body, as

time goes on, were to acquire a speed as great as you please, no

such speed, impressed by external forces [motore esterno] , can be

so great but that the body will first acquire it and then, owing to

the resisting medium, lose it. Thus, for instance, if a cannon

ball, having fallen a distance of four cubits through the air and

having acquired a speed of, say, ten units [gradi] were to strike

the surface of the water, and if the resistance of the water were

not able to check the momentum [impeto] of the shot, it would

either increase in speed or maintain a uniform motion until the

bottom were reached : but such is not the observed fact; on the

contrary, the water when only a few cubits deep hinders and

diminishes the motion in such a way that the shot delivers

to the bed of the river or lake a very slight impulse. Clearly

[137]

then if a short fall through the water is sufficient to deprive a

cannon ball of its speed, this speed cannot be regained by a fall

ofeven a thousand cubits. How could a body acquire, in a fall of

a thousand cubits, that which it loses in a fall of four? But what

more is needed? Do we not observe that the enormous momen-

tum, delivered to a shot by a cannon, is so deadened by passing

through a few cubits of water that the ball, so far from injuring

the ship, barely strikes it ? Even the air, although a very yield-

ing medium, can also diminish the speed of a falling body, as

may be easily understood from similar experiments. For if a

gun be fired downwards from the top of a very high tower the

shot will make a smaller impression upon the ground than if

the gun had been fired from an elevation of only four or six

cubits; this is clear evidence that the momentum of the ball,

fired from the top of the tower, diminishes continually from

the instant it leaves the barrel until it reaches the ground.

Therefore a fall from ever so great an altitude will not suffice to

give to a body that momentum which it has once lost through

the resistance ofthe air, no matter how it was originally acquired.

In like manner, the destructive effect produced upon a wall by a

shot fired from a gun at a distance of twenty cubits cannot be

duplicated by the fall of the same shot from any altitude how-

ever
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ever great. My opinion is, therefore, that under the circum-

stances which occur in nature, the acceleration of any body fall-

ing from rest reaches an end and that the resistance of the

medium finally reduces its speed to a constant value which is

thereafter maintained.

SAGR. These experiments are in my opinion much to the

purpose; the only question is whether an opponent might not

make bold to deny the fact in the case of bodies [moli] which are

very large and heavy or to assert that a cannon ball, falling from

the distance of the moon orfrom the upper regions of the atmos-

phere, would deliver a heavier blow than if just leaving the

muzzle of the gun.

SALV. No doubt many objections may be raised not all of

which can be refuted by experiment : however in this particular

[138]

case the following consideration must be taken into account,

namely, that it is very likely that a heavy body falling from a

height will, on reaching the ground, have acquired just as much

momentum as was necessary to carry it to that height ; as may

be clearly seen in the case of a rather heavy pendulum which,

when pulled aside fifty or sixty degrees from the vertical, will

acquire precisely that speed and force which are sufficient to

carry it to an equal elevation save only that small portion which

it loses through friction on the air. In order to place a cannon

ball at such a height as might suffice to give it just that momen-

tum which the powder imparted to it on leaving the gun we

need only fire it vertically upwards from the same gun; and we

can then observe whether on falling back it delivers a blow equal

to that of the gun fired at close range; in my opinion it would be

much weaker. The resistance of the air would, therefore, I

think, prevent the muzzle velocity from being equalled by a

natural fall from rest at any height whatsoever.

We come now to the other questions, relating to pendulums,

a subject which may appear to many exceedingly arid, es-

pecially to those philosophers who are continually occupied

with the more profound questions of nature. Nevertheless, the

problem is one which I do not scorn. I am encouraged by the

example
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example of Aristotle whom I admire especially because he did

not fail to discuss every subject which he thought in any degree

worthy of consideration.

Impelled by your queries I may give you some of my ideas

concerning certain problems in music, a splendid subject, upon

which so many eminent men have written: among these is

Aristotle himself who has discussed numerous interesting acous-

tical questions. Accordingly, if on the basis of some easy and

tangible experiments, I shall explain some striking phenomena

in the domain of sound, I trust my explanations will meet your

approval.

SAGR. I shall receive them not only gratefully but eagerly.

For, although I take pleasure in every kind of musical instru-
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ment and have paid considerable attention to harmony, I have

never been able to fully understand why some combinations of

tones are more pleasing than others, or why certain combina-

tions not only fail to please but are even highly offensive.

Then there is the old problem of two stretched strings in unison;

when one of them is sounded, the other begins to vibrate and

to emit its note ; nor do I understand the different ratios of

harmony [forme delle consonanze ] and some other details.

SALV. Let us see whether we cannot derive from the pendulum

a satisfactory solution of all these difficulties. And first, as to

the question whether one and the same pendulum really per-

forms its vibrations, large, medium, and small, all in exactly

the same time, I shall rely upon what I have already heard from

our Academician. He has clearly shown that the time of

descent is the same along all chords, whatever the arcs which

subtend them, as well along an arc of 180∘ (i . e. , the whole

diameter) as along one of 100°, 60°, 10°, 2°, 1/2½°, or 4'. It is

understood, of course, that these arcs all terminate at the

lowest point of the circle, where it touches the horizontal plane.

If now we consider descent along arcs instead of their chords

then, provided these do not exceed 90°, experiment shows that

they are all traversed in equal times; but these times are greater

for the chord than for the arc, an effect which is all the more

remarkable
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remarkable because at first glance one would think just the

opposite to be true. For since the terminal points of the two

motions are the same and since the straight line included be-

tween these two points is the shortest distance between them, it

would seem reasonable that motion along this line should be

executed in the shortest time ; but this is not the case, for the

shortest time—and therefore the most rapid motion— is that

employed along the arc of which this straight line is the chord.

As to the times of vibration of bodies suspended by threads of

different lengths, they bear to each other the same proportion as

the square roots of the lengths of the thread ; or one might say

the lengths are to each other as the squares of the times ; so that

if one wishes to make the vibration-time of one pendulum twice

that of another, he must make its suspension four times as long.

In like manner, if one pendulum has a suspension nine times as

[140]

long as another, this second pendulum will execute three vibra-

tions during each one of the first ; from which it follows that the

lengths of the suspending cords bear to each other the [inverse]

ratio of the squares of the number of vibrations performed in the

same time.

SAGR. Then, if I understand you correctly, I can easily meas-

ure the length of a string whose upper end is attached at any

height whatever even if this end were invisible and I could see

only the lower extremity. For if I attach to the lower end of this

string a rather heavy weight and give it a to-and-fro motion,

and if I ask a friend to count a number of its vibrations, while I,

during the same time-interval, count the number of vibrations

of a pendulum which is exactly one cubit in length, then knowing

the number of vibrations which each pendulum makes in the

given interval of time one can determine the length of the

string. Suppose, for example, that my friend counts 20 vibra-

tions of the long cord during the same time in which I count

240 ofmy string which is one cubit in length ; taking the squares

of the two numbers, 20 and 240, namely 400 and 57600, then, I

say, the long string contains 57600 units of such length that

my pendulum will contain 400 of them; and since the length of

my
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my string is one cubit, I shall divide 57600 by 400 and thus ob-

tain 144. Accordingly I shall call the length of the string 144

cubits.

SALV. Nor will you miss it by as much as a hand's breadth,

especially if you observe a large number of vibrations.

SAGR. You give me frequent occasion to admire the wealth

and profusion of nature when, from such common and even

trivial phenomena, you derive facts which are not only striking

and new but which are often far removed from what we would

have imagined. Thousands of times I have observed vibrations

especially in churches where lamps, suspended by long cords,

had been inadvertently set into motion; but the most which I

could infer from these observations was that the view of those

who think that such vibrations are maintained by the medium

is highly improbable : for, in that case, the air must needs have

considerable judgment and little else to do but kill time by push-

ing to and fro a pendent weight with perfect regularity. But I

never dreamed of learning that one and the same body, when
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suspended from a string a hundred cubits long and pulled aside

through an arc of 90° or even 1° or ½°, would employ the same

time in passing through the least as through the largest of these

arcs; and, indeed, it still strikes me as somewhat unlikely.

Now I amwaiting to hear howthese same simple phenomena can

furnish solutions for those acoustical problems—solutions which

will be at least partly satisfactory.

SALV. First of all one must observe that each pendulum has

its own time of vibration so definite and determinate that

it is not possible to make it move with any other period [altro

periodo] than that which nature has given it. For let any one

take in his hand the cord to which the weight is attached and

try, as much as he pleases, to increase or diminish the frequency

[frequenza] of its vibrations ; it will be time wasted. On the

other hand, one can confer motion upon even a heavy pendulum

which is at rest by simply blowing against it ; by repeating these

blasts with a frequency which is the same as that of the pendu-

lum one can impart considerable motion. Suppose that by the

first
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first puff we have displaced the pendulum from the vertical by,

say, half an inch; then if, after the pendulum has returned and is

about to begin the second vibration, we add a second puff, we

shall impart additional motion ; and so on with other blasts

provided they are applied at the right instant, and not when the

pendulum is coming toward us since in this case the blast would

impede rather than aid the motion. Continuing thus with

many impulses [impulsi] we impart to the pendulum such

momentum [impeto] that a greater impulse [forza] than that of a

single blast will be needed to stop it.

SAGR. Even as a boy, I observed that one man alone by

giving these impulses at the right instant was able to ring a

bell so large that when four, or even six, men seized the rope

and tried to stop it they were lifted from the ground, all of

them together being unable to counterbalance the momentum

which a single man, by properly-timed pulls, had given it.

SALV. Your illustration makes my meaning clear and is quite

as well fitted, as what I have just said, to explain the wonderful

phenomenon of the strings of the cittern [cetera] or of the spinet
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[cimbalo] , namely, the fact that a vibrating string will set

another string in motion and cause it to sound not onlywhen the

latter is in unison but even when it differs from the former by an

octave or a fifth . A string which has been struck begins to

vibrate and continues the motion as long as one hears the

sound [risonanza] ; these vibrations cause the immediately sur-

rounding air to vibrate and quiver; then these ripples in the air

expand far into space and strike not only all the strings of the

same instrument but even those of neighboring instruments.

Since that string which is tuned to unison with the one plucked

is capable of vibrating with the same frequency, it acquires,

at the first impulse, a slight oscillation ; after receiving two,

three, twenty, or more impulses, delivered at proper intervals,

it finally accumulates a vibratory motion equal to that of the

plucked string, as is clearly shown by equality of amplitude in

their vibrations. This undulation expands through the air and

sets into vibration not only strings, but also any other body

which
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which happens to have the same period as that of the plucked

string. Accordingly if we attach to the side of an instrument

small pieces of bristle or other flexible bodies, we shall observe

that, when a spinet is sounded, only those pieces respond that

have the same period as the string which has been struck; the

remaining pieces do not vibrate in response to this string, nor

do the former pieces respond to any other tone.

If one bows the base string on a viola rather smartly and

brings near it a goblet of fine, thin glass having the same tone

[tuono] as that of the string, this goblet will vibrate and audibly

resound. That the undulations of the medium are widely

dispersed about the sounding body is evinced by the fact that a

glass ofwater may be made to emit a tone merely by the friction

of the finger-tip upon the rim of the glass ; for in this water is

produced a series of regular waves. The same phenomenon is

observed to better advantage by fixing the base of the goblet

upon the bottom of a rather large vessel of water filled nearly to

the edge of the goblet ; for if, as before, we sound the glass by

friction of the finger, we shall see ripples spreading with the

utmost regularity and with high speed to large distances about

the glass. I have often remarked, in thus sounding a rather
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large glass nearly full ofwater, that at first the waves are spaced

with great uniformity, and when, as sometimes happens, the

tone of the glass jumps an octave higher I have noted that at

this moment each of the aforesaid waves divides into two; a

phenomenon which shows clearly that the ratio involved in the

octave [forma dell' ottava] is two.

SAGR. More than once have I observed this same thing, much

to my delight and also to my profit. For a long time I have

been perplexed about these different harmonies since the ex-

planations hitherto given by those learned in music impress

me as not sufficiently conclusive. They tell us that the diapa-

son, i . e. the octave, involves the ratio of two, that the diapente

which we call the fifth involves a ratio of 3 :2, etc.; because if

the open string of a monochord be sounded and afterwards a

bridge be placed in the middle and the half length be sounded

one
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one hears the octave; and if the bridge be placed at 1/3 the length

of the string, then on plucking first the open string and after-

wards 2/3 of its length the fifth is given ; for this reason they say

that the octave depends upon the ratio of two to one [con-

tenuta tra'l due e l'uno] and the fifth upon the ratio of three to

two. This explanation does not impress me as sufficient to

establish 2 and 3/2 as the natural ratiosof theoctave and thefifth:

and my reason for thinking so is as follows. There are three

different ways in which the tone of a string may be sharpened,

namely, by shortening it, by stretching it and by making it

thinner. If the tension and size of the string remain constant

one obtains the octave by shortening it toone-half, i. e. , by sound-

ing first the open string and then one-half of it ; but if length and

size remain constant and one attempts to produce the octave by

stretching he will find that it does not suffice to double the

stretching weight ; it must be quadrupled ; so that, if the funda-

mental note is produced by a weight of one pound, four will be

required to bring out the octave.

And finally if the length and tension remain constant, while

one changes the size * of the string he will find that in order to

produce the octave the size must be reduced to 14 that which

gave the fundamental. And what I have said concerning the

octave, namely, that its ratio as derived from the tension and

size of the string is the square of that derived from the length,

applies equally well to all other musical intervals [intervalli
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musici] . Thus if one wishes to produce a fifth by changing the

length he finds that the ratio ofthe lengths must be sesquialteral,

in other words he sounds first the open string, then two-thirds

of it; but if he wishes to produce this same result by stretching or

thinning the string then it becomes necessary to square the

ratio 3/2 that is by taking 9/4 [dupla sesquiquarta] ; accordingly,

if the fundamental requires a weight of 4 pounds, the higher

note will be produced not by 6, but by 9 pounds; the same is

true in regard to size, the string which gives the fundamental is

larger than that which yields the fifth in the ratio of 9 to 4.

In view of these facts, I see no reason why those wise philos-

* For the exact meaning of "size" see p . 103 below. [ Trans.]
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ophers should adopt 2 rather than 4 as the ratio of the octave,

or why in the case of the fifth they should employ the sesquialt-

eral ratio, 3/2, rather than that of 9/4. Since it is impossible to

count the vibrations of a sounding string on account of its high

frequency, I should still have been in doubt as to whether a

string, emitting the upper octave, made twice as many vibra-

tions in the same time as one giving the fundamental, had it

not been for the following fact, namely, that at the instant when

the tone jumps to the octave, the waves which constantly ac-

company the vibrating glass divide up into smaller ones which

are precisely half as long as the former.

SALV. This is a beautiful experiment enabling us to distin-

guish individually the waves which are produced by the vibra-

tions of a sonorous body, which spread through the air, bringing

to the tympanum of the ear a stimulus which the mind translates

into sound. But since these waves in the water last only so long

as the friction of the finger continues and are, even then, not

constant but are always forming and disappearing, would it not

be a fine thing if one had the ability to produce waves which

would persist for a long while, even months and years, so as to

easily measure and count them?

SAGR. Such an invention would, I assure you, command my

admiration.

SALV. The device is one which I hit upon by accident ; my part

consists merely in the observation of it and in the appreciation

of its value as a confirmation of something to which I had given

profound consideration ; and yet the device is, in itself, rather

common. As I was scraping a brass plate with a sharp iron
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chisel in order to remove some spots from it and was running

the chisel rather rapidly over it, I once or twice, during many

strokes, heard the plate emit a rather strong and clear whistling

sound; on looking at the plate more carefully, I noticed a long

row of fine streaks parallel and equidistant from one another.

Scraping with the chisel over and over again, I noticed that it

was only when the plate emitted this hissing noise that any

marks were left upon it ; when the scraping was not accompanied

by
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by this sibilant note there was not the least trace of such marks.

Repeating the trick several times and making the stroke, now

with greater now with less speed, the whistling followed with a

pitch which was correspondingly higher and lower. I noted

also that the marks made when the tones were higher were

closer together ; but when the tones were deeper, they were

farther apart. I also observed that when, during a single stroke,

the speed increased toward the end the sound became sharper

and the streaks grew closer together, but always in such a way as

to remain sharply defined and equidistant. Besides whenever

the stroke was accompanied by hissing I felt the chisel tremble

in my grasp and a sort of shiver run throughmy hand. In short

we see and hear in the case of the chisel precisely that which

is seen and heard in the case of a whisper followed by a loud

voice; for, when the breath is emitted without the production

of a tone, one does not feel either in the throat or mouth any

motion to speak of in comparison with that which is felt in the

larynx and upper part of the throat when the voice is used,

especially when the tones employed are low and strong.

At times I have also observed among the strings of the spinet

two which were in unison with two of the tones produced by the

aforesaid scraping; and among those which differed most in

pitch I found two which were separated by an interval of a

perfect fifth. Upon measuring the distance between the mark-

ings produced by the two scrapings it was found that the space

which contained 45 of one contained 30 of the other, which is

precisely the ratio assigned to the fifth.

But now before proceeding any farther I want to call your

attention to the fact that, of the three methods for sharpening a

tone, the one which you refer to as the fineness of the string

should be attributed to its weight. So long as the material of

[146]

the string is unchanged, the size and weight vary in the same

ratio. Thus in the case of gut-strings, we obtain the octave by

making one string 4 times as large as the other; so also in the

case of brass one wire must have 4 times the size of the other;

but if now we wish to obtain the octave of a gut-string, by use of

brass
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brass wire, we must make it, not four times as large, but four

times as heavy as the gut-string: as regards size therefore the

metal string is not four times as big but four times as heavy.

The wire may therefore be even thinner than the gut notwith-

standing the fact that the latter gives the higher note. Hence if

two spinets are strung, one with gold wire the other with brass,

and if the corresponding strings each have the same length,

diameter, and tension it follows that the instrument strung with

gold will have a pitch about one-fifth lower than the other be-

cause gold has a density almost twice that of brass . And here

it is to be noted that it is the weight rather than the size of a

moving body which offers resistance to change of motion [velocità

del moto] contrary to what one might at first glance think. For

it seems reasonable to believe that a body which is large and light

should suffer greater retardation of motion in thrusting aside the

medium than would one which is thin and heavy; yet here

exactly the opposite is true.

Returning now to the original subject of discussion, I assert

that the ratio of a musical interval is not immediately deter-

mined either by the length, size, or tension of the strings but

rather by the ratio of their frequencies, that is, by the number

of pulses of air waves which strike the tympanum of the ear,

causing it also to vibrate with the same frequency. This fact

established, we may possibly explain why certain pairs of notes,

differing in pitch produce a pleasing sensation, others a less

pleasant effect, and still others a disagreeable sensation . Such

an explanation would be tantamount to an explanation of the

more or less perfect consonances and of dissonances . The un-

pleasant sensation produced by the latter arises, I think, from

the discordant vibrations of two different tones which strike the

ear out of time [sproporzionatamente] . Especially harsh is the

dissonance between notes whose frequencies are incommen-

surable ; such a case occurs when one has two strings in unison

and sounds one of them open, together with a part of the other

[147]

which bears the same ratio to its whole length as the side of a

square bears to the diagonal ; this yields a dissonance similar

to
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to the augmented fourth or diminished fifth [tritono o semi-

diapente].

Agreeable consonances are pairs of tones which strike the

ear with a certain regularity; this regularity consists in the

fact that the pulses delivered by the two tones, in the same

interval of time, shall be commensurable in number, so as not to

keep the ear drum in perpetual torment, bending in two different

directions in order to yield to the ever-discordant impulses.

The first and most pleasing consonance is, therefore, the

octave since, for every pulse given to the tympanum by the

lower string, the sharp string delivers two ; accordingly at every

other vibration of the upper string both pulses are delivered

simultaneously so that one-half the entire number of pulses are

delivered in unison. But when two strings are in unison their

vibrations always coincide and the effect is that of a single

string; hence we do not refer to it as consonance. The fifth is

also a pleasing interval since for every two vibrations of the

lower string the upper one gives three, so that considering the

entire number of pulses from the upper string one-third of them

will strike in unison, i. e. , between each pair of concordant vibra-

tions there intervene two single vibrations ; and when the in-

terval is a fourth, three single vibrations intervene. In case the

interval is a second where the ratio is 9/8 it is only every ninth

vibration of the upper string which reaches the ear simulta-

neously with one of the lower; all the others are discordant and

produce a harsh effect upon the recipient ear which interprets

them as dissonances.

SIMP. Won't you be good enough to explain this argument a

little more clearly?

SALV. Let AB denote the length of a wave [lo spazio e la

dilatazione d'una vibrazione] emitted by the lower string and

CD that of a higher string which is emitting the octave of AB;

divide AB in the middle at E. If the two strings begin their

motions atA and C, it is clear that when the sharp vibration has

reached the end D, the other vibration will have travelled only

as far as E, which, not being a terminal point, will emit no pulse;

but there is a blow delivered at D. Accordingly when the one

wave
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wave comes back from D to C, the other passes on from E to B;

hence the two pulses from B and C strike the drum of the ear

simultaneously. Seeing that these vibrations are repeated

again and again in the same manner, we con-

elude that each alternate pulse from CD falls

in unison with one from AB. But each of the

[148]

E

Fig. 13

B

B
pulsations at the terminal points, A and B, is

constantly accompanied by one which leaves al-

ways from C or always from D. This is clear

because if we suppose the waves to reach A and

C at the same instant, then, while one wave

travels from A to B, the other will proceed from C to D and

back to C, so that waves strike at C and B simultaneously ;

during the passage of the wave from Bback toA the disturbance

at C goes to D and again returns to C, so that once more the

pulses at A and C are simultaneous.

Next let the vibrations AB and CD be separated by an in-

terval of a fifth, that is, by a ratio of 3/2 ; choose the points E and

O such that they will divide the wave length of the lower string

into three equal parts and imagine the vibrations to start at the

same instant from each of the terminals A and C. It is evident

that when the pulse has been delivered at the terminal D, the

wave in AB has travelled only as far as O ; the drum of the ear

receives, therefore, only the pulse from D. Then during the

return ofthe one vibration fromD to C, the other will pass from

O to B and then back to O, producing an isolated pulse at B—a

pulse which is out of time but one which must be taken into

consideration.

Now since we have assumed that the first pulsations started

from the terminals A and C at the same instant, it follows that

the second pulsation, isolated at D, occurred after an interval of

time equal to that required for passage from C to D or, what is

the same thing, from Ato O; but the next pulsation, the one at

B, is separated from the preceding by only half this interval,

namely, the time required for passage fromOto B. Next while

theone vibration travels fromO toA, the other travels from C to

D,
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D, the result of which is that two pulsations occur simulta-

neously at A and D. Cycles of this kind follow one after an-

other, i . e ., one solitary pulse of the lower string interposed be-

tween two solitary pulses of the upper string. Let us now

imagine time to be divided into very small equal intervals ;

then if we assume that, during the first two of these intervals,

the disturbances which occurred simultaneously at A and C have

travelled as far as O and D and have produced a pulse at D; and

if we assume that during the third and fourth intervals one

disturbance returns from D to C, producing a pulse at C, while

the other, passing on from O to B and back to O, produces a

pulse at B; and if finally, during the fifth and sixth intervals, the

disturbances travel from O and C to A and D, producing a

pulse at each of the latter two, then the sequence in which the

pulses strike the ear will be such that, if we begin to count time

from any instant where two pulses are simultaneous, the ear

drum will, after the lapse of two of the said intervals, receive a

solitary pulse ; at the end of the third interval, another solitary

[149]

pulse ; so also at the end of the fourth interval; and two in-

tervals later, i. e., at the end of the sixth interval, will be heard

two pulses in unison. Here ends the cycle—the anomaly, so to

speak—which repeats itselfover and over again.

SAGR. I can no longer remain silent ; for I must express to you

the great pleasure I have in hearing such a complete explanation

of phenomena with regard to which I have so long been in

darkness. Now I understand why unison does not differ from a

single tone; I understand why the octave is the principal har-

mony, but so like unison as often to be mistaken for it and also

why it occurs with the other harmonies. It resembles unison

because the pulsations of strings in unison always occur simulta-

neously, and those of the lower string of the octave are always

accompanied by those of the upper string; and among the latter

is interposed a solitary pulse at equal intervals and in such a

manner as to produce no disturbance ; the result is that such a

harmony is rather too much softened and lacks fire . But the

fifth is characterized by its displaced beats and by the interposi-

tion
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tion of two solitary beats of the upper string and one solitary

beat of the lower string between each pair of simultaneous

pulses ; these three solitary pulses are separated by intervals of

time equal to half the interval which separates each pair of

simultaneous beats from the solitary beats of the upper string.

Thus the effect of the fifth is to produce a tickling of the ear

drum such that its softness is modified with sprightliness, giving

at the same moment the impression of a gentle kiss and of a bite.

SALV. Seeing that you have derived so much pleasure from

these novelties, I must showyou a method by whichthe eyemay

enjoy the same game as the ear. Suspend three balls of lead, or

other heavy material, by means of strings of different length

such that while the longest makes two vibrations the shortest

will make four and the medium three; this will take place when

the longest string measures 16, either in hand breadths or in any

other unit, the medium 9 and the shortest 4, all measured in the

same unit.

Now pull all these pendulums aside from the perpendicular

and release them at the same instant; you will see a curious

interplay of the threads passing each other in various manners

but such that at the completion of every fourth vibration of

the longest pendulum, all three will arrive simultaneously at

the same terminus, whence they start over again to repeat the

same cycle. This combination of vibrations, when produced on

strings is precisely that which yields the interval of the octave

and the intermediate fifth. If we employ the same disposition

[150]

of apparatus but change the lengths of the threads, always

however in such a way that their vibrations correspond to those

of agreeable musical intervals, we shall see a different crossing

of these threads but always such that, after a definite interval of

time and after a definite number of vibrations, all the threads,

whether three or four, will reach the same terminus at the same

instant, and then begin a repetition ofthe cycle.

If however the vibrations of two or more strings are incom-

mensurable so that they never complete a definite number of

vibrations at the same instant, or if commensurable they return

only
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only after a long interval of time and after a large number of

vibrations, then the eye is confused by the disorderly succession

of crossed threads. In like manner the ear is pained by an

irregular sequence of air waves which strike the tympanum with-

out any fixed order.

But, gentlemen, whither have we drifted during these many

hours lured on by various problems and unexpected digressions ?

The day is already ended and we have scarcely touched the

subject proposed for discussion. Indeed we have deviated so far

that I remember only with difficulty our early introduction and

the little progress made in the way of hypotheses and principles

for use in later demonstrations.

SAGR. Let us then adjourn for to-day in order that our minds

may find refreshment in sleep and that we may return to-

morrow, if so please you, and resume the discussion of the main

question.

SALV. I shall not fail to be here to-morrow at the same hour,

hoping not only to render you service but also to enjoy your

company.

END OF THE FIRST DAY.



S

[151]

SECOND DAY

AGR. While Simplicio and I were awaiting

your arrivalwe were trying to recall that last

consideration which you advanced as a prin-

ciple and basis for the results you intended to

obtain; this consideration dealt with the

resistance which all solids offer to fracture

and depended upon a certain cement which

Cheld the parts glued together so that they

would yield and separate only under considerable pull [potente

attrazzione]. Later we tried to find the explanation of this

coherence, seeking it mainly in the vacuum; this was the occa-

sion of our many digressions which occupied the entire day and

led us far afield from the original question which, as I have

already stated, was the consideration of the resistance [resistenza]

that solids offer to fracture.

SALV. I remember it all very well. Resuming the thread of

our discourse, whatever the nature of this resistance which solids

offer to large tractive forces [violenta attrazzione] there can at

least be no doubt of its existence; and though this resistance is

very great in the case of a direct pull, it is found, as a rule, to be

less in the case of bending forces [nel violentargli per traverso] .

Thus, for example, a rod of steel or of glass will sustain a longi-

tudinal pull of a thousand pounds while a weight of fifty pounds

would be quite sufficient to break it if the rod were fastened at

right angles into a vertical wall. It is this second type of re-

sistance which we must consider, seeking to discover in what

[152]

proportion
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proportion it is found in prisms and cylinders of the same

material, whether alike or unlike in shape, length, and thick-

ness. In this discussion I shall take for granted the well-known

mechanical principle which has been shown to govern the

behavior of a bar, which we call a lever, namely, that the force

bears to the resistance the inverse ratio of the distances which

separate the fulcrum from the force and resistance respectively.

SIMP. This was demonstrated first of all by Aristotle, in his

Mechanics.

SALV. Yes, I am willing to concede him priority in point of

time; but as regards rigor of demonstration the first place must

be given to Archimedes, since upon a single proposition proved

in his book on Equilibrium * depends not only the law of the

lever but also those of most other mechanical devices.

SAGR. Since now this principle is fundamental to all the

demonstrations which you propose to set forth would it not be

advisable to give us a complete and thorough proof of this

proposition unless possibly it would take too much time?

SALV. Yes, that would be quite proper, but it is better I

think to approach our subject in a manner somewhat different

from that employed by Archimedes, namely, by first assuming

merely that equal weights placed in a balance of equal arms will

produce equilibrium—a principle also assumed by Archimedes—

and then proving that it is no less true that unequal weights

produce equilibrium when the arms of the steelyard have

lengths inversely proportional to the weights suspended from

them; in other words, it amounts to the same thing whether

one places equal weights at equal distances or unequal weights

at distances which bear to each other the inverse ratio of the

weights.

In order to make this matter clear imagine a prism or solid

cylinder, AB, suspended at each end to the rod [linea] HI, and

supported by two threads HA and IB; it is evident that if I

attach a thread, C, at the middle point of the balance beam HI,

the entire prismABwill, according to the principle assumed, hang

in equilibrium since one-half its weight lies on one side, and the

other halfon the other side, of the point of suspension C. Now

* Works ofArchimedes. Trans. by T. L. Heath, pp. 189-220. [ Trans . ]
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suppose the prism to be divided into unequal parts by a plane

[153]

through the line D, and let the part DA be the larger and DB

the smaller: this division having been made, imagine a thread

ED, attached at the point E and supporting the parts AD and

DB, in order that these parts may remain in the same position

relative to line HI : and since the relative position of the prism

and the beam HI remains unchanged, there can be no doubt

but that the prism will maintain its former state of equilibrium.

A

H

G C E F I

Fig. 14

But circumstances would remain the same if that part of the

prism which is now held up, at the ends, by the threads AH and

DE were supported at the middle by a single thread GL; and

likewise the other part DB would not change position if held

by a thread FM placed at its middle point. Suppose now the

threads HA, ED, and IB to be removed, leaving only the two

GL and FM, then the same equilibrium will be maintained so

long as the suspension is at C. Nowlet us consider that we have

here two heavy bodies AD and DBhung at the ends G and F, of

a balance beam GF in equilibrium about the point C, so that

the line CG is the distance from C to the point of suspension

of the heavy body AD, while CF is the distance at which the

other heavy body, DB, is supported. It remains now only to

show that these distances bear to each other the inverse ratio

of the weights themselves, that is, the distance GC is to the

distance CF as the prism DB is to the prismDA—a proposition

which we shall prove as follows: Since the line GE is the half of

EH, and since EF is the half of EI, the whole length GF will be

half
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half of the entire line HI, and therefore equal to CI : if now we

subtract the common part CF the remainder GC will be equal to

the remainder FI, that is, to FE, and if to each of these we add

CE we shall have GE equal to CF: hence GE :EF =FC :CG.

But GE and EF bear the same ratio to each other as do their

doubles HE and EI, that is, the same ratio as the prism AD to

DB. Therefore, by equating ratios we have, convertendo, the

distance GC is to the distance CF as the weight BD is to the

weight DA, which is what I desired to prove.

[154]

If what precedes is clear, you will not hesitate, I think, to

admit that the two prisms AD and DB are in equilibrium about

the point C since one-half of the whole body AB lies on the

right of the suspension C and the other half on the left ; in other

words, this arrangement is equivalent to two equal weights dis-

posed at equal distances. I do not see how any one can doubt, if

the twoprisms AD andDBwere transformed into cubes, spheres,

or into any other figure whatever and ifG and F were retained as

points of suspension, that they would remain in equilibrium

about the point C, for it is only too evident that change of figure

does not produce change of weight so long as the mass [quantità

di materia] does not vary. From this we may derive the general

conclusion that any two heavy bodies are in equilibrium at

distances which are inversely proportional to their weights.

This principle established, I desire, before passing to any

other subject, to call your attention to the fact that these forces,

resistances, moments, figures, etc., may be considered either in

the abstract, dissociated from matter, or in the concrete, asso-

ciated with matter. Hence the properties which belong to

figures that are merely geometrical and non-material must be

modified when we fill these figures with matter and therefore

give them weight. Take, for example, the lever BA which,

resting upon the support E, is used to lift a heavy stone D.

The principle just demonstrated makes it clear that a force ap-

plied at the extremity B will just suffice to equilibrate the

resistance offered by the heavy body D provided this force

[momento] bears to the force [momento] at D the same ratio as the

distance
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distance AC bears to the distance CB; and this is true so long as

we consider only the moments of the single force at B and of the

resistance at D, treating the lever as an immaterial body devoid

of weight. But if we take into account the weight of the lever

itself an instrument which may be made either of wood or of

iron—it is manifest that, when this weight has been added to the

[155]

force at B, the ratio will be changed and must therefore be

expressed in different terms. Hence before going further let

D

C

B

Fig. 15

us agree to distinguish between these two points of view; when

we consider an instrument in the abstract, i. e. , apart from the

weight of its own material, we shall speak of " taking it in an

absolute sense" [prendere assolutamente] ; but ifwe fill one of these

simple and absolute figures with matter and thus give it weight,

we shall refer to such a material figure as a "moment" or

"compound force" [momento oforza composta] .

66

SAGR. I must break my resolution about not leading you off

into a digression; for I cannot concentrate my attention upon

what is to follow until a certain doubt is removed from my

mind, namely, you seem to compare the force at B with the

total weight of the stone D, a part of which possibly the

greater part—rests upon the horizontal plane: so that ..

SALV. I understand perfectly: you need go no further. How-

ever please observe that I have not mentioned the total weight

of the stone ; I spoke only of its force [momento] at the point A,

the extremity of the lever BA, which force is always less than

the total weight of the stone, and varies with its shape and

elevation.

SAGR. Good: but there occurs to me another question about

which
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which I am curious. For a complete understanding of this

matter, I should like you to show me, if possible, how one can

determine what part of the total weight is supported by the

underlying plane and what part by the end A of the lever.

SALV. The explanation will not delay us long and I shall

therefore have pleasure in granting your request. In the accom-

panying figure, let us understand that the weight having its

center of gravity at A rests with the end B upon the horizontal

plane and with the other end upon the lever CG. Let N be

the fulcrum of a lever to which the force [potenza] is applied at G.

Let fall the perpendiculars, AO and CF, from the center A and

the end C. Then I say, the magnitude [momento] of the entire

weight bears to the magnitude of the force [momento della

potenza] at G a ratio compounded of the ratio between the two

B

Fig. 16

distances GN and NC and the ratio between FB and BO.

Lay off a distance X such that its ratio to NC is the same as that

of BO to FB; then, since the total weight A is counterbalanced

bythe two forces at B and at C, it follows that the force at B is to

that at C as the distance FO is to the distance OB. Hence,

[156]

componendo, the sum of the forces at B and C, that is, the total

weight A [momento di tutto 'l peso A], is to the force at C as the

line FB is to the line BO, that is, as NC is to X : but the force

[momento della potenza] applied at C is to the force applied at

G as the distance GN is to the distance NC; hence it follows,

ex œquali in proportione perturbata,* that the entire weight A is

to the force applied at G as the distance GN is to X. But the

ratio ofGN toX is compounded of the ratio of GN to NC and of

NC to X, that is, of FB to BO; hence the weight A bears to the

* For definition of perturbata see Todhunter's Euclid. BookV, Def. 20.

[Trans.]
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equilibrating force at G a ratio compounded of that of GN to

NCand ofFB to BO: which was to be proved .

Let us now return to our original subject; then , if what has

hitherto been said is clear, it will be easily understood that,

Proposition I

A prism or solid cylinder of glass, steel, wood or other break-

able material which is capable of sustaining a very heavy weight

when applied longitudinally is, as previously remarked, easily

broken by the transverse application of a weight which may be

much smaller in proportion as the length of the cylinder exceeds

its thickness.

Let us imagine a solid prism ABCD fastened into a wall at

the end AB, and supporting a weight E at the other end ; under-

stand also that the wall is vertical and that the prism or cylinder

is fastened at right angles to the wall. It is clear that, if the

cylinder breaks, fracture will occur at the point B where the

edge of the mortise acts as a fulcrum for the lever BC, to which

the force is applied ; the thickness of the solid BAis the other arm

of the lever along which is located the resistance. This resistance

opposes the separation of the part BD, lying outside the wall,

from that portion lying inside. From the preceding, it follows

that the magnitude [momento] of the force applied at C bears to

the magnitude [momento] of the resistance, found in the thickness

of the prism, i . e. , in the attachment of the base BA to its con-

tiguous parts, the same ratio which the length CB bears to half

the length BA; if now we define absolute resistance to fracture

[157]

as that offered to a longitudinal pull (in which case the stretch-

ing force acts in the same direction as that through which the

body is moved), then it follows that the absolute resistance of

the prism BD is to the breaking load placed at the end of the

lever BC in the same ratio as the length BC is to the half ofAB

in the case of a prism, or the semidiameter in the case of a

cylinder. This is our first proposition.* Observe that in what

* The one fundamental error which is implicitly introduced into this

proposition and which is carried through the entire discussion of the
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has here been said the weight of the solid BD itself has been

left out of consideration, or rather, the prism has been assumed

to be devoid of weight. But if the weight of the prism is to be

taken account of in conjunction with the weight E, we must add

F
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to the weight E one

half that of the

prism BD: so that

if, for example, the

latter weighs two

pounds and the

weight E is ten

pounds we must

treat the weight E

as if it were eleven

D pounds.

C

E

SIMP. Why not

twelve?

SALV. Theweight

E, my dear Simp-

licio, hanging at the

extreme end C acts

upon the lever BC

with its full mo-

ment often pounds :

so also would the

solid BD if sus-

pended at the same point exert its full moment of two pounds ;

but, as you know, this solid is uniformly distributed through-

Second Day consists in a failure to see that, in such a beam, there must

be equilibrium between the forces of tension and compression over any

cross-section. The correct point of view seems first to have been found

by E. Mariotte in 1680 and by A. Parent in 1713. Fortunately this

error does not vitiate the conclusions of the subsequent propositions

which deal only with proportions—not actual strength of beams.

Following K. Pearson (Todhunter's History ofElasticity) one might say

that Galileo's mistake lay in supposing the fibres of the strained beam to

be inextensible. Or, confessing the anachronism, one might say that the

error consisted in taking the lowest fibre of the beam as the neutral axis.

[Trans.]
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out its entire length, BC, so that the parts which lie near the

end B are less effective than those more remote.

Accordingly if we strike a balance between the two, the

weight of the entire prism may be considered as concentrated

at its center of gravity which lies midway of the lever BC.

But a weight hung at the extremity C exerts a moment twice

as great as it would if suspended from the middle: therefore

[158]

if we consider the moments of both as located at the end C we

must add to theweight E one-half that of the prism.

SIMP. I understand perfectly; and moreover, if I mistake not,

the force of the two weights BD and E, thus disposed, would

exert the same moment as would the entire weight BD together

with twice the weight E suspended at the middle of the lever

BC.

SALV. Precisely so, and a fact worth remembering. Now

we can readily understand

Proposition II

How and in what proportion a rod, or rather a prism, whose

width is greater than its thickness offers more resistance to

fracture when the

force is applied in

the direction of its

breadth than in the

direction of its

thickness.

For the sake of

clearness, take a

ruler ad whose

width is ac and

whose thickness,

d

Fig. 18

cb, is much less than its width. The question now is why will

the ruler, if stood on edge, as in the first figure, withstand a

great weight T, while, when laid flat, as in the second figure,

it will not support the weight X which is less than T. The

answer is evident when we remember that in the one case

the



118 THE TWO NEW SCIENCES OF GALILEO

the fulcrum is at the line bc, and in the other case at ca,

while the distance at which the force is applied is the same in

both cases, namely, the length bd: but in the first case the

distance of the resistance from the fulcrum—half the line ca—

is greater than in the other case where it is only half of bc.

Therefore the weight T is greater than X in the same ratio as

half the width ca is greater than half the thickness bc, since the

former acts as a lever arm for ca, and the latter for cb, against

the same resistance, namely, the strength of all the fibres in the

cross-section ab. We conclude, therefore, that any given ruler,

or prism , whose width exceeds its thickness, will offer greater

resistance to fracture when standing on edge than when lying

flat, and this in the ratio of the width to the thickness.

