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Preface

Computational technology causes the world to change rapidly.

Almost 30 years ago I got my first job as a computer programmer. At the time, only larger
companies with a big administrative overload used computers. Or rather, “a computer,”
because it was rare for a company to have more than one. There were no personal com-
puters, no Internet, no mobile phones. People still used typewriters.

In those 30 years, the way people work and live has undergone huge changes. That is ex-
ceptionally clear when looking at the kind of work that people do. Mailmen, for instance,
delivered the mail twice per day when I was a kid – now they deliver mail twice per week,
which means that the contingent of professional mailmen has been decimated. Bank of-
fices are closed because banking can be done much easier online. Information desks can
be manned by digital avatars or be replaced by online information systems. Large de-
partment stores go out of business because people make their purchases online, leading
to an enormous decline in the need for having salespeople. And though this has currently
caused a small increase in the demand for people who work in transportation, we can see
self-driving cars on the horizon, replacing the need to have any chauffeurs at all.

These are all “low profile” jobs, but “high profile” jobs aren’t safe either. I have taught pro-
gramming to professional journalists, who told me that computers are taking over large
parts of their jobs, writing basic articles and doing automated background research – they
wanted to take my courses because they realized that without skills in digital technology,
they would be out of a job in a few years time. Programs have been developed that take
over a menial but oh-so time consuming part of lawyers’ jobs, namely researching case
histories. Computers can write music, produce paintings, and even sculpt – why would
you have someone hammer away at a block of granite for six months when a 3D-printer
can produce a sculpture with a few hours of work? Even designing and running scientific
experiments has been offloaded to computers in some research domains.

In the 30 years in which I have been a professional worker, I have seen the job market
change from hardly incorporating computers at all, to a situation in which the need for
human employees has been reduced considerably – regardless the job. And that change
has not come to an end yet.

This does not mean that there is no place for humans in the job market. It does mean,
however, that only humans who can make contributions that a computer has a hard time
making on its own, can be assured of a job. In the near future, employability will be
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invariably linked to the ability to integrate the power of humans and computers in a way
that enhances both of them.

The problem is that to be able to use computers to improve the quality of one’s work,
it does not suffice to be able to use a word processor or spreadsheet. One should actu-
ally be able to expand the capabilities of computers from the perspective of one’s chosen
profession. For example, a journalist who can only run a fact-finding computer program
that someone else wrote, is not needed. However, a journalist who is able to expand a
fact-finding program so that it can come up with facts from new sources, is an asset.

To be able to employ computers in such a way, one needs the skills to think and solve
problems like a computer programmer. Having taught students computer programming
for many years, I know that this does not come naturally to most. To acquire the necessary
skills, students need to spend several intensive courses on the topic.

Considering the fact that universities and colleges are supposed to prepare students for
the job market in which they have to function for 40 or more years, and considering the
fact that in the very near future (if not right now already) the ability to incorporate the
power of computers in any job is a necessity to being a valued worker, one would expect
that “computer programming” is one of the basic courses that any student needs to take.
Unfortunately, it is not. Typically, basic required courses are “scientific writing,” “phi-
losophy of science,” and “statistics,” but “computer programming” is still seen, by most
education programs, as an optional skill. It is not.

In my view, any course program that does not make “computer programming” a required
course, is doing its students a disservice, as it is not preparing them for the job market.
Actually, I would prefer it if secondary, or even primary schools would incorporate such
courses, as programming skills tend to be easier to learn at a younger age. The reason is
that they need a particular way of creative thinking, which is harder to acquire when one
is already used to solving problems in the reproductive ways that are normally taught at
schools.

All students, regardless of their chosen topic, need to learn how to program. Not because
we should raise a generation of computer programmers – professional programming is
a specialization that only a few people need to be able to do. But the ability to create
programs provides students with the skills to think and solve problems like a computer
programmer, to gain insight in the possibilities and limitations of computers, and to lever-
age the power of computers in a particular domain in a uniquely human way.

The goal of this book is to teach anyone how to create useful programs in Python. It
should be usable by secondary school students, and university and college students for
whom computer programming is not naturally incorporated in their course program. Its
aim is to give anyone the means to become proficient in programming, and as such get
prepared to perform well in the 21st century job market.

Pieter Spronck
May 2, 2016
Maastricht, The Netherlands

Pieter Spronck is a Professor of Computer Science at Tilburg University, The Netherlands.
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Chapter 1

Introduction

Computers are wonderful machines. While most machines (cars, television sets, mi-
crowaves) have a specific purpose which they excel at accomplishing, computers are
purposeless machines that can be taught to accomplish anything. The power to make
a computer do your bidding is called “programming.”

Nowadays, in any scientific and professional endeavor, people have to deal with large
volumes of data. Those who are able to leverage the power of computers to make use of
such data, i.e., those who can program, are far better able to do their jobs than those who
are not. In fact, it can be argued that in the very near future, those who do not possess
programming skills will become unemployable. Therefore, I feel that it is necessary for
anyone to acquire basic skills in this area during their education.

Being able to write computer programs not only entails knowing what specific code state-
ments mean and do; it also entails having the ability think like a programmer, and to
analyze problems from the perspective of solving them with a computer program. Such
skills cannot be learned from a book, they can only be learned by actually creating pro-
grams.

This book has been designed to teach the basics of the Python 3 computer language. Stu-
dents will not only learn to use the language, but also do their first practical exercises with
it.

The book is not only catering towards people who are naturally inclined towards pro-
gramming. It is meant to also be used by those who have no particular aptitude for pro-
gramming. This is exemplified by texts which try to be extensive and foresee problems
that might arise when trying to understand certain concepts.

1.1 How to use this book

This book is meant to be used as a course. It is not meant as a Python language reference.
You do not need a book as a language reference, as an excellent language reference can be
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found on the Internet (http://docs.python.org).

The chapters of this book are written to be studied in sequential order. For a brief course
on the basics of the Python language, using it for “imperative programming,” you should
study variables and expressions, conditions and loops, functions, string handling, lists
and dictionaries, and files. I.e., you can limit yourself to Chapters 1 to 19, whereby the
Chapters 9 (Recursion), 14 (Sets), 17 (Exceptions), 18 (Binary files), and 19 (Bitwise op-
erators) may be considered advanced material, which you can skip until you need them
(though I highly recommend that you at least try to understand recursion, as it helps
solving some of the exercises in later chapters).

For an advanced course on the basics of the Python language, you will have to delve
into object orientation, meaning that you also have to study Chapters 20 to 23, whereby
Chapter 23 (Iterators and Generators) can be considered optional material.

The remainder of the chapters are all useful, but optional material, from which you can
pick and choose, though I recommend that you at least read through them to understand
the topics that they cover. Future editions of this book may have extra optional material
added to the end.

When studying this book, you should have a computer with Python installed at hand
(Chapter 2 explains how to get Python for your computer). The book contains many
small and larger exercises, and you should do all of those while studying. There is no
way that you will learn how to program if you skip the exercises. More on the exercises
follows later in this chapter (Section 1.9).

Many of the code snippets in this book – in particular all the answers to the exercises and
all the slightly longer pieces of code – have a file name listed as a caption. This means that
this code is available under that particular file name from the website associated with this
book (http://www.spronck.net/pythonbook). You can download this code and load it
immediately in the editor that you are using if you so wish.

Note that copying and pasting code from a PDF file to an editor will, in general, not
work. Text in a PDF file is not stored in such a way that spaces are inserted in the correct
places when you copy code. So you must either manually type in code, or use the listings
that are provided as separate files.

1.2 Prerequisites and assumptions

This book assumes that you have no programming skills at all, but are willing to learn.
You should also have the ability to think in abstractions.

You should realize that learning how to program might take a significant time investment.
It does not suffice to just read the material and do the occasional small exercises. You will
have to practice with the material and also do larger exercises, if you really want to gain
the ability to create programs. If you stick to the basic chapters (everything up to dealing
with text files), if you have no programming knowledge at all, you should count on having

http://docs.python.org
http://www.spronck.net/pythonbook
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to invest between 100 and 200 hours to get to the finish, depending on aptitude. Learning
everything that the book has to offer will take between 200 and 400 hours.

Note that this book will not try to teach you to be a professional programmer. It teaches
the initial skills that any professional programmer also acquired during his or her edu-
cation. After teaching those initial skills, the book ends. For most people, this is enough
to deal with programming tasks they encounter, and provides a sufficient basis to learn
more if there is a need.

1.3 Why Python?

Python has become a language of choice for teaching people how to program. It is a
powerful language, that is easy to use, and that offers all the possibilities that any other
computer language offers. It is easily portable between different operating systems. It is
freely available. For beginning programmers, it has the advantage that it enforces writing
readable code. Python is also a language that is used for many practical applications, ei-
ther as a basis for complete programs, or as an extension to programs written in a different
language.

The main advantage of using Python is that it allows you to focus on “thinking like a pro-
grammer,” rather than learning all the arcane intricacies of a language. Here is an example
of the difference between using Python, and using some other popular programming lan-
guages: The first program that anybody writes in any language, is Hello World. This is
a program that displays the text “Hello, world!” on the screen. In the highly popular
computer language C++, Hello World is coded as follows:

#include <iostream>

int main() {

std::cout << "Hello, world!";

}

In C#, Microsoft’s popular variant of C++, it is:

using System;

namespace HelloWorld {

class Hello {

static void Main() {

Console.WriteLine( "Hello, world!" );

Console.ReadKey();

}

}

}

In Objective-C, Apple’s C++ variation, the code becomes even worse:

#import <Foundation/Foundation.h>

int main ( int argc, const char * argv[] ) {

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSLog (@"Hello, world!");
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[pool drain];

return 0;

}

In Java, which is taught as the first language to many computer science students, it is:

class Hello {

public static void main( String[] args ) {

System.out.println( "Hello, world!" );

}

}

Now compare this to writing Hello World in Python:

print( "Hello, world!" )

I think we can agree that the Python version of this program is much more readable and
understandable – even without knowing the language – than any of the other languages.

1.4 Python’s limitations as a programming language

Python is a general-purpose programming language. This means that it can be used for
anything and everything you would ever want to do with computer languages. Can
you therefore conclude that once you have learned Python, you will never need to learn
another language?

The answer is that it depends on what you need to do with computer programming.
While Python can be used for anything, it is not the most suitable language for everything.
For instance, most game programmers use C++ or C# to create their programs, because
these languages produce very fast executables, and speed is of utmost importance for
games. People who create complex statistical models have their own computer languages
too. Sometimes you need to write programs that interact with other programs which
require the use of a specific language. And for some problems languages with a different
philosophy to writing programs are better suitable.

All in all, while Python basically has no limitations as a programming language, for spe-
cific problems specific other languages might be better suitable. Still, for many people
Python suffices to do everything they need to do for their studies and job. Moreover,
Python is a great language to learn programming with, and once you understand and can
use Python, you have a very strong basis to learn any other programming language. That
is why I believe it is the language of choice to teach programming to beginners.

1.5 What does it mean “to think like a programmer?”

This book is not only meant to teach you to use Python, but, more importantly, to teach
you how to think like a programmer, because thinking like a programmer is a necessity
to understand what you can use computers for and how you should use them. But what
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does “thinking like a programmer” entail? I will answer this question by illustrating it
with performing a specific task:

Suppose that you have a deck of cards, each card with a different number on it. You have
to sort these cards from low to high, lowest card on top. Most people are able to do that.
Also, most people, when you ask them how they do it, will look at you mystified, and
answer: “Well,... I just sort them low to high... what do you mean with how do I do it?”
Other people may say: “I first seek the highest card, and put it down. Then I seek the
next highest card, and put it on top of the highest card. Etcetera.” While this more or less
explains how they sort cards, if you then ask them: “But how do you seek the highest
card?,” most of them, again, will look at you mystified.

The problem is that if you need to explain to a computer how to sort a deck of cards, you
cannot assume that the computer can infer anything from vague statements, even if such
statements would be completely clear to a human. You cannot tell the computer: “Seek
the highest card,” because even if the computer would understand English, it would ask
you how it should seek the highest card. You will have to be very explicit about it. You
have to say something like “Take the top card from the deck and hold it in you left hand.
Then do the following until the deck runs out: take the top card from the deck in your
right hand. If the value of the card in your right hand is higher than the value of the card
in your left hand, put the left-hand card in the discard pile and put the right-hand card in
your left hand. Otherwise, put the right-hand card in the discard pile. Once the deck has
run out and your right hand is empty, the card in your left hand is the highest card.”

Of course, a computer has no notion of left hand and right hand, and does not understand
English. But a computer does understand computer language. Every computer language
has a very precise syntax, and very precise semantics, which means that a computer pro-
gram is an unambiguous explanation of how to perform a task. To have a computer
perform a task, you have to use a computer language, bound by its syntax, to explain
step-by-step how the task should be performed. Then, and only then, a computer can
perform the task.

Since it is often very hard to think of all the steps needed to perform a task, you will have
to divide the task into smaller subtasks, which you may have to divide again into even
smaller subtasks, until the subtasks are so small that you can envision the steps needed
to perform those subtasks. Then you can create implementations for each of the subtasks,
and put them together to form a program for the task as a whole.

Thinking like a programmer means that you are able to approach a task from the perspec-
tive of programming a computer to perform that task, that you are able to recognize what
a logical division into subtasks is, and that you can recognize when subtasks are suffi-
ciently small so that you can implement them. This is a skill that most people can learn,
but that requires a lot of practice and a thought process that is different from what most
people are used to.

Using this book, by learning to create programs in Python, starting with small programs
that gradually increase in complexity, you should also learn to use the thought processes
that come naturally to a programmer.
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1.6 The art of programming

Programming is an art form. A teacher of programming in many ways is comparable to a
teacher of art.

Most people have had art classes in secondary school. An art teacher first teaches about
art materials: pencils and paper, different colors of pencils, different hardness of pencils,
erasers, inks, ink pens, paints, etcetera. The students use the knowledge acquired to create
their first drawings. Then the art teacher makes them familiar with art techniques: mixing
paints to get different colors, special kinds of paints that create special effects, combining
techniques, how to use perspective, etcetera. Students get assignments like “draw a cat,”
and the art teacher assesses their results both from the use of materials and the mastery of
techniques, as well as from an artistic perspective of what makes a good likeness of a cat.

A teacher of programming has similar tasks. At first he teaches students about the core
principles behind programming languages, basic statements that every programming lan-
guage has, and how these can be used to create simple programs. Then he delves into
more advanced techniques, by which students can construct more complex programs,
and can incorporate advanced functionalities in easier ways. Students get assignments
like “create a program that alphabetizes a text,” and the teacher assesses their results both
from their use of programming techniques, as well as from the perspective of how well
they manage to accomplish the task set.

From the art teacher’s perspective, for an assignment that asks students to draw a cat, a
student who drew a circle with two triangles on top and two dots in the middle, arguably
drew a cat but has no grasp of the use of materials. A student who hands in a beautiful
picture of a tree, may be a master of techniques but cannot use them to accomplish a
task. And two students who hand in the exact same picture of a cat, clearly have been
plagiarizing. Still, there isn’t just one right “cat picture.” There are many different cat
pictures that are acceptable and that show that students are learning and becoming artists.

In the same way, a teacher of programming who gives an assignment, wants his students
to creatively use the knowledge they acquired to construct their own version of a program
that solves the task. Students who have not mastered the techniques, will be unable to
solve the task, or will only be able to create a distant approximation of a program that
solves the task. Students who did master the techniques, may still lack the aptitude of
combining what they have learned in new and original ways to create a solution. And
two students who hand in the exact same solution, clearly have been copying it and are
trying to get away with plagiarism.

Programming is an art form, where you not only have to master the techniques that form
the basis of your art, but also have to be able to apply these techniques creatively to prob-
lems. The main difference with producing programs and producing visual art, is that in
visual art you can still debate about whether an image of a bulldog with pointy ears can
be accepted as a picture of a cat, while in programming it is much easier to disqualify
programs as solutions to a particular problem.

Moreover, everybody knows and realizes that you will never become an artist by just
studying the materials. You will have to practice, use the materials, and develop your
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skills by applying them to many different tasks. In programming, it is exactly the same:
you cannot learn how to program without writing many programs. Programming not
only requires knowledge, but also skills that need to be developed in practice, and a form
of creativity that allows you to expand your abilities to accomplish new tasks.

Naturally, there are few master artists whose work will feature in art galleries. But we can
all draw pictures of cats, and for most people, that ability suffices for their daily needs.
In the same vein, there is no need for any student to become a master programmer, as
long as they can create straightforward programming solutions for the problems that they
encounter in study and work. But be aware that next to mastery of basic techniques,
creativity is always involved.

1.7 Start small, grow big

This is not the only Python book available, although most books that I have seen assume
quite a bit of knowledge and past experience on the part of the student. Books that are
aimed at absolute beginners are rare. Still, several alternatives for this book, even free
alternatives, exist.

A problem that I have with most Python books aimed at beginners is that they attempt
to make programming attractive by focusing from the start on applications that are im-
mediately useful or entertaining. “Learn Python by Programming Games!” is a typical
approach that I have encountered.

Such a setup is misleading. First of all, if you examine a book that teaches Python using
games, you will discover that the games used are very simple word and number games,
rather than the next Halo, Civilization, Bejeweled, or even Flappy Bird. This generally is not
what the student would expect from a book on game programming. Moreover, you will
find that even those very simple “games” are of a complexity that is too high to allow a
novice to learn programming. I understand that such a book tries to evoke enthusiasm
amongst the students by framing its material in a way that seems attractive. However,
that attraction is lost very quickly when students realize that the material is not what they
expected, and at that point the topics become an obstruction to learning rather than a
stimulant.

Regardless which way you look at it, like any other topic of study, learning how to pro-
gram requires studying basic concepts before you can advance to more attractive and
useful applications. The desire or need to learn programming is what should drive the
student, not the erroneous expectation that they can hammer out a flashy game after a
couple of hours of studying. That is why I designed this book to start small, with basic
programming statements, and building knowledge up with a steady pace. The book does
not remain stuck at the small stuff, however – if you progress through all the chapters,
you will be an accomplished programmer when you finish it.

I try to insert exercises that can be entertaining to solve if such things appeal to the student.
I have had students telling me that they really enjoy working on them. However, I have
also seen students suffer and longing to do something else. Regardless, if you want to
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learn how to program, and do the exercises, the book will teach you everything that you
need to program any application that you want – even entertaining games if you so desire.

1.8 Python 2 or Python 3?

Different versions of Python exist. At the moment of creating this book, the most popular
versions are Python 2 and Python 3. Python 3 is, as can be expected, an update of Python
2. Python 2 programs are, unfortunately, not completely compatible with Python 3. Since
a lot of Python 2 code is still in use, Python 2 is still an active language, and still being
maintained.

The reason why Python 3 was created is to resolve a number of inconsistencies and id-
iosyncrasies in the Python 2 language. For people new to programming, this is a big plus,
because there are less “weird” language elements they need to learn and understand if
they choose Python 3 instead of Python 2.

To give an example, when you calculate 7/4 in Python 2, the answer is 1, and not 1.75
as you might expect. The reason is that both 7 and 4 are whole numbers (“integers”),
and therefore the result of their division is a whole number. If you want to make sure
that the result is 1.75, you must make at least one of the numbers involved a floating-
point number. Therefore, 7.0/4 gives the result 1.75. This is how almost all computer
languages do calculations. Naturally, for people who are not familiar with programming
computers, this is counter-intuitive. Python 3 has resolved this issue, and automatically
does the floating-point conversion when a floating-point result would be expected, i.e.,
in Python 3, 7/4 gives the result 1.75. Many Python 2 programs, however, are written
with the assumption that integer-division rounds down, which means that, when you
run them as Python 3 programs, they no longer give the desired results. Thus, Python 2
and Python 3 are not compatible.

Since Python 3 is more intuitive than Python 2, and since nowadays most Python pro-
grams and modules have been converted to Python 3, this book is written for Python 3. If
you ever have to revert back to Python 2, it is not hard to make the change. An overview
of the differences between Python 2 and Python 3 is given in Appendix B (which is not
a complete overview, but contains all the differences that I am aware of). If you are only
using Python 3, you can ignore this appendix. However, considering how often I see the
question “What exactly are the differences between Python 2 and Python 3?,” and how
hard it seems to be to find an answer to that question, I thought it prudent to add it.

1.9 Practice

Most chapters have small exercises sprinkled throughout the text. These exercises are
there to enlighten a point or for you to do a quick check if you understood the material up
to that moment. You should try to do these exercises immediately when you encounter
them. Answers to these exercises are seldom provided, because if you understood the
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material, they should be really easy to do, while if you did not understand the material,
you should either re-read the chapter until you do, or ask someone for assistance.

At the end of most chapters, a separate “Exercises” section is given, with one or more
numbered exercises. You are supposed to do all of these exercises, and you should be
able to do them independently (i.e., without help of other people and without looking
up solutions from outside sources). Answers to these numbered exercises are provided
in the back of the book, in Appendix F, and can also be downloaded from the website
associated with this book (http://www.spronck.net/pythonbook). I wish to stress the
following points:

• You should work on the numbered exercises until you have solved them. Do not
dabble a bit and then look up the answer. Such an approach is utterly useless. There
is no way that you are going to learn programming if you do not think about al-
gorithms, write code, and test code. If you cannot solve an exercise even after you
have worked on it for quite some time, it is better to ask for assistance than to just
look up the answer. Being unable to solve an exercise means that there is something
in the material that you have not grasped yet, and it is important that you identify
what that is, and get to grips with it.

• You should do all of the exercises. The only way to learn programming is by prac-
ticing. You will have to write lots and lots of code before you have internalized the
practice of programming. The few exercises that I place at the end of the chapters
are not enough to accomplish that, but at least they are a start. If you cannot even
bother to do all of those, you should not bother to try to learn programming.

• You should try to do the exercises independently. Working in teams on the exercises
will allow one member of the team to learn, while the rest sits by and learns noth-
ing. Students often say that they have a method of learning from assignments that
involves working on them in small groups and discussing. That may be fine for an-
alyzing texts or setting up an experiment, but in general does not work for coding.
Watching someone write code teaches you very little about writing code. You have
to write code by yourself.

• For none of the exercises you need information that was not discussed in the book
up to that point. While there definitely may be easier ways to do some of the exer-
cises if you would use Python constructs that I did not discuss yet at the time you
get to the exercises, you do not need them. The purpose of the exercises is to prac-
tice with the discussed material. They are not meant to let you investigate future
material. Even if you are aware of different ways to solve an exercise, try to do it
with only the material discussed. Once you have done that, if you want to return to
an exercise later and solve it in a different way, that is, of course, fine.

• Once you have solved an exercise by yourself and have tested it extensively, then
and only then you should compare it to the answer that I provided. You may find
that it is different from yours. That does not mean that your answer is wrong! There
are usually very many ways to solve a programming problem. Some might be “bet-
ter” in some way than others. But there are many answers that are equally correct.
Moreover, in this book it is important that you learn to solve a problem by cod-
ing, not that you learn to code the most efficient solution to a problem. Just being

http://www.spronck.net/pythonbook
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able to solve the problem suffices, making solutions more efficient is of much lesser
importance. For instance, “being efficient” is less important than “being easy to
understand” and “being easy to maintain.”

For starters, here are two numbered exercises for the first chapter. Learn from them.

Exercises

Exercise 1.1 Get together with another person, and do the following exercise. Get
four playing cards with different values. Shuffle them, and put them face-down on the
table. One of you has to sort the cards, from low to high. This person is allowed to move
the cards around, but is not allowed to look at their face sides. However, this person is
allowed to point at two of the cards, after which the other one picks up those two cards,
looks at their faces, and then puts them back and says which of the two is higher. Count
how often such a comparison is made. Once the first person is satisfied that the cards are
sorted, they are turned over to check if they are indeed sorted correctly.

In this exercise, the first person basically takes the role of a computer program, that fol-
lows instructions without actually understanding values. The second person takes the
role of the computer processor, which can perform certain functions for the program, in
this case, comparing numbers.

If you did not manage to sort the cards correctly, think about how you can accomplish
this task under the given circumstances, and after that try it once more. If you did sort
them correctly and needed more than six comparisons, think about how you can do it
with six comparisons. If you managed to do it with six comparisons, think about if you
can do it with less than six. If you did it with less than six, think about if your procedure
is guaranteed to sort any collection of four cards.

Exercise 1.2 After doing the first exercise, together with your partner write down exact
instructions, in plain English, on how to sort cards under the circumstances described
above. Get a third person and ask this person to take your instructions and follow them,
while one of you two takes the role of processor. Ask the third person to perform the
steps as literally as possible, without trying to interpret meaning. This exercise is most
illustrative if the third person has no idea what the exact function of the instructions is.
Once the sorting procedure has finished, check if the result is correct.

Your textual description is comparable to a real program. If the third person is unable to
follow the steps, you seem to have made a syntax error. If the person can follow the steps
but the end result is not as you want, you seem to have made a functional error. When
programming computers, you will have to deal with both kinds of errors.

Note: writing such instructions is actually quite hard. Fortunately, writing similar in-
structions in a computer language is easier, as the syntax and semantics of the language
are well-defined. English, as any other human language, is rather unsuitable to write
unambiguous instructions.



Chapter 2

Using Python

As explained in the introduction, you will need to write and run Python code to learn
anything from this book. That means that you need a computer on which Python is in-
stalled, and you need to know how to write and run Python programs. This chapter will
explain to you how to get “up and running” with Python.

2.1 Getting Python

To run Python programs, you need a “Python interpreter.” Fortunately, Python inter-
preters are freely available for almost every machine in existence. Visit http://www.

python.org to download a Python interpreter for your computer. Make sure that you
get a Python 3 interpreter. Install it. After the installation finishes, in principle you are
ready to write and run Python programs.

It does not matter which operating system you use, whether it is Windows, Mac OS X,
Linux, or something else: you write the same code for every machine. You can even take
a program that you wrote on one machine and copy it to another, which may have a
different operating system, and it will probably still run as intended (unless the program
has some system-specific content, but I will get to that in a much later chapter).

Some Python courses use an online system in which students write Python code. That is
a possible approach, but it has three disadvantages: (1) there are free systems which are
very limited and therefore less useful; (2) there are paid systems which cost money and
also have you deal with some peculiarities (as they run in a browser); and (3) at some
point you will have to run Python on your own computer anyway, so why not start with
it? That said, if you prefer to start with an online system and only move towards a locally
installed version of Python in a later chapter, that is certainly possible.

http://www.python.org
http://www.python.org
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Figure 2.1: The IDLE environment.

2.2 Creating Python programs

Python programs are created in the form of files. By convention, the name of the file that
contains a Python program has the extension .py.

Most Python installations (definitely those for Windows and Mac OS) also install an envi-
ronment to create programs in, which is called IDLE. They usually also create some access
point for the IDLE environment (for instance, and icon or link on the desktop or in a pro-
gram menu). IDLE is a quite bare, but suitable environment to do your programming
in.

When you start IDLE, you are in a so-called “Python shell” (see Figure 2.1) This is, as it
were, an interactive Python program, in which you can type lines of Python code, which
are run immediately. For instance, if you type print(7/4), IDLE will show you the an-
swer 1.75. In general, this is not how you wish to create and run code, but you can use the
shell to quickly test the effect of Python statements.

To write Python programs with IDLE, you can create new Python files, or open existing
Python files, using the “File” menu. IDLE then gives you a new window in which you can
write code, edit code, and save code. You can even run the code immediately from this
window, using the “Run” menu (there is a shortcut key to immediately run the program,
usually F5). The program then actually runs in the shell, so that is where you supply input
and can see the output. Make sure that you save your programs with a name that ends in
.py.

There are user-friendlier ways to create Python programs. What you need is a text editor,
preferably one that supports writing Python code specifically. Note that a text editor is
different from a word processor; a text editor has no formatting options. You might see
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text getting formatted while typing in a text editor, with bold, italics, and colors, but this
is so-called “syntax highlighting,” which shows for a particular programming language
how certain words that you type are understood by the program.

There are many text editors available that support writing Python code, for many different
operating systems, most of them free. If you are unhappy with IDLE to write code, you
can search for alternatives on the Internet. All editors have their own advantages and
disadvantages, so what you prefer to use is up to you.

2.3 Running Python programs

Once you have created a Python program, you see the program name displayed in the
folder where you saved it. You can try to run it in the same way that you run other
programs (e.g., by double-clicking on it). For many Python programs, when you acti-
vate them in this way, you either see nothing happening, or a quick flash of a black win-
dow, after which nothing happens anymore. The reason is that Python programs run in a
“command-line shell” of the operating system. If you are not a Linux user, this is proba-
bly not something that you are used to. Basically, what happens is that Python opens the
command-line shell, runs the program, and when the program finishes, closes the shell,
giving you the feeling that nothing has happened. But something did happen; you just
did not notice it.

For the purpose of most of this book, you should simply run programs in the editor that
you use, as I describe for IDLE above. You may open the command-line shell (which
usually is a somewhat hidden option in the list of installed programs on your machine,
falling under System Commands) and “manually” run Python programs from that shell,
but there seldom is a need to do that.

2.4 Reference material

Besides this book, you might occasionally want to reference the Python manual. The
easiest way to do that is using the Internet. Just search for “Python” with whatever you
are interested in, and you will quickly see links that lead straight into the Python manuals
(the Python manuals are stored at http://docs.python.org). You might also run into
links that lead you to code that solves a problem for you directly. While that is great by
the time you have to use Python for practical problems, it does not help you to learn. So
my advice is that you avoid such links while trying to learn programming.

When you install Python, there usually is a manual installed in a Doc folder under the
Python folder. You can use it if, for some reason, you are not connected to the Internet.

If you are interested in another book besides this one, I recommend the classic Think
Python: How to Think Like a Computer Scientist, by Allen B. Downey. It is freely available
from http://greenteapress.com/wp/. A version for Python 3 was released in 2016. The
main differences with my book as far as content is concerned, is that my book has more

http://docs.python.org
http://greenteapress.com/wp/
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exercises, is aimed more at people who are completely new to programming, takes more
time for topics that I know are hard for students who have no real aptitude for program-
ming, and covers a few important topics that Downey’s book lacks, such as extensive file
processing.

Besides this book and other books like it to learn Python from, there are several open
video courses available. I do not believe that it is possible to learn programming mainly
from watching a video. The only way to learn programming is by doing.

I have included a troubleshooting appendix (Appendix A) to explain the most common
problems that you may encounter during the writing and running of programs.

Exercises

Exercise 2.1 Download Python and install it on the machine of your choice. Run IDLE.
Create a file hello.py, in which you place the code of the Hello World program shown in
Chapter 1 – it consists of one line of code, namely:

print( "Hello, world!" )

Run the program, and observe how the text “Hello, world!” is displayed in the IDLE
shell.

Exercise 2.2 In the IDLE shell you can type commands on the IDLE prompt (>>>). Give
the command print(7/4). You will see that it prints the answer 1.75. Then give the
command 7/4 (i.e., without print). Observe that it also prints the answer 1.75.

The reason is that the IDLE shell will always display the result of a command. The result
of 7/4 is 1.75, and therefore it displays 1.75. The result of a print command is nothing, so
the shell displays nothing – however, the print command causes the display of whatever
is within the parentheses, which is the value resulting from dividing 7 by 4, which is 1.75.
Therefore, in both cases you see 1.75, but one is the result of the use of the print command,
while the other is the result of the shell showing you the evaluation of a calculation.

Now write a Python program that contains only the command 7/4. Before you run it,
think about what you expect to happen when you run it. Will the shell display 1.75? Will
it display nothing? Or will you see an error?

Check if your expectation is correct.
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Expressions

Welcome to the first real programming chapter. In this chapter I discuss “expressions,”
which are straightforward calculations which you can also do with any simple calculator.
It is a small start, but you are going to need such expressions for every chapter after this
one.

3.1 Displaying results

When you write an expression in the Python shell, and you run it, the result of the expres-
sion is shown below it. For instance, if you type the following command in the shell and
press Enter, you see the result 12.

5 + 7

However, as I showed in Exercise 2.2, a program that contains the statement 5 + 7 will
not produce a result in the shell. Instead, you have to explicitly display everything that
you want to see, even if it is on the last line of the program.

So, even though this chapter is about expressions, the first thing I need to explain is not
an expression, but a function, that allows you to display results. The function that does
that is print. I already showed the print function in Chapters 1 and 2.

The print function is used as follows: you write the word print, followed by an opening
parenthesis, followed by whatever you want to display, followed by a closing parenthesis.
For example (and I showed this one before):

print( "Hello, world!" )

If you run this code (by saving it into a Python file and running it in IDLE), you will see
that it displays the text “Hello, world!” in the shell.



3.2. Data types 16

By the way, when referring to a function by name in a text, authors of texts about pro-
gramming often put an opening and closing parenthesis after the name of the function,
to indicate that it is a function name. From now on, I will follow this convention. More-
over, instead of referring to a “function,” authors sometimes call it a “statement” or a
“command.” However, these terms are usually used to refer to anything that Python can
execute, not just functions. I.e., an expression can also be called a “command.”

You can display multiple things with one print() function by putting everything that
you want to display between the parentheses with commas in between. The print()
function will then display all of the items, with one space in between each pair or them.
For example:

print( "I", "own", "two", "apples", "and", "one", "banana" )

Note that the spaces in this statement are all superfluous. The statement:

print("I","own","two","apples","and","one","banana")

is equivalent to the previous one. You can add such spaces for readability. You can even
put spaces between the word print and the opening parenthesis, but by convention, for
functions (and print() is a function), the opening parenthesis is placed against the func-
tion name.

Note that you can not only use print() to display texts, but also to display numbers. You
can even mix them up, as the following code shows.

print( "I", "own", 2, "apples", "and", 1, "banana" )

Exercise Display some texts of your liking using a Python program. But take note that
if you want to display text strings, you have to enclose them in double quotes – or single
quotes, those work too.

3.2 Data types

Before I can get to expressions, there is one more topic that requires some discussion, and
that is data types. Specifically, there are three different data types that you need to be
aware of at this time: strings, integers, and floats.

3.2.1 Strings

A string is a text, consisting of zero or more characters. In Python, a string is enclosed
by either double quotes, or single quotes. In principle, it does not matter which of the
two you use, i.e., "orange" is equivalent to 'orange'. However, if you have a text which
contains a single quote, if you want to avoid problems you will have to enclose it in double
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quotes, i.e., "I can't stand it" is a legal string, while 'I can't stand it' is not. Vice
versa for double quotes in a string, of course.

What if a string contains both double quotes and single quotes? You can solve that issue
by putting a backslash (\) in front of the single or double quote that is part of the string
to tell Python to treat that single or double quote as a character of the string rather than
something that ends the string, i.e., 'I can\'t stand it' is a legal string. You can see that
when you try to print it:

print( ' I can \ 't stand it ' )

But what if I want to put an actual backslash in a string, and that backslash is, by chance,
in front of a single or double quote? Well, I can do the same thing for a backslash, namely
put a backslash in front of a backslash to make it a literal backslash, rather than a backslash
that changes the interpretation of the character that comes after it. For an example, check
out what the next bit of code displays (you can type it into the Python shell).

print( ' I can \\\ 't stand it ' )

If this all is a bit confusing, forget about these details for now, as I will come back to them
in a later chapter. For now, just remember that a string is a text, enclosed by either single
or double quotes. A string might be of any length, including zero characters long.

Be careful that you only use “straight” single or double quotes in your Python programs,
and not “rounded” ones. Word processors are in the habit of changing your straight
quotes into rounded quotes, and Python does not recognize those. Text editors will not
do that, but should you, for some reason, copy code to and from a word processor, your
quotes might get changed. Watch out for that.

3.2.2 Integers

Integers are whole numbers, which can be positive or negative (or zero). There is a certain
maximum size that integers can become, which depends on the kind of computer and
operating system you are running. For most purposes, however, you will not run into
those boundaries. Python is not like those calculators with a 10-digit display that cannot
use numbers higher than 10 billion.

There are different ways of writing integers that result in the same value. 1 is the same as
+1 (there are other ways than these to write the value 1, but these follow in a later chapter).
So both print( 1 ) and print( +1 ) produce the same outcome. This is different for
strings, of course. The string "1" is not the same as the string "+1".

When you use integers in Python, you cannot write them with “thousands separators”
(commas in English) to make them more readable. I.e., the number one billion should be
written as 1000000000 rather than 1,000,000,000.

Check out the following code and think about what it will display when you run it. Then
copy it to the Python shell and run it.
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print( 1,000,000,000 )

Exercise If your prediction of what this code would do was not correct, find out why it
produces this result.

3.2.3 Floats

Floats, or “floating-point numbers,” are numbers with decimals. For instance, 3.14159265
is a float. Note that you have to use a period as the decimal separator. Many countries use
a comma as the decimal separator, but Python uses the convention of English-speaking
countries and uses the period.

If there is an integer that for some reason you want to use as a float, you can do so by
adding .0 to it. I.e., 13 is an integer, while 13.0 is a float. Still, they represent the same
value, and if you use Python to compare them (which I will get to in a short while), Python
will tell you that they are the same value.

Just like with integers, there are certain maximum boundaries for floats, and there is also
a maximum precision. You are unlikely to ever reach those maximum boundaries, as
Python will switch over to scientific notation when the numbers get very big, but if you
use Python to do very precise calculations, you might run into problems with precision.
That is unlikely to happen for most applications, but if you are a physicist whose calcula-
tions involve huge numbers of particles on the molecular or quantum level, it is something
to be aware of.

Note that due to the way that Python stores floats, certain numbers cannot be expressed
exactly. For instance, the statement print( (431 / 100) * 100 ) prints as answer
430.99999999999994, and not 431 as you might expect. If you know that the outcome of a
floating-point calculation must be an integer, then you best make sure that you round the
outcome to the nearest whole number. You can use the round() function for that, which
will be explained in Chapter 5.

3.3 Expressions

Finally, I can get to the topic of this chapter, which is “expressions.” An expression is a
combination of one or more values (such as strings, integers, or floats) using operators,
which result in a new value. In other words, you can think of expressions as calculations.

3.3.1 Basic calculations

Basic calculations combine two values with one operator in between them. Some straight-
forward operators are:
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+ addition

- subtraction

* multiplication

/ division

// integer division

** power

% modulo

Here are some examples:

print( 15+4 )
print( 15-4 )
print( 15*4 )
print( 15/4 )
print( 15//4 )
print( 15**4 )
print( 15%4 )

I assume you know what each of these operators entails, except perhaps the integer divi-
sion and modulo operators.

The integer division (also called “floor division”) is simply a division that rounds down
to a whole number. If you involve floats in the calculation, the result will still be a float,
but rounded down. If you only involve integers in the calculation, the result will be an
integer.

The modulo operator (%) takes the remainder of a division. For example: If I divide 14
by 5, the result is 2.8, right? This means I can subtract 5 twice from 14, and still have a
positive result, but if I subtract it a third time, the result will become negative. So, after
subtracting 5 twice from 14 I have a remainder that is less than 5. This remainder is what
the modulo operator produces.

In very simplistic terms: if I have 14 cookies which I have to divide over 5 children, each
child gets 2 cookies. And I still have 4 cookies left, because there are more children than I
have cookies at that point. Thus, dividing 14 by 5 as an integer division is 2 (cookies per
child), while 14 modulo 5 is the remainder 4 (cookies I have left in my hand).

On a side note, I wish to point out that the code shown above consists of multiple lines.
Each line is said to be a “statement,” and it consists of one command that Python executes
(in the code above, a print() function on every line). Most programming languages
make it mandatory to end each statement with a special character, usually a semi-colon
(;). Python does not require a semi-colon after each statement, but each statement must
(in general) be on its own line. In principle, you are allowed to place multiple Python
statements on one line, but then you should put semi-colons between the statements.
However, it is Python practice and convention not to do that, as it makes code ugly, hard to
read, and difficult to maintain. So, please stick to the convention and give each statement
its own line.
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3.3.2 More complex calculations

You are allowed to combine operators into bigger calculations, just as you can do on the
more advanced calculators. To help you out, you are also allowed to used parentheses in
your calculations, and you can even nest these parentheses. Python will process the oper-
ators in the order prescribed by mathematicians, often referred to as PEMDAS (Parenthe-
ses, Exponents, Multiplication and Division, Addition and Subtraction).

Check out the calculation below, and try to predict what it will result in before you copy
it to the Python shell and run the code.

print( 5*2-3+4/2 )

There are a couple of things to note about this calculation.

First, the end result is a float (even though it has no decimals, or, if you will, only zero
as a decimal). The reason is that a division is part of the calculation, and for Python that
means that it should turn this into a floating-point calculation.

Second, just as explained above, spaces are ignored by Python, so the code above is the
same as:

print( 5 * 2 - 3 + 4 / 2 )

It is even the same as:

print( 5*2 - 3+4 / 2 )

I have been in long discussions with people who keep arguing that the code above should
result in 6.5 or 1.5, because clearly you have to calculate the 5 ∗ 2 and the 3 + 4 before you
do the subtraction and division. That is hogwash. It does not matter how close you place
operands together, spaces are ignored. If you really want to calculate the 3 + 4 first, you
have to put it between parentheses. You can then still use spaces to improve readability,
but they mean nothing to Python.

print( (5*2) - (3+4)/2 )
print( ((5*2) -(3+4)) / 2 )

Exercise Now it is time to write your first program. Write a program that displays
the number of seconds in a week. You should, of course, not grab your calculator or
smartphone to do the calculation and then just print the resulting number, but you should
do the calculation in Python code. Since this program needs only one line of code, you
could just write it in the Python shell, though you are encouraged to create a program file
and use that.
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3.3.3 String expressions

Some of the operators given above can also be used for strings, though not all of them.

In particular, you can use the addition operator (+) to concatenate two strings, and you
can use the multiplication operator (∗) with a number and a string to create a string that
contains a repetition of the original string. Check it out:

print( "hello"+"world" )
print( 3*"hello" )
print( "goodbye" *3 )

You cannot add a number to a string, or multiply two strings. Such use of the operators is
undefined, and will give error messages. None of the other operators listed for numbers
will work on strings either.

3.3.4 Type casting

Sometimes you need to change the data type of a value into a different data type. You can
do that using type casting functions.

I will discuss functions in a lot more detail in a later chapter, but for now you just need to
know that a function has a name, and may have parameters (values) between parentheses
after the name. It will do something with the parameters, and then may give back a
result. For instance, the print() function displays the parameter values that are given to
it between the parentheses, and gives nothing in return.

The type casting functions take the parameter value between the parentheses and give
back a value that is the (almost) the same as the parameter value, but of a different data
type. The three main type casting functions are the following:

• int() will return the value between the parentheses as an integer (rounding down
if necessary)

• float()will return the value between the parentheses as a float (adding .0 if neces-
sary)

• str()will return the value between the parentheses as a string

See the difference between the following two lines of code:

print( 15/4 )
print( int( 15/4 ) )

Or the following two lines of code:

print( 15+4 )
print( float( 15+4 ) )
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I stated that you cannot use the addition operator to concatenate a number to a string.
However, if you need to do something like that, you can work around the issue by using
string type casting:

print( "I own " + str( 15 ) + " apples." )

3.4 Style

You might have noticed that in my example code I use white spaces a lot. For instance, for
parentheses attached to functions, I almost always have a white space after the opening
parenthesis and before the closing parenthesis. In calculations, I often have white spaces
around operators if that makes the calculations better readable. I also often insert empty
lines in my code to make it more readable, and consistently use four spaces as indenta-
tions.

Most of these things are just “style.” The white spaces next to the parentheses and around
operators are not necessary, Python understands the code just as well when they are gone.
These four statements are all equivalent:

# All equivalent statements
print( 2 + 3 )
print(2+3)
print( 2+3)
print ( 2 + 3 )

Attaching the opening parenthesis to a function is something that almost every program-
mer does, but for the rest, styles of placing white spaces differ between programmers (my
style of placing a space before the closing parenthesis is rare). You can choose your own
style in this respect, you do not need to follow mine. But I recommend that you use your
chosen style consistently, which will make your code more readable even for program-
mers who use a different style.

Note that in the code above there is a hash mark (#) on the first line, with a text after that
which explains some details of the code. The line with the hash mark is a comment line:
whenever you put a hash mark in your code (except when it is within a string, of course),
everything to the right of the hash mark for the remainder of the line is commentary,
which Python ignores. You can use comments to clarify your code, if such clarification is
needed. More details on providing comments to code I will give in a later chapter.

What you learned

In this chapter, you learned about:

• Using the print() function to display results
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• Data types string, integer, and float

• Calculations

• Basic string expressions

• Type casting between strings, integers, and floats, using str(), int(), and float()

Exercises

Exercise 3.1 The cover price of a book is $24.95, but bookstores get a 40 percent dis-
count. Shipping costs $3 for the first copy and 75 cents for each additional copy. Calculate
the total wholesale costs for 60 copies.

Exercise 3.2 Can you identify and explain the errors in the following lines of code?
Correct them.

exercise0302.py

print( "A message" ).
print( "A message ' )
print( ' A messagef" ' )

Exercise 3.3 When something is wrong with your code, Python will raise errors. Often
these will be “syntax errors” that signal that something is wrong with the form of your
code (e.g., the code in the previous exercise raised a SyntaxError). There are also “run-
time errors,” which signal that your code was in itself formally correct, but that something
went wrong during the code’s execution. A good example is the ZeroDivisionError,
which indicates that you tried to divide a number by zero (which, as you may know, is
not allowed). Try to make Python raise such a ZeroDivisionError.

Exercise 3.4 Here is another illustrative example of a runtime error. Run the follow
code and study the error that it generates. Can you locate the problem?

exercise0304.py

print( ((2*3)/4 + (5-6/7) *8 )
print( ((12*13)/14 + (15-16)/17) *18 )

Exercise 3.5 You look at the clock and see that it is currently 14.00h. You set an alarm
to go off 535 hours later. At what time will the alarm go off? Write a program that prints
the answer. Hint: for the best solution, you will need the modulo operator.
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Variables

When working with program code, very often you are designing a procedure (or “algo-
rithm”) that solves a problem in a general way. For instance, in the previous chapter one
of the exercises had you calculate the wholesale price for a stack of books, for a given book
price and a given number of books. The code you wrote did not solve this problem for a
general case, but only for the specific case of 60 books costing 24.95 per book. If you want
to write code that solves problems in a more general way, you need to use variables that
store values.

4.1 Variables and values

A variable is a labeled place in the computer memory that you can use to store a value in.
The label you can choose yourself, and is usually called the “variable name.”

To create a variable (i.e., choose the variable name), you must “assign” it a value. The
assign-operator is the equals (=) symbol. To the left of it you put the variable name, and
to the right of it you put the value that you want to store in the variable. This is best
illustrated with an example:

x = 5
print( x )

In the code block above, two things happen. First, I create a variable with the name x and
give it a value, in this case 5. This is called an “assignment.” I then display the contents
of the variable x, using print(). Note that print( x ) does not display the letter x, but
actually displays the value that was assigned to x.

The variable x behaves pretty much like a box on which you write an x with a thick, black
marker to be able to find it later. You can put something in the box, and then look into the
box to see what you put in (though only one thing at a time will fit in the box). You can
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refer to the contents of the box by using the name written on the box. The term “variable”
means the variable name, i.e., the letter x on the box. The term “value” means the value
that is stored in the variable, i.e., the contents of the box.

To the right of the assign operator you can place anything that results in a value. There-
fore, it does not need to be a single number. It can be, for instance, a calculation, a string,
or a call to a function that results in a value (such as the int() function).