Proposition III

Considering now the case of a prism or cylinder growing longer

in a horizontal direction, we must find out in what ratio the

moment of its own weight increases in comparison with its

resistance to fracture. This moment I find increases in propor-

[159]

tion to the square of the length. In order to prove this let AD

be a prism or cylinder lying horizontal with its end A firmly fixed

in a wall. Let the length of the prism be increased by the addi-

tion of the portion BE. It is clear that merely changing the

length of the lever from AB to AC will, if we disregard its weight,

increase the moment of the force [at the end] tending to produce

fracture at A in the ratio of CA to BA. But, besides this, the

weight of the solid portion BE, added to the weight of the solid

AB increases the moment of the total weight in the ratio of the

weight of the prism AE to that of the prism AB, which is the

same as the ratio ofthe length AC toAB.

It follows, therefore, that, when the length and weight are

simultaneously increased in any given proportion, the moment,

which is the product of these two, is increased in a ratio which is

the square of the preceding proportion. The conclusion is then

that the bending moments due to the weight of prisms and

cylinders which have the same thickness but different lengths,

bear
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bear to each other a ratio which is the square of the ratio of

their lengths, or, what is the same thing, the ratio of the

of their lengths.

squares

We shall next show in what ratio the resistance to fracture

D E

B C

Fig. 19

[bending strength], in prisms and cylinders, increases with in-

[160]

crease of thickness while the length remains unchanged. Here

Isay that

Proposition IV

In prisms and cylinders of equal length, but of unequal

thicknesses, the resistance to fracture increases in the same

ratio as the cube of the diameter of the thickness, i . e., of

the base.

Let A and B be two cylinders of equal lengths DG, FH; let their

bases be circular but unequal, having the diameters CD and EF.

Then I say that the resistance to fracture offered by the cylinder

B
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B is to that offered byA as the cube of the diameter FE is to the

cube of the diameter DC. For, if we consider the resistance to

fracture by longitudinal pull as dependent upon the bases, i. e. ,

upon the circles EF and DC, no one can doubt that the strength

[resistenza] of the cylinder B is greater than that of A in the

same proportion in which the area of the circle EF exceeds that

of CD; because it is precisely in this ratio that the number of

fibres binding the parts of the solid together in the one cylinder

exceeds that in the other cylinder.

But in the case of a force acting transversely it must be re-

membered that we are employing two levers in which the forces

G

H

A

B

Fig. 20

E

Care applied at distances DG,

FH, and the fulcrums are

located at the points D and

D F; but the resistances are

applied at distances which

are equal to the radii of the

circles DC and EF, since

the fibres distributed over

F these entire cross-sections

act as ifconcentrated at the

centers. Remembering this and remembering also that the

arms, DG and FH, through which the forces G and H act are

equal, we can understand that the resistance, located at the

center of the base EF, acting against the force at H, is more

effective [maggiore] than the resistance at the center of the

base CD opposing the force G, in the ratio of the radius FE

to the radius DC. Accordingly the resistance to fracture of-

fered by the cylinder B is greater than that of the cylinder A

in a ratio which is compounded of that of the area of the circles

EF and DC and that of their radii, i . e. , of their diameters ; but

the areas of circles are as the squares of their diameters . There-

fore the ratio of the resistances, being the product of the two

preceding ratios, is the same as that ofthe cubes of the diameters.

This is what I set out to prove. Also since the volume of a cube

[161 ]

varies as the third power of its edge we may say that the re-

sistance



SECOND DAY 121

sistance [strength] of a cylinder whose length remains constant

varies as the third power of its diameter.

From the preceding we are able to conclude that

Corollary

The resistance [strength] of a prism or cylinder of constant

length varies in the sesquialteral ratio of its volume.

This is evident because the volume of a prism or cylinder of

constant altitude varies directly as the area of its base, i . e . , as

the square of a side or diameter of this base ; but, as just demon-

strated, the resistance [strength ] varies as the cube of this same

side or diameter. Hence the resistance varies in the sesquialteral

ratio of the volume consequently also of the weight of the

solid itself.

SIMP. Before proceeding further I should like to have one of

my difficulties removed. Up to this point you have not taken

into consideration a certain other kind of resistance which, it

appears to me, diminishes as the solid grows longer, and this is

quite as true in the case of bending as in pulling; it is precisely

thus that in the case of a rope we observe that a very long one is

less able to support a large weight than a short one. Whence, I

believe, a short rod of wood or iron will support a greater weight

than if it were long, provided the force be always applied longi-

tudinally and not transversely, and provided also that we take

into account the weight of the rope itself which increases with its

length.

SALV. I fear, Simplicio, if I correctly catch your meaning,

that in this particular you are making the same mistake as many

others ; that is ifyou mean to say that a long rope, one of perhaps

40 cubits, cannot hold up so great a weight as a shorter length,

say one or two cubits, of the same rope.

SIMP. That is what I meant, and as far as I see the proposition

is highly probable.

SALV. On the contrary, I consider it not merely improbable

but false; and I think I can easily convince you of your error.

Let AB represent the rope, fastened at the upper end A: at the

lower end attach a weight C whose force is just sufficient to

break
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break the rope. Now, Simplicio, point out the exact place where

you think thebreak ought to occur.

SIMP. Let us say D.

SALV. And why at D?

[162]

SIMP. Because at this point the rope is not strong enough to

support, say, 100 pounds, made up of the portion of the rope DB

and the stone C.

SALV. Accordingly whenever the rope is stretched [violentata]

with the weight of 100 pounds atD it will break there.

SIMP. I think so.

SALV. But tell me, if instead of attaching the weight at the

end of the rope, B, one fastens it at a point nearer

D, say, at E : or if, instead of fixing the upper end

of the rope at A, one fastens it at some point F, just

above D, will not the rope, at the point D, be subject

to the same pull of 100 pounds ?

A

D

B

C

FF

E

SIMP. It would, provided you include with the

stone C the portion of rope EB.

SALV. Let us therefore suppose that the rope is

stretched at the point D with a weight of 100 pounds,

then according to your own admission it will break;

but FE is only a small portion of AB; how can you

therefore maintain that the long rope is weaker than

the short one? Give up then this erroneous view

which you share with many very intelligent people,

and let us proceed.

Now having demonstrated that, in the case of

[uniformly loaded] prisms and cylinders of constant

thickness, the moment of force tending to produce

Fig. 21 fracture [momento sopra le proprie resistenze] varies

as the square of the length ; and having likewise shown that,

when the length is constant and the thickness varies, the resist-

ance to fracture varies as the cube of the side, or diameter,

of the base, let us pass to the investigation of the case of solids

which simultaneously vary in both length and thickness. Here I

observe that,
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PROPOSITION V

Prisms and cylinders which differ in both length and

thickness offer resistances to fracture [i. e., can support at

their ends loads] which are directly proportional to the

cubes of the diameters of their bases and inversely propor-

tional to their lengths.

[163]

Let ABC and DEF be two such cylinders ; then the resistance

[bending strength] of the cylinder AC bears to the resistance of

the cylinder DF a ratio which is the product of the cube of the

diameter AB divided by the cube of the diameterDE, and ofthe

length EF divided by the A

length BC. Make EG

equal to BC: let H be a B

third proportional to the

lines AB and DE; let I D

be a fourth proportional,

[AB/DE =H/I] : and let

I :S =EF :BC.

E

Ι

C

G

E

Fig. 22

F

Nowsince the resistance AB

of the cylinder AC is to D

that of the cylinder DG H

as the cube ofAB is to the

cube of DE, that is, as the

length AB is to the length S

I; and since the resistance

of the cylinder DG is to that of the cylinder DF as the length

FE is to EG, that is, as I is to S, it follows that the length AB

is to S as the resistance of the cylinder AC is to that of the

cylinder DF. But the line AB bears to S a ratio which is the

product of AB/I and I/S. Hence the resistance [bending

strength] of the cylinder AC bears to the resistance of the cyl-

inder DF a ratio which is the product of AB/I (that is, AB3/

DE3) and of I/S (that is, EF/BC) : which is what I meant to

prove.

This proposition having been demonstrated, let us next

consider
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consider the case of prisms and cylinders which are similar.

Concerning these we shall show that,

Proposition VI

In the case of similar cylinders and prisms, the moments

[stretching forces] which result from multiplying together

their weight and length [i. e ., from the moments produced

by their own weight and length], which latter acts as a

lever-arm, bear to each other a ratio which is the sesqui-

alteral of the ratio between the resistances oftheir bases.

In order to prove this let us indicate the two similar cylinders

byAB and CD : then the magnitude of the force [momento] in the

cylinder AB, opposing the resistance of its base B, bears to the

magnitude [momento] ofthe force at CD, opposing the resistance

of its base D, a ratio which is the sesquialteral of the ratio

A

[164]

B

between the resistance of the base B and the resistance of the

base D. And since the

solids AB and CD, are

effective in opposing

the resistances of their

bases B and D, in pro-

portion to their weights

and to the mechanical

advantages [forze] of

C D

Fig. 23

their lever arms respectively, and since the advantage [forza] of

the lever arm AB is equal to the advantage [forza ] of the lever

arm CD (this is true because in virtue of the similarity of the

cylinders the length AB is to the radius of the base B as the

length CD is to the radius of the base D) , it follows that the total

force [momento] of the cylinder AB is to the total force [momento]

of the cylinder CD as the weight alone of the cylinder AB is to

the weight alone of the cylinder CD, that is, as the volume of

the cylinder AB [l'istesso cilindro AB] is to the volume CD

[all'istesso CD]: but these are as the cubes of the diameters

of their bases B and D; and the resistances of the bases, being

to
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to each other as their areas, are to each other consequently

as the squares of their diameters. Therefore the forces [momenti]

of the cylinders are to each other in the sesquialteral ratio of the

resistance of their bases.*

SIMP. This proposition strikes me as both newand surprising :

at first glance it is very different from anything which I my-

self should have guessed : for since these figures are similar

in all other respects, I should have certainly thought that

the forces [momenti] and the resistances of these cylinders would

have borne to each other the same ratio.

SAGR. This is the proof of the proposition to which I referred,

at the very beginning of our discussion, as one imperfectly un-

derstood by me.

SALV. For a while, Simplicio, I used to think, as you do, that

the resistances of similar solids were similar; but a certain casual

observation showed me that similar solids do not exhibit a

strength which is proportional to their size, the larger ones being

less fitted to undergo rough usage just as tall men are more apt

than small children to be injured by a fall. And, as we re-

marked at the outset, a large beam or column falling from a

[165]

given height will go to pieces when under the same circumstances

a small scantling or small marble cylinder will not break. It was

this observation which led me to the investigation of the fact

which I am about to demonstrate to you: it is a very remarkable

thing that, among the infinite variety of solids which are similar

one to another, there are no two of which the forces [momenti],

and the resistances of these solids are related in the same ratio.

SIMP. You remind me nowof a passage in Aristotle's Questions

* The preceding paragraph beginning with Prop. VI is of more than

usual interest as illustrating the confusion of terminology current in the

time of Galileo. The translation given is literal except in the case of

those words for which the Italian is supplied. The facts which Galileo

has in mind are so evident that it is difficult to see how one can here

interpret "moment" to mean the force "opposing the resistance of its

base," unless "the force of the lever arm AB" be taken to mean
" the

mechanical advantage of the lever made up of AB and the radius of the

base B"; and similarly for "the force ofthe lever arm CD."

[Trans.]
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inMechanics in which he tries to explain why it is that a wooden

beam becomes weaker and can be more easily bent as it grows

longer, notwithstanding the fact that the shorter beam is thin-

ner and the longer one thicker : and, if I remember correctly,

he explains it in terms of the simple lever.

SALV. Very true: but, since this solution seemed to leave

room for doubt, Bishop di Guevara,* whose truly learned com-

mentaries have greatly enriched and illuminated this work,

indulges in additional clever speculations with the hope of thus

overcoming all difficulties ; nevertheless even he is confused as

regards this particular point, namely, whether, when the length

and thickness of these solid figures increase in the same ratio,

their strength and resistance to fracture, as well as to bending,

remain constant. After much thought upon this subject, I have

reached the following result. First I shall show that,

Proposition VII

Among heavy prisms and cylinders of similar figure, there

is one and only one which under the stress of its own

weight lies just on the limit between breaking and not

breaking: so that every larger one is unable to carry the

load of its own weight and breaks ; while every smaller one

is able to withstand some additional force tending tobreak it.

Let AB be a heavy prism, the longest possible that will just

sustain its own weight, so that if it be lengthened the least bit it

will break. Then, I say, this prism is unique among all similar

prisms—infinite in number—in occupying that boundary line

between breaking and not breaking; so that every larger one

[166]

will break under its own weight, and every smaller one will not

break, but will be able to withstand some force in addition to its

own weight.

Let the prism CE be similar to, but larger than, AB: then,

I say, it will not remain intact but will break under its own

weight. Lay off the portion CD, equal in length to AB. And,

since, the resistance [bending strength] ofCD is to that ofAB as

* Bishop of Teano ; b. 1561 ; d. 1641. [Trans.]
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A G
BF

the cube of the thickness ofCD is to the cube of the thickness of

AB, that is, as the prism CE is to the similar prism AB, it follows

that the weight of CE is the utmost load which a prism of the

length CD can sustain ; but the length of CE is greater ; there-

fore the prism CE will break.

Now take another prism FG

which is smaller than AB.

Let FH equal AB, then it can

be shown in a similar manner C

that the resistance [bending

strength] of FG is to that of

D

Fig. 24

G H

AB as the prism FG is to the prism AB provided the dis-

tance AB that is FH, is equal to the distance FG; but AB

is greater than FG, and therefore the moment of the prism

FG applied at G is not sufficient to break the prism FG.

SAGR. The demonstration is short and clear; while the proposi-

tion which, at first glance, appeared improbable is now seen

to be both true and inevitable. In order therefore to bring this

prism into that limiting condition which separates breaking

from not breaking, it would be necessary to change the ratio

between thickness and length either by increasing the thickness

or by diminishing the length. An investigation of this limiting

state will, I believe, demand equal ingenuity.

SALV. Nay, even more ; for the question is more difficult ; this

I know because I spent no small amount of time in its discovery

which I now wish to share with you.

Proposition VIII

Given a cylinder or prism of the greatest length consist-

ent with its not breaking under its own weight; and having

given a greater length, to find the diameter of another

cylinder or prism of this greater length which shall be the

only and largest one capable of withstanding its own weight.

Let BC be the largest cylinder capable of sustaining its own

weight; and let DE be a length greater than AC : the problem is

to find the diameter of the cylinder which, having the length

[167]

DE,
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DE, shall be the largest one just able to withstand its own

weight. Let I be a third proportional to the lengths DE and

AC; let the diameter FD be to the diameter BA as DE is to I ;

draw the cylinder FE; then, among all cylinders having the

same proportions, this is the largest and only one just capable

of sustaining its own weight.

Let M be a third proportional to DE and I : also let O be a

fourth proportional to DE, I, and M; lay off FG equal to AC.

Now since the diameter FD is to the diameter AB as the length

DE is to I , and since O is a fourth proportional to DE, I andM,

it follows that FD³ :BA³=DE:O. But the resistance [bending

A

B

D

F

C

G

Fig. 25

strength] of the cylinder DG is

to the resistance of the cylinder

EBC as the cube of FD is to the

cube of BA: hence the resistance

of the cylinder DG is to that of

cylinder BC as the length DE is

to O. And since the moment

of the cylinder BC is held in

equilibrium by [è equale alla ] its resistance, we shall accomplish

our end (which is to prove that the moment of the cylinder FE

is equal to the resistance located at FD) , if we show that the

moment of the cylinder FE is to the moment of the cylinder BC

as the resistance DF is to the resistance BA, that is, as the cube

of FD is to the cube of BA, or as the length DE is to O. The

moment of the cylinder FE is to the moment of the cylinder

DG as the square of DE is to the square of AC, that is, as the

length DE is to I ; but the moment of the cylinder DG is to the

moment of the cylinder BC, as the square of DF is to the square

of BA, that is, as the square of DE is to the square of I, or as the

square of I is to the square ofM, or, as I is to O. Therefore by

equating ratios, it results that the moment of the cylinder FE is

tothe moment of the cylinder BC as the length DE is to O, that

is, as the cube ofDF is to the cube of BA, or as the resistance of

the base DF is to the resistance of the base BA; which was to be

proven.

SAGR. This demonstration, Salviati, is rather long and diffi-

cult
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cult to keep in mind from a single hearing. Will you not,

therefore, be good enough to repeat it?

SALV. As you like; but I would suggest instead a more direct

and a shorter proof: this will, however, necessitate a different

figure.

[168]

SAGR. The favor will be that much greater: nevertheless I

hope you will oblige me by putting into written form the argu-

ment just given so that I may study it at my leisure.

SALV. I shall gladly do so. Let A denote a cylinder of diam-

eter DC and the largest capable of sustaining its own weight :

the problem is to determine a larger cylinder which shall be

at once the maximum and the unique one capable of sustaining

its ownweight.

KC

M

A

E

X

Fig. 26

propor-

Let E be such a cylinder, similar to A, having the assigned

length, and having a diameter KL. Let MN be a third

tional to the two lengths DC and KL:

let MN also be the diameter of an-

other cylinder, X, having the same

length as E: then, I say, X is the cyl-

inder sought. Now since the resist-

ance of the base DC is to the resist-

ance of the base KL as the square of

DC is to the square of KL, that is, as N

the square of KL is to the square of

MN, or, as the cylinder E is to the cylinder X, that is, as the

moment E is to the moment X; and since also the resistance

[bending strength] of the base KL is to the resistance of the

base MN as the cube of KL is to the cube of MN, that is,

as the cube of DC is to the cube of KL, or, as the cylinder A is

to the cylinder E, that is, as the moment ofA is to the moment

of E; hence it follows, ex æquali in proportions perturbata*

that the moment ofA is to the moment ofX as the resistance of

the base DC is to the resistance of the base MN; therefore

moment and resistance are related to each other in prism X

precisely as they are in prismA.

* For definition of perturbata see Todhunter's Euclid, Book V, Def. 20.

[Trans.]
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Let us now generalize the problem; then it will read as

follows :

Given a cylinder AC in which moment and resistance

[bending strength] are related in any manner whatsoever;

let DE be the length of another cylinder; then determine

what its thickness must be in order that the relation be-

tween its moment and resistance shall be identical with

that of the cylinderAC.

Using Fig. 25 in the same manner as above, we may say that,

since the moment of the cylinder FE is to the moment of the

portion DG as the square of ED is to the square of FG, that is,

as the length DE is to I ; and since the moment of the cylinder

FG is to the moment of the cylinder AC as the square of FD is

to the square ofAB, or, as the square of ED is to the square of

I, or, as the square of I is to the square of M, that is, as the

length I is to O; it follows, ex æquali, that the moment of the

[169]

cylinder FE is to the moment of the cylinder AC as the length

DE is to O, that is, as the cube of DE is to the cube of I, or,

as the cube of FD is to the cube ofAB, that is, as the resistance

of the base FD is to the resistance of the base AB; which was to

beproven.

From what has already been demonstrated, you can plainly

see the impossibility of increasing the size of structures to vast

dimensions either in art or in nature ; likewise the impossibility

of building ships, palaces, or temples of enormous size in such a

way that their oars, yards, beams, iron-bolts, and, in short, all

their other parts will hold together; nor can nature produce

trees of extraordinary size because the branches would break

down under their own weight ; so also it would be impossible to

build up the bony structures of men, horses, or other animals so

as to hold together and perform their normal functions if these

animals were to be increased enormously in height; for this

increase in height can be accomplished only by employing

material which is harder and stronger than usual, orby enlarging

the size of the bones, thus changing their shape until the form

and appearance of the animals suggest a monstrosity. This is

perhaps
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perhaps what our wise Poet had in mind, when he says, in

describing a huge giant :

"Impossible it is to reckon his height

"So beyond measure is his size." *

To illustrate briefly, I have sketched a bone whose natural

length has been increased three times and whose thickness

has been multiplied until, for a correspondingly large animal,

it would perform the same function which the small bone per-

forms for its small animal. From the figures here shown you

can see how out of proportion the enlarged bone appears.

Clearly then if one wishes to maintain in a great giant the same

proportion oflimb as that

found in an ordinaryman

he must either find a

harder and stronger ma-

terial for making the

[170]

bones, or he must admit

a diminution of strength

in comparison with men

of medium stature ; for if

his height be increased
Fig. 27

inordinately he will fall and be crushed under his own weight.

Whereas, if the size of a body be diminished, the strength of

that body is not diminished in the same proportion ; indeed the

smaller the body the greater its relative strength. Thus a

small dog could probably carry on his back two or three dogs

of his own size ; but I believe that a horse could not carry even

one of his own size.

SIMP. This may be so; but I am led to doubt it on account of

the enormous size reached by certain fish, such as the whale

which, I understand, is ten times as large as an elephant ; yet

they all support themselves.

SALV. Your question, Simplicio, suggests another principle,

* Non si può compartir quanto sia lungo,

Si smisuratamente è tutto grosso.

Ariosto's Orlando Furioso , XVII, 30 [Trans . ]
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one which had hitherto escaped my attention and which enables

giants and other animals of vast size to support themselves

and to move about as well as smaller animals do. This result

may be secured either by increasing the strength of the bones

and other parts intended to carry not only their weight but also

the superincumbent load; or, keeping the proportions of the

bony structure constant, the skeleton will hold together in the

same manner or even more easily, provided one diminishes,

in the proper proportion, the weight of the bony material,

of the flesh, and of anything else which the skeleton has to

carry. It is this second principle which is employed by nature

in the structure of fish, making their bones and muscles not

merely light but entirely devoid of weight.

SIMP. The trend of your argument, Salviati, is evident.

Since fish live in water whichon accountof its density [corpulenza]

or, as others would say, heaviness [gravità] diminishes the

weight [peso] of bodies immersed in it, you mean to say that,

for this reason, the bodies of fish will be devoid of weight and

will be supported without injury to their bones. But this is not

all; for although the remainder of the body of the fish may be

without weight, there can be no question but that their bones

have weight. Take the case of a whale's rib, having the dimen-

sions of a beam; who can deny its great weight or its tendency to

go to the bottom when placed in water? One would, therefore,

[171]

hardly expect these great masses to sustain themselves.

SALV. A very shrewd objection ! And now, in reply, tell me

whether you have ever seen fish stand motionless at will under

water, neither descending to the bottom nor rising to the top,

without the exertion offorce by swimming?

SIMP. This is a well-known phenomenon.

SALV. The fact then that fish are able to remain motionless

under water is a conclusive reason for thinking that the material

of their bodies has the same specific gravity as that of water;

accordingly, if in their make-up there are certain parts which

are heavier than water there must be others which are lighter,

for otherwise they would not produce equilibrium.

Hence
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Hence, if the bones are heavier, it is necessary that the mus-

cles or other constituents of the body should be lighter in order

that their buoyancy may counterbalance the weight of the

bones. In aquatic animals therefore circumstances are just

reversed from what they are with land animals inasmuch as, in

the latter, the bones sustain not only their own weight but also

that of the flesh, while in the former it is the flesh which sup-

ports not only its own weight but also that of the bones. We

must therefore cease to wonder why these enormously large

animals inhabit the water rather than the land, that is to say,

the air.

SIMP. I am convinced and I only wish to add that what we

call land animals ought really to be called air animals, seeing

that they live in the air, are surrounded by air, and breathe air.

SAGR. I have enjoyed Simplicio's discussion including both

the question raised and its answer. Moreover I can easily

understand that one of these giant fish, if pulled ashore, would

not perhaps sustain itself for any great length of time, but would

be crushed under its own mass as soon as the connections

between the bones gave way.

SALV. I am inclined to your opinion ; and, indeed, I almost

think that the same thing would happen in the case of a very

big ship which floats on the sea without going to pieces under

[172]

its load of merchandise and armament, but which on dry land

and in air would probably fall apart. But let us proceed and

show how:

Given a prism or cylinder, also its own weight and the

maximum load which it can carry, it is then possible to

find a maximum length beyond which the cylinder cannot

be prolonged without breaking under its own weight.

Let AC indicate both the prism and its own weight; also

let D represent the maximum load which the prism can carry

at the end C without fracture ; it is required to find the max-

imum to which the length of the said prism can be increased

without breaking. Draw AH of such a length that the weight

of the prism AC is to the sum of AC and twice the weight D

as
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as the length CA is to AH; and let AG be a mean proportional

between CA and AH; then, I say, AG is the length sought.

Since the moment of the weight [momenta gravante] D attached

at the point C is equal to the moment of a weight twice as large

as D placed at the middle point AC, through which the weight of

the prism AC acts, it fol-

lows that the moment of

the resistance of the prism

A

C
G

D

Fig. 28

H

AC located at A is equiva-

lent to twice the weight D

plus the weight of AC, both

acting through the middle

point ofAC. And since we

have agreed that the moment of the weights thus located,

namely, twice D plus AC, bears to the moment of AC the same

ratio which the length HA bears to CA and since AG is a mean

proportional between these two lengths, it follows that the mo-

ment of twice D plus AC is to the moment of AC as the square

ofGA is to the square of CA. But the moment arising from

the weight [momento premente] of the prism GA is to the moment

of AC as the square of GA is to the square of CA; thence AG is

the maximum length sought, that is, the lengthup to which the

prism AC may be prolonged and still support itself, but beyond

which it will break.

Hitherto we have considered the moments and resistances

of prisms and solid cylinders fixed at one end with a weight

applied at the other end; three cases were discussed, namely,

that in which the applied force was the only one acting, that

in which the weight of the prism itself is also taken into con-

sideration, and that in which the weight of the prism alone is

taken into consideration. Let us now consider these same

[173]

prisms and cylinders when supported at both ends or at a single

point placed somewhere between the ends. In the first place,

I remark that a cylinder carrying only its own weight and having

the maximum length, beyond which it will break, will, when

supported either in the middle or at both ends, have twice the

length
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length of one which is mortised into a wall and supported only

at one end. This is very evident because, if we denote the

cylinder by ABC and if we assume that one-half of it, AB, is

the greatest possible length capable of supporting its own

weight with one end fixed at B, then, for the same reason, if the

cylinder is carried on the point G, the first half will be counter-

balancedby the other halfBC. So also in the case ofthe cylinder

DEF, if its length be such that it will support only one-half this

B

D E

י
ט

C

Fig. 29

length when the end D is held fixed, or the other half when the

end F is fixed, then it is evident that when supports, such as H

and I, are placed under the ends D and F respectively the mo-

ment of any additional force or weight placed at E will produce

fracture at this point.

A more intricate and difficult problem is the following:

neglect the weight of a solid such as the preceding and find

whether the same force or weight which produces fracture when

applied at the middle of a cylinder, supported at both ends, will

also break the cylinder when applied at some other point nearer

one end than the other.

Thus, for example, if one wished to break a stick by holding

it with one hand at each end and applying his knee at the

middle, would the same force be required to break it in the same

manner if the knee were applied, not at the middle, but at some

point nearer to one end?

SAGR. This problem, I believe, has been touched upon by

Aristotle in his Questions inMechanics.

Salv.
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[174]

SALV. His inquiry however is not quite the same; for he seeks

merely to discover why it is that a stick may be more easily

broken by taking hold, one hand at each end of the stick, that

is, far removed from the knee, than if the hands were closer

together. He gives a general explanation, referring it to the

lengthened lever arms which are secured by placing the hands at

the ends of the stick. Our inquiry calls for something more:

what we want to know is whether, when the hands are retained

at the ends of the stick, the same force is required to break it

wherever the knee be placed.

SAGR. At first glance this would appear to be so, because the

two lever arms exert, in a certain way, the same moment, seeing

that as one grows shorter the other grows correspondingly longer.

SALV. Now you see how readily one falls into error and what

caution and circumspection are required to avoid it. What you

have just said appears at first glance highly probable, but on

closer examination it proves to be quite far from true; as will

be seen from the fact that whether the knee the fulcrum ofthe

two levers—be placed in the middle or not makes such a differ-

ence that, if fracture is to be produced at any other point than

the middle, the breaking force at the middle, even when multi-

plied four, ten, a hundred, or a thousand times would not

suffice. To begin with we shall offer some general considerations

and then pass to the determination of the ratio in which the

breaking force must change in order to produce fracture at one

point rather than another.

Let AB denote a wooden cylinder which is to be broken in

the middle, over the supporting point C, and let DE represent

an identical cylinder which is to be broken just over the sup-

porting point F which is not in the middle. First of all it is

clear that, since the distances AC and CB are equal, the forces

applied at the extremities B andA must also be equal. Secondly

since the distance DF is less than the distance AC the moment

of any force acting at D is less than the moment of the same

force at A, that is, applied at the distance CA; and the moments

are less in the ratio of the length DF to AC; consequently it is

necessary
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necessary to increase the force [momento] at D in order to over-

come, or even to balance, the resistance at F; but in comparison

with the length AC the distance DF can be diminished in-

definitely: in order therefore to counterbalance the resistance at

F it will be necessary to increase indefinitely the force [forza]

applied at D. On the other A

hand, in proportion as we in-

[175]

crease the distance FE over

that of CB, we must diminish

the force at E in order to

counterbalance the resistance

at F; but the distance FE,

measured in terms of CB,

cannot be increased indefi-

D F

C

Fig. 30
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nitely by sliding the fulcrum F toward the endD; indeed, it can-

not even be made double the length CB. Therefore the force re-

quired at E to balance the resistance at F will always be more

than halfthat required at B. It is clear then that, as the fulcrum

F approaches the end D, we must of necessity indefinitely in-

crease the sum of the forces applied at E and D in order to

balance, or overcome, the resistance at F.

SAGR. What shall we say, Simplicio ? Must we not confess

that geometry is the most powerful of all instruments for

sharpening the wit and training the mind to think correctly?

Was not Plato perfectly right when he wished that his pupils

should be first of all well grounded in mathematics ? As for

myself, I quite understood the property of the lever and how,

by increasing or diminishing its length, one can increase or

diminish the moment of force and of resistance ; and yet, in

the solution ofthe present problem I was not slightly,butgreatly,

deceived.

SIMP. Indeed I begin to understand that while logic is an ex-

cellent guide in discourse, it does not, as regards stimulation to

discovery, compare with the power of sharp distinction which

belongs to geometry.

SAGR. Logic, it appears to me, teaches us how to test the

conclusiveness
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conclusiveness of any argument or demonstration already dis-

covered and completed ; but I do not believe that it teaches

us to discover correct arguments and demonstrations. But it

would be better if Salviati were to show us in just what pro-

portion the forces must be increased in order to produce fracture

as the fulcrum is moved from one point to another along one

and the same wooden rod.

[176]

SALV. The ratio which you desire is determined as follows:

If upon a cylinder one marks two points at which frac-

ture is to be produced, then the resistances at these two

points will bear to each other the inverse ratio of the

rectangles formed by the distances from the respective

points to the ends of the cylinder.

Let A and B denote the least forces which will bring about

fracture of the cylinder at C; likewise E and F the smallest

forces which will break it at D. Then, I say, that the sum of the

forces A and B is to the sum of the forces E and F as the area

of the rectangle AD.DB is to the area of the rectangle AC.CB.

Because the sum of the forces A and B bears to the sum of the

forces E and F a ratio which is the product of the three following

ratios, namely, (A+B)/B, B/F, and F/(F+E) ; but the length

BA is to the length CA as the sum of the forces A and B is to the

force B; and, as the length DB

is to the length CB, so is the

force B to the force F; also as

A D C

E

Fig. 31
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the length AD is to AB, so is the

force F to the sum of the forces F

and E.

Hence it follows that the sum of the forces A and B bears

to the sum of the forces E and F a ratio which is the product

of the three following ratios, namely, BA/CA, BD/BC, and

AD/AB. But DA/CA is the product of DA/BA and BA/CA.

Therefore the sum ofthe forces A and B bears to the sum ofthe

forces E and F a ratio which is the product of DA: CA and

DB : CB. But the rectangle AD.DB bears to the rectangle

AC.CB a ratio which is the product of DA/CA and DB/CB.

Accordingly
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Accordingly the sum of the forces A and B is to the sum of the

forces E and F as the rectangle AD.DB is to the rectangle

AC.CB, that is , the resistance to fracture at C is to the resistance

to fracture at D as the rectangle AD.DB is to the rectangle

AC.CB.

[177]

Q. E. D.

Another rather interesting problem may be solved as a con-

sequence ofthis theorem, namely,

Given the maximum weight which a cylinder or prism can

support at its middle-point where the resistance is a mini-

mum, and given also a larger weight, find that point in

the cylinder for which this larger weight is the maximum

load that can be supported.

Let that one of the given weights which is larger than the

maximum weight supported at the middle of the cylinder AB

bear to this maximum weight the same ratio which the length

E bears to the length F. The problem is to find that point

in the cylinder at which this larger weight becomes the max-

imum that can be supported. Let G be a mean proportional

between the lengths E and F. Draw AD and S so that they

bear to each other the same ratio as E to G; accordingly S will

be less than AD.

Let AD be the diameter of a semicircle AHD, in which take

AH equal to S ; join the points H and D and lay off DR equal to

HD. Then, I say, R is the point sought, namely, the point at

which the given weight, greater than the maximum supported

at the middle of the cylinder D, would become the maximum

load.

On AB as diameter draw the semicircle ANB: erect the per-

pendicular RN and join the points N and D. Now since the

sum of the squares on NR and RD is equal to the square of

ND, that is, to the square ofAD, or to the sum of the squares of

AH and HD; and, since the square of HD is equal to the square

of DR, it follows that the square of NR, that is, the rectangle

AR.RB, is equal to the square of AH, also therefore to the

square of S; but the square of S is to the square of AD as the

length F is to the length E, that is, as the maximum weight

supported
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supported at D is to the larger of the two given weights. Hence

the latter will be the maximum load which can be carried at the

point R; which is the solution sought.

SAGR. Now I understand thoroughly ; and I am thinking that,

since the prism AB grows constantly stronger and more resistant

N

R

S

H

Fr

Fig. 32

to the pressure of its load at

points which are more and more

removed from the middle, we

could in the case of large heavy

beams cut away a considerable

B portion near the ends which

would notably lessen the weight,

and which, in the beam work of

large rooms, would prove to be

of great utility and convenience.

[178]

It would be a fine thing if one could discover the proper shape

to give a solid in order to make it equally resistant at every

point, in which case a load placed at the middle would not

produce fracture more easily than if placed at any other

point.*

SALV. I was just on the point of mentioning an interesting

and remarkable fact connected with this very question . My

meaning will be clearer if I draw a figure. Let DB represent

a prism ; then, as we have already shown, its resistance to frac-

ture [bending strength] at the end AD, owing to a load placed at

the end B, will be less than the resistance at CI in the ratio ofthe

length CB to AB. Now imagine this same prism to be cut

through diagonally along the line FB so that the opposite faces

will be triangular; the side facing us will be FAB. Such a solid

* The reader will notice that two different problems are here involved .

That which is suggested in the last remark of Sagredo is the fol-

lowing:

To find a beam whose maximum stress has the same value when

a constant load moves from one end of the beam to the other.

The second problem-the one which Salviati proceeds to solve-is the

following :

To find a beam in all cross-sections of which the maximum stress

is the same for a constant load in a fixed position . [ Trans. ]
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will have properties_different from those of the prism ; for, if

the load remain at B, the resistance against fracture [bending

strength] at C will be less than that at A in the ratio of the

length CB to the length AB. This is easily proved : for if CNO

represents a cross-section parallel to AFD, then the length FA

bears to the length CN, in the triangle FAB, the same ratio

which the length AB bears to

the length CB. Therefore, if F

we imagine A and C to be the

points at which the fulcrum is

placed, the lever arms in the

two cases BA, AF and BC, CN A

will be proportional [simili].

D

с

Fig. 33

Hence the moment of any force applied at B and acting through

the arm BA, against a resistance placed at a distance AF will

be equal to that of the same force at B acting through the arm

BC against the same resistance located at a distance CN. But

now, if the force still be applied at B, the resistance to be over-

come when the fulcrum is at C, acting through the arm CN, is

less than the resistance with the fulcrum at A in the same pro-

portion as the rectangular cross-section CO is less than the

rectangular cross-section AD, that is, as the length CN is less

than AF, or CB than BA.

Consequently the resistance to fracture at C, offered by the

portion OBC, is less than the resistance to fracture at A, offered

by the entire block DAB, in the same proportion as the length

CB is smaller than the length AB.

By this diagonal saw-cut we have now removed from the

beam, or prism DB, a portion, i. e. , a half, and have left the

wedge, or triangular prism, FBA. We thus have two solids

[I79l

possessing opposite properties ; one body grows stronger as

it is shortened while the other grows weaker. This being so

it would seem not merely reasonable, but inevitable, that there

exists a line of section such that, when the superfluous material

has been removed, there will remain a solid of such figure that

it will offer the same resistance [strength] at all points.

Simp.
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SIMP. Evidently one must, in passing from greater to less,

encounter equality.

SAGR. But now the question is what path the saw should

follow in making the cut.

SIMP. It seems to me that this ought not to be a difficult task :

for if by sawing the prism along the diagonal line and removing

half of the material, the remainder acquires a property just the

opposite to that of the entire prism, so that at every point where

the latter gains strength the former becomes weaker, then it

seems to me that by taking a middle path, i. e., by removing half

the former half, or one-quarter of the whole, the strength of the

remaining figure will be constant at all those points where, in the

two previous figures, the gain in one was equal to the loss in the

other.

SALV. You have missed the mark, Simplicio. For, as I shall

presently show you, the amount which you can remove from the

prism without weakening it is not a quarter but a third. It

now remains, as suggested by Sagredo, to discover the path

along which the sawmust travel : this, as I shall prove, must be a

parabola. But it is first necessary to demonstrate the following

lemma:

If the fulcrums are so placed under two levers or balances

that the arms throughwhichthe forces act are to each other

in the same ratio as the squares of the arms through which

the resistances act, and if these resistances are to each other

in the same ratio as the arms through which they act, then

the forces will be equal.

Let AB and CD represent

E

C F

Fig. 34

distances EA and FC.

B

two levers whose lengths are

divided by their fulcrums in

such a way as to make the dis-

tance EB bear to the distance

FD a ratio which is equal to the

square of the ratio between the

Let the resistances located at A and C

[180]

D

be to each other as EA is to FC. Then, I say, the forces which

must be applied at B and D in order to hold in equilibrium the

resistances
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resistances at A and C are equal. Let EG be a mean propor-

tional between EB and FD. Then we shall have BE :EG=

EG :FD =AE :CF. But this last ratio is precisely that which

we have assumed to exist between the resistances at A and C.

And since EG:FD=AE : CF, it follows, permutando, that EG:

AE =FD :CF. Seeing that the distances DC and GA are divided

in the same ratio by the points F and E, it follows that the same

force which, when applied at D, will equilibrate the resistance

at C, would if applied at G equilibrate at A a resistance equal to

that found at C.

But one datum of the problemis that the resistance atA is to

the resistance at C as the distanceAE is to the distance CF, or as

BE is to EG. Therefore the force applied at G, or rather at D,

will, when applied at B, just balance the resistance located at A.

F

Q. E. D.

X

This being clear draw the parabola FNB in the face FB of the

prism DB. Let the prism be sawed along this parabola whose

vertex is at B. The portion of the solid which remains will be

included between the base AD, the rectangular plane AG, the

straight line BG and the surface DGBF, whose curvature is

identical with that of the parabola FNB. This solid will have,

I say, the same strength at every point. Let the solid be cut

by a plane CO parallel to

the plane AD. Imagine

the points A and C to be

the fulcrums of two levers

of which one will have the

arms BAand AF; the other A

BCand CN. Then since in

the parabola FBA, we have BA:BC=AF²: CN2, it is clear that

the arm BA of one lever is to the arm BCof the other lever as the

square of the arm AF is to the square of the other arm CN.

Since the resistance to be balanced by the lever BA is to the

resistance to be balanced by the lever BC in the same ratio as

the rectangle DA is to the rectangle OC, that is as the length

AF is to the length CN, which two lengths are the other arms of

the levers, it follows, by the lemma just demonstrated, that

Fig. 35

the



144 THE TWO NEW SCIENCES OF GALILEO

the same force which, when applied at BG will equilibrate the

resistance at DA, will also balance the resistance at CO. The

[181]

same is true for any other section. Therefore this parabolic

solid is equally strong throughout.

It can now be shown that, if the prism be sawed along the

line of the parabola FNB, one-third part of it will be removed ;

because the rectangle FB and the surface FNBA bounded by

the parabola are the bases of two solids included between two

parallel planes, i. e ., between the rectangles FB and DG; con-

sequently the volumes of these two solids bear to each other

the same ratio as their bases. But the area of the rectangle

is one and a half times as large as the area FNBA under the

parabola; hence by cutting the prism along the parabola we re-

move one-third of the volume. It is thus seen how one can

diminish the weight of a beam by as much as thirty-three per

cent without diminishing its strength ; a fact of no small utility

in the construction of large vessels, and especially in supporting

the decks, since in such structures lightness is of prime im-

portance.

SAGR. The advantages derived from this fact are so numerous

that it would be both wearisome and impossible to mention

them all ; but leaving this matter to one side, I should like to

learn just how it happens that diminution of weight is possible

in the ratio above stated. I can readily understand that, when

a section is made along the diagonal, one-half the weight is

removed; but, as for the parabolic section removing one-third

of the prism, this I can only accept on the word of Salviati who

is always reliable ; however I prefer first-hand knowledge to the

word of another.

SALV. You would like then a demonstration of the fact that

the excess of the volume of a prism over the volume of what

we have called the parabolic solid is one-third of the entire

prism. This I have already given you on a previous occasion ;

however I shall now try to recall the demonstration in which

I remember having used a certain lemma fromArchimedes ' book

On Spirals,* namely, Given any number of lines, differing in

* For demonstration of the theorem here cited, see "Works of Arch-
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length one from another by a common difference which is equal

to the shortest of these lines ; and given also an equal number

of lines each of which has the same length as the longest of

the first-mentioned series ; then the sum of the squares of the

lines of this second group will be less than three times the sum

of the squares of the lines in the first group. But the sum of the

squares of the second group will be greater than three times the

sum of the squares of all excepting the longest of the first group.

[182]

Assuming this, inscribe in the rectangle ACBP the parabola

AB. We have now to prove that the mixed triangle BAP whose

sides are BP and PA, and whose base is the parabola BA, is a

third part of the entire rectangle CP. If this is not true it will

be either greater or less than a third. Suppose it to be less by an

area which is represented byX. By drawing lines parallel to the

sides BP and CA, we can divide the rectangle CP into equal

parts; and if the process be continued we shall finally reach a

division into parts so small that each of them will be smaller

than the area X; let the rec- B

tangle OB represent one of these

parts and, through the points

where the other parallels cut the

parabola, draw lines parallel to

AP. Let us now describe about

our "mixed triangle" a figure

made up of rectangles such as

BO, IN, HM, FL, EK, and GA;

this figure will also be less than

X

H

Fig. 36
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a third part of the rectangle CP because the excess of this figure

above the area of the "mixed triangle" is much smaller than the

rectangle BOwhichwe have already made smaller than X.

SAGR. More slowly, please; for I do not see how the excess of

this figure described about the "mixed triangle" is much smaller

than the rectangle BO.

SALV. Does not the rectangle BO have an area which is equal

to the sum of the areas of all the little rectangles through which

imedes" translated by T. L. Heath (Camb. Univ . Press 1897) p . 107 and

p. 162. [Trans.]
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the parabola passes ? I mean the rectangles BI, IH, HF, FE,

EG, and GA of which only a part lies outside the "mixed tri-

angle." Have we not taken the rectangle BO smaller than the

area X? Therefore if, as our opponent might say, the triangle

plus X is equal to a third part of this rectangle CP, the cir-

cumscribed figure, which adds to the triangle an area less than

X, will still remain smaller than a third part of the rectangle,

CP. But this cannot be, because this circumscribed figure is

larger than a third of the area. Hence it is not true that our

"mixed triangle" is less than a third of the rectangle.

[183]

SAGR. You have cleared up my difficulty; but it still remains

to be shown that the circumscribed figure is larger than a third

part of the rectangle CP, a task which will not, I believe, prove

so easy .

SALV. There is nothing very difficult about it. Since in the

parabola DE :ZG²=DA:AZ= rectangle KE: rectangle AG,

seeing that the altitudes of these two rectangles, AK and KL, are

equal, it follows that ED':ZG'=LA² : AK²=rectangle KE :

rectangle KZ. In precisely the same manner it may be shown

that the other rectangles LF, MH, NI, OB, stand to one another

in the same ratio as the squares of the lines MA, NA, OA, PA.

Let us now consider the circumscribed figure, composed of

areas which bear to each other the same ratio as the squares of a

series of lines whose common difference in length is equal to the

shortest one in the series ; note also that the rectangle CP is

made up of an equal number of areas each equal to the largest

and each equal to the rectangle OB. Consequently, according to

the lemma ofArchimedes, the circumscribed figure is larger than

a third part of the rectangle CP; but it was also smaller, which is

impossible. Hence the "mixed triangle " is not less than a

third part of the rectangle CP.

Likewise, I say, it cannot be greater. For, let us suppose that

it is greater than a third part of the rectangle CP and let the area

X represent the excess of the triangle over the third part of the

rectangle CP; subdivide the rectangle into equal rectangles and

continue the process until one of these subdivisions is smaller

than
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than the areaX. LetBOrepresent such a rectangle smaller than

X. Using the above figure, we have in the "mixed triangle" an

inscribed figure, made up of the rectangles VO, TN, SM, RL,

and QK, which will not be less than a third part of the large

rectangle CP.

For the "mixed triangle" exceeds the inscribed figure by a

quantity less than that by which it exceeds the third part of

the rectangle CP; to see that this is true we have only to re-

member that the excess of the triangle over the third part of the

rectangle CP is equal to the area X, which is less than the

rectangle BO, which in turn is much less than the excess of the

triangle over the inscribed figure. For the rectangle BO is

[184]

made up of the small rectangles AG, GE, EF, FH, HI, and IB;

and the excess of the triangle over the inscribed figure is less

than half the sum of these little rectangles. Thus since the

triangle exceeds the third part of the rectangle CP by an amount

X, which is more than that by which it exceeds the inscribed

figure, the latter will also exceed the third part ofthe rectangle,

CP. But, by the lemma which we have assumed, it is smaller.

For the rectangle CP, being the sum of the largest rectangles,

bears to the component rectangles of the inscribed figure the

same ratio which the sum of all the squares of the lines equal

to the longest bears to the squares of the lines which have a

common difference, after the square of the longest has been

subtracted.

Therefore, as in the case of squares, the sum total of the

largest rectangles, i. e., the rectangle CP, is greater than three

times the sum total of those having a common difference minus

the largest; but these last make up the inscribed figure. Hence

the "mixed triangle" is neither greater nor less than the third

part ofrectangle CP; it is therefore equal to it.

SAGR. A fine, clever demonstration ; and all the more so be-

cause it gives us the quadrature of the parabola, proving it to be

four-thirds of the inscribed * triangle, a fact which Archimedes

demonstrates by means oftwo different, but admirable, series of

* Distinguish carefully between this triangle and the "mixed tri-

angle" above mentioned. [Trans.]
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many propositions. This same theorem has also been recently

established by Luca Valerio,* the Archimedes of our age; his

demonstration is to be found in his book dealing with the centers

ofgravity of solids.

SALV. Abook which, indeed, is not to be placed second to any

produced by the most eminent geometers either of the present

or of the past; a book which, as soon as it fell into the hands of

our Academician, led him to abandon his own researches along

these lines; for he sawhow happily everything had been treated

and demonstrated byValerio.

[185]

SAGR. When I was informed of this event by the Academician

himself, I begged of him to show the demonstrations which he

had discovered before seeing Valerio's book; but in this I did

not succeed.

SALV. I have a copy of them and will show them to you; for

you will enjoy the diversity of method employed by these two

authors in reaching and proving the same conclusions ; you will

also find that some of these conclusions are explained in different

ways, although both are in fact equally correct.

SAGR. I shall be much pleased to see them and will consider

it a great favor if you will bring them to our regular meeting.

But in the meantime, considering the strength of a solid formed

from a prism by means of a parabolic section, would it not, in

view of the fact that this result promises to be both interesting

and useful in many mechanical operations, be a fine thing if you

were to give some quick and easy rule by which a mechanician

might draw a parabola upon a plane surface ?

SALV. There are many ways of tracing these curves ; I will

mention merely the two which are the quickest of all. One of

these is really remarkable; because by it I can trace thirty

or forty parabolic curves with no less neatness and precision,

and in a shorter time than another man can, by the aid of a

compass, neatly draw four or six circles of different sizes upon

paper. I take a perfectly round brass ball about the size of a

walnut and project it along the surface of a metallic mirror held

* An eminent Italian mathematician, contemporary with Galileo.

[Trans.]
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in a nearly upright position, so that the ball in its motion will

press slightly upon the mirror and trace out a fine sharp para-

bolic line; this parabola will grow longer and narrower as the

angle of elevation increases. The above experiment furnishes

clear and tangible evidence that the path of a projectile is a

parabola; a fact first observed by our friend and demonstrated

byhim in his book on motion which we shall take up at our next

meeting. In the execution of this method, it is advisable to

slightly heat and moisten the ball by rolling in the hand in order

that its trace upon the mirror may be more distinct.

[186]

The other method of drawing the desired curve upon the face

of the prism is the following: Drive two nails into a wall at

a convenient height and at the same level ; make the distance

between these nails twice the width of the rectangle upon which

it is desired to trace the semiparabola. Over these two nails

hang a light chain of such a length that the depth of its sag

is equal to the length of the prism. This chain will assume the

form of a parabola,* so that if this form be marked by points

on the wall we shall have described a complete parabola which

can be divided into two equal parts by drawing a vertical line

through a point midway between the two nails. The transfer

of this curve to the two opposing faces of the prism is a matter

of no difficulty; any ordinary mechanic will know howto do it.

By use of the geometrical lines drawn upon our friend's

compass,† one may easily lay off those points which will locate

this same curve upon the same face of the prism.

Hitherto we have demonstrated numerous conclusions per-

taining to the resistance which solids offer to fracture. As

a starting point for this science, we assumed that the resistance

offered by the solid to a straight-away pull was known ; from

this base one might proceed to the discovery of many other

results and their demonstrations ; of these results the number to

* It is now well known that this curve is not a parabola but a catenary

the equation of which was first given, 49 years after Galileo's death, by

James Bernoulli. [Trans.]

† The geometrical and military compass of Galileo, described in Nat.

Ed. Vol. 2. [Trans .]
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be found in nature is infinite. But, in order to bring our daily

conference to an end, I wish to discuss the strength of hollow

solids, which are employed in art—and still oftener in nature—

in a thousand operations for the purpose of greatly increasing

strength without adding to weight; examples of these are seen

in the bones of birds and in many kinds of reeds which are light

and highly resistant both to bending and breaking. For if a

stem of straw which carries a head of wheat heavier than the

entire stalk were made up of the same amount of material in

[187]

solid form it would offer less resistance to bending and breaking.

This is an experience which has been verified and confirmed in

practice where it is found that a hollow lance or a tube of wood

or metal is much stronger than would be a solid one of the same

length and weight, one which would necessarily be thinner; men

have discovered, therefore, that in order to make lances strong

as well as light they must make them hollow. We shall now

show that:

In the case of two cylinders, one hollow the other solid

but having equal volumes and equal lengths, their resist-

ances [bending strengths] are to each other in the ratio of

their diameters.

Let AE denote a hollow cylinder and IN a solid one of the

same weight and length;

then, I say, that the resist-

ance against fracture ex-

Ehibited bythe tube AE bears

to that of the solid cylinder

IN the same ratio as the di-

ameter AB to the diameter

NIL. This is very evident; for

since the tube and the solid

cylinder IN have the same volume and length, the area of the cir-

cular base IL will be equal to that of the annulus AB which is the

base of the tube AE. (By annulus is here meant the area which

lies between two concentric circles of different radii.) Hence

their resistances to a straight-away pull are equal ; but in produc-

Fig. 37

ing
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ing fracture by a transverse pull we employ, in the case of the

cylinder IN, the length LN as one lever arm, the point L as a

fulcrum, and the diameter LI, or its half, as the opposing lever

arm : while in the case of the tube, the length BE which plays

the part of the first lever arm is equal to LN, the opposing lever

arm beyond the fulcrum, B, is the diameter AB, or its half.

Manifestly then the resistance [bending strength] of the tube

exceeds that of the solid cylinder in the proportion in which the

diameterAB exceeds the diameter IL which is the desired result.

[188]

·

Thus the strength of a hollow tube exceeds that of a solid

cylinder in the ratio of their diameters whenever the two are

made of the same material and have the same weight and length.

It may be well next to investigate the general case of tubes

and solid cylinders of constant length, but with the weight and

the hollow portion variable. First we shall show that :

Given a hollow tube, a solid cylinder may be determined

which will be equal [eguale] to it.

O

The method is very simple. Let AB denote the external and

CD the internal diameter of the tube. In the larger circle lay

off the line AE equal in length to the di-

ameter CD; join the points E and B.

Now since the angle at E inscribed in a

semicircle, AEB, is a right-angle, the area

ofthe circle whose diameter is AB is equal

to the sum of the areas of the two circles

whose respective diameters are AE and

EB. But AE is the diameter of the hollow

portion of the tube. Therefore the area

of the circle whose diameter is EB is the

same as the area of the annulus ACBD.

Hence a solid cylinder of circular base having a diameter EB

will have the same volume as the walls of the tube of equal

length.

By use ofthis theorem, it is easy:

B

Fig. 38

To find the ratio between the resistance [bending strength]

of any tube and that of any cylinder of equal length.

Let
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Let ABE denote a tube and RSM a cylinder of equal length : it

is required to find the ratio between their resistances. Using

the preceding proposition, determine a cylinder ILN which shall

B

R

R

L

S

Fig. 39

have the same volume and

length as the tube. Draw a

line V of such a length that

E it will be related to IL and

M

as

RS (diameters of the bases

ofthe cylinders INandRM),

follows : V:RS =RS: IL .

Then, I say, the resistance of

the tube AE is to that of the

cylinder RM as the length

of the lineAB is to thelength

[189]

V. For, since the tube AE is

equal both in volume and

length, to the cylinder IN, the resistance of the tube will bear to

the resistance of the cylinder the same ratio as the line AB to IL;

but the resistance of the cylinder IN is to that of the cylinder

RM as the cube of IL is to the cube of RS, that is, as the length

IL is to length V: therefore, ex œquali, the resistance [bending

strength] of the tube AE bears to the resistance of the cylinder

RM the same ratio as the length AB to V. Q. E. D.

END OF SECOND DAY.
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[190]

CHANGE OF POSITION. [De Motu Locali]

M

業

Y purpose is to set forth a very new science

dealing with a very ancient subject. There

is, in nature, perhaps nothing older than

motion, concerning which the books written

by philosophers are neither few nor small;

nevertheless I have discovered by experi-

ment some properties of it which are worth

knowing and which have not hitherto been

either observed or demonstrated. Some superficial observations

have been made, as, for instance, that the free motion [naturalem

motum] of a heavy falling body is continuously accelerated ; *

but to just what extent this acceleration occurs has not yet been

announced; for so far as I know, no one has yet pointed out that

the distances traversed, during equal intervals of time, by a

body falling from rest, stand to one another in the same ratio as

the odd numbers beginning with unity.†

It has been observed that missiles and projectiles describe

a curved path of some sort ; however no one has pointed out the

fact that this path is a parabola. But this and other facts, not

few in number or less worth knowing, I have succeeded in

proving; and what I consider more important, there have been

opened up to this vast and most excellent science, of which my

"Natural motion" ofthe author has here been translated into "free

motion"-since this is the term used to-day to distinguish the " natural"

from the "violent" motions of the Renaissance. [Trans.]

† A theorem demonstrated on p. 175 below. [Trans.]
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work is merely the beginning, ways and means by which other

minds more acute than mine will explore its remote corners.

This discussion is divided into three parts ; the first part

deals with motion which is steady or uniform ; the second treats

ofmotion as we find it accelerated in nature ; the third deals with

the so-called violent motions and with projectiles.

[191]

UNIFORM MOTION

In dealing with steady or uniform motion, we need a single

definition which I give as follows:

Definition

By steady or uniform motion, I mean one in which the dis-

tances traversed by the moving particle during any equal

intervals of time, are themselves equal.

Caution

We must add to the old definition (which defined steady mo-

tion simply as one in which equal distances are traversed in

equal times) the word "any," meaning by this, all equal inter-

vals of time; for it may happen that the moving body will

traverse equal distances during some equal intervals of time

and yet the distances traversed during some small portion of

these time-intervals may not be equal, even though the time-

intervals be equal.

From the above definition, four axioms follow, namely :

Axiom I

In the case of one and the same uniform motion, the distance

traversed during a longer interval of time is greater than the

distance traversed during a shorter interval of time.

Axiom II

In the case of one and the same uniform motion, the time

required to traverse a greater distance is longer than the time

required for a less distance.
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AXIOM III

In one and the same interval of time, the distance traversed

at a greater speed is larger than the distance traversed at a

less speed.

[192]

Axiom IV

The speed required to traverse a longer distance is greater

than that required to traverse a shorter distance during the

same time-interval.

Theorem I, Proposition I

If a moving particle, carried uniformly at a constant speed,

traverses two distances the time-intervals required are to

each other in the ratio of these distances.

Let a particle move uniformly with constant speed through

two distances AB, BC, and let the time required to traverse AB

be represented byDE; the time required to traverse BC, by EF;

+

+ TAIBTA IB IC

Fig. 40

F

+H

then I say that the distance AB is to the distance BC as the

timeDE is to the time EF.

Let the distances and times be extended on both sides towards

G, H and I , K; let AG be divided into any number whatever of

spaces each equal to AB, and in like manner lay off in DI

exactly the same number of time-intervals each equal to DE.

Again lay off in CH any number whatever of distances each

equal to BC; and in FK exactly the same number of time-

intervals each equal to EF; then will the distance BG and the

time EI be equal and arbitrary multiples of the distance BA

and the time ED; and likewise the distance HB and the time

KE are equal and arbitrary multiples of the distance CB and

the time FE.

And since DE is the time required to traverse AB, the whole

time
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time EI will be required for the whole distance BG, and when

the motion is uniform there will be in EI as many time-intervals

each equal to DE as there are distances in BG each equal to BA;

and likewise it follows that KE represents the time required to

traverse HB.

Since, however, the motion is uniform, it follows that if the

distance GB is equal to the distance BH, then must also the

time IE be equal to the time EK; and if GB is greater than BH,

then also IE will be greater than EK; and if less, less .* There

[193]

are then four quantities, the first AB, the second BC, the third

DE, and the fourth EF; the time IE and the distance GB are

arbitrary multiples of the first and the third, namely of the

distance AB and the time DE.

But it has been proved that both of these latter quantities

are either equal to, greater than, or less than the time EK and

the space BH, which are arbitrary multiples of the second and

the fourth. Therefore the first is to the second, namely the

distance AB is to the distance BC, as the third is to the fourth,

namely the time DE is to the time EF.

Q. E. D 
Th orem II, Pr po

it on II

If a moving particle traverses two distances in equal in-

tervals of time, these distances will bear to each other the

same ratio as the speeds. And conversely if the distances

are as the speeds then the times are equal.

ReferringtoFig. 40, let AB and BCrepresent the two distances

traversed in equal time-intervals, the distance AB for instance

with the velocity DE, and the distance BC with the velocity

EF. Then, I say, the distance AB is to the distance BC as the

velocity DE is to the velocity EF. For if equal multiples of

both distances and speeds be taken, as above, namely, GB and

IE of AB and DE respectively, and in like manner HB and KE

of BC and EF, then one may infer, in the same manner as

above, that the multiples GB and IE are either less than, equal

* The method here employed by Galileo is that of Euclid as set forth

in the famous 5th Definition of the Fifth Book of his Elements, for which

see art. Geometry Ency. Brit, 11th Ed . p. 683. [ Trans.]



THIRD DAY 157

to, or greater than equal multiples of BH and EK. Hence the

theorem is established.

THEOREM III, PROPOSITION III

In the case of unequal speeds, the time-intervals required

to traverse a given space are to each other inversely as

the speeds.

Let the larger of the two unequal speeds be indicated by A;

the smaller, by B; and let the motion corresponding to both

traverse the given space CD. Then I say the time required to

traverse the distance CD at speed A

C

Ais to the time required to trav-

erse the same distance at speed

B, as the speed B is to the speed

A. For let CD be to CE as A

is to B; then, from the preced- B

ing, it follows that the time re-
Fig. 41

E D

quired to complete the distance CD at speed A is the same as

[194]

the time necessary to complete CE at speed B; but the time

needed to traverse the distance CE at speed B is to the time re-

quired to traverse the distance CD at the same speed as CE

is to CD; therefore the time in which CD is covered at speed

A is to the time in which CD is covered at speed B as CE is to

CD, that is, as speed B is to speed A.
Q. E. D.

Theorem IV, Proposition IV

If two particles are carried with uniform motion, but each

with a different speed, the distances covered by them dur-

ing unequal intervals of time bear to each other the com-

pound ratio of the speeds and time intervals.

Let the two particles which are carried with uniform motion

be E and F and let the ratio of the speed of the body E be to that

of the body F as A is to B; but let the ratio of the time consumed

by the motion of E be to the time consumed by the motion of

Fas Cis toD. Then, I say, that the distance covered byE, with

speedA in time C, bears to the space traversed by F with speed

B
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A

E

C-

G

B in timeD a ratio which is the product of the ratio of the speed

A to the speed B by the ratio of the time C to the time D. For

if G is the distance traversed by E at speed A during the time-

interval C, and if G is to I as

the speed Ais to the speed B;

and if also the time-interval

C is to the time-interval D

as I is to L, then it follows

that I is the distance trav-

F

B

Dr

I

Fig. 42

ersed by F in the same time that G is traversed by E since G

is to I in the same ratio as the speed A to the speed B. And

since I is to L in the same ratio as the time-intervals C and D,

if I is the distance traversed by F during the interval C, then

L will be the distance traversed by F during the interval D at the

speed B.

But the ratio of G to L is the product of the ratios G to I

and I to L, that is, of the ratios of the speed A to the speed B

and ofthe time-interval C to the time-interval D.

Q. E.

D.
[195 
T eorem V, Pr p

si io  V

If two particles are moved at a uniform rate, but with un-

equal speeds, through unequal distances, then the ratio of

the time-intervals occupied will be the product of the ratio

of the distances by the inverse ratio of the speeds.

TH

Let the two moving particles be denoted by A and B, and let

the speed of A be

to the speed of B inA

the ratio of V to T;

in like manner let

the distances trav-

ersed be in the ratio

B

TH

R

C

E

G

Fig. 43

of S to R; then I say that the ratio of the time-interval during

which the motion of A occurs to the time-interval occupied by

the motion of B is the product of the ratio of the speed T to the

speed V by the ratio ofthe distance S to the distance R.

Let C be the time-interval occupied by the motion ofA, and

let
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let the time-interval C bear to a time-interval E the same ratio

as the speedT to the speed V.

And since C is the time-interval during which A, with speed

V, traverses the distance S and since T, the speed of B, is to the

speed V, as the time-interval C is to the time-interval E, then

E will be the time required by the particle B to traverse the

distance S. If now we let the time-interval E be to the time-

interval G as the distance S is to the distance R, then it follows

that G is the time required by B to traverse the space R. Since

the ratio ofC to G is the product of the ratios C to E and Eto

G (while also the ratio ofC to E is the inverse ratio of the speeds

ofA and B respectively, i. e. , the ratio ofT toV) ; and since the

ratio of E to G is the same as that of the distances S and R

respectively, the proposition is proved.

[196]

Theorem VI, Proposition VI

If two particles are carried at a uniform rate, the ratio of

their speeds will be the product of the ratio of the distances

traversed by the inverse ratio of the time-intervals occupied.

Let A and B be the two particles which move at a uniform

rate; and let the respective distances traversed by them have

the ratio of V

to T, but let theA

time-intervalsbe

as Sto R. Then

I say the speedB

of A will bear

to the speed of

V

T

R

C

E-

G

Fig. 44

B a ratio which is the product of the ratio of the distance V to

the distance T and the time-interval Rto the time-interval S.

Let C be the speed at whichA traverses the distance V during

the time-interval S ; and let the speed C bear the same ratio to

another speed E as V bears to T; then E will be the speed at

which B traverses the distance T during the time-interval S.

If nowthe speed E is to another speed G as the time-interval R

is to the time-interval S, then G will be the speed at which the

particle
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particle B traverses the distance T during the time-interval R.

Thus we have the speed C at which the particle A covers the

distance V during the time S and also the speed G at which the

particle B traverses the distance T during the time R. The

ratio of C to G is the product of the ratio C to E and E to G;

the ratio of C to E is by definition the same as the ratio of the

distance V to distance T; and the ratio of E to G is the same as

the ratio ofR to S. Hence follows the proposition.

SALV. The preceding is what our Author has written concern-

ing uniform motion . We pass now to a new and more discrim-

inating consideration of naturally accelerated motion, such as

that generally experienced by heavy falling bodies ; following is

the title and introduction.

[197]

TEDNATURALLY ACCELERATED MOTION

The properties belonging to uniform motion have been dis-

cussed in the preceding section ; but accelerated motion remains

to be considered.

And first of all it seems desirable to find and explain a defini-

tion best fitting natural phenomena. For anyone may invent an

arbitrary type of motion and discuss its properties ; thus, for

instance, some have imagined helices and conchoids as described

by certain motions which are not met with in nature, and have

very commendably established the properties which these curves

possess in virtue of their definitions ; but we have decided to con-

sider the phenomena of bodies falling with an acceleration such

as actually occurs in nature and to make this definition of

accelerated motion exhibit the essential features of observed

accelerated motions . And this, at last, after repeated efforts we

trust wehave succeeded in doing. In this belief we are confirmed

mainly by the consideration that experimental results are seen

to agree with and exactly correspond with those properties

which have been, one after another, demonstrated by us.

Finally, in the investigation of naturally accelerated motion we

were led, by hand as it were, in following the habit and custom of

nature



THIRD DAY 161

nature herself, in all her various other processes, to employ

only those means which are most common, simple and easy.

For I think no one believes that swimming or flying can be

accomplished in a manner simpler or easier than that instinc-

tively employed by fishes and birds.

When, therefore, I observe a stone initially at rest falling

from an elevated position and continually acquiring new in-

crements of speed, why should I not believe that such increases

take place in a manner which is exceedingly simple and rather

obvious to everybody? If now we examine the matter carefully

we find no addition or increment more simple than that which

repeats itself always in the same manner. This we readily

understand when we consider the intimate relationship between

time and motion ; for just as uniformity of motion is defined by

and conceived through equal times and equal spaces (thus we

call a motion uniform when equal distances are traversed during

equal time-intervals), so also we may, in a similar manner,

through equal time-intervals, conceive additions of speed as

taking place without complication ; thus we may picture to our

[198]

mind a motion as uniformly and continuously accelerated when,

during any equal intervals of time whatever, equal increments

of speed are given to it. Thus if any equal intervals of time

whatever have elapsed, counting from the time at which the

moving body left its position of rest and began to descend, the

amount of speed acquired during the first two time-intervals

will be double that acquired during the first time-interval

alone; so the amount added during three of these time-intervals

will be treble ; and that in four, quadruple that ofthe first time-

interval. To put the matter more clearly, if a body were to

continue its motion with the same speed which it had acquired

during the first time-interval and were to retain this same uni-

form speed, then its motion would be twice as slow as that which

it would have if its velocity had been acquired during two time-

intervals.

And thus, it seems, we shall not be far wrong if we put the

increment of speed as proportional to the increment of time;

hence
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hence the definition of motion which we are about to discuss may

be stated as follows :A motion is said to be uniformly accelerated,

when starting from rest, it acquires, during equal time-intervals,

equal increments of speed.

SAGR. Although I can offer no rational objection to this or

indeed to any other definition, devised by any author whomso-

ever, since all definitions are arbitrary, I may nevertheless

without offense be allowed to doubt whether such a definition as

the above, established in an abstract manner, corresponds to and

describes that kind of accelerated motion which we meet in

nature in the case of freely falling bodies. And since the Author

apparently maintains that the motion described in his defini-

tion is that of freely falling bodies, I would like to clear my

mind of certain difficulties in order that I may later apply

myself more earnestly to the propositions and their demon-

strations.

SALV. It is well that you and Simplicio raise these difficulties.

They are, I imagine, the same which occurred to me when I

first saw this treatise, and which were removed either by discus-

sion with the Author himself, or by turning the matter over in

my own mind.

SAGR. When I think of a heavy body falling from rest, that is,

starting with zero speed and gaining speed in proportion to the

[199]

time from the beginning of the motion; such a motion as would,

for instance, in eight beats of the pulse acquire eight degrees of

speed ; having at the end of the fourth beat acquired four de-

grees ; at the end of the second, two ; at the end of the first, one:

and since time is divisible without limit, it follows from all these

considerations that if the earlier speed of a body is less than its

present speed in a constant ratio, then there is no degree of

speed however small (or, one may say, no degree of slowness

however great) with which we may not find this body travelling

after starting from infinite slowness, i. e . , from rest. So that if

that speed which it had at the end of the fourth beat was such

that, if kept uniform, the body would traverse two miles in an

hour, and if keeping the speed which it had at the end of the

second
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second beat, it would traverse one mile an hour, we must infer

that, as the instant of starting is more and more nearly ap-

proached, the body moves so slowly that, if it kept on moving at

this rate, it would not traverse a mile in an hour, or in a day, or

in a year or in a thousand years ; indeed, it would not traverse a

span in an even greater time; a phenomenon which baffles the

imagination, while our senses showus that a heavy falling body

suddenly acquires great speed.

SALV. This is one of the difficulties which I also at the begin-

ning, experienced, but which I shortly afterwards removed ; and

the removal was effected by the very experiment which creates

the difficulty for you. You say the experiment appears to show

that immediately after a heavy body starts from rest it acquires

a very considerable speed : and I say that the same experiment

makes clear the fact that the initial motions ofa falling body, no

matter how heavy, are very slow and gentle. Place a heavy

body upon a yielding material, and leave it there without any

pressure except that owing to its own weight; it is clear that if

one lifts this body a cubit or two and allows it to fall
upon the

same material, it will, with this impulse, exert a new and greater

pressure than that caused by its mere weight; and this effect is

brought about by the [weight of the] falling body together with

the velocity acquired during the fall, an effect which will be

greater and greater according to the height of the fall, that is

according as the velocity of the falling body becomes greater.

From the quality and intensity of the blowwe are thus enabled

to accurately estimate the speed of a falling body. But tell me,

gentlemen, is it not true that if a block be allowed to fall upon a

stake from a height of four cubits and drives it into the earth,

[200]

say, four finger-breadths, that coming from a height of two

cubits it will drive the stake a much less distance, and from the

height of one cubit a still less distance; and finally if the block be

lifted only one finger-breadth how muchmore will it accomplish

than if merely laid on top of the stake without percussion ?

Certainly very little. If it be lifted only the thickness of a

leaf, the effect will be altogether imperceptible. And since the

effect
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effect of the blow depends upon the velocity of this striking

body, can any one doubt the motion is very slow and the speed

more than small whenever the effect [of the blow] is impercepti-

ble? See nowthe power of truth; the same experiment which at

first glance seemed to show one thing, when more carefully

examined, assures us ofthe contrary.

But without depending upon the above experiment, which is

doubtless very conclusive, it seems to me that it ought not to

be difficult to establish such a fact by reasoning alone. Imagine

a heavy stone held in the air at rest ; the support is removed and

the stone set free ; then since it is heavier than the air it begins to

fall, and not with uniform motion but slowly at the beginning

and with a continuously accelerated motion. Nowsince velocity

can be increased and diminished without limit, what reason is

there to believe that such a moving body starting with infinite

slowness, that is, from rest, immediately acquires a speed of ten

degrees rather than one of four, or of two, or of one, or of a

half, or of a hundredth ; or, indeed, of any of the infinite number

of small values [of speed] ? Pray listen. I hardly think you will

refuse to grant that the gain of speed of the stone falling from

rest follows the same sequence as the diminution and loss of this

same speed when, by some impelling force, the stone is thrown to

its former elevation : but even if you do not grant this, I do not

see how you can doubt that the ascending stone, diminishing in

speed, must before coming to rest pass through every possible

degree of slowness.

SIMP. But if the number of degrees of greater and greater

slowness is limitless, they will never be all exhausted, therefore

such an ascending heavy body will never reach rest, but will

continue to move without limit always at a slower rate; but this

is not the observed fact.

SALV. This would happen, Simplicio, if the moving body

were to maintain its speed for any length of time at each degree

of velocity ; but it merely passes each point without delaying

more than an instant : and since each time-interval however

[201]

small may be divided into an infinite number of instants, these

will
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will always be sufficient [in number] to correspond to the infinite

degrees of diminished velocity.

That such a heavy rising body does not remain for any length

of time at any given degree of velocity is evident from the fol-

lowing: because if, some time-interval having been assigned, the

body moves with the same speed in the last as in the first in-

stant of that time-interval, it could from this second degree of

elevation be in like manner raised through an equal height,

just as it was transferred from the first elevation to the second,

and by the same reasoning would pass from the second to the

third and would finally continue in uniform motion forever.

SAGR. From these considerations it appears to me that we

may obtain a proper solution of the problem discussed by

philosophers, namely, what causes the acceleration in the

natural motion of heavy bodies? Since, as it seems to me, the

force [virtù] impressed bythe agent projecting the body upwards

diminishes continuously, this force, so long as it was greater than

the contrary force of gravitation, impelled the body upwards ;

when the two are in equilibrium the body ceases to rise and

passes through the state of rest in which the impressed impetus

[impeto] is not destroyed, but only its excess over the weight of

the body has been consumed—the excess which caused the body

to rise. Then as the diminution of the outside impetus [impeto]

continues, and gravitation gains the upper hand, the fall begins,

but slowly at first on account of the opposing impetus [virtù

impressa], a large portion of which still remains in the body; but

as this continues to diminish it also continues to be more and

more overcome by gravity, hence the continuous acceleration of

motion.

SIMP. The idea is clever, yet more subtle than sound; for even

if the argument were conclusive, it would explain only the case

in which a natural motion is preceded by a violent motion, in

which there still remains active a portion of the external force

[virtù esterna] ; but where there is no such remaining portion and

the body starts from an antecedent state of rest, the cogency of

the whole argument fails .

SAGR. I believe that you are mistaken and that this distinc-

tion
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tion between cases which you make is superfluous or rather non-

existent. But, tell me, cannot a projectile receive from the

projector either a large or a small force [virtù ] such as will throw

it to a height of a hundred cubits, and even twenty or four or

one?

SIMP. Undoubtedly, yes.

[202]

SAGR. So therefore this impressed force [ virtù impressa] may

exceed the resistance of gravity so slightly as to raise it only

a finger-breadth; and finally the force [ virtù] of the projector

may be just large enough to exactly balance the resistance of

gravity so that the body is not lifted at all but merely sus-

tained. When one holds a stone in his hand does he do anything

but give it a force impelling [virtù impellente] it upwards equal

tothepower[facoltà] of gravity drawing it downwards ? And do

you not continuously impress this force [virtù] upon the stone

as long as you hold it in the hand? Does it perhaps diminish

with the time during which one holds the stone?

And what does it matter whether this support which prevents

the stone from falling is furnished by one's hand or by a table

or by a rope from which it hangs ? Certainly nothing at all.

You must conclude, therefore, Simplicio, that it makes no

difference whatever whether the fall of the stone is preceded by a

period of rest which is long, short, or instantaneous provided

only the fall does not take place so long as the stone is acted

upon by a force [virtù] opposed to its weight and sufficient to

hold it at rest.

SALV. The present does not seem to be the proper time to

investigate the cause of the acceleration of natural motion con-

cerning which various opinions have been expressed by various

philosophers, some explaining it by attraction to the center,

others to repulsion between the very small parts of the body,

while still others attribute it to a certain stress in the surrounding

medium which closes in behind the falling body and drives it

from one of its positions to another. Now, all these fantasies,

and others too, ought to be examined ; but it is not really worth

while. At present it is the purpose of our Author merely to

investigate
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investigate and to demonstrate some of the properties of ac-

celerated motion (whatever the cause of this acceleration may

be)—meaning thereby a motion, such that the momentum of its

velocity [i momenti delta sua velocità] goes on increasing after

departure from rest, in simple proportionality to the time, which

is the same as saying that in equal time-intervals the body

receives equal increments of velocity ; and if we find the proper-

ties [of accelerated motion] which will be demonstrated later are

realized in freely falling and accelerated bodies, we may conclude

that the assumed definition includes such a motion of falling

bodies and that their speed [accelerazione] goes on increasing as

the time and the duration of the motion.

[203]

SAGR. So far as I see at present, the definition might have

been put a little more clearly perhaps without changing the

fundamental idea, namely, uniformly accelerated motion is such

that its speed increases in proportion to the space traversed ; so

that, for example, the speed acquired by a body in falling four

cubits would be double that acquired in falling two cubits and

this latter speed would be double that acquired in the first cubit.

Because there is no doubt but that a heavy body falling from

the height of six cubits has, and strikes with, a momentum

[impeto] double that it had at the end of three cubits, triple that

which it had at the end of one.

SALV. It is very comforting to me to have had such a com-

panion in error; and moreover let me tell you that your proposi-

tion seems so highly probable that our Author himself admitted,

when I advanced this opinion to him, that he had for some time

shared the same fallacy. But what most surprised me was to

see two propositions so inherently probable that they com-

manded the assent of everyone to whom they were presented,

proven in a few simple words to be not only false, but im-

possible.

SIMP. I am one of those who accept the proposition, and

believe that a falling body acquires force [vires] in its descent, its

velocity increasing in proportion to the space, and that the

momentum [momento] of the falling body is doubled when it falls

from



168 THE TWO NEW SCIENCES OF GALILEO

from a doubled height ; these propositions, it appears to me,

ought to be conceded without hesitation or controversy.

SALV. And yet they are as false and impossible as that motion

should be completed instantaneously ; and here is a very clear

demonstration of it. If the velocities are in proportion to the

spaces traversed, or to be traversed, then these spaces are

traversed in equal intervals of time; if, therefore, the velocity

with which the falling body traverses a space of eight feet were

double that with which it covered the first four feet (just as the

one distance is double the other) then the time-intervals re-

quired for these passages would be equal. But for one and the

same body to fall eight feet and four feet in the same time is

possible only in the case of instantaneous [discontinuous] motion ;

[204]

but observation shows us that the motion of a falling body oc-

cupies time, and less of it in covering a distance of four feet than

of eight feet; therefore it is not true that its velocity increases in

proportion to the space.

The falsity of the other proposition may be shown with equal

clearness. For ifwe consider a single striking body the difference

of momentum in its blows can depend only upon difference of

velocity; for if the striking body falling from a double height

were to deliver a blow of double momentum, it would be neces-

sary for this body to strike with a doubled velocity; but with

this doubled speed it would traverse a doubled space in the

same time-interval ; observation however shows that the time

required for fall from the greater height is longer.

SAGR. You present these recondite matters with too much

evidence and ease; this great facility makes them less appre-

ciated than they would be had they been presented in a more

abstruse manner. For, in my opinion, people esteem more

lightly that knowledge which they acquire with so little labor

than that acquired through long and obscure discussion.

SALV. If those who demonstrate with brevity and clearness

the fallacy of many popular beliefs were treated with contempt

instead of gratitude the injury would be quite bearable ; but on

the other hand it is very unpleasant and annoying to see men,

who
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who claim to be peers of anyone in a certain field of study, take

for granted certain conclusions which later are quickly and

easily shown by another to be false. I do not describe such a

feeling as one of envy, which usually degenerates into hatred

and anger against those who discover such fallacies ; I would call

it a strong desire to maintain old errors, rather than accept

newly discovered truths. This desire at times induces them to

unite against these truths, although at heart believing in them,

merely for the purpose of lowering the esteem in which certain

others are held by the unthinking crowd. Indeed, I have heard

from our Academician many such fallacies held as true but

easily refutable; some of these I have in mind.

SAGR. You must not withhold them from us, but, at the

proper time, tell us about them even though an extra session be

necessary. But now, continuing the thread of our talk, it would

[205]

seem that up to the present we have established the definition of

uniformly accelerated motion which is expressed as follows :

A motion is said to be equally or uniformly accelerated

when, starting from rest, its momentum (celeritatis momenta)

receives equal increments in equal times.

SALV. This definition established, the Author makes a single

assumption, namely,

The speeds acquired by one and the same body moving

down planes of different inclinations are equal when the

heights of these planes are equal.

By the height of an inclined plane we mean the perpendicular

let fall from the upper end of the plane upon the horizontal line

drawn through the lower end of the same plane. Thus, to

illustrate, let the line AB be horizontal, and let the planes CA

and CD be inclined to it ; then the Author calls the perpendicular

CB the "height" of the planes CA and CD; he supposes that

the speeds acquired by one and the same body, descending

along the planes CA and CD to the terminal points A and D are

equal since the heights of these planes are the same, CB ; and

also it must be understood that this speed is that which would

be acquired by the same body falling from C to B.