Exercise In the previous chapter you wrote a calculation that determines the number of
seconds in a week. Copy this calculation into a program, and assign it to a variable. Then
add a statement to print the contents of the variable.

When you assign a value to a variable name in your program, the first time you do that for
a specific variable name, it creates the variable. If later in the program you assign another
value to the same variable name, it “overwrites” the previous value. In the box metaphor:
you empty the box and put something else in it. A variable always holds the value that
was last assigned to it.

x = 5
print( x )
x = 7 * 9 + 13 # overwrite the previous value of x
print( x )
x = "A nod ' s as good as a wink to a blind bat."
print( x )
x = int( 15 / 4 ) - 27
print( x )

Once a variable is created (and thus has a value), you can use it in your code where you
otherwise would use values. You can, for instance, use it in calculations.

x = 2
y = 3



4.2. Variable names 26

print( "x =", x )
print( "y =", y )
print( "x * y =", x * y )
print( "x + y =", x + y )

You may copy the contents from one variable to another, using the assignment operator.

x = 2
y = 3
print( "x =", x, "and y =", y )

# Swap the values of x and y using z as intermediary storage.
z = x

x = y

y = z

print( "x =", x, "and y =", y )

When you assign something to a variable, you might even use the variable itself on the
right-hand side of the assignment operator, provided it was created earlier. The right-
hand side of an assignment is always evaluated completely before the actual assignment
takes place.

x = 2
print( x )
x = x + 3
print( x )

Note that a variable must be created before you can use it! Running the following code
will result in an error, because days_in_a_year has not (yet) been created before I use it
on the first line:

print( days_in_a_year )
days_in_a_year = 365

4.2 Variable names

So far, I have only used variables called x, y, and z (and one erroneous days_in_a_year).
However, you are free to choose the names of your variables as you like them, provided
that you follow a few simple rules, namely:

• A variable name must consist of only letters, digits, and/or underscores (_)

• A variable name must start with a letter or an underscore

• A variable name should not be a reserved word
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“Reserved words” (or “keywords”) are:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

You can use capitals and lower case letters in variable names, but you should realize that
variable names are case sensitive, i.e., the variable world is not the same as the variable
World.

4.2.1 Conventions

Programmers follow many conventions when choosing variable names. The major ones
are the following:

• Programmers never choose variable names that are also the names of functions
(whether they are functions provided by Python or functions they wrote them-
selves). Doing so will cause the corresponding function to be no longer accessible
by the code, and may then lead to rather eccentric errors.

• Programmers try to choose variable names that are in some way meaningful to
the code. For instance, a variable that stores the number of seconds in a week,
might have the name secs_per_week, but not the name i_hate_my_job. It would
be even worse to name a variable that contains the numbers of seconds in a week
secs_per_month.

• An exception to choosing meaningful variable names is choosing names for “throw-
away” variables, i.e., variables that you only use in a very small section of the code
and that are no longer needed afterwards, and that have no good meaning by them-
selves. Programmers usually choose a single-letter name for such variables. For
instance, if a variable is needed to quickly count to 100, after which it is not needed
anymore, programmers often choose the letter i or j for such a variable.

• To avoid confusion with capitals and lower case letters, programmers tend to use
only lower case letters in variable names.

• If a variable name is chosen that consists of multiple words, programmers put one
underscore between each of the words.

• Programmers never choose variable names that start with an underscore. Such vari-
able names are considered reserved for the authors of the Python interpreter.

You should try to stick to these conventions for your own code. In particular the conven-
tion of choosing meaningful variable names is important to follow, because meaningful
variable names make code readable and maintainable. Look, for instance, at the following
code:
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a = 3.14159265
b = 7.5
c = 8.25
d = a * b * b * c / 3
print( d )

Do you understand what this code does? You probably see that a seems to be an approxi-
mation of π, but what is d supposed to be?

I can tell you that this code calculates the volume of a cone. You probably would not have
guessed that, but that is what it does. Now I ask you to change the code to calculate the
volume of a cone that is 4 meters high. What change will you make? If height is part of
the calculation, it is probably b or c. But which is it? Maybe if you know a bit of maths
and you look at the calculation of d, you realize that b is squared in this calculation, which
seems to refer to the base of the cone, which is a circle. So it is probably c. But you cannot
be sure.

Now look at the following, equivalent code:

pi = 3.14159265
radius = 7.5
height = 8.25
volume_of_cone = pi * radius * radius * height / 3
print( volume_of_cone )

This is much more readable, right? If I asked you to look at this code and tell me what it
does, and make the requested change, I don’t expect you to hesitate in answering.

Such code with meaningful variable names tends to become “self-documenting”; you do
not need to add any comments to make the user understand what it does and how it does
it. Still, in the code above a line of comment that says:
# calculation of volume of a cone with radius 7.5 and height 8.25
would not be misplaced.

4.2.2 Practicing with variable names

Exercise In the code block below, the value 1 is assigned to a number of (potential)
variable names. Some of these are legal, others are not. Identify the illegal variable names,
and explain why they are illegal.

classification = 1 # 1
Classification = 1 # 2
cl@ssification = 1 # 3
class1f1cat10n = 1 # 4
1classification = 1 # 5
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_classification = 1 # 6
class = 1 # 7
Class = 1 # 8

Answer The third, fifth, and seventh assignments are illegal. The third because it does not
consist of only letters, digits, and underscores. The fifth because it starts with a digit. The
seventh because it is a reserved word (fortunately, syntax hightlighting makes it stand
out). While the others are legal, according to convention the sixth should be avoided be-
cause it starts with an underscore, and the second and eighth too, as they contain capitals.
The eighth is the worst in this respect, as it also looks like a reserved word.

4.2.3 Constants

Many programming languages offer the ability to create “constants,” which are values
assigned to a variable which can no longer be changed after the value has been first as-
signed. It is convention in most such languages that the name of a constant is written in all
capitals. Constants can be useful to make code more readable. For instance, to calculate
the total of a bill of 24.95 EUR with a 15% service charge, you can use:

total = 24.95
final_total = int( 100 * total * 1.15 ) / 100
print( final_total )

However, it is more readable to write:

SERVICE_CHARGE = 1.15
CENTS = 100

total = 24.95
final_total = int( CENTS * total * SERVICE_CHARGE ) / CENTS

print( final_total )

Not only is it more readable, but it also makes the code easier to change should the service
charge be calculated differently in the future. Especially if the service charge occurs in the
code multiple times, if it is defined just once as a constant at the top of the code, it can be
easily found and changed. When they are numerical, special values such as the service
charge are often called “magic numbers,” i.e., their particular value has a special meaning,
which is unclear if you just see the number, so you are better off using a meaningful name
instead of the number.

While constants are very useful for coding purposes, Python does not support them
(which is a pity), i.e., in the code above SERVICE_CHARGE is a regular variable and can
be changed anywhere in the code. Still, it is convention that any variable that is written
in all capitals is supposed to be a constant and should not be changed in the code, after it
got its initial value at the top of the code.
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You are encouraged to use such “all capitals variable names” whenever magic numbers
occur in your code.

4.3 Debugging variables

Typically, when things go wrong in a program, the reason is that variables are holding
values that you did not expect them to have when writing the code. A good way of
“debugging” your code (i.e., finding out where problems are and fixing them) is printing
the variable names and values in appropriate places. For instance, the following code
gives an error when you run it.

listing0401.py

nr1 = 5
nr2 = 4
nr3 = 5
print( nr3 / (nr1 % nr2) )
nr1 = nr1 + 1
print( nr3 / (nr1 % nr2) )
nr1 = nr1 + 1
print( nr3 / (nr1 % nr2) )
nr1 = nr1 + 1
print( nr3 / (nr1 % nr2) )

In this case you might see what the problem is, but suppose you do not, how are you going
to find out what is wrong? You see that the error occurs on line 10 of the code (the last
line), which means that everything is still running okay at line 9. If you insert a new line
of code between line 9 and line 10 that prints the values of nr1, nr2, nr3 and perhaps also
nr1%nr2, you probably quickly determine what the problem is. Adding print statements
does not actually change anything about the variables, so print statements are safe to add.
A nice fix for the problem (i.e., something else than just removing the offending line) will
be introduced in a later chapter.

Exercise Add the line suggested above, printing the variables right before the error
occurs, to the erroneous code.

4.4 Soft typing

All variables have a data type. In many programming languages, the type of a variable is
given when the variable is first created. For instance, in C++, when you create a variable
you declare the type in front of it, like so:

int secs_per_week = 7 * 24 * 60 * 60;

This is called “hard typing,” and it has the advantage that if you create a variable that you
intend to be of a certain type, but then assign it a value of a different type, the program
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can announce that you made a mistake. This avoids some annoying and confusing errors
that might occur.

In Python, you do not “declare” the type of a variable, but a variable still has a type,
namely the type of the value that was assigned to it. This entails that if you assign a
new value to a variable, its type might change. This is called “soft typing.” (Note: I am
personally of the opinion that Python would be an even better language to teach people
programming if it had hard typing instead of soft typing, and I am not alone in that
opinion, but Guido van Rossum, the original creator of Python, disagrees.)

The types that you have seen until now are integer, float, and string. You can use the
function type() to see what the type of a variable is.

a = 3
print( type( a ) )
a = 3.0
print( type( a ) )
a = "3.0"
print( type( a ) )

Since variables have a type, the effect of operators might change depending on the types
of the variables involved. For instance, in the following code, the addition operator (+) is
used twice, but its effect changes due to the types of the variables involved.

a = 1
b = 4
c = "1"
d = "4"
print( a + b )
print( c + d )

Since a and b are both numbers, for a + b the addition operator is a numerical addition.
Since c and d are both strings, the addition operator for c + d is the string concatenation.

Exercise In the code above, what would happen if you try to print a + c? If you do not
know, try it.

Exercise What does the code given below display? First think about it, then run the
code, and make sure that you understand what happens.

name = "John Cleese"
print( "name" )

Exercise Change the code above so that it displays the name of a famous member of
Monty Python.
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4.5 Shorthand operators

Using the operators you have learned about above, you can change the variables in your
code as many times as you want. You can assign new values to existing variables. Very
often, you want to make changes to existing variables. For instance, it is common in code
that you want to add 1 to a number (you will find out why that is in a later chapter). Since
this occurs fairly often, Python offers some shorthand notation to deal with changes to
variables.

The following code:

number_of_bananas = 100
number_of_bananas = number_of_bananas + 1
print( number_of_bananas )

is equivalent to:

number_of_bananas = 100
number_of_bananas += 1
print( number_of_bananas )

The difference is in the second line. If you want to add something to a variable, you can
write += as the assignment operator and to the right-hand side of the += the thing that you
want to add to the variable. This saves you the trouble of repeating the variable name at
the right-hand side, and tends to make your code more readable (because programmers
expect you to code “adding something to an existing variable” with the += operator).

Similar to the += operator, you can use -= to subtract something from a variable, *= to
multiply a variable by something, /= to divide a variable by something, **= to raise a
variable to a power, and %= to turn a variable into itself modulo the right-hand side. Most
of these are uncommon, except for the +=, which is used a lot, and the -=, which is used
occasionally.

Exercise What will the code given below display? Run it to see if you are correct.

listing0402.py

number_of_bananas = 100
number_of_bananas += 12
number_of_bananas -= 13
number_of_bananas *= 19
number_of_bananas /= number_of_bananas

print( number_of_bananas )
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4.6 Comments
Since the code that you have to write has now increased to more than five lines or so, it
has become sufficiently complex to warrant discussing the use of comments. Comments
are texts in code that Python ignores, but that explain parts of the code. Comments are
not only useful to other people which might need to use or change your code, but also to
yourself, as you may need to change your own code some time after you wrote it and you
might not remember exactly what you did.

There are two main ways to include comments in Python code. The first is to use a hash
mark (#), which turns everything to the right of the hash mark on the line into commen-
tary (of course, this is only the case if the hash mark is not part of a string). The second
is to use triple double-quotes or triple single-quotes to indicate the start and end of some
commentary, which may be spread over multiple lines. In this case, the starting triple
quotes should always be at the start of a line, and you cannot use this way of commenting
in an indented code block. The reason is that you are basically placing a multi-line string
in your code (more on this in Chapter 10).

Learn more about comments by studying the code below.

listing0403.py
# comment: insert your code here.
# BTW: Have you noticed that everything right of the hash mark
print( "Something..." ) # is ignored by your python interpreter?
print( "and something else.." ) # Use this to comment your code!
"""Another way of commenting on your code is via triple quotes
-- these can be distributed over multiple """ # lines
' ' ' which can also be done with single quotes ' ' ' # but be careful
# with there being quotes IN your comments when you use this
# multi-line method
print( "Done." )

What you learned
In this chapter, you learned about:

• What variables are

• Assigning a value to a variable

• Legal names for variables

• Good names for variables

• Soft typing

• Debugging code in which variables might have unexpected values

• Shorthand statements for changing variable values

• Code commentary
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Exercises

Exercise 4.1 Define three variables var1, var2 and var3. Calculate the average of these
variables and assign it to average. Print the average. Add three comments.

Exercise 4.2 Write code that can compute the surface of circle, using the variables
radius and pi = 3.14159. The formula, in case you do not know, is radius times radius
times pi. Print the outcome of your program as follows: “The surface area of a circle with
radius ... is ...”

Exercise 4.3 Write code that classifies a given amount of money (which you store in
a variable named amount), specified in cents, as greater monetary units. Your code lists
the monetary equivalent in dollars (100 ct), quarters (25 ct), dimes (10 ct), nickels (5 ct),
and pennies (1 ct). Your program should report the maximum number of dollars that fit
in the amount, then the maximum number of quarters that fit in the remainder after you
subtract the dollars, then the maximum number of dimes that fit in the remainder after
you subtract the dollars and quarters, and so on for nickels and pennies. The result is that
you express the amount as the minimum number of coins needed.

Exercise 4.4 Can you think of a way to swap the values of two variables that does not
need a third variable as a temporary storage? In the code block below, try to implement
the swapping of the values of a and b without using a third variable. To help you out, the
first step to do this is already given. You just need to add two more lines of code.

exercise0404.py

a = 17
b = 23
print( "a =", a, "and b =", b )
a += b

# add two more lines of code here to cause swapping of a and b
print( "a =", a, "and b =", b )



Chapter 5

Simple Functions

Up to this point, I have already introduced some basic “functions,” such as print() and
int(). In this chapter these functions will be discussed a bit more in-depth, and a few
other functions will be introduced, which will be helpful in the coming chapters. In Chap-
ter 8, I will discuss how you can create your own functions.

5.1 Elements of a function

A function is a block of reusable code that performs some action. To get a function to do
its job, you “call” it, with some appropriate parameters if the function requires them. The
idea is that you do not need to have knowledge about how a function performs its action.
You only need to know three things:

• The name of the function

• The parameters it needs (if any)

• The return value of the function (if any)

These will now be discussed in turn.

5.1.1 Function name

Each function has a name. Like a variable name, a function name may consist of letters,
digits, and underscores, and cannot start with a digit. Almost all standard Python func-
tions consist only of lower case letters. Usually a function name expresses concisely what
the function does.

When referring to a function, it is convention to use the name, and put an opening and
closing parenthesis after the name, as functions are always called in code with such paren-
theses.
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5.1.2 Parameters

Some functions are called with parameters (“arguments”), which may or may not be
mandatory. The parameters are placed between the parentheses that follow the function
name. If there are multiple parameters, you place commas between them.

The parameters are the values that the user supplies to the function to work with. For
instance, the int() function must be called with one parameter, which is the value that
the function will try make an integer representation of. The print() function may be
called with any number of parameters (even zero), which it will display, after which it
will go to a new line.

In general, a function cannot change parameters. For instance, look at the following code:

x = 1.56
print( int( x ) )
print( x )

As you can see when you run this code, the int() function has not changed the actual
value of x; it only told the print() function what the integer value of x is. The reason
is that, in general, parameters are “passed by value.” This means that the function does
not get access to the actual parameters, but it gets copies of the values of the parameters.
I say “in general” because not all data types are “passed by value,” but the ones I have
discussed until now are. It will be a while before you get to a chapter that introduces data
types that can be changed by functions when they are passed as parameters, and I will
make abundantly clear how that works when it comes up.

If a function gets multiple parameters, their order matters. For instance, the function
pow() gets two parameters, and raises the first to the power of the second.

base = 2
exponent = 3
print( pow( base, exponent ) )

The names of the variables that are used as parameters do not matter, the first is raised to
the power of the second. So the following example will give a different outcome than the
first, as the same variables are given to the function in a different (rather confusing) order.

base = 2
exponent = 3
print( pow( exponent , base ) ) # confusing use of variables

What happens if you try to call a function with parameters that it cannot work with? For
instance, what happens if I call the int() function with a string that does not contain an
integer value, or the pow() function with strings instead of numbers? In general, this will
lead to runtime errors in your code. For instance, both lines of the code below give a
runtime error.
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x = pow( 3, "2" )
y = int( "two-and-a-half" )

5.1.3 Return value

A function may or may not “return” a value. If a function returns a value, that value can
be used in your code. For instance, the function int() returns an integer representation of
the parameter it gets. You can place this return value in a variable, using an assignment,
or use it in a different manner, for instance immediately print it. You can even not do
anything with it, though there is little reason to call the function in that case.

x = 2.1
y = ' 3 '
z = int( x )
print( z )
print( int( y ) )

As you can see from the example above, you can even use function calls as parameters for
a function; e.g., the second call to the print() function in the example gets as parameter a
call to the function int(). In this example, the call to the int() function is executed before
the print() function is called, as Python first calculates the values for all the parameters
before it makes a function call. So the return value of int() is a parameter for print().

Not all functions return a value. For instance, the print() function does not. If you are
not careful, this may lead to strange behavior of your program. For instance, examine and
run the following code:

print( print( "Hello, world!" ) )

You can see that this code prints two lines, the first containing the text “Hello, world!”
and the second containing the word “None.” What is that “None” doing there? To find
that out, let’s examine how Python evaluates this statement.

When Python first encounters this statement, it must evaluate print( <something> ).
Since <something> is an argument, it starts by evaluating that. <something> is actually
print( <something_else> ). Since <something_else> is an argument, it now evaluates
that. <something_else> is the string "Hello, world!". This is not something that needs
to be evaluated, so it calls print()with this string as argument, and “captures” the return
value of print() because it needs it as the evaluation of <something>.

Here is the crux: print() has no return value, so there is nothing that Python can use for
<something>. For situations such as this, Python has a special value called None. So the
first print() gets called with None as argument, and this leads to Python displaying the
word “None.”
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None is a special value that indicates “no value at all.” If you try to print such a value,
Python prints the word “None,” but is not actually printing a string that is "None". It only
indicates that there was nothing to print. None is different from, for instance, an empty
string (""). An empty string is still a value, namely a string of length zero. None is no
string at all, no integer, no float, nothing. So be careful when trying to use a function call
as a parameter; if the function does not actually return a value, weird things may happen.

5.1.4 A function is a black box

Let me stress once more that you may consider a function a “black box”: you do not need
to know how the function works or how it is implemented. The name, parameters, and
return value are all you need to know. The function might, internally, create variables and
do calculations, but they do not have an effect on the rest of your code.

...At least, if the function is implemented well. A function that has no effect on your
code is called a “pure function,” and the functions that I discuss here are all “pure func-
tions.” However, sometimes functions are designed that actually do have an effect out-
side the function, specifically, that the user may provide parameters to that undergo a
change. That may be fine, if it is intentional and well-documented. Such functions are
called “modifiers.” Modifiers will come up in later chapters.

For now, you can just assume that any function that you use, has no effect on the rest of
your code. So calling a function is safe.

5.2 Some basic functions

At this point, I introduce some basic functions that you can use in your Python programs.

5.2.1 Type casting

I already introduced the type casting functions, but now I have explained more details of
functions, I can give a complete description.

• float() has one parameter and returns a floating-point representation of the value
of that parameter. If the parameter holds an integer, it returns the same value as
a float (if you print it, you will see .0 added). If the parameter holds a float, it
returns the same value. If the parameter holds a string which can be interpreted as
an integer or a float, it returns that interpretation as a float; otherwise it will give a
runtime error.

• int() has one parameter and returns an integer representation of the value of that
parameter. If the parameter holds an integer, it returns the same integer. If the
parameter holds a float, it returns the integer part of the float, i.e., the float value
rounded down. If the parameter holds a string, and the string contains only digits,
optionally with a preceding minus-sign, it returns the integer represented by those
digits; otherwise it will give a runtime error.
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• str() has one parameter and returns a string representation of the value of that
parameter.

Exercise What will happen if you run the following code? If you do not know, try it
and find out.

print( 10 * int( "100,000,000" ) )

Exercise The code above gives a runtime error. Fix it by removing a few characters.

5.2.2 Calculations

Basic Python functions also have limited support for calculations.

• abs() has one numerical parameter (an integer or a float). If the value is positive, it
will return the value. If the value is negative, it will return the value multiplied by
-1.

• max() has two or more numerical parameters, and returns the largest.

• min() has two or more numerical parameters, and returns the smallest.

• pow() has two numerical parameters, and returns the first to the power of the sec-
ond. Optionally, it has a third numerical parameter. If that third parameter is sup-
plied, it will return the value modulo that third parameter.

• round() has a numerical parameter and rounds it, mathematically, to a whole num-
ber. It has an optional second parameter. The second parameter must be an integer,
and if it is provided, the function will round the first parameter to the number of
decimals specified by the second parameter.

Exercise Examine the code below and try to determine what it displays. Then run the
code and see if you are correct.

listing0501.py

x = -2
y = 3
z = 1.27

print( abs( x ) )
print( max( x, y, z ) )
print( min( x, y, z ) )
print( pow( x, y ) )
print( round( z, 1 ) )
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5.2.3 len()

len() is a basic function that gets one parameter, and it returns the length of that param-
eter. For now, the only data type which you will use len() for is the string. len() returns
the length of the string, i.e., the number of characters.

Exercise What does the code below print? Run it and check if you are correct.

print( len( ' can ' ) )
print( len( ' cannot ' ) )
print( len( "" ) ) # "" is an empty string

Exercise And what about the code below? Think carefully, then check the result.

print( len( ' can \ 't ' ) )

5.2.4 input()

You will often want the user of a program to supply some data. You can ask the user to
supply a string value by using the input() function. The function has one parameter,
which is a string. This string is the so-called “prompt.” When input() is called, the
prompt is displayed on the screen and the user gets to enter something. The user may type
anything they want, including nothing, and then press Enter to stop entering input. The
return value of the function is a string which contains what the user entered, excluding
that final press of the Enter key.

It depends on the environment in which you use Python how exactly the user gets asked
to enter input. Sometimes a box is displayed in which you can type something. If you run
Python from the command prompt, it is done as a command line. In different editors, it is
done differently; for instance, there are editors that show a pop-up box.

Here is an example:

text = input( "Please enter some text: " )
print( "You entered:", text )

Be aware that input() always returns a string. Check the following code:

number = input( "Please enter a number: " )
print( "Your number squared is", number * number )

Regardless of what you entered, this code gives a runtime error, because since the input()
function returns a string, number is a string, and you are not allowed to multiply two
strings. You may resolve this by using a type casting function to turn the string result of
input() into a numerical value, for instance:
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number = input( "Please enter a number: " )
number = float( number )
print( "Your number squared is", number * number )

As long as the user enters a value that can be turned into a number, this code runs as
intended. However, if the user enters something that cannot be turned into a number, you
again get a runtime error. There are ways to resolve this issue, but I have not discussed
the means to do that yet, and it will take a while before I do that. However, below I will
introduce a way for you to ask the user for numbers without the code crashing if the user
is trying to be a wise-ass and enters something else.

Exercise Write some code that asks the user for two numbers, then shows the result
when you add them, and when you multiply them.

5.2.5 print()

The function print() takes zero or more parameters, displays them (if there are multiple,
with a separating space in between each pair of them), and then “goes to the next line”
(i.e., if you use two print() statements, the second one will display its parameters below
what the first one displays).

If print() is called without parameters, the function simply will “go to the next line.”
This way, you can display empty lines.

You can supply print() with anything as a parameter, and it will do its best to print it.
For now, you will only print the basic data types.

print() can get two special parameters, called sep and end.

sep indicates what should be printed between each of the parameters, and by default is
a space. You can use sep to turn the separating space into anything else, including an
empty string.

end indicates what print() should put after all the parameters have been displayed, and
by default is a “newline.” You can use end to change what print() does after displaying
the parameters, for instance, you can ensure that print() does not “go to the next line.”

To use sep and end, you include parameters sep=<string> and/or end=<string> (note:
when in a code description you see something between < and >, that usually means that
you are not supposed to type that literally, but that you have to replace it with something
of the type listed, e.g., <string> means that you have to type a string in that place). For
example:

print( "X", "X", "X", sep="x" )
print( "X", end="" )
print( "Y", end="" )
print( "Z" )



5.2. Some basic functions 42

When you run this code, you see two lines on the output. The first contains “XxXxX,”
because the first line of code said that three times the letter “X” should be displayed, with
a lower case “x” as separator between each pair. The second line contains “XYZ,” because
even though there are three print() statements which together created this line, the code
says that Python should not go to the next line at the end of the first two.

5.2.6 format()

format() represents a rather complex functionality that is employed in a particular way.
It allows you to create a formatted string, i.e., a string in which certain values appear in a
specific format. To give an example, suppose I want to display a calculated float:

print( 7/11 )

Now I ask you to display that float with only three decimals. Until now, you would use
the round() function (introduced above), or something like:

print( round( 7/11, 3 ) )

This works. However, when I put more requirements on it (for instance, “also reserve
10 positions for it, and left align the outcome in that reserved space”), it may become
convoluted. Using the format() function, you can display the requested value in a much
easier and more readable way:

print( "{:.3f}".format( 7/11 ) )

format() is a function that “works” on a string. Up until this point, I have only used
functions that get parameters. However, there are functions that work only on a particular
data type, and are defined in such a way that a variable (or value) of that data type has
to be placed in front of the function call, with a period in between. The reason why this
is, has to do with something called “object orientation,” which I will discuss in Chapters
20 to 23. For now, just know that such functions are called “methods,” and to call them,
you have to place the variable (or value) of the right data type in front of them, with a
period in between. The variable (or value) that is used in this way is also accessible to the
method, just like its parameters are.

So, the format() method (let’s refer to it by its correct name, it is not a function but a
method) is called as follows: <string>.format(). It will return a new string, which is a
formatted version of the string for which it is called. It can take any number of parameters,
and in the process of formatting, will insert these parameter values in particular places in
the resulting string.

The places where format() inserts the parameter values in the string are indicated in the
string by opening and closing curly brackets ({ and }). If you only use {} to refer to the
parameters, it will process the string from left to right, and process the parameters from
left to right, inserting them in the order that they are given. For example:



5.2. Some basic functions 43

print( "The first 3 numbers are {}, {} and {}.".format(
"one", "two", "three" ) )

If you want to process them in a different order, you can indicate the order by putting a
number between the curly brackets. The first parameter has number 0, the second has
number 1, the third has number 2, etcetera (if you find numbering starting with zero
strange, then know that this is very common in programming languages and you will see
this many more times). For example:

print( "Backwards they are {2}, {1} and {0}.".format(
"one", "two", "three" ) )

format() can deal with parameters of any type, as long as they have a suitable string
representation. For instance, it can deal with integers and floats, and you can mix those
up with strings as you like:

print( "The first 3 numbers are {}, {} and {}.".format(
"one", 2, 3.0 ) )

If you want to format the parameters in a more specific way, there are possibilities to do
that, if you put a colon (:) in between the curly brackets, after the order number if you
have one, and place some formatting instructions to the right of the colon. There are
many possibilities for formatting instructions, and I will introduce only a few.

First I discuss some formatting instructions for string parameters. If you want to reserve a
certain number of places for a string parameter, then you can indicate that with an integer
to the right side of the colon. This is called the “precision.” The following code uses a
precision of 7.

print( "The first 3 numbers are {:7}, {:7} and {:7}.".format(
"one", "two", "three" ) )

If you do not reserve sufficient space for a parameter with the precision, format() will
take as much space as it needs. So you cannot use the precision to, for instance, break off
a string prematurely.

print( "The first 3 numbers are {:4}, {:4} and {:4}.".format(
"one", "two", "three" ) )

If you use precision, you can align the parameter to the left, center, or right. You do
that by placing an alignment character between the colon and the precision. Alignment
characters are < for align left, ^ for align center, and > for align right.

print( "The first 3 numbers are {:>7}, {:^7} and {:<7}.".format(
"one", "two", "three" ) )
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Now I will discuss some number formatting instructions. If you want a number to be
interpreted as an integer, you place a “d” to the right side of the colon. If instead you
want it to be interpreted as a float, you place an “f.” If you want to display an integer as
a float, format()will do the necessary conversions for you. If you want to display a float
as an integer, format()will cause a runtime error.

print( "{} divided by {} is {}".format( 1, 2, 1/2 ) )
print( "{:d} divided by {:d} is {:f}".format( 1, 2, 1/2 ) )
print( "{:f} divided by {:f} is {:f}".format( 1, 2, 1/2 ) )

Just as with strings, you can use precision and alignment with numbers. You use the same
instruction characters, and place them between the colon and the d or f. And just as with
strings, if the precision does not provide enough places, format()will take extra places as
needed. Note that a preceding minus-sign and the decimal period each also take a place.

print( "{:5d} divided by {:5d} is {:5f}".format( 1, 2, 1/2 ) )
print( "{:<5f} divided by {:^5f} is {:>5f}".format( 1, 2, 1/2 ) )

Finally, and perhaps most useful, you can indicate how many decimals you want a float-
ing point number to be displayed with, by placing a period and an integer to the left of
the f. format()will round the parameter to the requested number of decimals. Note that
you can indicate zero decimals using .0, which will display floats as integers.

print( "{:.2f} divided by {:.2f} is {:.2f}".format( 1, 2, 1/2 ) )

The combination of precision, alignment, and decimals, allows you to create nice, table-
like displays.

listing0502.py

s = "{:>5d} times {:>5.2f} is {:>5.2f}"
print( s.format( 1, 3.75, 1 * 3.75 ) )
print( s.format( 2, 3.75, 2 * 3.75 ) )
print( s.format( 3, 3.75, 3 * 3.75 ) )
print( s.format( 4, 3.75, 4 * 3.75 ) )
print( s.format( 5, 3.75, 5 * 3.75 ) )

5.3 Modules

Python offers some basic functions, some of which are introduced above. Besides those,
Python offers a large assortment of so-called “modules,” which contain many more useful
functions. To use functions from a module in your program, you have to import the
module, by writing a line import <modulename> at the top of your code. You can then
use all the functions in the module, though you have to precede the function calls with the
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name of the module and a period, e.g., to call the sqrt() function from the math module
(which calculates the square root of a number), you call math.sqrt() after importing
math.

Alternatively, you can import only specific functions from a module, by stating:
from <modulename> import <function1>, <function2>, <function3>, ...
The main advantage of importing specific functions from a module in this way is that in
your code, you no longer need to precede the call to a function with the module name.

For example:

import math

print( math.sqrt( 4 ) )

is equivalent to:

from math import sqrt

print( sqrt( 4 ) )

If you want to rename something that you import from a module, you can do so with the
keyword as. This might be useful when you use multiple modules that contain things
with equal names.

from math import sqrt as squareroot

print( squareroot( 4 ) )

I will now introduce some functions from two standard modules that are often used,
and some functions from a module which was developed for this book (you will learn
to develop your own modules later). There are many more modules besides the ones
introduced here, some of which will come up later in the book, and others which you will
have to look up by yourself by the time you need them in practice. However, you may
assume that for any more-or-less general problem that you want to solve, someone has
made a module that makes solving that problem simple or even trivial. So, in practice, do
not start coding immediately, but first investigate whether you can exploit someone else’s
efforts.

5.3.1 math

The math module contains some useful mathematical functions. These functions have
usually been implemented in a very efficient way, and in general they return a float. I will
introduce only a few of these functions here (if you want to learn more of them, look up
the math module in the Python reference):
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• exp() gets one numerical parameter and returns e to the power of that parameter. If
you do not remember e from math class: e is a special value that has many interesting
properties, which have applications in physics, maths, and statistics.

• log() gets one numerical parameter and returns the natural logarithm of that pa-
rameter. The natural logarithm is the value which, when e is raised to the power
of that value, gives the requested parameter. Just like e, the natural logarithm has
many applications in physics, maths, and statistics.

• log10() gets one numerical parameter and returns the base-10 logarithm of that
parameter.

• sqrt() gets one numerical parameter and returns the square root of that parameter.

For example:

listing0503.py

from math import exp, log

print( "The value of e is approximately", exp( 1 ) )
e_sqr = exp( 2 )
print( "e squared is", e_sqr )
print( "which means that log(", e_sqr, ") is", log( e_sqr ) )

5.3.2 random

The random module contains functions that return pseudo-random numbers. I say
“pseudo-random” and not “random,” because it is impossible for digital computers to
generate actual random numbers. However, for all intents and purposes you may assume
that the functions in the random module cough up random values.

• random() gets no parameters, and returns a random float in the range [0, 1), i.e., a
range that includes 0.0, but excludes 1.0.

• randint() gets two parameters, both integers, and the first should be smaller than
or equal to the second. It returns a random integer in the range for which the two
parameters are boundaries, e.g., randint(2,5) returns 2, 3, 4, or 5, with an equal
chance for each of them.

• seed() initializes the random number generator of Python. If you want a sequence
of random numbers that are always the same, start by calling seed() with a fixed
value as parameter, for instance, 0. This can be useful for testing purposes. If you
want to re-initialize the random number generator so that it starts behaving com-
pletely randomly again, call seed()without parameter.

For example:
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listing0504.py
from random import random, randint, seed

seed()
print( "A random number between 1 and 10 is", randint( 1, 10 ) )
print( "Another is", randint( 1, 10 ) )
seed( 0 )
print( "3 random numbers are:", random(), random(), random() )
seed( 0 )
print( "The same 3 numbers are:", random(), random(), random() )

5.3.3 pcinput

pcinput is a module I wrote for this book. You can find it in Appendix C, and can easily
recreate it (or simply download it from http://www.spronck.net/pythonbook). It con-
tains four functions which are helpful for getting particular kinds of input from the user
in a safe way. The functions are the following:

• getInteger() gets one string parameter, the prompt, and asks the user to supply
an integer using that prompt. If the user enters something that is not an integer, the
user is asked to enter a new input. The function will continue asking the user for
inputs until a legal integer is entered, and then it will return that value, as an integer.

• getFloat() gets one string parameter, the prompt, and asks the user to supply a
float using that prompt. If the user enters something that is not a float or an integer,
the user is asked to enter a new input. The function will continue asking the user
for inputs until a legal float or integer is entered, and then it will return that value,
as a float.

• getString() gets one string parameter, the prompt, and asks the user to supply a
string using that prompt. Any value that the user enters is accepted. The function
will return the string that was entered, with leading and trailing spaces removed.

• getLetter() gets one string parameter, the prompt, and asks the user to supply a
letter using that prompt. The user’s input must be a single letter, in the range A to
Z. Both capitals and lower case letters are accepted. The function returns the letter
entered, converted to a capital.

These functions allow you to write code that asks the user for inputs of a specific data
type, and guarantee that the input will indeed be of that data type, i.e., the code does
not crash if the user enters something that is unacceptable. The functions are not very
nicely designed, as they display messages in English when the user enters something that
is wrong (so the functions are less useful if your code is meant to support a different
language). But for the purpose of learning Python, they work fine.

Exercise Create or download the pcinput module, make sure that it is located in the
folder where you write your Python code, then create a file with the code below in it. Run
it, try to enter something else than an integer, and see what happens.

http://www.spronck.net/pythonbook
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from pcinput import getInteger

num1 = getInteger( "Please enter an integer: " )
num2 = getInteger( "Please enter another integer: " )

print( "The sum of", num1, "and", num2, "is", num1 + num2 )

Exercise Ask the user to supply a string. Then use that string as a prompt to ask for a
float.

Note: I do not explain here how the functions of pcinput work, as they are implemented
using concepts that are discussed much later in the book. You will learn, in time, how to
develop such functions yourself. For now, do not worry about how they work, but just
use them. This is the attitude that you should have towards most standard functions: as
long as you know what they do, which parameters they need, and what they return, you
do not need to spend time considering how they work.

What you learned

In this chapter, you learned about:

• What functions are

• Function names

• Function parameters

• Function return values

• Details of type casting with float(), int(), and str()

• Basic calculation functions abs(), max(), min(), pow(), and round()

• len()

• input()

• Details of the print() function

• String formatting using format()

• What modules are

• The math module functions exp(), log(), log10(), and sqrt()

• The random module functions random(), randint(), and seed()

• The pcinput module functions getInteger(), getFloat(), getString(), and
getLetter()



Exercises 49

Exercises

Exercise 5.1 Ask the user to enter a string. Then print the length of that string. Use the
input() function rather that the getString() function from pcinput, as the getString()
function removes leading and trailing spaces.

Exercise 5.2 The Pythagorean theorem states that of a right triangle, the square of the
length of the diagonal side is equal to the sum of the squares of the lengths of the other
two sides (or a2 + b2 = c2). Write a program that asks the user for the lengths of the two
sides that meet at a right angle, then calculate the length of the third side, and display it
in a nicely formatted way. You may ignore the fact that the user can enter negative or zero
lengths for the sides.

Exercise 5.3 Ask the user to enter three numbers. Then print the largest, the smallest,
and their average, rounded to 2 decimals.

Exercise 5.4 Calculate the value of e to the power of -1, 0, 1, 2, and 3, and display the
results, with 5 decimals, in a nicely formatted manner.

Exercise 5.5 Suppose you want to generate a random integer between 1 and 10 (1 and
10 both included), but from the random module you only have the random() function
available. How do you do that?



Chapter 6

Conditions

In program code, there are often statements that you only want to execute when cer-
tain conditions hold. Every programming language therefore supports conditional state-
ments. In this chapter I will explain how to use conditions in Python.

6.1 Boolean expressions

A conditional statement, often called an “if”-statement, consists of a test and one or more
actions. The test is a so-called “boolean expression.” The actions are executed when the
test evaluates to True. For instance, an app on a smartphone might give a warning if the
battery level is lower than 5%. This means that the app needs to check if a certain variable
battery_level is lower than the value 5, i.e., if battery_level < 5 evaluates to True.
If the variable battery_level holds the value 17, then battery_level < 5 evaluates to
False.

6.1.1 Booleans

True and False are so-called “boolean values” that are predefined in Python. True and
False are actually the only boolean values, and anything that is not False, is True.

You might wonder what the data type of True and False is. The answer is that they are
of the type bool. However, in Python every value can be interpreted as a boolean value,
regardless of its data type. I.e., when you test a condition, and your test is of a value that
is not True or False, it will still be interpreted as either True or False.

The following values are interpreted as False:

• The special value False

• The special value None (which you encountered in Chapter 5)
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• Every numerical value that is zero, e.g., 0 and 0.0

• Every empty sequence, e.g., an empty string ("")

• Every empty “mapping,” e.g., an empty dictionary (dictionaries follow in Chapter
13)

• Any function or method call that returns one of these listed values (this includes
functions that return nothing)

Every other value is interpreted as True.

Any expression that is evaluated as True or False is called a “boolean expression.”

6.1.2 Comparisons

The most common boolean expressions are comparisons. A comparison consists of two
values, and a comparison operator in between. Comparison operators are:

< less than

<= less than or equal to

== equal to

>= equal to or greater than

> greater than

!= not equal

A common mistake is to use a single = as a comparison operator, as the single = is the
assignment operator. In general, Python will produce a syntax or runtime error if you try
to use a single = to make a comparison.

You can use the comparison operators to compare both numbers and strings. Comparison
for strings is an alphabetical comparison, whereby all capitals come before all lower case
letters (and digits come before both of them). More on this will follow in Chapter 10.

Here are some examples of the results of comparisons:

listing0601.py

print( "1.", 2 < 5 )
print( "2.", 2 <= 5 )
print( "3.", 3 > 3 )
print( "4.", 3 >= 3 )
print( "5.", 3 == 3.0 )
print( "6.", 3 == "3" )
print( "7.", "syntax" == "syntax" )
print( "8.", "syntax" == "semantics" )
print( "9.", "syntax" == " syntax" )
print( "10.", "Python" != "rubbish" )
print( "11.", "Python" > "Perl" )
print( "12.", "banana" < "orange" )
print( "13.", "banana" < "Orange" )
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Make sure that you run these evaluations, check their outcome, and understand them!

Exercise Do you understand why 3 < 13 is True, but "3" < "13" is False? Think
about it!

You can assign the outcome of a boolean expression to a variable if you like:

greater = 5 > 2
print( greater )
greater = 5 < 2
print( greater )
print( type( greater ) )

Exercise Write some code that allows you to test if 1/2 is greater than, equal to, or less
than 0.5. Do the same for 1/3 and 0.33. Then do the same for (1/3) ∗ 3 and 1.

Comparisons of data types that cannot be compared, in general lead to runtime errors.

# This code gives a runtime error.
print( 3 < "3" )

6.1.3 in operator

Python has a special operator called the “membership test operator,” which is usually
abbreviated to the “in operator” as it is written as in. The in operator tests if the value to
the left side of the operator is found in a “collection” to the right side of the operator.

At this time, I have discussed only one “collection,” which is the string. A string is a
collection of characters. You can test if a particular character or a sequence of characters
is part of the string using the in operator. The opposite of the in operator is the not in
operator, which gives True when in gives False, and which gives False when in gives
True. For example:

print( "y" in "Python" )
print( "x" in "Python" )
print( "p" in "Python" )
print( "th" in "Python" )
print( "to" in "Python" )
print( "y" not in "Python" )

Again, make sure that you understand these evaluations!

Exercise Write some code that allows you to test for each vowel whether it occurs in
your name. You may ignore capitals.



6.1. Boolean expressions 53

6.1.4 Logical operators

Boolean expressions can be combined with logical operators. There are three logical op-
erators, and, or, and not.

and and or are placed between two boolean expressions. When and is between two
boolean expressions, the result is True if and only if both expressions evaluate to True;
otherwise it is False.

When or is between two boolean expressions, the result is True when one or both of the
expressions evaluate to True; it is only False if both expressions evaluate to False.

not is placed in front of a boolean expression to switch it from True to False or vice versa.

For example:

t = True
f = False
print( t and t )
print( t and f )
print( f and t )
print( f and f )
print( t or t )
print( t or f )
print( f or t )
print( f or f )
print( not t )
print( not f )

You have to be careful with logical operators, because combinations of ands and ors might
lead to unexpected results. To ensure that they are evaluated in the order that you intend,
you can use parentheses. For example, rather than writing a and b or c you should
write (a and b) or c or you should write a and (b or c) (depending on the order in
which you want to evaluate the logical operators), so that it is immediately clear from
your code which evaluation you want the code to do. Even if you know the order in
which the logical operators are processed by Python, someone else who reads your code
might not.

Exercise For the code below, give values True or False to each of the variables a, b, and
c, so that the two expressions evaluate to different values.

listing0602.py

a = # True or False?
b = # True or False?
c = # True or False?

print( (a and b) or c )
print( a and (b or c) )
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If all the logical operators in a boolean expression are and, or they all are or, the use of
parentheses is not needed, since there is only one possible evaluation of the expression.

Boolean expressions are processed from left to right, and Python will stop the processing
of an expression when it already knows whether it will end in True or False. Take, for
instance, the following code:

x = 1
y = 0
print( (x == 0) or (y == 0) or (x / y == 1) )

When you divide by zero, Python gives a runtime error, so the expression x / y == 1
crashes the program if y is zero. And y actually is zero. However, when Python processed
the whole boolean expression, at the point where it tested y == 0 it determined that the
expression as a whole is True, because if any of the expressions that are connected by an
or to the expression as a whole is True, then the whole expression is True. So there was
no need for Python to determine the value of x / y == 1, and it did not even attempt to
evaluate it. Of course, the test y == 0 must be to the left of x / y == 1, so that Python
will test y == 0 first.

Note: While you can make truly complex boolean expressions using logical operators, I
recommend that you keep your expressions simple if possible. Simple boolean expres-
sions make code readable.

6.2 Conditional statements
Conditional statements are, as the introduction to this chapter said, statements consisting
of a test and one or more actions, whereby the actions only get executed if the test eval-
uates to True. Conditional statements are also called “if-statements,” as they are written
using the special keyword if.

Here is an example:

x = 5
if x == 5:

print( "x equals 5" )

The syntax of the if statement is as follows:
if <boolean expression>:

<statements>

Note the colon (:) after the boolean expression, and the fact that <statements> is indented.

6.2.1 Code blocks

In the syntactic description of the if statement above, you see that the <statements>
are “indented,” i.e., they are placed one tabulation to the right. This is intentional and
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necessary. Python considers statements that are following each other and that are at the
same level of indentation part of a code block. The code block underneath the first line of
the if statement is considered to be the list of actions that are executed when the boolean
expression evaluates to True. For example:

listing0603.py

x = 7
if x < 10:

print( "This line is only executed if x < 10." )
print( "And the same holds for this line." )

print( "This line, however, is always executed." )

Exercise Change the value of x to see how it affects the outcome of the code.

Thus, all the statements under the if that are indented, belong to the code block that is
executed when the boolean expression of the if statement evaluates to True. This code
block is skipped if the boolean expression evaluates to False. Statements which follow
the if construction which are not indented (as deep as the code block under the if), are
executed, regardless of whether the boolean expression evaluates to True or False.

Naturally, you are not restricted to having just a single if statement in your code. You can
have as many as you like.

listing0604.py

x = 5
if x == 5:

print( "x equals 5" )
if x > 4:

print( "x is greater than 4" )
if x >= 5:

print( "x is greater than or equal to 5" )
if x < 6:

print( "x is less than 6" )
if x <= 5:

print( "x is less than or equal to 5" )
if x != 6 :

print( "x does not equal 6" )

Exercise Again, try changing the value of x and see how it affects the outcome.

6.2.2 Indentation

In Python, correct indenting is of the utmost importance! Without correct indentation,
Python will not be able to recognize which statements belong together as one code block,
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and therefore cannot execute your code correctly.1

Note that you can indent using the Tab key, or indent using spaces. Most editors will auto-
indent for you, i.e., if, for instance, you write the first line of an if statement, once you
press Enter to go to the next line, it will automatically “jump in” one level of indentation
(if it does not, it is very likely that you forgot the colon at the end of the conditional
expression). Also, when you have indented one line to a certain level of indentation, the
next line will use the same level. You can get rid of indentations using the Backspace key.

For Python programs, a normal level of indentation is four spaces, i.e., one press of the
Tab key should “jump in” four spaces. As long as you are in one editor, you can in such
a case either use the Tab key, or press the spacebar four times, to go up one indentation
level. So far so good. You may get into problems, however, if you port your code to
another editor, which might have a different setting for the Tab key. If you edit your code
in a such a different editor, even though it might look okay, Python may see that there
are indentation conflicts (a mix of tabulations and space-indentations) and may report a
syntax error when you try to run your code. Most editors therefore offer the option to
automatically replace tabulations with spaces, so that such problems do not arise. If you
use a text editor to write Python code, check if it contains such an option, and if so, ensure
that tabulations are set to 4 and are automatically replaced by spaces.

Exercise The following code contains multiple indentation errors. Fix them all.

listing0605.py

# This code contains indentation errors!
x = 3
y = 4
if x == 3 and y == 4:

print( "x is 3" )
print( "y is 4" )

if x > 2 and y < 5:
print( "x > 2" )
print( "y < 5" )
if x < 4 and y > 3:

print( "x < 4" )
print( "y > 3" )

1In many programming languages (actually, in almost all programming languages), code blocks are recog-
nized by having them start and end with a specific symbol or keyword. For instance, in languages such as Java
and C++, code blocks are enclosed by curly brackets, while in languages such as Pascal and Modula, code blocks
are started with the keyword begin and ended with the keyword end. That means that in almost all languages,
indenting to recognize code blocks is not necessary. However, you will find that code written by capable pro-
grammers is always nicely indented, regardless of the language. This makes it easy to see which code belongs
together, for instance, which commands belong to an if statement. Python makes indenting a requirement.
While for experienced programmers who are new to Python this seems strange at first, they quickly find that
they do not care – they were indenting nicely anyway, and Python’s strategy makes that beginning programmers
are also required to write nice-looking code.
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6.2.3 Two-way decisions

Often a decision branches, e.g., if a certain condition arises, you want to take a particular
action, but if it does not arise, you want to take another action. This is supported by
Python in the form of an expansion to the if statement that adds an else branch.

x = 4
if x > 2:

print( "x is bigger than 2" )
else:

print( "x is smaller than or equal to 2" )

The syntax is as follows:

if <boolean expression>:

<statements>

else:

<statements>

Note the colon (:) after both the boolean expression and the else.

It is important that the word else is aligned with the word if that it belongs to. If you do
not align them correctly, this results in an indentation error.

A consequence of adding an else branch to an if statement is that always exactly one
of the two code blocks will be executed. If the boolean expression of the if statement
evaluates to True, the code block directly under the if will be executed, and the code
block directly under the else will be skipped. If it evaluates to False, the code block
directly under the ifwill be skipped, while the code block directly under the elsewill be
executed.

Exercise You can test whether an integer is odd or even using the modulo operator.
Specifically, when x%2 equals zero, then x is even, else it is odd. Write some code that asks
for an integer and then reports whether it is even or odd (you can use the getInteger()
function from pcinput to ask for an integer).

Note: As far as indentation is concerned, it is not absolutely necessary to have the code
block under the else branch use the same number of spaces in indentation as the code
block under the if branch, as long as the indentation is consistent within the code block.
However, accomplished programmers use consistent indentation throughout their pro-
grams, which makes it easier to see what the whole if-else statement encompasses. For
example, in the code below the indentation in the else branch uses less spaces than the
indentation in the if branch. While syntactically correct, this makes the code less read-
able.

# Example of syntactically correct but ugly indenting.
x = 1
if x > 2:

print( "x is bigger than 2" )
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else:
print( "x is smaller than or equal to 2" )

6.2.4 Flow charts

In the early days of programming, programmers often expressed the algorithms they
wanted to implement by means of so-called “flow charts.” Nowadays, flow charts are
seldom used anymore. However, I found that it often helps students understanding how
exactly conditions (and, for the next chapter, iterations) work if they are shown a flow
chart of the process.

A flow chart is a diagram that shows different kinds of blocks with arrows in between.
The blocks are of three kinds (at least, that is all I need for this book). Rectangular blocks
contain statements that are executed. Diamond-shaped blocks contain a condition that
evaluates to either True or False. Rectangular blocks with rounded corners indicate either
the start (using the text “Start”) or end (using the text “Stop”) of the algorithm.

To interpret a flow chart, you begin at the “Start” block, and follow the arrows, executing
all statements that you encounter. When you get to a diamond-shaped block, you evaluate
the condition in it, and then either follow the arrow marked True in case it evaluates to
True, or the arrow marked False when it evaluates to False. When you encounter the
“Stop” block, you are finished.

For example, the code shown above, that checks if a number is greater than 2 or smaller
than or equal to 2, and prints some text that states as much, is equivalent to the flow chart
shown in Figure 6.1.
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Figure 6.1: Flow chart expressing a two-way decision.

6.2.5 Multi-branch decisions

Occasionally, you encounter multi-branch decisions, where one of multiple blocks of com-
mands has to be executed, but never more than one block. Such multi-branch decisions
can be implemented using a further expansion of the if statement, namely in the form of
one or more elif statements (elif stands for “else if”).

listing0606.py

age = 21
if age < 12:

print( "You ' re still a child!" )
elif age < 18:

print( "You are a teenager!" )
elif age < 30:

print( "You ' re pretty young!" )
elif age < 50:

print( "Wisening up, are we?" )
else:

print( "Aren ' t the years weighing heavy?" )

This code is equivalent to the algorithm expressed by the flow chart in Figure 6.2.

Exercise In the code block above, change age to different values and observe the results.
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Figure 6.2: Flow chart expressing a multi-branch decision.

The syntax is as follows:

if <boolean expression>:

<statements>

elif <boolean expression>:

<statements>

else:

<statements>

The syntax above shows only one elif, but you can have multiple. The different tests in
an if-elif-else construct are executed in order. The first boolean expression that evalu-
ates to Truewill cause the code block that belongs to that expression to be executed. None
of the other code blocks of the construct will be executed.

So, first the boolean expression next to the if will be evaluated. If it evaluates to True,
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the code block underneath the ifwill be executed. Otherwise, the boolean expression for
the first elif will be evaluated. If that turns out to be True, the code block underneath it
will be executed. Otherwise, the boolean expression for the next elif will be evaluated.
Etcetera. Only when the boolean expressions for the if and all of the elifs evaluate to
False, the code block underneath the elsewill be executed.

Therefore, in the code above, you do not need to test age >= 12 and age < 18 for the
first elif. Just testing age < 18 suffices, because if age was smaller than 12, already the
boolean expression for the if would have evaluated to True, and the boolean expression
for the first elifwould not even have been encountered by Python.

Note that the inclusion of the else branch is always optional. However, in most cases
where I need elifs I include it anyway, if only for error checking.

Exercise Write a program that defines a variable weight. If weight is greater than 20
(kilo’s), print: “There is a $25 surcharge for luggage that is too heavy.” If weight is smaller
than 20, print: “Have a safe flight!” If weight is exactly 20, print: “Pfew! The weight is
just right!” Make sure that you change the value of weight a couple of times to check
whether your code works.

6.2.6 Nested conditions

Given the rules of the if-elif-else statements and identation, it is perfectly possible
to use an if statement within another if statement. This second if statement is only
executed if the condition for the first if statement evaluates to True, as it belongs to the
code block of the first if statement. This is called “nesting.”

listing0607.py
x = 41
if x%7 == 0:

# --- Here starts a nested block of code ---
if x%11 == 0:

print( x, "is dividable by both 7 and 11." )
else:

print( x, "is dividable by 7, but not by 11." )
# --- Here ends the nested block of code ---

elif x%11 == 0:
print( x, "is dividable by 11, but not by 7." )

else:
print( x, "is dividable by neither 7 nor 11." )

This code is equivalent to the algorithm expressed in Figure 6.3.

Exercise Change the value of x and observe the results.

Note that the example above is just to illustrate nesting; you probably already know dif-
ferent ways of getting the same results that are a bit more readable. In particular, nesting
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of if statements can often be avoided by judicious use of elifs. To give an example, here
is a “nested” example of the age code given above:

Figure 6.3: Flow chart expressing a nested condition.

listing0608.py

age = 21
if age < 12:

print( "You ' re still a child!" )
else:

if age < 18:
print( "You are a teenager!" )

else:
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if age < 30:
print( "You ' re pretty young!" )

else:
if age < 50:

print( "Wisening up, are we?" )
else:

print( "Aren ' t the years weighing heavy?" )

I assume you agree that the version with the elifs looks better.

6.3 Early exits

Occasionally it happens that you want to exit a program early when a certain condition
arises. For instance, your program asks the user for a value, and then processes that value
extensively. But if the user enters a value that cannot be processed, the program should
just end. You could code that as follows:

from pcinput import getInteger

num = getInteger( "Please enter a positive integer: " )
if num < 0:

print( "You should have entered a positive integer!" )
else:

print( "Now I am processing your integer", num )
print( "Lots and lots of processing" )
print( "Hundreds of lines of code here" )

It is a bit irritating that most of your program is already one indent deep, while you would
have preferred to leave the program at the error message, and then have the rest of the
program at the top indent level.

You can do that using a special function exit() that is found in the module sys. The code
above becomes:

listing0609.py

from pcinput import getInteger

from sys import exit

num = getInteger( "Please enter a positive integer: " )
if num < 0:

print( "You should have entered a positive integer!" )
exit()

print( "Now I am processing your integer", num )
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print( "Lots and lots of processing" )
print( "Hundreds of lines of code here" )

When you run this code and enter a negative number, depending on which editor you use
(IDLE does not have this issue), you may find that Python raises a SystemExit exception,
which looks like a big, ugly error. It is not, however. This exception just says that you
forced the program to end, but that is exactly what you wanted. This is actually a nice,
clean exit.

In general, you are not allowed to ignore error messages and warnings. This one is the
exception to the rule. You are allowed to exit your program this way. In Chapter 8 I will
explain how you can suppress this ugly message (if you get it and if you really want to),
but for now, just accept it.

What you learned

In this chapter, you learned about:

• What boolean expressions are

• Boolean values True and False

• Comparisons with <, <=, ==, >, >=, and !=

• The in operator

• Logical operators and, or, and not

• Conditional statements using if, elif, and else

• Code blocks

• Indentation

• Nested conditions

• Using exit()

Exercises

Exercise 6.1 Grades are values between zero and 10 (both zero and 10 included), and
are always rounded to the nearest half point. To translate grades to the American style, 8.5
to 10 become an “A,” 7.5 and 8 become a “B,” 6.5 and 7 become a “C,” 5.5 and 6 become
a “D,” and other grades become an “F.” Implement this translation, whereby you ask the
user for a grade, and then give the American translation. If the user enters a grade lower
than zero or higher than 10, just give an error message. You do not need to handle the
user entering grades that do not end in .0 or .5, though you may do that if you like – in
that case, if the user enters such an illegal grade, give an appropriate error message.
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Exercise 6.2 Can you spot the reasoning error in the following code?

exercise0602.py

score = 98.0
if score >= 60.0:

grade = ' D '
elif score >= 70.0:

grade = ' C '
elif score >= 80.0:

grade = ' B '
elif score >= 90.0:

grade = ' A '
else:

grade = ' F '
print( grade )

Exercise 6.3 Ask the user to supply a string. Print how many different vowels there
are in the string. The capital version of a lower case vowel is considered to be the same
vowel. y is not considered a vowel. Try to print nice output (e.g., printing “There are 1
different vowels in the string” is ugly). Example: When the user enters the string “It’s Owl
Stretching Time,” the program should say that there are 3 different vowels in the string.

Exercise 6.4 You can solve quadratic equations using the quadratic formula. Quadratic
equations are of the form Ax2 + Bx + C = 0. Such equations have zero, one or two
solutions. The first solution is (−B + sqrt(B2 − 4AC))/(2A). The second solution is
(−B− sqrt(B2− 4AC))/(2A). There are no solutions if the value under the square root is
negative. There is one solution if the value under the square root is zero. Write a program
that asks the user for the values of A, B, and C, then reports whether there are zero, one,
or two solutions, then prints those solutions. Note: Make sure that you also take into
account the case that A is zero, and the case that both A and B are zero.



Chapter 7

Iterations

Computers do not get bored. If you want the computer to repeat a certain task hundreds
of thousands of times, it does not protest. Humans hate too much repetition. Therefore,
repetitious tasks should be performed by computers. All programming languages sup-
port repetitions. The general class of programming constructs that allow the definition of
repetitions are called “iterations.” A term which is even more common for such tasks is
“loops.”

This chapter explains all you need to know about loops in Python. Students who are com-
pletely new to programming often find loops the first really hard topic in programming
that they encounter. If that is the case for you, then make sure you take your time for
this chapter, and work on it until you understand it completely. Loops are such a basic
concept in programming that you need to understand them in all their details. Each and
every chapter after this one needs loops.

7.1 while loop

Suppose you have to ask the user for five numbers, then add them up, and show the total.
With the material from the previous chapters, you would program that as follows:

from pcinput import getInteger

num1 = getInteger( "Number 1: " )
num2 = getInteger( "Number 2: " )
num3 = getInteger( "Number 3: " )
num4 = getInteger( "Number 4: " )
num5 = getInteger( "Number 5: " )

print( "Total is", num1 + num2 + num3 + num4 + num5 )
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But what if I want you to ask the user for 500 numbers? Are you going to create a block
of code of more than 500 lines long? Surely there must be an easier way to do this?

Of course there is. You can use a loop to do this.

The first loop I am going to present to you is the while loop. A while statement is quite
similar to an if statement. The syntax is:

while <boolean expression>:

<statements>

Just like an if statement, the while statement tests a boolean expression, and if the ex-
pression evaluates to True, it executes the code block below it. However, contrary to the
if statement, once the code block has finished, the code "loops" back to the boolean ex-
pression to test it again. If it still evaluates to True, the code block below it gets executed
once more. And after it has finished, it loops back again, and again, and again...

Note: if the boolean expression immediately evaluates to False, then the code block below
the while is skipped completely, just like with an if statement.

7.1.1 while loop, first example

Let’s take a simple example: printing the numbers 1 to 5. With a while loop, that can be
done as follows:

listing0701.py

num = 1
while num <= 5:

print( num )
num += 1

print( "Done" )

This code is also expressed by the flow chart in Figure 7.1.
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Figure 7.1: Flow chart expressing a while loop.

It is crucial that you understand this code, so let’s discuss it step by step.

The first line initializes a variable num. This is the variable that the code will print, so it is
initialized to 1, as 1 is the first value that must be printed.

Then the while loop starts. The boolean expression says num <= 5. Since num is 1, and 1 is
actually smaller than (or equal to) 5, the boolean expression evaluates to True. Therefore,
the code block below the while gets executed.

The first line of the code block below the while prints the value of num, which is 1. The
second line adds 1 to the value of num, which makes num hold the value 2. Then the code
loops back to the boolean expression (i.e., the last line of the code, the printing of “Done,”
is not executed as it is not part of the loop and the loop has not finished yet).

Since num is 2, the boolean expression still evaluates to True. The code block gets executed
once more. 2 is displayed, num gets the value 3, and the code loops back to the boolean
expression.
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Since num is 3, the boolean expression still evaluates to True. The code block gets executed
once more. 3 is displayed, num gets the value 4, and the code loops back to the boolean
expression.

Since num is 4, the boolean expression still evaluates to True. The code block gets executed
once more. 4 is displayed, num gets the value 5, and the code loops back to the boolean
expression.

Since num is 5, the boolean expression still evaluates to True (because 5 <= 5). The code
block gets executed once more. 5 is displayed, num gets the value 6, and the code loops
back to the boolean expression.

Since num is 6, the boolean expression now evaluates to False (because 6 is bigger than 5).
Therefore, the code block gets skipped, and the code continues with the first line below
the code block, which is the last line of the code. The word “Done” is printed, and the
code ends.

Exercise Change the code above so that it prints the numbers 1, 3, 5, 7, and 9.

7.1.2 while loop, second example

If you understand the first example, you probably also understand how to ask the user
for five numbers and print the total. This is implemented as follows:

listing0702.py

from pcinput import getInteger

total = 0
count = 0
while count < 5:

total += getInteger( "Please give a number: " )
count += 1

print( "Total is", total )

Study this code closely. There are two variables used. total is used to add up the five
numbers that the user enters. It is started at zero, as at the start of the code the user has
not yet entered any numbers, so the total is still zero. count is used to count how often the
code has gone through the loop. Since the loop must be done five times, count is started
at 0 and the boolean expression tests if count smaller is than 5. Since in the loop count

gets increased by 1 at the end of every cycle through the loop, the loop gets processed five
times before the boolean expression False is.

You may wonder why count is started at 0 and the boolean expression checks if
count < 5. Why not start count at 1 and check if count <= 5? The reason is convention:
programmers are used to start indices at 0, and if they count, they count “up to but not
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including.” When you continue with programming, you will find that most code sticks to
this convention. Most standard programming constructs that use indices or count things
apply this convention too. My advice is therefore that you get used to it, as it makes code
easier to read.

Note: The variable count is what programmers call a “throw-away variable.” Its only
purpose is to count how often the loop has been cycled through, and it has no real mean-
ing before the loop, in the loop, or after the loop has ended. Programmers often choose
a single-character variable name for such a variable, usually i or j. In this example I
chose the name count because it is illustrative of what the variable does for the code, but
a single-character name for this variable would have been acceptable.

Exercise Change the code block above so that it not only prints the total, but also the
average of the five numbers.

Exercise The first code block of this chapter also asks the user for five numbers, and
prints the total. However, that code block uses “Enter number x: ” as a prompt, whereby
x is a digit. Can you change the code block above so that it also uses such a changing
prompt to ask for each number?

7.1.3 Putting the while loop under user control

Suppose that, in the second example, you do not want the user to be restricted to entering
exactly five numbers. You want the user to enter as many numbers as he wants, including
none. This means that you cannot predict how many iterations through the while loop
are needed. Instead, it is the user who controls when the loop ends. You therefore have to
give the user the means to indicate that the loop should end.

The code block below shows how to use a while loop to allow the user to enter numbers
as long as he wants, until he enters a zero. Once a zero is entered, the total is printed, and
the program ends.

listing0703.py

from pcinput import getInteger

num = -1
total = 0
while num != 0:

num = getInteger( "Enter a number: " )
total += num

print( "Total is", total )

This code works, but there are (at least) two ugly things about it. First, num is initialized to
-1. The -1 is meaningless, I just needed an initialization that would ensure that the while
loop would be entered at least once. Second, when the user enters zero, total still gets
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increased by num. Since num is zero at that point, it does not matter for the total, but if I
wanted the user to end the program by typing something else (for instance, a negative
number), then total would now hold the wrong value.

Because of these ugly elements, some programmers prefer to write this code as follows:

listing0704.py

from pcinput import getInteger

num = getInteger( "Enter a number: " )
total = 0
while num != 0:

total += num

num = getInteger( "Enter a number: " )
print( "Total is", total )

This solves the ugly parts from the previous code, but introduces something new that is
ugly, namely the repetition of the getInteger() function. How this can be solved follows
at the end of this chapter. For now, make sure that you understand how while loops work.

Exercise Create a loop that lets the user enter some numbers until he enters zero, and
then prints their total and their average. Make sure you test the loop with no numbers
entered, and with several copies of the same number entered.

7.1.4 Endless loops

The code below is supposed to start at number 1, and add up numbers, until it encounters
a number that, when squared, is divisible by 1000. The code contains an error, though.
See if you can spot it (without running the code!).

number = 1
total = 0
while (number * number) % 1000 != 0:

total += number

print( "Total is", total )

The heading of this subsection gave away the answer, of course: this code contains a loop
that never terminates. If you run it, it looks like the program “hangs,” i.e., sits there and
does nothing. It is not doing nothing, it is actually highly active, but it is in a never-ending
addition. number starts at 1, and is never increased in the loop, so the boolean expression
will always be True. This is called an “endless loop,” and it is the single one great danger
in using while loops.

If you run this code in IDLE, you can stop it by pressing Ctrl-C. Other editors may have
menu options to interrupt code execution. In user-unfriendly environments, you may
actually have to “kill” the process that runs the code using a system command.
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Since every programmer writes endless loops by accident now and again, it is good prac-
tice when you program a loop to immediately add a statement to the loop that makes a
change that is tested in the boolean expression, so that you do not forget about it. I.e., if
you write while i < 10:, immediately add a line i += 1 below it, and then start adding
the rest of your code in between.

Exercise Fix the code above so that it no longer is an endless loop.

7.1.5 while loop practice exercises

You should now practice a bit with simple while loops.

Exercise Write countdown code. It starts with a given number (e.g., 10), and counts
down to zero, printing each number it encounters (10, 9, 8, ...). It does not print 0, instead
it prints “Blast off!”

Exercise The factorial of a positive integer is that integer, multiplied by all positive
integers that are lower (excluding zero). You write the factorial as the number with an
exclamation mark after it. E.g., the factorial of 5 is 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120. Write some
code that calculates the factorial of a number. Do not test your program with numbers that
are too high, as factorials grow exponentially (testing it up to 10! is more than enough).
Hint: to do this with a while loop, you need two variables: one variable which at the end
of the loop must contain the answer, and one variable that contains the current factor. In
the loop, you multiply the answer with the current factor, before subtracting 1 from the
factor. Choose the right initializations of these variables before the loop.

7.2 for loop
An alternative way of implementing loops is by using a for loop. for loops tends to be
easier and safer to use than while loops, but cannot be applied to all iteration problems.
while loops are more general. In other words, everything that a for loop can do, a while
loop can do too, but not the other way around.

The syntax of a for loop is as follows:
for <variable> in <collection>:

<statements>

A for loop gets presented with a collection of items, and it will process these items, in
order, one by one. Every cycle through the loop will put one item in the variable given
next to the for, and can then be used in the code block under the for. The variable does
not need to exist before the for loop is encountered. If it does, it gets overwritten. It is a
real variable, by the way, in the sense that it still exists after the loop has finished. It will
contain the last value that it got assigned during the processing of the loop.

At this point you might wonder what a “collection” is. There are many different kinds of
collections in Python, and in this section I will introduce a few. In later chapters collections
will be discussed in more detail.
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7.2.1 for loop with strings

The only collection introduced until now is the string. A string is a collection of characters,
e.g., the string "banana" is a collection of the characters "b", "a", "n", "a", "n", and
"a", in that specific order. The following code loops through each of these letters:

for letter in "banana":
print( letter )

print( "Done" )

While this code is fairly trivial, let’s go through it step by step (I did not make a flow chart,
as that is not easy for for loops).

When the for loop is encountered, Python takes the collection (i.e., the string "banana")
and turns it into an “iterable.” What that is exactly I will get to in Chapter 23, but for now
assume that it is a list of all the letters in the string, in the order that they appear in the
string. Python then takes the first of those letters, and puts it in the variable letter. It
then executes the code block below the for.

The code block contains only one statement, which is the printing of letter. So the pro-
gram prints “b,” and then loops back to the for. Python then takes the next letter, which is
an “a,” and it executes the code block with letter being "a". It then repeats this process
for each of the remaining letters. Once all the letters have been used, the for loop ends,
and Python executes the last line of the code, which is the printing of the word “Done.”

To be absolutely clear: In a for loop you do not have to write code that explicitly increases
some kind of variable that then grabs the next letter, or something like that. The for
statement handles that automatically: every time it is looped back to, it takes the next
item from the collection.

7.2.2 for loop using a variable as collection

In the code above, the literal string "banana" was used as the collection, but it could also
be a variable that contains a string. For instance, the following code runs similar to the
previous code:

fruit = "banana"
for letter in fruit:

print( letter )
print( "Done" )

You might wonder if this isn’t dangerous. What happens if the programmer changes the
contents of the variable fruit in the loop’s code block? You can try this out using the
following code:

listing0705.py
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fruit = "banana"
for letter in fruit:

print( letter )
if letter == "n":

fruit = "orange"
print( "Done" )

As you can see when you run this code, changing the contents of the variable fruit in
the loop has no effect on the loop’s processing. The sequence of characters that the loop
processes is only constituted once, when the for loop is first entered. Changing the value
of fruit into "orange" while the loop is still processing the value "banana", does not
stop it from continuing to process "banana". This is a great feature of for loops, because
it means they are guaranteed to end. No for loops are endless!2

Note that there is a conditional statement in the loop above. There is nothing that stops
you from putting conditions in the code block for a loop. There is also nothing against
putting loops in the code block for a condition, or even putting loops inside loops (more
on that last option follows later in this chapter). Most readers probably are not surprised
to hear that, but for the few who are completely new to programming: as long as you stick
to the syntactic requirements, you can use conditional statements and loops wherever you
can write Python statements.

7.2.3 for loop using a range of numbers

Python offers a range() function that generates a collection of sequential numbers, which
is often used for for loops. The simplest call to range() has one parameter, which is a
number. It will generate all integers, starting at zero, up to but not including the parame-
ter.

for x in range( 10 ):
print( x )

range() can get multiple parameters. If you give two parameters, then the first will be the
starting number (default is zero), while the second will be the “up to but not including”
number. If you give three parameters, the third will be a step size (default is 1). You can
choose a negative step size if you want to count down. With a negative step size, make
sure that the starting number is higher than the number that you want to count up to (or
down to, in this case).

for x in range( 1, 11, 2 ):
print( x )

2Unfortunately, I will have to revise this statement in Chapter 23, but it requires knowledge of pretty ad-
vanced Python to create an endless for loop – for now, and in general practice, you may assume that for loops
are guaranteed to end.
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Exercise Change the three parameters above to observe their effect, until you fully
understand the range() function.

Exercise Use the for loop and range() function to print multiples of 3, starting at 21,
counting down to 3, in just two lines of code.

7.2.4 for loop with manual collections

If you want to use a for loop to cycle through items in a collection that you create manu-
ally, you can do so by listing all your items between parentheses. This defines a “tuple”
for the items of your collection. Tuples will be discussed in detail in Chapter 11.

for x in ( 10, 100, 1000, 10000 ):
print( x )

Or:

for x in ("apple", "pear", "orange", "banana", "mango", "cherry")
:
print( x )

Your collection can even consist of mixed types.

7.2.5 Practice with for loops

To get strong grips on how to use for loops, do the following exercises.

Exercise You already created code with a while loop that asked the user for five num-
bers, and displayed their total. Create code for this task, but now use a for loop.

Exercise Create a countdown function that starts at a certain count, and counts down
to zero. Instead of zero, print “Blast off!” Use a for loop.

Exercise I am not going to ask you to build a for loop that asks the user to enter num-
bers until the user enters zero. Why not?

7.3 Loop control statements

There are three extra statements that help you control the flow in a loop. They are else,
break, and continue. They work with both while and for loops.
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7.3.1 else

Just like with an if statement, you can add an else statement to the end of a while or
for loop. The code block for the else is executed whenever the loop ends, i.e., when the
boolean expression for the while loop evaluates to False, or when the last item of the
collection of the for loop is processed. Here is an example for a while loop:

listing0706.py

i = 0
while i < 5:

print( i )
i += 1

else:
print( "The loop ends, i is now", i )

print( "Done" )

This code is equivalent to the flow chart in Figure 7.2. When you look at the flow chart
you might think it does not make much sense to use an else, but it can be powerful when
combined with a break (which follows next).

Here is an example of using else for a for loop:

listing0707.py

for fruit in ( "apple", "orange", "strawberry" ):
print( fruit )

else:
print( "The loop ends, fruit is now", fruit )

print( "Done" )

Notice that after the while loop above, the value of i is 5. The value of fruit after the for
loop above is the last item that it encountered, i.e., "strawberry".

7.3.2 break

The break statement allows you to break out of a loop prematurely. I.e., when Python
encounters the break statement, it will no longer process the remainder of the code block
for the loop, and will not loop back to the loop’s first line. It will simply continue with the
first statement after the loop’s code block.

To see why this is useful, here follows an interesting exercise. I am looking for a number
that starts with a 1, and when you transfer that 1 to the end of the number, the result is a
number that is three times as high. For example, if I check the number 1867, I move the
1 from the start to the end, which gives 8671. If 8671 would be three times 1867, that is
the answer I seek. It is not, so 1867 is not correct. The code to solve this is actually fairly
short, and gives the lowest number for which the comparison holds:
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Figure 7.2: Flow chart expressing a while loop with an else branch.

listing0708.py

i = 1
while i <= 1000000:

num1 = int( "1" + str( i ) )
num2 = int( str( i ) + "1" )
if num2 == 3 * num1:

print( num2, "is three times", num1 )
break

i += 1
else:

print( "No answer found" )

This code is expressed by the flow chart in Figure 7.3.

In this example you see the break statement used to good effect. Since I have no idea
which number I am looking for, I am just going to check a whole bunch of numbers. I let
a counter i run up to 1000000. Of course, I don’t know if I find the answer before i has
reached 1000000, but I should set a limit somewhere, because I don’t know if a number
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Figure 7.3: Flow chart expressing a while loop containing a break.

with the requested property exists at all, and I do not want to create an endless loop. I
might find the answer at any point, and when I do, I break out of the loop, because further
testing of numbers no longer serves a purpose.

The point here is that the setting of the maximum value of i to 1000000 is not because
I know that I have to generate one million numbers. I have no idea how many times I
have to cycle through the loop. I just know that if I encounter the requested number at
some point, I am done and can skip the remainder of the cycles. That is exactly what the
purpose of the break is.

With some juggling the boolean expression for the loop actually can do the comparison
for me. It would be something like while (i < 1000000) and (num1 != 3*num2):. This
becomes a bit convoluted, and I would also have to give num1 and num2 starting values
before the loop starts. Still, it is always possible to avoid using a break, but applying the
breakmight make code more readable and flow better, as it does in this case.

The break statement cannot be used outside a loop. It is only defined for loops. (Take
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note of this. I very often see students putting break statements in conditions that are not
inside a loop, and then look mystified when Python reports a runtime error.)

Note that when a break statement is encountered, and the loop also has an else clause,
the code block for the elsewill not be executed. I use this to good effect in the code above,
by ensuring that the text that indicates that no answer is found, only will be printed if the
loop ends by checking all the numbers without finding an answer.

The following code checks a list of grades for a student. As long as all grades are 5.5 or
higher, the student passes. When one or more grades are lower than 5.5, the student fails.
The grades are in a collection that is given to a for loop.

listing0709.py

for grade in ( 8, 7.5, 9, 6, 6, 6, 5.5, 7, 5, 8, 7, 7.5 ):
if grade < 5.5:

print( "The student fails!" )
break

else:
print( "The student passes!" )

Exercise Run the code above and notice that the student fails. Then remove the 5 from
the list of grades and notice that the student now passes.

7.3.3 continue

When the continue statement is encountered in the code block of a loop, the current cycle
ends immediately and the code loops back to the start of the loop. For a while loop, that
means that the boolean expression is evaluated again. For a for loop, that means that the
next item is taken from the collection and processed.

The following code prints all numbers between 1 and 100 that cannot be divided by 2 or
3, and do not end in a 7 or 9.

listing0710.py

num = 0
while num < 100:

num += 1
if num%2 == 0:

continue
if num%3 == 0:

continue
if num%10 == 7:

continue
if num%10 == 9:

continue
print( num )
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Figure 7.4: Flow chart expressing a while loop containing several continues.

This code is also expressed by the flow chart in Figure 7.4.

I don’t know why you would want this list, but the use of continue statements to im-
plement it helps. Alternatively, you could have created one big boolean expression for
an if statement, but that would become unreadable quickly. Still, just like break state-
ments, continue statements can always be avoided if you really want to, but they do help
keeping code understandable.

Note that continue statements, just like break statements, can only be used inside loops.

Be very, very careful when using a continue in a while loop. Most while loops use a
number that restricts the number of cycles through the loop. Usually such a number is
increased at the bottom of the code block for the loop. A continue statement would loop
back to the boolean expression immediately, without increasing the number, and thus
such a continue could easily cause an endless loop. I.e.:
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i = 0
while i < 10:

if i == 5:
continue

i += 1

causes an endless loop!

Exercise Write a program that processes a collection of numbers using a for loop. The
program should end immediately, printing only the word “Done,” when a zero is encoun-
tered (use a break for this). Negative numbers should be ignored (use a continue for this;
I know you can also do this with a condition, but I want you to practice with continue).
If no zero is encountered, the program should display the sum of all numbers (do this in
an else clause). Always display “Done” at the end of the program. Test your program
with the collection ( 12, 4, 3, 33, -2, -5, 7, 0, 22, 4 ). With these numbers, the
program should display only “Done.” If you remove the zero, it should display 85 (and
“Done”).

7.4 Nested loops

You can put a loop inside another loop.

That is a simple statement, but it is one of the hardest concepts for students to wrap their
minds around.

Let’s first look at an example of a double-nested loop, i.e., a loop which contains one other
loop. Usually programmers talk about an “outer loop” and an “inner loop.” The inner
loop is part of the code block for the outer loop.

listing0711.py

for i in range( 3 ):
print( "Entering the outer loop for i =", i )
for j in range( 3 ):

print( " Entering the inner loop for j =", j )
print( " (i,j) = ({},{})".format( i, j ) )
print( " Leaving the inner loop for j =", j )

print( "Leaving the outer loop for i =", i )

Study this code and its output until you fully understand it!

The code first gives i the value 0, and then lets j take on the values 0, 1, and 2. It then
gives i the value 1, and then lets j take on the values 0, 1, and 2. Finally, it gives i the
value 2, and then lets j take on the values 0, 1, and 2. So this code runs through all possible
pairs of (i,j)with i and j being 0, 1, or 2.
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Notice how variables for the outer loop are also accessible by the inner loop. i exists in
both the outer and the inner loop.

Suppose that you want to print all pairs (i,j) where i and j can take on the values 0 to
3, but j must be higher than i. Code that does that is:

for i in range( 4 ):
for j in range( i+1, 4 ):

print( "({},{})".format( i, j ) )

See how I cleverly use i to set the range for j?

Exercise Write code that prints all pairs (i,j) where i and j can take on the values 0
to 3, but they cannot be equal.

You can, of course, also nest while loops, or mix nesting for loops with while loops.

You should be aware that when you use a break or continue in an inner loop, it will
only break out of the inner loop or continue with the inner loop, respectively. There is no
command that you can give in an inner loop that breaks out of both the inner and outer
loop immediately.3

Once you understand double-nested loops, it should come as no surpise that you can also
triple-nest loops, quadruple-nest loops, or go even deeper. However, in practice I have
seldom seen a nesting deeper than triple-nested.

for i in range( 3 ):
for j in range( 3 ):

for k in range( 3 ):
print( "({},{},{})".format( i, j, k ) )

7.5 The loop-and-a-half

Suppose you want to ask the user for two numbers in a loop. For every two numbers
that the user enters, you want to show their multiplication. You allow the user to stop the
program when he enters zero for any of the numbers. For some reason, if the numbers
are dividers of each other, that is an error and the program also stops, but with an error
message. Finally, you will not process numbers higher than 1000 or smaller than zero, but
that is not an error; you just want to allow the user to enter new numbers. How do you
program that? Here is a first attempt:

listing0712.py

from pcinput import getInteger

3Unless you use them in a function, then you can exit the function at any time and so interrupt both the inner
and the outer loop. But that will follow in Chapter 8.
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x = 3
y = 7

while (x != 0) and (y != 0) and (x%y != 0) and (y%x != 0):
x = getInteger( "Enter number 1: " )
y = getInteger( "Enter number 2: " )
if (x > 1000) or (y > 1000) or (x < 0) or (y < 0):

print( "Numbers should both be between 0 and 1000" )
continue

print( "Multiplication of", x, "and", y, "gives", x * y )

if x == 0 or y == 0:
print( "Goodbye!" )

else:
print( "Error: the numbers cannot be dividers" )

Exercise Study this code and make a list of everything that you feel is bad about it.
Once you have done that, continue reading and compare your notes to the list below. If
you noted things that are bad about it that are not on the list below, email the author of
the book.

There are many things bad about this code. Here is a list:

• To ensure that the loop is run at least once, x and y must be initialized. Why did I
choose 3 and 7 for that? That was arbitrary, but I had to pick two numbers that are
not dividers of each other. Otherwise the loop would not have been entered. On the
whole, having to give variables some arbitrary starting values just to make sure that
they exist is not nice, as their initial values are meaningless. You want to avoid that.

• When you enter something that should end the loop (e.g., zero for x), the multipli-
cation will still take place before the loop ends. That was not supposed to happen.

• If you enter 0 for x, the code will still ask for a value for y, even if it does not need it
anymore.

• The boolean expression next to the while is rather complex. In this code it is still
readable, but you can imagine what happens when you have many more require-
ments.

• The error message for the dividers is not next to the actual test where you decide to
leave the loop (i.e., the boolean expression next to the while).

The solution to some of these issues that certain programmers prefer, is to initialize x and
y with values that you read from the input. This solves the arbitrary initialization, and
also gets around the problem that you print the result of the multiplication even when the
loop was already supposed to end. If you do this, however, in the loop you have to move
the asking for input to the end of the loop, and if you ever have a continue in the loop,
you also have to copy it there. The code becomes something like this:
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listing0713.py

from pcinput import getInteger

x = getInteger( "Enter number 1: " )
y = getInteger( "Enter number 2: " )

while (x != 0) and (y != 0) and (x%y != 0) and (y%x != 0):
if (x > 1000) or (y > 1000) or (x < 0) or (y < 0):

print( "Numbers should both be between 0 and 1000" )
x = getInteger( "Enter number 1: " )
y = getInteger( "Enter number 2: " )
continue

print( "Multiplication of", x, "and", y, "gives", x * y )
x = getInteger( "Enter number 1: " )
y = getInteger( "Enter number 2: " )

if x == 0 or y == 0:
print( "Goodbye!" )

else:
print( "Error: the numbers cannot be dividers" )

So this code removes two of the issues, but it adds a new one, which makes the code a lot
worse. The list of issues now is:

• The statements that ask for input for each of the variables occur no less than three
times in the code.

• If you enter 0 for x, the code will still ask for a value for y.

• The boolean expression next to the while is rather complex.

• The error message for the dividers is not next to the actual test where you decide to
leave the loop.

The trick to get around these issues is to control the loop solely through continues and
breaks (and perhaps the occasional exit() when errors occur, though later in the course
you will learn to use the much “cleaner” return for that). I.e., you do the loop “always,”
but decide to leave the loop or redo the loop when certain events occur which you no-
tice inside the loop. Doing the loop “always” you can effectuate with the statement
while True (as this simply means: the test that decides whether or not you have to do
the loop again, always results in True).

listing0714.py

from pcinput import getInteger

from sys import exit

while True:
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x = getInteger( "Enter number 1: " )
if x == 0:

break
y = getInteger( "Enter number 2: " )
if y == 0:

break
if (x < 0 or x > 1000) or (y < 0 or y > 1000):

print( "The numbers should be between 0 and 1000" )
continue

if x%y == 0 or y%x == 0:
print( "Error: the numbers cannot be dividers" )
exit()

print( "Multiplication of", x, "and", y, "gives", x * y )

print( "Goodbye!" )

This code gets around almost all the problems. It asks for the input for x and y only once.
There is no arbitrary initialization for x and y. The loop stops as soon as you enter zero
for one of the numbers. It prints error messages at the moment that the errors are noted.
There is no complex boolean expression needed with lots of ands and ors.

The only issue that is still remaining is that when the user enters a value outside the range
0 to 1000 for x, he still gets to enter y before the program says that he has to enter the
numbers again. That is best solved by writing your own functions, which follows in the
next chapter. (If you really want to solve it now, you can do that with a nested loop, but I
wouldn’t bother.)

The code is slightly longer than the first version, but length is no issue, and the code is a
lot more readable.

A loop like this one, that uses while True, is sometimes called a “loop-and-a-half.” It is a
common approach to writing loops for which you cannot predict when they will end.

Exercise The user must enter a positive integer. You use the getInteger() function
from pcinput for that. This function also allows entering negative numbers. If the user
enters a negative number, you want to print a message and ask him again, until he entered
a positive number. Once a positive number is entered, you print that number and the
program ends. Such a problem is typically solved using a loop-and-a-half, as you cannot
predict how often the user will enter a negative number before he gets wise. Write such
a loop-and-a-half (you will need exactly one break, and you need at most one continue).
Print the final number that the user entered after you have exited the loop. The reason to
do it afterwards is that the loop is just there to control the entering of the input, not the
processing of the resulting variable.

I have noted in the past that many students find the use of while True confusing. They
see it often in example code, but do not really grasp what the point of it is. And then they
start inserting while True in their code whenever they do not know exactly what they
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need to do. If you have troubles understanding the loop-and-a-half, study this section
again, until you do.

7.6 Being smart about loops

To complete this chapter, I want to discuss a few strategies on loop design, and, in general,
the design of algorithms.

7.6.1 When to use a loop

If you roll five 6-sided dice, how big is the probability that you roll five sixes? The answer
is 1/(65), but suppose that you did not know that, and wanted to use a simulation to
estimate the probability. You can imitate the rolling of a die using randint(), and so you
can imitate the rolling of five dice this way. You can check whether they all show a 6. You
can do that a large number of times, and then divide the number of times that you rolled
five sixes by the number of times that you rolled five dice, to get an estimate. When I put
this problem to students (in a slightly more complicated form, so that the answer cannot
easily be calculated), I often get code that looks like this:

listing0715.py

from random import randint

TESTS = 10000

success = 0
for i in range( TESTS ):

d1 = randint( 1, 6 )
d2 = randint( 1, 6 )
d3 = randint( 1, 6 )
d4 = randint( 1, 6 )
d5 = randint( 1, 6 )
if d1 == 6 and d2 == 6 and d3 == 6 and d4 == 6 and d5 == 6:

success += 1

print( "Chance at five sixes is", success / TESTS )

(You would need a bigger number of tests to get a more accurate estimate, but I did not
want this code to run too long.)

When I see code like this, I ask: “What if I had asked you to roll one hundred dice? Would
you really repeat that die rolling line 100 times?” Whenever you see lines of code repeated
with just a slight change between them (or when you are copying/pasting within a block
of code), you should start thinking about loops. You can roll five dice by stating:
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from random import randint

for i in range( 5 ):
die = randint( 1, 6 )

“But,” you might argue: “I need the value of all the five dice to see if they are all sixes!
Every time you cycle through the loop, you lose the value of the previous roll!”

True enough, but the line that checks all the dice by using five boolean expressions con-
catenated with ands is particularly ugly too. Can’t you streamline this? Is there no way
that you can draw some conclusion upon the rolling of one die?

By thinking a bit about it, you might come to the following conclusion: as soon as you roll
a die that is not a six, you already have failed on your try, and you can skip to the next try.
There are many ways to effectuate this, but here is a brief one using a break and an else:

listing0716.py

from random import randint

TESTS = 10000

success = 0
for i in range( TESTS ):

for j in range( 5 ):
if randint( 1, 6 ) != 6:

break
else:

success += 1

print( "Chance at five sixes is", success / TESTS )

You might think this is difficult to come up with, but there are other ways too. You can,
for instance, add up the values of the rolls and test if the total is 30 after the inner loop.
Or you can keep track of how many dice were rolled to a value of 6 and check if that is 5
after the inner loop. Or you can set a boolean variable to True before the inner loop, then
set it to False as soon as you roll something that is not 6 in the inner loop, and then test
the variable after the inner loop.

The point is that the arbitrary long repetition of pieces of code can probably be replaced
by a loop.

7.6.2 Processing data items one by one

Usually, when a loop is applied, you are working through a long series of data items.
Each cycle through the loop will process one of those data items. You then often need to
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remember something about the data items that you have processed so far, for which you
need extra variables. You have to be smart in thinking about such variables.

Take the following example: I will provide you with ten numbers, and I need you to
create a program that tells me which is the largest, which is the smallest, and how many
are divisible by 3. You might say: “It is easy to determine the largest and the smallest; I just
use the max() and min() functions (introduced in Chapter 5). Divisible by 3 is a bit tricky,
I have to think about that.” But max() and min() require you to keep all the numbers in
memory. That’s fine for 10 numbers, but what about one hundred? Or a million?

Since you will have to process all the numbers, you have to think about a loop, and in
particular, a loop wherein you have only one of the numbers available each cycle through
the loop (but you will see them all before the loop ends). You must now think about
variables that you can use to remember something each cycle through the loop, that allows
you to determine, at the end, which number was the largest, which the smallest, and how
many are divisible by 3. Which variables do you need?

The answer, which comes easy to anyone who has been doing some programming, is that
you need to remember, each cycle through the loop, which is the largest number until now,
which is the smallest number until now, and how many numbers are divisible by 3 until
now. That means that every cycle through the loop you compare the new number with
the variables in which you retain the largest and smallest, and replace them with the new
number if that is appropriate. You also check if the new number is divisible by three, and
if so, increase the variable that you use to keep track of that.

You will have to find good initial values for the three variables. The divisible-by-3 variable
can start at zero, but the largest and smallest need an appropriate value. The best solution
in this case is to fill them with the first number, as that number is both the largest and the
smallest at that point.

I give this problem as an exercise below. Use the algorithm described here to solve it.

7.6.3 Start with the smallest unit and build outward

Suppose that I give you the following assignment: Of all the books on all the shelves in
the library, count the number of words and report the average number of words for the
books. If you ask a human to perform this task, he or she will probably think: “I go to the
library, get the first book from the first shelf, count the words, write that number down,
then take the second book and do the same thing, etcetera. When I finished the first shelf,
I go to the second shelf and treat that one in the same way, until I have done all the books
on all the shelves in the library. Then I add up the counts and divide by the number of
books.” For humans this approach works, but when you need to tell a computer how to
do this, the task seems hard.

To solve this problem, I should start with the smallest unit that I need to work with. In this
case, the smallest unit is a “book.” It is not “word,” because I don’t need to do anything
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with a “word”; what I need to do is count the words in a book. In pseudocode,4 that
would be something like:

wordcount = 0

for word in book:

wordcount += 1

When I code something like this, I can already test it. Once I am satisfied that I can count
the words in a book, I can move up to the next smallest unit, which is the shelf. How do I
process all the books on a shelf? In pseudocode, it is something like:

for book in shelf:

process_book()

But what does process_book() do? It counts the words. I already wrote pseudocode for
that, which I simply need to insert in place of the statement process_book(). This then
becomes:

for book in shelf:

wordcount = 0

for word in book:

wordcount += 1

When I test this, I run into a problem. I find that I am counting the words per book,
but I am not doing anything with those word counts. I just overwrite them. To get the
average, I first need a count of all the words in all the books. This means I have to initialize
wordcount only once.

wordcount = 0

for book in shelf:

for word in book:

wordcount += 1

To calculate the average, I need to also count the books. Again, I only need to initialize
the bookcount once, at the start, and I have to increase the bookcount every time I have
processed one book. At the end, I can then print the average.

wordcount = 0

bookcount = 0

for book in shelf:

for word in book:

wordcount += 1

bookcount += 1

print( wordcount / bookcount )

Finally, I can go up to the highest level: the library as a whole. I know how to process
one shelf, now I need to process all the shelves. I should, of course, remember that the
initialization of wordcount and bookcount only should be done once, and the printing of
the average too. With that in mind, it is easy to extend the pseudocode to encompass the
library as a whole:

4Pseudocode isn’t real code, but it looks like code that more or less explains how an algorithm works. As
such, it should be easy to implement it in various programming languages.
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wordcount = 0

bookcount = 0

for shelf in library:

for book in shelf:

for word in book:

wordcount += 1

bookcount += 1

print( wordcount / bookcount )

As you can see, I built a triple-nested loop, working from the inner loop outward. To learn
how to deal with nested loops, this is usually the best approach.

7.7 On designing algorithms

At this point in the book, you will often run into exercises and coding problems for which
you are unsure how to solve them. I gave an example of such a problem above (finding of
ten numbers the largest, the smallest, and the number divisible by 3), and the solution I
came to. Such a solution approach is called an “algorithm.” But how do you design such
algorithms?

I often see students typing code without really knowing what they are doing. They are
trying to solve a problem but do not know how, so they start typing. You may realize that
this is not a good approach to creating solutions (even though experimenting a bit might
help).