Sagr.
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1.

C

SAGR. Your assumption appears to me so reasonable that it

ought to be conceded without question, provided of course there

are no chance or outside resistances, and that the planes are

hard and smooth, and that the

figure of the moving body is per-

fectly round, so that neither plane

nor movingbody is rough. All re-

sistance and opposition having

been removed, my reason tells

me at once that a heavy and per-

fectly round ball descending along

the lines CA, CD, CB would reach the terminal points A, D,

B, with equal momenta [impeti eguali] .

Fig. 45

B

SALV. Your words are very plausible ; but I hope by experi-

ment to increase the probability to an extent which shall be little

short of a rigid demonstration.

[206]

Imagine this page to represent a vertical wall, with a nail

driven into it ; and from the nail let there be suspended a lead

bullet of one or two ounces by means of a fine vertical thread,

AB, say from four to six feet long, on this wall draw a horizontal

line DC, at right angles to the vertical thread AB, which hangs

about two finger-breadths in front of the wall. Now bring the

thread AB with the attached ball into the position AC and set it

free; first it will be observed to descend along the arc CBD, to

pass the point B, and to travel along the arc BD, till it almost

reaches the horizontal CD, a slight shortage being caused by the

resistance of the air and the string; from this we may rightly

infer that the ball in its descent through the arc CB acquired a

momentum [impeto] on reaching B, which was just sufficient to

carry it through a similar arc BD to the same height. Having

repeated this experiment many times, let us nowdrive a nail into

the wall close to the perpendicular AB, say at E or F, so that

it projects out some five or six finger-breadths in order that the

thread, again carrying the bullet through the arc CB, may strike

upon the nail E when the bullet reaches B, and thus compel it to

traverse the arc BG, described about E as center. From this

we
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we can see what can be done by the same momentum [impeto]

which previously starting at the same point B carried the same

body through the arc BD to the horizontal CD. Now, gentle-

men, you will observe with pleasure that the ball swings to the

point G in the horizontal, and you would see the same thing

happen if the obstacle were placed at some lower point, say at

F, about which the ball would describe the arc BI, the rise of the

D

E

B

Fig. 46

ball always terminating exactly on the line CD. But when the

nail is placed so low that the remainder of the thread below it

will not reach to the height CD (which would happen if the nail

were placed nearer B than to the intersection of AB with the

[207]

horizontal CD) then the thread leaps over the nail and twists

itself about it.

This experiment leaves no room for doubt as to the truth of

our supposition ; for since the two arcs CB and DB are equal and

similarly placed, the momentum [momento] acquired by the fall

through the arc CB is the same as that gained by fall through the

arc DB; but the momentum [momento] acquired at B, owing to

fall through CB, is able to lift the same body [mobile] through the

arc BD; therefore, the momentum acquired in the fall BD is

equal to that which lifts the same body through the same arc

from B to D; so, in general, every momentum acquired by fall

through



172 THE TWO NEW SCIENCES OF GALILEO

through an arc is equal to that which can lift the same body

through the same arc. But all these momenta [momenti] which

cause a rise through the arcs BD, BG, and BI are equal, since

they are produced by the same momentum, gained by fall

through CB, as experiment shows. Therefore all the momenta

gained by fall through the arcs DB, GB, IB are equal.

SAGR. The argument seems to me so conclusive and the ex-

periment so well adapted to establish the hypothesis that we

may, indeed, consider it as demonstrated.

SALV. I do not wish, Sagredo, that we trouble ourselves too

much about this matter, since we are going to apply this principle

mainly in motions which occur on plane surfaces, and not upon

curved, along which acceleration varies in a manner greatly

different from that which we have assumed for planes.

So that, although the above experiment shows us that the

descent of the moving body through the arc CB confers upon it

momentum [momento] just sufficient to carry it to the same

height through any of the arcs BD, BG, BI, we are not able, by

similar means, to show that the event would be identical in

the case of a perfectly round ball descending along planes whose

inclinations are respectively the same as the chords of these

arcs. It seems likely, on the other hand, that, since these planes

form angles at the point B, they will present an obstacle to the

ball which has descended along the chord CB, and starts to rise

along the chord BD, BG, BI.

In striking these planes some of its momentum [impeto] will

be lost and it will not be able to rise to the height of the line CD;

but this obstacle, which interferes with the experiment, once

removed, it is clear that the momentum [impeto] (which gains

[208]

in strength with descent) will be able to carry the body to the

same height. Let us then, for the present, take this as a pos-

tulate, the absolute truth of which will be established when we

find that the inferences from it correspond to and agree per-

fectly with experiment. The author having assumed this single

principle passes next to the propositions which he clearly dem-

onstrates ; the first of these is as follows :
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THEOREM I, Proposition I

The time in which any space is traversed by a body start-

ing from rest and uniformly accelerated is equal to the time

in which that same space would be traversed by the same

body moving at a uniform speed whose value is the mean

of the highest speed and the speed just before acceleration

began.

I

G A

C

Let us represent by the line AB the time in which the space

CD is traversed by a body which starts from rest at C and is

uniformly accelerated ; let the final and highest value of the

speed gained during the interval AB be represented by the line

EB drawn at right angles to AB; draw the line AE, then all

lines drawn from equidistant points on AB and parallel to BE

will represent the increasing values of the speed,

beginning with the instant A. Let the point F

bisect the line EB; draw FG parallel to BA,

and GAparallel to FB, thus forming a parallel-

ogram AGFB which will be equal in area tothe

triangle AEB, since the side GF bisects the side

AE at the point I ; for if the parallel lines in the

triangleAEB are extended to GI, then the sum

of all the parallels contained in the quadrilateral

is equal to the sum ofthose contained in the tri-

angle AEB; for those in the triangle IEF are

equal to those contained in the triangle GIA,

while those included in the trapeziumAIFB are

common. Since each and every instant of time

in the time-interval AB has its corresponding

point on the line AB, from which points par-

allels drawn in and limited by the triangleAEB

represent the increasing values of the growing

velocity, and since parallels contained within the rectangle rep-

resent the values of a speed which is not increasing, but constant,

it appears, in like manner, that the momenta [momenta] assumed

by the moving body may also be represented, in the case of the

accelerated motion, by the increasing parallels of the triangle

E F B

Fig. 47

AEB,
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[209]

AEB, and, in the case of the uniform motion, by the parallels of

the rectangle GB. For, what the momenta may lack in the first

part of the accelerated motion (the deficiency of the momenta

being represented by the parallels of the triangle AGI) is made

up by the momenta represented by the parallels of the triangle

IEF.

Hence it is clear that equal spaces will be traversed in equal

times by two bodies, one of which, starting from rest, moves with

A a uniform acceleration, while the momentum of

the other, moving with uniform speed, is one-half

its maximum momentum under accelerated mo-

tion. Q. E. D.

P G

F

G

IL

THEOREM II, Proposition II

The spaces described by a body fallingfrom rest

with a uniformly accelerated motion are to each

other as the squares of the time-intervals em-

ployed in traversing these distances.

Let the time beginning with any instant A be rep-

resented by the straight line AB in which are taken

any two time-intervals AD and AE. Let HI repre-

sent the distance through which the body, starting

from rest at H, falls with uniform acceleration. If

HL represents the space traversed during the time-

interval AD, and HM that covered during the in-

terval AE, then the space MH stands to the space

LH in a ratio which is the square of the ratio of the

time AE to the time AD; or we may say simply that

the distances HM and HL are related as the squares

Fig. 48 of AE and AD.

Draw the line AC making any angle whatever with the line

AB; and from the points D and E, draw the parallel lines DO

and EP; of these two lines, DO represents the greatest velocity

attained during the interval AD, while EP represents the max-

imum velocity acquired during the interval AE. But it has

just been proved that so far as distances traversed are con-

cerned
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cerned it is precisely the same whether a body falls from rest

with a uniform acceleration or whether it falls during an equal

time-interval with a constant speed which is one-half the max-

imum speed attained during the accelerated motion. It follows

therefore that the distances HM and HL are the same as would

be traversed, during the time-intervals AE and AD, by uniform

velocities equal to one-half those represented by DO and EP

respectively. If, therefore, one can show that the distances

HM and HL are in the same ratio as the squares of the time-

intervals AE andAD, our proposition will be proven.

[210]

But in the fourth proposition of the first book [p. 157 above]

it has been shown that the spaces traversed by two particles in

uniform motion bear to one another a ratio which is equal to the

product of the ratio of the velocities by the ratio of the times.

But in this case the ratio of the velocities is the same as the ratio

of the time-intervals (for the ratio of AE to AD is the same as

that of ½ EPto ½ DO or of EP to DO) . Hence the ratio of the

spaces traversed is the same as the squared ratio of the time-

intervals. Q. E. D.

Evidently then the ratio of the distances is the square of the

ratio of the final velocities, that is, of the lines EP and DO, since

these are to each other as AEto AD.

COROLLARY I

Hence it is clear that if we take any equal intervals of time

whatever, counting from the beginning of the motion, such as

AD, DE, EF, FG, in which the spaces HL, LM, MN, NI are

traversed, these spaces will bear to one another the same ratio

as the series of odd numbers, 1 , 3 , 5, 7 ; for this is the ratio of the

differences of the squares of the lines [which represent time] ,

differences which exceed one another by equal amounts, this

excess being equal to the smallest line [viz. the one representing a

single time-interval] : or we may say [that this is the ratio] ofthe

differences of the squares of the natural numbers beginning with

unity.

While,
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While, therefore, during equal intervals of time the velocities

increase as the natural numbers, the increments in the distances

traversed during these equal time-intervals are to one another as

theodd numbers beginning with unity.

SAGR. Please suspend the discussion for a moment since there

just occurs to me an idea which I want to illustrate by means

of a diagram in order that it may be clearer both to you and

to me.

B E

Let the line AI represent the lapse of time measured from the

initial instant A; through A draw the straight line AF making

any angle whatever; join the terminal

points I and F; divide the time AI in half

at C; draw CB parallel to IF. Let us

consider CB as the maximum value of

the velocity which increases from zero

cat the beginning, in simple proportion-

ality to the intercepts on the triangle

ABC of lines drawn parallel to BC; or

what is the same thing, let us suppose the

velocity to increase in proportion to the

time; then I admit without question, in

viewof the preceding argument, that the

space described by a body falling in the

aforesaid manner will be equal to the

space traversed by the same body during

the same length of time travelling with a

uniform speed equal to EC, the half of

• BC. Further let us imagine that the

[211]

FNG H

PRQ

I

Fig. 49

body has fallen with accelerated
motion

so that, at the in-

stant C, it has the velocity
BC. It is clear that if the body

continued
to descend

with the same speed BC, without
ac-

celeration
, it would

in the next time-interval
CI traverse

double
the distance

covered
during

the interval
AC, with the

uniform
speed EC

which is half of BC; but since the falling body

acquires
equal increments

of speed during
equal increments

of

time, it follows
that the velocity

BC, during
the next time-

interval
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interval CI will be increased by an amount represented by the

parallels of the triangle BFG which is equal to the triangleABC.

If, then, one adds to the velocity GI half of the velocity FG, the

highest speed acquired by the accelerated motion and deter-

mined by the parallels of the triangle BFG, he will have the

uniform velocity with which the same space would have been

described in the time CI ; and since this speed IN is three times

as great as EC it follows that the space described during the in-

tervalCI is three times as great as that described during the inter-

valAC. Let us imagine the motion extended over another equal

time-interval IO, and the triangle extended to APO; it is then

evident that if the motion continues during the interval IO, at

the constant rate IF acquired by acceleration during the time AI,

the space traversed during the interval IO will be four times that

traversed during the first interval AC, because the speed IF is

four times the speed EC. But if we enlarge our triangle so as to

include FPQ which is equal to ABC, still assuming the accelera-

tion to be constant, we shall add to the uniform speed an incre-

ment RQ, equal to EC; then the value of the equivalent uniform

speed during the time-interval IO will be five times that during

the first time-interval AC; therefore the space traversed will be

quintuple that during the first interval AC. It is thus evident

by simple computation that a moving body starting from rest

and acquiring velocity at a rate proportional to the time, will,

during equal intervals of time, traverse distances which are

related to each other as the odd numbers beginning with unity,

1, 3, 5; or considering the total space traversed, that covered

[212]

in double time will be quadruple that covered during unit time ;

in triple time, the space is nine times as great as in unit time.

* As illustrating the greater elegance and brevity of modern analytical

methods, one may obtain the result of Prop. II directly from the fun-

damental equation

S = 1⁄2 8 (t22− 1²1) = g/2 (t2 + t1) (t2—t1)

where g is the acceleration of gravity and s, the space traversed between

the instants t1 and t2. If nowt2 - t1 = 1 , say one second, then s = g/2 (t2 + t1)

where t2+t1, must always be an odd number, seeing that it is the sum of

two consecutive terms in the series of natural numbers. [Trans.]
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And in general the spaces traversed are in the duplicate ratio of

the times, i. e., in the ratio of the squares of the times.

SIMP. In truth, I find more pleasure in this simple and clear

argument of Sagredo than in the Author's demonstration which

to me appears rather obscure ; so that I am convinced that

matters are as described, once having accepted the definition of

uniformly accelerated motion. But as to whether this accelera-

tion is that which one meets in nature in the case of falling

bodies, I am still doubtful ; and it seems to me, not only for my

own sake but also for all those who think as I do, that this

would be the proper moment to introduce one of those experi-

ments and there are many of them, I understand—which

illustrate in several ways the conclusions reached.

SALV. The request which you, as a man of science, make, is a

very reasonable one; for this is the custom—and properly so—

in those sciences where mathematical demonstrations are applied

to natural phenomena, as is seen in the case of perspective,

astronomy, mechanics, music, and others where the principles,

once established by well-chosen experiments, become the founda-

tions of the entire superstructure. I hope therefore it will not

appear to be a waste of time if we discuss at considerable length

this first and most fundamental question upon which hinge

numerous consequences of which we have in this book only a

small number, placed there by the Author, who has done so

much to open a pathway hitherto closed to minds of speculative

turn. So far as experiments go they have not been neglected

by the Author; and often, in his company, I have attempted in

the following manner to assure myself that the acceleration

actually experienced by falling bodies is that above described .

A piece of wooden moulding or scantling, about 12 cubits

long, half a cubit wide, and three finger-breadths thick, was

taken; on its edge was cut a channel a little more than one

fingerin breadth ; having made this groove very straight, smooth,

and polished, and having lined it with parchment, also as

smooth and polished as possible, we rolled along it a hard,

smooth, and very round bronze ball. Having placed this

[213]

board
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board in a sloping position, by lifting one end some one or two

cubits above the other, we rolled the ball, as I was just saying,

along the channel, noting, in a manner presently to be described,

the time required to make the descent. We repeated this ex-

periment more than once in order to measure the time with an

accuracy such that the deviation between two observations

never exceeded one-tenth of a pulse-beat. Having performed

this operation and having assured ourselves of its reliability, we

now rolled the ball only one-quarter the length of the channel ;

and having measured the time of its descent, we found it pre-

cisely one-halfof the former. Nextwe tried other distances, com-

paring the time for thewhole lengthwith that for the half, orwith

that for two-thirds, or three-fourths, or indeed for any fraction ;

in such experiments, repeated a full hundred times, we always

found that the spaces traversed were to each other as the squares

of the times, and this was true for all inclinations of the plane,

i. e., of the channel, along which we rolled the ball. We also

observed that the times of descent, for various inclinations of the

plane, bore to one another precisely that ratio which, as we shall

see later, the Author had predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of

water placed in an elevated position ; to the bottom of this

vessel was soldered a pipe of small diameter giving a thin jet of

water, which we collected in a small glass during the time of each

descent, whether for the whole length of the channel or for a part

of its length ; the water thus collected was weighed, after each

descent, on a very accurate balance ; the differences and ratios of

these weights gave us the differences and ratios of the times, and

this with such accuracy that although the operation was re-

peated many, many times, there was no appreciable discrepancy

in the results.

SIMP. I would like to have been present at these experiments ;

but feeling confidence in the care with which you performed

them, and in the fidelity with which you relate them, I am

satisfied and accept them as true and valid

SALV. Then we can proceed without discussion.

[214]
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COROLLARY II

Secondly, it follows that, starting from any initial point, ifwe

take any two distances, traversed in any time-intervals whatso-

IS ever, these time-intervals bear to one another the same

ratio as one of the distances to the mean proportional of

the two distances.

T

For if we take two distances ST and SY measured from

the initial point S, the mean proportional of which is SX,

the time of fall through ST is to the time of fall through

x SY as ST is to SX; or one may say the time offall through

SY is to the time of fall through ST as SY is to SX. Now

since it has been shown that the spaces traversed are in

ly the same ratio as the squares of the times ; and since, more-

Fig. 50over, the ratio of the space SY to the space ST is the

square of the ratio SY to SX, it follows that the ratio of the

times of fall through SY and ST is the ratio of the respective

distances SY and SX.

Y

SCHOLIUM

The above corollary has been proven for the case of vertical

fall ; but it holds also for planes inclined at any angle; for it is to

be assumed that along these planes the velocity increases in the

same ratio, that is, in proportion to the time, or, if you prefer, as

the series of natural numbers.*

SALV. Here, Sagredo, I should like, if it be not too tedious to

Simplicio, to interrupt for a moment the present discussion in

order to make some additions on the basis of what has already

been proved and of what mechanical principles we have already

learned from our Academician. This addition I make for the

better establishment on logical and experimental grounds, of the

principle which we have above considered ; and what is more

important, for the purpose of deriving it geometrically, after first

demonstrating a single lemma which is fundamental in the science

of motion [impeti] ,

* The dialogue which intervenes between this Scholium and thefollow-

ing theorem was elaborated by Viviani, at the suggestion of Galileo.

See National Edition, viii, 23. [Trans.]
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SAGR. If the advance which you propose to make is such as

will confirm and fully establish these sciences of motion, I will

gladly devote to it any length of time. Indeed, I shall not only

[215]

be glad to have you proceed, but I beg of you at once to satisfy

the curiosity which you have awakened in me concerning your

proposition; and I think that Simplicio is of the same mind.

SIMP. Quite right.

SALV. Since then I have your permission, let us first of all con-

sider this notable fact, that the momenta or speeds [i momenti ole

velocità] of one and the same moving body vary with the inclina-

tion of the plane.

The speed reaches a maximum along a vertical direction, and

for other directions diminishes as the plane diverges from the

vertical. Therefore the impetus, ability, energy, [l'impeto, il

talento, l'energia] or, one might say, the momentum [ il momento]

of descent of the moving body is diminished by the plane upon

which it is supported and along which it rolls.

B
D

For the sake of greater clearness erect the line AB perpendicular

to the horizontal AC; next draw AD, AE, AF, etc. , at different

inclinations to the horizontal. Then I say that all the momentum

of the falling body is along the vertical and is a maximum when it

falls in that direction ; the momentum is less along DA and still

less along EA, and even less yet along the more inclined plane FA.

Finally on the horizontal plane the mo-

mentum vanishes altogether; the body

finds itself in a condition of indifference

as to motion or rest ; has no inherent tend-

ency to move in any direction, and offers

no resistance to being set in motion. For F

just as a heavy body or system of bodies

cannot of itself move upwards, or recede

from the common center [comun centro] HÓ

toward which all heavy things tend, so it

is impossible for any body of its own ac-

cord to assume any motion other than

E

OG

Fig. 51

one which carries it nearer to the aforesaid common center.

Hence, along the horizontal, by which we understand a surface,

every point of which is equidistant from this same common center,

the body will have no momentum whatever.

This
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[216]

This change of momentum being clear, it is here necessary for

me to explain something which our Academician wrote when in

Padua, embodying it in a treatise on mechanics prepared solely

for the use of his students, and proving it at length and conclu-

sively when considering the origin and nature of that marvellous

machine, the screw. What he proved is the manner in which the

momentum [impeto] varies with the inclination of the plane, as for

instance that of the plane FA, one end of which is elevated through

a vertical distance FC. This direction FC is that along which the

momentum of a heavy body becomes a maximum; let us discover

what ratio this momentum bears to that of the same body moving

along the inclined plane FA. This ratio, I say, is the inverse of

that of the aforesaid lengths. Such is the lemma preceding the

theorem which I hope to demonstrate a little later.

It is clear that the impelling force [impeto] acting on a body in

descent is equal to the resistance or least force [resistenza o forza

minima] sufficient to hold it at rest. In order to measure this force

and resistance [forza e resistenza] I propose to use the weight of

another body. Let us place upon the plane FA a body G con-

nected to the weight H by means of a cord passing over the

point F; then the body H will ascend or descend, along the

perpendicular, the same distance which the body G ascends or

descends along the inclined plane FA; but this distance will not

be equal to the rise or fall of G along the vertical in which direction

alone G, as other bodies, exerts its force [resistenza] . This is clear.

For if we consider the motion of the body G, from A to F, in the

triangle AFC to be made up of a horizontal component AC and a

vertical component CF, and remember that this body experiences

no resistance to motion along the horizontal (because by such a

[217]

motion the body neither gains nor loses distance from the common

center of heavy things) it follows that resistance is met only in

consequence of the body rising through the vertical distance CF.

Since then the body G in moving fromAto F offers resistance only

in so far as it rises through the vertical distance CF, while the

other body H must fall vertically through the entire distance FA,

and since this ratio is maintained whether the motion be large or

small, the two bodies being inextensibly connected, we are able

to assert positively that, in case of equilibrium (bodies at rest) the

momenta,
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momenta, the velocities , or their tendency to motion [propensioni

al moto], i. e., the spaces which would be traversed by them in

equal times, must be in the inverse ratio to their weights. This is

what has been demonstrated in every case of mechanical motion. *

So that, in order to hold the weight G at rest, one must give H a

weight smaller in the same ratio as the distance CF is smaller than

FA. If we do this, FA:FC-weight G :weight H; then equilibrium

will occur, that is, the weights H and G will have the same impell-

ing forces [momenti eguali] , and the two bodies will come to

rest.

And since we are agreed that the impetus, energy, momentum

or tendency to motion of a moving body is as great as the force or

least resistance [forza o resistenza minima] sufficient to stop it, and

since we have found that the weight H is capable of preventing

motion in the weight G, it follows that the less weight H whose en-

tire force [momento totale ] is along the perpendicular, FC, will be an

exact measure of the component of force [momento parziale] which

the larger weight G exerts along the plane FA. But the measure

of the total force [total momento] on the body G is its own weight,

since to prevent its fall it is only necessary to balance it with an

equal weight, provided this second weight be free to move verti-

cally; therefore the component of the force [momento parziale] on

G along the inclined plane FA will bear to the maximum and total

force on this same body G along the perpendicular FC the same

ratio as the weight H to the weight G. This ratio is, by con-

struction, the same which the height, FC, of the inclined plane

bears to the length FA. We have here the lemma which I pro-

posed to demonstrate and which, as you will see, has been as-

sumed by our Author in the second part of the sixth proposition

of the present treatise.

SAGR. From what you have shown thus far, it appears to me

that one might infer, arguing ex aequali con la proportione per-

turbata, that the tendencies [momenti] of one and the same body to

move along planes differently inclined, but having the same verti-

cal height, as FA and FI, are to each other inversely as the

lengths of the planes.

[218]

SALV. Perfectly right. This point established, I pass to the

demonstration of the following theorem :

* A near approach to the principle of virtual work enunciated by

John Bernoulli in 1717. [Trans . ]
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Ifa body falls freely along smooth planes inclined at any angle

whatsoever, but of the same height, the speeds with which it

reaches the bottom are the same.

First we must recall the fact that on a plane of any inclination

whatever a body starting from rest gains speed or momentum

[la quantitá dell'impeto] in direct proportion to the time, in agree-

ment with the definition of naturally accelerated motion given by

the Author. Hence, as he has shown in the preceding proposition,

the distances traversed are proportional to the squares of the

times and therefore to the squares of the speeds. The speed

relations are here the same as in the motion first studied [i . e. ,

vertical motion], since in each case the gain of speed is proportional

to the time.

Let AB be an inclined plane whose height above the level BC is

AC. As we have seen above the force impelling [l'impeto] a body

A to fall along the vertical AC is tothe force

B E

Fig. 52

D

C

which drives the same body along the in-

clined plane AB as AB is to AC. On the

incline AB, lay off AD a third propor-

tional to AB and AC ; then the force pro-

ducing motion along AC is to that along

AB (i. e., along AD) as the length AC is to

the length AD. And therefore the body

will traverse the space AD, along the in-

cline AB, in the same time which it would occupy in falling the ver-

tical distance AC, (since the forces [momenti] are in the same ratio

as these distances) ; also the speed at C is to the speed at D as the

distance AC is to the distance AD. But, according to the defini-

tion of accelerated motion, the speed at B is to the speed of the

same body at D as the time required to traverse AB is to the time

required for AD; and, according to the last corollary of the second

proposition, the time of passing through the distance AB bears to

the time of passing through AD the same ratio as the distance

AC (a mean proportional between AB and AD) to AD. Accord-

ingly the two speeds at B and C each bear to the speed at D the

same ratio, namely, that of the distances AC and AD ; hence they

are equal. This is the theorem which I set out to prove.

From the above we are better able to demonstrate the following

third proposition of the Author in which he employs the following

principle, namely, the time required to traverse an inclined plane

is
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is to that required to fall through the vertical height of the plane

in the same ratio as the length of the plane to its height.

[219]

For, according to the second corollary of the second proposition,

if BA represents the time required to pass over the distance BA,

the time required to pass the distance AD will be a mean propor-

tional between these two distances and will be represented by

the line AC; but if AC represents the time needed to traverse AD

it will also represent the time required to fall through the distance

AC, since the distances AC and AD are traversed in equal times ;

consequently if AB represents the time required for AB then AC

will represent the time required for AC. Hence the times required

to traverse AB and AC are to each other as the distances AB and

AC.

In like manner it can be shown that the time required to fall

through AC is to the time required for any other incline AE as

the length AC is to the length AE; therefore, ex aequali, the time of

fall along the incline AB is to that along AE as the distance AB is

to the distance AE, etc. *

One might by application of this same theorem, as Sagredo will

readily see, immediately demonstrate the sixth proposition of the

Author; but let us here end this digression which Sagredo has

perhaps found rather tedious, though I consider it quite important

forthe theory of motion.

SAGR. On the contrary it has given me great satisfaction, and

indeed I find it necessary for a complete grasp of this principle.

SALV. I will now resume the reading of the text.

[215]

Theorem III , Proposition III

If one and the same body, starting from rest, falls along

an inclined plane and also along a vertical, each having the

same height, the times of descent will be to each other as

the lengths of the inclined plane and the vertical.

Let AC be the inclined plane and AB the perpendicular, each

having the same vertical height above the horizontal, namely,

BA; then I say, the time of descent of one and the same body

AC

* Putting this argument in a modern and evident notation, one has

AC  = ½ gt2 and AD = 1/2 Agt If now AC2 = AB. AD, it follows at

once that ta = tc. [Trans.]

AB

Q. D. E.
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Α

D

[216]

along the plane AC bears a ratio to the time of fall along the

perpendicular AB, which is the same as the ratio of the length

ACto the length AB. Let DG, EI and LF be any lines parallel

Ato the horizontal CB; then it follows from

what has preceded that a body starting from

A will acquire the same speed at the point G

as at D, since in each case the vertical fall is

the same; in like manner the speeds at I and

E will be the same; so also those at L and F.

And in general the speeds at the two extremi-

ties of any parallel drawn from any point on

AB to the corresponding point onAC will be

equal.

L

Ι

M

Fig- 53

E

B

Thus the two distances AC and AB are

traversed at the same speed. But it has already been proved

[217]

that iftwo distances are traversed by a body moving with equal

speeds, then the ratio of the times of descent will be the ratio of

the distances themselves; therefore, the time of descent along

AC is to that along AB as the length of the plane AC is to the

vertical distance AB.

[218]

Q. E. D.

SAGR. It seems to me that the above could have been proved

clearly and briefly on the basis of a proposition already demon-

strated, namely, that the distance traversed in the case of

accelerated motion along AC or AB is the same as that covered

[219]

by a uniform speed whose value is one-half the maximum speed,

CB; the two distances AC and AB having been traversed at the

same uniform speed it is evident, from Proposition I, that the

times of descent will be to each other as the distances.

COROLLARY

Hence we may infer that the times of descent along planes

having different inclinations, but the same vertical height stand

to
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to one another in the same ratio as the lengths of the planes.

For consider any plane AM extending fromA to the horizontal

CB; then it may be demonstrated in the same manner that the

time of descent along AM is to the time along AB as the dis-

tance AM is to AB; but since the time along AB is to that along

AC as the length AB is tothe lengthAC, it follows, ex æquali, that

as AM is to AC so is the time along AM to the time along AC.

Theorem IV, Proposition IV

The times of descent along planes of the same length but

of different inclinations are to each other in the inverse

ratio of the square roots of their heights

From a single point B draw the planes BA and BC, having

the same length but different inclinations ; let AE and CD be

horizontal lines drawn to meet the perpendicular BD; and

[220]

B

let BE represent the height of the plane AB, and BD the height

of BC; also let BI be a mean proportional to BD and BE; then

the ratio of BD to BI is equal to the

square root of the ratio of BD to BE.

Now, I say, the ratio of the times of de-

scent along BAand BC is the ratio ofBD

to BI ; so that the time of descent along

BA is related to the height of the other

plane BC, namely BD as the time along

BC is related to the height BI. Now it

must be proved that the time of descent A

along BA is to that along BC as the length

BD is to the length BI.

H
A

I

D

Fig. 54

C

Draw IS parallel to DC; and since it

has been shown that the time of fall along BA is to that along

the vertical BE as BA is to BE; and also that the time along

BE is to that along BD as BE is to BI ; and likewise that the

time along BD is to that along BC as BD is to BC, or as BI to

BS ; it follows, ex æquali, that the time along BA is to that along

BC as BA to BS, or BC to BS. However, BC is to BS as BD

is to BI ; hence follows our proposition.
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THEOREM V, Proposition V

The times of descent along planes of different length, slope

and height bear to one another a ratio which is equal to

the product of the ratio of the lengths by the square root

of the inverse ratio oftheir heights.

Draw the planes AB and AC, having different inclinations,

lengths, and heights. My theorem then is that the ratio of the

time of descent along AC to that along AB is

equal to the product of the ratio ofACto AB

by thesquare root of the inverse ratio oftheir

heights.

B

F

G

For let AD be a perpendicular to which are

drawn the horizontal lines BG and CD; also

letAL be a mean proportional to the heights

AG and AD; from the point L draw a hori-

Lzontal line meeting AC in F; accordingly AF

will be a mean proportional between AC and

AE. Nowsince the time of descent alongAC

D is to that along AE as the length AF is to

Fig. 55 AE; and since the time along AE is to that

along AB as AE is to AB, it is clear that the time alongACis to

that along AB as AF is to AB.

с

[221]

Thus it remains tobe shown that the ratio ofAF toAB is equal

to the product of the ratio of AC to AB by the ratio of AG to

AL, which is the inverse ratio of the square roots of the heights

DA and GA. Now it is evident that, if we consider the line

AC in connection with AF and AB, the ratio of AF to AC is the

same as that ofAL to AD, or AG to AL which is the square root

of the ratio of the heights AG and AD; but the ratio of AC to

AB is the ratio of the lengths themselves. Hence follows the

theorem .

Theorem VI, Proposition VI

If from the highest or lowest point in a vertical circle there

be drawnany inclined planes meeting the circumference the

times
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times of descent along these chords are each equal to the

other.

B

3

On the horizontal line GH construct a vertical circle. From its

lowest point—the point of tangency with the horizontal—draw

the diameter FA and from the highest point, A, draw inclined

planes to B and C, any points

whatever on the circumference;

then the times of descent along

these are equal. Draw BD and

CE perpendicular to the diame-

ter; make AI a mean propor- c

tional between the heights of the

planes, AE and AD; and since

the rectangles FA.AE and FA.

AD are respectively equal to the

squares ofAC and AB, while the

rectangle FA.AE is to the rect-

angle FA.AD as AE is to AD,

it follows that the square of AC

is to the square of AB as the length AE is to the length AD.

But since the length AE is to AD as the square of AI is to the

square of AD, it follows that the squares on the lines AC and

AB are to each other as the squares on the lines AI and AD, and

hence also the length AC is to the length AB as AI is to AD.

But it has previously been demonstrated that the ratio of the

time of descent along AC to that along AB is equal to the

product of the two ratios AC to AB and AD to AI; but this

last ratio is the same as that ofAB to AC. Therefore the ratio of

the time of descent along AC to that along AB is the product

of the two ratios, AC to AB and AB to AC. The ratio of these

times is therefore unity. Hence follows our proposition.

F

Fig. 56

H

By use of the principles of mechanics [ex mechanicis ] onemay

obtain the same result, namely, that a falling body will require

equal times to traverse the distances CA and DA, indicated in

the following figure. Lay off BA equal to DA, and let fall the

[222]

perpendiculars BE and DF; it follows from the principles of

mechanics
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mechanics that the component of the momentum [momentum

ponderis] acting along the inclined plane ABC is to the total

momentum [i . e., the momentum of the body falling freely] as

H B

G

BE is to BA; in like manner

the momentum along the

plane AD is to its total mo-

mentum [i. e., the momentum

of the body falling freely] as

DF is to DA, or to BA. There-

fore the momentum of this

same weight along the plane

DA is to that along the plane

ABC as the length DF is to

the length BE; for this reason,

this same weight will in equal

times according to the second

proposition of the first book,

traverse spaces along the planes CA and DA which are to each

other as the lengths BE and DF. But it can be shown that CA

is to DA as BE is to DF. Hence the falling body will traverse

the two paths CA and DA in equal times.

A

Fig. 57

EF

Moreover the fact that CA is to DA as BE is to DF may be

demonstrated as follows : Join C and D; through D, draw the

line DGL parallel to AF and cutting the line AC in I ; through

B draw the line BH, also parallel to AF. Then the angle ADI

will be equal to the angle DCA, since they subtend equal arcs

LA and DA, and since the angle DAC is common, the sides of

the triangles, CAD and DAI, about the common angle will be

proportional to each other; accordingly as CA is to DA so is

DA to IA, that is as BA is to IA, or as HA is to GA, that is

as BE is to DF. E. D.

The same proposition may be more easily demonstrated as

follows: On the horizontal line AB draw a circle whose diameter

DC is vertical. From the upper end of this diameter draw any

inclined plane, DF, extending to meet the circumference; then, I

say, a body will occupy the same time in falling along the

plane DF as along the diameter DC. For draw FG parallel

to
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to AB and perpendicular to DC; join FC; and since the time of

fall along DC is to that along DG as the mean proportional

[223]

D

between CD and GD is to GD itself; and since also DF is a

mean proportional between DC and DG, the angle DFC in-

scribed in a semicircle being a right-

angle, and FG being perpendicular

to DC, it follows that the time of

fall along DC is to that along DG as

the length FD is to GD. But it has

already been demonstrated that theF

time of descent along DF is to that

along DG as the length DF is toDG;

hence the times of descent along DF

and DC each bear to the time of fall

along DG the same ratio; conse-

quently they are equal.

In like manner it may be shownA

that ifone draws the chord CEfrom

H

C

Fig. 58

B

the lower end of the diameter, also the line EH parallel to the

horizon, and joins the points E and D, the time of descent along

EC,will be the same as that along the diameter, DC.

COROLLARY I

From this it follows that the times of descent along all chords

drawn through either C orD are equal one to another.

COROLLARY II

It also follows that, if from any one point there be drawn a

vertical line and an inclined one along which the time of descent

is the same, the inclined line will be a chord of a semicircle of

which the vertical line is the diameter.

COROLLARY III

Moreover the times of descent along inclined planes will be

equal when the vertical heights of equal lengths of these planes

are
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are to each other as the lengths of the planes themselves; thus it

is clear that the times of descent along CA and DA, in the

figure just before the last, are equal, provided the vertical

height of AB (AB being equal to AD) , namely, BE, is to the

vertical height DF as CA is to DA.

SAGR. Please allow me to interrupt the lecture for a moment

in order that I may clear up an idea which just occurs to me ; one

which, if it involve no fallacy, suggests at least a freakish and

[224]

interesting circumstance, such as often occurs in nature and in

the realm of necessary consequences.

If, from any point fixed in a horizontal plane, straight lines

be drawn extending indefinitely in all directions, and if we

imagine a point to move along each of these lines with constant

speed, all starting from the fixed point at the same instant and

moving with equal speeds, then it is clear that all of these mov-

ing points will lie upon the circumference of a circle which

grows larger and larger, always having the aforesaid fixed point

as its center; this circle spreads out in precisely the same manner

as the little waves do in the case of a pebble allowed to drop

into quiet water, where the impact of the stone starts the motion

in all directions, while the point of impact remains the center

of these ever-expanding circular waves. But imagine a vertical

plane from the highest point of which are drawn lines inclined

at every angle and extending indefinitely; imagine also that

heavy particles descend along these lines each with a naturally

accelerated motion and each with a speed appropriate to the

inclination of its line. If these moving particles are always

visible, what will be the locus of their positions at any instant?

Nowthe answer to this question surprises me, for I am led bythe

preceding theorems to believe that these particles will always

lie upon the circumference of a single circle, ever increasing in

size as the particles recede farther and farther from the point at

which their motion began. To be more definite, let A be the

fixed point from which are drawn the lines AF and AH inclined

at any angle whatsoever. On the perpendicular AB take any

two points C and D about which, as centers, circles are described

passing
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passing through the point A, and cutting the inclined lines

at the points F, H, B, E, G, I. From the preceding theorems it

is clear that, if particles start, at the same instant, from A and

descend along these lines, when one is at E another will be at

Gand another at I ; at a later instant

theywill be found simultaneously at

F, H and B; these, and indeed an

infinite number of other particles

[225]

H

D

G

I

B

Fig. 59

travelling along an infinite number

of different slopes will at successive

instants always lie upon a single

ever-expandingcircle. Thetwokinds

of motion occurring in nature give

rise therefore to two infinite series

of circles, at once resembling and

differing from each other; the one takes its rise in the center of

an infinite number of concentric circles ; the other has its origin

in the contact, at their highest points, of an infinite number of

eccentric circles ; the former are produced by motions which are

equal and uniform; the latter by motions which are neither

uniform nor equal among themselves, but which vary from one

to another according to the slope.

Further, if from the two points chosen as origins of motion,

we draw lines not only along horizontal and vertical planes

but in all directions then just as in the former cases, beginning

at a single point ever-expanding circles are produced, so in the

latter case an infinite number of spheres are produced about a

single point, or rather a single sphere which expands in size

without limit; and this in two ways, one with the origin at the

center, the other on the surface of the spheres.

SALV. The idea is really beautiful and worthy of the clever

mind of Sagredo.

SIMP. As for me, I understand in a general way howthe two

kinds of natural motions give rise to the circles and spheres ;

and yet as tothe production of circles by accelerated motion and

its proof, I am not entirely clear; but the fact that one can take

the
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the origin of motion either at the inmost center or at the very top

of the sphere leads one to think that there may be some great

mystery hidden in these true and wonderful results, a mystery

related to the creation of the universe (which is said to be

spherical in shape), and related also to the seat of the first

cause [prima causa].

SALV. I have no hesitation in agreeing with you. But pro-

found considerations of this kind belong to a higher science than

ours [a più alte dottrine che le nostre]. We must be satisfied to

belong to that class of less worthy workmen who procure from

the quarry the marble out of which, later, the gifted sculptor

produces those masterpieces which lay hidden in this rough and

shapeless exterior. Now, if you please, let us proceed.

[226]

Theorem VII, PropositionVII

If the heights of two inclined planes are to each other in the

same ratio as the squares of their lengths, bodies starting

from rest will traverse these planes in equal times.

Take two planes of different lengths and different inclinations,

AE and AB, whose heights are AF and AD : let AF be to AD as

Athe square of AE is to the square of

E

A

G

Fig. 60

AB; then, I say, that a body, starting

from rest atA, will traverse the planes

AE and AB in equal times. From the

vertical line, draw the horizontal par-

allel lines EF and DB, the latter cut-

ting AE at G. Since FA:DA= EA²:

BA', and since FA:DA-EA: GA, it

follows that EA : GA = EA² : BA².

F Hence BA is a mean proportional be-

D

tween EA and GA. Now since the

time of descent along AB bears to the time along AG the same

ratio which AB bears to AG and since also the time of descent

along AG is to the time along AE as AG is to a mean propor-

tional between AG and AE, that is, to AB, it follows, ex æquali,

that
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that the time along AB is to the time along AE as AB is to itself.