What you have to do in such a situation is sit back, leave the keyboard alone, and think
“How would I solve this problem as a human?” Try to write down what you would do if
you would do it by hand. It does not matter if what you would do is a very boring task
that you would never want to do by hand – you have a computer to do the boring things
for you.

Once you have figured out what you would do, then try to think about how you would
translate that to code. Because basically, that is what you need to tell the computer: the
steps that you as a human would take to get to a solution. If you really cannot think of
any way that you as a human would use to solve a problem, then you sure as hell won’t
be able to tell the computer how to do it for you.

What you learned

In this chapter, you learned about:

• What loops are

• while loops

• for loops
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• Endless loops

• Loop control via else, break, and continue

• Nested loops

• The loop-and-a-half

• Being smart about loops

Exercises

Since loops are incredibly important and students often have problems with them, I pro-
vide a considerable number of exercises here. I recommend that you do them all. You will
learn a lot.

Exercise 7.1 Write a program that lets the user enter a number. Then the program
displays the multiplication table for that number from 1 to 10. E.g., when the user enters
12, the first line printed is “1 * 12 = 12” and the last line printed is “10 * 12 = 120”.

Exercise 7.2 If you did the previous exercise with a while loop, then do it again with a
for loop. If you did it with a for loop, then do it again with a while loop. If you did not
use a loop at all, you should be ashamed of yourself.

Exercise 7.3 Write a program that asks the user for ten numbers, and then prints the
largest, the smallest, and how many are divisible by 3. Use the algorithm described earlier
in this chapter.

Exercise 7.4 “99 bottles of beer” is a traditional song in the United States and Canada.
It is popular to sing on long trips, as it has a very repetitive format which is easy to
memorize, and can take a long time to sing. The song’s simple lyrics are as follows: “99
bottles of beer on the wall, 99 bottles of beer. Take one down, pass it around, 98 bottles
of beer on the wall.” The same verse is repeated, each time with one fewer bottle. The
song is completed when the singer or singers reach zero. Write a program that generates
all the verses of the song (though you might start a bit lower, for instance with 10 bottles).
Make sure that your loop is not endless, and that you use the proper inflection for the
word “bottle.”

Exercise 7.5 The Fibonacci sequence is a sequence of numbers that starts with 1, fol-
lowed by 1 again. Every next number is the sum of the two previous numbers. I.e., the
sequence starts with 1, 1, 2, 3, 5, 8, 13, 21,... Write a program that calculates and prints the
Fibonacci sequence until the numbers get higher than 1000.
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Exercise 7.6 Write a program that asks the user for two words. Then print all the
characters that the words have in common. You can consider capitals different from lower
case letters, but each character that you report, should be reported only once (e.g., the
strings “bee” and “peer” only have one character in common, namely the letter “e”).
Hint: Gather the characters in a third string, and when you find a character that the two
words have in common, check if it is already in the third string before reporting it.

Exercise 7.7 Write a program that approximates π by using random numbers, as fol-
lows. Consider a square measuring 1 by 1. If you throw a dart into that square in a
random location, the probability that it will have a distance of 1 or less to the lower left
corner is π/4. To see why that is, remember that the area of a circle with a radius of 1 is π,
so the area of a quarter circle is π/4. Thus, if a dart lands in a random point in the square,
the chance that it lands in the quarter circle with its centre at the lower left corner is π/4.
Therefore, if you throw N darts into the square, and M of those land inside a distance of
1 to the lower left corner, then 4M/N approximates π if N is very large.

The program holds a constant that determines how many darts it will simulate. It prints
an approximation of π derived by simulating the throwing of that number of darts.
Remember that the distance of a point (x, y) to the lower-left corner is calculated as
sqrt(x2 + y2). Use the random() function from the random module.

Exercise 7.8 Write a program that takes a random integer between 1 and 1000 (you
can use the randint() function for that). The program then asks the user to guess the
number. After every guess, the program will say either “Lower” if the number it took is
lower, “Higher” if the number it took is higher, and “You guessed it!” if the number it
took is equal to the number that the user entered. It will end with displaying how many
guesses the user needed. It might be wise, for testing purposes, to also display the number
that the program randomly picks, until you are sure that the program works correctly.

Exercise 7.9 Write a program that is the opposite of the previous one: now you take a
number in mind, and the computer will try to guess it. You respond to the computer’s
guesses by entering a letter: “L” for lower if the number to guess is lower, “H” for higher if
the number to guess is higher, and “C” for correct (you can use the getLetter() function
from pcinput for that). Once the computer has guessed your number, it displays how
many guesses it needed. Make sure that you let the computer recognize when there is no
answer (maybe because you made a mistake or because you tried to fool the computer).
A smart program will need at most ten guesses.
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Exercise 7.10 A prime number is a positive integer that is divisible by exactly two
different numbers, namely 1 and itself. The lowest (and only even) prime number is 2.
The first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29. Write a program that
asks the user for a number and then displays whether or not it is prime. Hint: In a loop
where you test the possible dividers of the number, you can conclude that the number
is not prime as soon as you encounter a number other than 1 or itself that divides it.
However, you can only conclude that it actually is prime after you have tested all possible
dividers.

Exercise 7.11 Write a program that prints a multiplication table for digits 1 to a certain
number num (you may assume for the output that num is one digit). A multiplication table
for the numbers 1 to num = 3 looks as follows:

. | 1 2 3

------------

1 | 1 2 3

2 | 2 4 6

3 | 3 6 9

So the labels on the rows are multiplied by the labels on the columns, and the result is
shown in the cell that is on that row/column combination.

Exercise 7.12 Write a program that displays all integers between 1 and 100 that can be
written as the sum of two squares. Produce output in the form of z = x**2 + y**2, e.g.,
58 = 3**2 + 7**2. If a number occurs on the list with multiple different ways of writing
it as the sum of two squares, that is acceptable (this may be the case for 50, 65, and 85).

Exercise 7.13 You roll five six-sided dice, one by one. How big is the probability that
the value of each die is greater than or equal to the value of the previous die that you
rolled? For example, the sequence “1, 1, 4, 4, 6” is a success, but “1, 1, 4, 3, 6” is not.
Determine the probability of success using a simulation of a large number of trials.

Exercise 7.14 A, B, C, and D are all different digits. The number DCBA is equal to 4
times the number ABCD. What are the digits? Note: to make ABCD and DCBA conven-
tional numbers, neither A nor D can be zero. Use a quadruple-nested loop.

Exercise 7.15 According to an old puzzle, five pirates and their monkey are stranded
on an island. During the day they gather coconuts, which they put in a big pile. When
night falls, they go asleep.

In the middle of the night, the first pirate wakes up, and, not trusting his buddies, he
divides the pile into five equal parts, takes what he believes to be his share and hides it.
Since he had one coconut left after the division, he gives it to the monkey. Then he goes
back to sleep.
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An hour later, the next pirate wakes up. He behaves in the same way as the first pirate:
he divides the pile into five equal shares, with one coconut left over which he gives to the
monkey, hides what he believes to be his share, and goes to sleep again.

The same happens to the other pirates: they wake up one by one, divide the pile, give one
coconut to the monkey, hide their share, and go back to sleep.

In the morning they all wake up. They divide what remains of the coconuts equally
amongst them. Since that leaves one coconut, they give it to the monkey.

The question is: what is the smallest number of coconuts that they can have started with?

Write a Python program that solves this puzzle. If you can solve it for any number of
pirates, all the better.

Exercise 7.16 Consider the triangle shown below. This triangle houses a colony of
Triangle Crawlers, and one big Eater of Triangle Crawlers. The Eater is located in point
D. All Triangle Crawlers are born in point A. A Triangle Crawler which ends up in point
D gets eaten.

Every day, each Triangle Crawler moves over one of the lines to a randomly-determined
neighboring point, but not to the point where he was the day before. This movement
takes one day. For instance, a Triangle Crawler that was just born in A, on the first day of
his life will move to B, C, or D. If he moves to B, the next day he will move to C or D (but
not back to A). If on his first day he moves to C instead, the next day he will move to B or
D (but not back to A). If he moves to D, he gets eaten.

There is a one-third probability that Triangle Crawler on the first day of his life immedi-
ately goes to D, and therefore only lives one day. In principle, a Triangle Crawler may
reach any age, however high, by moving in circles from A to B to C and back to A again
(or counterclockwise, from A to C to B and back to A again). However, since every day
he makes a random choice between the two possible follow-up directions, every day after
the first there is a one-half probability that he ends up in point D, and dies.

Write a program that calculates an approximation of the average age that a Triangle
Crawler reaches. Do this by simulating the lives of 100,000 Triangle Crawlers, count-
ing the days that they live, and dividing the total by 100,000. The output of your program
should be a single floating point number, rounded to two decimals.
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Hint 1: You can follow two different approaches: either you simulate the behavior of
one single Triangle Crawler and repeat that 100,000 times, or you start with a population
of 100,000 triangle crawlers in point A, and divide these over variables that keep track
of how many Triangles are in each point, each day, including the point that they came
from (assigning a remaining odd Triangle Crawler to a randomly determined neighboring
point). The first method is short and simple but slow, the second is long and complex but
fast. You may use either method.

Hint 2: Do not use 100,000 Triangle Crawlers in your first attempts. Start with 1000 (or
even only 1), and only try it out with 100,000 once your program is more or less finished.
Testing is much quicker with fewer Triangle Crawlers. 1000 Triangle Crawlers should be
done in under a second, so if your program takes longer, you probably have created an
endless loop.

Hint 3: I won’t be too specific, but the final answer is somewhere between 1 and 5 days.
If you get something outside that range, it is definitely wrong. You may try to determine
the exact answer mathematically before starting on the exercise, which is doable though
quite hard.



Chapter 8

Functions

In Chapter 5 I described how to use simple functions, and how to import functions from
modules. This chapter is about how to write your own functions and modules. If you do
not remember what Chapter 5 said about functions, re-read that chapter before continuing
with this one.

8.1 Why create functions?

Why would you want to create a function? There are several different reasons why you
want to have a function:

• You may need a particular functionality for your code that you want to develop in
independence of the rest of the code. If you put such a functionality in a function,
that means that after developing and testing the functionality you can use it without
thinking about it anymore.

• You may need a particular functionality that returns in different places in your code,
and rather than copy it to all these places, you write a function for it which you call
in all these places.

• You may need a particular functionality in your code that you need to control using
parameters. If you put it in a function, the parameters become clearer and the code
becomes more readable and easy to maintain.

• Your program may just be getting too long to keep a solid grasp on its contents, and
you feel you can improve readability and maintainability by splitting off inherently
connected blocks into functions.

• You may have problems solving a big problem in one go, and decide to divide it into
sub-problems (which is usually a good idea). You can now create a function for each
of these sub-problems, and by connecting them together, solve the big problem.
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• Your program may contain deeply nested conditions or loops, and would benefit
enormously as far as readability is concerned by moving some of the deeper nestings
into functions.

• You may want to re-use code in different programs, and functions are a good way
to transfer code between programs.

• You may want to release some of your code to other programmers, and functions
are, again, a good way to do that.

In general, the advantage of functions is that they provide a means to effectuate:

• Encapsulation: Wrapping up a piece of useful code in such a way that it can be used
without knowledge of the specifics

• Generalization: Making a piece of code useful for a variety of circumstances by con-
trolling it via parameters

• Manageability: Dividing a complex program into easy-to-manage chunks

• Maintainability: Using meaningful names and logical wrappings to make a program
better readable and understandable

• Reusability: Facilitating the transfer of functionalities between programs

• Recursion: Allowing the use of a technique called “recursion,” which is the topic of
Chapter 9.

8.2 Creating functions

Chapter 5 described how each function has a name, may have some parameters, and may
have a return value. When you create your own functions, you need to define each of
these. To create a function, you use the following syntax:

def <function_name>( <parameter_list> ):

<statements>

The function name must meet the same requirements that variable names must meet, i.e.,
only letters, digits, and underscores, and it cannot start with a digit. The parameter list
consists of zero or more variable names, with commas in between. The code block below
the function definition must be indented.

Finally, be aware that Python must have “seen” your function definition before it sees the
call to it in your code. Therefore it is convention to place all function definitions at the top
of a program, right under the import statements.

8.2.1 How Python deals with functions

To be able to create functions, you have to know how Python deals with functions. Look
at the small Python program below. It defines one function, called goodbyeWorld(). That
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function has no parameters. The code block for the function prints the line “Goodbye,
world!”

The rest of the program is not part of a function. We often call the parts of a program that
are not inside a function the “main” program. The main program prints the line “Hello,
world!,” and then calls the function goodbyeWorld().

def goodbyeWorld():
print( "Goodbye, world!" )

print( "Hello, world!" )
goodbyeWorld()

When you run this program, you see that it first prints “Hello, world!,” and
then “Goodbye, world!” This happens even though Python processes code top-
down, so that it sees the line print( "Goodbye, world!" ) before it sees the line
print( "Hello, world!" ). This is because Python does not actually run the code in-
side functions, at least, not until the moment that the function gets called. Python does
not even look at the code in functions. It just notices the function name, registers that
the function is defined so that it can be used, and then continues, searching for the main
program to run.

8.2.2 Parameters and arguments

Examine the code below. It defines a function hello() with one parameter, which is
called name. The function uses the variable name in the code block. There is no explicit
assignment of the variable name, it exists because it is a parameter of the function.

When a function is called, you must provide a value for every (mandatory) parameter that
is defined for the function. Such a value is called an “argument.” Therefore, to call the
function hello(), you must provide an argument for the parameter name. You place this
argument between the parentheses of the function call. Note that in your main program
you do not need to know that this parameter is called name. What it is called is unim-
portant. The only thing you need to know is that there is a parameter that needs a value,
and preferably what kind of value the function is expecting (i.e., what the author of the
function expects you to provide).

def hello( name ):
print( "Hello, {}!".format( name ) )

hello( "Adrian" )
hello( "Binky" )
hello( "Caroline" )
hello( "Dante" )

The parameters of a function are no more and no less than variables that you can use
in the function, and that get their value from outside the function (namely by a function
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call). The parameters are “local” to the function, i.e., they are not accessible outside the
code block of the function, nor do they influence any variable values outside the function.
More on that later.

Functions can have multiple parameters. For example, the following function multiplies
two parameters and prints the result:

listing0801.py

def multiply( x, y ):
result = x * y

print( result )

multiply( 2020, 5278238 )
multiply( 2, 3 )

8.2.3 Parameter types

In many programming languages, you specify what the data types of the parameters of
the functions that you create are. This allows the language to check whether calls to the
functions are made with correct arguments. In Python, you do not specify data types. This
means that, for example, the multiply() function in the code block above can be called
with string arguments. If you do so, you will generate a runtime error (as you cannot
multiply two strings).

If you want to write a “safe” function, you can check the type of arguments that the
function is provided with, using the isinstance() function. isinstance() gets a value
or a variable as first parameter, and a type as second parameter. It returns True if the
value or variable is of the specified type, and False otherwise. For example:

listing0802.py

a = "Hello"
if isinstance( a, int ):

print( "integer" )
elif isinstance( a, float ):

print( "float" )
elif isinstance( a, str ):

print( "string" )
else:

print( "other" )

Of course, should you decide to do such type checking in a function, you must decide
what you will do if the user provides the wrong type. The regular way to handle this is
by “raising an exception.” This will be discussed in Chapter 17. For now, you may assume
that the functions that you write are called with parameters of the correct types. As long
as you write functions for your own use, you can always guarantee that.
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8.2.4 Default parameter values

It is possible to provide default values for some of the parameters. You do this by placing
an assignment operator and value next to the parameter name, as if it is a regular assign-
ment. When calling the function, you can specify all parameters, or just some of them.
In principle the values get passed to the function’s parameters from left to right; if you
pass fewer values than there are parameters, as long as default values for the remaining
parameters are given, the function call gets executed without runtime errors.

If you define a function with default values for some of the parameters, but not all, it is
common to place the ones for which you give a default value to the right of the ones for
which you do not.

If you want to override the default value for a specific parameter, and you know its name
but not its place in the order of the parameters, or you simply want to leave the other pa-
rameters at their default value, you can actually in the function call give a value to a spe-
cific parameter by name, using an assignment between the parentheses, i.e., <function>(
<parametername>=<value> ).

The following code gives examples of these possibilities:

listing0802a.py

def multiply_xyz( x, y=1, z=7 ):
print( x * y * z )

multiply_xyz( 2, 2, 2 ) # x=2, y=2, z=2
multiply_xyz( 2, 5 ) # x=2, y=5, z=7
multiply_xyz( 2, z=5 ) # x=2, y=1, z=5

8.2.5 return

Parameters can be used to communicate information from outside a function to the code
block of the function. Often, you also want a function to communicate information to the
rest of the program outside the function. The keyword return accomplishes this.

When you use the command return in a function, that ends the processing of the function,
and Python will continue with the code that comes after the call to the function. You
can put one or more values or variables after the return statement. These values are
communicated to the program outside the function. If you want to use them outside the
function, you can put them into a variable when you assign the call to the function to that
variable.

For instance, suppose a function is called using a statement <variable> = <function>().
The function makes a calculation and stores it as <result>. return <result> then ends
the function, and the value stored in <result> “comes out of” the function. Due to the
way <function>()was called, this value ends up in <variable>.
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If this sounds a bit convoluted, it will probably become clear after studying the following
example:

listing0803.py

from math import sqrt

def pythagoras( a, b ):
return sqrt( a *a + b *b )

c = pythagoras( 3, 4 )
print( c )

The function pythagoras() calculates the value of the square root of the sum of the
squares of its two parameters. Then it returns that value, using the return statement.
The main program “captures” the value by assigning it to variable c, then prints the con-
tents of c.

Note that the return statement in the example above has a complete calculation with it.
That calculation is done in the function, which leads to a value. It is the result of the
calculation, i.e., the value, which is returned to the main program.

Now suppose that you want to only do this calculation for positive numbers (which
would not be strange, as the function clearly is meant to calculate the length of the di-
agonal side of a right triangle, and who ever heard of a triangle with sides of length zero
or less). Examine this code:

listing0804.py

from math import sqrt

def pythagoras( a, b ):
if a <= 0 or b <= 0:

return
return sqrt( a *a + b *b )

print( pythagoras( 3, 4 ) )
print( pythagoras( -3, 4 ) )

At first glance this code might seem fine: as it has nothing to calculate for negative num-
bers, it just returns no value. However, when you run this program you find it prints
the special value None. I discussed this special value in Chapter 5. The main program
expected the function pythagoras() to return a number, so pythagoras() is failing its
duties by returning nothing in certain circumstances. You should always be very clear
about what data type your function returns, and ensure that in each and every circum-
stance the function actually returns a value of that type. By the way, the following code is
equivalent to the code above (and has the same mistake):
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listing0805.py

from math import sqrt

def pythagoras( a, b ):
if a > 0 and b > 0:

return sqrt( a *a + b *b )

print( pythagoras( 3, 4 ) )
print( pythagoras( -3, 4 ) )

In this code, you do not see the return without a value explicitly, but it is there nonethe-
less. If Python reaches the end of a function code block without having found a return, it
will return from the function without a value.

If you wonder what you should return in circumstances that you do not have a good
return value for: that depends on the application. For instance, for the pythagoras()
function, you could decide that it will return −1 whenever it gets provided with argu-
ments that it cannot process. As long as you communicate that to the user of a function,
the user can ensure that the main program handles such exceptional cases in the spirit of
the program as a whole. For instance:

listing0806.py

from math import sqrt

from pcinput import getInteger

def pythagoras( a, b ):
if a <= 0 or b <= 0:

return -1
return sqrt( a *a + b *b )

num1 = getInteger( "Give side 1: " )
num2 = getInteger( "Give side 2: " )
num3 = pythagoras( num1, num2 )
if num3 < 0:

print( "The numbers you provided cannot be used." )
else:

print( "The diagonal side ' s length is", num3 )

Note that every line of code in the function that occurs immediately after a return at the
same level of indentation will always be ignored. E.g., in the function:

from math import sqrt

def pythagoras( a, b ):
if a <= 0 or b <= 0:

return -1
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print( "This line will never be printed" )
return sqrt( a *a + b *b )

the line below return -1 clearly states how useless it is.

8.2.6 Difference between return and print

I noticed in the past that many students struggle with the difference between a function
returning a value and a function printing a value. Compare the following two pieces of
code:

def print3():
print( 3 )

print3()

and:

def return3():
return 3

print( return3() )

Both the function print3() and return3() are called in their respective codes, and result
in the printing of the value 3. The difference is that the printing of this value in the case of
print3() happens in the function, while the function returns nothing, while in the case
of return3() the function only returns the value 3, which is then printed in the main
program. For the user the result of these codes looks the same: both display the number
3. But for the programmer the two functions involved are quite different.

The function print3() can only be used for one purpose, namely to display the number 3.
The function return3(), however, can be used wherever I need the number 3, regardless
whether I need to display it, use it in a calculation, or assign it to a variable. For instance,
the following code raises 2 to the power of 3 and prints the result:

def return3():
return 3

x = 2 * * return3()
print( x )

On the other hand, the following code leads to a runtime error when executed:

def print3():
print( 3 )

x = 2 * * print3() # Erroneous code!
print( x )
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The reason is that while print3() displays the value of 3 on the screen (you even see it
above the runtime error when you run the code), it does not produce the actual value 3
in such a way that the calculation can use it. The function print3() actually returns the
special value None, which cannot be used in a calculation.

So, if you want to create a function that produces a value that can be used in other parts
of the program, then the function must return that value. If you want to create a function
that just displays something on the screen, you can use a print statement in the function
to do that, but the function does not need to return anything.

8.2.7 Welcome to the machine

If you still have troubles imagining how functions work, think of them like this:

A function is like a big machine, for instance, a machine that makes pancakes. It has some
input hoppers at the top, which are labeled “milk,” “eggs,” and “flour.” Those are the
input parameters. You can decide what pancakes you want by putting the right stuff in
the hoppers; for instance, if you want whole-grain pancakes, you put whole-grain flour
into the “flour” hopper. Of course, you can be certain that things will go dramatically
wrong if you put eggs into the “milk” hopper – or you try to put a cat into the “flour”
hopper.

Anyway, once the hoppers are loaded the machine starts huffing and puffing. You pa-
tiently wait next to the output hopper which, surprise surprise, is labeled “return.” And
after a short while, a pancake slides out. The pancake is the return value that the machine
produced.

The machine also has a display. Maybe after you put something inappropriate into the
“flour” hopper, the display says: “Cat stuck in the machine, please reset.” The display is
where everything that you “print” in the machine appears.

Now, you understand that it is useless if, after loading the right ingredients into the in-
put hopper, the machine just displays “Pancake is ready!” You want the actual pancake.
That’s why the machine must “return” it via its output hopper, from which you can take
it and “assign” it to your lunch plate. Just printing that the pancake exists is not sufficient.

By the way, one of the nice things about the pancake making machine is that even if you
do not know how pancakes are made, you can still get pancakes as long as you manage
to supply the right ingredients. That’s also what is so nice about functions: they may do
complex things for you without you needing to know how they accomplish them.

8.2.8 Multiple return values

In your functions, you are not limited to returning just one value. You can return multiple
values by putting commas in between. If you want to use these values in the program
after the call to the function, you have to assign them to multiple variables. You put them
to the left of the assignment, also with commas in between. This is easiest to illustrate
with and example:
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listing0807.py

import datetime

def addDays( year, month, day, dayincrement ):
startdate = datetime.datetime( year, month, day )
enddate = startdate + datetime.timedelta( days=dayincrement )
return enddate.year, enddate.month, enddate.day

y, m, d = addDays( 2015, 11, 13, 55 )
print( "{}/{}/{}".format( y, m, d ) )

The function addDays() gets four arguments, namely integers indicating a year, a month,
and a day, and a number of days that you want to add to that date. It returns three values,
namely a new year, month, and day. These are in this code captured in the main program
in three variables, namely y, m, and d.

When you look at the code above, you might be mystified how exactly addDays() is doing
its job. As I said, it’s a nice thing about functions that as long as the function works and
you know what arguments it wants and what it returns, you can use the function without
any knowledge of its internal process. So you can just ignore the code for addDays() (note:
the contents of addDays() use the datetime module, which is discussed in Chapter 27).
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8.2.9 Calling functions from functions

Functions are allowed to call other functions, as long as those other functions are
known to the calling function. For instance, the following code shows how the function
euclideanDistance() uses the function pythagoras() to calculate the distance between
two points in 2-dimensional space.

listing0808.py

from math import sqrt

def pythagoras( a, b ):
if a <= 0 or b <= 0:

return -1
return sqrt( a *a + b *b )

def euclideanDistance( x1, y1, x2, y2 ):
return pythagoras( abs( x1 - x2 ), abs( y1 - y2 ) )

print( euclideanDistance( 1, 1, 4, 5 ) )

euclideanDistance() knows pythagoras(), because pythagoras() was defined before
euclideanDistance() is called.

If you want, you can put functions inside other functions, i.e., you can “nest” functions.
For instance, you can place pythagoras() in euclideanDistance(). That means that
pythagoras() can be called inside euclideanDistance(), but not elsewhere in the pro-
gram.

listing0809.py

from math import sqrt

def euclideanDistance( x1, y1, x2, y2 ):

def pythagoras_inside( a, b ):
if a <= 0 or b <= 0:

return -1
return sqrt( a *a + b *b )

return pythagoras_inside( abs( x1 - x2 ), abs( y1 - y2 ) )

print( euclideanDistance( 1, 1, 4, 5 ) )
# print( pythagoras_inside( 3, 4 ) )

It is not very common that nested functions are used, but it is possible.

Note: if you remove the hash mark before the last line of the code above, it adds a call to
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pythagoras_inside(). This will cause a runtime error, as pythagoras_inside() is only
visible inside euclideanDistance().

Exercise Write a function called printx() that just prints the letter “x.” Then write
a function called multiplex() which takes as argument an integer and prints as many
times the letter “x” as the integer indicates by calling the function printx() that many
times.

8.2.10 Naming functions

Convention prescribes that you should not start a function name with an underscore (such
function names are reserved for the developers of Python itself), and that you try to use
only lower case letters. If the function name consists of multiple words, you can either
put underscores between the words, or start every word except the first with a capital
(different programmers prefer different conventions in this respect, but it does not matter
much as you can always recognize a function by the fact that it has parentheses after the
name).

Certain function names are typical for particular functionalities.

A function that tests if a certain item has a certain property, which then returns either True
or False depending on whether the property holds, commonly has a name that starts with
the word is, which is then followed by the name of the property, starting with a capital.
For instance, a function that tests if a number is even, would be called isEven().

Exercise Write the function isEven().

Exercise Write the function isOdd(), which determines whether a number is odd, by
calling the function isEven() and inverting its result.

Note: if you want to use a function like isEven() in a conditional statement, for instance,
because you want to execute an action only for numbers that are even, you do not need to
write if isEven( num ) == True:. You can simply write if isEven( num ):, because
the function already returns True or False. Using an is-function in such a way makes a
program more readable.

A function that gets the value of a certain property and returns it, commonly starts with
the word get, which is then followed by the name of the property, starting with a capital.
For instance, a functions that gets the fractional part of a float (i.e., the decimals) would
be called getFraction().

Exercise Write the function getFraction().

The opposite of a get function is a function that gives a property a certain value. Such a
function commonly starts with set, and for the rest is similar to a get function. I cannot
give an example as at this point I have not yet explained how you can use a function
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to give something a value, as functions cannot change the values of their parameters (at
least, for the data types that we have used until now). This will follow in a later chapter.

If you stick to such naming conventions, it will make your code more readable.

8.2.11 Commenting functions

In all the chapters until now, you have seen very little commenting of code. While books
and courses on programming often encourage students to write comments in code, I my-
self am of the opinion that code should be “self-documenting,” i.e., that you can easily
derive from code what it does simply by reading it. You can accomplish that often by
choosing strong names for variables and functions, judiciously using white spaces and
empty lines, good indenting (which Python enforces), and not using any convoluted trick-
ery just because it makes the code a little bit faster or to show off how smart you are.5

So while I see comments as an extra that you should use when you feel you need to
explain something particular about your code, my opinion on comments for functions is
different. The idea behind a function is that the user of the function does not need to
look at the function’s code to use it. Therefore, what the function does and how it works,
should be explained in comments at the top of the function, above the function name.

In the comments for a function, you explain three things:

• What the function does

• What arguments the function needs/accepts, including data types

• What the function returns, including data types

If a function has any side effects, i.e., things it affects in the main program, then this should
be carefully documented in the comments too. I do not put that in the list above, because
a function should not have any side effects.

Note: For the answers to the exercises in this chapter I have added comments to the
functions in a form that I find acceptable. In follow-up chapters I often will not do that as
I discuss the functions in text anyway, or I want you to study the contents of the function.
However, I always write comments for functions that I write in code that I use for other
purposes.

8.3 Scope and lifetime

Scope refers to visibility. In particular, when discussing the scope of a variable, it refers to
the places in a program where a variable is visible and can be changed. Lifetime refers to
how long a variable exists in memory. Lifetime is closely related to scope, which is why I
discuss them in one section.

5A little anecdote on the side here: I once heard someone extol the intellect of a certain programmer by saying
“when I see his code, I don’t understand any of it!” When someone would say that about my code, I would feel
deeply ashamed.
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8.3.1 Scope of variables

In general, the scope of a variable is at least the code block in which it is created, and all
the code blocks that are nested within that code block at a deeper indent level. The follow
code demonstrates how the scope of variables is defined for Python:

listing0810.py

hello = "Hi!"
bye = "Goodbye!"

for i in range( 3 ):
for j in range( 2 ):

afternoon = "Good afternoon"
print( bye )

print( j )
print( hello )
print( afternoon )

print( i )
print( j )
print( afternoon )

The variables hello and bye are created at the top level of the program, which means
their scope is the whole program. The variables i, j, and afternoon are defined in code
blocks which are at a deeper indent level. In most programming languages, that would
mean that their scope would be restricted to those deeper levels, but Python is friendly in
this respect and makes their scope extend beyond the loop that they are in. So all these
variables are visible in the program after they have been defined.

How does this work with functions?

listing0811.py

dozen = 12

def dimeAdozen():
print( "There are", dozen/dime, "dimes in a dozen" )

dime = 10
dimeAdozen()
print( "dime =", dime, "and dozen =", dozen )

Again, we see that both dozen and dime are visible within the function dimeAdozen().
They can be seen by the function because they have been defined before the function is
called, and since the code block of the function is at a deeper indent level, it can see these
variables.
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However, now look at the following code, which contains a small change from the code
above:

listing0812.py

dozen = 12

def dimeAdozen():
dozen = 13
print( "There are", dozen/dime, "dimes in a dozen" )

dime = 10
dimeAdozen()
print( "dime =", dime, "and dozen =", dozen )

Run this code, then examine it and its output closely, and compare it with the code and
the output of the code block above it. The variable dozen seems to get a new value in the
function dimeAdozen(), which leads to the function claiming that there are now 1.3 dimes
in a dozen. However, when the value of dozen is printed in the main program, its value
is shown to be still 12, and not 13.

The reason is that the variable dozen in the function is a different one than the variable
dozen in the main program. By assigning a value to a variable in a function, a new, “lo-
cal” variable is created. And this variable is used for the remainder of the function. The
original variable dozen still exists, but is invisible to the function once it has created its
own dozen.

The lifetime of the variable dozen in the function is the period for which the code block of
the function is executed. As soon as the function ends (for instance, because of a return
or because the last line was executed), the local variables of the function are destroyed.
They are no longer in the computer’s memory, and can no longer be accessed.

listing0813.py

apple = "apple"
banana = "banana"
cherry = "cherry"
durian = "durian"

def printfruits_1():
print( apple, banana )

def printfruits_2( apple ):
banana = cherry

print( apple, banana )

def printfruits_3( apple, banana ):
cherry = "mango"
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banana = cherry

print( apple, banana )

printfruits_1()
printfruits_2( cherry )
printfruits_3( cherry, durian )

print( "apple =", apple )
print( "banana =", banana )
print( "cherry =", cherry )
print( "durian =", durian )

Run this code and study it closely.

The three functions printfruits_1(), printfruits_2(), and printfruits_3() print the
variables apple and banana.

In printfruits_1() these are the two variables apple and banana that are defined outside
the function, as the function itself does not try to define these variables.

In printfruits_2(), apple is the parameter of the function, which means it is a variable
local to the function that gets its value from outside the function. The value it gets is
the value of the variable cherry (because cherry is provided as the argument when the
function is called), which is the word “cherry.” banana is a variable that gets its value
in the function. This is a new, local variable banana, which has nothing to do with the
variable banana in the main program. It gets the value of cherry, which is not locally
known to the function, so it uses the variable cherry from the main program for that.
Therefore, the local variable banana gets the value “cherry,” and this is the value that is
printed.

In printfruits_3(), apple and banana are both parameters, so they are both variables
that are local to the function and that get their initial value from the call to the function.
The function then creates a local variable cherry, which is independent from the variable
cherry from the main program. It then assigns the value of cherry, which is "mango",
to the local variable banana. All these changes are therefore made to local variables, and
have no influence on the values of variables from the main program.

When after the function calls the values of the variables from the main program are
printed, you see that they still have the values that were originally assigned to them,
regardless of whether they were used as arguments to the function calls, or whether vari-
ables in the functions with the same names got different values assigned. As soon as a
variable in a function gets assigned a value, if that variable was not yet created in the
function and was not a parameter of the function, a new, local variable is created and
used in the function. Such a new, local variable is completely independent from any vari-
able which exists outside the function. Its lifetime is the period for which the function is
executed. Parameters can also be considered local variables of a function.

This is a very powerful feature of functions: they do not have to take into account vari-
ables that exist outside the function, as any variable that they create is local to the function.
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8.3.2 Global variables

I showed above that variables that are created outside a function are visible in the func-
tion, unless a new variable with the same name is created in the function. Variables from
the main program are called “global” variables, as they are visible anywhere in the pro-
gram, as opposed to “local” variables that are only visible in a function.

It is good practice to make functions independent from the main program, i.e., to not
let them access any of the global variables. If you do need to communicate values from
outside a function to the function, then do so by means of parameters. An exception can
be made for variables that are used as constants (see Chapter 4). If you do let a function
access a constant, then make sure it is clear to anyone who inspects the function that you
are referring to a constant, i.e., that the name of the constant is written in all capitals.

You might wonder if it isn’t possible to change the values of global variables in a function.
This is, in fact, possible, but you have to make clear that you explicitly want the global
variable to be affected by using the keyword global. The statement global <variable>
indicates that the particular variable mentioned is actually referring to the global variable
of this name. For example:

fruit = "apple"

def changeFruit():
global fruit

fruit = "banana"

print( fruit )
changeFruit()
print( fruit )

While it is possible to affect global variables in functions, this is not recommended as it
makes the function dependent on the main program (and thus no longer a “pure” func-
tion). Basically, it makes the function have side effects, and (all together now:) a function
should not have any side effects.

It is also never necessary to include global variables in a function. If you want to allow
a function to affect a global variable, then let the function return a value that can be as-
signed to the global variable. Leave it to the main program to decide whether or not to
overwrite the value of one of its own variables. The only reason I mention it here is that
I sometimes see students reverting to the keyword global because they have insufficient
understanding of return statements. Denying the existence of global is not effective, I
rather admit that it exists and warn students against using it.

8.4 Managing program complexity
Suppose that Python would not have built-in max() and min() function, and neither do
you have knowledge of (or are allowed to) use anything of the chapters after this one. You
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get the following assignment:

Write a program that processes two groups of three numbers (you can write the program
for fixed numbers, but later on you will add that the user enters these numbers). It adds
up the lowest numbers of each of the groups, the middle numbers of each of the groups,
and the highest numbers of each of the groups. It then prints these three results.

How do you do this? You can start with something like:

# First initialize variables in group 1 (num11, num12, num13)
# and in group 2 (num21, num22, num23) to some values.

smallest1 = 0
smallest2 = 0
medium1 = 0
medium2 = 0
largest1 = 0
largest2 = 0

if num11 < num12:
if num11 < num13:

smallest1 = num11

else:
smallest1 = num13

elif num12 < num13:
smallest1 = num12

else:
smallest1 = num13

# Test:
print( smallest1 )

# This works to get the smallest from group 1.
# Now do the same for the smallest from group 2.
# Then do something similar for the largest of group 1 and 2.
# Then invent something for taking the middle one.
# Finally, do all the additions and print the results...

You can imagine that with this approach, with nested if statements that get repeated
six times with different assignments in the branches, this becomes a huge, unreadable,
unmanageable program of which it is hard to see whether it is correct or not. You have to
approach the problem in a smarter way.

Suppose that you have a function that determines the smallest of three numbers, a func-
tion that determines the middle one of three numbers, and a function that determines
the largest one of three numbers. Then the program is pretty simple to write! It will be
something like:
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listing0814.py

num11, num12, num13 = 436, 178, 992
num21, num22, num23 = 880, 543, 101

def smallest( n1, n2, n3 ):
return n1 # just return something for now

def middle( n1, n2, n3 ):
return n1 # just return something for now

def largest( n1, n2, n3 ):
return n1 # just return something for now

print( "sum of smallest =", smallest( num11, num12, num13 ) +
smallest( num21, num22, num23 ) )

print( "sum of middle =", middle( num11, num12, num13 ) +
middle( num21, num22, num23 ) )

print( "sum of largest =", largest( num11, num12, num13 ) +
largest( num21, num22, num23 ) )

Note: In the code above, to reduce the size, I used a "multiple assignment" to give the
variables numxx their values. You can have multiple variables at the right of the assign-
ment operator, and an equal number of values to the left, and the first value will then go
to the first variable, the second value to the second variable, etcetera. I will discuss this in
more depth in Chapter 11.

The program above readable, understandable, and can already be tested. True, the func-
tions smallest(), middle(), and largest() do not return the correct values yet. While
writing the program above, you might not even have an idea on how to write them. But
you probably feel that they could be written, and you know that you can produce code
for them later, and step by step.

So how do you do smallest()? Well, as I showed above, doing this with nested if state-
ments becomes a bit convoluted and unreadable (really, don’t look at how I did it and
try to write this yourself; it is pretty hard to keep the three variables in your head while
writing such a nested if). Can this be approached in a more readable way?

Is it hard to determine the smallest of two numbers? No, that is really easy:

def smallest_of_two( n1, n2 ):
if n1 < n2:

return n1

return n2

By nesting such a function, you can make a smallest() function that determines the
smallest of three numbers. The same can be done for largest(). So the program now
becomes:



8.4. Managing program complexity 115

listing0815.py

num11, num12, num13 = 436, 178, 992
num21, num22, num23 = 880, 543, 101

def smallest_of_two( n1, n2 ):
if n1 < n2:

return n1

return n2

def largest_of_two( n1, n2 ):
if n1 > n2:

return n1

return n2

def smallest( n1, n2, n3 ):
return smallest_of_two( smallest_of_two( n1, n2 ), n3 )

def middle( n1, n2, n3 ):
return n1 # just return something for now

def largest( n1, n2, n3 ):
return largest_of_two( largest_of_two( n1, n2 ), n3 )

print( "sum of smallest =", smallest( num11, num12, num13 ) +
smallest( num21, num22, num23 ) )

print( "sum of middle =", middle( num11, num12, num13 ) +
middle( num21, num22, num23 ) )

print( "sum of largest =", largest( num11, num12, num13 ) +
largest( num21, num22, num23 ) )

The program now works as far as smallest numbers and largest numbers are concerned.
To complete the code, a solution must be found for the middle. What is the middle of
three numbers? It is the number that remains if the smallest and largest are taken out. Can
this be programmed? Here I propose a remove_two_of_three() function. The function
first removes the smallest from three numbers, then removes the largest of the remaining
two, which is the same as the largest of the original three. So, for an easy implemen-
tation of remove_two_of_three(), I also implement functions remove_one_of_three()
and remove_one_of_two().

listing0816.py

num11, num12, num13 = 436, 178, 992
num21, num22, num23 = 880, 543, 101

def smallest_of_two( n1, n2 ):
if n1 < n2:
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return n1

return n2

def largest_of_two( n1, n2 ):
if n1 > n2:

return n1

return n2

def remove_one_of_three( n1, n2, n3, remove ):
if n1 == remove:

return n2, n3

elif n2 == remove:
return n1, n3

return n1, n2

def remove_one_of_two( n1, n2, remove ):
if n1 == remove:

return n2

return n1

def remove_two_of_three( n1, n2, n3, remove1, remove2 ):
num1, num2 = remove_one_of_three( n1, n2, n3, remove1 )
return remove_one_of_two( num1, num2, remove2 )

def smallest( n1, n2, n3 ):
return smallest_of_two( smallest_of_two( n1, n2 ), n3 )

def middle( n1, n2, n3 ):
return remove_two_of_three( n1, n2, n3,

smallest( n1, n2, n3 ), largest( n1, n2, n3 ) )

def largest( n1, n2, n3 ):
return largest_of_two( largest_of_two( n1, n2 ), n3 )

print( "sum of smallest =", smallest( num11, num12, num13 ) +
smallest( num21, num22, num23 ) )

print( "sum of middle =", middle( num11, num12, num13 ) +
middle( num21, num22, num23 ) )

print( "sum of largest =", largest( num11, num12, num13 ) +
largest( num21, num22, num23 ) )

The program is now finished and it works. It is fairly long, but all the functions are easy
to understand, and it is also easy to understand why the program works. It is still shorter
than the original attempt, with at least six nested if statements, would have been, and it
is a lot more readable.
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It might be that there are different approaches for this program. With some inventiveness,
you might come up with smarter ways to determine smallest, middle, and largest (I am
not completely satisfied with my approach for the middle). But the program works, and
is understandable, and that is the most important.

You can criticize the approach that I take in this program. For instance, calculation of the
smallest of the same three numbers takes place twice: once to determine the smallest, and
once to determine the middle. The same holds for the largest. Can this be optimized,
so that such a determination takes place only once? Of course it can, for instance by the
introduction of two extra variables that keep track of the smallest and largest numbers.
But why would I? That would not make the program more readable, and while it would
make the program a bit faster, I am talking nanoseconds here. For a program like this,
speed is unimportant and completely subject to readability. Let me stress again that while
learning programming, solving a problem correctly comes first, immediately followed by
solving a problem in a readable and maintainable way. Efficiency comes much later.

What you should learn from this, is that when a program consists of a series of problems
that you find hard to solve, you should try to split it into sub-problems or sub-goals, and
solve these independently. You can often already introduce functions for sub-problems
when you set up the program, and then for the time being fill these function templates
with something simple, like returning a constant. You can then at least test the program.
Later on, you can start filling in all the function templates that you created.

8.5 Modules

Creating a module is very simple. You just create a Python file, with extension .py, and
place functions in it. You can then import this Python file in another Python program (you
just use the name of the file without the extension .py; the file should be either in the same
folder as the program, or in a standard Python modules location), and access its functions
just as you access functions from regular Python modules, i.e., you either import specific
functions from the module, or you import the module as a whole, and call its functions
by using the <module>.<function>() syntax.

8.5.1 main()

When examining other people’s Python programs, in particular those that contain func-
tions that you might want to import, you often see a construct like shown below:

def main():

# code...

if __name__ == '__main__':

main()

The function main() contains the core of the program, and may call other functions.

There is no need to understand this exactly, but what happens here is the following: the
Python file that contains the code can run as a program, or the functions that it contains
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can be imported into other programs. The construction shown here ensures that the pro-
gram only executes main() (which is the core program) if the program is run as a separate
program, rather than being loaded as a module. If, instead, the program is loaded as a
module into another program, only its functions can be accessed, and the code for main()
is ignored.

If the Python file that contains such a construct is predominantly used as a module, the
main() function usually contains some code that tests the functions in the module. This
is useful during development time.

The use of a program main() for the main functionality has an extra use, though. Since it is
a function, if you want to leave the program for some reason in the middle of processing,
you do not need to use the exit() function from the sys module. You can simple return
from the main() function. This avoids the ugly error message that some editors give on
using the exit() function.

8.6 Anonymous functions

The concept of “anonymous functions” should be considered optional material: they are
rarely used, and never needed. However, for completeness I discuss them here.

Python allows a program to create a function that has no name. The function can be
assigned to a variable, and the variable can then be used as if it is a function. To create an
anonymous function, you use the following syntax:

lambda <parameters>: <statement>

lambda is a keyword. <parameters> is a sequence of parameter names, separated by
comma’s if there is more than one. <statement> is one single statement. The anonymous
function does not need the keyword return, but the value of <statement> is used as
return value.

For instance, the following code creates an anonymous function that calculates the square
of its parameter. The function gets assigned to a variable f. f can then be called as a
function, to calculate the squares of numbers.

f = lambda x: x *x
print( f(12) )

This code is exactly the same as the following code:

def f( x ):
return x *x

print( f(12) )

So, if anonymous functions are no different from regular functions, and actually more
limited as they can only use a single line of code, why are they included in Python? Actu-
ally, there has been going on quite a lot of debate amongst the people who create Python
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whether or not the lambda keyword should remain. It is part of Python because it is also
part of other programming languages, in particular functional programming languages
such as Lisp and Haskell, which rely on the concept of anonymous functions. But the
lambda keyword in Python is not as powerful as the lambda keyword in these other lan-
guages, and, as we have seen, not really needed. A main reason that it is still part of
Python is backwards compatibility and the fact that there are many Python users who
like to use it.

Occasionally, anonymous functions have their uses, and can actually make programs a bit
more readable. I will show an example in Chapter 12.

What you learned

In this chapter, you learned about:

• The purpose of functions

• Creating functions

• Parameters and arguments

• Returning values from functions with return

• Naming conventions for functions

• Commenting functions

• Variable scope and lifetime

• Local and global variables

• Using functions to manage program complexity

• Creating modules

• Using a main() function

• Anonymous functions

Exercises

In these exercises you write functions. Of course, you should not only write the functions,
you should also write code to test them. For practice, you should also comment your
functions as explained above.

Exercise 8.1 Create a function that gets a number as parameter, and then prints the
multiplication table for that number from 1 to 10. E.g., when the parameter is 12, the first
line printed is “1 * 12 = 12” and the last line printed is “10 * 12 = 120.”
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Exercise 8.2 Write a function that gets as parameters two strings. The function returns
the number of characters that the strings have in common. Each character counts only
once, e.g., the strings "bee" and "peer" only have one character in common (the letter
“e”). You can consider capitals different from lower case letters. Note: the function should
return the number of characters that the strings have in common, and not print it. To test
the function, you can print the result in your main program.

Exercise 8.3 The Grerory-Leibnitz series approximates pi as 4 ∗ (1/1 − 1/3 + 1/5 −
1/7 + 1/9...). Write a function that returns the approximation of pi according to this
series. The function gets one parameter, namely an integer that indicates how many of
the terms between the parentheses must be calculated.

Exercise 8.4 In Chapter 6 you were asked to implement the quadratic formula to solve
quadratic equations. A quadratic equation is described by three numeric values, usually
called A, B, and C. It has zero, one, or two solutions, depending on the discriminant
(the part under the square root). Write a function that solves a quadratic equation. As
parameters it gets A, B, and C. It returns three values. The first is an integer that indicates
the number of solutions. The second is the first solution. The third is the second solution.
Any of the solutions that do not exist, you can return as zero.