Therefore the times are equal.

Q. E. D 
Theo em VIII, Pr posi

io  V II

Thetimes ofdescent along all inclined planes which intersect

one and the same vertical circle, either at its highest or

lowest point, are equal to the time of fall along the vertical

diameter; for those planes which fall short of this diameter

the times are shorter; for planes which cut this diameter, the

times are longer.

A

Let AB be the vertical diameter of a circle which touches the

horizontal plane. It has already

been proven that the times of de-

scent along planes drawn from

either end, A or B, to the cir-

cumference are equal. In order

to show that the time of descent D

[227]

B

C

along the plane DF which falls

short of the diameter is shorter

wemay draw the plane DB which

is both longer and less steeply in-

clined than DF; whence it follows

that the time alongDF is less than

that along DB and consequently

along AB. In like manner, it is shown that the time of de-

scent along CO which cuts the diameter is greater: for it is both

longer and less steeply inclined than CB. Hence follows the

theorem .

Fig. 61

THEOREM IX, PROPOSITION IX

If from any point on a horizontal line two planes, inclined

at any angle, are drawn, and if they are cut by a line which

makes with them angles alternately equal to the angles be-

tween these planes and the horizontal, then the times re-

quired to traverse those portions of the plane cut off by

the aforesaid line are equal.

Through
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Through the point C on the horizontal line X, draw two

planes CD and CE inclined at any angle whatever: at any

point in the line CD lay off the angle CDF equal to the angle

XCE; let the line DF cut CE at F so that the angles CDF and

CFD are alternately equal to XCE and LCD; then, I say, the

LA

L

F

G

AB

E

F

Fig. 62

F

B
times of descent over CD

and CF are equal. Now

since the angle CDF is

equal to the angleXCEby

construction, it is evident

that the angle CFD must

be equal to the angle DCL.

For if the common angle

DCF be subtracted from

the three angles of the tri-

angle CDF, together equal

to two right angles, (to which are also equal all the angles which

can be described about the point C on the lower side of the line

LX) there remain in the triangle two angles, CDF and CFD,

equal to the two angles XCE and LCD; but, by hypothesis, the

angles CDF and XCE are equal ; hence the remaining angle CFD

is equal to the remainder DCL. Take CE equal to CD; from the

points D andE drawDAand EB perpendicular to the horizontal

line XL; and from the point C draw CG perpendicular to DF.

Now since the angle CDG is equal to the angle ECB and since

DGC and CBE are right angles, it follows that the triangles CDG

and CBE are equiangular; consequently DC :CG =CE :EB. But

DC is equal to CE, and therefore CG is equal to EB. Since also

the angles at C and at A, in the triangle DAC, are equal to the

angles at F and G in the triangle CGF, we have CD :DA=

FC:CG and, permutando, DC :CF = DA:CG=DA:BE. Thus

the ratio of the heights of the equal planes CD and CE is

the same as the ratio of the lengths DC and CF. Therefore, by

[228]

Corollary I of Prop. VI, the times of descent along these planes

will be equal. Q. E. D.

An alternative proof is the following : Draw FS perpendicular

to
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A S

F

to the horizontal line AS. Then, since the triangle CSF is

similar to the triangle DGC, we have SF :FC=GC:CD ; and

since the triangle CFG is similar to the triangle DCA, we

have FC :CG =CD:DA. L

Hence, ex æquali, SF:

CG CG: DA. There-

fore CG is a mean pro-

portional between SF

and DA, while DA :SF=

DA' :CG2. Again since

the triangle ACD is sim-

ilar to the triangle CGF,

we have DA:DC=GC:

CF and, permutando,

DA: CG = DC: CF: also

G

L. S A

Fig. 63

C

=DA2:CG2-DC2:CF2 . But it has been shown that DA' :CG2-

DA:SF. Therefore DC' :CF2 -DA:FS. Hence from the above

Prop. VII, since the heights DA and FS of the planes CD and

CF are to each other as the squares of the lengths of the planes,

it follows that the times of descent along these planes will be

equal.

Theorem X, Proposition X

The times of descent along inclined planes of the same

height, but of different slope, are to each other as the lengths

of these planes ; and this is true whether the motion starts

from rest or whether it is preceded by a fall from a

constant height.

Let the paths of descent be along ABC and ABD to the horizon-

tal plane DC so that the falls along BD and BC are preceded by

the fall along AB; then, I say, that the time of descent along BD

is to the time of descent along BC as the length BD is to BC.

Draw the horizontal line AF and extend DB until it cuts this

[229]

line at F; let FE be a mean proportional between DF and FB;

draw EO parallel to DC; then AO will be a mean proportional

between CA and AB. If nowwe represent the time of fall along

AB
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F..

AB by the length AB, then the time of descent along FB will be

represented by the distance FB; so also the time of fall through

the entire distance AC will be represented by the mean pro-

portional AO: and for the entire distance FD by FE. Hence

the time of fall along the remainder, BC, will be represented by

A BO, and that along the remainder, BD,

by BE; but since BE :BO=BD :BC, it

follows, if we allow the bodies to fall

first along AB and FB, or, what is the

same thing, along the common stretch

AB, that the times of descent along BD

and BC will be to each other as the

lengths BD andBC.

E

Fig. 64

But we have previously proven that

the time ofdescent, from rest at B, along

BD is to the time along BC in the ratio

which the length BD bears to BC. Hence the times of descent

along different planes of constant height are to each other as the

lengths of these planes, whether the motion starts from rest or is

preceded by a fall from a constant height.

Q. E. D 
T h orem XI, Pr po

it on XI

If a plane be divided into any two parts and if motion along

it starts from rest, then the time of descent along the first

part is to the time of descent along the remainder A

as the length of this first part is to the excess of a

mean proportional between this first part and the en-

tire length over this first part.

Let the fall take place, from rest at A, through the

entire distance AB which is divided at any point C; also

let AF be a mean proportional between the entire length

BAand the first part AC; then CF will denote the excess

ofthe mean proportional FAover the first part AC. Now,

I say, the time of descent along AC will be to the time of

subsequent fall through CB as the length AC is to CF. Fig. 65

This is evident, because the time along AC is to the time along

the entire distance AB as AC is to the mean proportional AF.

Therefore,

B
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Therefore, dividendo, the time along AC will be to the time

along the remainder CB as AC is to CF. If we agree to repre-

sent the time along AC by the length AC then the time along

CB will be represented by CF.

[230]

Q. E. D.

A

In case themotion is not along the straight line ACB but along

the broken lineACD to the horizon-

tal line BD, and if from F we draw

thehorizontal line FE, it mayin like

manner be proved that the time

alongAC is to the time along the in-

clined line CD as AC is to CE. For

the time along AC is to the time

along CB as AC is to CF; but it

has already been shown that the

time alongCB, after the fall through

E

D B

Fig. 66

the distance AC, is to the time along CD, after descent through

the same distance AC, as CB is to CD, or, as CF is to CE ; there-

fore, ex æquali, the time along AC will be to the time along CD

as the length AC is to the length CE.

Theorem XII, Proposition XII

If a vertical plane and any inclined plane are limited by

two horizontals, and if we take mean proportionals between

the lengths of these planes and those portions of them

which lie between their point of intersection and the upper

horizontal, then the time of fall along the perpendicular

bears to the time required to traverse the upper part of the

perpendicular plus the time required to traverse the lower

part of the intersecting plane the same ratio which the

entire length of the vertical bears to a length which is the

sum of the mean proportional on the vertical plus the

excess of the entire length of the inclined plane over its

mean proportional.

Let AF and CD be two horizontal planes limiting the vertical

plane AC and the inclined plane DF; let the two last-mentioned

planes intersect at B. Let AR be a mean proportional between

the
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the entire vertical AC and its upper part AB; and let FS be a

mean proportional between FD and its upper part FB. Then,

I say, the time of fall along the entire vertical path AC bears to

the time of fall along its upper portion AB plus the time of fall

D

A

B

R

C

Fig. 67

N
along the lower part of the inclined

plane, namely, BD, the same ratio

which the length AC bears to the

mean proportional on the vertical,

namely, AR, plus the length SDwhich

is the excess of the entire plane DF

over its mean proportional FS.

Join the points R and S giving a

horizontal line RS. Now since the

time of fall through the entire dis-

tance AC is to the time along the

portion AB as CA is to the mean proportional AR it follows

that, if we agree to represent the time of fall through AC by

the distance AC, the time of fall through the distance AB will

be represented by AR; and the time of descent through the re-

mainder, BC, will be represented byRC. But, if the time along

AC is taken to be equal to the length AC, then the time along

FD will be equal to the distance FD; and we may likewise infer

that the time of descent along BD, when preceded by a fall along

FB or AB, is numerically equal to the distance DS. Therefore

[231]

the time required to fall along the path AC is equal to AR plus

RC; while the time of descent along the broken line ABD will be

equal to AR plus SD. Q. E. D.

The same thing is true if, in place of a vertical plane, one

takes any other plane, as for instance NO; the method of proof

is also the same.

Problem I, Proposition XIII

Given a perpendicular line of limited length, it is required

to find a plane having a vertical height equal to the given

perpendicular and so inclined that a body, having fallen

from rest along the perpendicular, will make its descent

along
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along the inclined plane in the same time which it occu-

pied in falling through the given perpendicular.

Let AB denote the given perpendicular : prolong this line to

C making BC equal to AB, and draw the horizontal lines CE

andAG. It is required to draw a plane from B to the horizontal

line CE such that after a body starting from rest at A has

fallen through the distance AB, it will complete its path along

this plane in an equal time. Lay off CD equal to BC, and draw

the line BD. Construct the line BE equal to the sum ofBD and

DC; then, I say, BE is the required plane. Prolong EB till it

intersects the horizontal AG at G. Let GF be a mean pro-

portional between GE and GB ;

then EF:FB =EG:GF, and EF" :

FB2 =EG2:GF2=EG :GB. But

E

A

B

F

D C

Fig. 68

G

EG is twice GB; hence the square

of EF is twice the square of FB ;

so also is the square of DB twice

the square of BC. Consequently

EF:FB -DB :BC, and componendo

et permutando, EB:DB + BC=

BF:BC. But EB= DB + BC;

hence BF=BC=BA. Ifwe agree that the length AB shall rep-

resent the time of fall along the line AB, then GB will represent

the time of descent along GB, and GF the time along the entire

distance GE; therefore BF will represent the time of descent

along the difference of these paths, namely, BE, after fall from

G or from A.

[232]

Q. E. F.

PROBLEM II, Proposition XIV

Given an inclined plane and a perpendicular passing

through it, to find a length on the upper part of the per-

pendicular through which a body will fall from rest in the

same time which is required to traverse the inclined plane

after fall through the vertical distance just determined.

Let AC be the inclined plane and DB the perpendicular. It is

required to find on the vertical AD a length which will be

traversed
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DI

X

traversed by a body, falling from rest, in the same time which is

needed by the same body to traverse the plane AC after the

aforesaid fall . Draw the horizontal CB; lay off AE such that

BA+ 2AC :AC -AC :AE, and lay off AR such that BA:AC=

EA :AR. From R draw RX perpendicular to DB; then, I say,

X is the point sought. For since BA+ 2AC:AC=ACAE, it

follows, dividendo, that BA +AC :AC=CE :AE. And since

BA:AC-EA :AR, we have, componendo, BA + AC :AC=ER :

RA. But BA + AC :AC-CE:AE, hence CE :EA=ER :RA=

sum of the antecedents : sum of the consequents =CR :RE.

Thus RE is seen to be a mean propor-

tional between CR and RA. Moreover

since it has been assumed that BA:

RAC -EA:AR, and since by similar tri-

angles we have BA:AC -XA:AR, it

follows that EA :AR =XA :AR. Hence

EA and XA are equal. But if we agree

that the time of fall through RA shall

be represented by the length RA, then

the time of fall along RC will be repre-

sented by the length RE which is a

meanproportional between RA and RC;

likewise AE will represent the time of

descent along AC after descent along RA or along AX. But

the time of fall through XA is represented by the length XA,

while RA represents the time through RA. But it has been

shown that XA and AE are equal.

E

A

B

Fig. F.

Problem III , PROPOSITION XV

Q. E. F.

Given a vertical line and a plane inclined to it, it is re-

quired to find a length on the vertical line below its point

of intersection which will be traversed in the same time as

the inclined plane, each of these motions having been pre-

ceded by a fall through the given vertical line.

LetAB represent the vertical line and BC the inclined plane ; it

is required to find a length on the perpendicular below its point

of intersection, which after a fall fromAwill be traversed in the

same
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same time which is needed for BC after an identical fall from A.

Draw the horizontal AD, intersecting the prolongation of CB at

D; let DE be a mean proportional between CD and DB; lay

[223]

A D

off BF equal to BE ; also let AG be a third proportional to BA

and AF. Then, I say, BG is the distance which a body, after

falling through AB, will traverse in the

same time which is needed for the plane

BC after the same preliminary fall.

For if we assume that the time of fall

along AB is represented by AB, then

the time for DB will be represented by

DB. And since DE is a mean propor-

tional between BD and DC, this same

DE will represent the time of descent

along the entire distance DC while BE

will represent the time required for the

difference of these paths, namely, BC,

provided in each case the fall is from

rest at D or at A. In like manner we

may infer that BF represents the time

F
4

Fig. 70

of descent through the distance BG after the same preliminary

fall; but BF is equal to BE. Hence the problem is solved.

Theorem XIII, Proposition XVI

If a limited inclined plane and a limited vertical line are

drawn from the same point, and if the time required for a

body, starting from rest, to traverse each of these is the

same, then a body falling from any higher altitude will trav-

erse the inclined plane in less time than is required for the

vertical line.

Let EB be the vertical line and CE the inclined plane, both

starting from the common point E, and both traversed in equal

times by a body starting from rest at E; extend the vertical

line upwards to any point A, from which falling bodies are

allowed to start. Then, I say that, after the fall through AE, the

inclined plane EC will be traversed in less time than the per-

pendicular
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pendicular EB. Join CB, draw the horizontal AD, and prolong

CE backwards until it meets the latter in D; let DF be a mean

proportional between CD and DE while AG is made a mean

proportional between BA and AE. Draw FG and DG; then

[234]

C

F

A

E
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3

G

D

since the times of descent along EC and EB, starting from rest

at E, are equal, it follows, according to Corollary II of Proposi-

tion VI that the angle at C is a

right angle; but the angle at A

is also a right angle and the

angles at the vertex E are

equal; hence the triangles AED

and CEB are equiangular and

the sides about the equal angles

are proportional; hence BE:

EC - DE:EA. Consequently

the rectangle BE.EA is equal

to the rectangle CE.ED ; and

since the rectangle CD.DE ex-

ceeds the rectangle CE.ED by

the square of ED, and since the

rectangle BA.AE exceeds the

rectangle BE.EA by the square

ofEA, it follows that the excess

of the rectangle CD.DE over

the rectangle BA.AE, or what

is the same thing, the excess of

the square of FD over the

square of AG, will be equal to

the excess of the square of DE over the square of AE, which ex-

cess is equal to the square of AD. Therefore FD2 -GA² +

AD² =GD². Hence DF is equal to DG, and the angle DGF

is equal to the angle DFG while the angle EGF is less than the

angle EFG, and the opposite side EF is less than the opposite

side EG. If now we agree to represent the time offall through

AE by the length AE, then the time along DE will be represented

byDE. And since AG is a mean proportional between BA and

Fig. 71

B

AE,
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AE, it follows that AG will represent the time of fall through the

total distance AB, and the difference EG will represent the time

of fall, from rest at A, through the difference of path EB.

In like manner EF represents the time of descent along EC,

starting from rest at D or falling from rest at A. But it has been

shown that EF is less than EG; hence follows the theorem.

COROLLARY

From this and the preceding proposition, it is clear that the

vertical distance covered by a freely falling body, after a pre-

liminary fall, and during the time-interval required to traverse

an inclined plane, is greater than the length of the inclined

plane, but less than the distance traversed on the inclined

plane during an equal time, without any preliminary fall . For

since we have just shown that bodies falling from an elevated

point A will traverse the plane EC in Fig. 71 in a shorter time

than the vertical EB, it is evident that the distance along EB

which will be traversed during a time equal to that of descent

along EC will be less than the whole of EB. But now in order

to show that this vertical distance is greater than the length of

the inclined plane EC, we reproduce

Fig. 70 of the preceding theorem in

which the vertical length BG is trav-

ersed in the same time as BC after a

preliminary fall through AB. That

BG is greater than BC is shown as

follows: since BE and FB are equal

[235]

while BA is less than BD, it follows

that FB will bear to BA a greater ratio

than EB bears to BD; and, compon-

endo, FA will bear to BA a greater

ratio than ED to DB; but FA:AB =

GF :FB (since AF is a mean propor-

A

B

G

Fig. 72

F

D

tional between BA and AG) and in like manner ED:BD = CE :

EB. Hence GB bears to BF a greater ratio than CB bears to

BE; therefore GB is greater than BC.
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PROBLEM IV, Proposition XVII

Given a vertical line and an inclined plane, it is required

to lay off a distance along the given plane which will be trav-

ersed by a body, after fall along the perpendicular, in the

same time-interval which is needed for this body to fall

from rest through the given perpendicular.

Let AB be the vertical line and BE the inclined plane. The

problem is to determine on BE a distance such that a body,

▷ after falling through AB, will traverse it

in a time equal to that required to traverse

the perpendicular AB itself, starting from

F

B

A

rest.

Draw the horizontal AD and extend the

plane until it meets this line in D. Lay

off FB equal to BA; and choose the point

E such that BD :FD =DF :DE. Then, I

say, the time of descent along BE, after

fall throughAB, is equal to the time of fall,

Fig. 73
from rest at A, through AB. For, if we

assume that the length AB represents the time of fall through

AB, then the time of fall through DB will be represented by the

time DB; and since BD:FD =DF:DE, it follows that DF will

represent the time of descent along the entire plane DE while

BF represents the time through the portion BE starting from

rest at D; but the time of descent along BE after the prelimi-

nary descent along DB is the same as that after a preliminary

fall through AB. Hence the time of descent along BE after AB

will be BF which of course is equal to the time of fall through

AB from rest at A.

Q. E.

F.
[236 
P oblem V, Pr posit

on XV II

Given the distance through which a body will fall vertically

from rest during a given time-interval, and given also a

smaller time-interval, it is required to locate another [equal]

vertical
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vertical distance which the body will traverse during this

given smaller time-interval.

A

B
с

F

D

Let the vertical line be drawn through A, and on this line lay

off the distance AB which is traversed by a body falling from

rest at A, during a time which may also be

represented by AB. Draw the horizontal

line CBE, and on it lay off BC to represent

the given interval of time which is shorter E

than AB. It is required to locate, in the

perpendicular above mentioned, a distance

which is equal to AB and which will be de-

scribed in a time equal to BC. Join the points

AandC; then, since BC<BA, it follows that

the angle BAC <angle BCA. Construct the

angle CAE equal to BCA and let E be the

point whereAE intersects the horizontal line ;

draw ED at right angles to AE, cutting the

vertical at D; lay off DF equal to BA. Then,

I say, that FD is that portion of the vertical

which a body starting from rest atAwill traverse during the as-

signed time-interval BC. For, if in the right-angled triangle

AED a perpendicular be drawn from the right-angle at E to the

opposite side AD, then AE will be a mean proportional between

DA and AB while BE will be a mean proportional between BD

and BA, or between FA and AB (seeing that FA is equal to

DB) ; and since it has been agreed to represent the time of fall

through AB by the distance AB, it follows that AE, or EC, will

represent the time of fall through the entire distance AD, while

EB will represent the time through AF. Consequently the re-

mainder BC will represent the time of fall through the remain-

ing distance FD.

[237]

Problem VI, PROPOSITION XIX

Fig. 74

Q. E. F.

Given the distance through which a body falls in a vertical

line from rest and given also the time of fall, it is required

to find the time in which the same body will, later, traverse

an
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A

an equal distance chosen anywhere in the same vertical

line.

F

E

F

A

C

D

On the vertical line AB, lay off AC equal to the distance fallen

from rest at A, also locate at random an equal distance DB.

Let the time of fall through AC be

represented by the length AC. It is

required to find the time necessary

to traverse DB after fall from rest

at A. About the entire length AB

describe the semicircle AEB; from

C draw CE perpendicular to AB;

join the points A and E; the line

AE will be longer than EC; lay off

EF equal to EC. Then, I say, the

difference FAwill represent the time

required for fall through DB. For

since AE is a mean proportional be-

tween BA and AC and since AC rep-

resents the time of fall through AC,

it follows that AE will represent

the time through the entire distance

AB. And since CE is a mean pro-

portional between DA and AC (see-

ing that DA= BC) it follows that

CE, that is, EF, will represent the

time of fall throughAD. Hence the difference AF will represent

the time of fall through the difference DB.

A

B

E

Fig. 75

B

COROLLARY

Q. E. D.

Hence it is inferred that if the time of fall from rest through

any given distance is represented by that distance itself, then

the time of fall, after the given distance has been increased by a

certain amount, will be represented by the excess of the mean

proportional between the increased distance and the original

distance over the mean proportional between the original dis-

tance and the increment. Thus, for instance, if we agree that

AB



THIRD DAY 209

AB represents the time of fall, from rest at A, through the dis-

tance AB, and that AS is the increment, the time required to

traverse AB, after fall through SA, will be the excess ofthe TS

mean proportional between SB and BA over the mean

proportional between BA and AS.

[238]

Problem VII, Proposition XX

B

Given any distance whatever and a portion of it laid

off from the point at which motion begins, it is re-

quired to find another portion which lies at the other

endof the distance andwhich is traversed in the same

time as the first given portion.

Let the given distance be CB and let CD be that part of it

TC which is laid off from the beginning of motion. It is

Fig. 76

required to find another part, at the end B, which is

traversed in the same time as the assigned portion

D CD. Let BA be a mean proportional between BC

and CD; also let CE be a third proportional to BC

and CA. Then, I say, EB will be the distance which,

after fall from C, will be traversed in the same time

as CD itself. For if we agree that CB shall repre-

sent the time through the entire distance CB, then BA

A (which, of course, is a mean proportional between BC

and CD) will represent the time along CD ; and since

CA is a mean proportional between BC and CE, it fol-

lows that CA will be the time through CE; but the

total length CB represents the time through the total

B distance CB. Therefore the difference BA will be the

Fig. 77 time along the difference of distances, EB, after falling

from C; but this same BA was the time of fall through CD.

Consequently the distances CD and EB are traversed, from rest

at A, in equal times.

Q. E. F 
The rem XIV, Pr pos

ti n XI

If, on the path of a body falling vertically from rest, one

lays off a portion which is traversed in any time you please

and
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and whose upper terminus coincides with the point where

the motion begins, and if this fall is followed by a motion

deflected along any inclined plane, then the space traversed

along the inclined plane, during a time-interval equal to that

occupied in the previous vertical fall, will be greater than

twice, and less than three times, the length of the vertical

fall.

Let AB be a vertical line drawn downwards from the horizon-

tal line AE, and let it represent the path of a body falling from

rest at A; choose any portion AC of this path. Through C

draw any inclined plane, CG, along which the motion is con-

tinued after fall through AC. Then, I say, that the distance

[239]

A E

A E

traversed along this plane CG, during the time-interval equal

to that of the fall through AC, is more than twice, but less

than three times, this same

distanceAC. Let us lay off

CF equal to AC, and ex-

tend the plane GC until it

meets the horizontal in E;

choose G such that CE :

EF =EF :EG. If now we

assume that the time of

fall alongAC is represented

by the length AC, then CE

will represent the time of

descent along CE, while

CF, or CA, will represent

the time of descent along
Fig. 78

CG. It now remains to be shown that the distance CG is more

than twice, and less than three times, the distance CA itself.

Since CE:EF =EF:EG, it follows that CE:EF =CF :FG ; but

EC<EF; therefore CF will be less than FG and GC will be

more than twice FC, or AC. Again since FE<2EC (for EC is

greater than CA, or CF) , we have GF less than twice FC, and

also GC less than three times CF, or CA. Q. E. D.

This proposition may be stated in a more general form ; since

what
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what has been proven for the case of a vertical and inclined

plane holds equally well in the case of motion along a plane of

any inclination followed by motion along any plane of less

steepness, as can be seen from the adjoining figure. The method

of proof is the same.

[240]

Problem VIII , Proposition XXII

Given two unequal time-intervals, also the distance through

which a body will fall along a vertical line, from rest, during

the shorter of these intervals, it is required to pass through

the highest point of this vertical line a plane so inclined

that the time of descent along it will be equal to the longer

ofthe given intervals.

Let A represent the longer and B the shorter of the two un-

equal time-intervals, also let CD represent the length of the

C

D

A

B

Fig. 79

vertical fall, from rest, during the time B. It is required to pass

through the point C a plane of such a slope that it will be trav-

ersed in the timeA.

Draw from the point C to the horizontal a line CX of such a

length that B :A- CD :CX. It is clear that CX is the plane

along which a body. will descend in the given time A. For it

has been shown that the time of descent along an inclined plane

bears to the time of fall through its vertical height the same

ratio which the length of the plane bears to its vertical height.

Therefore the time along CX is to the time along CD as the

length CX is to the length CD, that is, as the time-interval A is

to
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to the time-interval B : but B is the time required to traverse the

vertical distance, CD, starting from rest ; therefore A is the time

required for descent along the plane CX.

Problem IX, Proposition XXIII

Giventhe time employed by a body in falling through a cer-

tain distance along a vertical line, it is required to pass

through the lower terminus of this vertical fall, a plane so

inclined that this body will, after its vertical fall, traverse

on this plane, during a time-interval equal to that of the

vertical fall, a distance equal to any assigned distance, pro-

[241]

vided this assigned distance is more than twice and less than

three times, the vertical fall.

Let AS be any vertical line, and let AC denote both the

length of the vertical fall, from rest at A, and also the time

IM N R

A

O G

F

C

Fig. 80

required for this fall. Let

IR be a distance more than

twice and less than three

times, AC. It is required

to pass a plane through the

point C so inclined that a

body, after fall throughAC,

will, during the time AC,

traverse a distance equal to

IR. Lay off RN and NM

each equal to AC. Through

the point C, draw a plane CE meeting the horizontal, AE, at such

a point that IM :MN =AC :CE. Extend the plane to O, and

lay off CF, FG and GO equal to RN, NM, and MI respectively.

Then, I say, the time along the inclined plane CO, after fall

through AC, is equal to the time of fall , from rest at A, through

AC. For since OG:GF = FC :CE, it follows, componendo,

that OF :FG =OF :FC =FE -EC, and since an antecedent is

to its consequent as the sum of the antecedents is to the sum of

the consequents, we have OE :EF =EF :EC. Thus EF is a

mean proportional between OE and EC. Having agreed to

represent
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represent the time of fall throughACbythe length AC it follows

that EC will represent the time along EC, and EF the time along

the entire distance EO, while the difference CF will represent the

time along the difference CO; but CF =CA; therefore the

problem is solved. For the time CA is the time of fall, from rest

at A, through CA while CF (which is equal to CA) is the time

required to traverse CO after descent along EC or after fall

through AC. Q. E. F.

It is to be remarked also that the same solution holds if the

antecedent motion takes place, not along a vertical, but along an

inclined plane. This case is illustrated in the following figure

where the antecedent motion is along the inclined plane AS

[242]

underneath the horizontal AE. The proof is identical with the

preceding.

SCHOLIUM

On careful attention, it will be clear that, the nearer the given

line IR approaches to three times the length AC, the nearer the

I M NR

T V

2

F

A

S

Fig. 81

inclined plane, CO, along which the second motion takes

place, approaches the perpendicular along which the space

traversed, during the time AC, will be three times the distance

AC. For if IR be taken nearly equal to three times AC, then

IM will be almost equal to MN; and since, by construction,

IM :
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IM :MN =AC :CE, it follows that CE is but little greater than

CA: consequently the point E will lie near the point A, and the

lines CO and CS, forming a very acute angle, will almost coin-

cide. But, on the other hand, if the given line, IR, be only the

least bit longer than twice AC, the line IM will be very short;

from which it follows that AC will be very small in comparison

with CE which is now so long that it almost coincides with the

horizontal line drawn through C. Hence we can infer that, if,

after descent along the inclined plane AC of the adjoining figure,

the motion is continued along a horizontal line, such as CT, the

distance traversed by a body, during a time equal to the time

of fall through AC, will be exactly twice the distance AC. The

argument here employed is the same as the preceding. For it is

clear, since OE :EF =EF :EC, that FC measures the time of

descent along CO. But, if the horizontal line TC which is twice

as long as CA, be divided into two equal parts at V then this

line must be extended indefinitely in the direction ofX before

it will intersect the line AE produced ; and accordingly the

ratio of the infinite length TX to the infinite length VX is the

same as the ratio of the infinite distance VX to the infinite

distance CX.

The same result may be obtained by another method of ap-

proach, namely, by returning to the same line of argument which

was employed in the proof of the first proposition. Let us

[243]

consider the triangle ABC, which, by lines drawn parallel to its

base, represents for us a velocity increasing in proportion to the

time; if these lines are infinite in number, just as the points in

the line AC are infinite or as the number of instants in any

interval of time is infinite, they will form the area of the triangle.

Let us now suppose that the maximum velocity attained—that

represented by the line BC—to be continued, without accelera-

tion and at constant value through another interval of time equal

to the first. From these velocities will be built up, in a similar

manner, the area of the parallelogram ADBC, which is twice

that of the triangle ABC; accordingly the distance traversed

with these velocities during any given interval of time will be

twice
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A

twice that traversed with the velocities represented by the

triangle during an equal interval of time. But along a horizontal

plane the motion is uniform since here it experiences neither

acceleration nor retardation ; therefore we con- D

clude that the distance CD traversed during a time-

interval equal to AC is twice the distance AC;

for the latter is covered by a motion, starting

from rest and increasing in speed in proportion

to the parallel lines in the triangle, while the

former is traversed by a motion represented by

the parallel lines of the parallelogram which,

being also infinite in number, yield an area twice B

that of the triangle. Fig. 82

C

Furthermore we may remark that any velocity once imparted

to a moving body will be rigidly maintained as long as the

external causes of acceleration or retardation are removed, a

condition which is found only on horizontal planes ; for in the

case of planes which slope downwards there is already present a

cause of acceleration, while on planes sloping upward there is

retardation ; from this it follows that motion along a horizontal

plane is perpetual ; for, if the velocity be uniform, it cannot be

diminished or slackened, much less destroyed. Further, al-

though any velocity which a body may have acquired through

natural fall is permanently maintained so far as its own nature

[suapte natura] is concerned, yet it must be remembered that if,

after descent along a plane inclined downwards, the body is

deflected to a plane inclined upward, there is already existing in

this latter plane a cause of retardation ; for in any such plane

this same body is subject to a natural acceleration downwards.

Accordingly we have here the superposition of two different

states, namely, the velocity acquired during the preceding fall

which if acting alone would carry the body at a uniform rate to

infinity, and the velocity which results from a natural accelera-

tion downwards common to all bodies. It seems altogether

reasonable, therefore, if we wish to trace the future history of a

body which has descended along some inclined plane and has

been deflected along some plane inclined upwards, for us to

assume
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assume that the maximum speed acquired during descent is

permanently maintained during the ascent.
In the ascent,

however, there supervenes a natural inclination downwards,

namely, a motion which, starting from rest, is accelerated at the

[244]

usual rate. If perhaps this discussion is a little obscure, the

following figure will help to make it clearer.

Let us suppose that the descent has been made along the

downward sloping plane AB, from which the body is deflected

so as to continue its motion along the upward sloping plane

BC; and first let these planes be of equal length and placed so as

to make equal angles with the horizontal line GH. Now it is

well known that a body, starting from rest at A, and descending

along AB, acquires a speed which is proportional to the time,

which is a maximum

at B, and which is

maintained by the

body so long as all

causes of fresh ac-

celerationor retarda-

tion are removed;

the acceleration to

C F A

E
D

B

H.G

Fig. 83

which I refer is that to which the body would be subject

if its motion were continued along the plane AB extended,

while the retardation is that which the body would encounter

if its motion were deflected along the plane BC inclined up-

wards; but, upon the horizontal plane GH, the body would

maintain a uniform velocity equal to that which it had ac-

quired at B after fall from A; moreover this velocity is such

that, during an interval of time equal to the time of descent

through AB, the body will traverse a horizontal distance equal

to twice AB. Now let us imagine this same body to move with

the same uniform speed along the plane BC so that here also

during a time-interval equal to that of descent along AB, it will

traverse along BC extended a distance twice AB; but let us

suppose that, at the very instant the body begins its ascent it is

subjected, by its very nature, to the same influences which

surrounded



THIRD DAY 217

surrounded it during its descent from A along AB, namely, it

descends from rest under the same acceleration as that which was

effective in AB, and it traverses, during an equal interval of

time, the same distance along this second plane as it did along

AB; it is clear that, by thus superposing upon the body a uniform

motion of ascent and an accelerated motion of descent, it will be

carried along the plane BC as far as the point C where these two

velocities become equal.

If now we assume any two points D and E, equally distant

from the vertex B, we may then infer that the descent along

BD takes place in the same time as the ascent along BE. Draw

DF parallel to BC; we know that, after descent along AD, the

body will ascend along DF; or, if, on reaching D, the body is

carried along the horizontal DE, it will reach E with the same

momentum [impetus] with which it left D; hence from E the

body will ascend as far as C, proving that the velocity at E is

the same as that at D.

From this we may logically infer that a body which descends

[245]

along any inclined plane and continues its motion along a plane

inclined upwards will, on account of the momentum acquired,

ascend to an equal height above the horizontal; so that if the

descent is along

AB the body will

be carried up the

plane BC as faras

the horizontal line

ACD: and this is

true whether the

inclinations of the

D C

B

Fig. 84

À E

planes are the same or different, as in the case of the planes

AB and BD. But by a previous postulate [p. 184] the speeds

acquired by fall along variously inclined planes having the

same vertical height are the same. If therefore the planes

EB and BD have the same slope, the descent along EB will

be able to drive the body along BD as far as D; and since

this propulsion comes from the speed acquired on reaching

the
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the point B, it follows that this speed at B is the same whether

the body has made its descent along AB or EB. Evidently then

the body will be carried up BD whether the descent has been

made along AB or along EB. The time of ascent along BD is

however greater than that along BC, just as the descent along

EB occupies more time than that along AB; moreover it has

been demonstrated that the ratio between the lengths of these

times is the same as that between the lengths of the planes. We

must next discover what ratio exists between the distances

traversed in equal times along planes of different slope, but of

the same elevation, that is, along planes which are included

between the same parallel horizontal lines. This is done as

follows :

Theorem XV, Proposition XXIV

Given two parallel horizontal planes and a vertical line con-

necting them ; given also an inclined plane passing through

the lower extremity of this vertical line ; then, if a body fall

freely along the vertical line and have its motion reflected

along the inclined plane, the distance which it will traverse

along this plane, during a time equal to that of the verti-

cal fall, is greater than once but less than twice the vertical

line.

Let BC and HG be the two horizontal planes, connected by

the perpendicular AE; also let EB represent the inclined plane

B

F

A C

D

H E

Fig. 85

G

along which the motion takes place after the body has fallen

along AE and has been reflected from E towards B. Then, I

say, that, during a time equal to that of fall along AE, the body

will ascend the inclined plane through a distance which is

greater
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greater than AE but less than twice AE. Lay off ED equal to

AE and choose F so that EB :BD =BD :BF. First we shall

[245]

show that F is the point to which the moving body will be

carried after reflection from E towards B during a time equal to

that of fall along AE; and next we shall show that the distance

EF is greater than EAbut less than twice that quantity.

Let us agree to represent the time of fall along AE by the

length AE, then the time of descent along BE, or what is the

same thing, ascent along EB will be represented by the distance

EB.

Now, since DB is a mean proportional between EB and BF,

and since BE is the time of descent for the entire distance BE,

it follows that BD will be the time of descent through BF, while

the remainderDE will be the time of descent along the remainder

FE. But the time of descent along the fall from rest at B is the

same as the time of ascent from E to F after reflection from E

with the speed acquired during fall either through AE or BE.

Therefore DE represents the time occupied by the body in

passing from E to F, after fall from A to E and after reflection

along EB. But by construction ED is equal to AE. This

concludes the first part of our demonstration.

Now since the whole of EB is to the whole of BD as the

portion DB is to the portion BF, we have the whole of EB is

to the whole of BD as the remainder ED is to the remainder

DF; but EB>BD and hence ED>DF, and EF is less than

twice DE or AE. Q. E. D.

The same is true when the initial motion occurs, not along a

perpendicular, but upon an inclined plane : the proof is also the

same provided the upward sloping plane is less steep, i . e . , longer,

than the downward sloping plane.

Theorem XVI, Proposition XXV

If descent along any inclined plane is followed by motion

along a horizontal plane, the time of descent along the in-

clined plane bears to the time required to traverse any as-

signed length of the horizontal plane the same ratio which

twice
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twice the length of the inclined plane bears to the given

horizontal length .

C D

A

Let CB be any horizontal line and AB an inclined plane; after

descent along AB let the motion continue through the assigned

horizontal distance BD. Then,

I say, the time of descent along

AB bears to the time spent in

traversing BD the same ratio

-which twice AB bears to BD.

For, lay Off BC equal to twice

AB then it follows, from a previous proposition, that the time of

descent along AB is equal to the time required to traverse BC ;

but the time along BC is to the time along DB as the length

CB is to the length BD. Hence the time of descent along AB

Fig. 86

B

[247]

is to the time along BD as twice the distance AB is to the dis-

tance BD.

Q. E. D 
P oblem X, Pr posi

io  X VI

Given a vertical height joining two horizontal parallel lines ;

given also a distance greater than once and less than twice

this vertical height, it is required to pass through the foot

of the given perpendicular an inclined plane such that, after

fall through the given vertical height, a body whose mo-

tion is deflected along the plane will traverse the assigned

distance in a time equal tothe time of vertical fall.

Let AB be the vertical distance separating two parallel

horizontal lines AO and BC; also let FE be greater than once and

less than twice BA. The problem is to pass a plane through B,

extending to the upper horizontal line, and such that a body,

after having fallen from A to B, will, if its motion be deflected

along the inclined plane, traverse a distance equal to EF in a

time equal to that of fall along AB. Lay off ED equal to AB;

then the remainder DF will be less than AB since the entire

length EF is less than twice this quantity ; also lay off DI equal

to DF, and choose the point X such that EI :ID =DF :FX;

from B, draw the plane BO equal in length to EX. Then, I say,

that
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that the plane BO is the one along which, after fall through AB,

a body will traverse the assigned distance FE in a time equal to

the time of fall through AB. Lay off BR and RS equal to ED

and DF respectively; then since EI :ID =DF :FX, we have,

componendo, ED :DI =DX :XF =ED :DF =EX :XD =BO :OR =

O A

C

S
BR

X

Fig. 87

F. D

RO :OS. If we represent the time of fall along AB by the

length AB, then OB will represent the time of descent along

[248]

OB, and RO will stand for the time along OS, while the re-

mainder BR will represent the time required for a body starting

from rest at O to traverse the remaining distance SB. But the

time of descent along SB starting from rest at O is equal to the

time of ascent from B to S after fall through AB. Hence BO is

that plane, passing through B, along which a body, after fall

through AB, will traverse the distance BS, equal to the assigned

distance EF, in the time-interval BR or BA.

Q. E. F 
Theo em XVII, Pr posit

on XX II

If a body descends along two inclined planes of different

lengths but of the same vertical height, the distance which

it will traverse, in the lower part of the longer plane, during

a time-interval equal to that of descent over the shorter

plane, is equal to the length of the shorter plane plus a

portion of it to which the shorter plane bears the same

ratio which the longer plane bears to the excess of the

longer over the shorter plane.

Let AC be the longer plane, AB, the shorter, and AD the

common elevation; on the lower part of AC lay off CE equal

to
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to AB. Choose F such that CA:AE -CA :CA-AB -CE :EF.

Then, I say, that FC is that distance which will, after fall from

A, be traversed during a time-interval equal to that required for

A descent along AB. For since

E

F

=

CA :AE = CE :EF, it follows

that the remainder EA: the

remainder AF CA : AE.

Therefore AE is a mean pro-

portional between AC and

AF. Accordingly ifthelength

DAB is employed to measure

thetime of fall alongAB, then

the distance AC will measure the time of descent through AC;

but the time of descent through AF is measured by the length

AE, and that through FC by EC. Now EC =AB; and hence

follows the proposition.

Fig. 88

[249]

PROBLEM XI, PROPOSITION XXVIII

A

F

E

G

Let AG be any horizontal line touching a circle ; let AB be the

diameter passing through the point of contact; and let AE and

EB represent any two chords. The problem is to determine

what ratio the time of fall through

AB bears to the time of descent

over both AE and EB. Extend BE

till it meets the tangent at G, and

draw AF so as to bisect the angle

BAE. Then, I say, the time through

AB is to the sum of the times along

AE and EB as the length AE is to

the sum of the lengths AE and EF.

For since the angle FAB is equal

to the angle FAE, while the angle

EAG is equal to the angle ABF it

follows that the entire angle GAF is equal tothe sum of the angles

FAB and ABF. But the angle GFA is also equal to the sum of

these two angles . Hence the length GF is equal to the length

B

Fig. 89

GA
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GA; and since the rectangle BG.GE is equal to the square of

GA, it will also be equal to the square of GF, or BG:GF =

GF :GE. If now we agree to represent the time of descent

along AE by the length AE, then the length GE will represent

the time of descent along GE, while GF will stand for the time

of descent through the entire distance GB; so also EF will

denote the time through EB after fall from G or from A along

AE. Consequently the time along AE, or AB, is to the time

along AE and EB as the length AE is to AE+EF. Q. E. D.

A shorter method is to lay off GF equal to GA, thus making

GF a mean proportional between BG and GE. The rest of

the proof is as above.

Theorem XVIII, Proposition XXIX

Given a limited horizontal line, at one end of which is

erected a limited vertical line whose length is equal to one-

half the given horizontal line; then a body, falling through

this given height and having its motion deflected into a

horizontal direction, will traverse the given horizontal dis-

tanceandvertical line

in less time than it

will any other verti-

cal distance plus the

given horizontal dis-

tance.

[250]
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4
0
F

E
O
A
N

B

Let BCbe the given dis- D
C

tance in a horizontal

plane; at the end B erect

a perpendicular, on which

lay off BA equal to half

D

Fig. 90

B

BC. Then, I say, that the time required for a body, starting

from rest at A, to traverse the two distances, AB and BC, is

the least of all possible times in which this same distance BC

together with a vertical portion, whether greater or less than

AB, can be traversed.

Lay off EB greater than AB, as in the first figure, and less

than



224 THE TWO NEW SCIENCES OF GALILEO

than AB, as in the second. It must be shown that the time

required to traverse the distance EB plus BC is greater than

that required for AB plus BC. Let us agree that the length

AB shall represent the time along AB, then the time occupied in

traversing the horizontal portion BC will also be AB, seeing

that BC = 2AB; consequently the time required for both AB

and BC will be twice AB. Choose the point O such that EB:

BO = BO:BA, then BO will represent the time of fall through

EB. Again lay off the horizontal distance BD equal to twice

BE; whence it is clear that BO represents the time along BD

after fall through EB. Select a point N such that DB:BC =

EB :BA =OB :BN. Now since the horizontal motion is uni-

form and since OB is the time occupied in traversing BD, after

fall from E, it follows that NB will be the time along BC after

fall through the same height EB. Hence it is clear that OB plus

BN represents the time of traversing EB plus BC; and, since

twice BA is the time along AB plus BC, it remains to be shown

that OB+BN>2BA.

But since EB:BO =BO:BA, it follows that EB :BA =OB2 :

BA². Moreover sinceEB:BA =OB :BN it follows that OB :BN =

OB²:BA². But OB:BN = (OB :BA) (BA:BN) , and therefore

AB :BN =OB :BA, that is, BA is a mean proportional between

BO and BN. Consequently OB+BN>2BA.

[251]

THEOREM XIX, PROPOSITION XXX

Q. E. D.

A perpendicular is let fall from any point in a horizontal

line; it is required to pass through any other point in this

same horizontal line a plane which shall cut the perpendicu-

lar and alongwhich a body will descend to the perpendicular

in the shortest possible time. Such a plane will cut from the

perpendicular a portion equal to the distance of the as-

sumed point in the horizontal from the upper end of the

perpendicular.

LetACbe any horizontal line and B any point in it from which

is dropped the vertical line BD. Choose any point C in the

horizontal line and lay off, on the vertical, the distance BE

equal
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equal to BC; join C and E. Then, I say, that of all inclined

planes that can be passed through C, cutting the perpendicular,

CE is that one along which the descent to the perpendicular is

accomplished in the shortest time. For, draw the plane CF

cutting the vertical above E, and

the plane CG cutting the vertical

below E; and draw IK, a parallel

vertical line, touching at C a cir-

cle described with BC as radius.

Let EK be drawn parallel to CF, A

and extended to meet the tan-

gent, after cutting the circle at L.

Nowit is clear that the time of

fall along LE is equal to the time

along CE; but the time along

KE is greater than along LE;

therefore the time along KE is

greater than along CE. But the

time along KE is equal to the

time along CF, since they have

the same length and the same

slope ; and, in like manner, it fol-

lows that the planes CG and IE,

having the same length and the

H

I

C

K

F

E

G

D
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same slope, will be traversed in equal times. Also, since HE<

IE, the time along HE will be less than the time along IE.

Therefore also the time along CE (equal to the time alongHE) ,

will be shorter than the time along IE.

Q. E. D 
Th orem XX, Pr posi

io  X XI

If a straight line is inclined at any angle to the horizontal

and if, from any assigned point in the horizontal, a plane of

quickest descent is to be drawn to the inclined line, that

plane will be the one which bisects the angle contained

[252]

between two lines drawn from the given point, one per-

pendicular
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pendicular to the horizontal line, the other perpendicular

to the inclined line.

Let CD be a line inclined at any angle to the horizontal AB;

and from any assigned point A in the horizontal draw AC per-

pendicular to AB, and AE perpendicular to CD; draw FA so

as to bisect the angle CAE. Then, I say, that of all the planes

which can be drawn through the point A, cutting the line CD

G

C

F

E

at any points whatsoever

AF is the one of quickest

descent [in quo tempore

omnium brevissimo fiat de-

scensus]. Draw FG par-

allel to AE; the alternate

Dangles GFA and FAE will

be equal ; also the angle

EAF is equal to the angle

FAG. Therefore the sides

GF and GA of the triangle

FGA are equal. Accord-

ingly if we describe a circle

about Gas center, withGA

as radius, this circle will

pass through the point F,

and will touch the horizontal at the point A and the inclined

line at F; for GFC is a right angle, since GF and AE are parallel.

It is clear therefore that all lines drawn from A to the inclined

line, with the single exception of FA, will extend beyond the

circumference of the circle, thus requiring more time to traverse

any ofthem than is needed for FA.

A

Fig. 92

B

LEMMA

Q. E. D.

If two circles one lying within the other are in contact,

and if any straight line be drawn tangent to the inner

circle, cutting the outer circle, and if three lines be drawn

from the point at which the circles are in contact to three

points on the tangential straight line, namely, the point of

tangency on the inner circle and the two points where the

straight
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straight line extended cuts the outer circle, then these three

lines will contain equal angles at the point of contact.

Let the two circles touch each other at the point A, the center

of the smaller being at B, the center of the larger at C. Draw

[253]

Α

B

the straight line FG touching the inner circle at H, and cutting

the outer at the points F and G; also draw the three lines AF,

AH, and AG. Then, I say, the angles contained by these lines,

FAH and GAH, are equal. Pro-

long AH to the circumference at

I; from the centers of the circles,

draw BH and CI ; join the centers

B and C and extend the line until

it reaches the point of contact at

A and cuts the circles at the

points O and N. But now the

lines BH and CI are parallel, be-

cause the angles ICN and HBO

are equal, each being twice the

angle IAN. And sinceBH, drawn

from the center to the point of

F

H

C

N
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contact is perpendicular to FG, it follows that CI will also be

perpendicular to FG and that the arc FI is equal to the arc IG;

consequently the angle FAI is equal to the angle LAG. Q. E. D.

Theorem XXI, Proposition XXXII

If in a horizontal line any two points are chosen and if

through one ofthese points a line be drawn inclined towards

the other, and if from this other point a straight line is

drawn to the inclined line in such a direction that it cuts

off from the inclined line a portion equal to the distance

between the two chosen points on the horizontal line, then

the time of descent along the line so drawn is less than along

any other straight line drawn from the same point to the

same inclined line. Along other lines which make equal

angles on opposite sides of this line, the times of descent are

the same.

Let
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Let A and B be any two points on a horizontal line: through

B draw an inclined straight line BC, and from B lay off a dis-

tance BD equal to BA; join the points A and D. Then, I say,

the time of descent along AD is less than along any other line

drawn from A to the inclined line BC. From the point A draw

AE perpendicular to BA; and from the point D draw DE per-

pendicular to BD, intersecting AE at E. Since in the isosceles

B

F
E
T

triangle ABD, we have the

angles BAD and BDA equal,

[254]

their complements DAE and

EDA are equal. Hence if,

with E as center and EA as

radius, we describe a circle it

will pass through D and will

touch the lines BA and BD

at the points A and D. Now

sinceAis the end of the verti-

cal line AE, the descent along

ADwill occupy less time than

along any other line drawn

from the extremity A to the line BC and extending beyond the

circumference of the circle; which concludes the first part of the

proposition.

Fig. 94

If however, we prolong the perpendicular line AE, and choose

any point F upon it, about which as center, we describe a circle

of radius FA, this circle, AGC, will cut the tangent line in the

points G and C. Draw the lines AG and AC which will accord-

ing to the preceding lemma, deviate by equal angles from the

median line AD. The time of descent along either of these

lines is the same, since they start from the highest point A, and

terminate on the circumference of the circle AGC.

Problem XII, Proposition XXXIII

Given a limited vertical line and an inclined plane of equal

height, having a common upper terminal; it is required

to find a point on the vertical line, extended upwards, from

which
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which a body will fall and, when deflected along the inclined

plane, will traverse it in the same time-interval which is

required for fall, from rest, through the given vertical height.

Let AB be the given limited vertical line and AC an in-

clined plane having the same altitude. It is required to find on

the vertical BA, extended above A, a point from which a falling

body will traverse the distance AC in the same time which is

spent in falling, from rest at A, through the given vertical line

AB. Draw the line DCE at right angles to AC, and lay off CD

equal to AB; also join the points A and D; then the angle ADC

will be greater than the angle CAD, since the side CA is greater

than either AB or CD. Make the angle DAE equal to the angle

[255]

ADE, and draw EF perpendicular to AE; then EF will cut the

inclined plane, ex-

tended both ways, at

F. Lay off AI and

AG each equal toCF ;

through G draw the

horizontal line GH.

Then, I say, H is the

point sought.

For, if we agree to

let the length AB

represent the time of

fall along the verti-

cal AB, then AC will

likewiserepresent the

time of descent from

rest at A, along AC;

H
G

A

E

I

F
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B

and since, in the right-angled triangleAEF, the line EC has been

drawn from the right angle at E perpendicular to the base AF, it

follows that AE will be a mean proportional between FA and AC,

while CE will be a mean proportional between AC and CF, that

is between CA and AI. Now, since AC represents the time of

descent from A along AC, it follows that AE will be the time

along the entire distance AF, and EC the time along AI. But

since
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since in the isosceles triangle AED the side EA is equal to the

side ED it follows that ED will represent the time of fall along

AF, while EC is the time of fall along AI. Therefore CD, that

is AB, will represent the time of fall, from rest at A, along IF;

which is the same as saying that AB is the time of fall, from G or

from H, along AC.

PROBLEM XIII, PROPOSITION XXXIV

E. F.

Given a limited inclined plane and a vertical line having

their highest point in common, it is required to find a

point in the vertical line extended such that a body will

fall from it and then traverse the inclined plane in the same

time which is required to traverse the inclined plane alone

starting from rest at the top of said plane.

Let AC and AB be an inclined plane and a vertical line

respectively, having a common highest point at A. It is re-

quired to find a point in the vertical line, above A, such that a

body, falling from it and afterwards having its motion directed

along AB, will traverse both the assigned part of the vertical

[256]

line and the plane AB in the same time which is required for

the plane AB alone, starting from rest at A. Draw BC a hori-

zontal line and lay off AN equal to AC; choose the point L so

that AB:BN =AL:LC, and lay off AI equal to AL; choose the

point E such that CE, laid off on the vertical AC produced, will

be a third proportional to AC and BI. Then, I say, CE is the

distance sought ; so that, if the vertical line is extended above

A and if a portion AX is laid off equal to CE, then a body falling

from X will traverse both the distances, XA and AB, in the

same time as that required, when starting fromA, to traverse

AB alone.

Draw XR parallel to BC and intersecting BA produced in

R; next draw ED parallel to BC and meeting BA produced in

D; on AD as diameter describe a semicircle ; from B draw BF

perpendicular to AD, and prolong it till it meets the circum-

ference of the circle; evidently FB is a mean proportional

between AB and BD, while FA is a mean proportional between

DA
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DA and AB. Take BS equal to BI and FH equal to FB. Now

since AB :BD =AC:CE and since BF is a mean proportional

[257]

between AB and BD, while BI is a mean proportional between

AC and CE, it follows that BA:AC =FB:BS, and since BA:

AC = BA:BN =FB:BS we shall have, convertendo, BF :FS =

AB :BN =AL :LC. Consequently the rectangle formed by FB

F

S

H

A

I

N
L

C

R
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and CL is equal to the rectangle whose sides are AL and SF ;

moreover, this rectangle AL.SF is the excess of the rectangle

AL.FB, or AI.BF, over the rectangle AI.BS, or AI.IB. But the

rectangle FB.LC is the excess of the rectangle AC.BF over the

rectangle AL.BF; and moreover the rectangle AC.BF is equal to

the rectangle AB.BI since BA:AC =FB :BI ; hence the excess

of the rectangle AB.BI over the rectangle AI.BF, or AI.FH, is

equal to the excess of the rectangle AI.FH over the rectangle

AI.IB; therefore twice the rectangle AI.FH is equal to the sum

of
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=

=

But

of the rectangles AB.BI and AI.IB, or 2AI.FH = 2AI.IB+

BI2. Add AI2 to each side, then 2AI.IB+BI² +AI² = AB² =

2AI.FH+AI2. Again add BF2 to each side, then AB2 +BF2-

AF² = 2AI.FH + AI² + BF² 2AI.FH + AI² + FH².

AF² =2AH.HF + AH² + HF² ; and hence 2AI.FH +AI² +

FH² = 2AH.HF + AH² + HF². Subtracting HF² from each

side we have 2AI.FH+AI² =2AH.HF +AH2. Since now FH

is a factor common to both rectangles, it follows that AH is

equal to AI ; for if AH were either greater or smaller than AI,

then the two rectangles AH.HF plus the square of HA would be

either larger or smaller than the two rectangles AI.FH plus the

square of IA, a result which is contrary to what we have just

demonstrated.

If now we agree to represent the time of descent along AB

by the length AB, then the time through AC will likewise be

measured by AC; and IB, which is a mean proportional between

AC and CE, will represent the time through CE, or XA, from

rest at X. Now, since AF is a mean proportional between DA

and AB, or between RB and AB, and since BF, which is equal

to FH, is a mean proportional between AB and BD, that is

between AB and AR, it follows, from a preceding proposition

[Proposition XIX, corollary], that the difference AH represents

the time of descent along AB either from rest at R or after fall

from X, while the time of descent along AB, from rest at A, is

measured by the length AB. But as has just been shown, the

time of fall through XA is measured by IB, while the time of

descent along AB, after fall, through RA or through XA, is IA.

Therefore the time of descent through XA plus AB is measured

by the length AB, which, of course, also measures the time of

descent, from rest at A, along AB alone.

[258]

Problem XIV, PROPOSITION XXXV

Q. E. F.

Given an inclined plane and a limited vertical line, it is re-

quired to find a distance on the inclined plane which a body,

starting from rest, will traverse in the same time as that

needed to traverse both the vertical and the inclined plane.

Let
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Let AB be the vertical line and BC the inclined plane. It is

required to lay off on BC a distance which a body, starting from

rest, will traverse in a time equal to that which is occupied by

fall through the vertical AB and by descent of the plane. Draw

the horizontal line AD, which intersects at E the prolongation of

the inclined plane CB; lay off BF equal to BA, and about E as

center, with EF as radius describe the circle FIG. Prolong FE

until it intersects the circumference at G. Choose a point H

such that GB:BF =BH :HF. Draw the line HI tangent to the

G

M

N

H

F

Fig. 97

circle at I. At B draw the line BK perpendicular to FC, cutting

the line EIL at L; also drawLM perpendicular to EL and cutting

BC at M. Then, I say, BM is the distance which a body, start-

ing from rest at B, will traverse in the same time which is re-

quired to descend from rest at A through both distances, AB

and BM. Lay off EN equal to EL; then since GB :BF =

BH:HF, we shall have, permutando, GB :BH =BF :HF, and,

dividendo, GH:BH -BHHF. Consequently the rectangle

GH.HF is equal to the square on BH; but this same rectangle

is also equal to the square on HI ; therefore BH is equal to HI.

Since, in the quadrilateral ILBH, the sides HB and HI are

equal
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equal and since the angles at B and I are right angles, it follows

that the sides BL and LI are also equal : but EI =EF ; therefore

[259]

the total length LE, or NE, is equal to the sum of LB and EF.

If we subtract the common part EF, the remainder FN will be

equal to LB: but, by construction, FB =BA and, therefore,

LB =AB+BN. If again we agree to represent the time of fall

through AB by the length AB, then the time of descent along

EB will be measured by EB; moreover since EN is a mean pro-

portional between ME and EB it will represent the time of

descent along the whole distance EM; therefore the difference

of these distances, BM, will be traversed, after fall from EB, or

AB, in a time which is represented by BN. But having already

assumed the distance AB as a measure ofthe time of fall through

AB, the time of descent along AB and BM is measured byAB+

BN. Since EB measures the time of fall, from rest at E, along

EB, the time from rest at B along BM will be the mean pro-

portional between BE and BM, namely, BL. The time there-

M

Fig. 98

H

A

B

fore for the path AB+

BM, starting from rest

at A is AB+BN; but

the time for BM alone,

starting from rest at B,

is BL; and since it has

already been shown

that BL = AB + BN,

the proposition follows.

Another and shorter

proof is the following:

Let BC be the inclined

plane and BA the vertical ; at B draw a perpendicular to EC,

extending it both ways; lay off BH equal to the excess of

BE over BA; make the angle HEL equal to the angle BHE;

prolongELuntil it cuts BK in L; at LdrawLM perpendicular to

EL and extend it till it meets BC in M; then, I say, BM is the

portion of BC sought. For, since the angle MLE is a right

angle, BL will be a mean proportional between MB and BE,

while
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while LE is a mean proportional between ME and BE; lay off

EN equal to LE; then NE =EL =LH, and HB -NE-BL. But

also HB =NE-(NB+BA) ; therefore BN+BA=BL. If now

we assume the length EB as a measure of the time of descent

along EB, the time of descent, from rest at B, along BM will be

represented by BL; but, if the descent along BM is from rest at

E or at A, then the time of descent will be measured by BN; and

AB will measure the time along AB. Therefore the time re-

quired to traverse AB and BM, namely, the sum of the distances

AB and BN, is equal to the time of descent, from rest at B,

along BM alone.

[260]

LEMMA

A

Q. E. F.

Let DC be drawn perpendicular to the diameter BA; from the

extremity B draw the line BED at

random ; draw the line FB. Then, I

say, FB is a mean proportional be-

tween DB and BE. Join the points

E and F. Through B, draw the

tangent BG which will be parallel to

CD. Now, since the angle DBG is

equal to the angle FDB, and since the

alternate angle of GBD is equal to

EFB, it follows that the triangles

FDB and FEB are similar and hence

BD:BF = FB :BE.

LEMMA

с

E

D F D

B G
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Let AC be a line which is longer than DF, and let the ratio

ofAB to BC be greater than that of DE to EF. Then, I say,

BA

D E G F

+

Fig. 100

AB is greater than DE. For, if AB

bears to BC a ratio greater than that of

DE to EF, then DE will bear to some

length shorter than EF, the same ratio

which AB bears to BC. Call this length

EG; then since AB :BC =DE :EG, it follows, componendo et con-

vertendo,
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vertendo, that CA:AB =GD :DE. But since CA is greater than

GD, it follows that BA is greater than DE.

A

A

C

N

B

E

N

E

Fig. 101

B

LEMMA

Let ACIB be the quadrant of a

circle ; from B draw BE parallel to

AC; about any point in the line

BE describe a circle BOES, touch-

ing AB at B and intersecting the

circumference of the quadrant at

I. Join the points C and B ; draw

the line CI, prolonging it to S.

Then, I say, the line CI is always

less than CO. Draw the line AI

touching the circle BOE. Then,

[261]

if the line DI be drawn, it will be

equal to DB; but, since DB

touches the quadrant, DI will also

be tangent to it and will be at right

angles to AI ; thus AI touches the

circle BOE at I. And since the

angleAIC is greater than the angle

ABC, subtending as it does a

larger arc, it follows that the angle

SIN is also greater than the angle

ABC. Wherefore the arc IES is

greater than the arc BO, and the

line CS, being nearer the center,

is longer than CB. Consequently

CO is greater than CI, since SC:

CB =OC :CI.

This result would be all the

more marked if, as in the second

figure, the arc BIC were less than a quadrant. For the per-

pendicular DB would then cut the circle CIB; and so also would

DI
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DI which is equal to BD; the angle DIA would be obtuse and

therefore the line AINwould cut the circle BIE. Since the angle

ABC is less than the angle AIC, which is equal to SIN, and still

less than the angle which the tangent at I would make with the

line SI, it follows that the arc SEI is far greater than the arc

BO; whence, etc.

Q. E. D 
Theo em XXII, Pr posit

on XX VI

If from the lowest point of a vertical circle, a chord is

drawn subtending an arc not greater than a quadrant,

and if from the two ends of this chord two other chords

be drawn to any point on the arc, the time of descent along

the two latter chords will be shorter than along the first,

and shorter also, by the same amount, than along the lower

ofthese two latter chords.

[262]

F

D

Let CBD be an arc, not exceeding a quadrant, taken from a

vertical circle whose lowest point is C; let CD be the chord

[planum elevatum] sub- M

tending this arc, and let

there be two other

chords drawn from C

and D to any point B

on the arc. Then, I say,

the timeofdescent along

the two chords [plana]

DB and BC is shorter

than along DC alone, or

along BC alone, starting

from rest at B. Through

the point D, draw the

horizontal line MDA

cutting CB extended at

B N

T G S R P

Fig. 102

A: draw DN and MC at right angles to MD, and BN at right

angles to BD; about the right-angled triangle DBN describe the

semicircle DFBN, cutting DC at F. Choose the point O such

that DO will be a mean proportional between CD and DF; in like

manner
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9

manner select V so that AV is a mean proportional between CA

and AB. Let the length PS represent the time of descent along

the whole distance DC or BC, both of which require the same

time. Lay off PR such that CD :DO =timePS . timePR. Then

PRwill represent the time in which a body, starting from D, will

traverse the distance DF, while RS will measure the time in which

the remaining distance, FC, will be traversed. But since PS is

also the time of descent, from rest at B, along BC, and if we

choose T such that BC:CD =PS :PT then PT will measure the

time ofdescent from A to C, for we have already shown [Lemma]

that DC is a mean proportional between AC and CB. Finally

choose the point G such that CA:AV =PT:PG, then PG will be

the time of descent from A to B, while GT will be the residual

time of descent along BC following descent from A to B. But,

since the diameter, DN, of the circle DFN is a vertical line, the

chords DF and DB will be traversed in equal times ; wherefore

if one can prove that a body will traverse BC, after descent

along DB, in a shorter time than it will FC after descent along

DF he will have proved the theorem. But a body descending

from D along DB will traverse BC in the same time as if it had

come from A along AB, seeing that the body acquires the same

[263]

momentum in descending along DB as along AB. Hence it

remains only to show that descent along BC after AB is quicker

than along FC after DF. But we have already shown that GT

represents the time along BC after AB; also that RS measures

the time along FC after DF. Accordingly it must be shown

that RS is greater than GT, which may be done as follows :

Since SP :PR =CD:DO, it follows, invertendo et convertendo,

that RS :SP =OC:CD; also we have SP :PT =DC :CA. And

since TP :PG =CA:AV, it follows, invertendo, that PT:TG =

AC:CV, therefore, ex œquali, RS :GT - OC :CV. But, as we

shall presently show, OC is greater than CV; hence the time

RS is greater than the time GT, which was to be shown. Now,

since [Lemma] CF is greater than CB and FD smaller than BA,

it follows that CD :DF>CA :AB. But CD :DF = CO :OF,

seeing that CD :DO =DO:DF; and CA :AB =CV2:VB². There

fore
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fore CO :OF >CV :VB, and, according to the preceding lemma,

CO>CV. Besides this it is clear that the time of descent along

DC is to the time along DBC as DOC is to the sum of DO

and CV.

SCHOLIUM

From the preceding it is possible to infer that the path of

quickest descent [lationem omnium velocissimam] from one

point to another is not the shortest path, namely, a straight

line, but the arc of a circle.* In the quadrant BAEC, having

the side BC vertical, divide the arc AC into any number of

equal parts, AD, DE, EF, FG, GC, and from C draw straight

lines to the points A, D, E, F, G; B

draw also the straight lines AD,

DE, EF, FG, GC. Evidently de-

scent along thepathADCis quicker

[264]

E

F

G
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A

D

than along AC alone or along DC

from rest at D. But a body, start-

ing from rest at A, will traverse

DC more quickly than the path

ADC; while, if it starts from rest

at A, it will traverse the path DEC

in a shorter time than DC alone. C

Hence descent along the three

chords, ADEC, will take less time than along the two chords

ADC. Similarly, followingdescent alongADE, the time required

to traverse EFC is less than that needed for EC alone. There-

fore descent is more rapid along the four chords ADEFC than

along the three ADEC. And finally a body, after descent along

ADEF, will traverse the two chords, FGC, more quickly than

FC alone. Therefore, along the five chords, ADEFGC, descent

will be more rapid than along the four, ADEFC. Consequently

* It is well known that the first correct solution for the problem of

quickest descent, under the condition of a constant force was given by

John Bernoulli ( 1667-1748) . [Trans.]
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the nearer the inscribed polygon approaches a circle the shorter

is the time required for descent from Ato C.

What has been proven for the quadrant holds true also for

smaller arcs ; the reasoning is the same.

Problem XV, Proposition XXXVII

Given a limited vertical line and an inclined plane of equal

altitude; it is required to find a distance on the inclined

plane which is equal to the vertical line and which is

traversed in an interval equal to the time of fall along the

vertical line.

G D

I

Σ

Let AB be the vertical line and AC the inclined plane. We must

locate, on the inclined plane, a distance equal to the vertical

A line AB and which will be

traversed by a body starting

from rest at A in the same

time needed for fall along the

vertical line. Lay off AD

equal to AB, and bisect the

remainder DC at I. Choose

the point E such that AC:CI

=CI:AE and lay off DG

equal to AE. Clearly EG is equal to AD, and also to AB. And

further, I say that EG is that distance which will be traversed

by a body, starting from rest at A, in the same time which is

required for that body to fall through the distance AB. For

since AC:CI =CI :AE =ID :DG, we have, convertendo, CA:

AI = DI :IG. And since the whole of CA is to the whole of AI

as the portion CI is to the portion IG, it follows that the re-

[265]

Fig. 104

mainder IA is to the remainder AG as the whole of CA is to the

whole of AI. Thus AI is seen to be a mean proportional be-

tween CA and AG, while CI is a mean proportional between CA

and AE. If therefore the time of fall along AB is represented by

the length AB, the time along AC will be represented by AC,

while CI, or ID, will measure the time along AE. Since AI is a

mean proportional between CA and AG, and since CA is a

measure
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measure of the time along the entire distance AC, it follows that

AI is the time along AG, and the difference IC is the time along

the difference GC; but DI was the time along AE. Conse-

quently the lengths DI and IC measure the times along AE and

CG respectively. Therefore the remainder DA represents the

time along EG, which of course is equal to the time along AB.

Q. E. F.

COROLLARY

From this it is clear that the distance sought is bounded at

each end by portions of the inclined plane which are traversed

in equal times.

Problem XVI, Proposition XXXVIII

Given two horizontal planes cut by a vertical line, it is

required to find a point on the upper part of the vertical

line from which bodies may fall to the horizontal planes and

there, having their motion deflected into a horizontal

direction, will, during an interval equal to the time of fall,

traverse distances which bear to each other any assigned

ratio of a smaller quantity to a larger.

Let CD and BE be the horizontal planes cut by the vertical

ACB, and let the ratio of the smaller quantity to the larger

be that of N to FG. It is required to find in the upper part

of the vertical line, AB, a point from which a body falling to

the plane CD and there having its motion deflected along this

plane, will traverse, during an interval equal to its time of fall a

distance such that if another body, falling from this same point

to the plane BE, there have its motion deflected along this

plane and continued during an interval equal to its time of fall,

will traverse a distance which bears to the former distance the

[266]

ratio of FG to N. Lay off GH equal to N, and select the point

L so that FH:HG -BC:CL. Then, I say, L is the point sought.

For, if we lay off CM equal to twice CL, and draw the line

LM cutting the plane BE at O, then BO will be equal to twice

BL
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BL. And since FH:HG =BC:CL, we have, componendo et

convertendo, HG :GF =N :GF =CL:LB =CM :BO. It is clear

that, since CM is double the distance LC, the space CM is

that which a body falling from L through LC will traverse in

the plane CD ; and, for the same reason, since BO is twice the

distance BL, it is clear that BO is the distance which a body,

A

L

D M
C

E

N

H G

B

Fig. 105

after fall through LB, will traverse during an interval equal to

the time of its fall through LB. Q. E. F.

SAGR. Indeed, I think we may concede to our Academician,

without flattery, his claim that in the principle [principio, i. e.,

accelerated motion] laid down in this treatise he has established

a new science dealing with a very old subject. Observing with

what ease and clearness he deduces from a single principle the

proofs of so many theorems, I wonder not a little how such

a question escaped the attention of Archimedes, Apollonius,

Euclid and so many other mathematicians and illustrious

philosophers, especially since so many ponderous tomes have

been devoted to the subject of motion.

[267]

SALV. There is a fragment of Euclid which treats of motion,

but
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but in it there is no indication that he ever began to investigate

the property of acceleration and the manner in which it varies

with slope. So that we may say the door is now opened, for the

first time, to a new method fraught with numerous and wonder-

ful results which in future years will command the attention of

other minds.

SAGR. I really believe that just as, for instance, the few

properties of the circle proven by Euclid in the Third Book of

his Elements lead to many others more recondite, so the prin-

ciples which are set forth in this little treatise will, when taken

up by speculative minds, lead to many another more remarkable

result; and it is to be believed that it will be so on account of the

nobility of the subject, which is superior to any other in nature.

During this long and laborious day, I have enjoyed these

simple theorems more than their proofs, many of which, for

their complete comprehension, would require more than an hour

each; this study, if you will be good enough to leave the book

in my hands, is one which I mean to take up at my leisure after

we have read the remaining portion which deals with the motion

of projectiles ; and this if agreeable to you we shall take up to-

morrow.

SALV. I shall not fail to be with you.

END OF THE THIRD DAY.

[268]
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FOURTH DAY

SALVIATI. Once more, Simplicio is here on

time ; so let us without delay take up the

question ofmotion. The text ofour Author

is as follows:

THE MOTION OF PROJECTILES

In the preceding pages we have discussed the

properties of uniform motion and of motion naturally accel-

erated along planes of all inclinations. I now propose to set

forth those properties which belong to a body whose motion is

compounded oftwo other motions, namely, one uniform and one

naturally accelerated ; these properties, well worth knowing, I

propose to demonstrate in a rigid manner. This is the kind of

motion seen in a moving projectile ; its origin I conceive to be as

follows:

Imagine any particle projected along a horizontal plane with-

out friction ; then we know, from what has been more fully

explained in the preceding pages, that this particle will move

along this same plane with a motion which is uniform and

perpetual, provided the plane has no limits. But if the plane is

limited and elevated, then the moving particle, which we imag-

ine to be a heavy one, will on passing over the edge of the plane

acquire, in addition to its previous uniform and perpetual

motion, a downward propensity due to its own weight; so that

the resulting motion which I call projection [projectio], is com-

pounded of one which is uniform and horizontal and of another

which is vertical and naturally accelerated. We nowproceed to

demonstrate
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demonstrate some of its properties, the first of which is as fol-

lows:

[269]

Theorem I, Proposition I

Aprojectile which is carried by a uniform horizontal motion

compounded with a naturally accelerated vertical motion

describes a path which is a semi-parabola.

SAGR. Here, Salviati, it will be necessary to stop a little

while for my sake and, I believe, also for the benefit of Sim-

plicio; for it so happens that I have not gone very far in my

study of Apollonius and am merely aware of the fact that he

treats of the parabola and other conic sections, without an un-

derstanding of which I hardly think one will be able to follow

the proof of other propositions depending upon them. Since

even in this first beautiful theorem the author finds it necessary

to prove that the path of a projectile is a parabola, and since, as

I imagine, we shall have to deal with only this kind of curves,

it will be absolutely necessary to have a thorough acquaintance,

if not with all the properties which Apollonius has demonstrated

for these figures, at least with those which are needed for the

present treatment.

SALV. You are quite too modest, pretending ignorance of

facts which not long ago you acknowledged as well known—I

mean at the time when we were discussing the strength of

materials and needed to use a certain theorem of Apollonius

which gave you no trouble.

SAGR. I may have chanced to know it or may possibly have

assumed it, so long as needed, for that discussion ; but nowwhen

wehave to follow all these demonstrations about such curves we

ought not, as they say, to swallow it whole, and thus waste time

and energy
.

SIMP. Noweven though Sagredo is, as I believe, well equipped

for all his needs, I do not understand even the elementary terms;

for although our philosophers have treated the motion of pro-

jectiles, I do not recall their having described the path of a

projectile except to state in a general way that it is always a

curved
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curved line, unless the projection be vertically upwards. But

[270]

if the little Euclid which I have learned since our previous dis-

cussion does not enable me to understand the demonstrations

which are to follow, then I shall be obliged to accept the the-

orems on faith without fully comprehending them.

SALV. On the contrary, I desire that you should understand

them from the Author himself, who, when he allowed me to see

this work of his, was good enough to prove for me two of the

principal properties of the parabola because I did not happen to

have at hand the books of Apollonius. These properties, which

are the only ones we shall need in the present discussion, he

proved in such a way that no prerequisite knowledge was re-

quired. These theorems are, indeed, given by Apollonius, but

after many preceding ones, to follow which would take a long

while. I wish to shorten our task by deriving the first property

C

K

purely and simply from the mode of gen-

eration of the parabola and proving the

second immediately from the first.

Beginning now with the first, imagine

a right cone, erected upon the circular

base ibkc with apex at l. The section of

this cone made by a plane drawn parallel

to the side lk is the curve which is called

a parabola. The base of this parabola bc

cuts at right angles the diameter ik ofthe

circle ibkc, and the axis ad is parallel to

the side lk; now having taken any pointf

in the curve bfa draw the straight line ft

parallel to bd; then, I say, the square

of bd is to the square of fe in the same ratio as the axis ad

is to the portion ae. Through the point e pass a plane parallel

to the circle ibkc, producing in the cone a circular section whose

diameter is the line geh. Since bd is at right angles to ik in the

circle ibk, the square of bd is equal to the rectangle formed by id

and dk; so also in the upper circle which passes through the

points gfh the square of fe is equal to the rectangle formed by

Fig. 106

ge
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ge and eh; hence the square of bd is to the square of fe as the

rectangle id.dk is to the rectangle ge.eh. And since the line ed is

parallel to hk, the line eh, being parallel to dk, is equal to it ;

therefore the rectangle id.dk is to the rectangle ge.eh as id is to

[271]

ge, that is, as da is to ae; whence also the rectangle id.dk is to the

rectangle ge.eh, that is, the square of bd is to the square offe, as

the axis da is to the portion ae. Q. E. D.

Theother proposition necessary for this discussion we demon-

strate as follows. Let us draw a parabola whose axis ca is pro-

longed upwards to a point d; from any point b draw the line bc

parallel to the base of the parabola ; if now the point d is chosen

so that da ca, then, I say, the
=

straight line drawn through the

points b and d will be tangent to

the parabola at b. For imagine, if

possible, that this line cuts the par-

abola above or that its prolonga-

tion cuts it below, and through any

point g in it draw the straight line

fge. And since the square of fe is

greater than the square of ge, the

square offe will bear a greater ratio

to the square of bc than the square

of ge to that of bc; and since, by the

preceding proposition, the square

offe is to that of bc as the line ea is

to ca, it follows that the line ea

will bear to the line ca a greater

ratio than the square of ge to that

of bc, or, than the square of ed to

that of cd (the sides of the triangles

deg and dcb being proportional) .

с

C

5
0

d
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But the line ea is to ca, or da, in the same ratio as four times the

rectangle ea.ad is to four times the square of ad, or, what is the

same, the square of cd, since this is four times the square of ad;

hence four times the rectangle ea.ad bears to the square of cd

a
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a greater ratio than the square of ed to the square of cd; but

that would make four times the rectangle ea.ad greater than

the square of ed; which is false, the fact being just the oppo-

site, because the two portions ea and ad of the line ed are not

equal. Therefore the line db touches the parabola without

cutting it. Q. E. D.

SIMP. Your demonstration proceeds too rapidly and, it seems

to me, you keep on assuming that all of Euclid's theorems are

[272]

as familiar and available to me as his first axioms, which is

far from true. And now this fact which you spring upon us,

that four times the rectangle ea.ad is less than the square of

de because the two portions ea and ad of the line de are not

equal brings me little composure of mind, but rather leaves me

in suspense.

SALV. Indeed, all real mathematicians assume on the part of

the reader perfect familiarity with at least the elements of

Euclid; and here it is necessary in your case only to recall a

proposition of the Second Book in which he proves that when a

line is cut into equal and also into two unequal parts, the rec-

tangle formed on the unequal parts is less than that formed

on the equal (i. e., less than the square on half the line) , by an

amount which is the square of the difference between the equal

and unequal segments. From this it is clear that the square of

the whole line which is equal to four times the square of the

half is greater than four times the rectangle of the unequal

parts. In order to understand the following portions of this

treatise it will be necessary to keep in mind the two elemental

theorems from conic sections which we have just demonstrated ;

and these two theorems are indeed the only ones which the

Author uses. We can now resume the text and see how he

demonstrates his first proposition in which he shows that a

body falling with a motion compounded of a uniform horizontal

and a naturally accelerated [naturale descendente ] one describes

a semi-parabola.

Let us imagine an elevated horizontal line or plane ab along

which a body moves with uniform speed from a to b. Suppose

this
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this plane to end abruptly at b; then at this point the body will,

on account of its weight, acquire also a natural motion down-

wards along the perpendicular bn. Draw the line be along the

plane ba to represent the flow, or measure, of time; divide this

line into a number of segments, bc, cd, de, representing equal

intervals oftime; from the points b, c, d, e, let fall lines which are

parallel to the per-

pendicularbn. Onthe

first of these lay off

any distance ci, onthe

second a distance four

times as long, df; on

[273 ]

the third, one nine

times as long, eh; and

soon, in proportion to

a C

g

Fig. 108

n

the squares of cb, db,

eb, or, we may say, in

the squared ratio of these same lines. Accordingly we see that

while thebody moves from bto c with uniform speed, it also falls

perpendicularly through the distance ci, and at the end of the

time-interval bc finds itself at the point i. In like manner at the

end of the time-interval bd, which is the double of bc, the vertical

fall will be four times the first distance ci; for it has been shown

in a previous discussion that the distance traversed by a freely

falling body varies as the square of the time; in like manner the

space eh traversed during the time be will be nine times ci;

thus it is evident that the distances eh, df, ci will be to one

another as the squares of the lines be, bd, bc. Now from the

points i,f, h draw the straight lines io, fg, hl parallel to be; these

lines hl, fg, io are equal to eb, db and cb, respectively; so also are

the lines bo, bg, bl respectively equal to ci, df, and eh. The square

of hl is to that offg as the line lb is to bg; and the square offg is

to that of io as gb is to bo; therefore the points i,f, h, lie on one

and the same parabola. In like manner it may be shown that,

if we take equal time-intervals of any size whatever, and if we

imagine the particle to be carried by a similar compound motion,

the
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the positions of this particle, at the ends of these time-intervals,

will lie on one and the same parabola. Q. E. D.

SALV. This conclusion follows from the converse of the first

of the two propositions given above. For, having drawn a

parabola through the points b and h, any other two points, fand

i, not falling on the parabola must lie either within or without;

consequently the line fg is either longer or shorter than the line

which terminates on the parabola. Therefore the square of hl

will not bear to the square of fg the same ratio as the line lb to

bg, but a greater or smaller ; the fact is, however, that the square

of hl does bear this same ratio to the square offg. Hence the

pointf does lie on the parabola, and so do all the others.