Exercise 8.5 In Chapter 7, the loop-and-a-half was explained. The final code for the
example that was presented is given below, and I made the remark that there is still some-
thing ugly about this code, namely the fact that if x is smaller than zero or higher than
1000, the code still asks for y even when it can know that it has to ask a new value for
x. I also remarked that you can resolve this in an easy way by using a function. Create a
function and insert it in this code, so that this issue gets fixed. Also get rid of the exit()
and thus the possible ugly output by introducing a main() function.

exercise0805.py

from pcinput import getInteger

from sys import exit

while True:
x = getInteger( "Enter number 1: " )
if x == 0:

break
y = getInteger( "Enter number 2: " )
if y == 0:

break
if (x < 0 or x > 1000) or (y < 0 or y > 1000):

print( "The numbers should be between 0 and 1000" )
continue

if x%y == 0 or y%x == 0:
print( "Error: the numbers cannot be dividers" )
exit()
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print( "Multiplication of", x, "and", y, "gives", x * y )

print( "Goodbye!" )

Exercise 8.6 In statistics, the binomial coefficient indexed by n and k (often expressed as
“n over k,” whereby n must be bigger than or equal to k) is calculated as n!/(k! ∗ (n− k)!),
whereby n! indicates the factorial of n. As I explained in Chapter 7: the factorial of a
positive integer is that integer, multiplied by all positive integers that are lower (excluding
zero). You write the factorial as the number with an exclamation mark after it. E.g., the
factorial of 5 is 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120. If you did all the exercises until now, you
wrote some code for this. Write a function that calculates the binomial coefficient for its
two parameters, and returns the value. Write the code in such a way that it can be used
as a module by another program (i.e., put the tests of your program in a main() function
that is called as explained above).

Exercise 8.7 What is wrong with the following code? Fix it!

exercise0807.py

# What is wrong?
def area_of_triangle( bottom, height ):

area = 0.5 * bottom * height

print( "The area of a triangle with a bottom of", bottom,
"and a height of", height, "is", area )

print( area_of_triangle( 4.5, 1.0 ) )

Note: Code like this is typically written by students who have not yet grasped the intri-
cacies of using functions.
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Recursion

Recursion is a special technique that can be used now you are able to create and use
functions. Recursion can be very elegant and powerful, but students often find it hard
to employ. That is why I decided to spend a separate chapter on it. If, while studying
this chapter, you feel that it is getting too complex for you, feel free to skip it for the time
being. The following chapters are a lot easier again.

9.1 What is recursion?

Recursion is a technique whereby a function calls itself. In a bit more general sense, it is
when a function makes calls in such a way that the function itself is still being executed
while it gets called again (e.g., function a() calls function b(), which calls function a()
again).

This might sound weird when you first encounter it, but there is nothing against a func-
tion calling other functions, and a function can call any function that has been defined by
the time that the call takes place. And since a function is defined by the time its code gets
executed, it can call itself.

“But,” one might say: “if a function calls itself, then it calls itself again, and again, and
again... Doesn’t that mean it gets into an endless process, similar to an endless loop?” The
answer is that there is certainly a danger, with sloppy coding, that a recursive function
gets into an endless loop, but recursive functions should be designed in such a way that
that does not happen.

There exist many problems for which recursion is the most elegant solution. Therefore it
is important that you are aware of the technique, and know how and when to apply it...
and its limitations.
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9.2 Recursive definitions
An example of a recursive definition is the definition of the factorial, which was already
introduced in the previous two chapters. In those chapters I gave the following definition
of the factorial: The factorial of a positive integer is that integer, multiplied by all positive
integers that are lower (excluding zero).

Mathematicians prefer the recursive definition: The factorial n! of any positive integer n
is calculated as follows: 1! = 1, and n! = n ∗ (n− 1)! for n > 1.

This definition is recursive as it refers to the factorial of n− 1 to define the factorial of n.
This is not leading to an endless recursion, however, as at some point n will be 1, and the
factorial of 1 is defined separately.

You can implement the factorial as a recursive function as follows:

listing0901.py

def factorial( n ):
if n <= 1:

return 1
return n * factorial( n-1 )

print( factorial( 5 ) )

Notice how this function describes the recursive definition of the factorial exactly: if n is
1, it returns 1, and otherwise it returns n times the factorial of n-1. (Note that I wrote if
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n <= 1 instead of n == 1 to avoid problems with the user calling the function with, for
instance, a negative n.)

In case you have troubles understanding what happens in this function, let’s describe the
details of the calls it makes. I have indented calls that are made while a "high level" call is
still active. A return statement which is indented one level deeper than a call statement is
given in that call and returns from it with the specified value.

call factorial( 5 )

call factorial( 4 )

call factorial( 3 )

call factorial( 2 )

call factorial( 1 )

return 1

return 2 * 1

return 3 * 2

return 4 * 6

return 5 * 24

print( 120 )

9.2.1 When to use recursive implementations

Once you understand the recursive implementation of the factorial, it might look appeal-
ing. It is simple, elegant, and has a certain coolness factor. However, the iterative imple-
mentation of the factorial is highly preferable over the recursive one.

The reason is clear from the call descriptions above. You see that before the call to
factorial( 1 ) is made, four other calls to factorial() already reside in memory.
Should you wish to calculate the factorial of 100, no less than 100 calls to the function
will reside in memory before it can start returning values. This is not a good idea, and, in
fact, Python may easily run out of (stack) memory in such a case, or become really, really
slow.

Contrariwise, an iterative implementation of the factorial only needs to keep two variables
in memory. It is fast and there is no danger of crashing.

So you should only use recursive implementations if:

• recursion is the most natural way to implement the solution; and

• the recursive process is guaranteed not to go too deep.

Any recursive process can also be implemented as an iterative process. However, oc-
casionally you can encounter problems for which the recursive solution is much more
elegant, readable, and maintainable than the iterative one. In that case, consider reverting
to the recursive solution.
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Figure 9.1: The maze implemented in pcmaze.

9.2.2 Searching a maze

At this point in the book it is hard to give a good demonstration of recursion, as it needs
particular data structures to show its power. But to still show something non-trivial, I
have created a module called pcmaze. You can find it in Appendix D, and you need to
either create it or download it from the same place where you got pcinput.py to be able
to run the code in this subsection.

pcmaze implements a simple maze, which connects some numbered cells. You can ask
for the maze’s entrance using the function entrance(). The maze’s exit is given by the
function exit() (not to be confused with the exit() function from sys). The module
also has a function connected() that gets two numeric arguments: it returns True if there
is a direct connection between the cells with those numbers, and False otherwise. The
entrance is guaranteed to be the lowest-numbered cell, while the exit is guaranteed to be
the highest-numbered cell.

The goal is to write some code that finds the way from the entrance to the exit (if there is
such a way). The maze is visualized in Figure 9.1. Entrance is 1, exit is 16.

So how do you find a way through such a maze (without knowing the exact layout)?
Recursively, you can do it as follows: You define a function leads_to_exit() that returns
a path to the exit if the cell that it is currently examining is on the path that leads to the
exit. If that function returns a path, then you know that the current cell is also on the path.
If you call it with cell 1, you get a path that leads from the entrance to the exit (if there is
such a path).

But how does that function know if a cell is part of a path that leads to the exit? Well, if
the current cell actually is the exit, then yes, it leads to the exit. If not, then it leads to the
exit if it has a connection with a cell that leads to the exit. This is a recursive definition.

You have to be careful that such a recursive definition cannot get stuck in a circular path
in the maze. That means that when the function moves from cell A to cell B, it is not
allowed to move back. If that is taken care of, the function should work. It wouldn’t work



9.2. Recursive definitions 126

if there would be circular paths in the maze, but fortunately there aren’t. The problem is
not unsolvable if there are circular paths, but to solve it a data structure is needed that is
not discussed yet.

In pseudo-code, the recursive function leads_to_exit() is something like this:
function leads_to_exit( currentcell ):

if (currentcell is the exit):

return (path consisting of only the exit)

for (every connnectedcell that was not yet explored):

path = leads_to_exit( connectedcell )

if (path is not empty):

add currentcell to path

return path

return (empty path)

Now let’s implement this recursive solution. In the implementation immediately below,
the path will not be returned, but I return just True or False to indicate that the path is
found or not, and I print the path in the function itself (a bit further down I provide the
complete implementation for the pseudo-code above).

listing0902.py

from pcmaze import entrance , exit, connected

def leads_to_exit( comingfrom , cell ):
if cell == exit():

return True
for i in range( entrance(), exit()+1 ):

if i == comingfrom:
continue

if not connected( cell, i ):
continue

if leads_to_exit( cell, i ):
print( cell, "->", i )
return True

return False

if leads_to_exit( 0, entrance() ):
print( "Path found!" )

else:
print( "Path not found" )

Let’s look at the recursive function in detail.

It gets two parameters. The first is the cell that the path is coming from. The second is the
cell that is checked to see if it leads to the exit. The first parameter is only needed because
returning on the path is not allowed.

The function first checks if the exit is reached. If it is, it returns True.
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If the exit is not reached, the function checks all cells of the maze as possible follow-up
cells.

It excludes (a) the cell that it just arrived from; and (b) all the cells to which there are no
connections. But it checks all the other cells. There is no need to explicitly exclude the cell
itself, as in the definition of the maze a cell is not connected to itself.

As soon as it finds a cell for which a recursive call to the function says that it leads to the
exit, while coming from the current cell, it prints that movement and returns True. This
indicates to the call that arrived here that, yes, a path is found.

Otherwise, once it has checked all possible follow-up connections and no path was found,
it returns False.

This process prints the whole path from entrance to exit, in reverse order.

To make clear what is happening, I have expanded the function a bit, now also printing
every connection that is checked. I have also included a depth parameter, that keeps track
of how deep the recursion is going. I translate that into indentations.

listing0903.py

from pcmaze import entrance , exit, connected

def leads_to_exit( comingfrom , cell, depth ):
indent = depth * 4 * " "
if cell == exit():

return True
for i in range( entrance(), exit()+1 ):

if i == comingfrom:
continue

if not connected( cell, i ):
continue

print( indent + "Check connection", cell, "->", i )
if leads_to_exit( cell, i, depth + 1 ):

print( indent + "Path found:", cell, "->", i )
return True

return False

if leads_to_exit( 0, entrance(), 0 ):
print( "Path found!" )

else:
print( "Path not found" )

9.2.3 Return values of recursive functions

Just like regular functions, recursive functions can communicate information to the rest of
the program using their return values.
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One of the less nice things about the maze-solving recursive functions above is that they
print the path (rather than return it), and that the path is printed in reverse order. It would
be better if, instead, the function calls returned their part of the path to the higher level
calls, so that the path as a whole is returned from the first call, in the main program. This
is what the pseudo-code above proposed. A good way to return a path is in the form of a
list, but lists will be discussed in Chapter 12. Instead, I will do it in the form of a string.

It works as follows: A call that finds the exit cell, returns the number of the exit cell as a
string. Any call that finds part of the path, returns what it got returned itself, but adds the
current cell to that path. Any call that finds nothing, returns nothing, i.e., an empty string.

This means that in the recursive functions above, any return True will instead return a
string containing a (partial) path, and any return False returns an empty string. The
code becomes the following:

listing0904.py

from pcmaze import entrance , exit, connected

def leads_to_exit( comingfrom , cell ):
if cell == exit():

return "{}".format( exit() )
for i in range( entrance(), exit()+1 ):

if i == comingfrom:
continue

if not connected( cell, i ):
continue

check = leads_to_exit( cell, i )
if check != "":

return "{} -> {}".format( cell, check )
return ""

check = leads_to_exit( 0, entrance() )
if check != "":

print( "Path found!", check )
else:

print( "Path not found" )

If you want to understand recursion, study this code closely. This code represents a typical
use of return values in recursive functions. Students whose understanding of recursion is
wonky and who get an assignment that has them communicate information from a deeper
level recursive call to a higher level one, often revert to using a global variable. As you
can see, that is not necessary.

All in all, there is no real difference between a recursive function call and a regular func-
tion call, except that you have to be careful that recursive calls terminate at some point. It
only looks strange the first time that you encounter it.
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What you learned

In this chapter, you learned about:

• Recursive functions

• When to use (and when not to use) recursive functions

• The purpose of recursive functions

• Using return values from recursive functions

Exercises

Exercise 9.1 A recursive definition of the nth number of the Fibonacci sequence fib(n)
states that fib(n) is equal to fib(n-1) + fib(n-2). Moreover, fib(1) and fib(2) are
both 1. Write a recursive function that you can call with an integer argument n that returns
the nth number of the Fibonacci sequence.

Exercise 9.2 To get a bit more insight into how recursion works, add a depth parameter
to your Fibonacci function from the previous exercise, that starts at zero and gets increased
by 1 for every deeper call. On entry of the function, print with what number argument it
was called, and when returning a value, print what you return. Use the depth parameter
to indent the prints. Study your output.

Exercise 9.3 Do you think it is a good idea to implement the Fibonacci sequence recur-
sively? Why or why not?

Exercise 9.4 The greatest common divider is the greatest integer that divides two other
integers without remainder. For instance, the greatest common divider of 14 and 21 is 7, as
7 is the greatest number that divides both 14 and 21. Euclid’s algorithm that calculates the
greatest common divider of two numbers says that if the largest divided by the smallest is
an integer, it is the smallest. Otherwise, it is the result of calculating the greatest common
divider of the smallest and the remainder of the largest divided by the smallest. This is a
recursive defintion. Implement Euclid’s algorithm in a recursive function. Hint: testing
whether two numbers divide each other, and calculating the remainder, can both be done
with the modulo operator. This code can be really brief.

Exercise 9.5 In the code below, I have implemented a recursive implementation of
asking the user for a string, in which only lower case letters may be used. When someone
enters a string with an illegal character in it, a recursive call to the function itself will ask
for a new string. This looks like it avoids using the loop-and-a-half to ask the user for new
inputs on incorrect inputs. While it is always a bad idea to place control over the depth of
recursive calls into a user’s hands, this implementation actually is not only bad, it is also
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quite wrong. Can you see what is wrong with it, and how that is caused? (Note: it is not
the letter < 'a' or letter > 'z' expression, those comparisons are just fine.)

exercise0905.py

def get_input( prompt ):
value = input( prompt )
for letter in value:

if letter < ' a ' or letter > ' z ' :
print( "The character", letter, "is not allowed!")
value = get_input( prompt ) # DO NOT DO THIS!

return value

s = get_input( "Give a string of lower case letters: " )
print( "The user entered:", s )

Let me stress once more that the idea above is a bad one. You should not use recursion
for commonplace problems that can just as well be solved by iterations. Recursion is
for exceptional circumstances. Do not see this as an example of recursion, see it as an
example of how not to use recursion! The main reason I put it here is that I sometimes
observe students writing such code, and I want to make explicit that that is not a good idea!

Exercise 9.6 The Towers of Hanoi is a puzzle, which uses three poles, labeled A, B, and
C. On pole A there is a stack of discs of varying size; the discs are numbered according to
their size. The smallest disc is 1, the next one is 2, the next one is 3, etcetera, up to size N.
Typical values for N are 4 and 5, though in the classic puzzle N is supposed to be 64. The
discs are stacked on pole A according to their size, the smallest one on top, and the biggest
one on the bottom. You now have to move all the discs from pole A to pole C, whereby
you have to follow these four rules: (1) you can only move one disc at a time; (2) you can
only move discs between the poles; (3) you can only move a disc from a pole if it is on
top, and can only move it to the top of another pole; and (4) you can never place a disc
on top of a disc that is smaller. Write a program that solves this puzzle for any value of
N (for testing purposes, N should not be chosen higher than 10 or so). Make the program
print the solution as a recipe, with lines such as “Move disc 1 from pole A to pole C.” At
the end, print the number of moves you needed to make, preferably calculated during the
process of generating the recipe.

To think about a recursive solution, consider the following: Solving the Towers of Hanoi
with a biggest disc of size 10 is easy if you know how to solve it for size 9. Namely, you
use your size-9 procedure to move the top 9 discs to the middle pole, then move the disc
of size 10 to the target pole, and finally use the size-9 procedure to move the 9 discs from
the middle pole to the target pole. But how do you solve the problem with the biggest
disc being size 9? Well, that is simple if you know how to solve it for size 8... You can
imagine where this is going. You are reducing the complexity of the problem step by step,
until you are at “solving the problem for size 2 is simple if you can solve it for size 1.”
Solving it for size 1 is trivial: you just move the disc to where it must go. Basically, this
comes down to a recursive definition of the solution method:
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To solve it for size N where you move from pole X to pole Y with Z as temporary pole,
you first solve it for size N − 1 where you move from pole X to pole Z with pole Y as
temporary pole, then move the disc of size N from pole X to pole Y, and finally solve the
problem for size N − 1 where you move from pole Z to pole Y with pole X as temporary
pole.



Chapter 10

Strings

Until now, most examples and exercises have been using numbers. You might have been
wondering by this time if programming is just for number manipulation. In daily life, it
is far more commonplace to deal with textual information.

The reason that dealing with texts was postponed until this point, is that dealing with
numbers is simply easier than dealing with texts. But in the present chapter, the first steps
are taken to learn to manipulate textual information.

Texts, in programming languages, are dealt with in the form of strings. This chapter is on
the details of strings, and on readily-available functions to juggle them.

10.1 What you already know about strings
In Chapter 3, strings were quickly introduced. The brief discussion in that chapter ended
with the statement that a string is a text, enclosed by either single or double quotes, which
might be of any length, including zero characters long. The chapter also explained that
you can concatenate two strings using the +, and that you can create a string that is the
repetition of a shorter string by using a ∗. For example:

s1 = "apple"
s2 = ' banana '
print( s1 )
print( s2 )
print( s1 + s2 )
print( 3 * s1 )
print( s2 * 3 )
print( 2 * s1 + 2 * s2 )

Chapter 5 introduced the format() function to format strings. It also explained how you
can get the length of a string using the len() function.
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String comparisons were explained in Chapter 6, in particular the fact that the comparison
operators compare strings using alphabetical rules, whereby capitals are always lower in
the alphabet than lower case letters. This will be explained more in-depth in the present
chapter. Chapter 6 also explained how the in operator can be used to test the presence of
characters or substrings in strings.

Chapter 7 explained how you can use a for loop to traverse all the characters in a string.

s1 = "orange"
s2 = "banana"
for letter in s1:

if letter in s2:
print( s1, "and", s2, "share the letter", letter )

10.2 Multi-line strings

Strings in Python may span across multiple lines. This can be useful when you have a
very long string, or when you want to format the output of the string in a certain way.
Multi-line strings can be achieved in two ways:

• With single or double quotes, and an indication that the remainder of the string
continues on the next line with a backslash.

• With triple single or double quotes.

I first demonstrate how this works when you use the regular string enclosure with one
double or single quote at each end of the string:

listing1001.py

long = "I ' m fed up with being treated like sheep. What ' s the \
point of going abroad if you ' re just another tourist carted \
around in buses surrounded by sweaty mindless oafs from \
Kettering and Coventry in their cloth caps and their cardigans \
and their transistor radios and their Sunday Mirrors, \
complaining about the tea - ' Oh they don ' t make it properly \
here, do they, not like at home ' - and stopping at Majorcan \
bodegas selling fish and chips and Watney ' s Red Barrel and \
calamaris and two veg and sitting in their cotton frocks \
squirting Timothy White ' s suncream all over their puffy raw \
swollen purulent flesh ' cos they ' overdid it on the first day . '"
print( long )

As you can see when you run the code, Python interprets this example as a single line
of text. The backslash (\) can actually be included after any Python statement to indicate
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that it continues on the next line, and it can be quite useful for that, for instance when you
write long calculations.

The recommended way to write multi-line strings in Python is, however, to use triple
double or single quotes. I indicated earlier that you can use those to write multi-line com-
ments. Such comments are basically large strings in the middle of your Python program,
which do nothing as they are not assigned to a variable.

Here is an example of a long string with triple double quotes:

listing1002.py

long = """And being herded into endless Hotel Miramars and
Bellevueses and Continentales with their modern international
luxury roomettes and draught Red Barrel and swimming pools full
of fat German businessmen pretending they ' re acrobats forming
pyramids and frightening the children and barging into queues
and if you ' re not at your table spot on seven you miss the bowl
of Campbell ' s Cream of Mushroom soup, the first item on the menu
of International Cuisine, and every Thursday night the hotel has
a bloody cabaret in the bar, featuring a tiny emaciated dago with
nine-inch hips and some bloated fat tart with her hair

brylcreemed
down and a big arse presenting Flamenco for Foreigners."""
print( long )

Note that in the first example the string was interpreted as a continuous series of charac-
ters, while in the second example the lines are all printed as different lines. The reason is
that in the second example an invisible character is included at the end of each line which
indicates that Python should move to the next line before continuing. This is a so-called
“newline” character, and you can actually insert it explicitly into a string, using the code
"\n". This code should not be read as a backslash and the "n", but as a single newline
character. By using it, you can ensure that you print the output on multiple lines, even if
you use the backslash to indicate the continuation of the string, as was done in the first
example:

listing1003.py

long = "And then some adenoidal typists from Birmingham with\n\
flabby white legs and diarrhoea trying to pick up hairy bandy-\n\
legged wop waiters called Manuel and once a week there ' s an\n\
excursion to the local Roman Ruins to buy cherryade and melted\n\
ice cream and bleeding Watney ' s Red Barrel and one evening you\n\
visit the so called typical restaurant with local colour and\n\
atmosphere and you sit next to a party from Rhyl who keep\n\
singing ' Torremolinos , torremolinos ' and complaining about the\n\
food - ' It ' s so greasy here, isn ' t it ? ' - and you get cornered\n\
by some drunken greengrocer from Luton with an Instamatic\n\
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camera and Dr. Scholl sandals and last Tuesday ' s Daily Express\n\
and he drones on and on and on about how Mr. Smith should be\n\
running this country and how many languages Enoch Powell can\n\
speak and then he throws up over the Cuba Libres."
print( long )

If you do not want automatic newline characters in a multi-line string, you have to use
the backslash at the end of the line. Otherwise, the second approach is the easiest to read.

10.3 Escape sequences
"\n" is a so-called “escape sequence.” An escape sequence is a string character written as
a backslash followed by a code, which can be one or multiple characters. Python interprets
escape sequences in a string as a special character.

Besides the newline character "\n", in Chapter 3 I also introduced the special characters
"\'" and "\"", which can be used to place a single respectively double quote in a string,
regardless of what characters surround the string. I also mentioned that you can use "\\"
to insert a “real” backslash in a string.

Besides these, there are a few more escape sequences which lead to a special character.
Most of these are archaic and you do not need to worry about them. The two I want to
mention are "\t" which represents a single tabulation, and "\xnn" whereby nn stands
for two hexadecimal digits, which represents the character with hexadecimal number nn.
For example, "\x20" is the character expressed by the hexadecimal number 20, which is
the same as the decimal number 32, which is the space (this will be explained later in this
chapter).

In case you never learned about hexadecimal counting: hexadecimals use a numbering
scheme that uses 16 different digits, namely 0 to 9, and A to F. A direct translation from
hexadecimals to decimals turns A into 10, B into 11, etcetera. In decimal counting, the
value of a multi-digit number is found by multiplying the digits by increasing powers of
10, from right to left, e.g., the number 1426 is 6 + 2 ∗ 10 + 4 ∗ 100 + 1 ∗ 1000. For hexadec-
imal numbers you do the same thing, but multiply by powers of 16, e.g., the hexadecimal
number 4AF2 is 2 + 15 ∗ 16 + 10 ∗ 256 + 4 ∗ 4096. Programmers tend to like hexadecimal
numbers, as computers work with bytes as the smallest unit of memory storage, and a
byte can store 256 different values, i.e., any byte value can be expressed by a hexadecimal
number of two digits.

Why it is useful to know about hexadecimal counting and hexadecimal representation of
characters follows later in the book.

10.4 Accessing characters of a string
As I showed several times before, a string is a collection of characters in a specific order.
You can access the individual characters of a string using indices.
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10.4.1 String indices

Each symbol in a string has a position, this position can be referred to by the index number
of the position. The index numbers start at 0 and then increase to the length of the string.
The following table shows the word “python” in the first row and the indices for each
letter in the second and third rows:

p y t h o n

0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

As you can see, you can use positive indices, which start at the first letter of the string and
increase until the end of the string is reached, or negative indices, which start with -1 for
the last letter of the string and decrease until the first letter of the string is reached.

As the length of a string s is len(s), the last letter of the string has index len(s)-1. With
negative indices, the first letter of the string has index -len(s).

If a string is stored in a variable, the individual letters of the string can be accessed by the
variable name and the index of the requested letter between square brackets ([]) next to it.

fruit = "orange"
print( fruit[1] )
print( fruit[2] )
print( fruit[3] )
print( fruit[-2] )
print( fruit[-6] )
print( fruit[0] )
print( fruit[-3] )

You can also use variables as indices, and even calculations or function calls. You must
make sure, however, that calculations result in integers, because you cannot use floats as
indices. Below are some examples, most of which are so convoluted that I do not see any
reason to incorporate them like this in a program. But they show what is possible.

from math import sqrt

fruit = "orange"
x = 3

print( fruit[3-2] )
print( fruit[int( sqrt( 4 ) )] )
print( fruit [2**2] )
print( fruit[int( (x-len( fruit ))/3 )] )
print( fruit[-len( fruit )])
print( fruit[-x] )

In principle, you can also use an index with the actual string rather than a variable that
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contains it, e.g., "orange"[2] is the letter "a". For obvious reasons no one ever does that,
though.

Besides using single indices you can also access a substring (also called a “slice”) from
a string by using two numbers between the square brackets with a colon (:) in between.
The first of these numbers is the index where the substring starts, the second where it
ends. The substring does not include the letter at the second index. By leaving out the
left number you indicate that the substring starts at the beginning of the string (i.e., at
index 0). By leaving out the right number you indicate that the substring ranges up to
and includes the last character of the string.

If you try to access a character using an index that is beyond the reaches of a string, you
get a runtime error (“index out of bounds”). For a range of indices to access substrings
such limitations do not exist; you can use numbers that are outside the bounds of the
string.

fruit = "orange"
print( fruit[:] )
print( fruit[0:] )
print( fruit[:6] )
print( fruit[:100] )
print( fruit[:len( fruit )] )
print( fruit[1:-1] )
print( fruit[2], fruit[1:6] )

10.4.2 Traversing strings

I already explained how you can traverse the characters of a string using a for loop:

fruit = ' apple '
for char in fruit:

print( char, ' - ' , end= ' ' )

Now you know about indices, you probably realize you can also use those to traverse the
characters of a string:

listing1004.py

fruit = ' apple '

for i in range( 0, len( fruit ) ):
print( fruit[i], "- ", end="" )

print()

i = 0
while i < len( fruit ):
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print( fruit[i], "- ", end="" )
i += 1

If you just want to traverse the individual characters of a string, the first method, using
for <character> in <string>:, is by far the most elegant and readable. However, occa-
sionally you have to solve problems in which you might prefer one of the other methods.

Exercise Write code that for a string prints the indices of all of its vowels (a, e, i, o,
and u). This can be done with a for loop or a while loop, though the while loop is more
suitable.

Exercise Write code that uses two strings. For each character in the first string that has
exactly the same character at the same index in the second string, you print the character
and the index. Watch out that you do not get an “index out of bounds” runtime error. Test
it with the strings "The Holy Grail" and "Life of Brian".

Exercise Write a function that takes a string as argument, and creates a new string
that is a copy of the argument, except that every non-letter is replaced by a space (e.g.,
"ph@t l00t" is changed to "ph t l t"). To write such a function, you will start with
an empty string, and traverse the characters of the argument one by one. When you
encounter a character that is acceptable, you add it to the new string. When it is not ac-
ceptable, you add a space to the new string. Note that you can check whether a character
is acceptable by simple comparisons. For example, any lower case letter can be found
using the test if ch >= 'a' and ch <= 'z':.

10.4.3 Extended slices

Slices in python can take a third argument, which is the step size (or “stride”) that is taken
between indices. It is similar to the third argument for the range() function. The format
for slices then becomes <string>[<begin>:<end>:<step>]. By default the step size is 1.

The most common use for the step size is to use a negative step size in order to create a
reversed version of a string.

fruit = "banana"
print( fruit[::2] )
print( fruit[1::2] )
print( fruit[::-1] )
print( fruit[::-2] )

Reversing a string using [::-1] is conceptually similar to traversing the string from the
last character to the beginning of the string using backward steps of size 1.

fruit = "banana"
print( fruit[::-1] )
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for i in range( 5, -1, -1 ):
print( fruit[i] )

10.5 Strings are immutable

A core property of strings is that they are immutable. This means that they cannot be
changed. For instance, you cannot change a character of a string by assigning a new value
to it. As a demonstration, the following code leads to a runtime error if you try to run it:

fruit = "oringe"
fruit[2] = "a" # Runtime error!
print( fruit )

If you want to make a change to a string, you have to create a new string that contains
the change; you can then assign the new string to the existing variable if you want. For
instance:

fruit = "oringe"
fruit = fruit[:2] + "a" + fruit[3:]
print( fruit )

The reasons for why strings are immutable are beyond the scope of this book. Just re-
member that if you want to modify a string you need to overwrite the entire string, and
you cannot modify individual indices.

10.6 string methods

There is a collection of methods that are designed to operate on strings. All of these
methods are applied to a string to perform some operation. Since strings are immutable,
they never change the string they work on, but they always return a changed version of
the string.

Like the format()method introduced in Chapter 5, all these methods are called using the
syntax <string>.<method>(), i.e., you have to write the string that they work on before
the method call, with a period in between. You will encounter this more often, and why
this is implemented in this way will be explained later in the course, in the chapters about
object orientation.

Most of these methods are not part of a specific module, but can be called without im-
porting them. There is a string module that contains specific constants and methods that
can be used in your programs, but the methods I discuss here can all be used without
importing the string module.
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10.6.1 strip()

strip() removes from a string leading and trailing spaces, including leading and trailing
newlines and other characters that may be viewed as spaces. If instead of spaces, you
want to remove different characters, you can add a string parameter that consists of all
characters you want to be removed.

s = " And now for something completely different \n "
print( "["+s+"]" )
s = s.strip()
print( "["+s+"]" )

10.6.2 upper() and lower()

upper() creates a version of a string of which all letters are capitals. lower() is equivalent,
but uses only lower case letters. Neither method uses parameters.

s = "The Meaning of Life"
print( s )
print( s.upper() )
print( s.lower() )

10.6.3 find()

find() can be used to search in a string for the starting index of a particular substring.
As parameters it gets the substring, and optionally a starting index to search from, and an
ending index. It returns the lowest index where the substring starts, or -1 if the substring
is not found.

s = "Humpty Dumpty sat on the wall"
print( s.find( "sat" ) )
print( s.find( "t" ) )
print( s.find( "t", 12 ) )
print( s.find( "q" ) )

10.6.4 replace()

replace() replaces all occurrences of a substring with another substring. As parameters
it gets the substring to look for, and the substring to replace it with. Optionally, it gets a
parameter that indicates the maximum number of replacements to be made.

I must stress again that strings are immutable, so the replace() function is not actually
changing the string. It returns a new string that is a copy of the string with the replace-
ments made.
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s = ' Humpty Dumpty sat on the wall '
print( s.replace( ' sat on ' , ' fell off ' ) )

10.6.5 split()

split() splits a string up in words, based on a given character or substring which is
used as separator. The separator is given as the parameter, and if no separator is given,
the white space is used, i.e., you split a string in the actual words (though punctuation
attached to words is considered part of the words). If there are multiple occurrences of
the separator next to each other, the extra ones are ignored (i.e., with the white space
as separator, it does not matter if there is a single white space between two words, or
multiple).

The result of this split is a so-called “list” of words. Lists are discussed in a coming chapter,
so for now I will not say much about them. I just indicate that if you want to access the
separate words, you can use the for <word> in <list>: construction.

s = ' Humpty Dumpty sat on the wall '
wordlist = s.split()
for word in wordlist:

print( word )

A very useful property of splitting is that we can decode some basic file formats. For
example, a comma separated value (CSV) file is a very simple format, of which the basic
setup is that each line consists of values that are separated by a comma. These values can
be split from each other using the split()method.6

csv = "2016,September ,28,Data Processing ,Tilburg University"
values = csv.split( ' , ' )
for value in values:

print( value )

10.6.6 join()

join() is the opposite of split(). join() joins a list of words together, separated by a
specific separator. This sounds like it would be a method of lists, but for historic reasons
it is defined as a method for strings. Since all string methods are called using the format
<string>.<method>(), there must be a string in front of the call to join(). That string is
the separator that you want to use, while the parameter of the method is the list that you
want to join together. The return value, as always, is the resulting string.

6In actuality it will be a bit more convoluted as there might be commas in the fields that are stored in the CSV
file, so it depends a bit on the contents of the file whether this simple approach will work. More on CSV files
will be said in Chapter 26.
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s = "Humpty;Dumpty;sat;on;the;wall"
wordlist = s.split( ' ; ' )
s = " ".join( wordlist )
print( s )

10.6.7 Practice

Exercise In the string "How much woot would a wootchuck chuck if a wootchuck

could chuck woot." the word "wood" is misspelled. Use replace() to replace all oc-
currences of this spelling error with the correct spelling.

Exercise Display the contents of the string "Nobody expects the Spanish

Inquisition!# In fact, those who do expect the Spanish Inquisition..."

up to, but not including, the hash mark (#). Use find() to get the index of the hash mark.

Exercise Write a program that prints a “cleaned” version of all the words in a string.
Everything that is not a letter should be removed and be considered a separator. All the
letters should be lower case. For example, the string "I'm sorry, sir." should produce
four words, namely "i", "m", "sorry", and "sir". You can use the function for string
cleaning which you wrote as an exercise above.

10.7 Character encoding
All systems use a particular way of encoding characters. The basic encoding that (al-
most) every system supports is the standard ASCII code. This is a 7-bits code, which can
represent 128 different characters. Several of these (in particular those with the lowest-
numbered encodings) are control characters that have a special function. Most of these
special functions are only useful for archaic computer systems, but the tabulation, new-
line, and backspace characters are found amongst them. If you only use characters on a
standard US keyboard, you are limited to ASCII characters.

Nowadays, many systems use Unicode. Unicode supports far more characters. There are
different formats for storing characters in Unicode. The best-known is UTF-8, which uses
one byte for each of the ASCII characters, but multiple bytes for all the other characters
(a byte is a group of 8 bits, whereby each bit contains either a 1 or a zero). Other Unicode
encodings use multiple bytes to store any character. Python, be default, works with UTF-
8, which means that it also supports regular ASCII encodings.

10.7.1 ASCII

Below I display the ASCII table. The only characters I have left off are those which are
control sequences. These have the numbers zero to 31, and 127. 32 is the space. I also
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display the hexadecimal code for each character next to the decimal code. (If you won-
der why I even bother listing those hexadecimal codes: they become relevant in a later
chapter.)

As you can see, each character has a number attached to it. To find out what a character’s
number is in a program, you can use the ord() function. For instance, ord("A") returns
the number of "A", which, as you can see, is 65. The counterpart of the ord() function
is the chr() function. chr() gets a number as argument, and returns the character that
belongs to that number. For instance, chr(65) is the letter "A".

DC HX DC HX DC HX DC HX DC HX DC HX

32 20 48 30 0 64 40 @ 80 50 P 96 60 ` 112 70 p

33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q

34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r

35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s

36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t

37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u

38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v

39 27 ' 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w

40 28 ( 56 38 8 72 48 H 88 58 X 104 68 h 120 78 x

41 29 ) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y

42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z

43 2B + 59 3B ; 75 4B K 91 5B [ 107 6B k 123 7B {

44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C |

45 2D - 61 3D = 77 4D M 93 5D ] 109 6D m 125 7D }

46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~

47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o

A comparison of strings which use only these characters use the numbers of the characters
to determine which string is “smaller.” For instance, the string "orange" is smaller than
the string "ordinal", because the first character that differs between them is the third one,
which is "a" for "orange" and "d" for "ordinal", and since the number for "a" is lower
than the number for "d", the string "orange" is considered to be smaller than the string
"ordinal". This is, basically, an alphabetic comparison. If characters occur in a string that
are not letters, you can check in the ASCII table which is considered lower. Notice how
all the digits are lower than letters.

print( ord( ' A ' ) )
print( ord( ' a ' ) )
print( chr( 65 ) )
print( chr( 97 ) )
print( "orange" < "ordinal" )

You can use these numbers that are associated with characters to do all kinds of neat
calculations. For instance, if I want to know which the twelfth letter after "g" is, I can
calculate that as follows:

print( "The 12th letter after g is", chr( ord( "g" )+12 ) )
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For another example of what you can do with character codes, here is a program that
generates the ASCII table as a matrix:

listing1005.py

print( ' ' , end= ' ' )
for i in range(16):

if i < 10:
print( ' ' +chr( ord( ' 0 ' )+i ), end= ' ' )

else:
print( ' ' +chr( ord( ' A ' )+i-10 ), end= ' ' )

print()
for i in range( 2, 8 ):

print( i, end= ' ' )
for j in range( 16 ):

c = i *16+j
print( ' ' +chr( c ), end= ' ' )

print()

Note that I highly prefer you using the ord() and chr() functions if you want to juggle
character encoding. If you want to refer to the character code of the letter "A", do not
write 65, but write ord("A") instead. 65 is only meaningful to people who know ASCII
encodings, and your programs should be meaningful to anybody. Moreover, while ASCII
is a widely-used standard, there are still computers out there which use different encoding
mechanisms, in which the code for "A" is not necessarily 65 (I am looking at you, IBM).

10.7.2 UTF-8

Python supports Unicode, in particular the most common Unicode encoding scheme UTF-
8. This means that you can use all kinds of “weird” characters. I explained that in the
naming of functions and variables you can use “letters,” which you probably assumed
meant "A" to "Z" and "a" to "z". The funny thing is that it depends on the language
codes of your computer what is considered a letter. For instance, if your computer tells
Python that the language is German, then you can also use characters with umlauts. I
strongly discourage using such letters in variable and function names, by the way. Not
only are they hard to type, but they also make your program less portable.

In UTF-8, the regular characters which you find on a keyboard are represented in strings
exactly as you would expect. However, “special” characters can be incorporated too,
but look quite different. Since Python supports UTF-8, you have to be careful when you
copy texts from, for instance, a word processor document. Word processors have the
disturbing habit of changing characters into other characters, like turning straight quotes
into round quotes. If you copy such round quotes into your program, Python will accept
the characters, but will not interpret them as, for instance, string boundaries.

If you want to display Unicode characters, you can do so by using Unicode encodings.
You have to know the UTF-8 number of the character that you want to display. If you
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know that, you can use a code \uxxxx, where xxxx is a hexadecimal number, to incorpo-
rate a Unicode character in a string. For example, the code below displays the capitals of
the Greek alphabet:7

alpha = "\u0391"
for i in range( 25 ):

print( chr( ord( alpha )+i ), end=" " )

In general, you will not need to worry too much about character encodings. I recommend
that you restrict yourself to ASCII whenever possible. In cases where you have to deal
with Unicode characters, things usually work correctly automatically, since the standard
Python functionalities support Unicode. Occasionally I have run into translation prob-
lems from Unicode to ASCII, in particular where files were concerned. It will be a while
before you run into problems like that, and I will bring it up again in Chapter 16 and later.

What you learned

In this chapter, you learned about:

• Strings

• Multi-line strings

• Accessing string characters with positive and negative indices

• Slices

• Immutability of strings

• strip(), upper(), lower(), find(), replace(), split(), and join()

• Escape sequences

• ASCII and UTF-8 encodings

Exercises

Exercise 10.1 Count how many of each vowel (a, e, i, o, u) there are in a text string, and
print the count for each vowel with a single formatted string. Remember that vowels can
be both lower and uppercase.

Exercise 10.2 Below is a text with several characters enclosed in square brackets [ and
]. Scan the text and print out all characters which are between square brackets.

7There is one weird character in this display, between the Rho and the Sigma, which is \u03A2, which is
evidently not a legal Unicode character.
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exercise1002.py

text = """And sending tinted postcards of places they don ' t
realise they haven ' t even visited to ' All at nu[m]ber 22, weather
w[on]derful, our room is marked with an ' X '. Wish you were here.
Food very greasy but we ' ve found a charming li[t]tle local place
hidden awa[y ]in the back streets where they serve Watney ' s Red
Barrel and cheese and onion cris[p]s and the accordionist pla[y]s
"Maybe i[t] 's because I ' m a Londoner " ' and spending four days on
the tarmac at Luton airport on a five-day package tour wit[h]
n[o]thing to eat but dried Watney ' s sa[n]dwiches..."""

Exercise 10.3 Print a line of all the capital letters "A" to "Z". Below it, print a line of
the letters that are 13 positions in the alphabet away from the letters that are above them.
E.g., below the "A" you print an "N", below the "B" you print an "O", etcetera. You have
to consider the alphabet to be circular, i.e., after the "Z", it loops back to the "A" again.

Exercise 10.4 In the text below, count how often the word “wood” occurs (using pro-
gram code, of course). Capitals and lower case letters may both be used, and you have to
consider that the word “wood” should be a separate word, and not part of another word.
Hint: If you did the exercises from this chapter, you already developed a function that
“cleans” a text. Combining that function with the split() function more or less solves
the problem for you.

exercise1004.py

text = """How much wood would a woodchuck chuck
If a woodchuck could chuck wood?
He would chuck, he would, as much as he could,
And chuck as much as a woodchuck would
If a woodchuck could chuck wood."""

Exercise 10.5 Write a program that takes a string and produces a new string that con-
tains the exact characters that the first string contains, but in order of their ASCII-codes.
For instance, the string "Hello, world!" should be turned into " !,Hdellloorw". This
is relatively easy to do with list functions, which will be introduced in a future chapter,
but for now try to do it with string manipulation functions alone.

Exercise 10.6 Typical autocorrect functions are the following: (1) if a word starts with
two capitals, followed by a lower-case letter, the second capital is made lower case; (2) if
a sentence contains a word that is immediately followed by the same word, the second
occurrence is removed; (3) if a sentence starts with a lower-case letter, that letter is turned
into a capital; (4) if a word consists entirely of capitals, except for the first letter which
is lower case, then the case of the letters in the word is reversed; and (5) if the sentence
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contains the name of a day (in English) which does not start with a capital, the first letter
is turned into a capital. Write a program that takes a sentence and makes these auto-
corrections. Test it out on the string below.

exercise1006.py

sentence = "as it turned out our chance meeting with REverend \
aRTHUR BElling was was to change our whole way of life, and \
every sunday we ' d hurry along to St lOONY up the Cream BUn \
and Jam..."



Chapter 11

Tuples

A tuple is a group of one or more values that are treated as a whole. This chapter explains
how to recognize and use tuples.

11.1 Using tuples

A tuple is a group of one or more values, separated by commas. Normally, tuples are
written with parentheses around them, but the parentheses are not actually necessary
(except in circumstances where otherwise confusion would arise). For example:

t1 = ("apple", "orange")
print( type( t1 ) )
t2 = "banana", "cherry"
print( type( t2 ))

You can mix data types within tuples. You can even put tuples in tuples.

t1 = ("apple", 3, 1.4)
t2 = ("apple", 3, 1.4, ("banana", 5))

To find out how many elements a tuple contains, you can use the len() function.

t1 = ("apple", "orange")
t2 = ("apple", 3, 1.4)
t3 = ("apple", 3, 1.4, ("banana", 5))
print( len( t1 ) )
print( len( t2 ) )
print( len( t3 ) )
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Note that in this example, the length of t3 is 4, and not 5. The last element of t3 is the
tuple ("banana", 5), which counts as one element.

You can use a for loop to access individual elements of a tuple in sequence.

t1 = ("apple", 3, 1.4, ("banana", 5))
for element in t1:

print( element )

You can also use the max() and min() functions to get the maximum respectively the
minimum from a tuple of numbers. You can sum the elements of a tuple using the sum()
function.

t1 = (327, 419, 101, 667, 925, 225)
print( max( t1 ) )
print( min( t1 ) )
print( sum( t1 ) )

You can test whether an element is part of a tuple by using the in operator.

t1 = ("apple", "banana", "cherry")
print( "banana" in t1 )
print( "orange" in t1 )

11.1.1 Tuple assignments

As you have seen, you can create a tuple by assigning comma-separated values to a vari-
able. Parentheses around it are optional. What if you want to create a tuple with only one
element?

t1 = ("apple")
print( type( t1 ) )

If you run this code, you will find that t1 is of the class str, i.e., a string. Putting paren-
theses around the element does not work, as parentheses are optional. Python introduced
a little trick to create a tuple with only one element, and that is that you indicate that it is
a tuple by placing a comma after the value. This is rather unintuitive and I would even
say “degenerate,” but historically this was the solution that an early version of Python
introduced, and for compatibility reasons it was not changed.

t1 = ("apple",)
print( type( t1 ) )
print( len( t1 ) )



11.1. Using tuples 150

Python allows you to place a tuple left of the assignment operator. This is an exception to
the rule that only one variable can be placed left of an assignment. The values at the right
side are copied one-by-one to the left side, left to right.

t1, t2 = "apple", "banana"
print( t1 )
print( t2 )

You can place parentheses around the values at the right side, and/or parentheses around
the variables at the left side, which makes no difference.

If you place more variables at the left side than values at the right side, you get a runtime
error. The same for placing fewer (unless you place just one, as shown above). However,
you can create tuples at the right side by placing parentheses.

t1, t2 = ("apple", "banana"), "cherry"
print( t1 )
print( t2 )

11.1.2 Tuple indices

Just like with strings, you can access the individual elements of a tuple using indices.
Where with strings the individual elements are characters, for tuples they are the values.
For instance:

t1 = ("apple", "banana", "cherry", "durian")
print( t1[2] )

You can even use slices, with the same rules as for strings (if you do not remember, check
Chapter 10 again). A slice of a tuple is another tuple. For example:

t1 = ("apple", "banana", "cherry", "durian", "orange")
print( t1[1:4] )

Since tuples are indexed, an alternative for a for loop to access the individual elements of
a tuple is to loop over the indices.

listing1101.py

t1 = ("apple", "banana", "cherry", "durian", "orange")
i = 0
while i < len( t1 ):

print( t1[i] )
i += 1
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Exercise Write a for loop that displays all the values of the elements of a tuple, and also
displays their index.

11.1.3 Tuple comparisons

You can compare two tuples with each other by using the regular comparison operators.
These operators first compare the first two elements of the tuples. If these are different,
then the comparison will determine which one is “smaller” based on the rules for these
data types, and result in True or False. If they are equal, the second elements will be
compared, etcetera.

listing1102.py

t1 = ( "apple", "banana" )
t2 = ( "apple", "banana" )
t3 = ( "apple", "cherry" )
t4 = ( "apple", "banana", "cherry" )
print( t1 == t2 )
print( t1 < t3 )
print( t1 > t4 )
print( t3 > t4 )

11.1.4 Tuple return values

In Chapter 8, you learned that functions can return multiple values. If you code something
like that, what actually happens is that the function is returning a tuple. To deal with
such return values, you assign them to variables as explained under “tuple assignments”
above.

11.2 Tuples are immutable

Just like strings, tuples are immutable. This means that you cannot assign a new value to
one element of a tuple. The example below will produce a runtime error when run.

t1 = ("apple", "banana", "cherry", "durian")
t1[0] = "orange"

11.3 Applications of tuples

Tuples are not used often in Python code (except as return values of functions). A logical
application of tuples would be to deal with values that always occur in small collections.
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However, object orientation (Chapter 20 and further) offers many tools and techniques to
deal with such small collections, which means that programmers usually revert to object
orientation when they need something like that.

For the moment, here is an example of the use of tuples in an application. Suppose that
you have to write a program that deals with geometric figures in 2-dimensional space. A
concept that you need is that of a point: a location in 2D space that is identified by two
coordinates. Rather than write functions that always require a separate X-coordinate and
a separate Y-coordinate, you can specify that coordinates are always communicated in the
form of tuples.

listing1103.py

from math import sqrt

# Returns the distance between two points in 2-dimensional space.
# The points are the parameters of the function; each point is a
# tuple of two numeric values.
def distance( p1, p2 ):

return sqrt( (p1[0] - p2[0]) * *2 + (p1[1] - p2[1]) * *2 )

point1 = (1,2)
point2 = (5,5)
print( "Distance between", point1, "and", point2, "is",

distance( point1, point2 ) )

An advantage of using tuples to communicate coordinates is that it is relatively easy to
write functions that can deal with coordinates in higher-dimensional spaces too.

listing1104.py

from math import sqrt

# Distance between two points in N-dimensional space.
# The points should have the same dimension , i.e., they are

tuples
# of numeric values, and they should have the same length.
def distance( p1, p2 ):

total = 0
for i in range( len( p1 ) ):

total += (p1[i] - p2[i]) * *2
return sqrt( total )

# 1-dimensional space
point1 = (1,)
point2 = (5,)
print( "1D: Distance between", point1, "and", point2, "is",

distance( point1, point2 ) )
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# 2-dimensional space
point1 = (1,2)
point2 = (5,5)
print( "2D: Distance between", point1, "and", point2, "is",

distance( point1, point2 ) )

# 3-dimensional space
point1 = (1,2,4)
point2 = (5,5,8)
print( "3D: Distance between", point1, "and", point2, "is",

distance( point1, point2 ) )

What you learned

In this chapter, you learned about:

• Tuples

• Tuple assignments

• Tuple indices

• Immutability of tuples

• Applications of tuples

Exercises

Exercise 11.1 A complex number is a number of the form a + bi, whereby a and b are
constants, and i is a special value that is defined as the square root of -1. Of course, you
never try to actually calculate what the square root of -1 is, as that gives a runtime error; in
complex numbers, you always let the i remain. For instance, the complex number 3 + 2i
cannot be simplified any further. Addition of two complex numbers a + bi and c + di is
defined as (a + c) + (b + d)i. Represent a complex number as a tuple of two numeric
values, and create a function that calculates the addition of two complex numbers.8

Exercise 11.2 Multiplication of two complex numbers a + bi and c + di is defined as
(a*c - b*d) + (a*d + b*c)i. Write a function that calculates the multiplication of two
complex numbers.

8Actually, Python supports a separate data type complex that represents complex numbers, so there is not
really a need to deal with complex numbers as tuples, but for the purpose of practicing with tuples this exercise
works fine.
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Exercise 11.3 Consider the definition of a new datatype. The new datatype is the
inttuple. An inttuple is defined as being either an integer, or a tuple consisting of
inttuples. You see an example of an inttuple in the code block below. Write a func-
tion that prints all the integer values stored in an inttuple. Hint: Since the inttuple is
defined recursively, a recursive function is probably the right approach. If you skipped
Chapter 9, you probably should skip this exercise too. Use the isinstance() function
(explained in Chapter 8) to determine whether you are dealing with an integer or a tuple.
If you do this correctly, for the inttuple given below, the function will print the numbers
1 to 20 sequentially.

exercise1103.py

inttuple = ( 1, 2, ( 3, 4 ), 5, ( ( 6, 7, 8, ( 9, 10 ), 11 ), 12,
13 ), ( ( 14, 15, 16 ), ( 17, 18, 19, 20 ) ) )



Chapter 12

Lists

Lists are ordered collections of data items, just like tuples. The major difference with
tuples is that lists are mutable. This makes them a highly flexible data structure, that you
will find many uses for.

12.1 List basics

A list is a collection of elements.

The elements of a list are ordered. Because they are ordered, you can access each of the
elements of a list using an index, just like you can access the characters of a string, and
just like you can access the elements of a tuple. Indices start at zero, just as with strings.

In Python, lists are recognizable from the fact that they enclose their elements in square
brackets ([]). You can get the number of elements in a list by using the len() function. You
can use a for loop to traverse the elements of a list. You can mix data types in a list. You
can apply the max(), min() and sum() functions to a list. You can test for the existence of
an element in a list using the in operator (or for the non-existence by using not in).

listing1201.py

fruitlist = ["apple", "banana", "cherry", 27, 3.14]
print( len( fruitlist ) )
for element in fruitlist:

print( element )
print( fruitlist[2] )

numlist = [314, 315, 642, 246, 129, 999]
print( max( numlist ) )
print( min( numlist ) )
print( sum( numlist ) )
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print( 100 in numlist )
print( 999 in numlist )

Exercise Write a while loop to print the elements of a list.

Apart from the square brackets, lists seem to be a lot like tuples. Yet there is a big differ-
ence...

12.2 Lists are mutable

Because lists are mutable, you can change the contents of a list.

To overwrite an element of a list, you can assign a new value to it.

fruitlist = ["apple", "banana", "cherry", "durian", "orange"]
print( fruitlist )
fruitlist[2] = "strawberry"
print( fruitlist )

You can also overwrite list slices by assigning a new list to the slice. The slice you remove
need not be of equal length to the new list you insert.

fruitlist = ["apple", "banana", "cherry", "durian", "orange"]
print( fruitlist )
fruitlist[1:3] = ["raspberry", "strawberry", "blueberry"]
print( fruitlist )

You can insert new elements into a list by assigning them to an empty slice.
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fruitlist = ["apple", "banana", "cherry", "durian", "orange"]
print( fruitlist )
fruitlist[1:1] = ["raspberry", "strawberry", "blueberry"]
print( fruitlist )

You can delete elements from a list by assigning an empty list to a slice.

fruitlist = ["apple", "banana", "cherry", "durian", "orange"]
print( fruitlist )
fruitlist[1:3] = []
print( fruitlist )

Using slices and assignments, you can adapt a list in any way that you like. However, it
is easier to change lists using methods. There are many helpful methods available, which
I am going to discuss below.

Exercise Change a list that contains only words (you can take one of the fruitlists
above) by turning every word in the list into a word consisting of only capitals. At this
point in the book, the way to do that is by using a while loop that uses a variable i that
starts at 0 and runs up to len(<list>)-1. Use i as an index for this list.

12.3 Lists and operators

Lists support the use of the operators + and ∗. These operators work similar as to how
they work for strings.

You can add two lists together with the + operator, the result of which is a list which
contains the elements of both lists involved. Of course, you have to assign the result to a
variable to store it.

You can multiply a list by a number to create a list that contains the elements of the original
list, repeated as often as the number indicates. This can be a fast approach to create a list
with all equal elements.

fruitlist = ["apple", "banana"] + ["cherry", "durian"]
print( fruitlist )
numlist = 10 * [0]
print( numlist )

Note: With the + you can add a list to another list, but you cannot add a new element to
a list, unless you turn that new element into a list with a single element by putting two
square brackets around it. If you try to add something to a list that is not a list, Python
will try to interpret it as a list – if it can do that (which it can, for instance, for a string,
which it can consider a list of letters); it will then still do the addition but the result will
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not be what you want. For instance, the code below tries to add a "cherry" to a list, but
only the second addition actually does what is intended.

listing1202.py
fruitlist = ["apple", "banana"]
fruitlist += "cherry"
print( fruitlist )

fruitlist = ["apple", "banana"]
fruitlist += ["cherry"]
print( fruitlist )

12.4 List methods
Python supports many methods to change lists or get information from them. You do not
need to import a module to use them. Since they are methods, you call them using the
syntax <list>.<method>().

Important! Lists are mutable and these methods actually change the list! It is not as you
are used to with string methods, where the methods create a new string, and return it,
while the original string remains. Most list methods have an irrevocable effect on the list
they work on. Usually they have no return value, and you do not need one either, as the
purpose of the methods is to change the list.

12.4.1 append()

append() attaches an item at the end of a list. You call the method with the item you wish
to add as argument.

fruitlist = ["apple", "banana", "cherry", "durian"]
print( fruitlist )
fruitlist.append( "orange" )
print( fruitlist )

An alternative for using the append() method is to add a list with one new el-
ement to the existing list with a +, and assign the resulting list to the original
list variable. However, the append() method is preferable as it is more readable.
<list>.append(<element>) is equivalent to <list>[len(<list>):] = [<element>], or
simply <list> += [<element>].

12.4.2 extend()

extend() makes a list longer by appending the elements of another list at the end. You
call the method with the list of which you want to add the elements as argument.
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fruitlist = ["apple", "banana", "cherry", "durian"]
print( fruitlist )
fruitlist.extend( ["raspberry", "strawberry", "blueberry"] )
print( fruitlist )

Just as with the append()method, you can extend an existing list with a new list by simply
using the + operator, and assigning the result to the original list variable. And just as with
the append()method, the extend()method is preferable. <list>.extend(<addlist>) is
equivalent to <list>[len(<list>):] = <addlist>.

12.4.3 insert()

insert() allows you to insert an element at a specific position in a list. It is called with
two arguments, the first being the index of the location where you wish to insert the new
element, and the second the new element itself. To insert an element at the front of the
list, you can use index 0.

fruitlist = ["apple", "banana", "cherry", "durian"]
print( fruitlist )
fruitlist.insert( 2, "orange" )
print( fruitlist )

<list>.insert(<i>,<element>) is equivalent to <list>[<i>:<i>] = [<element>].

12.4.4 remove()

remove() allows you to remove an element from a list. The element you wish to remove is
given as argument. If the element occurs in the list multiple times, only the first occurrence
will be removed. If you try to remove an element that is not on the list, a runtime error is
generated.

fruitlist = ["apple", "banana", "cherry", "banana", "durian"]
print( fruitlist )
fruitlist.remove( "banana" )
print( fruitlist )

12.4.5 pop()

Like remove(), pop() removes an element from the list, but does so by index. It has one
optional argument, which is the index of the element that you wish to remove. If you do
not provide that argument, pop() removes the last element from the list. If the index is
beyond the boundaries of the list, pop() generates a runtime error.
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A major difference with remove() is that pop() actually has a return value, namely the
element that gets removed. This allows you to quickly process all the elements of a list,
while emptying the list at the same time.

fruitlist = ["apple", "banana", "cherry", "durian"]
print( fruitlist )
print( fruitlist.pop() )
print( fruitlist )
print( fruitlist.pop( 0 ) )
print( fruitlist )

12.4.6 del

del is neither a method nor a function, but since it is often metioned in one breath with
remove() and pop(), I place it here. del is a keyword that allows you to delete a list
element, or list slice, by index. It is similar to pop() in functionality, but does not have a
return value. Also, pop() cannot be used on slices. To remove one element from a list, use
del <list>[<index>]. To remove a slice, use del <list>[<index1>:<index2>].

fruitlist = ["apple", "banana", "cherry", "banana", "durian"]
del fruitlist[3]
print( fruitlist )

12.4.7 index()

index() returns the index of the first occurrence on the list of the element that is given to
index() as argument. A runtime error is generated if the element is not found on the list.

fruitlist = ["apple", "banana", "cherry", "banana", "durian"]
print( fruitlist.index( "banana" ) )

12.4.8 count()

count() returns an integer that indicates how often the element that is passed to it as an
argument occurs in the list.

fruitlist = ["apple", "banana", "cherry", "banana", "durian"]
print( fruitlist.count( "banana" ) )
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12.4.9 sort()

sort() sorts the elements of the list, from low to high. If the elements of the list are
strings, it does an alphabetical sort. If the elements are numbers, it does a numeric sort. If
the elements are mixed, it generates a runtime error, unless certain arguments are given.

listing1203.py

fruitlist = ["apple", "strawberry", "banana", "raspberry",
"cherry", "banana", "durian", "blueberry"]

fruitlist.sort()
print( fruitlist )

numlist = [314, 315, 642, 246, 129, 999]
numlist.sort()
print( numlist )

To do a reverse sort (for instance, sorting numerical items from high to low, or sorting
strings alphabetically from "z" to "a"), you can add an argument reverse=<boolean>.

fruitlist = ["apple", "strawberry", "banana", "raspberry",
"cherry", "banana", "durian", "blueberry"]

fruitlist.sort( reverse=True )
print( fruitlist )

Another argument that you can give sort() is a key. You have to provide this argument
as <list>.sort( key=<key> ), whereby <key> is a function that takes one argument (the
element that is to be sorted) and returns a value that is used as key. A typical use for
the key argument is if you want to sort a list of strings, but want to do the sorting case-
insensitively. So as key you want to use the elements, but in lower case, i.e., you want
to apply the function str.lower() to the element. You call the sort() method as in the
following example:

listing1204.py

fruitlist = ["apple", "Strawberry", "banana", "raspberry",
"CHERRY", "banana", "durian", "blueberry"]

fruitlist.sort()
print( fruitlist )
fruitlist.sort( key=str.lower ) # case-insensitive sort
print( fruitlist )

Note that for the key argument, you do not place parentheses after the function name.
This is not a function call, it is an argument that tells Python which function to use to
generate the key. You can write your own function to be used as key. For example, in the
code below, numlist is sorted with the digits reversed:
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listing1205.py

def revertdigits( item ):
return (item%10) *100 + (int(item/10)%10) *10 + int(item/100)

numlist = [314, 315, 642, 246, 129, 999]
numlist.sort( key=revertdigits )
print( numlist )

Here is another example, that sorts a list of strings by length, then alphabetical order:

listing1206.py

def len_alphabetical( element ):
return len( element ), element

fruitlist = ["apple", "strawberry", "banana", "raspberry",
"cherry", "banana", "durian", "blueberry"]

fruitlist.sort( key=len_alphabetical )
print( fruitlist )

Note that the len_alphabetical() function returns a tuple. When two tuples are com-
pared, first the first elements of both tuples are compared, and if they are equal, the second
elements are compared.

At this point I can give a typical example of the use of “anonymous functions,” which I
introduced in Chapter 8. Using an anonymous function to specify the key for the sort()
method keeps the code for the key next to where you call the sort(), instead of elsewhere
in the program. This may improve readability.

listing1207.py

fruitlist = ["apple", "strawberry", "banana", "raspberry",
"cherry", "banana", "durian", "blueberry"]

fruitlist.sort( key=lambda x: (len(x),x) )
print( fruitlist )

12.4.10 reverse()

reverse() simply puts the elements of the list in reverse order.

fruitlist = ["apple","strawberry","banana","raspberry","durian"]
fruitlist.reverse()
print( fruitlist )
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12.4.11 Practice

Exercise Write a program that asks the user to enter some data, for instance the names
of their friends. When the user wants to stop providing inputs, he just presses Enter. The
program then displays an alphabetically sorted list of the data items entered. Do not just
print the list, but print each item separately, on a different line.

Exercise Sort a list of numbers using their absolute values; use the abs() function as
key.

Exercise Count how often each letter occurs in a string (case-insensitively). You can
ignore every character that is not a letter. Store the counts in a list of 26 items that all
start at zero. Print the resulting counts. As index you can use ord(letter) - ord("a"),
where letter is a lower case letter (the ord() function is explained in Chapter 10).

12.5 Aliasing

If you assign a variable that contains a list to another variable, you might expect that you
create a copy of the list in the second variable. But you are not doing that. You are actually
creating an alias for the list, i.e., a new variable that is referring to the same list. This means
that the new variable can be treated as a list, but any change that you make to the list it
refers to, is visible in the original list variable, and vice versa. They are not different lists.

listing1208.py

fruitlist = ["apple", "banana", "cherry", "durian"]
newfruitlist = fruitlist

print( fruitlist )
print( newfruitlist )
newfruitlist[2] = "orange"
print( fruitlist )
print( newfruitlist )

Every variable in Python has an identification number. You can see it with the id() func-
tion. The ID number indicates which memory spot the variable refers to. For an alias of a
list, the ID is the same as for the original list.

listing1209.py

fruitlist = ["apple", "banana", "cherry", "durian"]
newfruitlist = fruitlist

print( id( fruitlist ) )
print( id( newfruitlist ) )
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If you want to create a copy of a list, you can do so using a little trick. Instead of using
<newlist> = <oldlist>, you use the command <newlist> = <oldlist>[:].

listing1210.py

fruitlist = ["apple", "banana", "cherry", "durian"]
newfruitlist = fruitlist

verynewfruitlist = fruitlist[:]

print( id( fruitlist ) )
print( id( newfruitlist ) )
print( id( verynewfruitlist ) )

fruitlist[2] = "orange"
print( fruitlist )
print( newfruitlist )
print( verynewfruitlist )

12.5.1 is

The keyword is is introduced to compare the identities of two variables.

listing1211.py

fruitlist = ["apple", "banana", "cherry", "durian"]
newfruitlist = fruitlist

verynewfruitlist = fruitlist[:]

print( fruitlist is newfruitlist )
print( fruitlist is verynewfruitlist )
print( newfruitlist is verynewfruitlist )

As you can see, the keyword ismanages to determine that fruitlist and newfruitlist

are aliases, but that verynewfruitlist is not the same list. If you compare them with the
== operator, the results are not the same as comparing them with is:

listing1212.py

fruitlist = ["apple", "banana", "cherry", "durian"]
newfruitlist = fruitlist

verynewfruitlist = fruitlist[:]

print( fruitlist == newfruitlist )
print( fruitlist == verynewfruitlist )
print( newfruitlist == verynewfruitlist )
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The == operator actually compares the contents of the lists, so it returns True for all com-
parisons. For data types for which == is not defined, it executes an identity comparison,
but for lists it has been defined as a comparison of the contents. I will return to this topic
when discussing “operator overloading” in Chapter 21. .

12.5.2 Shallow vs. deep copies

If (some of) the items of your list are lists themselves (or other mutable data structures
which are introduced in the next chapters), you may get problems if you copy the list us-
ing the <newlist> = <oldlist>[:] syntax. The reason is that such a copy is a “shallow
copy,” which means that it copies each of the elements of the list with a regular assign-
ment, which entails that the items in the list that are lists themselves become aliases of the
items on the original list.

listing1213.py

numlist = [ 1, 2, [3, 4] ]
copylist = numlist[:]

numlist[0] = 5
numlist[2][0] = 6
print( numlist )
print( copylist )

In the code above, you can see that the assignment numlist[0] = 5 only has an effect on
numlist, as copylist contains a copy of numlist. However, since this is a shallow copy,
the assignment to numlist[2][0] has an effect on both lists, as the sublist [3, 4] is stored
in copylist as an alias.

If you want to create a “deep copy” of a list (i.e., a copy that also contains true copies of
all mutable substructures of the list, which in turn contain true copies of all their muta-
ble substructures, etcetera), then you can use the copy module for that. The deepcopy()
function from the copy module allows you to create deep copies of any mutable data
structure.

listing1214.py

from copy import deepcopy

numlist = [ 1, 2, [3, 4] ]
copylist = deepcopy( numlist )

numlist[0] = 5
numlist[2][0] = 6
print( numlist )
print( copylist )
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Note that the copy module also contains a function copy() that makes shallow copies.
If you wonder why that function is included as you can easily create shallow copies of
lists with the <newlist> = <oldlist>[:] command: the copy module not only works
for lists, but for any mutable data structure. Not for all such data structures there exist
shortcuts to create shallow copies.

12.5.3 Passing lists as arguments

When you pass a list as an argument to a function, this is a “pass by reference.” The
parameter that the function has access to will be an alias for the list that you pass. This
means that a function that you pass a list to, can actually change the contents of the list.

This is important, so I repeat it: when you pass a mutable data structure to a function,
this is a “pass by reference,” meaning that the data structure is passed as an alias and the
function can change the contents of the data structure.

You have to know whether a function that you pass a list to will or will not change the
list. If you do not want the function to change the list, and you do not know if it will, you
best pass a deep copy of the list to the function.

listing1215.py

def changelist( x ):
if len( x ) > 0:

x[0] = "CHANGE!"

fruitlist = ["apple", "banana", "cherry", "durian"]
changelist( fruitlist )
print( fruitlist )

The reason that a list is “passed by reference” and not “by value” is that technically, every
argument that is passed to a function must be stored in the computer in a specific block of
memory that is part of the processor. This is called the “stack,” and it is pretty limited in
size. Since lists can be really long, allowing a program to place a list on the stack would
cause all kinds of annoying runtime errors. In Python, as in most other programming
languages, for the most part only basic data types (such as integers, floats, and strings)
are passed by value.

12.6 Nested lists

The elements of a list may be lists themselves (which also may contains lists, etcetera).
This is a good way to create a matrix in a program. For instance, you can create a Tic-Tac-
Toe board, where a dash (-) represents an empty cell, as follows:

board = [ ["-", "-", "-"], ["-", "-", "-"], ["-", "-", "-"] ]
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The first row of the board is represented by board[0], the second row by board[1], and
the third row by board[2]. If you want to access the first cell of the first row, that is
board[0][0], the second cell is board[0][1] and the third cell is board[0][2]. For exam-
ple, the following code places an “X” in the middle of the board, and an “O” in the upper
right corner. It also displays the board in a nice way (with markers for rows and columns
around it).

listing1216.py

def display_board( b ):
print( " 1 2 3" )
for row in range( 3 ):

print( row+1, end=" ")
for col in range( 3 ):

print( b[row][col], end=" " )
print()

board = [ ["-", "-", "-"], ["-", "-", "-"], ["-", "-", "-"] ]
board[1][1] = "X"
board[0][2] = "O"
display_board( board )

12.7 List casting

You can type cast a sequence of elements to a list using the list() function. The code
below turns a tuple into a list.

t1 = ( "apple", "banana", "cherry" )
print( t1 )
print( type( t1 ) )
fruitlist = list( t1 )
print( fruitlist )
print( type( fruitlist ) )

This is sometimes necessary, in particular when you have an “iterator” available and you
want to use the elements in a list format. An iterator is a function that generates a se-
quence (more on iterators is given in Chapter 23). An example of an iterator that I already
discussed is the range() function. The range() function generates a sequence of num-
bers. If you want to use these numbers as a list, you can use list casting.

numlist = range( 1, 11 )
print( numlist )
numlist = list( range( 1, 11 ) )
print( numlist )
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You can turn a string into a list of its characters by using a list casting on the string.

12.8 List comprehensions

List comprehensions are a concise way to create lists. They are typical for Python, but you
do not find them in many other programming languages. They are not actually needed,
as you can use functions to achieve the same effect, but as they are often used in examples
(especially by people who want to show off their Python abilities to create short state-
ments that have extensive effects), I thought it prudent to discuss them. If you are never
going to use them in your own code, that is fine as they are completely optional. But you
should be able to recognize them in other people’s code.

Suppose that you want to create a list consisting of the squares of the numbers 1 to 25. A
function that creates such a list is:

def squareslist():
squares = []
for i in range( 1, 26 ):

squares.append( i *i )
return squares

sl = squareslist()
print( sl )

In Python, you can create that list with one single statement, namely as follows:

sl = [ x *x for x in range( 1, 26 ) ]
print( sl )

Now suppose that you want to create this list, but want to leave out (for some reason) the
squares of any numbers that end in 5. That would add at least two lines to the function
above, but with list comprehensions you can still do it with that single line:

sl = [ x *x for x in range( 1, 26 ) if x%10 != 5]
print( sl )

A list comprehension consists of an expression in square brackets, followed by a for
clause, followed by zero or more for and/or if clauses. The result is a list that con-
tains the elements that result from evaluating the expression for the combination of the
for and if clauses.

The results can become quite complex. For instance, here is a list comprehension that
creates a list of tuples with three integers between 1 and 4, whereby the three integers are
all different:
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listing1217.py

triplelist = [ (x,y,z) for x in range( 1, 5 )
for y in range( 1, 5 ) for z in range( 1, 5 )
if x != y if x != z if y != z]

print( triplelist )

If you find list comprehensions hard to use, remember that there is absolutely no reason
to use them except for keeping code concise, and that keeping code readable and under-
standable is far more important than keeping it concise.

What you learned

In this chapter, you learned about:

• Lists

• Mutability of lists

• Using + and ∗ with lists

• List methods append(), extend(), insert(), remove(), pop(), index(), count(),
sort(), and reverse()

• delwith lists

• Aliasing

• The keyword is

• Creating list copies

• Creating deep copies of lists using deepcopy()

• Using lists as arguments

• Nested lists

• List casting

• List comprehensions

Exercises

Exercise 12.1 A magic 8-ball, when asked a question, provides a random answer from
a list. The code below contains a list of possible answers. Create a magic 8-ball program
that asks a question, then gives a random answer.
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exercise1201.py

answers = [ "It is certain", "It is decidedly so", "Without a \
doubt", "Yes, definitely", "You may rely on it", "As I see it, \
yes", "Most likely", "Outlook good", "Yes", "Signs point to yes",
"Reply hazy try again", "Ask again later", "Better not tell you \
now", "Cannot predict now", "Concentrate and ask again", "Don ' t \
count on it", "My reply is no", "My sources say no", "Outlook \
not so good", "Very doubtful" ]

Exercise 12.2 A playing card consists of a suit ("Hearts", "Spades", "Clubs",

"Diamonds") and a value (2, 3, 4, 5, 6, 7, 8, 9, 10, "Jack", "Queen", "King",

"Ace"). Create a list of all possible playing cards, which is a deck. Then create a function
that shuffles the deck, producing a random order.

Exercise 12.3 A first-in-first-out (FIFO) structure, also called a “queue,” is a list that
gets new elements added at the end, while elements from the front are removed and
processed. Write a program that processes a queue. In a loop, ask the user for input. If the
user just presses the Enter key, the program ends. If the user enters anything else, except
for a single question mark (?), the program considers what the user entered a new element
and appends it to the queue. If the user enters a single question mark, the program pops
the first element from the queue and displays it. You have to take into account that the
user might type a question mark even if the queue is empty.

Exercise 12.4 Count how often each letter occurs in a string (case-insensitively). You
can ignore every character that is not a letter. Print the letters with their counts, in order
from highest count to lowest count.

Exercise 12.5 The sieve of Eratosthenes is a method to find all prime numbers between
1 and a given number using a list. This works as follows: Fill the list with the sequence of
numbers from 1 to the highest number. Set the value of 1 to zero, as 1 is not prime. Now
loop over the list. Find the next number on the list that is not zero, which, at the start, is
the number 2. Now set all multiples of this number to zero. Then find the next number
on the list that is not zero, which is 3. Set all multiples of this number to zero. Then the
next number, which is 5 (because 4 has already been set to zero), and do the same thing
again. Process all the numbers of the list in this way. When you have finished, the only
numbers left on the list are primes. Use this method to determine all the primes between
1 and 100.

Exercise 12.6 Write a Tic-Tac-Toe program that allows two people to play the game
against each other. In turn, ask each player which row and column they want to play.
Make sure that the program checks if that row/column combination is empty. When a
player has won, end the game. When the whole board is full and there is no winner,
announce a draw.
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This is a fairly long program to write (60 lines or so). It will definitely help to use some
functions. I recommend that you create a function display_board() that gets the board
as parameter and displays it, a function getRowCol() that asks for a row or a column
(depending on a parameter) and checks whether the user entered a legal value, and a
function winner() that gets the board as argument and checks if there is a winner. Keep
track of who the current player is using a global variable player that you can pass to a
function as an argument if the function needs it. I also use a function opponent(), that
takes the player as argument and returns the opponent. I use that to switch players after
each move.

The main program will be something along the lines of (in pseudo-code):
display board

while True:

ask for row

ask for column

if row/column combination already occupied:

display error message

continue

place player marker on row/column combination

display board

if there is a winner:

announce winner

break

if the board is full:

announce draw

break

switch players

Exercise 12.7 Create a program that is a simplified version of the game “Battleship.”
The computer creates (in memory) a grid that is 4 cells wide and 3 cells high. The rows of
the grid are numbered 1 to 3, and the columns of the grid are labeled A to D. The computer
hides a battleship in three random cells in the grid. Each battleship occupies exactly one
cell. Battleships are not allowed to touch each other horizontally or vertically. Make sure
that the program places the battleships randomly, so not pre-configured.

The computer asks the player to “shoot” at cells of the grid. The player does so by entering
the column letter and row number of the cell which he wants to shoot at (e.g., "D3"). If the
cell which the player shoots at contains nothing, the computer responds with “Miss!” If
the cell contains a battleship, the computer responds with “You sunk my battleship!” and
removes the battleship from the cell (i.e., a second shot at the same cell is a miss). As soon
as the player hits the last battleship, the computer responds with displaying how many
shots the player needed to shoot down all three battleships, and the program ends.

To help with debugging the game, at the start the computer should display the grid with
periods marking empty cells and Xs marking cells with battleships.

Hint: If you have troubles with this exercise, start by using a board which has the bat-
tleships already placed. Once the rest of the code works, add a function that places the
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battleships at random, at first without checking if they are touching one another. Once
that works, add code that disallows battleships touching each other.

Exercise 12.8 The “subset sum” problem asks the question whether a list of integers
contains a subset of integers that, when summed, gives zero as answer. For instance, for
the list [1, 4, -3, -5, 7] the answer is “yes,” as 1 + 4− 5 = 0. However, for the list
[1, 4, -3, 7] the answer is “no,” as there is no subset of integers that adds up to zero.
Write a program that solves the “subset sum” problem for a list of integers. If there is a
solution, print it; if not, report that there is no solution.

Hint: This problem is tackled best using recursion. If you skipped Chapter 9, you better
skip this exercise too.
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Dictionaries

Strings, tuples and lists are ordered data structures, which entails that they can be in-
dexed. Not all data is naturally ordered, which is why Python offers dictionaries as a way
to structure unordered data.

13.1 Basics of dictionaries

Dictionaries are unordered collections of elements. To identify an element, you have to
know the element’s “key.”

Basically, dictionaries store “key-value pairs.” Any immutable data type can function as
a key. A very common type to use as key is the string.

You create dictionaries using curly brackets {}, similar to how you create lists using
square brackets. An empty dictionary you create by assigning {} to a variable. You can
create a dictionary with contents by describing every element of the dictionary between
the curly brackets using the syntax <key>:<value>, and commas between the elements.

Here a dictionary fruitbasket is created, that contains three key-value pairs, namely the
key "apple" with value 3, the key "banana" with value 5, and the key "cherry" with
value 50.

fruitbasket = { "apple":3, "banana":5, "cherry":50 }

To access the value belonging to a specific key, you use the same syntax as you would use
for a list, except that you write the key in the place where you would write the index for
a list.

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
print( fruitbasket["banana"] )
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You can use a for loop to traverse a dictionary. The variable in the for loop gets access to
all the keys.

listing1301.py

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
for key in fruitbasket:

print( "{}:{}".format( key, fruitbasket[key] ))

Trying to access a dictionary element using a key that is not available in the dictionary
will lead to a runtime error. However, adding a new element to a dictionary you can do
by simply assigning a value to the dictionary item identified by the new key. For instance,
adding a "mango" to the fruitbasket you can do as follows:

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
print( fruitbasket )
fruitbasket["mango"] = 1
print( fruitbasket )

Overwriting a dictionary item works in exactly the same way as creating a new dictionary
item: you just assign a value to it.

Deleting an item from a dictionary you do using the del keyword, just as you can use
with lists.

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
print( fruitbasket )
del fruitbasket["banana"]
print( fruitbasket )

You can determine the number of key-value pairs in a dictionary by using the len() func-
tion.

By the way, do you understand how the ordering of a dictionary works when looking at
the display of a dictionary? Think about it.

The answer is: there is no ordering. That was what I said at the start: dictionaries are
unordered. In principle I cannot even tell you what ordering you see on your screen when
you run the code above, because it might differ between computers, operating systems,
and versions of Python. There is a certain structure to the ordering of the items, but
nothing that you can (or should desire to) predict. By adding enough items, the ordering
might even suddenly change completely.

Since dictionaries are unordered, many of the concepts that are applicable to lists, do not
work on dictionaries. For instance, you cannot refer to “slices” of a dictionary, and neither
can you “sort” or “reverse” a dictionary. So dictionaries are quite limited, but they do have
their uses.
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13.2 Dictionary methods

This section describes the dictionary methods that are most often used.

13.2.1 copy()

Just like lists, if you assign a variable that contains a dictionary to another variable, you
are not creating a copy of the dictionary; you are actually creating an alias (if you do not
remember what an alias is, see Chapter 12). You cannot use the trick which is used for lists
to create a copy, as it uses a slice-syntax, and dictionaries do not support slices. Therefore,
there is a method copy() that returns a copy of a dictionary.

listing1302.py

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
fruitbasketalias = fruitbasket

fruitbasketcopy = fruitbasket.copy()

print( id( fruitbasket ) )
print( id( fruitbasketalias ) )
print( id( fruitbasketcopy ) )

Note that this method makes a shallow copy of the dictionary (see Chapter 12 if you do
not remember the difference between shallow and deep copies). If you want to make a
deep copy, use the deepcopy() function from the copy module.

13.2.2 keys(), values(), and items()

The method keys() provides an iterator that lists all the keys of a dictionary. The method
values() provides an iterator that lists all the values of a dictionary. The method items()
provides an iterator that lists all the key-value pairs of a dictionary as tuples.

I specifically say that these methods returns an iterator and not a list. If you want to turn
them into lists, you have to use list casting (see Chapter 12).

fruitbasket = { "apple":3, "banana":5, "cherry":50 }
print( list( fruitbasket.keys() ) )
print( list( fruitbasket.values() ) )
print( list( fruitbasket.items() ) )

At this point you might be wondering when you can use an iterator. You mainly use
iterators for for loops (though you can also use them as arguments for the functions
max(), min() and sum()).

fruitbasket = { "apple":3, "banana":5, "cherry":50, "durian":0, "
mango":2 }
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for key in fruitbasket.keys():
print( "{}:{}".format( key, fruitbasket[key] ) )

print( sum( fruitbasket.values() ) )

Since this code provides an unpredictable order for the keys, you might want to sort them
before looping over them. Since keys() does not provide a list, it cannot be sorted directly,
but you can turn the result into a list using list casting. After doing that, you can sort.

listing1303.py

fruitbasket = { "apple":3, "banana":5, "cherry":50, "durian":0, "
mango":2 }

keylist = list( fruitbasket.keys() )
keylist.sort()
for key in keylist:

print( "{}:{}".format( key, fruitbasket[key] ) )

keylist = list( fruitbasket.key() ).sort() does not work, as you cannot apply the
sort() method directly to the list casting. You must first create the list, then sort it. Nei-
ther can you write for key in keylist.sort(), as the sort() method has no return
value.

If you wonder why Python seems to prefer iterators instead of lists: the answer is that
iterators are more general and use much less memory. They are “lazy” methods, as they
only provide an item when it is requested.

13.2.3 get()

The get() method can be used to get a value from a dictionary even when you do not
know if the key for which you seek the value exists. You call the get() method with the
key you are looking for, and it will return the corresponding value when the key exists in
the dictionary, or the special value None when the key does not exist in the dictionary. If
you want to return a specific value instead of None if the key does not exist, you can add
that value as a second argument to the method.

listing1304.py

fruitbasket = { "apple":3, "banana":5, "cherry":50, "durian":0, "
mango":2 }

apple = fruitbasket.get( "apple" )
if apple:

print( "apple is in the basket" )
else:

print( "no apples in the basket")

orange = fruitbasket.get( "orange" )



13.2. Dictionary methods 177

if orange:
print( "orange is in the basket" )

else:
print( "no oranges in the basket")

banana = fruitbasket.get( "banana", 0 )
print( "number of bananas in the basket:", banana )

strawberry = fruitbasket.get( "strawberry", 0 )
print( "number of strawberries in the basket:", strawberry )

Run and study the example above closely, as what it demonstrates about the get()
method is very useful. Suppose that you store a collection of items with correspond-
ing quantities, for instance, the contents of a fruit basket with the keys being the names
of the fruits and the values being the quantities. When you query the fruitbasket using
the get() method with a second parameter zero, you can look for any fruit in the basket
without the need to check first if the fruit exists in the basket, because if you ask for a fruit
that is not there, the get()method returns zero, which is exactly what you want to hear.

13.2.4 Practice

Exercise The code below contains a list of words. Build a dictionary that contains all
these words as keys, and their quantities as values. Print the words with their quantities.

listing1305.py

wordlist = ["apple","durian","banana","durian","apple","cherry",
"cherry","mango","apple","apple","cherry","durian","banana",
"apple","apple","apple","apple","banana","apple"]

Exercise The code block below contains a string that is a list of words, separated by
commas. Build a dictionary that contains all these words as keys, and how often they
occur as values. Then print the words with their quantities.

listing1306.py

text = "apple,durian,banana,durian,apple,cherry,cherry,mango," +
\
"apple,apple,cherry,durian,banana,apple,apple,apple," + \
"apple,banana,apple"

Exercise The code block below contains a very small dictionary that contains the trans-
lations of English words to Dutch. Write a program that uses this dictionary to create
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a word-for-word translation of the given sentence. A word for which you cannot find a
translation, you can leave “as is.” The dictionary is supposed to be used case-insensitively,
but your translation may consist of all lower case words. It is nice if you leave punctu-
ation in the translation, but if you take it out, that is acceptable (as leaving punctuation
in is quite a bit of work, and does not really have anything to do with dictionaries – be-
sides, leaving punctuation in is much easier to do once you have learned about regular
expressions).

listing1307.py

english_dutch = { "last":"laatst", "week":"week", "the":"de",
"royal":"koninklijk", "festival":"feest", "hall":"hal", "saw"
:
"zaag", "first":"eerst", "performance":"optreden", "of":"van"
,
"a":"een", "new":"nieuw", "symphony":"symphonie", "by":"bij",
"one":"een", "world":"wereld", "leading":"leidend", "modern":
"modern", "composer":"componist", "composers":"componisten",
"two":"twee", "shed":"schuur", "sheds":"schuren" }

sentence = "Last week The Royal Festival Hall saw the first \
performance of a new symphony by one of the world ' s leading \
modern composers , Arthur \"Two-Sheds\" Jackson."

13.3 Keys

As I said, any immutable data type can be a dictionary key. This means that strings, inte-
gers, and floats can all be used as keys. You may remember that tuples are also immutable,
which entails that you can use tuples as keys. This can occasionally be useful.

A very straightforward example of tuples being useful as keys is a dictionary in which you
want to store information associated with points in two-dimensional space (a discussion
of which was given in Chapter 11). There is no good way in which you can store the
identification of a point in a single number or string. It is not impossible (for instance, you
could store the number-pair as their string-representations, concatenated with a comma in
between) but it becomes ambiguous and convoluted (for instance, the string-keys "2,3",
"2, 3", "+2,+3", and "02,03" would all be representing the same tuple but different
keys).

13.4 Storing complicated values

Until now I only considered the case in which a dictionary stores a single value of a sim-
ple data type. However, it is possible to store much more complex values in dictionaries.
Values can be arbitrary Python objects. For example, you can store a list with each key.
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Below a dictionary is used to store the students who are following a course. The course
is identified by its course number, while the students are identified by their student num-
bers.

listing1308.py

courses = {
' 880254 ' :[ ' u123456 ' , ' u383213 ' , ' u234178 ' ],
' 822177 ' :[ ' u123456 ' , ' u223416 ' , ' u234178 ' ],
' 822164 ' :[ ' u123456 ' , ' u223416 ' , ' u383213 ' , ' u234178 ' ]}

for c in courses:
print( c )
for s in courses[c]:

print( s, end=" " )
print()

Suppose that you do not only want to store the student numbers for a course number, but
also the name of the course, the ECTS value of the course, and for each student number
also the grade. You can do that (for example) by storing the value for a course number
as a dictionary, with three keys, namely "name", "ects", and "students". The value for
"name" is the course name as a string, the value for "ects" is the ECTS as an integer, and
the value for "students" is another dictionary, which contains student numbers as keys
and grades as values.

listing1309.py

courses = {
' 880254 ' : { "name":"RS: Data Processing", "ects":3,

"students":{ ' u123456 ' :8, ' u383213 ' :7.5, ' u234178 ' :6} },
' 822177 ' : { "name":"Understanding Intelligence", "ects":6,

"students":{ ' u123456 ' :5, ' u223416 ' :7, ' u234178 ' :9} },
' 822164 ' : { "name":"Computer Games", "ects":6,

"students":{ ' u383213 ' :6, ' u234178 ' :4} } }

for c in courses:
print( "{}: {} ({})".format( c, courses[c]["name"],

courses[c]["ects"] ) )
for s in courses[c]["students"]:

print( "{}: {}".format( s, courses[c]["students"][s] ) )
print()

Data structures can become a lot more complex than this if you want. However, if you are
really considering designing Python programs for data structures like this, you should
at least investigate object orientation first (Chapter 20 and onward) and probably do a
separate course on databases.
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13.5 Lookup speed

Lists and dictionaries are the two most-used data structures in Python. While often it is
clear when you should use which data structure, it is helpful if you know a little bit about
how Python processes these data structures in case you have a choice.

Suppose that you read a large bunch of numbers from a file. The numbers are all differ-
ent and can be anything. You later need to compare the numbers on another list to the
numbers that you read from the file.

Should you use a list or a dictionary to store the numbers that you read from the file?
Since they are just numbers, without extra data, a list seems to be the best option. There
is, however, a problem if you use a list here. Check out the following code, in which a list
of 10000 numbers is created, and after that some code checks for 10000 different numbers
whether they are on the list (which none of them are).

listing1310.py

from datetime import datetime

numlist = []
for i in range( 10000 ):

numlist.append( i )

start = datetime.now()
count = 0
for i in range( 10000, 20000 ):

if i in numlist:
count += 1

end = datetime.now()

print( "{}.{} seconds needed to find {} numbers".format(
(end - start).seconds, (end - start).microseconds ,count ) )

Here is the code for doing the same thing with a dictionary, where I simply store the value
1 with each number.

listing1311.py

from datetime import datetime

numdict = {}
for i in range( 10000 ):

numdict[i] = 1

start = datetime.now()
count = 0
for i in range( 10000, 20000 ):
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if i in numdict:
count += 1

end = datetime.now()

print( "{}.{} seconds needed to find {} numbers".format(
(end - start).seconds, (end - start).microseconds ,count ) )

You will notice that for a dictionary, the code gives an answer almost immediately, while
for a list it takes quite some time for the code to provide an answer.

The reason is that I use the in operator to check whether a number is in the list, or in the
dictionary. For a list this means that Python searches through the list, sequentially, until it
reaches the number or reaches the end of the list. In this case, it means that Python checks
10000 times 10000 numbers (as it cannot find any of them), which is 100 million numbers.

For a dictionary, the process of finding a key is much faster. Python can quickly decide
whether or not a key is in a dictionary.9 Usually, the checking of just a handful of numbers
suffices. Therefore, the code is much, much faster for a dictionary.

You might think that a couple of seconds for the list search is still negligible, but the search
time increases quadratically with the size of the data. Depending on the problem, using a
dictionary might be highly preferable over using a list.

On the other hand, lists take less memory than dictionaries, and if you can directly access
a list item via its index, lists are faster than dictionaries. For instance, in the problem
above, if the list is sorted you can find numbers on it in a smarter way than using the
in operator (checking about 14 indices would suffice) – in that case, a list may be faster
again.

From this, you should remember that a list is fast if you can access its elements directly via
their index, while a dictionary is a much better choice if the main way to find something
is by scanning items. The in operator seems easy and reads well, but if you use it to seek
something in a long list, you better think again.

What you learned

In this chapter, you learned about:

• Dictionaries

• Dictionary keys and values

• Dictionary methods copy(), keys(), values(), items(), and get()

• Complicated dictionaries

• Speed differences between lists and dictionaries
9Technically, Python stores the keys for the dictionary in a so-called “hash table.” I will not explain the details

here, and just tell you that a hash table allows for very fast look-up of keys at the cost of some memory.
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Excercises

Exercise 13.1 Write a program that takes a text (for instance the one given below), splits
it into words (where everything that is not a letter is considered a word boundary), and
case-insensitively builds a dictionary that stores for every word how often it occurs in the
text. Then print all the words with their quantities in alphabetical order.

exercise1301.py

text = """How much wood would a woodchuck chuck
If a woodchuck could chuck wood?
He would chuck, he would, as much as he could,
And chuck as much as a woodchuck would
If a woodchuck could chuck wood."""

Exercise 13.2 The code block below shows a list of movies. For each movie it also
shows a list of ratings. Convert this code in such a way that it stores all this data in one
dictionary, then use the dictionary to print the average rating for each movie, rounded to
one decimal.

exercise1302.py

movies = ["Monty Python and the Holy Grail",
"Monty Python ' s Life of Brian",
"Monty Python ' s Meaning of Life",
"And Now For Something Completely Different"]

grail_ratings = [ 9, 10, 9.5, 8.5, 3, 7.5,8 ]
brian_ratings = [ 10, 10, 0, 9, 1, 8, 7.5, 8, 6, 9 ]
life_ratings = [ 7, 6, 5 ]
different_ratings = [ 6, 5, 6, 6 ]

Exercise 13.3 A library contains books. Books have a writer, identified by last name
and first name. Books also have a title. Books also have a location number that identifies
where they can be found in the library. Librarians want to be able to locate a specific book
if they know writer and title, and they want to be able to list all the books that they have
of a specific writer. What data structure would you use to store the books?
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Sets

Sets are unordered data structures, which contain only unique elements. Few program-
ming languages support sets natively, but Python is one of them. Sets are not used often,
but occasionally they provide a nice solution to a problem that you are trying to solve,
when you need to ensure that you only have unique solution items.

14.1 Basics of sets

Sets are unordered collections of elements. You cannot access specific elements using an
index or a key. The only way to access items in a set is by using a for loop, or by testing
for the existence of elements in the set using the in operator.

You have to think of sets in the mathematical sense. In mathematics, a set is a collection of
elements, all unique, and elements can be part of a specific set, or not part of the set. You
use special set operators to combine sets in different ways.

Python uses dictionaries to implement sets; specifically, it implements the elements of a set
as dictionary keys. Thus, only immutable data types can be set elements. Sets themselves,
however, are mutable.

Since Python uses dictionaries to implement sets, you might think that you can create an
empty set by assigning {} to a variable. That, however, does not work as it creates an
empty dictionary, not an empty set. Instead, you create an empty set by assigning a call
to the function set() to a variable.

To create a set with some elements already in it, you can assign the elements to the variable
between curly brackets. Alternatively, you can call the set() function with a list of the
elements as argument.

fruitset = { "apple", "banana", "cherry" }
print( fruitset )
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If you want to create a set consisting of the different characters in a string, you can call
set()with the string as argument.

helloset = set( "hello world" )
print( helloset )

You can use a for loop to traverse a set. The variable in the for loop gets access to all the
set elements. There is no way to determine in which order you get to see the elements.
Sorting them is not possible as long as they form a set. You can, however, use list casting
on a set to create a list of its elements, which can then be sorted.

listing1401.py

fruitset = { "apple", "banana", "cherry", "durian", "mango" }
for element in fruitset:

print( element )
print()

fruitlist = list( fruitset )
fruitlist.sort()
for element in fruitlist:

print( element )

You can determine the number of elements in a set using the len() function.

14.2 Set methods

To manipulate the contents of sets, the following methods are supported. This is not a
complete list of set methods, but these are the most common ones.

14.2.1 add() and update()

Adding new items to a set you can do using the add() method, to add one new element
that you provide as an argument. If you want to add multiple new elements at once,
you can use the update() method, which you provide with a list of the new elements as
argument. You can also use update() with a tuple as argument, and you can even use it
with a string as argument. If you use it with a string, it will consider each letter of the
string as a separate element to add.