SAGR. One cannot deny that the argument is new, subtle and

conclusive, resting as it does upon this hypothesis, namely,

that the horizontal motion remains uniform, that the vertical

motion continues to be accelerated downwards in proportion to

the square of the time, and that such motions and velocities as

these combine without altering, disturbing, or hindering each

other,* so that as the motion proceeds the path of the projectile

does not change into a different curve: but this, in my opinion,

[274]

is impossible. For the axis of the parabola along which we

imagine the natural motion of a falling body to take place stands

perpendicular to a horizontal surface and ends at the center of

the earth; and since the parabola deviates more and more from

its axis no projectile can ever reach the center of the earth or, if

it does, as seems necessary, then the path of the projectile must

transform itself into some other curve very different from the

parabola.

SIMP. To these difficulties, I may add others. One of these is

that we suppose the horizontal plane, which slopes neither up

nor down, to be represented by a straight line as if each point on

this line were equally distant from the center, which is not the

case; for as one starts from the middle [of the line] and goes

toward either end, he departs farther and farther from the

center [of the earth] and is therefore constantly going uphill.

Whence it follows that the motion cannot remain uniform

*A very near approach to Newton's Second Law of Motion. [Trans.]
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through any distance whatever, but must continually diminish.

Besides, I do not see how it is possible to avoid the resistance of

the medium which must destroy the uniformity of the horizon-

tal motion and change the law of acceleration of falling bodies.

These various difficulties render it highly improbable that a

result derived from such unreliable hypotheses should hold true

in practice.

ŠALV. All these difficulties and objections which you urge

are so well founded that it is impossible to remove them; and,

as for me, I am ready to admit them all, which indeed I think

ourAuthorwould also do. I grant that these conclusions proved

in the abstract will be different when applied in the concrete

and will be fallacious to this extent, that neither will the horizon-

tal motion be uniform nor the natural acceleration be in the

ratio assumed, nor the path of the projectile a parabola, etc.

But, on the other hand, I ask you not to begrudge our Author

that which other eminent men have assumed even if not strictly

true. The authority ofArchimedes alone will satisfy everybody.

In his Mechanics and in his first quadrature of the parabola he

takes for granted that the beam of a balance or steelyard is a

straight line, every point of which is equidistant from the

common center of all heavy bodies, and that the cords by which

heavy bodies are suspended are parallel to each other.

Some consider this assumption permissible because, in prac-

tice, our instruments and the distances involved are so small in

comparison with the enormous distance from the center of the

earth that we may consider a minute of arc on a great circle as a

straight line, and may regard the perpendiculars let fall from its

two extremities as parallel. For if in actual practice one had to

[275]

consider such small quantities, it would be necessary first of all

to criticise the architects who presume, by use of a plumbline, to

erect high towers with parallel sides. I may add that, in all

their discussions, Archimedes and the others considered them-

selves as located at an infinite distance from the center of the

earth, in which case their assumptions were not false, and

therefore their conclusions were absolutely correct. When we

wish
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wish to apply our proven conclusions to distances which, though

finite, are very large, it is necessary for us to infer, on the basis of

demonstrated truth, what correction is to be made for the fact

that our distance from the center of the earth is not really

infinite, but merely very great in comparison with the small

dimensions of our apparatus. The largest of these will be the

range of our projectiles—and even here we need consider only

the artillery—which, however great, will never exceed four of

those miles of which as many thousand separate us from the

center of the earth; and since these paths terminate upon the

surface of the earth only very slight changes can take place in

their parabolic figure which, it is conceded, would be greatly

altered if they terminated at the center of the earth.

As to the perturbation arising from the resistance of the

medium this is more considerable and does not, on account of its

manifold forms, submit to fixed laws and exact description.

Thus ifwe consider only the resistance which the air offers to the

motions studied by us, we shall see that it disturbs them all and

disturbs them in an infinite variety ofways corresponding to the

infinite variety in the form, weight, and velocity of the pro-

jectiles. For as to velocity, the greater this is, the greater will

be the resistance offered by the air; a resistance which will be

greater as the moving bodies become less dense [men gravi].

So that although the falling body ought to be displaced [andare

accelerandosi] in proportion to the square of the duration of its

motion, yet no matter how heavy the body, if it falls from a

very considerable height, the resistance of the air will be such as

to prevent any increase in speed and will render the motion

[276]

uniform ; and in proportion as the moving body is less dense

[men grave] this uniformity will be so much the more quickly

attained and after a shorter fall. Even horizontal motion which,

if no impediment were offered, would be uniform and constant is

altered by the resistance of the air and finally ceases ; and here

again the less dense [piu leggiero] the body the quicker the

process. Of these properties [accidenti] of weight, of velocity,

and also of form [figura], infinite in number, it is not possible to

give
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give any exact description ; hence, in order to handle this matter

in a scientific way, it is necessary to cut loose from these difficul-

ties; and having discovered and demonstrated the theorems, in

the case of no resistance, to use them and apply them with such

limitations as experience will teach. And the advantage of this

method will not be small ; for the material and shape of the

projectile may be chosen, as dense and round as possible, so

that it will encounter the least resistance in the medium . Nor

will the spaces and velocities in general be so great but that we

shall be easily able to correct themwith precision.

In the case of those projectiles which we use, made of dense

[grave] material and round in shape, or of lighter material and

cylindrical in shape, such as arrows, thrown from a sling or

crossbow, the deviation from an exact parabolic path is quite

insensible. Indeed, if you will allow me a little greater liberty,

I can show you, by two experiments, that the dimensions of our

apparatus are so small that these external and incidental re-

sistances, among which that of the medium is the most con-

siderable, are scarcely observable.

I now proceed to the consideration of motions through the

air, since it is with these that we are now especially concerned ;

the resistance of the air exhibits itself in two ways: first by

offering greater impedance to less dense than to very dense

bodies, and secondly by offering greater resistance to a body in

rapid motion than to the same body in slow motion.

Regarding the first of these, consider the case of two balls

having the same dimensions, but one weighing ten or twelve

times as much as the other ; one, say, of lead, the other of oak,

both allowed to fall from an elevation of 150 or 200 cubits.

Experiment shows that they will reach the earth with slight

difference in speed, showing us that in both cases the retardation

caused by the air is small ; for if both balls start at the same

moment and at the same elevation, and if the leaden one be

slightly retarded and the wooden one greatly retarded, then the

former ought to reach the earth a considerable distance in

advance of the latter, since it is ten times as heavy. But this

[277]

does
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does not happen ; indeed, the gain in distance of one over the

other does not amount to the hundredth part of the entire fall.

And in the case of a ball of stone weighing only a third or half as

much as one of lead, the difference in their times of reaching the

earth will be scarcely noticeable. Now since the speed [impeto]

acquired by a leaden ball in falling from a height of200 cubits is

so great that if the motion remained uniform the ball would, in

an interval of time equal to that of the fall, traverse 400 cubits,

and since this speed is so considerable in comparison with those

which, by use of bows or other machines except fire arms, we are

able to give to our projectiles, it follows that we may, without

sensible error, regard as absolutely true those propositions which

we are about to prove without considering the resistance of the

medium.

Passing now to the second case, where we have to show that

the resistance of the air for a rapidly moving body is not very

much greater than for one moving slowly, ample proof is given

by the following experiment. Attach to two threads of equal

length—say four or five yards—two equal leaden balls and

suspend them from the ceiling; now pull them aside from the

perpendicular, the one through 80 or more degrees, the other

through not more than four or five degrees ; so that, when set

free, the one falls, passes through the perpendicular, and de-

scribes large but slowly decreasing arcs of 160, 150, 140 degrees,

etc.; the other swinging through small and also slowly diminish-

ing arcs of 10, 8, 6, degrees, etc.

In the first place it must be remarked that one pendulum

passes through its arcs of 180°, 160°, etc. , in the same time that

the other swings through its 10°, 8°, etc., from which it follows

that the speed of the first ball is 16 and 18 times greater than

that of the second. Accordingly, if the air offers more resistance

to the high speed than to the low, the frequency of vibration in

the large arcs of 180° or 160°, etc., ought to be less than in the

small arcs of 10°, 8°, 4°, etc., and even less than in arcs of 2°, or

1°; but this prediction is not verified by experiment ; because if

two persons start to count the vibrations, the one the large, the

other the small, they will discover that after counting tens

and
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and even hundreds they will not differ by a single vibration,

not evenby a fraction ofone.

[278]

This observation justifies the two following propositions,

namely, that vibrations of very large and very small amplitude

all occupy the same time and that the resistance of the air

does not affect motions of high speed more than those of low

speed, contrary to the opinion hitherto generally entertained.

SAGR. On the contrary, since we cannot deny that the air

hinders both of these motions, both becoming slower and finally

vanishing, we have to admit that the retardation occurs in the

same proportion in each case. But how? How, indeed, could

the resistance offered to the one body be greater than that

offered to the other except by the impartation of more momen-

tum and speed [impeto e velocità] to the fast body than to the

slow? And if this is so the speed with which a body moves is at

once the cause and measure [cagione e misura] of the resistance

which it meets. Therefore, all motions, fast or slow, are hin-

dered and diminished in the same proportion; a result, it seems

to me, of no small importance.

SALV. We are able, therefore, in this second case to say that

the errors, neglecting those which are accidental, in the results

which we are about to demonstrate are small in the case of our

machines where the velocities employed are mostly very great

and the distances negligible in comparison with the semi-

diameter of the earth or one of its great circles.

SIMP. I would like to hear your reason for putting the pro-

jectiles of fire arms, i. e., those using powder, in a different class

from the projectiles employed in bows, slings, and crossbows, on

the ground of their not being equally subject to change and

resistance from the air.

SALV. I am led to this view by the excessive and, so to speak,

supernatural violence with which such projectiles are launched ;

for, indeed, it appears to me that without exaggeration one might

say that the speed of a ball fired either from a musket or from

a piece of ordnance is supernatural. For if such a ball be allowed

to fall from some great elevation its speed will, owing to the

resistance
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resistance ofthe air, not go on increasing indefinitely; that which

happens to bodies of small density in falling through short

distances—I mean the reduction of their motion to uniformity—

will also happen to a ball of iron or lead after it has fallen a few

thousand cubits ; this terminal or final speed [terminata velocità]

is the maximum which such a heavy body can naturally acquire

[279]

in falling through the air. This speed I estimate to be much

smaller than that impressed upon the ball by the burning pow-

der.

An appropriate experiment will serve to demonstrate this

fact. From a height of one hundred or more cubits fire a gun

[archibuso] loaded with a lead bullet, vertically downwards

upon a stone pavement; with the same gun shoot against a

similar stone from a distance of one or two cubits, and observe

which of the two balls is the more flattened. Now if the ball

which has come from the greater elevation is found to be the

less flattened of the two, this will show that the air has hin-

dered and diminished the speed initially imparted to the bullet

by the powder, and that the air will not permit a bullet to ac-

quire so great a speed, no matter from what height it falls; for if

the speed impressed upon the ball by the fire does not exceed

that acquired by it in falling freely [naturalmente] then its down-

ward blowought to be greater rather than less.

This experiment I have not performed, but I am of the opinion

that a musket-ball or cannon-shot, falling from a height as

great as you please, will not deliver so strong a blow as it would

if fired into a wall only a few cubits distant, i. e., at such a short

range that the splitting or rending of the air will not be sufficient

to rob the shot of that excess of supernatural violence given it by

the powder.

The enormous momentum [impeto] of these violent shots may

cause some deformation of the trajectory, making the beginning

of the parabola flatter and less curved than the end ; but, so far as

our Author is concerned, this is a matter of small consequence

in practical operations, the main one of which is the preparation

of a table of ranges for shots of high elevation, giving the dis-

tance
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tance attained by the ball as a function of the angle of eleva-

tion ; and since shots of this kind are fired from mortars [mortari]

using small charges and imparting no supernatural momentum

[impeto sopranaturale] they follow their prescribed paths very

exactly.

But now let us proceed with the discussion in which the

Author invites us to the study and investigation of the motion

of a body [impeto del mobile] when that motion is compounded of

two others; and first the case in which the two are uniform, the

one horizontal, the other vertical.

[280]

Theorem II, Proposition II

When the motion of a body is the resultant oftwo uniform

motions, one horizontal, the other perpendicular, the square

of the resultant momentum is equal to the sum of the

squares ofthe two component momenta.*

Fig. 109

a

Let us imagine any body urged by two uniform motions and

let ab represent the vertical displacement, while bc represents

the displacement which, in the same interval

of time, takes place in a horizontal direc-

tion. If then the distances ab and bc are

traversed, during the same time-interval,

with uniform motions the corresponding

momenta will be to each other as the distances ab and bc are to

each other; but the body which is urged by these two motions

describes the diagonal ac ; its momentum is proportional to ac.

Also the square of ac is equal to the sum of the squares of ab

and bc. Hence the square of the resultant momentum is equal

tothe sum ofthe squares of the two momenta ab and bc. Q. E. D.

SIMP. At this point there is just one slight difficulty which

needs to be cleared up; for it seems to me that the conclusion

* In the original this theorem reads as follows:

"Si aliquod mobile duplici motu æquabili moveatur, nempe orizontali et

perpendiculari, impetus seu momentum lationis ex utroque motu com-

posita erit potentia æqualis ambobus momentis priorum motuum."

For the justification of this translation of the word " potentia " and

of the use of the adjective "resultant " see p. 266 below. [ Trans.]
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LEO

just reached contradicts a previous proposition * in which it is

claimed that the speed [impeto] of a body coming from a to b is

equal to that in coming from a to c; while now you conclude

that the speed [impeto] at c is greater than that at b.

SALV. Both propositions, Simplicio, are true, yet there is a

great difference between them. Here we are speaking of a

body urged by a single motion which is the resultant of two

uniform motions, while there we were speaking of two bodies

each urged with naturally accelerated motions, one along the

vertical ab the other along the inclined plane ac. Besides the

time-intervals were there not supposed to be equal, that along

the incline ac being greater than that along the vertical ab;

but the motions of which we now speak, those along ab, bc,

ac, are uniform and simultaneous.

SIMP. Pardon me; I am satisfied ; pray go on.

[281]

SALV. Our Author next undertakes to explain what happens

when a body is urged by a motion compounded of one which is

horizontal and uniform and of another which is vertical but

naturally accelerated ; from these two components results the

path of a projectile, which is a parabola. The problem is to

determine the speed [impeto] of the projectile at each point.

With this purpose in view our Author sets forth as follows the

manner, or rather the method, of measuring such speed [impeto]

along the path which is taken by a heavy body starting from

rest and falling with a naturally accelerated motion.

Theorem III , Proposition III

Let the motion take place along the line ab, starting from

rest at a, and in this line choose any point c. Let ac represent

the time, or the measure of the time, required for the body to

fall through the space ac; let ac also represent the velocity

[impetus sen momentum] at c acquired by a fall through the

distance ac. In the line ab select any other point b. The prob-

lem now is to determine the velocity at b acquired by a body

in falling through the distance ab and to express this in terms

of the velocity at c, the measure of which is the length ac. Take

*See p. 169 above. [Trans .]



FOURTH DAY 259

as a mean proportional between ac and ab. We shall prove

that the velocity at b is to that at c as the length as is to the

length ac. Draw the horizontal

line cd, having twice the length

of ac, and be, having twice the

length of ba. It then follows,

from the preceding theorems,

that a body falling through the

distance ac, and turned so as

to move along the horizontal cd

with a uniform speed equal to that acquired on reaching c

[282]

e.

Fig. 110

will traverse the distance cd in the same interval of time as

that required to fall with accelerated motion from a to c. Like-

wise be will be traversed in the same time as ba. But the time

of descent through ab is as; hence the horizontal distance be

is also traversed in the time as. Take a point l such that the

time as is to the time ac as be is to bl; since the motion along

be is uniform, the distance bl, if traversed with the speed [mo-

mentum celeritatis] acquired at b, will occupy the time ac; but

in this same time-interval, ac, the distance cd is traversed with

the speed acquired in c. Now two speeds are to each other as

the distances traversed in equal intervals of time. Hence the

speed at c is to the speed at b as cd is to bl. But since dc is to

be as their halves, namely, as ca is to ba, and since be is to bl

as ba is to sa; it follows that dc is to bl as ca is to sa. In other

words, the speed at c is to that at b as ca is to sa, that is, as the

time of fall through ab.

The method of measuring the speed of a body along the direc-

tion of its fall is thus clear; the speed is assumed to increase

directly as the time.

But before we proceed further, since this discussion is to

deal with the motion compounded of a uniform horizontal one

and one accelerated vertically downwards—the path of a pro-

jectile, namely, a parabola—it is necessary that we define some

common standard by which we may estimate the velocity, or

momentum [velocitatem, impetum seu momentum] of both mo-

tions



260 THE TWO NEW SCIENCES OF GALILEO

tions; and since from the innumerable uniform velocities one

only, and that not selected at random, is to be compounded with

a velocity acquired by naturally accelerated motion, I can

think of no simpler way of selecting and measuring this than to

assume another of the same kind.* For the sake of clearness,

draw the vertical line ac to meet the horizontal line bc. Ac is

the height and bc the amplitude of the semi-parabola ab, which

is the resultant of the two motions, one that of a body falling

[283]

d

e

from rest at a, through the distance ac, with naturally ac-

celerated motion, the other a uniform motion along the horizon-

tal ad. The speed acquired at c by a fall

through the distance ac is determined by

the height ac; for the speed of a body fall-

ing from the same elevation is always one

and the same; but along the horizontal one

may give a body an infinite number of uni-

a form speeds. However, in order that I may

select one out of this multitude and sepa-

rate it from the rest in a perfectly definite

manner, I will extend the height ca upwards

to e just as far as is necessary and will call

this distance ae the "sublimity." Imagine

a body to fall from rest at e; it is clear that

we may make its terminal speed at a the

same as that with which the same body

Fig. 111
travels along the horizontal line ad; this

speed will be such that, in the time of descent along ea, it will

describe a horizontal distance twice the length of ea. This

preliminary remark seems necessary.

The reader is reminded that above I have called the horizontal

line cb the "amplitude" of the semi-parabola ab; the axis ac

of this parabola, I have called its "altitude"; but the line ea the

fall along which determines the horizontal speed I have called

the "sublimity." These matters having been explained, I

proceed with the demonstration.

* Galileo here proposes to employ as a standard of velocity the terminal

speed of a body falling freely from a given height. [Trans.]
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SAGR. Allow me, please, to interrupt in order that I may

point out the beautiful agreement between this thought of the

Author and the views of Plato concerning the origin of the

various uniform speeds with which the heavenly bodies revolve.

The latter chanced upon the idea that a body could not pass

from rest to any given speed and maintain it uniformly except

by passing through all the degrees of speed intermediate between

the given speed and rest. Plato thought that God, after having

created the heavenly bodies, assigned them the proper and

uniform speeds with which they were forever to revolve ; and

that He made them start from rest and move over definite dis-

tances under a natural and rectilinear acceleration such as

governs the motion of terrestrial bodies. He added that once

these bodies had gained their proper and permanent speed, their

rectilinear motion was converted into a circular one, the only

[284]

motion capable of maintaining uniformity, a motion in which

the body revolves without either receding from or approaching

its desired goal. This conception is truly worthy of Plato; and

it is to be all the more highly prized since its underlying princi-

ples remained hidden until discovered by our Author who re-

moved from them the mask and poetical dress and set forth the

idea in correct historical perspective. In view of the fact that

astronomical science furnishes us such complete information

concerning the size of the planetary orbits, the distances of

these bodies from their centers of revolution, and their velocities,

I cannot help thinking that our Author (to whom this idea of

Plato was not unknown) had some curiosity to discover whether

or not a definite " sublimity" might be assigned to each planet,

such that, if it were to start from rest at this particular height

and to fall with naturally accelerated motion along a straight line,

and were later to change the speed thus acquired into uniform

motion, the size of its orbit and its period of revolution would be

those actually observed.

SALV. I think I remember his having told me that he once

made the computation and found a satisfactory correspondence

with observation . But he did not wish to speak of it, lest in

view
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view of the odium which his many new discoveries had already

brought upon him, this might be adding fuel to the fire. But

if any one desires such information he can obtain it for himself

from the theory set forth in the present treatment.

We now proceed with the matter in hand, which is to prove :

Problem I, Proposition IV

To determine the momentum of a projectile at each particular

point in its given parabolic path.

Let bec be the semi-parabola whose amplitude is cd and

whose height is db, which latter extended upwards cuts the tan-

gent of the parabola ca in a. Through the vertex draw the

horizontal line bi parallel to cd. Now if the amplitude cd is

equal to the entire height da, then bi will be equal to ba and

also to bd; and if we take ab as the measure of the time re-

quired for fall through the distance ab and also of the momen-

tum acquired at b in consequence of its fall from rest at a, then

if. we turn into a horizontal direction the momentum acquired

by fall through ab [impetum ab] the space traversed in the same

interval of time will be represented by dc which is twice bi. But

a body which falls from rest at b along the line bd will during

the same time-interval fall through the height of the parabola

[285]

bd. Hence a body falling from rest at a, turned into a horizontal

direction with the speed ab will traverse a space equal to dc.

Nowifone superposes upon this motion a fall along bd, travers-

ing the height bd while the parabola bc is described, then the

momentum of the body at the terminal point c is the resultant

of a uniform horizontal momentum, whose value is represented

by ab, and of another momentum acquired by fall from b to the

terminal point d or c; these two momenta are equal. If, there-

fore, we take ab to be the measure of one of these momenta,

say, the uniform horizontal one, then bi, which is equal to bd,

will represent the momentum acquired at d or c; and ia will

represent the resultant of these two momenta, that is, the total

momentum with which the projectile, travelling along the pa-

rabola, strikes at c.

With
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With this in mind let us take any point on the parabola, say

e, and determine the momentum with which the projectile

passes that point. Draw the horizontal ef and take bg a mean

proportional between bd and bf. Now since ab, or bd, is as-

sumed to be the measure of the a

time and of the momentum [mo-

mentum velocitatis] acquired by fall-

ing from rest at b through the dis-

tance bd, it follows that bg will

measure the time and also the

momentum [impetus] acquired atf

by fall from b. If therefore we lay

off bo, equal to bg, the diagonal line

joining a and o will represent the

momentum at the point e; because

the length ab has been assumed to

represent the momentum at b

which, after diversion into a horizontal direction, remains con-

stant; and because bo measures the momentum at f or e, ac-

quired by fall, from rest at b, through the height bf. But the

square of ao equals the sum of the squares of ab and bo . Hence

the theorem sought.

C

Fig. 112

SAGR. The manner in which you compound these different

momenta to obtain their resultant strikes me as so novel that

my mind is left in no small confusion. I do not refer to the

composition of two uniform motions, even when unequal, and

when one takes place along a horizontal, the other along a

vertical direction ; because in this case I am thoroughly con-

vinced that the resultant is a motion whose square is equal to the

sum of the squares of the two components. The confusion

arises when one undertakes to compound a uniform horizontal

motion with a vertical one which is naturally accelerated. I

trust, therefore, we may pursue this discussion more at length.

[286]

SIMP. And I need this even more than you since I am not yet

as clear in my mind as I ought to be concerning those funda-

mental propositions upon which the others rest. Even in the

case
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case of the two uniform motions, one horizontal, the other

perpendicular, I wish to understand better the manner in which

you obtain the resultant from the components. Now, Salviati,

you understand what we need and what we desire.

SALV. Your request is altogether reasonable and I will see

whether my long consideration of these matters will enable me

to make them clear to you. But you must excuse me if in the

explanation I repeat many things already said by the Author.

Concerning motions and their velocities or momenta [movi-

menti e lor velocità o impeti] whether uniform or naturally ac-

celerated, one cannot speak definitely until he has established

a measure for such velocities and also for time. As for time we

have the already widely adopted hours, first minutes and second

minutes. So for velocities, just as for intervals of time, there is

need of a common standard which shall be understood and

accepted by everyone, and which shall be the same for all. As

has already been stated, the Author considers the velocity of a

freely falling body adapted to this purpose, since this velocity

increases according to the same law in all parts of the world;

thus for instance the speed acquired by a leaden ball of a pound

weight starting from rest and falling vertically through the

height of, say, a spear's length is the same in all places; it is

therefore excellently adapted for representing the momentum

[impeto] acquired in the case of natural fall .

It still remains for us to discover a method of measuring

momentum in the case of uniform motion in such a way that all

who discuss the subject will form the same conception of its

size and velocity [grandezza e velocità]. This will prevent one

person from imagining it larger, another smaller, than it really

is; so that in the composition of a given uniform motion with

one which is accelerated different men may not obtain different

values for the resultant. In order to determine and represent

such a momentum and particular speed [impeto e velocità particc-

lare] our Author has found no better method than to use the

momentum acquired by a body in naturally accelerated motion.

[287]

The speed of a body which has in this manner acquired any

momentum
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momentum whatever will, when converted into uniform motion,

retain precisely such a speed as, during a time-interval equal to

that of the fall, will carry the body through a distance equal to

twice that of the fall. But since this matter is one which is

fundamental in our discussion it is well that we make it per-

fectly clear by means of some particular example.

Let us consider the speed and momentum acquired by a body

falling through the height, say, of a spear [picca] as a standard

which we may use in the measurement of other speeds and

momenta as occasion demands ; assume for instance that the

time of such a fall is four seconds [minuti secondi d'ora] ; now in

order to measure the speed acquired from a fall through any

other height, whether greater or less, one must not conclude

that these speeds bear to one another the same ratio as the

heights of fall ; for instance, it is not true that a fall through four

times a given height confers a speed four times as great as that

acquired by descent through the given height ; because the

speed of a naturally accelerated motion does not vary in pro-

portion to the time. As has been shown above, the ratio of the

spaces is equal to the square of the ratio of the times.

If, then, as is often done for the sake of brevity, we take

the same limited straight line as the measure of the speed, and

of the time, and also of the space traversed during that

time, it follows that the duration of fall and the speed

acquired by the same body in passing over any other

distance, is not represented by this second distance, but

by a mean proportional between the two distances.

This I can better illustrate by an example. In the ver-

tical line ac, lay off the portion ab to represent the dis-

tance traversed by a body falling freely with acceler-

ated motion: the time of fall may be represented by any

limited straight line, but for the sake of brevity, we shall

represent it by the same length ab; this length may also

be employed as a measure of the momentum and speed Fig. 113

acquired during the motion ; in short, let ab be a measure of

the various physical quantities which enter this discussion.

Having agreed arbitrarily upon ab as a measure of these

three
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three different quantities, namely, space, time, and momentum ,

our next task is to find the time required for fall through a

[288]

given vertical distance ac, also the momentum acquired at the

terminal point c, both of which are to be expressed in terms of

the time and momentum represented by ab. These two required

quantities are obtained by laying off ad, a mean proportional

between ab and ac; in other words, the time of fall from a to c is

represented by ad on the same scale on which we agreed that

the time of fall from a to b should be represented by ab. In like

manner we may say that the momentum [impeto o grado di

velocità] acquired at c is related to that acquired at b, in the same

manner that the line ad is related to ab, since the velocity varies

directly as the time, a conclusion, which although employed

as a postulate in Proposition III, is here amplified by the

Author.

This point being clear and well-established we pass to the

consideration of the momentum [impeto] in the case of two

compound motions, one of which is compounded of a uniform

horizontal and a uniform vertical motion, while the other is

compounded of a uniform horizontal and a naturally accelerated

vertical motion. If both components are uniform, and one at

right angles to the other, we have already seen that the square of

the resultant is obtained by adding the squares of the compo-

nents [p. 257] as will be clear from the following illustration.

Let us imagine a body to move along the vertical ab with a

uniform momentum [impeto] of 3, and on reaching b to move

4 toward c with a momentum [velocità ed

impeto] of 4, so that during the same time-

interval it will traverse 3 cubits along the

vertical and 4 along the horizontal. But a

particle which moves with the resultant ve-

locity [velocità] will, in the same time, trav-

erse the diagonal ac, whose length is not 7 cubits—the sum of

ab (3) and bc (4)—but 5, which is in potenza equal to the sum

of 3 and 4, that is, the squares of 3 and 4 when added make 25,

which is the square of ac, and is equal to the sum of the squares

Fig. 114

of
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of ab and bc. Hence ac is represented by the side or we may

say the root of a square whose area is 25, namely 5.

As a fixed and certain rule for obtaining the momentum which

[289]

results from two uniform momenta, one vertical, the other

horizontal, we have therefore the following : take the square of

each, add these together, and extract the square root of the sum,

which will be the momentum resulting from the two. Thus, in

the above example, the body which in virtue of its vertical

motion would strike the horizontal plane with a momentum

[forza] of 3 , would owing to its horizontal motion alone strike at

c with a momentum of 4; but if the body strikes with a momen-

tum which is the resultant of these two, its blowwill be that of a

body moving with a momentum [velocità eforza] of 5 ; and such a

blow will be the same at all points of the diagonal ac, since its

components are always the same and never increase or diminish.

Let us now pass to the consideration of a uniform horizontal

motion compounded with the vertical motion of a freely falling

body starting from rest. It is at once clear that the diagonal

which represents the motion compounded of these two is not a

straight line, but, as has been demonstrated, a semi-parabola,

in which the momentum [impeto] is always increasing because

the speed [velocità] of the vertical component is always increas-

ing. Wherefore, to determine the momentum [impeto] at any

given point in the parabolic diagonal, it is necessary first to

fix upon the uniform horizontal momentum [impeto] and then,

treating the body as one falling freely, to find the vertical

momentum at the given point ; this latter can be determined

only by taking into account the duration of fall, a consideration

which does not enter into the composition of two uniform mo-

tions where the velocities and momenta are always the same;

but here where one of the component motions has an initial

valueofzero and increases its speed [velocità] in direct proportion

to the time, it follows that the time must determine the speed

[velocità] at the assigned point. It only remains to obtain the

momentum resulting from these two components (as in the case

ofuniform motions) by placing the square of the resultant equal

to



268 THE TWO NEW SCIENCES OF GALILEO

to the sum of the squares of the two components. But here

again it is better to illustrate by means of an example.

On the vertical ac lay off any portion ab which we shall em-

ploy as a measure of the space traversed by a body falling freely

along the perpendicular, likewise as a measure of the time and

also of the speed [grado di velocità] or, we may say, of the mo-

menta [impeti]. It is at once clear that if the momentum of a

[290]

body at b, after having fallen from rest at a, be diverted along

the horizontal direction bd, with uniform motion, its speed will

be such that, during the time-interval ab, it will traverse a

distance which is represented by the line bd and which is twice as

great as ab. Now choose a

4 point c, such that bc shall be

equal to ab, and through c

draw the line ce equal and

parallel to bd; through the

points b and e draw the pa-

rabola bei. And since, during

the time-interval ab, the hori-

zontal distance bd or ce, double

the length ab, is traversed with

c the momentum ab, and since

during an equal time-interval

thevertical distance bc is trav-

ersed, the body acquiring at c

a momentum represented by

the same horizontal, bd, it fol-

lows that during the time ab the body will pass from b toe along

the parabola be, and will reach e with a momentum compounded

of two momenta each equal to ab. And since one of these is

horizontal and the other vertical, the square of the resultant mo-

mentum is equal to the sum ofthe squares of these two compo-

nents, i. e., equal to twice either one of them.

Fig. 115

Therefore, if we lay off the distance bf, equal to ba, and draw

the diagonal af, it follows that the momentum [impeto e per-

cossa] at e will exceed that of a body at b after having fallen from

a,
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a, or what is the same thing, will exceed the horizontal momen-

tum [percossa dell'impeto] along bd, in the ratio of af to ab.

Suppose now we choose for the height of fall a distance bo

which is not equal to but greater than ab, and suppose that bg

represents a mean proportional between ba and bo; then, still re-

taining ba as a measure of the distance fallen through, from rest

at a, to b, also as a measure of the time and of the momentum

which the falling body acquires at b, it follows that bg will be

the measure of the time and also of the momentum which the

body acquires in falling from b too. Likewise just as the momen-

tum ab during the time ab carried the body a distance along the

horizontal equal to twice ab, so now, during the time-interval

bg, the body will be carried in a horizontal direction through a

distance which is greater in the ratio of bg to ba. Lay off lb

equal to bg and draw the diagonal al, from which we have a

quantity compounded of two velocities [ impeti] one horizontal,

the other vertical ; these determine the parabola. The horizontal

and uniform velocity is that acquired at b in falling from a; the

other is that acquired at o, or, we may say, at i, by a body falling

through the distance bo, during a time measured by the line bg,

[291]

which line bg also represents the momentum ofthe body. And

in like manner we may, by taking a mean proportional between

the two heights, determine the momentum [impeto] at the

extreme end of the parabola where the height is less than the

sublimity ab; this mean proportional is to be drawn along the

horizontal in place of bf, and also another diagonal in place of

af, which diagonal will represent the momentum at the extreme

end of the parabola.

To what has hitherto been said concerning the momenta,

blows or shocks of projectiles, we must add another very im-

portant consideration ; to determine the force and energy of the

shock [forza ed energia della percossa] it is not sufficient to con-

sider only the speed of the projectiles, but we must also take into

account the nature and condition of the target which, in no

small degree, determines the efficiency of the blow. First of all

it is well known that the target suffers violence from the speed

[velocità]
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[velocità ] of the projectile in proportion as it partly or entirely

stops the motion ; because if the blow falls upon an object which

yields to the impulse [velocità del percuziente] without resistance

such a blow will be of no effect ; likewise when one attacks his

enemy with a spear and overtakes him at an instant when he is

fleeing with equal speed there will be no blow but merely a

harmless touch. But if the shock falls upon an object which

yields only in part then the blow will not have its full effect,

but the damage will be in proportion to the excess of the speed

of the projectile over that of the receding body; thus, for exam-

ple, if the shot reaches the target with a speed of 10 while the

latter recedes with a speed of 4, the momentum and shock

[impeto e percossa] will be represented by 6. Finally the blow

will be a maximum, in so far as the projectile is concerned, when

the target does not recede at all but if possible completely re-

sists and stops the motion of the projectile. I have said in so

far as the projectile is concerned because if the target should

approach the projectile the shock of collision [colpo e l'incontro]

would be greater in proportion as the sum of the two speeds is

greater than that of the projectile alone.

Moreover it is to be observed that the amount of yielding in

the target depends not only upon the quality of the material,

as regards hardness, whether it be of iron, lead, wool, etc., but

[292]

also upon its position . If the position is such that the shot

strikes it at right angles, the momentum imparted by the blow

[impeto del colpo] will be a maximum; but if the motion be

oblique, that is to say slanting, the blow will be weaker; and

more and more so in proportion to the obliquity; for, no matter

how hard the material of the target thus situated, the entire

momentum [impeto e moto] of the shot will not be spent and

stopped; the projectile will slide by and will, to some extent,

continue its motion along the surface of theopposing body.

All that has been said above concerning the amount ofmomen-

tum in the projectile at the extremity of the parabola must be

understood to refer to a blow received on a line at right angles to

this parabola or along the tangent to the parabola at the given

point
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point; for, even though the motion has two components, one

horizontal, the other vertical, neither will the momentum along

the horizontal nor that upon a plane perpendicular to the

horizontal be a maximum, since each of these will be received

obliquely.

SAGR. Your having mentioned these blows and shocks recalls

to my mind a problem, or rather a question, in mechanics of

which no author has given a solution or said anything which

diminishes my astonishment or even partly relieves my mind.

My difficulty and surprise consist in not being able to see

whence and upon what principle is derived the energy and im-

mense force [energia eforza immensa] which makes its appearance

in a blow; for instance we see the simple blow of a hammer,

weighing not more than 8 or 10 lbs ., overcoming resistances

which, without a blow, would not yield to the weight of a body

producing impetus by pressure alone, even though that body

weighed many hundreds of pounds. I would like to discover a

method ofmeasuring the force [forza] of such a percussion. I can

hardly think it infinite, but incline rather to the view that it has

its limit and can be counterbalanced and measured by other

forces, such as weights, or by levers or screws or other mechanical

instruments which are used to multiply forces in a manner which

I satisfactorily understand.

SALV. You are not alone in your surprise at this effect or in

obscurity as to the cause of this remarkable property. I studied

this matter myself for a while in vain; but my confusion merely

increased until finally meeting our Academician I received from

[293]

him great consolation. First he told me that he also had for a

long time been groping in the dark ; but later he said that, after

having spent some thousands of hours in speculating and con-

templating thereon, he had arrived at some notions which are

far removed from our earlier ideas and which are remarkable

for their novelty. And since now I know that you would gladly

hear what these novel ideas are I shall not wait for you to ask

but promise that, as soon as our discussion of projectiles is

completed, I will explain all these fantasies, or if you please,

vagaries
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vagaries, as far as I can recall them from the words of our

Academician. In the meantime we proceed with the proposi-

tions ofthe author.

Proposition V, Problem

Having given a parabola, find the point, in its axis extended

upwards, from which a particle must fall in order to describe

this same parabola.

Let ab be the given parabola, hb its amplitude, and he its axis

extended. The problem is to find the point e from which a body

must fall in order that, after the momentum which it acquires at

a has been diverted into a horizontal direction, it will describe

the parabola ab. Draw the horizontal ag, parallel to bh, and

b

8

Fig. 116

a

having laid off af equal to ah,

draw the straight line bf which

will be a tangent to the parab-

ola at b, and will intersect the

horizontal ag at g: choose e such

that ag will be a mean propor-

tional between af and ae. Now

I say that e is the point above

sought. That is, if a body falls

from rest at this point e, and if

the momentum acquired at the

point a be diverted into a hori-

zontal direction, and compounded with the momentum ac-

quired at h in falling from rest at a, then the body will describe

the parabola ab. For if we understand ea to be the measure of

the time of fall from e to a, and also of the momentum acquired

at a, then ag (which is a mean proportional between ea and af)

will represent the time and momentum of fall from f to a or,

what is the same thing, from a to h; and since a body falling from

e, during the time ea, will, owing to the momentum acquired at

a, traverse at uniform speed a horizontal distance which is

twice ea, it follows that, the body will if impelled by the same

momentum, during the time-interval ag traverse a distance

equal to twice ag which is the half of bh. This is true because,

in
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in the case of uniform motion, the spaces traversed vary di-

rectly as the times. And likewise if the motion be vertical and

start from rest, the body will describe the distance ah in the

[294]

time ag. Hence the amplitude bh and the altitude ah are trav-

ersed by a body in the same time. Therefore the parabola ab

will be described by a body falling from the sublimity of e.

COROLLARY

Q. E. F.

Hence it follows that half the base, or amplitude, of the semi-

parabola (which is one-quarter of the entire amplitude) is a mean

proportional between its altitude and the sublimity from which

a falling body will describe this same parabola.

Proposition VI, Problem

Given the sublimity and the altitude of a parabola, to find

its amplitude.

α

Let the line ac, in which lie the given altitude cb and sub-

limity ab, be perpendicular to

the horizontal line cd. The prob-

lem is to find the amplitude,

along the horizontal cd, of the

semi-parabola which is described

with the sublimity ba and alti-

tude bc. Lay off cd equal to

twice the mean proportional be-

tween cb and ba. Then cd will

be the amplitude sought, as is

evident from the preceding prop- d

osition.

b

C

Fig. 117

Theorem. Proposition VII

If projectiles describe semi-parabolas of the same ampli-

tude, the momentum required to describe that one whose

amplitude is double its altitude is less than that required

forany other.

Let
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Let bd be a semi-parabola whose amplitude cd is double its

altitude cb; on its axis extended upwards lay off ba equal to its

altitude bc. Draw the line ad which will be a tangent to the

parabola at d and will cut the horizontal line be at the point

e, making be equal to bc and also to ba. It is evident that this

parabola will be described by a projectile whose uniform horizon-

tal momentum is that which it would acquire at b in falling from

rest at a and whose naturally accelerated vertical momentum is

that of the body falling to c, from rest at b. From this it follows

f
m

m

h

6

18

C
d

Fig. 118

n

g

that the momentum at the terminal point d, compounded of

these two, is represented by the diagonal ae, whose square is

equal to the sum of the squares of the two components. Now

let gd be any other parabola whatever having the same ampli-

tude cd, but whose altitude cg is either greater or less than the

altitude bc. Let hd be the tangent cutting the horizontal

[295]

through g at k. Select a point l such that hg:gk = gk:gl. Then

from a preceding proposition [V], it follows that gl will be the

height



FOURTH DAY 275

height from which a body must fall in order to describe the

parabola gd.