Since sets can only contain unique elements, any duplicate element that you try to add
will be ignored.

listing1402.py

fruitset = { "apple", "banana", "cherry", "durian", "mango" }
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print( fruitset )
fruitset.add( "apple" )
fruitset.add( "elderberry" )
print( fruitset )
fruitset.update( ["apple","apple","apple","strawberry",

"strawberry","apple","mango"] )
print( fruitset )

14.2.2 remove(), discard(), and clear()

To remove elements from a set, you can use the remove() or discard() method. Both
get the element to remove as argument. The difference between the two methods is that
remove() will cause a runtime error if the element is not part of the set, while discard()
will ignore such errors.

fruitset = { "apple", "banana", "cherry", "durian", "mango" }
print( fruitset )

fruitset.remove( "apple" )
print( fruitset )

clear() removes all elements of the set at once.

14.2.3 pop()

Calling the pop() method will remove an element from the set and return it. You cannot
predict which element will be removed, as sets are unordered.

fruitset = { "apple", "banana", "cherry", "durian", "mango" }
while len( fruitset ) > 0:

print( fruitset.pop() )

14.2.4 copy()

Just like lists and dictionaries, if you assign a variable that contains a set to another vari-
able, you are creating an alias. Like with dictionaries (and probably because sets are
implemented as dictionaries), you use the method copy() to create a copy of a set.

14.2.5 union()

The union of two sets is a set which contains elements of both of them. You can use the
union() method for one set, with as argument a second set, to return the union of both
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sets involved. This does not change the sets themselves. Alternatively, you can use the
special operator | (pipeline) to create the union of two sets. Note: you might suspect that
you can also use the + operator to combine two sets, but + is not defined for sets, and
neither is ∗.

listing1403.py

fruit1 = { "apple", "banana", "cherry" }
fruit2 = { "banana", "cherry", "durian" }
fruitunion = fruit1.union( fruit2 )
print( fruitunion )

fruitunion = fruit1 | fruit2

print( fruitunion )

14.2.6 intersection()

The intersection of two sets is a set which contains only the elements that they both have.
You can use the intersection() method for one set, with as argument a second set, to
return the intersection of the sets involved. This does not change the sets themselves.
Alternatively, you can use the special operator & (ampersand) to create the intersection of
two sets.

listing1404.py

fruit1 = { "apple", "banana", "cherry" }
fruit2 = { "banana", "cherry", "durian" }
fruitintersection = fruit1.intersection( fruit2 )
print( fruitintersection )

fruitintersection = fruit1 & fruit2

print( fruitintersection )

14.2.7 difference()

The difference of two sets is a set which contains only the elements that the first set has
that are not also in the second set. You can use the difference()method for one set, with
as argument a second set, to return the difference whereby the elements of the argument
set are removed from the first set. This does not change the sets themselves. Alternatively,
you can use the special operator - (minus) to create the difference of two sets.

listing1405.py

fruit1 = { "apple", "banana", "cherry" }
fruit2 = { "banana", "cherry", "durian" }
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fruitdifference = fruit1.difference( fruit2 )
print( fruitdifference )

fruitdifference = fruit1 - fruit2

print( fruitdifference )

fruitdifference = fruit2 - fruit1

print( fruitdifference )

14.2.8 isdisjoint(), issubset(), and issuperset()

The methods isdisjoint(), issubset(), and issuperset() are all called as methods of
one set, with a second set as argument. All return True or False. isdisjoint() returns
True if the two sets share no elements. issubset() returns True if all the elements of the
first set are also found in the argument set. issuperset() returns True if all the elements
of the argument set are also found in the first set. Note that a set is both a subset and a
superset of itself.

listing1406.py

fruit1 = { "apple", "banana", "cherry" }
fruit2 = { "banana", "cherry" }

print( fruit1.isdisjoint( fruit2 ) )
print( fruit1.issubset( fruit2 ) )
print( fruit2.issubset( fruit1 ) )
print( fruit1.issubset( fruit1 ) )
print( fruit1.issuperset( fruit2 ) )
print( fruit2.issuperset( fruit1 ) )
print( fruit1.issuperset( fruit1 ) )

14.2.9 Practice

Exercise There is also a set method symmetric_difference() which returns a set that
contains all the elements that are in the union of two sets, except those that are found
in both sets. For example, if set 1 contains A, B, and C, and set 2 contains B, C, and
D, the symmetric difference of sets 1 and 2 contains A and D. Can you implement the
symmetric_difference()method by using only some of the methods found above?

Exercise In the chapter on iterations you were asked to write code that determines all
the letters that two words have in common, whereby each letter should only be reported
once. Using sets, you can do this very efficiently. Please write the appropriate code.
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14.3 Frozensets

Python supports a variant on the set type, namely the frozenset. You create a frozenset
by using the frozenset() function. The elements of a frozenset, once assigned, can-
not be changed. You therefore have to create the frozenset immediately when you call
the frozenset() function, because it is impossible to add or remove elements later. I.e.,
frozensets are immutable.

All the regular set methods work for frozensets, except for those that try to change the
set. Trying to use such a method for a frozensetwill lead to a syntax error.

fruit1 = frozenset( ["apple", "banana", "cherry"] )
fruit2 = frozenset( ["banana", "cherry", "durian"] )

print( fruit1.union( fruit2 ) )

What you learned

In this chapter, you learned about:

• Sets

• add(), update(), remove(), discard(), clear(), pop(), copy(), union(),
intersection(), difference(), isdisjoint(), issubset(), and issuperset()

• Frozensets

Exercises

Exercise 14.1 A famous syllogism says: All men are mortal. Socrates is a man. Therefore
Socrates is mortal. In the code block below you see some sets. The first is the set of all things
(I know a few are missing, but for the sake of argument). The second is the set of all men
(assuming that the first set indeed contains all things). The third set contains everything
that is mortal (again, assuming...). Using set operators and methods, show that indeed (a)
all men are mortal, (b) Socrates is a man, and (c) Socrates is mortal. Also shows that (d)
there are mortal things that are not men, and (e) there are things that are not mortal.

exercise1401.py

allthings = {"Socrates", "Plato", "Eratosthenes", "Zeus", "Hera",
"Athens", "Acropolis", "Cat", "Dog"}

men = {"Socrates", "Plato", "Eratosthenes"}
mortalthings = {"Socrates","Plato","Eratosthenes","Cat","Dog"}
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Exercise 14.2 Write a program that first produces three sets of numbers between 1 and
1000, the first all those numbers that are divisible by 3, the second all those numbers that
are divisible by 7, and the third all those numbers that are divisible by 11. It is easiest to do
that with list comprehension, but it is not necessary. Now produce sets of all the numbers
between 1 and 1000 that (a) are divisible by 3, 7, and 11, (b) are divisible by 3 and 7, but
not by 11, (c) that are not divisible by 3, 7, or 11. The shortest solution has only one line of
code for each of the six sets.



Chapter 15

Operating System

Until now, we considered Python programs as self-contained functionalities. Python pro-
grams, however, run on a computer, and occasionally the program must deal with com-
puter intricacies. This will start to play a major role from Chapter 16 onward, when I
will discuss file handling. To deal with the computer, Python offers a series of standard
functionalities in the os module, whereby os is a common abbreviation for “operating
system.” This chapter explains the most important functions from the os module.

15.1 Basics of operating systems

A computer consists of hardware, while programs consist of software. The software uses
facilities offered by the hardware. While in the early days of computer programming,
programmers accessed hardware directly (for instance, to make a pixel visible on a com-
puter screen, a programmer placed a value in a specific memory address that was directly
coupled to the screen – an approach called “poking”), nowadays hardware is so complex
and diverse that this is no longer a viable approach. Let alone the fact that if you want to
write a program that runs on multiple computers, you cannot afford to access hardware
directly as hardware differs from computer to computer.

Therefore, programs access hardware functionalities through an “operating system.” An
operating system can be seen as a layer between programs and hardware, that offers pro-
grams high-level functions to get the hardware to work. Typical operating systems in use
nowadays on personal computers are Microsoft’s “Windows,” Apple’s “Mac OS,” and
the open-source OS “Linux” (though there are many more). Each of these exists in mul-
tiple variants, often differentiated by numbers or “builds,” and sometimes (in the case of
Linux) by a company name. Regardless, they all offer functionalities that allow accessing
hardware.

The problem is that while all of them offer such functionalities, the functionalities are
not named in consistent ways, and have different parameterizations. This means that
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if you want to write Python programs that access hardware by directly “talking” to the
operating system, your program is not portable to other operating systems. This is where
the os module comes in. The os module offers functions that you can use to access the
hardware with, regardless of the operating system. Basically, the osmodule has a different
implementation for each operating system, but your program does not need to know that,
as the functions are always named the same, and have the same parameters.

That does not mean that you can be completely oblivious of OS intricacies. For instance,
when you access a file, on Windows you might need to include a “drive letter,” which
Mac OS does not support. Another example is that security and file access are much more
flexible on Linux than on either Windows or Mac OS, so accessing files on Linux might
generate different kinds of warnings and errors than on other operating systems. There
are quite a few functions that only have an effect for particular operating systems. Still,
the os module is a fine compromise between portability and OS-dependent effectiveness.

15.2 Command prompt
When you are working with a mouse-driven user interface (UI), which is standard for
Windows and Mac OS, and is used by many Linux users too, you are actually interacting
with a visual representation of the system, specifically, of the file system. Programs and
documents are represented by “icons,” which have a name. They are grouped by “fold-
ers,” which are actually “directories” of the file system. You can create new folders, delete
documents, rename programs, change security settings, etcetera. All these actions you
can also execute by directly typing commands, in an environment that is often called the
“command prompt” or “command shell.”

Most Linux users are familiar with a command shell, but for many Windows and Mac
users this is not something that they are aware of. Both Windows and Mac actually have
a program that allows you to work in the command shell. On Windows, you find the
“command prompt” as one of the “accessories” or “system tools.” On Macs, this is called
the “Terminal.” If you start that program, you get confronted by a window with a black
background and a blinking prompt. Here you can type commands that the system will
execute for you.

The commands that you can give depend on the system that you are using. This book
is not meant to teach you how to use it, but I want to tell you at least that you can run
Python programs directly from the command prompt by typing the command:

python <programname>.py

As long as Python can be found on your system, and the program is actually found in
the current working directory (i.e., the place in the computer’s file system where you
currently are), or you have specified the complete path for the program, then it will run the
program. This can actually be quite handy if you have written a program that processes
files and you want to process many files in a “batch.” Again, this goes a bit too far for this
book, but you might get to a point in your career where this is extremely useful.

The commands that you can give are things like “change the current working directory,”
“make a new directory,” “remove an empty directory,” “list all the files in the directory,”



15.3. File system 192

“delete a file,” etcetera. Again, it depends on the operating system what exactly the com-
mands are that you need to give to achieve these things.

Exercise On your system, find the command shell and run the program. On Windows,
type “dir” to see the files in the current directory. On Macs and Linux, this command is
usually “ls.” After doing this, you can close the command shell again.

15.3 File system

A computer’s file system consists of a tree-like structured organization of directories and
files.

There is one “root” directory, which is the main access point for all other directories. The
root directory is identified by a slash (/) or backslash (\), depending on the operating
system. Under Windows it is a backslash, under Mac OS and Linux it is a forward slash.
However, Windows now also supports the forward slash. I recommend using the forward
slash in most cases, as in strings the backslash indicates a special symbol, so if you want
to use a backslash in a string as a directory separator, you have to use a double backslash.
This tends to be confusing, which is why I recommend using the forward slash.

“Under” the root-directory there are multiple other directories, each identified by a name,
and usually also multiple files, each identified by a name. Under each directory there may
be more directories and files.

Each operating system has certain restrictions on what file and directory names can be
used, but in general most characters are supported. It is convention that regular files have
an extension, which is placed at the end of the file name, and separated from the filename
with a period. The extension identifies what kind of file it is, for instance, an executable
program (.exe), a flat text file (.txt), or a Python file (.py). It is also convention that
directory names do not have such an extension. However, this is not a rule, and you
may certainly encounter files without, and directories with an extension. Note that in the
visual environment, extensions for files are often hidden, but they are there – you just do
not see them.

To uniquely identify a file, you need to know its exact “path” from the
root to the file, following the directories. The path name for the file is
/<directory>/<directory>/.../<filename>. Under Windows, a drive letter can
be placed in front of this path, making it <drive>:/<directory>/<directory>/...

/<filename>. For instance, if under Windows, on the “C” drive, under the root there
is a directory “Python34,” under which there is a directory “Lib,” in which you can find a
file “os.py,” the path for that file is C:/Python34/Lib/os.py. Under Windows, this path
is case insensitive, so you can use only lower case letters if you like. That is not the case
for all operating systems, though.

When you are working in the file system (and you always are working in the file system,
even if you do not realize that), there is a “current directory,” which is identified by a
period (.). If you want to access a file in the current directory, you do not need to know
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the complete path; it is enough to know the file name. One directory “higher” than the
current directory (i.e., the “parent” directory) is identified by a double period (..). The
parent directory of the root is the root itself.

Finally, it should be noted that most operating systems support a method that allows you
to access files, without knowing the path, even if those files are not in the current directory.
Under Windows, for instance, you can set a PATH environment variable that contains a
string that lists all the directories that Windows will search when you use a filename that
is for a file that is not in the current directory. How to adapt such an environment variable
is not part of this book, though.

15.4 os functions

The os module supports many functions that allow you to affect the file system. I will
mention only a few of them, as many of them are actually a bit dangerous to use (you can
easily delete files that you wanted to keep) and you do not need them anyway. If you are
really interested in manipulating the file system, you can read up on the dozens of other
functions that os supports.

15.4.1 getcwd()

getcwd() returns the current working directory as a string.

from os import getcwd

print( getcwd() )

15.4.2 chdir()

chdir() changes the current working directory. The new directory is provided as a string
argument.

from os import getcwd, chdir

home = getcwd()
print( home )
chdir( ".." )
print( getcwd() )
chdir( home )
print( getcwd() )
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15.4.3 listdir()

listdir() returns a list of all the files and directories in the directory that is given as
argument. The names are given in arbitrary order. Notice that they do not include the full
path name.

from os import listdir

flist = listdir( "." )
for name in flist:
print( name )

15.4.4 system()

system() gets a string argument that is a command, that Python executes on the com-
mand line. You can use it to do anything that the operating system supports, including
running other programs. There are better ways to execute other programs, though (look
for functions that start with “exec”).

What you learned

In this chapter, you learned about:

• Operating systems

• Command prompt

• File systems

• Functions getcwd(), chdir(), listdir(), and system()

Exercises

Exercise 15.1 Write a program that lists all the files and directories in the current direc-
tory, displaying them with their full path names.



Chapter 16

Text Files

One of the most important uses of Python for data processing is the reading, changing,
and writing of text files. Data is often stored in text files, because text files can be easily
transferred between different programs. There are multiple standardized formats for text
files, such as “comma-separated values” (CSV) files. Python supports particular text file
formats through modules, some of which will be discussed later. This chapter focusses on
opening, reading, writing, and closing of any text file, regardless of format.

16.1 Flat text files

When programmers refer to “text files” or “flat text files,” they mean files in which all
characters are meant to be read as regular characters, like you would type on a keyboard.
For instance, Python program files are flat text files, as are HTML files. Word processor
documents, however, are not flat text files, and neither are images. If you want to know
whether a file is a text file or not, you can try to open it in a text editor (such as the editor
for the IDLE environment, which comes with Python). If you see only readable text, the
file is likely to be a text file. Otherwise, it is a so-called “binary file” (binary files are
discussed in Chapter 18).

Text files consist of lines of text. At the end of a line, there is a “newline” symbol, which
in Python is the character "\n". Different operating systems use slightly different ways
of storing this character in a text file: some Windows programs store it as "carriage return
plus line feed" ("\r\n"), while on Linux it is always stored as a single "\n". As long as
you access a file from Python as a regular text file, Python will convert the characters that
it reads to the standard "\n", and vice versa when it writes. So you do not need to worry
about such differences (except when you need to transfer text files between operating
systems).
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16.1.1 File handles and pointers

When you work with a file in a program, you have to open the file. Opening a file provides
a so-called “file handle.” A file handle can be seen as an access point to the file. It contains
a “pointer” that indicates a particular place in the file. That pointer is used when you read
from or write to the file. For instance, when you read from the file, it starts reading at the
pointer, and moves the pointer forward in the file.

When you open a file, the pointer is placed at a particular spot in the file, depending on
how you opened the file. If you opened the file for reading only, the pointer is placed
at the start of the file. The same is true when you open the file for both reading and
writing. If you open the file for “appending” (i.e., to place new data at the file’s end), the
file pointer is positioned at the end of the file. Lastly, if you open a file for writing only,
actually the file is completely emptied and the file pointer is placed at the start of the, now
empty, file. To create a new file (i.e., a file with a name that does not exist yet), you open
it for “writing only.”

After opening the file, the file handle is the only access point for the file. All actions you
perform on the file, you perform as methods for the file handle.

Note that any operating system only allows a limited number of files to be open simulta-
neously. Therefore you should close files that you no longer need to work with.

16.1.2 Moving the file pointer

The file pointer, that indicates where in a file you are working, is moved automatically.
For instance, when you read 10 characters from a file, the file pointer indicates which is
the first of those 10 characters, and, while reading, moves up 10 characters, so that its new
position is 10 characters further in the file than before. When you deal with text files, the
automatic movements of the file pointer are exactly what you want. You can position the
file pointer manually using specific methods, but such methods are, in general, only used
when dealing with binary files. Therefore, in this chapter I will ignore these methods, but
they will be discussed in the chapter on binary files.
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16.1.3 Buffering

When you make changes to files, these often are not stored in the files immediately. In-
stead, the operating system “buffers” the changes in memory, and “flushes” the buffers
to the actual files when it sees a need for that. You can force the flushing of the buffers by
closing a file. Buffers are also flushed when your program ends normally.

However, when your program crashes (for instance because of a runtime error), buffers
might not be flushed, and your files will not be updated to the point where the crash took
place. So you cannot take the file contents into account when trying to debug a program.

16.1.4 File processing programs

Most programs that deal with text files follow a process that, in a loop, reads contents of
a file, processes those contents in some way, then writes the contents to another file. For
instance, a program might read lines from a text file, and for each line sort the words, then
write the sorted words to another text file. This is hardly any different from a program
that asks the user the provide, in a loop, a line of text, then sorts the words in the line, and
displays them using the print() function. While students tend to find it easy to write
the version of the program that gets user input and displays output, my experience has
taught me that many students find it very hard to use file input and output for the same
purpose.

I never found out why exactly students think it is so much harder to do it with files,
though I can imagine that you feel you have little control over your own program when
working with files. When you provide input to a program manually, and see it displaying
outputs, you always know more or less what lines of your code Python is processing, and
you can make up tests on the fly. If you work with files, you have to prepare your files
beforehand, then run the program and wait until it finishes before you can examine the
contents of the output files.

While working with files might give a sense of lack of control, during development of
the program you can always include print() statements to get an insight in what the
program is doing. For instance, when it reads a line, you can print that line, and when it
writes a line, you can also print that line. That way, your insight in the inner workings of
the program is no different regardless whether you use manual inputs and screen outputs,
or file inputs and outputs.

16.2 Reading text files

To read the contents of a file, you must first open it, then read the contents, then close it.

16.2.1 Opening a file using open()

To open a file, you use the open() function.
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The open() function gets two arguments, of which the second one is optional. The first
argument is the name of the file. If the file is not in the current directory, you have to
include the complete path to the file so that Python can find it. The second argument is
the “mode.” The mode indicates how you want to treat the file. The default mode (which
is picked when you do not supply the second argument) is opening the file as a text file
for reading only. How you set other modes is discussed later.

The open() function returns a file handle, which you use for all the remaining functional-
ities.

Rather than writing <handle> = open( <filename> ), you will often see Python pro-
grams that write this as open( <filename> ) as <handle>. These two ways of writing
code are equivalent. I myself prefer the first, as that is the way it is done in most program-
ming languages. However, the second method has an advantage that I discuss below,
when talking about closing a file.

16.2.2 Reading a file using read()

The simplest way to read the contents of a file is using the read()method, without argu-
ments, on the file handle. This returns a string that contains the complete contents of the
file. read() can get an argument, but I will discuss that in the chapter on binary files.

Reading from a file moves the file pointer to right after the part of the file that was read.
This means that if you use the read() method without arguments, the file pointer is
moved to the end of the file. This entails that if you would try to read() from it a second
time, nothing would be read, as there is nothing to be read after the spot where the file
pointer is. read() then returns an empty string.

16.2.3 Closing a file using close()

To close a file, you use the close()method on the file handle. After that, the handle is no
longer associated with the file. Every file that you open, you should close at some point
in your program.

So, a complete program that opens a file, reads the complete contents, prints them, and
closes the file again, is as follows:

listing1601.py

fp = open( "pc_rose.txt" )
print( fp.read() )
fp.close()

If everything that you need to do with a file is done in a single block, you can write this
block as follows:

with open( <filename> ) as <handle>:

<statements>
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This syntactic construction has the advantage that the file will be closed automatically
after the block <statements> ends, so you do not need to include an explicit close()
call. This construction is typically Python; you do not see it in many other programming
languages.

16.2.4 Displaying the contents of a file

Now the first few functions and methods for dealing with text files have been introduced,
I can show some code that reads the contents of a file.

listing1602.py

with open( "pc_rose.txt" ) as fp:
buffer = fp.read()

print( buffer )

This code assumes that a file is available with the name “pc_rose.txt,” and that it is located
in the same directory as the program. Appendix E explains how to get it. If the file is
unavailable, you get a runtime error. How to deal with such errors will be explained in
the next chapter.

Exercise In the code above, change the file name “pc_rose.txt” to something that does
not exist. Run the program and observe the error that you get.

Exercise In the code above, change the file name to “pc_woodchuck.txt” (if you have
that file). Run the program and observe the output.

16.2.5 Reading lines using readline()

To read a text file line by line, you can use the readline() method. The readline()
method reads characters starting at the file pointer up to and including the next newline
character, and returns them as a string. You can recognize that you have reached the end
of the file by the fact that no characters are read anymore, i.e., the string that is returned
is empty.

listing1603.py

fp = open( "pc_rose.txt" )
while True:

buffer = fp.readline()
if buffer == "":

break
print( buffer )

fp.close()
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Notice that the output of the code above has an empty line between each of the lines
displayed. Where is that extra line coming from? Think about it.

The extra line is there because the readline() method returns a string of the characters
read, up to and including the newline character. So when the buffer is printed, it prints a
newline character too. And since the print() function also moves to a new line after it is
executed, there is an empty line printed after each line of text.

Exercise Write a program that reads the lines from “pc_rose.txt,” and displays only
those lines that contain the word "name".

16.2.6 Reading lines using readlines()

A corollary to the readline()method is the readlines()method. readlines() reads all
the lines in the file, and returns them as a list of strings. The strings include the newline
characters.

listing1604.py

fp = open( "pc_rose.txt" )
buffer = fp.readlines()
for line in buffer:

print( line, end="" )
fp.close()

Note that the output of the code above does not have the empty lines between the lines of
text, as the print() function includes the "end=""" argument, which entails that print()
itself does not go to the next line after printing.

16.2.7 When to use which file-reading method

Both the read() and readlines()method read a whole file at once. Obviously, for small
files this is acceptable, but for long files you might not have enough memory to store the
file contents efficiently. In such circumstances (or when you do not know the file size),
you should read a file line by line with the readline()method.

It is often a good idea, during code development, to process only the first few lines of a
file. That way you limit the amount of time that the program needs to process a file, and
limit its output, which makes debugging easier. For instance, the code below process the
first 5 lines of a file.

listing1605.py

fp = open( "pc_jabberwocky.txt" )
count = 0
while count < 5:

buffer = fp.readline()
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if buffer == "":
break

print( buffer, end="" )
count += 1

fp.close()

Once the program is finished and debugged, I can remove the references to count and
change the loop to while True, to process the whole file.

Exercise Adapt the code above to count how often the word “jabberwock” (with any
capitalization) occurs in the first 5 lines. Print only the number of occurrences of that
word. Once it works, remove the count so that you count the number of occurrences of
the word in the text as a whole.

16.3 Writing text files

Writing a text file is similar to reading. You open the file, write to it, and close it.

16.3.1 Opening a file for writing

To open a file for writing, and writing only, you give the value "w" as the second argument
to the open() function. If the file does not exist yet, it will create it. If it does exist, it will
delete its contents.

Let me repeat that: when you open a file for writing and it already exists, its contents are
deleted! There is no warning message saying “are you sure?” The file is simply emptied.
So you have to be very, very careful when opening a file for writing. Usually I ask students
to write their programs in such a way that they first check if a file exists before opening it
for writing, and give an error message when it already exists. Functions for checking if a
file exists are discussed later in this chapter.

16.3.2 Writing using write()

To write something to a text file, you use the write() method with as argument a string
that you want to write to the file. The example code below asks you to enter some strings,
and writes them to a file. It stops asking for inputs when you enter an empty line. It then
opens the file, reads the contents, and displays them. Run the code, enter at least two lines
of text, and see what happens.

listing1606.py

fp = open( "pc_writetest.tmp", "w" )
while True:

text = input( "Please enter a line of text: " )
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if text == "":
break

fp.write( text )
fp.close()

fp = open( "pc_writetest.tmp" )
buffer = fp.read()
fp.close()

print( buffer )

If you did what I asked, you have noticed that all the text that you entered is in the file,
but it all is on one line. There are no newlines in between. The reason is that you have to
explicitly write newline characters when you want newlines in your file. When you get
input from the keyboard using input(), while you stop entering input using the Enter

key, that does not result in a newline character in the string that input() returns. So you
have to add that to the string that you write manually.

Exercise Adapt the code above so that every line of text that you enter, is a separate line
in the file that you write.

16.3.3 Writing using writelines()

You can write a list of strings at once, by using the writelines()method that gets the list
as argument. Each of the strings in the list must end in a newline character if you want
those newline characters in the output file. writelines() is the opposite of readlines();
if you use the list that readlines() returns as argument for writelines(), the contents
of the output file will be exactly the same as the contents of the input file.

Note that there is no writeline() method. writeline() would be exactly the same
method as write(), so it is not needed.

16.3.4 Practice

Exercise Write a program that reads the contents of “pc_rose.txt,” and writes exactly the
same contents to the file “pc_writetest.tmp.” Then open the file “pc_writetest.tmp” and
display the contents. You can easily construct this program by cobbling together some of
the code given above.

Exercise Write a program that reads the contents of “pc_rose.txt,” reverses each of the
lines, and writes the reversed lines to the file “pc_writetest.tmp.” Then open the file
“pc_writetest.tmp” and display the contents.
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16.4 Appending to text files

“Appending” refers to writing at the end of an existing file. When you open a file for
appending, the contents are not erased, but the file pointer is placed at the end of the file,
where you can then write new data. You open a file in “append” mode by using "a" as
the mode argument when opening the file.

The code below first displays the contents of “pc_writetest.tmp” (which should exist by
now). It then asks the user for lines which are appended to the file. Finally, it displays the
contents of the new file. I took the liberty of creating this little program in a slightly-better
structured manner than before, using a constant for the filename that is repeated three
times in the program, and using a function to display the file contents as this functionality
is needed twice.

listing1607.py

FILENAME = "pc_writetest.tmp"

def displaycontents( filename ):
fp = open( filename )
print( fp.read() )
fp.close()

displaycontents( FILENAME )

fp = open( FILENAME , "a" )
while True:

text = input( "Please enter a line of text: " )
if text == "":

break
fp.write( text+"\n" )

fp.close()

displaycontents( FILENAME )

16.5 os.path methods

At this point you know everything you need to handle text files in Python. However, there
are several handy functions that make your life easier when dealing with files. These are
collected in the os.path module. As per usual, I am not going to list all of them, but I will
list the ones that you will use the most.

In these functions, the term “path” refers to a filename or a directory name, complete with
parent directories (and drive letter). The parent directories (and drive letter) do not need
to be there explicitly, but even if they are not, implicitly they still are as each file and each
directory is located in a particular place in the file system.
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16.5.1 exists()

The function exists() gets a path as argument, and returns True if that path exists, and
False if it does not.

from os.path import exists

if exists( "pc_rose.txt" ):
print( "Rose exists" )

else:
print( "Rose does not exist" )

if exists( "pc_tulip.txt" ):
print( "Tulip exists" )

else:
print( "Tulip does not exist" )

16.5.2 isfile()

isfile() tests if the path that is supplied as argument is a file. If it is, it returns True. If it
is not, it returns False. If the path does not exist, the function also returns False.

from os.path import isfile

if isfile( "pc_rose.txt" ):
print( "Rose is a file" )

else:
print( "Rose is not a file" )

16.5.3 isdir()

isdir() tests if the path that is supplied as argument is a directory. If it is, it returns True.
If it is not, it returns False. If the path does not exist, the function also returns False.

from os.path import isdir

if isdir( "pc_rose.txt" ):
print( "Rose is a directory" )

else:
print( "Rose is not a directory" )
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16.5.4 join()

join() takes one or more parts of a path as argument, and concatenates them reasonably
intelligently to a legal name for a path, which it returns. This means that it will add and
remove slashes as needed. join() is particularly handy in combination with listdir()
(see Chapter 15, and the example below).

The reason that join() is handy with listdir(), is that listdir() results in a list of file
names that do not include the directory names. Usually, when you ask for a list of file
names, you intend to open them at some point. But to open a file that is not in the current
directory, you need to know the complete path name that leads to the file. When you
apply listdir(), you know where you are looking for files, so you know the elements of
the path name. To construct the complete path name for each file, you need to concatenate
the elements of the path name to the file name. Rather than trying to decide where you
need to add slashes, and which kind of slashes they need to be, you can leave all of that
to the join() function.

The code below looks for all the files in the current directory, and lists them including
their complete path name. See how join() is used to construct that path name from the
current directory, and the file name.

from os import listdir, getcwd

from os.path import join

filelist = listdir( "." )
for name in filelist:

pathname = join( getcwd(), name )
print( pathname )

16.5.5 basename()

basename() extracts the filename from a path, and returns it.

from os.path import basename

print( basename( "/System/Home/readme.txt" ) )

16.5.6 dirname()

dirname() extracts the directory name from a path, and returns it.

from os.path import dirname

print( dirname( "/System/Home/readme.txt" ) )
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16.5.7 getsize()

getsize() gets the size of the file that is supplied as argument, and returns it as an integer
(representing a number of bytes). The file must exist, otherwise you get a runtime error.

from os.path import getsize

numbytes = getsize( "pc_rose.txt" )
print( numbytes )

Exercise Write a program that adds up the sizes of all the files in the current directory,
and prints the result.

16.6 File encoding

Text files use an “encoding,” i.e., a system that prescribes how characters in the files
are supposed to be interpreted. This encoding may differ between operating sys-
tems. You can see the preferred encoding that your system uses with a call to
sys.getfilesystemencoding().

from sys import getfilesystemencoding

print( getfilesystemencoding() )

If you read a text file which uses a different encoding than your file system prefers, you
may get a UnicodeDecodeError. Whether or not you get this error for a particular file,
is related to your operating system. An annoying consequence of that is that when you
port Python code that reads a file to another system, a file that could be read by your code
previously may cause your code to crash after the port.10

An easy way to get around this problem is by adding an extra parameter when opening a
file, which indicates the encoding mechanism that you want to use when reading the file.
You do this by adding a parameter encoding=<encodingname>, where <encodingname> is
a string that can have a variety of values, for which some typical ones are:

• ascii: 7-bits encoding, characters with values in the range 00-7F

• latin-1: 8-bits encoding, characters with values in the range 00-FF

10I have to make note of some Python behavior that seems bizarre when you first encounter it: you may get
this error when your file contains characters in an encoding that is not supported by your system in lines that
you are not even trying to read! E.g., suppose that there is such an erroneous character on line 10 of your file, but
you are only trying to read the first 5 lines before closing the file again – your program may still crash! I suspect
that this is related to the buffering of data: rather than reading exactly what you ask Python to read, Python
reads data in bigger chunks, so that the program is faster when you actually want to go through the whole file.
So, by trying to be smart, Python may saddle you up with problems that you did not expect could arise. It is
good to be aware of such issues.
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• mbcs: 2-byte encoding, that is currently getting replaced by UTF-8

• utf-8: variable bytes encoding

Typically, text files are created with ascii or latin-1 encoding. Since ascii is incorpo-
rated in latin-1, you can safely open any text file by specifying latin-1 as encoding.
It is possible that for the characters beyond the ascii range, you get different characters
than the person who created the file wanted you to see – that depends on the encoding
mechanism that your file system uses. But at least the UnicodeDecodeError is avoided.
So, when you try to read the contents of a file and get a UnicodeDecodeError, you may
try to open it using open( <file>, encoding="latin-1" ). Usually that will solve the
problem.

Note that while utf-8 supports a much wider range of characters than latin-1, you may
still get the UnicodeDecodeError when you read a text file that uses latin-1 encoding on
a system that uses utf-8 encoding, as utf-8 has no corresponding characters with values
in the (hexadecimal) range 80-FF.

If you want to see which special characters are supported with values in the range 80-FF
on your system, run the code below. The numerical value of a character in the table can be
derived by calculating 16 ∗ row + col, whereby row and col are the hexadecimal row and
column number, respectively. I do not display the characters in the range 80-9F, as these
are normally not filled in.

listing1608.py

for i in range(16):
if i < 10:

print( ' ' +chr( ord( ' 0 ' )+i ), end= ' ' )
else:

print( ' ' +chr( ord( ' A ' )+i-10 ), end= ' ' )
print()
for i in range( 10, 16 ):

print( chr( ord( ' A ' )+i-10 ), end= ' ' )
for j in range( 16 ):

c = i *16+j
print( ' ' +chr( c ), end= ' ' )

print()

More details on UTF-8 encoding will be given in Chapter 19, but for dealing with text
files, the information above suffices.

What you learned

In this chapter, you learned about:

• Text files
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• File pointers

• Opening and closing files with open() and close()

• Reading files with read(), readline(), and readlines()

• Writing files with write() and writelines()

• Appending to files

• os.path methods exists(), isfile(), isdir(), join(), basename(), dirname(),
and getsize()

• Dealing with text files with different encoding mechanisms

Exercises

Exercise 16.1 Write a program that reads the contents of the file “pc_woodchuck.txt,”
splits it into words (where everything that is not a letter is considered a word boundary),
and case-insensitively builds a dictionary that stores for every word how often it occurs
in the text. Then print all the words with their quantities in alphabetical order.

Exercise 16.2 Do the same thing as you did for the previous exercise, but now process
the text line by line. This is something that you would have to do if you had to process a
very long text.

Exercise 16.3 Write a program that processes the contents of “pc_woodchuck.txt,”
line by line. It creates an output file in the current working directory called
“pc_woodchuck.tmp,” which has the same contents as “pc_woodchuck.txt,” except that
all the vowels are removed (case-insensitively). At the end, display how many characters
you read, and how many characters you wrote.

Exercise 16.4 Write a program that determines how many words of 2 or more letters
the files “pc_woodchuck.txt,” “pc_jabberwocky.txt” and “pc_rose.txt” have in common.
You have to treat the words case-insensitively, and, as always, any character that is not a
letter can be treated as a word boundary. If your program is correct, you will find three
such words.

Exercise 16.5 For the three files that you used in the previous exercise, count for
each of them how often each letter (case-insensitively) occurs. Calculate for each letter
and each file the fraction <number of occurrences of letter in the file>/<total

number of letters in the file>. Write an outputfile (any name, as long as you
can safely overwrite it) with extension .csv, that contains 26 lines, each line for-
matted as follows: "<letter>",<fraction for first file>,<fraction for second

file>,<fraction for third file>. The first line should have letter a, the second letter
b, etcetera. The fractions should be stored with 5 decimals. Finally, display the contents
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of the outputfile. As the outputfile is a CSV file, you should also be able to load it in a
spreadsheet program.

A quick check to see if you did things correctly is that all of the fractions must be between
zero and 1, and the fraction for “e” should be highest for both “pc_jabberwocky.txt” and
“pc_rose.txt” (but not so much for “pc_woodchuck.txt”). If you would use longer files
which are all in the same language, you would also find that the fractions are usually
more or less in each others’ neighborhood.



Chapter 17

Exceptions

Sometimes runtime errors occur not because you made a programming mistake, but be-
cause your program encountered a situation that you could not foresee when you wrote
it. This is particularly relevant when you deal with files: for instance, when you access a
file on a USB-stick, and the user pulls out the USB-stick during the file processing, obvi-
ously an error occurs that you cannot really account for in your code. Every runtime error
raises a so-called “exception,” and you can “capture” such exceptions if you want to deal
with them in your program, rather than make the program end abruptly.

17.1 Errors and exceptions
When you try to run a Python program, Python first does a quick check to see if all the
statements in the program meet the basic Python syntax requirements. If they do not,
Python announces a “syntax error” and will not run the program.

If no syntax errors are encountered, Python will run the program, but may encounter
statements that generate errors while trying to execute them. Such statements cause a
“runtime error.” You have seen runtime errors many times while writing code (don’t try
to deny it).

In general, you try to fix runtime errors by extending or changing your code. For instance,
the following program causes a runtime error when you enter a zero as input:

from pcinput import getInteger

num = getInteger( "Please enter a number: " )
print( "3 divided by {} is {}".format( num, 3/num ) )
print( "Goodbye!" )

Python tells you what kind of error it is, namely a ZeroDivisionError. To fix it, you can
change the program:
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from pcinput import getInteger

num = getInteger( "Please enter a number: " )
if num == 0:

print( "Dividing by zero is not allowed" )
else:

print( "3 divided by {} is {}".format( num, 3/num ) )
print( "Goodbye!" )

ZeroDivisionError is actually the name of an “exception” that Python “raises” (gener-
ates). If you do not handle such an exception in your program, Python interrupts the
program’s execution and splashes its error message on the screen. However, this entails
that you actually can handle exceptions in your program and simply continue running it.

While in the code above you should ensure that no exception is raised on dividing by zero
– because you can foresee that this might happen – it occasionally happens that you have
to accept that exceptions might be raised as you cannot foresee all the circumstances that
your program might have to deal with. This is especially relevant when your program
depends on elements outside its direct control, such as files and user behavior.

17.2 Exception handling

To handle exceptions explicitly in your program, you use a try ... except clause. There
are different ways of applying this clause.

17.2.1 try ... except

The most basic form of the try ... except clause has the following syntax:

try:

<statements>

except:

<exception handling>

When the <statements> between try: and except: are executed and raise an excep-
tion, Python immediately jumps to the <exception handling> statements and exe-
cutes those, after which the program continues as normal, at the first line below the
<exception handling> statements. If no exceptions are raised during the execution of
the <statements>, the <exception handling> statements are skipped.

Using exception handling, the code at the start of this chapter can be written as follows to
avoid runtime errors:

listing1701.py
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from pcinput import getInteger

num = getInteger( "Please enter a number: " )
try:

print( "3 divided by {} is {}".format( num, 3/num ) )
except:

print( "Division by zero is not allowed" )
print( "Goodbye!" )

Multiple statements may be part of a single try ... except clause. For instance, the
following code raises an exception both when a user enters zero and when a user enters
3. Both exceptions are handled by the same try ... except clause.

listing1702.py

from pcinput import getInteger

num = getInteger( "Please enter a number: " )
try:

print( "3 divided by {} is {}".format( num, 3/num ) )
print( "3 divided by {}-3 is {}".format( num, 3/(num-3) ) )

except:
print( "Division by zero is not allowed" )

print( "Goodbye!" )

This is slightly ugly, not only because these errors should have been avoided rather than
handled via exceptions, but also because when an exception occurs, it is unclear which of
the statements caused it (though in this case, if you enter 3, you can see that the first of the
two statements under the try executed correctly). However, this is just a demonstration,
and there certainly can be situations where you say “I do not care where an exception
occurs in this sequence of statements, but if anything happens, I want to do this.”

17.2.2 Handling specific exceptions

Examine the code below. This code can cause at least two different exceptions. Which?

print( 3 / int( input( "Please enter a number: " ) ) )

The two different exceptions that this code can generate are the ZeroDivisionError when
you enter a zero, and the ValueError when you enter something that is not an integer. Try
it if you did not try it already.

You can handle both these errors with a single try ... except clause, but you can dis-
tinguish them by specifying multiple excepts. Each except can be followed by one of the
specific exceptions, and the code below it will only be executed if that specific exception
is raised.
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listing1703.py

try:
print( 3 / int( input( "Please enter a number: " ) ) )

except ZeroDivisionError:
print( "Dividing by zero is not allowed" )

except ValueError:
print( "You have not entered an integer" )

print( "Goodbye!" )

If you want to capture “all remaining exceptions,” you add an except without a specific
exception at the end. Only one of the except clauses will be executed, namely the first
one encountered that applies. It is a lot like an if ... elif ... elif ... else clause.

listing1704.py

try:
print( 3 / int( input( "Please enter a number: " ) ) )

except ZeroDivisionError:
print( "Dividing by zero is not allowed" )

except ValueError:
print( "You have not entered an integer" )

except:
print( "Something unforeseen went wrong" )

print( "Goodbye!" )

Here is a list of some specific exceptions that are raised often:

• ZeroDivisionError: Trying to divide by zero

• IndexError: Trying to access a list or tuple element with an out-of-bounds index

• KeyError: Trying to access a dictionary element with an unknown key

• IOError: Any error that occurs while trying to access a file

• FileNotFoundError: Trying to open a file that does not exist for reading

• ValueError: Error while trying to type cast a value to another value

• TypeError: Using a value of a type that is not supported for an operation

Exercise The code below can generate several exceptions. These are now handled by
a single try ... except clause. Extend this code by handling all exceptions that may
occur explicitly (there are at least three different kinds of exceptions that can be raised).
Note: Let me stress again that I rather have you avoid exceptions occurring than handling
them, but in this case I want you to practice with exception handling.

listing1705.py

fruitlist = ["apple", "banana", "cherry"]



17.2. Exception handling 214

try:
num = input( "Please enter a number: " )
if "." in num:

num = float( num )
else:

num = int( num )
print( fruitlist[num] )

except:
print( "Something went wrong" )

17.2.3 Adding an else clause

At the end of a try ... except clause you can add an else clause. The statements with
that else will be executed if no exception occurs. For instance, in the code block below,
the calculated value for num will only be printed if no exception is raised.

listing1706.py

try:
num = 3 / int( input( "Please enter a number: " ) )

except ZeroDivisionError:
print( "Dividing by zero is not allowed" )

except ValueError:
print( "You have not entered an integer" )

except:
print( "Something unforeseen went wrong" )

else:
print( num )

print( "Goodbye" )

In general, I prefer not to use an else clause with an exception, as it feels like the code
under the except clauses should be code that is only executed in abnormal circumstances.
But if you really want you can use it.

17.2.4 Adding a finally clause

You can add an extra branch to the try clause, which is finally:. The finally clause has
statements which are executed regardless of the manner in which the try clause is exited.
If it ends normally, it is executed, but if you get a runtime error, it is executed too. You can
use such a finally clause to, for instance, make sure that a file gets closed before code is
harshly interrupted.

listing1707.py

try:
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fp = open( "pc_rose.txt" )
print( "File opened" )
print( fp.read() )

finally:
fp.close()
print( "File closed" )

17.2.5 Accessing exception information

You can get extra information on the exception by adding and as clause to the
except statement, using the syntax except <exception> as <variable>. When an
<exception> occurs, the variable is filled with an “exception object,” that may provide
more information on the exception. The problem is that there is no standardized way to
get the information out: it depends on the kind of exception what the variable contains.

The variable will always have a tuple of arguments (even if there is only one), that were
provided to the exception when it was raised. You can examine these arguments by means
of the attribute <variable>.args. A ValueError gets a tuple with only one value, namely
a string.

listing1708.py
try:

print( int( "NotAnInteger" ) )
except ValueError as ex:

print( ex.args )

If you run the code below, you see that an IOError gets a tuple of two values: an integer
and a string. The integer that is provided for the IOError is actually quite informative, as
it explains what went wrong.

listing1709.py
try:

fp = open( "NotAFile" )
fp.close()

except IOError as ex:
print( ex.args )

17.2.6 General advice on using exception handling

Never capture an exception and then just ignore it. In particular, you should not use
a general try ... except clause and then do nothing with the exception. If you think
you can ignore a certain exception, make sure that you capture that specific exception,
and comment in your program why you think you can ignore it. Basically, all exceptions
should either be handled responsibly or should just make the program crash.
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17.3 File handling exceptions

Any problem with accessing files, whether it is the inability to find a file, a problem with
reading or writing a file, or trying to open a protected system file or even a directory, leads
to an IOError exception. Since problems with file access are quite common and usually
at least partly outside the realm of control of the program, it is a good idea to handle
IOError exceptions in your programs when you can.

Since many different things can go wrong with files, the args tuple explained above might
be used to provide better information on what you have to do to handle the problem. For
instance, if your program asked the user to supply a filename, and when you open that
file you get an IOError, if the error number (the first element of the tuple) indicates that
the file does not exist (2), then an appropriate response might be to simply report this to
the user and ask for a new name.

The error numbers are defined in the errno module, which you can import in your pro-
gram. The module offers constants that you can use instead of the actual numbers, which
is the convention. The most common error numbers are:

• errno.ENOENT: No such file or directory. You get this when you try to access a file
that does not exist.

• errno.EACCESS: Permission denied. You can get this in varied circumstances, such
as when you try to read from a closed file, when you try to open a read-only file for
writing, or when you try to open a directory as if it is a file.

• errno.ENOSPC: No more space left on device. You get this when you try to write a
file and there is no room for it, for instance when you try to write to a USB-stick that
is full.

There is a big list of such error numbers which you can easily find in the reference man-
uals. You might not understand what all of them refer to, and actually many of them are
archaic and no longer occur on modern computer systems. The best thing to do when
you develop your program, is to try to capture IOErrors, and when you do encounter an
IOError, print the arguments so that you know the number and the error message. You
can then look up which errno constant that message belongs to, and respond to it in your
program if you can do that in a sensible way.

However, just as with other kinds of exceptions, it is better to avoid them than to capture
them. There is no reason that you should ever encounter a “file does not exist” error,
as you can test whether a file exists with the exists() and isfile() functions from the
os.path module.

listing1710.py

import errno

try:
fp = open( "NotAFile" )
fp.close()
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except IOError as ex:
if ex.args[0] == errno.ENOENT:

print( "File not found!" )
else:

print( ex.args[0], ex.args[1] )

Note: Exception FileNotFoundError is a “subclass” (see Chapter 22) of IOError, which,
in Python 3, is actually an alias for yet another exception, namely OSError. This means
that capturing FileNotFoundError is equivalent with capturing IOError (or OSError)
as ex and testing whether ex.args[0] holds errno.ENOENT.

17.4 Raising exceptions

You are allowed to raise exceptions yourself. For that, you use the keyword raise, and
follow that with one of the known exceptions (potentially, you could create your own,
new exceptions if you like, but you need to have studied Chapters 20 and 22 before you
are ready for it). You can give the exception arguments of any kind that you like.