Let gm be a mean proportional between ab and gl; then gm

will [Prop. IV] represent the time and momentum acquired at

g by a fall from l; for ab has been assumed as a measure of both

time and momentum. Again let gn be a mean proportional

between bc and cg; it will then represent the time and momen-

tum which the body acquires at c in falling from g. If now we

join m and n, this line mn will represent the momentum at d of

the projectile traversing the parabola dg; which momentum is,

I say, greater than that of the projectile travelling along the

parabola bd whose measure was given by ae. For since gn has

been taken as a mean proportional between bc and gc; and since

bc is equal to be and also to kg (each of them being the half of

dc) it follows that cg:gn =gn:gk, and as cg or (hg) is to gk so is

ng² to gk2 : but by construction hg:gk =gk:gl. Hence ng²:

gk2 =gk:gl. But gk:gl = gk2: gm2, since gm is a mean propor-

tional between kg and gl. Therefore the three squares ng, kg,

mg form a continued proportion, gn²: gk² =gk²: gm.2 And the

sum of the two extremes which is equal to the square of mn is

greater than twice the square of gk; but the square of ae is

double the square of gk. Hence the square of mn is greater than

the square of ae and the length mn is greater than the length ae.

[296]

COROLLARY

Q. E. D.

Conversely it is evident that less momentum will be required

to send a projectile from the terminal point d along the parabola

bd than along any other parabola having an elevation greater or

less than that of the parabola bd, for which the tangent at d

makes an angle of 45∘ with the horizontal. From which it

follows that if projectiles are fired from the terminal point d, all

having the same speed, but each having a different elevation, the

maximum range, i . e., amplitude of the semi-parabola or of the

entire parabola, will be obtained when the elevation is 45∘ : the

other
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other shots, fired at angles greater or less will have a shorter

range.

SAGR. The force of rigid demonstrations such as occur only

in mathematics fills me with wonder and delight. From ac-

counts given by gunners, I was already aware of the fact that

in the use of cannon and mortars, the maximum range, that is

the one in which the shot goes farthest, is obtained when the

elevation is 45° or, as they say, at the sixth point of the quad-

rant; but to understand why this happens far outweighs the

mere information obtained by the testimony of others or even

by repeated experiment.

SALV. What you say is very true. The knowledge of a single

fact acquired through a discovery of its causes prepares the

mind to understand and ascertain other facts without need

of recourse to experiment, precisely as in the present case,

where by argumentation alone the Author proves with certainty

that the maximum range occurs when the elevation is 45°. He

thus demonstrates what has perhaps never been observed in

experience, namely, that of other shots those which exceed or

fall short of 45° by equal amounts have equal ranges ; so that

if the balls have been fired one at an elevation of 7 points, the

other at 5, they will strike the level at the same distance: the

same is true if the shots are fired at 8 and at 4 points, at 9 and at

3, etc. Nowlet us hear the demonstration of this.

[297]

Theorem. Proposition VIII

The amplitudes of two parabolas described by projectiles

fired with the same speed, but at angles of elevation which

exceed and fall short of 45° by equal amounts, are equal

to each other.

In the triangle mcb let the horizontal side bc and the vertical

cm, which form a right angle at c, be equal to each other; then

the angle mbc will be a semi-right angle ; let the line cm be pro-

longed to d, such a point that the two angles at b, namely mbe

and mbd, one above and the other below the diagonal mb, shall

be equal. It is nowto be proved that in the case oftwo parabolas

described
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d

m

described by two projectiles fired from b with the same speed,

one at the angle of ebc, the other at the angle of dbc, their am-

plitudes will be equal. Now since the external angle bmc is

equal to the sum of the internal angles mdb and dbm we may also

equate to them the angle mbc; but if we re-

place the angle dbm by mbe, then this same

angle mbc is equal to the two mbe and bdc:

and if we subtract from each side of this

equation the angle mbe, we have the remain-

der bdc equal to the remainder ebc. Hence

the two triangles dcb and bce are similar.

Bisect the straight lines dc and ec in the

points h and f: and draw the lines hi and fg

parallel to the horizontal cb, and choose l

such that dh:hi = ih:hl. Then the triangle ihl

will be similar to ihd, and also to the triangle

egf; and since ih and gf are equal, each being

half of bc, it follows that hl is equal to fe and also to fc; and if

we add to each of these the common partfh, it will be seen that

ch is equal tofl.

Fig. 119

C.

Let us now imagine a parabola described through the points

hand b whose altitude is hc and sublimity hl. Its amplitude will

be cbwhich is double the length hi since hi is a mean proportional

between dh (or ch) and hl. The line db is tangent to the parabola

at b, since ch is equal to hd. If again we imagine a parabola

described through the points f and b, with a sublimity fl and

altitude fc, of which the mean proportional is fg, or one-half of

cb, then, as before, will cb be the amplitude and the line eb a

tangent at b; for efandfc are equal.

[298]

But the two angles dbc and ebc, the angles of elevation, differ

by equal amounts from a 45∘ angle. Hence follows the proposi-

tion.

Theorem. Proposition IX

The amplitudes of two parabolas are equal when their alti-

tudes and sublimities are inversely proportional.

Let
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e

Let the altitude gf of the parabola fh bear to the altitude cb

ofthe parabola bd the same ratio which the sublimity ba bears to

the sublimity fe; then I say the amplitude hg is equal to the

amplitude dc. For since the first of these quantities, gf, bears to

a'the second cb the same

ratio which the third,

ba, bears to the fourth

fe, it follows that the

area of the rectangle

gf.fe is equal to that of

the rectangle cb.ba;

therefore squares

which are equal to

these rectangles are

equal to each other.

gld

Fig. 120

But [by Proposition VI] the square of half of gh is equal to the

rectangle gffe; and the square of half of cd is equal to the rec-

tangle cb.ba. Therefore these squares and their sides and the

doubles of their sides are equal. But these last are the ampli-

tudes gh and cd. Hence follows the proposition.

Lemma For The Following Proposition

Ifa straight line be cut at any point whatever and mean pro-

portionals between this line and each of its parts be taken,

the sum of the squares of these mean proportionals is equal

to the squareofthe entire line.

Let the line ab be cut at c. Then I say that the square of the

mean proportional between ab and ac plus

the square ofthe mean proportional between

ab and cbis equal to the square of the whole

line ab. This is evident as soon as we de-

scribe a semicircle upon the entire line ab,

erect a perpendicular cd at c, and draw da

and db. For da is a mean proportional between ab and ac while

[299]

Fig. 121

db is a mean proportional between ab and bc: and since the

angle adb, inscribed in a semicircle, is a right angle the sum of

the
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the squares of the lines da and db is equal to the square of the

entire line ab. Hence follows the proposition.

Theorem. Proposition X

The momentum [impetus seu momentum] acquired by a

particle at theterminal point of any semi-parabola is equal

to that which it would acquire in falling through a vertical

distance equal to the sum of the sublimity and the altitude

of the semi-parabola.*

d

Let abbe a semi-parabola having a sublimity da and an altitude

ac, the sum ofwhich is the perpendicular dc. Now

I saythemomentum of theparticle at b is the same

as that which it would acquire in falling freely from

d to c. Let us take the length of dc itself as a

measure of time and momentum, and lay off cf

equal to the mean proportional between cd and

da; also lay off ce a mean proportional between

cd and ca. Now cfis the measure of the time and

of the momentum acquired by fall, from rest at

d, through the distance da; while ce is the time

and momentum of fall, from rest at a, through,

the distance ca; also the diagonal efwill repre-

sent a momentum which is the resultant of these Fig. 122

two, and is therefore the momentum at the terminal point of

the parabola, b.

And since dc has been cut at some point a and since cf and

ce are mean proportionals between the whole of cd and its parts,

da and ac, it follows, from the preceding lemma, that the sum

of the squares of these mean proportionals is equal to the square

of the whole: but the square of ef is also equal to the sum of

these same squares ; whence it follows that the line ef is equal to

dc.

Accordingly the momentum acquired at c by a particle in

falling from d is the same as that acquired at b by a particle

traversing the parabola ab.
Q. E. D.

* In modern mechanics this well-known theorem assumes the following

form: The speed of a projectile at any point is that produced by a fallfrom

the directrix. [Trans.]
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COROLLARY

Hence it follows that, in the case of all parabolas where the

sum of the sublimity and altitude is a constant, the momentum

at the terminal point is a constant.

Problem. Proposition XI

Given the amplitude and the speed [impetus] at the ter-

minal point of a semi-parabola, to find its altitude.

Let the given speed be represented by the vertical line ab, and

the amplitude by the horizontal line bc; it is required to find

the sublimity of the semi-parabola whose terminal speed is ab

and amplitude bc. From what precedes [Cor. Prop. V] it is

clear that half the amplitude bc is a mean proportional between

a

[300]

the altitude and sublimity of the parabola of which the terminal

speed is equal, in accordance with the preceding proposition, to

the speed acquired by a body in falling

from rest at a through the distance ab.

Therefore the line ba must be cut at a

point such that the rectangle formed by

its two parts will be equal to the square

of half bc, namely bd. Necessarily, there-

fore, bd must not exceed the half of ba;

for of all the rectangles formed by parts

of a straight line the one of greatest area

is obtained when the line is divided into

two equal parts. Let e be the middle

point of the line ab; and now if bd be

equal to be the problem is solved; for be

will be the altitude and ea the sublimity

Fig. 123 of the parabola. (Incidentally we may

observe a consequence already demonstrated, namely: of all

parabolas described with any given terminal speed that for

which the elevation is 45∘ will have the maximum amplitude.)

But suppose that bd is less than half of ba which is to be

d

divided
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divided in such a way that the rectangle upon its parts may be

equal to the square of bd. Upon ea as diameter describe a semi-

circle efa, in which draw the chord af, equal to bd: join fe and

lay off the distance eg equal to fe. Then the rectangle bg.ga

plus the square of egwill be equal to the square of ea, and hence

also to the sum of the squares of af and fe. If now we subtract

the equal squares offe and ge there remains the rectangle bg.ga

equal to the square of af, that is, of bd, a line which is a mean

proportional between bg and ga; from which it is evident that

the semi-parabola whose amplitude is bc and whose terminal

speed [impetus] is represented by ba has an altitude bg and a

sublimity ga.

If however we lay off bi equal to ga, then bi will be the alti-

tude of the semi-parabola ic, and ia will be its sublimity. From

the preceding demonstration we are able to solve the following

problem.

Problem. Proposition XII

To compute and tabulate the amplitudes of all semi-

parabolas which are described by projectiles fired with the

same initial speed [impetus].

From the foregoing it follows that, whenever the sum of

the altitude and sublimity is a constant vertical height for

any set of parabolas, these parabolas are described by pro-

jectiles having the same initial speed ; all vertical heights thus

[301]

obtained are therefore included between two parallel horizontal

lines. Let cb represent a horizontal line and ab a vertical line

of equal length; draw the diagonal ac; the angle acb will be one

of450; let d bethe middle point of the vertical line ab. Thenthe

semi-parabola dc is the one which is determined by the sub-

limity ad and the altitude db, while its terminal speed at c is

that which would be acquired at b by a particle falling from rest

at a. If now ag be drawn parallel to bc, the sum of the altitude

and sublimity for any other semi-parabola having the same

terminal speed will, in the manner explained, be equal to the

distance between the parallel lines ag and bc. Moreover, since

it
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it has already been shown that the amplitudes of two semi-

parabolas are the same when their angles of elevation differ from

45∘by like amounts, it follows that the same computation which

is employed for the larger elevation will serve also for the smaller.

g

Let us also assume 10000 as the

greatest amplitude for a parabola

whose angle of elevation is 45∘ ; this

then will be the length of the line

ba and the amplitude of the semi-

parabola bc. This number, 10000,

is selected because in these calcula-

tions we employ a table of tangents

fin which this is the value of the

tangent of 45∘. And now, coming

d down to business, draw the straight

line ce making an acute angle ecb

greater than acb: the problem now

is to draw the semi-parabola to

which the line ec is a tangent and

for which the sum of the sublimity

and the altitude is the distance ba.

Take the length of the tangent * be from the table of tan-

gents, using the angle bce as an argument : let fbe the middle

point of be; next find a third proportional to bf and bi (the

half of bc), which is of necessity greater than fa.† Call this

fo. We have now discovered that, for the parabola inscribed

[302]

C

Fig. 124

in the triangle ecb having the tangent ce and the amplitude

cb, the altitude is bf and the sublimity fo. But the total length

of bo exceeds the distance between the parallels ag and cb,

while our problem was to keep it equal to this distance: for

both the parabola sought and the parabola dc are described

* The reader will observe that the word "tangent " is here used in a

sense somewhat different from that of the preceding sentence. The

"tangent ec" is a line which touches the parabola at c; but the " tan-

gent eb" is the side of the right-angled triangle which lies opposite the

angle ecb, a line whose length is proportional to the numerical value of

the tangent of this angle. [Trans.]

† This fact is demonstrated in the third paragraph below. [Trans.]
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by projectiles fired from c with the same speed. Now since an

infinite number of greater and smaller parabolas, similar to

each other, may be described within the angle bce we must find

another parabola which like cd has for the sum of its altitude and

sublimity the height ba, equal to bc.

Therefore lay off cr so that, ob:ba =bc:cr; then cr will be the

amplitude of a semi-parabola for which bce is the angle of eleva-

tion and for which the sum of the altitude and sublimity is the

distance between the parallels ga and cb, as desired. The process

is therefore as follows : One draws the tangent of the given

angle bce; takes half of this tangent, and adds to it the quantity,

fo, which is a third proportional to the half of this tangent and

the half of bc; the desired amplitude cr is then found from the

following proportion ob:ba =bc:cr. For example let the angle

ecb be one of 50∘ ; its tangent is 11918, half of which, namely bf,

is 5959; half of bc is 5000; the third proportional of these halves

is 4195, which added to bfgives the value 10154 for bo. Further,

as ob is to ab, that is, as 10154 is to 10000, so is bc, or 10000 (each

being the tangent of 45∘) to cr, which is the amplitude sought

and which has the value 9848, the maximum amplitude being

bc, or 10000. The amplitudes of the entire parabolas are double

these, namely, 19696 and 20000. This is also the amplitude of a

parabola whose angle of elevation is 40∘, since it deviates by an

equal amount from one of45°.

[303]

SAGR. In order to thoroughly understand this demonstration

I need to be shown how the third proportional of bfand bi is, as

the Author indicates, necessarily greater thanfa.

SALV. This result can, I think, be obtained as follows. The

square of the mean proportional between two lines is equal to the

rectangle formed by these two lines. Therefore the square of

bi (or of bd which is equal to bi) must be equal to the rectangle

formed by fb and the desired third proportional . This third

proportional is necessarily greater thanfa because the rectangle

formed by bfand fa is less than the square of bd by an amount

equal to the square of df, as shown in Euclid, II . I. Besides it is

to be observed that the pointf, which is the middle point of the

tangent



284 THE TWO NEW SCIENCES OF GALILEO

tangent eb, falls in general above a and only once at a; in which

cases it is self-evident that the third proportional to the half

of the tangent and to the sublimity bi lies wholly above a. But

the Author has taken a case where it is not evident that the

third proportional is always greater than fa, so that when laid

off above the pointf it extends beyond the parallel ag.

Now let us proceed. It will be worth while, by the use of this

table, to compute another giving the altitudes of these semi-

parabolas described by projectiles having the same initial speed.

The construction is as follows :

[304]

Altitudes of semi-parabolas de-

scribed with the same initial

Amplitudes of semi-parabolas

described with the same in-

itial speed. speed.

Angle of Angle of Angle of

Elevation Elevation Elevation

Angle of

Elevation

45° 10000 1° 3 46° 5173

46 9994 44°

47 9976 43

48 9945 42

49 9902 41

50 9848 40

51 9782 39

52 9704 38

53 9612 37

54 9511 36 ΙΟ

2
3
4
5
6
7
8
9
9

13 47 5346

28 48 5523

50 49 5698

76 50 5868

108 51 6038

150 52 6207

194 53 6379

245 54 6546

302 55 6710

55 9396 35 II
365 56 6873

56 9272 34 12
432 57 7033

57 9136 33 13 506 58 7190

58 8989 32 14 585 59 7348

59 8829 31 15 670 60 7502

60 8659 30

61 8481

62 8290 28

8
8
8
8
8
8

16 760
61

7649

29 17 855 62 7796

18
955 63 7939

63 8090 27 19 1060 64 8078

64 7880 26 20 1170 65 82145
8
5
8

65 7660 25 21 1285 66 8346

66 7431 24 22 1402 67 8474

67 7191 23

68 6944

69 6692

2
2
222

21

3
2
3
3

1527 68 8597

24 1685 69 8715

25 1786 70 8830
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Amplitudes of semi-parabolas Altitudes of semi-parabolas de-

scribed with the same initialdescribed with the same in-

itial speed. speed.

Angle of Angle of Angle of Angle of

Elevation Elevation Elevation Elevation

70° 6428 20° 26° 1922 71° 8940

71 6157 19 27
2061

72 9045

72 5878 18 28 2204 73 9144

73 5592 17 29 2351 74 9240

74 5300
16 30 2499 75 9330

75 5000 15 31 2653 76 9415

76 4694 14 32
2810

77 9493

77 4383 13 33 2967 78 9567

78 4067 12 34 3128 79 9636

79 3746 II
35 3289

80 9698

80 3420 ΤΟ 36 3456
81

9755

81
3090

82
2756

83 2419

84 2079

85 1736

86
1391

87 1044

88 698

89 349

9
8
7
6
5
4
3
2
1

37 3621
82 9806

38 3793 83 9851

39 3962 84 9890

40 4132 85 9924

5 4I 4302
86

9951

42 4477 87 9972

43 4654
88 9987

44 4827 89 9998

I
45 5000 90 10000

[305]

PROBLEM. PROPOSITION XIII

From the amplitudes of semi-parabolas given in the pre-

ceding table to find the altitudes of each of the parabolas

described with the same initial speed.

Let bc denote the given amplitude; and let ob, the sum of the

altitude and sublimity, be the measure of the initial speed which

is understood to remain constant. Next we must find and

determine the altitude, which we shall accomplish by so dividing

ob that the rectangle contained by its parts shall be equal to the

square of half the amplitude, bc. Let f denote this point of

division and d and i be the middle points of ob and bc respec-

tively. The square of ib is equal to the rectangle bf.fo; but the

square of do is equal to the sum of the rectangle bffo and the

square
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square offd. If, therefore, from the square of do we subtract

the square of bi which is equal to the rectangle bf.fo , there will

remain the square of fd. The altitude in question, bf, is now

obtained by adding to this length, fd, the line bd. The process

is then as follows : From the square of half of bo

which is known, subtract the square of bi which

is also known; take the square root of the re-

mainder and add to it the known length db; then

you have the required altitude, bf.

Example. To find the altitude of a semi-parabola

described with an angle of elevation of 55∘. From

the preceding table the amplitude is seen to be

9396, of which the half is 4698, and the square

22071204. When this is subtracted from the

square of the half of bo, which is always

25,000,000, the remainder is 2928796, of which the square root

Fig. 125

b

[306]

is approximately 1710. Adding this to the half of bo, namely

5000, we have 6710 for the altitude ofbf.

It will be worth while to add a third table giving the altitudes

and sublimities for parabolas in which the amplitude is a con-

stant.

SAGR. I shall be very glad to see this ; for from it I shall

learn the difference of speed and force [degl' impeti e delle forze]

required to fire projectiles over the same range with what we

call mortar shots. This difference will, I believe, vary greatly

with the elevation so that if, for example, one wished to employ

an elevation of 3∘ or 4∘, or 87∘ or 88∘ and yet give the ball the

same range which it had with an elevation of 45∘ (where we have

shown the initial speed to be a minimum) the excess of force

required will, I think, be very great.

SALV. You are quite right, sir; and you will find that in order

to perform this operation completely, at all angles of elevation,

you will have to make great strides toward an infinite speed.

We pass nowto the consideration of the table.
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[307]

Table giving the altitudes and sublimities of parabolas of

constant amplitude, namely 10000, computed for

each degree of elevation.

Angle of Angle of

Elevation Altitude Sublimity Elevation Altitude Sublimity

1° 87 286533 46° 5177 4828

2
3
4
5
6
7
8

175 142450 47 5363 4662

262 95802 48 5553 4502

349 71531 49 5752 4345

437 57142 50 5959 4196

525 47573 51 6174 4048

614 40716 52 6399 3906

702 35587 53 6635 3765

9 792 31565 54
6882 3632

ΙΟ 881
28367 55 7141 3500

II 972 25720 56 7413 3372

12 1063 23518 57 7699 3247

13 1154 21701 58
8002 3123

14 1246 20056 59 8332 3004

15

16

17

18

5
6
7
8

1339 18663 60 8600 2887

1434 17405 61 9020 2771

1529 16355
62 9403 2658

1624 15389 63 9813 2547

19 1722 14522 64 10251 2438

20 1820 13736 65 10722 2331

21
1919 13024 66 11230

2226

22 2020 12376 67 11779
2122

23 2123 11778
68 12375 2020

24 2226 11230 69 13025 1919

388
8
8
8

w
w
w
w
w
w
w

~~~2J

25 2332 10722 70 13237 1819

26 2439 10253 71 14521 1721

27 2547 9814 72 15388 1624

28 2658 9404 73 16354 1528

29 2772 9020 74 17437 1433

2887 8659 75
18660 1339

3008 8336 76 20054 1246

3124
8001 77 21657 1154

3247 7699 78 23523
1062

3373 7413 79 25723 972

3501 7141 80
28356

881

3633
6882 81

31569 792

37 3768 6635 82 35577 702

3906 6395 83 40222 613
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Angle of Angle of

Elevation Altitude Sublimity Elevation Altitude Sublimity

39° 4049 6174 84° 47572 525

40 4196 5959 85 57150 437

41 4346 5752
86

71503 349

42 4502 5553 87 95405
262

43 4662 5362 88 143181 174

44 4828 5177
89 286499 87

45 5000 5000 90 infinita

[308]

PROPOSITION XIV

To find for each degree of elevation the altitudes and sub-

limities of parabolas of constant amplitude.

The problem is easily solved . For if we assume a constant

amplitude of 10000, then half the tangent at any angle of

elevation will be the altitude. Thus, to illustrate, a parabola

having an angle of elevation of 30∘ and an amplitude of 10000,

will have an altitude of 2887, which is approximately one-half

the tangent. And now the altitude having been found, the

sublimity is derived as follows. Since it has been proved that

half the amplitude of a semi-parabola is the mean proportional

between the altitude and sublimity, and since the altitude has

already been found, and since the semi-amplitude is a constant,

namely 5000, it follows that if we divide the square of the semi-

amplitude by the altitude we shall obtain the sublimity sought.

Thus in our example the altitude was found to be 2887: the

square of 5000 is 25,000,000, which divided by 2887 gives the

approximate value of the sublimity, namely 8659.

SALV. Here we see, first of all, how very true is the state-

ment made above, that, for different angles of elevation, the

greater the deviation from the mean, whether above or below,

the greater the initial speed [impeto e violenza] required to

carry the projectile over the same range. For since the speed is

the resultant of two motions, namely, one horizontal and

uniform, the other vertical and naturally accelerated ; and

since the sum of the altitude and sublimity represents this

speed, it is seen from the preceding table that this sum is a

minimum
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minimum for an elevation of 45∘ where the altitude and sub-

limity are equal, namely, each 5000; and their sum 10000.

But ifwe choose a greater elevation, say 50∘, we shall find thealti-

tude 5959, and the sublimity 4196, giving a sum of 10155 ; in like

mannerwe shall find that this is precisely the value of the speed

at 40∘ elevation, both angles deviating equally from the mean.

Secondly it is to be noted that, while equal speeds are re-

quired for each of two elevations that are equidistant from the

mean, there is this curious alternation, namely, that the altitude

and sublimity at the greater elevation correspond inversely to

the sublimity and altitude at the lower elevation . Thus in the

[309]

preceding example an elevation of 50∘ gives an altitude of 5959

and a sublimity of 4196; while an elevation of 40∘ corresponds

to an altitude of 4196 and a sublimity of 5959. And this holds

true in general; but it is to be remembered that, in order to

escape tedious calculations, no account has been taken of

fractions which are of little moment in comparison with such

large numbers .

SAGR. I note also in regard to the two components of the

initial speed [impeto] that the higher the shot the less is the

horizontal and the greater the vertical component ; on the other

hand, at lower elevations where the shot reaches only a small

height the horizontal component of the initial speed must be

great. In the case of a projectile fired at an elevation of 90∘,

I quite understand that all the force [forza] in the world would

not be sufficient to make it deviate a single finger's breadth from

the perpendicular and that it would necessarily fall back into

its initial position ; but in the case of zero elevation, when the

shot is fired horizontally, I am not so certain that some force,

less than infinite, would not carry the projectile some distance ;

thus not even a cannon can fire a shot in a perfectly horizontal

direction, or as we say, point blank, that is, with no elevation at

all . Here I admit there is some room for doubt. The fact I do

not deny outright, because of another phenomenon apparently

no less remarkable, but yet one for which I have conclusive

evidence. This phenomenon is the impossibility of stretching

a



290 THE TWO NEW SCIENCES OF GALILEO

a rope in such a way that it shall be at once straight and parallel

to the horizon; the fact is that the cord always sags and bends

and that no force is sufficient to stretch it perfectly straight.

SALV. In this case of the rope then, Sagredo, you cease to

wonder at the phenomenon because you have its demonstration ;

but if we consider it with more care we may possibly discover

some correspondence between the case of the gun and that ofthe

string. The curvature of the path of the shot fired horizontally

appears to result from two forces, one (that of the weapon) drives

it horizontally and the other (its own weight) draws it vertically

downward. So in stretching the rope you have the force which

pulls it horizontally and its own weight which acts downwards.

The circumstances in these two cases are, therefore, very similar.

If then you attribute to the weight of the rope a power and

[310]

energy [possanza ed energia] sufficient to oppose and overcome

any stretching force, no matter how great, why deny this

powerto the bullet?

Besides I must tell you something which will both surprise

and please you, namely, that a cord stretched more or less

tightly assumes a curvewhich closely approximates the parabola.

This similarity is clearly seen if you draw a parabolic curve on a

vertical plane and then invert it so that the apex will lie at the

bottom and the base remain horizontal ; for, on hanging a

chain below the base, one end attached to each extremity of the

base, you will observe that, on slackening the chain more or less,

it bends and fits itself to the parabola ; and the coincidence is

more exact in proportion as the parabola is drawn with less

curvature or, so to speak, more stretched ; so that using parab-

olas described with elevations less than 45° the chain fits its

parabola almost perfectly.

SAGR. Then with a fine chain one would be able to quickly

draw many parabolic lines upon a plane surface.

SALV. Certainly and with no small advantage as I shall show

you later.

SIMP. But before going further, I am anxious to be convinced

at least of that proposition of which you say that there is a

rigid
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rigid demonstration ; I refer to the statement that it is impossible

by any force whatever to stretch a cord so that it will lie per-

fectly straight and horizontal.

SAGR. I will see if I can recall the demonstration ; but in order

to understand it, Simplicio, it will be necessary for you to take

for granted concerning machines what is evident not alone from

experiment but also from theoretical considerations, namely,

that the velocity of a moving body [velocità del movente], even

when its force [forza] is small, can overcome a very great re-

sistance exerted by a slowly moving body, whenever the velocity

of the moving body bears to that of the resisting body a greater

ratio than the resistance [ resistenza] of the resisting body to

the force [forza] of the moving body.

SIMP. This I know very well for it has been demonstrated by

Aristotle in his Questions in Mechanics; it is also clearly seen

in the lever and the steelyard where a counterpoise weighing

not more than 4 pounds will lift a weight of 400 provided that

the distance of the counterpoise from the axis about which

the steelyard rotates be more than one hundred times as great

as the distance between this axis and the point of support for

[311 ]

the large weight. This is true because the counterpoise in its

descent traverses a space more than one hundred times as great

as that moved over by the large weight in the same time; in

other words the small counterpoise moves with a velocity which

is more than one hundred times as great as that of the large

weight.

SAGR. You are quite right ; you do not hesitate to admit that

however small the force [forza] of the moving body it will over-

come any resistance, however great, provided it gains more

in velocity than it loses in force and weight [vigore e gravità] .

Now let us return to the case of the cord. In the accompanying

figure ab represents a line passing through two fixed points a and

b; at the extremities of this line hang, as you see, two large

weights c and d, which stretch it with great force and keep it

truly straight, seeing that it is merely a line without weight.

Now I wish to remark that if from the middle point of this line,

which



292 THE TWO NEW SCIENCES OF GALILEO

which we may call e, you suspend any small weight, say h, the

line ab will yield toward the point fand on account of its elonga-

tion will compel the two heavy weights c and d to rise. This I

shall demonstrate as follows : with the points a and b as centers

describe the two quadrants, eig and elm; now since the two semi-

diameters ai and bl are equal to ae and eb, the remaindersfi and

flarethe excesses of the lines afandfbover ae and eb; they there-

a 6

8

i

oh

d

n

f

m

I
E

Fig. 126

fore determine the rise of the weights c and d, assuming of course

that the weight h has taken the position f. But the weight h

[312]

will take the position f, whenever the line ef which represents

the descent of h bears to the line fi—that is, to the rise of the

weights c and d—a ratio which is greater than the ratio of the

weight ofthe two large bodies to that of the body h. Even when

the weights of c and d are very great and that ofh very small this

will happen; for the excess of the weights c and d over the weight

of h can never be so great but that the excess of the tangent ef

over the segment fi may be proportionally greater. This may

be
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be proved as follows : Draw a circle of diameter gai; draw the

line bo such that the ratio of its length to another length c,

c>d, is the same as the ratio of the weights c and d to the weight

h. Since c>d, the ratio of bo to d is greater than that of bo to c.

Take be a third proportional to ob and d; prolong the diameter

gi to a pointfsuch that gi: if=oe:eb; and from the pointfdraw

the tangent fn; then since we already have oe:eb =gi:if, we

shall obtain, by compounding ratios, ob:eb =gf:if. But d is a

mean proportional between ob and be; while nf is a mean pro-

portional between gf and fi. Hence nf bears to fi the same

ratio as that of cb to d, which is greater than that of the weights

c and d to the weight h. Since then the descent, or velocity,

of the weight h bears to the rise, or velocity, of the weights c

and d a greater ratio than the weight of the bodies c and d bears

to the weight of h, it is clear that the weight h will descend

and the line ab will cease to be straight and horizontal.

And now this which happens in the case of a weightless cord

ab when any small weight h is attached at the point e, happens

also when the cord is made of ponderable matter but without

any attached weight ; because in this case the material of which

the cord is composed functions as a suspended weight.

SIMP. I am fully satisfied. So now Salviati can explain, as

he promised, the advantage of such a chain and, afterwards,

present the speculations of our Academician on the subject of

impulsive forces [forza della percossa].

SALV. Let the preceding discussions suffice for to-day; the

hour is already late and the time remaining will not permit us to

clear up the subjects proposed ; we may therefore postpone our

meeting until another and more opportune occasion.

SAGR. I concur in your opinion, because after various con-

versations with intimate friends of our Academician I have con-

cluded that this question of impulsive forces is very obscure, and

I think that, up to the present, none of those who have treated

[313]

this subject have been able to clear up its dark corners which

lie almost beyond the reach of human imagination; among the

various views which I have heard expressed one, strangely fan-

tastic
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tastic, remains in my memory, namely, that impulsive forces are

indeterminate, if not infinite. Let us, therefore, await the con-

venience of Salviati. Meanwhile tell me what is this which

follows the discussion of projectiles .

SALV. These are some theorems pertaining to the centers of

gravity of solids, discovered by our Academician in his youth,

and undertaken by him because he considered the treatment of

Federigo Comandino to be somewhat incomplete. The proposi-

tions which you have before you would, he thought, meet the

deficiencies of Comandino's book. The investigation was

undertaken at the instance of the Illustrious Marquis Guid'

Ubaldo Dal Monte, a very distinguished mathematician of his

day, as is evidenced by his various publications. To this gentle-

man our Academician gave a copy of this work, hoping to ex-

tend the investigation to other solids not treated by Comandino.

But a little later there chanced to fall into his hands the book of

the great geometrician, Luca Valerio, where he found the sub-

ject treated so completely that he left off his own investigations,

although the methods which he employed were quite different

from those ofValerio.

SAGR. Please be good enough to leave this volume with me

until our next meeting so that I may be able to read and study

these propositions in the order in which they are written.

SALV. It is a pleasure to comply with your request and I only

hope that the propositions will be of deep interest to you.

END OF FOURTH DAY.



APPENDIX

Containing some theorems, and their proofs, dealing with

centers of gravity of solid bodies, written by the same Author at

an earlier date. *

* Following the example of the National Edition , this Appendix which

covers 18 pages of the Leyden Edition of 1638 is here omitted as being

of minor interest . [Trans.]
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Accelerandosi = displace, 252

Accelerated motion, 160

INDEX

reduced to

uniform motion, 173

Acceleration, definition of uni-

form, 169

Acceleration of gravity measured,

178

Accelerazione, used in the sense

of speed, 167

Achilles and the Tortoise, prob-

lem of, 164

Acoustics, 95

Adhesion of plates, 11, 12

Aggiunti, x

Air, resistance of, to projectiles,

252, 256

Altitude of parabola, determina-

tion of, 285

Amplitude of parabola defined,

260, 273

tables of, 284

Apollonius, 242, 245, 246

theorem of, 38, 44

Aproino, Paolo, ix

Arcetri, xi, xviii

242, 251

Beam carrying a constant load

which moves from one end to

the other, 140

Beam carrying a constant load

in a fixed position, 140 et sq.

Beams, similar, relative strength

of, 124

> strength of, 115

-, variation of strength with

diameter, 119

variation of strength with

length, 123

Bending strength, 119

Bernoulli, James, 149

John, 183

Bones, proportion of, 131

of birds, 150, 239

Brachistochrone, 225, 239

Canne
= fathom

Capillarity, effect seen in shorten-

ing of rope, 20

as seen in drops on

cabbage leaves, 70

Catenary, 149, 290

Cause, speed considered as a, 255

Archimedes, v, 41 , 110, 144, 147, Causes, search after, futile, 166

Archimedes' principle, 81

Ariosto, quotation from, 131

Aristotle, 12, 13 , 20, 26, 49, 64, 76,

77, 80, 95, 110, 125, 135, 291

Aristotle's idea of falling bodies, 61

Arrighetti, x

Atmospheric pressure, 17

Augmented Fourth, 104

Axioms of uniform motion, 154

Cavalieri, 41

Chords of circles, times of descent

along, 188 et sq.

Cicero, xix

Cohesion of solids, II et sq., 18

Comandino, Federigo, 294

Compass, Galileo's military, 149

Composition of motions, 244, 257,

267

Continuity, mathematical, 24 et sq.
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Continuous quantities, 31 , 34-36

Contraction, theory of, 51

Cylinders, relative strength of

similar, 124

Definition ofuniformly accelerated

motion, 161

Definition of uniform motion, 154

Definitions, mathematical, 28

Density, see Specific Gravity

Diapason, 99

Diapente, 99

Diminished Fifth, 104

Diodati, Elia, ix, xii

Energia, 269, 271, 290

Elzevir, Louis, xi

Elzevirs, The, xviii

Errors in parabolic trajectories,

251 et sq.

Euclid, 242, 243 , 246, 248, 283

Expansion, theory of, 51

Falling bodies, Aristotle's notion

of, 61, 64-68

-, laws of, 265

-, sphere as locus of,

192, 193

Feather and coin result predicted,

72

Fifth, a musical interval, 100

Fire escape, devised by kinsman

of Galileo, 10

Force, synonyms for, 114, 267, 269,

271 , 286, 291 , 293

Forza, in the sense of mechanical

advantage, 124

-, in the sense of momentum,

267, 269, 271 , 286

=
Frequenza frequency of pen-

dulum, 97

Geometry compared with Logic,

137

Gilding, thickness of, 53 et sq.

Gravity, centers of, 294, 295

experimental determina-

tion of, 178

Guevara (di) Giovani, 20, 126

Hammer blow, problem of, 271

Heath, T. L., v, 145

Huygens, v

Impenetrability of matter, 49, 51 ,

61

Impulsive forces, 293

Inclined plane, principle of, 184

et sq.

gravity, 178

used to "dilute"

Inclined planes of equal height,

speed acquired on, 169, 184

Indivisibility, 30, 36

Infinity, 26, 30, 31, 37, 39

Isochronism of the simple pen-

dulum, 97

of pendulums of dif-

ferent materials, 85

Isoperimetric problems, 58

Jealousy of investigators, 83

Law of lever, 112

Law of motion, Newton's first, 244

Newton's second,

250

Law of simple pendulum, 96

Laws of air resistance, 253

Laws of falling bodies, 174 et sq.,

265

Lever, law of, 112

Levity of air, 77, 78

Lift pump, theory of, 16

Light, speed of, 42

Limiting speed of bodies in vacuo,

72

Lincei, Academy of the, xx

Loaded beams, 140

Logic and geometry compared, 137
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Marsili, x

Mathematical definitions, 28

Mathematics, rôle of in physics,

276

Maximum range of a projectile, 275

Media, effect of, on speed of falling

bodies, 76

Medici, Antonio de', x

Prince Mattia de', xi

Mersenne, M, v.

Micanzio, xi

Padua, ix, x, xii, 182

Parabola, description of, 148, 246,

258

?

quadrature of, 147

to find the sublimity of

a given, 272

Parallelogram of velocities, 257

Pendulum motion , law of air

resistance to, 254

Pendulums of lead and cork, 84

Pendulums, time of descent, 95

Minimum momentum theorem, Pendulum with string striking

273

Mirrors, spherical, 41

Mole volume, 80, 82
=

against nail , 170

Periodo = period of pendulum, 97

Peripatetics, 48 , 61

=
Moment, used in sense of impor- Peso specific gravity, 69, 72

tance, 65

Momento force, 183=

Momento in the sense of magni-

tude, 124

Momentum, 258, 259, 263, 266,

269, 270

measure of, 264

Monochord, 99

Motion, axioms of uniform, 154

natural, 153

of falling bodies, 160

of projectiles, 244

supernatural, 255

uniform , laws of, 154

Monte, G. del, ix, 294

Motte, v

Music, 95

Pieroni, G., xi

Planetary orbits, 261

Plato, 90, 137, 261

Point blank firing, 289

Potenza, meaning of " in potenza,"

257, 266

Principle of virtual work, 183

Problem of Achilles and the

Tortoise, 164

of stretched rope, 290

Projectile, speed of, 279

Projectiles, motion of, 244

Pythagorean problem in music, 95,

103

Quadrature of parabola, 147, 251

Quickest descent, 225, 239

Naturally accelerated motion, 160 Range, maximum, 275

"Natural" Motion, 153

Newton, v

Newton's First Law of Motion,

215, 216, 244

Second Law of Motion,

250, 257, 263

Noailles, Count of, xii, xvii

Octave, ratio involved in, 99

Orbits of planets, 261

Range, minimum momentum re-

quired for a given, 273

Range tables, 256, 284

Resistance of air proportional to

speed, 74

252

of air to projectiles,

Resonance of a bell, 98

of pendulum, 97

of strings, 99
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Resultant, 257, 258, 267

Ripples, produced by sounding

a goblet, 99

Rope-making, theory of, 8 et sq.

Ropes, shortening due to moisture,

20

stretched, problem of, 290

Sack, proper design of, 56

Sacrobosco (John Holywood) 57

Salusbury, Thomas, v

Sarpi, Fra Paolo, ix, x

Strings, laws of vibrating, 100

'Sublimity" defined, 260

of any parabola, to

find, 272

Subsidence
of small particles, 87

| Tangent, used in two senses, 282

Terminal speed, 91 , 256, 260

Theorem of Apollonius, 38, 44

Tritono, 104

Tubes, bending strength of, 150

Second minute, as a unit of time, Ubaldi, ix

264, 265

Siena, x

Space, described in uniformly ac-

celerated motion, 173 et sq.

Spear as unit of length, 265

Specific gravity, balls adjusted to

equal that of water, 69

Specific gravity of air, 78 et sq.

of aquatic

animals, 132

Speed of projectile, 279

standard of, 260, 265

terminal, 91

uniform, definition of, 154

Statics, fundamental principle of,

IIO

Steelyard, 291

Strength of materials, 109

Uniform acceleration, definition

of, 169

Uniform motion, laws of, 154

Valerio, Luca, 30, 148, 294

Velocities, parallelogram of, 257

Velocity, standard of, 260

154

Venice, xi

=

uniform, definition of,

virtual, 291

Vigore force, 291

Vinta, Belisario, x

Virtual work, principle of, 291

Viviani, Vincenzio, ix, 180

Weighing in vacuo, 81-83

Weston, Thomas, vi
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