You might wonder why you would want to raise your own exceptions. The answer is that
when you create a module, when an error occurs (for instance because the main program
that uses the module passes arguments to a function that are of an incorrect type), it is
bad form to print an error message. It is much better to just raise an exception, and let the
main program handle the exception. Here is an example of raising an exception:

listing1711.py

def getStringLenMax10( prompt ):
s = input( prompt )
if len( s ) > 10:

raise ValueError( "Length exceeds 10", len( s ) )
return s

print( getStringLenMax10( "Use 10 characters or less: " ) )

When you run this code, you see that if you enter a string of more than 10 characters, a
ValueError exception is raised. It has two arguments, which you can see displayed as a
tuple when Python splashes the exception on the screen. You can handle this exception
just as you would handle exceptions that Python itself produces.

The raise keyword has a second function: if you are in an except clause, and rather than
handle the exception there, you want to pass it on to the “next level” of the program,
you can just write the keyword raise, and the exception will be “re-raised.” This can be
useful when you want to do a bit of extra handling before the program “crashes” or the
exception is handled elsewhere. For instance:
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listing1712.py

fp = open( "pc_rose.txt ")
try:

buffer = fp.read()
print( buffer )

except IOError:
fp.close()
raise

fp.close()

This code probably runs fine, but if an IOError occurs when reading the file, the file gets
closed before the exception is re-raised.

What you learned

In this chapter, you learned about:

• Exception handling

• except, else, and finally

• ZeroDivisionError, IndexError, KeyError, IOError, ValueError, TypeError, and
FileNotFoundError

• Getting exception information

• File handling exceptions

• Raising and re-raising exceptions

Exercises

Exercise 17.1 Which exceptions can the code below raise? Extend the code to handle
all of them in a reasonable manner.

exercise1701.py

numlist = [ 100, 101, 0, "103", 104 ]

i1 = int( input( "Give an index: " ) )
print( "100 /", numlist[i1], "=", 100 / numlist[i1] )
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Binary Files

“Binary files” is the term used to refer to all files that are not text files. Executable pro-
grams are binary files, as are image files, movies, word processor documents, and many
other file types. It is not common to use Python to process binary files (usually binary files
are not handled by general-purpose programming languages, but by special-purpose pro-
grams), but it is possible. This chapter will explain how to deal with binary files.

18.1 Opening and closing binary files

The handling of binary files is quite similar to the handling of text files. You have to
open() a file when you want to access its contents, close() it when you are finished,
read() from the file and write() to the file.

When you open a binary file, you have to indicate to Python that you want to handle
this file in “binary mode.” You do this by adding a letter "b" to the mode argument. For
instance, to open a file in “binary read” mode, the mode argument should be "rb". You
can also open a file both for reading and writing; reading and writing you indicate with
mode "r+", so reading and writing in binary mode is "r+b" (while it is also possible to
open text files in "r+"mode, I did not indicate it in Chapter 16, as it seldom makes sense
to open text files in this mode). Just as with text files, if you open a binary file in write-
mode, with "wb", the file gets emptied. The mode "w+b" will open a file for both reading
and writing, but also empties the file to start with.

When you open a file for both reading and writing, if the file pointer is not at the end of
the file, when you write you actually overwrite.

You can open any file in binary mode, even text files. However, when you open text files
in binary mode, you treat them like binary files, which means that Python does not do the
automatic conversion of newline characters.

Closing a binary file is no different from closing a text file.
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fp = open( "pc_rose.txt", "rb" )
fp.close()

Note: The code above has no output – if it does have output, that is a runtime error,
meaning that “pc_rose.txt” is not available.

18.2 Reading a binary file

As binary files do not know the concept of “lines,” the only way to read from a binary file
is to use the read() method. If you use read() without argument, it reads the whole file
(starting at the file pointer). If you give the method an integer as parameter, that integer
indicates the number of bytes that are read from the file (starting at the file pointer, and
reading at maximum until the end of the file).

A “byte,” if you do not know, is an 8-bit character, i.e., a number between zero and 255,
which is stored in the smallest possible memory unit that a computer supports. The regu-
lar characters on a keyboard are each stored in a single byte, and the characters in a string
are also each a byte, though limited to a specific range of numbers.

18.2.1 Byte strings

Here we enter one of the more obscure parts of the Python language. When you read
from a binary file, the read()method does not return a regular string – it returns a “byte
string.” There are some subtle differences between regular strings and byte strings. To
show you these differences, I first have to tell you that you can indicate that a string is
a byte string by placing a letter b in front of it. So "Hello, world"! is a string, while
b"Hello, world"! is a byte string.

hw1 = "Hello, world!"
hw2 = b"Hello, world!"

print( hw1 )
print( hw2 )

The difference between a string and a byte string is that a byte string can contain char-
acters that a string cannot. For instance, if you remember the discussion on the ASCII
table, you may recall that each character has a number associated with it. You saw, for
instance, that “A” has the number 65, and the space has the number 32. The space was
the lowest numbered character that I showed, and you might wonder which characters
are associated with numbers 0 to 31. The answer is: these are control codes, and are not
legal characters that you can put in a string (barring a few exceptions). You can try to
put them in a string using an “escape code”: the escape sequence \x can be followed by a
two-character hexadecimal code that represents the character with the specified number.



18.2. Reading a binary file 221

For example, the hexadecimal code for a space is \x20, i.e., "Hello, world!" is the same
as "Hello,\x20world!" (this was discussed in Chapter 10).

hw1 = "Hello ,\x20world!"
print( hw1 )

But what if you try to put illegal characters in a string that way? They are ignored:

print( "Hello ,\x00\x01\x02world!" )

The problem is that such characters can occur in binary files, so you must be able to read
them from binary files. Since byte strings can contain such characters, reading from binary
files results in byte strings.

print( b"Hello ,\x00\x01\x02world!" )

Characters from a byte string you can access using indices, just like you do with regular
strings. The difference here is that with regular strings you get letters, while with byte
strings you get numbers. The numbers are the codes for the letters, which you would also
get when you use the ord() function on the corresponding letter.

listing1801.py

hw1 = "Hello, world!"
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hw2 = b"Hello, world!"

for c in hw1:
print( c, end=" " )

print()
for c in hw1:

print( ord( c ), end=" " )
print()
for c in hw2:

print( c, end=" " )

Since bytes are numbers between 0 and 255, you might want to convert a number to a
single-character byte string, or a list of numbers to a multi-character byte string. You can
do so using a bytes casting on a list of those numbers. Note that if you want to convert a
single character, you still have to use a list, but a list with just one element. Do not forget
to put the list brackets around that element, because if you do not, the result will not be
what you expect.

listing1802.py

bs = bytes( [72,101,108,108,111,44,32,119,111,114,108,100,33] )
print( bs )
bch = bytes( [72] )
print( bch )
wrong = bytes( 72 )
print( wrong )

Can you convert from a byte string to a regular string? You might think that string casting
works, but unfortunately it does not:

hw1 = b"Hello, world!"
hw2 = str( hw1 )
print( hw2 )

The reason that it does not, is that when a string is in the format of a byte string, it uses
an encoding scheme, according to the Unicode standard (discussed in Chapter 16). You
have to “decode” the byte string according to a certain decoding scheme, which usually
is "utf-8", as that is the most common Unicode format. You decode using the decode()
method, with the encoding scheme as a string parameter. You can also go from a string to
a byte string by encoding using the encode()method, again with the encoding scheme as
string parameter.

listing1803.py

hw1 = b"Hello, world!"
hw2 = hw1.decode( "utf-8" )
print( hw2 )
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hw3 = hw2.encode( "utf-8" )
print( hw3 )

In general you have little reason to read text files in binary mode, at least not if you just
want to access the text, and so you do not have to worry about encoding and decoding
byte strings. The exception is when you have to deal with a text file that uses Unicode
characters. Such a file cannot be treated as a text file, and you have to open it in binary
mode.

18.2.2 Binary reading demonstration

To demonstrate how reading a binary file works, I now open the file “pc_rose.txt,” and
read ten times ten bytes from it.

listing1804.py

fp = open( "pc_rose.txt", "rb" )
for i in range( 10 ):

buffer = fp.read( 10 )
print( buffer )

fp.close()

When you run the code, you see the ten byte strings being displayed. You may also notice
that there are certain control characters visible, such as \r and \n. The \r you would
not see if you read this file as a text file, because Python converts it, together with the
following \n, to a single \n. Moreover, in a regular string you would not see the \n,
because it is a newline character which tells Python to move to the next line.

If instead of a text file, you open an actual binary file, you probably will not be able to
make much sense of the output when you display it.

18.3 Writing a binary file

You write to a binary file using the write() method. The difference with writing to text
files is that you have to supply a byte string as argument, rather than a regular string. The
following code creates a binary file with some text in it.

listing1805.py

from os.path import getsize

FILENAME = "pc_binarytest.tmp"
fp = open( FILENAME , "wb" )
fp.write( b"And now for something completely different...\x0A\
\x00\x00\x00\x00\xD4\xE8\xE5\xA0\xD3\xF0\xE1\xEE\xE9\xF3\xE8\xA0\
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\xC9\xEE\xF1\xF5\xE9\xF3\xE9\xF4\xE9\xEF\xEE\x00\x00\x00" )
fp.close()
print( getsize( FILENAME ), "bytes written" )

Run the code above to create the binary file. The code below opens it in text mode (you
can do that, as Python cannot know that it actually is a binary file), reads the contents,
and prints the contents. You will see some readable text and some unreadable characters.

listing1806.py

FILENAME = "pc_binarytest.tmp"
fp = open( FILENAME , encoding="latin -1" )
while True:

buffer = fp.readline()
if buffer == "":

break
print( buffer )

fp.close()

Exercise Change the code above to open the file in binary mode and print the contents.

18.4 Positioning the file pointer

The file “pc_binarytest.tmp” actually contains a few secret words, which you cannot rec-
ognize when printing the file. I am going to use them as an illustration on how to move
the file pointer.

The file pointer indicates where in the file you start reading or writing. You can move the
file pointer with the seek() method. seek() gets two integer arguments, of which the
second one is optional. The first argument is a relative byte position. The second is the
position relative to which you want to move the file pointer.

The second argument can be 0, 1, or 2. 0 means “relative to the beginning of the file,”
1 means “relative to the current file pointer position,” and 2 means “relative to the end
of the file.” If you do not specify a second argument, it is assumed to be 0. In the os

module there are constants for this argument: os.SEEK_SET is 0, os.SEEK_CUR is 1, and
os.SEEK_END is 2.

The first parameter indicates how many bytes you move from the indicated position.
When starting at the beginning of the file, it should be a positive number; when start-
ing at the end of the file, it should be a negative number; when starting somewhere in the
middle of the file, it can be positive or negative. For instance, the statement fp.seek(5)
is equivalent to fp.seek(5,0), which moves the file pointer 5 bytes up from the start of
the file, placing it at the sixth byte.
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Should you wish to know at which position the file pointer is currently placed, you can
use the tell() method. Both seek() and tell() can be called for text files too, but are
not very useful then.

Now, the secret words are found starting at position 50, and run for a length of 23 bytes.
The encoding is such that if you subtract 128 from byte values, you get the ordinals for
the letters. So, here is how you get the words out of the file:

listing1807.py

fp = open( "pc_binarytest.tmp", "rb" )
print( "1. Current position of the file pointer is", fp.tell() )
fp.seek( 50 )
print( "2. Current position of the file pointer is", fp.tell() )
buffer = fp.read( 23 )
print( "3. Current position of the file pointer is", fp.tell() )
fp.close()

print( buffer )
s = ""
for c in buffer:

s += chr( c-128 )
print( "The secret words are:", s )

The seek() method is particularly useful when you open a file in “reading and writing”
mode ("r+b"). It allows you to move through the file, reading where you need to read,
and (over)writing where you need to (over)write.

Exercise Open the file “pc_binarytest.tmp” in binary “reading and writing” mode, and
overwrite the encoded secret words with their decoded translation. Once you have closed
the file, open it again in text mode, read the contents, and display them. If you did it all
correctly, you should see two readable lines. Should you mess up the file in some way,
you can always recreate it.

What you learned

In this chapter, you learned about:

• Using binary files for reading, writing, and reading plus writing

• Binary read() and write()

• Byte strings

• Conversion between strings and byte strings using encode() and decode()

• seek() and tell()methods



Exercises 226

Exercises

Exercise 18.1 Create a simple file encryption program. Open a file and read it in binary
mode. For each byte, if it is smaller than 128, add 128; if it is bigger than or equal to 128,
subtract 128. Overwrite the byte with new value. Test the program on a copy of a text
file (make sure it is a copy, because you will destroy the file). Check the contents of the
encrypted file: they should be a mess. However, when you run the program again, the
original file should be restored. If it isn’t, you have a bug in your program. Aren’t you
glad you were only working on a copy?

Exercise 18.2 The fourteen most common letters in the English language are:
etaoinshrdlcum. Write a text compression program based on this fact. The compres-
sion program stores these letters in half-bytes. A half-byte can take the numbers zero to
15. If you only use the numbers 1 to 15, each number can represent one of these fourteen
most common letters, and you can use the number 15 for the space. So you can store two
of these letters (or space) in a byte (the value for the whole byte would be 16 times the
value for the first letter, plus the second letter). If in the text you encounter a letter that
is not amongst these fifteen, you indicate that by storing a zero-half-byte, followed by a
whole byte that represents the unencoded letter. Of course, in this setup it is possible that
the full byte is actually divided over two bytes, namely the second half-byte of one byte,
and the first half-byte of the other byte.

Hint: an easy approach is to build a list of half-bytes. For the most common letters, you
store their index-value for the string "etaoinshrdlcum " plus 1 (which is a value in the
range 1 to 15; notice that the last character in the string is the space). For the other char-
acters, you store three half bytes, namely zero, followed by the ordinal value of the char-
acter divided by 16 (rounded down), followed by that ordinal value modulo 16. Once
the half-byte-list is finished, you can turn it into a byte list by taking pairs of half-bytes,
multiplying the first by 16 and adding the second. Create a byte string using bytes()
casting.

For testing: the string "Hello, world!", which is 13 characters in length, will become the
11-character byte string b '\x04\x81\xbb@,\xf0wI\xba\x02\x10' if you follow the proce-
dure outlined above (which assigns e the value 1, t the value 2, etcetera).

A note on the translation of "Hello, world!" to the given byte string (see Figure 18.1):
You may remember that a hexadecimal representation of a byte consists of two hexadec-
imal digits, i.e., each digit is a half-byte. Using that information, you can see how the
translation has been done. The first byte is \x04, i.e., the first half-byte is zero. That
means that the first character is given literally, i.e., it consists of the second half-byte of
\x04, and the first half-byte of the next byte, which is \x81. That is the byte \x48. If you
look up the hexadecimal code 48 in the ASCII table (given in the chapter on strings), you
see that that is the character H. The following half-byte is the second half-byte of \x81, i.e.,
it is 1. Since this is not zero, it is one of the most common characters, namely the first
one, which is e. So now you see how "Hello, world!" is compressed as the byte string
provided. The byte string does contain a few characters that are not displayed as their
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Figure 18.1: Compression example.

hexadecimal code; if you really want to know which hexadecimal code they represent,
look them up in the ASCII table.

By the way, despite the long description, the whole program needs less than 30 lines of
code, including comments, empty lines, and testing statements.

Exercise 18.3 As a collary to the previous exercise, write a decompression program for
the produced strings.

Hint: Just do the opposite of what you did in the previous exercise: rebuild the half-byte-
list. That list is then easily converted back to the original string.

Exercise 18.4 This chapter is about binary files, and the previous two exercises were
not, at least, not directly. There simply is not much that you can exercise with where
binary files are concerned; the main problems are with handling byte values, which is
what the previous two exercises were concerned with. But to round off what these two
exercises did, let’s now use what you developed in them to compress files.

Write a program that asks for an input file, that must exist, and an output file, that should
not exist. Then it asks whether you want to compress or decompress. If you choose
compress, the input file is compressed using the method developed above, and written
as the output file. If you choose decompress, the input file is decompressed under the
assumption that it was compressed with the method developed above, and written as the
output file. So you should be able to get the original file again by first compressing and
then decompressing.

You best read the whole file in memory before (de)compressing, so that you do not get into
problems when a byte string ends in half a byte instead of a full byte after compression.
You also best treat both the input file and the output file as binary files.
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Bitwise Operators

Chapter 18 discussed dealing with binary files. When binary files are used, you are no
longer working with characters and numbers; rather, you are working with bytes. To ma-
nipulate information on the level of bytes, Python offers a number of so-called “bitwise
operators.” You will not need these often, but when you delve into binary file manipula-
tion, they might come in handy.

19.1 Bits and bytes

A bit is the smallest size data unit that a computer can handle. A single bit can have only
two different values, namely 1 and zero.

While "prehistoric" computers were indeed programmed by directly dealing with single
ones and zeroes, very quickly computers were introduced that handled groups of bits.
The smallest unit in that respect is the “byte,” which consists of 8 bits. Today, the concept
of a byte still permeates most computer languages, even though computers have been
enhanced to use larger collections of bytes as smallest data units (notably, most computers
today either deal with 32-bits or 64-bits data units).

19.1.1 Binary counting

A byte consists of 8 bits, which you can display as a sequence of ones and zeroes,
e.g., 11010010. As such, a byte can be used to represent a number in binary code.
If a byte is used to represent a positive number, that number can be calculated by
multiplying the right-most bit by 1, the bit next to that by 2, the bit next to that by
4, etcetera, and adding up all those values. For instance, the sequence 11010010 is
1*128+1*64+0*32+1*16+0*8+0*4+1*2+0*1, which is 210. Note that this is similar to cal-
culating the value of decimal numbers, where the rightmost digit is multiplied by 1, the
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digit next to that by 10, the digit next to that by 100, etcetera, and adding up all those re-
sulting values. It is also similar to hexadecimal counting, which was discussed in Chapter
10.

When bits are numbered, by convention numbering starts at zero at the rightmost end,
and numbers are increased when counting to the left, i.e., the rightmost bit has number 0,
the bit next to that has number 1, the bit next to that has number 2, etcetera. The reason is
that the rightmost bit represents the value 20 (which, in case you forgot, equals 1), the bit
next to it the value 21, the bit next to that 22, etcetera.

Byte 1 1 0 1 0 0 1 0
Number of bit 7 6 5 4 3 2 1 0
Represented value 27 26 25 24 23 22 21 20

Byte value 27 + 26 + 0 + 24 + 0 + 0 + 21 + 0 = 210

Exercise Write some code that calculates the decimal number represented by a binary
string of 8 ones and zeroes. The nicest solution uses a loop, a multiplier, and a total. The
total starts at 0. The multiplier (which is the represented value in the example above)
starts at 1, and every time the loop is traversed it is multiplied by 2. The loop processes
the string from right to left (or the reversed string from left to right), and if the character
encountered is a “1,” it adds the multiplier to a total. This will end up with the number
represented by the string as the total.

The lowest number that can be expressed by a byte is 00000000, which equals zero. The
highest is 11111111, which equals 255. Thus, there are 256 different values that can be
expressed by one byte.

19.1.2 Character encoding

The most basic character encoding mechanism is ASCII. The ASCII table was shown in
Chapter 10, including hexadecimal codes. You may have noticed that the codes used ran
from (hexadecimal) 20 to 7E. The codes below 20 are used for special sequences (such as
the newline character). The code 7F usually represent the Del key. No other codes are
in use, which means that all ASCII characters can be represented by 7 bits, or the 8-bit
sequences 00000000 to 01111111.

While computers use bytes as basic data unit, the ASCII character set does not use 128 of
all the values that can be stored in a byte. All these unused bytes have a 1 as their leftmost
bit. Naturally, some character encodings were introduced that assign a character to all
256 different values that a byte can take. A typical one is latin-1, which is discussed in
Chapter 16. Unfortunately, not all encoding mechanisms assign the same characters to the
numbers between 128 and 255. However, all encoding mechanisms in use today at least
have the basic ASCII characters for the values 0 to 127.

Python is based on Unicode encoding. Specifically, it uses UTF-8 as character encoding
mechanism (discussed in Chapters 10 and 16). UTF-8 encoding works as follows:
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• A byte that has a zero as leftmost bit is an ASCII character.

• A byte that has a 1 as leftmost bit is the start of a sequence of multiple bytes that
represent one character. The sequence consists of a leading byte (the leftmost byte)
and one or more continuation bytes.

• For a multibyte sequence, the leading byte has, from left to right, several bits with
value 1, followed by a bit with value zero, followed by the remaining bits. The
length of the total multibyte sequence is as many bytes as there are bits with value
1 to the left of the leftmost zero. E.g., if the leading byte has value 1110xxxx (where
each x is some bit value), the whole sequence is three bytes long. This includes
the leading byte. The minimum sequence length is two bytes, and the maximum
sequence length is six bytes (the leading byte will then be 1111110x).

• Each continuation byte has 10 as the two leftmost bits.

• In practice, UTF-8 encoding is restricted to at most 4-byte sequences, and some of
the 4-byte sequences have been excluded.

This means that UTF-8 can express a great many different characters. However, it also
means that, due to the way characters are encoded, some bit patterns do not express UTF-
8 characters. While any bit pattern expresses a legal string with latin-1 encoding, it is
possible to construct a bit pattern that does not express a legal UTF-8 encoding. This may
cause those annoying UnicodeDecodeErrors when reading files.

19.1.3 Number encoding

The way that numbers are encoded as bit patterns is somewhat tricky, and in general you
do not need to bother with it. You should know that positive integers are always encoded
as multi-byte patterns, that have a zero as their leftmost bit. The rest of the pattern is like
you would expect, and as explained above.

Negative numbers, however, are encoded rather differently. They use the so-called “two’s
complement” system. When a negative number is encoded, first the absolute value of that
number (i.e., the positive version) is taken. From this number, all the bits are “flipped,”
i.e., every 1 becomes a zero and every zero becomes a 1. Finally, 1 is numerically added
to the result. The bit pattern of a negative number therefore always has a 1 as its leftmost
bit.

For example, to encode −1, first the bit pattern of 1 is taken, which is ...00000001. All the
bits are flipped, which gives ...11111110. Finally, 1 is added the the result, which gives
...11111111. Thus, −1 is encoded as a sequence of only 1s.

As for floating point numbers, these use scientific notation, whereby part of the multi-byte
pattern is used as exponent.

The reason that I am explaining all of this, is to indicate that if you want to handle bit
patterns in a Python program, and you want to treat these patterns as numbers, you best
work only with positive integers, as the bit patterns of those are easily understood.
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19.2 Manipulating bits
Python offers a variety of operators that allow the manipulation of data items at the level
of bits. These are the following:

<< shift left

>> shift right

& bitwise and

| bitwise or

~ bitwise not

^ bitwise exclusive or

They are used as follows.

19.2.1 Shifting bits

When you have a data item, you can use the << and >> to shift its bits to the left or right.
x<<y shifts the bits of x by y places to the left, bringing in zeroes from the right. x>>y shifts
the bits of x by y places to the right, copying the leftmost bit of x at the left while shifting,
and losing the bits of x at the right. x and y must both be numbers.

For example, the exclamation mark ! has decimal code 33, which is written as 00100001 in
binary. Shifting this pattern one place to the left gives 01000010, i.e., 66 in decimal, which
is the code for the capital B. You can reverse this by shifting the pattern of B one place to
the right.

code = "!"
print( chr(ord(code)<<1) )
code = "B"
print( chr(ord(code)>>1) )

You might have noticed that shifting a number one place to the left amounts to doubling
the number, while shifting it one place to the right amounts to halving it (while rounding
down). Indeed, you can double the value expressed by a bit pattern by placing a zero to
the right of it – and you can halve it (using integer division) by removing the rightmost
bit.

print( "345 quadrupled makes", 345<<2 )
print( "345 divided by 8 makes", 345>>3 )

19.2.2 Bitwise and

The bitwise and operator (&) takes two bit patterns, and produces a new pattern that is
all zeroes, except for those places where both bit patterns had a 1, which will then also
have a 1 in the output pattern. For instance, if the input patterns are the number 11
(00001011) and the number 6 (00000110), then the bitwise and operator produces the pat-
tern 00000010, which is the number 2.
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print( 11 & 6 )

Exercise The bitwise and is an easy way to take (positive) numbers modulo a power of
2. For instance, if you want to take a number modulo 16, this is the same as performing
the bitwise and on the number with 15, which is 00001111. Check that the value of 345
modulo 32 is the same as taking 345 & 31.

19.2.3 Bitwise or

The bitwise or operator (|) takes two bit patterns, and produces a new pattern that is all
ones, except for those places where both bit patterns had a 0, which will then also have a
0 in the output pattern. For instance, if the input patterns are the number 11 (00001011)
and the number 6 (00000110), then the bitwise or operator produces the pattern 00001111,
which is the number 15.

print( 11 | 6 )

Exercise To set a single bit in a pattern to the value 1 (this is usually called “setting a
bit”), you can use the bitwise or and a pattern that consists of only zeroes, except for a 1
in the spot where you want to set the bit. An easy way to create a bit pattern with only
one bit set, is to start with the number 1, and use the shift-left operator to shift that bit to
the left as far as you need. Now take a number and set the bit with index 7 (i.e., the eight
bit from the right) to 1.

19.2.4 Bitwise not

The bitwise not operator (~) is placed in front of a bit pattern, and then produces a new
pattern that has all the bits of the original pattern “flipped,” i.e., each zero becomes a 1
and each 1 becomes a zero. For instance, if the input pattern is the number 11 (00001011),
then the bitwise not produces the pattern 11110100, which is the number −12. If you
wonder why it is −12 and not −11: this is the result of the two’s complement encoding,
which I explained above. Don’t worry too much about it.

print( ~11 )

Exercise To clear a single bit in a pattern (i.e., setting it to the value zero), you can use
the bitwise and and a pattern that consists of only 1s, except for a zero in the spot where
you want to clear the bit. An easy way to create a bit pattern consisting on only ones,
except for a zero in the intended spot, is to start with the number 1, and use the shift-left
operator to shift that bit to the left as far as you need. Then invert the pattern with the
bitwise not operator. Now take a number and clear the bit with index 3 (i.e., the fourth
bit from the right).
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19.2.5 Bitwise xor

The bitwise exclusive or, or “xor,” operator (^) takes two bit patterns, and produces a
new pattern that has a zero in all places where the two bit patterns have the same bit, and
a 1 in all places where the two bit patterns have different bits. For instance, if the input
patterns are the number 11 (00001011) and the number 6 (00000110), then the bitwise xor

operator produces the pattern 00001101, which is the number 13.

print( 11 ^ 6 )

Exercise The bitwise xor operator provides an easy way to encrypt numbers. Take a bit
pattern, and call it the “mask.” Apply the mask to a number using the xor. This gives a
new number, which is the encrypted number. Somebody who does not know the mask,
can’t tell what the original number was. However, someone who does know the mask,
can easily get the original number back, by applying the mask once more. Try this.

19.2.6 Precedence of bitwise operators

Warning: the precedence of bitwise operators is not that they are handled before other op-
erators. Make sure that you use parentheses to order the operators when you use bitwise
operators in a calculation. For instance, you might think that 1<<1 + 2<<1 is the same as
1*2 + 2*2, but in actuality it is evaluated as (1<<(1+2))<<1, or 1*8*2.

print( 1<<1 + 2<<1 )
print( (1<<1) + (2<<1) )

19.3 Usefulness of bitwise operations

Anything that you can do with bitwise operators, you can also do with general calcula-
tions, with the advantage of general calculations that they can do much more than bitwise
operators. So what is the use of bitwise operators?

Bitwise operations are incredibly fast. Much, much faster than regular calculations. So
should you use them when making calculations, when it is opportune to do so? The
answer is no, for two reasons:

• Python is already smart enough to recognize that some calculations can be executed
using bitwise operators, so it will make the conversion for you.

• If you really want a fast program, you should not use Python at all.

Another use that is often mentioned, is that they facilitate storing boolean values in a
small storage space. For instance, if I have eight booleans that I want to store, I can use a
tuple of eight booleans, which amounts to at least eight bytes of space, or encode all eight
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of them in one byte using bitwise operators. However, in today’s computers space is of
little concern, so only if you are talking about huge, huge data collections you might get
worried about space.

So what is the use of bitwise operators then? They are actually of fairly little use, unless
you have to create programs that need to work “close to the machine.” Occasionally you
have to deal with data structures that are most naturally handled using bitwise operators.
They may also help when you need to manipulate the content of binary files.

To give an example: colors are usually encoded as three bytes, for the red, green, and blue
channel. A color number is thus a three-byte number. Bitwise operators are a natural way
to distinguish the separate color channels from a color number. Here is a function that
does that:

listing1901.py

def getRGB( color ):
blue = color & 255
green = (color >> 8) & 255
red = (color >> 16) & 255
return red, green, blue

r, g, b = getRGB( 223567 )
print( "red={}, green={}, blue={}".format( r, g, b ) )

For someone who knows about color encoding, such a function reads well.

What you learned

In this chapter, you learned about:

• Binary counting

• Character and number encoding

• Bitwise operators <<, >>, &, |, ~, and ^

Exercises

Exercise 19.1 Encode a string using the bitwise exclusive or (xor) and the pattern
00101010 as mask. Display the resulting string. Then decode it, and display the decoded
string, which should be the same as the original string.
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Exercise 19.2 Write a function that gets an integer, a boolean, and a number. The integer
is used to store booleans. Each bit in the integer represents True or False. The bits of the
integer are numbered as the convention indicates, with the rightmost bit having number
zero, the bit next to that number 1, etcetera. If the boolean parameter is True, the function
sets the bit corresponding to the number parameter in the integer to 1. If the boolean
parameter is False, the function clears the bit corresponding to the number parameter in
the integer (i.e., it sets it to 0). The function then returns the integer.

Also write a function that gets an integer and a number as parameters, and returns True
if the bit corresponding to the number is set to 1, and False otherwise.

To test the functions, it helps to create an extra function that displays the bits in the num-
ber. The display function can make use of the function that gets the bit values.
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Object Orientation

The chapters until this point covered an approach to programming that is often referred to
as “structured programming” or “imperative programming,” wherein a program is con-
sidered a sequence of statements, decisions, and loops. You can solve any programming
problem with a structured programming approach. However, in the last decades several
other programming “paradigms” have been coined up, which help designing and imple-
menting large-scale programs. One of the most successful paradigms is “object orienta-
tion,” and most modern programming languages support the object oriented paradigm.
Python is, in fact, an object oriented language.

While object orientation tends to provide a natural way to look at problems and solutions,
designing an object oriented program can be quite hard. The reason that it is hard, is that
you have to really think about your approach to a problem in all of its aspects, before
you start coding. For bigger problems, this can be daunting, especially when you lack
experience with programming. However, for bigger problems you have to spend a lot
of time designing your solution anyway, and an object oriented approach may be quite
helpful in creating it. Moreover, you will find that most modules provide object oriented
implementations, and that object orientation can be helpful for many smaller problems
too.

Since object orientation is a broad topic, several chapters will be spent on it, of which this
one is the first. It discusses the basics of object orientation, leaving the more specialized
(and powereful!) aspects of object orientation for later chapters.

20.1 The object oriented world

While I am typing this, I am sitting at my kitchen table. Next to me is a bowl of fruit.
There are some apples in the bowl. While these apples share certain features, they have
their differences too. They share their name, their price, and their age, but they all have
(slightly) different weights. There are also some oranges in the bowl. Like the apples,
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they are fruits, but they have a lot of differences with apples: different names, different
colors, different trees that they grow from. Still, they share some things with apples that
all fruits share, and make them different from, for instance, the table I am sitting at. I can
eat a fruit, i.e., I can eat apples and I can eat oranges. I am not going to try to eat a table.

When I try to model my world in a computer program, I have to model objects: objects
such as apples, oranges, and tables. Some of these objects have a lot in common, for
instance, each apple shares a lot of features with every other apple. It behooves me to
define a class “apple” which contains the features that all apples share, and only fill in the
few features in which apples differ from each other for each individual apple object. The
same holds for oranges, they should get their own class “orange.” And while “apples”
and “oranges” are quite different, they still share some features that entail that I would
like to put them in the same class: the class “fruit.” Every object that belongs to the class
“fruit” at least has the property that I can eat it. Which means that each individual apple
object not only belongs to the class “apple,” but also belongs to the class “fruit” – just like
the “oranges.”

Come to think of it: I can eat more things than only apples and oranges. I can eat cakes
too. And mushrooms. And bread. And licorice. So maybe I need another class, which the
class “fruit” also belongs to. The class “food,” perhaps?

What this leads to, is that if I try to model the world, or part of the world, I need to
model objects – and rather than modeling each separate object, I am better off defining
classes of objects, as that means I can make statements about certain groups of objects in
general. I can talk about the relationships between classes, and I can define functions that
work on classes; for instance, I can define a functionality “eat” that works on every object
that is part of the class “food,” which removes the object from the world and assigns its
“nutrients” to the object that does the “eating.” Since I can “eat” objects that belong to the
class “food,” I can eat “fruit.” And since I can eat “fruit,” I can eat any “apple” object.

A computer program is, in essence, a model of a part of the world. As such, there are
many programs that benefit from the ability to deal with objects, classes, relationships,
and functionalities (methods) that work on objects.

20.1.1 Students, teachers, and courses

Many programs deal with persons. The student administration deals with students, who
are persons. These students follow courses, which are taught by teachers, who are also
persons. Undoubtedly, the student administration stores information on students and
teachers, and probably the programmer who created the software for the student admin-
istration was smart enough to create a single interface that allows entering person data.

What data do all persons share, as far as the student administration is concerned? Well,
probably all persons have a first and a last name. They have an address. They also have
an age and a gender. They all get assigned an administration number, so that for the
administration they have at least one thing that makes them unique. These data elements
are all “properties” or “attributes” of “persons.”
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I mentioned the properties first name, last name, address, age, gender, and administration
number. One of these is actually more like a function than a property. Do you see which
one?

The answer is “age.” Age is calculated from date of birth and current date. While you
can consider age a property, it is a property that should be calculated each time that it
is needed. You cannot store it as a value, as tomorrow it might be different from today,
without anything changing but the date. Therefore, if I design a class Person that models
a person, I best make “date of birth” an attribute of the person, while “age” is a method of
the person. Remember that methods are functions that belong to a certain data type: if a
data type Person is defined, date_of_birth is an attribute of that data type, while age()
is a method of that data type that returns the person’s age as an integer.

Students and teachers are both persons. They share the properties of the Person class.
Yet there are differences. Teachers, for instance, get paid a salary, while students do not.
Students, on the other hand, earn grades in courses, which teachers do not; they teach the
courses. From this follow two obvious observations:

• While students and teachers are both persons, they have clear differences; besides a
class Person I need a class Student and a class Teacher, both of which are derived
from the class Person.

• “Courses” seem to be an inherent part of the student administration world, so a
class Course might be needed too.

Once Course has become a class in the student administration world, relationships be-
come visible. Students have relationships to multiple courses, and teachers do too, though
in a different capacity. Students “enroll” in courses. It looks like an enroll() method is
needed, that allows a student to get into a relationship with a course. The question is:
is enroll() a method of Student, that gets a course as argument, or is it a method of
Course, that gets a student as argument? What do you think?

The answer is: “it depends.” It depends on how you envision the student administration
world. To me, it feels more natural to make enroll() a method of a course, as I view a
course as a collection of students. However, in principle there is nothing against seeing a
student as an entity who encompasses a collection of courses. You might also decide to
make enroll() a method of each of them, or think of yet another class that contains the
enroll()method that has both the student and the course as arguments.

This illustrates the difficulty of the object oriented view on program design: by designing
the classes that form the world model that the program works with, choices need to be
made that may have a big impact on how the program works. Weak choices may lead to
difficulties in implementation. You need to spend considerable time on designing the ob-
ject oriented model that underlies the program, and try to anticipate all the consequences
of your choices. This is hard even for experienced designers. However, a solid object ori-
ented model makes programs easy to read, understand and maintain. The object oriented
paradigm is often worth the hassle.
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20.1.2 Classes, objects, and hierarchies

In the object oriented world, every distinguishable entity belongs to a “class.” A class is a
general model for a specific group of entities. It describes all the attributes that these enti-
ties have, and it describes the methods that the class offers the outside world to influence
it.

A class, by itself, is not an entity. An entity that belongs to the class, is an “object.” The
terminology is that an object is an “instance” of a particular class. While the class describes
its attributes, an object that is an instance of the class has values for these attributes. While
the class describes the methods that it supports, to execute such a method one needs an
object that is an instance of the class to call the method with.

A class is a data type, an object is a value.

Classes may exist in hierarchies. A general, high-level class may describe properties
and methods that are shared by different subclasses. Each subclass may add properties,
add methods, and even change properties and methods (though in general cannot – and
should not – completely remove them). Each subclass may have further subclasses.

For instance, the class Apple may be a subclass of the class Fruit, which may be a subclass
of the class Food. This means that where in a program an object of the class Food is needed,
you can supply an object that is an instance of the class Food, but also an object that is an
instance of the class Fruit, or an object that is an instance of the class Apple. This does
not work the other way around, though. When, for instance, a function in a program
was designed for instances of Apple, you cannot use it with instances of Fruit, or other
subclasses of Fruit. While an Apple is Fruit, Fruit is not an Apple, and Apples aren’t
Oranges.

Such a hierarchy is implemented using “inheritance,” which is the topic of Chapter 22.

20.1.3 Classes and data types in Python

Most object oriented programming languages have some basic data types, and allow you
to create classes, i.e., new data types. This was the case for Python up to Python 2. Since
Python 3, every data type is a class.

You can recognize some of this by the way that many functionalities of the basic data
types are implemented as methods. Remember that a method is always called as
<variable>.<method>(), contrary to functions that work on a variable, which are called
as <function>( <variable> ). The fact that when you want to create a lower case ver-
sion of a string, you effectuate that as <string>.lower() already indicates that the string
is an instance of a class.

But not only strings are class instances: integers and floats are too. They even have meth-
ods, though these are seldom used explicitly. Some methods are used implicitly, e.g.,
when you add two numbers together with +, that is actually a method call. This will be
discussed in Chapter 21.
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20.2 Classes and objects

Now the basic philosophies of object orientation are out of the way, I am going to discuss
how to use object orientation in Python. It starts with creating new classes using the
keyword class.

20.2.1 class

A class can be considered a new data type. Once a class is created, you can assign instances
of the class to variables. To start simple, I am going to create a class that represents a
point in 2D space. I name this class Point (the naming of classes is restricted to the same
requirements as the naming of variables, and it is convention to let the names of classes
start with a capital). Creating this class in Python is incredibly easy:

class Point:
pass

The keyword pass in the class definition means “do nothing.” This keyword can be used
wherever you need to place a statement, but you have nothing yet to place there. You
cannot just leave it empty or give a comment and nothing else. But as soon as statements
are added, you no longer need pass.

To create an object that is an instance of the class, I assign to a variable the name of the
class, with parentheses after it, as if it is a function call (you can have arguments between
the parenthesis, which will be discussed a bit later in this chapter).

class Point:
pass

p = Point()
print( type( p ) )

Of course, a point is more than just an object. A point has an x and a y coordinate. Since
Python is a soft-typed language, you need to assign values to attributes to create them.
This is done in a special initialization method in the class.

20.2.2 __init__()

The initialization method of a class has the name __init__ (that’s two underscores, fol-
lowed by the word init, followed by two more underscores). Even if the __init__()
method is not defined explicitly for the class, it still exists. You use the __init__()method
to initialize everything that you want to initialize upon creation of an instance of the class.

In the case of Point, __init__() should assure that any Point object has an x and a y

coordinate. This is implemented as follows:
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listing2001.py

class Point:
def __init__( self ):

self.x = 0.0
self.y = 0.0

p = Point()
print( "({}, {})".format( p.x, p.y ) )

Study the code above closely. You see that __init__() is defined just as you would define
a function, inside the class definition.

__init__() gets one parameter, which is called self. Every method that you define,
always gets at least one parameter, which will get filled with a reference to the object for
which the method is called. By convention, this first parameter is always called self. That
is not mandatory, but everybody always does it like this. If you forget to include that first
parameter, you will get a runtime error. If you forget to include the first parameter self
but you do have other parameters, Python will fill the first of the parameters that you do
list with a reference to the object, and you will probably also get a runtime error (as you
did not expect that that would happen).

In the __init__() method for Point, the object that is created gets two attributes, which
are variables that are part of the object. They are called x and y, and since they are part of
the object, you refer to them as self.x and self.y. They both get initial value 0.0, which
makes them floats.

To refer to these attributes when the object has been created, you use the syntax
<object>.<attribute>, as you can see on the last line of the code, where the object that
has just been created is used in a print() statement.

You might wonder if you can only create attributes for an object in the __init__()
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method. The answer is: no, you can create attributes in other methods too, and even
outside the class definition.

class Point:
def __init__( self ):

self.x = 0.0
self.y = 0.0

p = Point()
p.z = 0.0
print( "({}, {}, {})".format( p.x, p.y, p.z ) )

Most Python programmers (including me) would consider what happens in the code
above bad form. It is good practice to create all the attributes that you need exclusively
in the __init__() method (though you can change their values elsewhere), so that you
know that every instance of the class has them, and no instances have more.

If you do need a version of the class with extra attributes, you can use “inheritance” to
create new classes based on existing ones, which do have these extra attributes. Inheri-
tance will be discussed in a later chapter. For now, make sure that you create classes with
all their attributes defined in the __init__()method.

Like any method, __init__() can get arguments. You can use such arguments to initial-
ize (some of) the attributes. For instance, if I want to create an instance of Point while
immediately specifying the values for the x and y coordinates, I can use the following
class definition:

listing2002.py
class Point:

def __init__( self, x, y ):
self.x = x

self.y = y

p = Point( 3.5, 5.0 )
print( "({}, {})".format( p.x, p.y ) )

__init__() is now defined with three parameters. The first is still self, as it always has
to be there. The second and third are called x and y. I could have called them anything
I like (within the boundaries of variable naming), but I went for x and y as these are the
most logical names. I assign x to self.x, and y to self.y.

I call the creation of a point now with values for the x and y coordinates as arguments.
The first argument will be passed to the method in the second parameter, and the second
in the third parameter, as the first parameter will be used to pass the reference to the object
itself.

If you want to make it optional for the programmer to pass such values, you can give the
parameters default values using an assignment in the parameter specification, as follows:
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listing2003.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

p1 = Point()
print( "({}, {})".format( p1.x, p1.y ) )

p2 = Point( 3.5, 5.0 )
print( "({}, {})".format( p2.x, p2.y ) )

Exercise Create a list of all the points with integer coordinates, with both their x and y

coordinates ranging from 0 to 3.

20.2.3 __repr__() and __str__()

In the code above, I print the point attributes. What happens if I try to print the point
itself?

listing2004.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

p = Point( 3.5, 5.0 )
print( p )

Try it, and you will agree that the result is not very informative. When I print a point,
I want to see the coordinates. Python offers another predefined method for that, which
is __repr__(). __repr__() should return a string, which contains what you want to see
when an object is displayed.

listing2005.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

p = Point( 3.5, 5.0 )
print( p )
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That looks much better.

Python offers yet another standard method for creating a string version of an object,
namely __str__(). __str__() is the same as __repr__(), but it is only used when the
object is being printed or passed to a format() method. If __str__() is not defined, it is
the same as __repr__() (but not vice versa). If __str__() is defined, you can ensure that
something different is shown when print() is used, than what is shown in other places.

You now might think: “what other places?” The main “other place” where objects are
displayed is in the command shell, when you just type the name of the variable that
contains an object.

It is commonly understood that in the __repr__() method you are supposed to return a
string that contains each and every bit of information that is needed to recreate an object,
while in __str__() you can just return a string that contains a nicely formatted represen-
tation of the most important information that you want to see in the program. Very often,
these two are the same.

Many programmers ignore __repr__() altogether and only define __str__(). I think
this is the wrong way around: you should always define __repr__(), while __str__() is
optional. If you use __repr__(), make sure that you indeed return all details of an object.
If you leave things out, it is better to just use __str__().

Exercise Expand the Point class with a color attribute. A color is represented by
a number between 0 and 224 − 1. Make sure the color is used both in the __init__()
method and in the __repr__()method.

20.3 Methods

I already introduced to you the three methods __init__(), __repr__(), and __str__().
These are predefined methods that every class has. As they were defined by the Python
developers, they have the eccentric names that start and end with a double underscore.
There are several more of such methods, which I will discuss in later chapters.

You can also define your own methods for a class. Such methods get names similar to
names you give to functions, and tend to follow the same conventions: starting with a
lower case letter, and if there are different words either have underscores between them
or capitalize the first letter of the second and later words. The prefix is is used for methods
that provide a True/False statement about the object, the prefix get is used to get a value
from an object, and the prefix set is used to set a value for an object.

For instance, for a point I can create a method distance_from_origin(), which calculates
the distance from the point (0,0) to the given point.

listing2006.py

from math import sqrt
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class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

def distance_from_origin( self ):
return sqrt( self.x * self.x + self.y * self.y )

p = Point( 3.5, 5.0 )
print( p.distance_from_origin() )

You may also create methods that change the object in some way. For instance, the “trans-
lation” of points over a distance is defined as a specific shift in the horizontal and in the
vertical direction. A method translate() gets two arguments (beyond the self refer-
ence), which are the horizontal and vertical shifts.

listing2007.py
from math import sqrt

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

def translate( self, shift_x, shift_y ):
self.x += shift_x

self.y += shift_y

p = Point( 3.5, 5.0 )
p.translate( -3, 7 )
print( p )

As you can see, I did not specify a return value (I did not need it), but the new
translate()method made changes to the point coordinates.

Exercise Enhance the Point class with a method that turns a point into its polar oppo-
site, i.e., invert the signs of its coordinates, e.g., (3,4) becomes (-3,-4) and (-1,2) becomes
(1,-2).

20.4 Nesting objects
Objects can be part of other objects. For instance, a rectangle can be defined as a point
that indicates its top-left corner, a width, and a height. As such, the class Rectangle can
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be defined as follows:

listing2008.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

class Rectangle:
def __init__( self, point, width, height ):

self.point = point

self.width = width

self.height = height

def __repr__( self ):
return "[{},w={},h={}]".format( self.point, self.width,

self.height )

p = Point( 3.5, 5.0 )
r = Rectangle( p, 4.0, 2.0 )
print( r )

In this definition, the Rectangle object contains a Point object.

Exercise Create a different version of the Rectangle class, that instead of the top-left
corner point, width, and height, gets the top-left corner point and the lower-right corner
point.

20.4.1 Copies and references

Below is a copy of the code above, expanded with a few extra lines that make a change to
the Point p.

listing2009.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

class Rectangle:
def __init__( self, point, width, height ):

self.point = point
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self.width = width

self.height = height

def __repr__( self ):
return "[{},w={},h={}]".format( self.point, self.width,

self.height )

p = Point( 3.5, 5.0 )
r = Rectangle( p, 4.0, 2.0 )
print( r )

p.x = 1.0
p.y = 1.0
print( r )

When you run this code, you see that by changing p, the Rectangle r is also changed. The
point that it contains, is actually a reference to the point that was passed to the __init__()
method. Like lists, dictionaries, and sets, all the objects that are instances of classes that
you define, are “passed by reference” to functions and methods. Therefore, Rectangle r

gets created with a reference to p. This way, relationships between objects can be repre-
sented.

You do not always want this. In fact, it is unlikely that you would want a Rectangle

object to have a relationship with the point that is indicated as its upper left corner. How
can you solve that? You can solve it by creating a copy of the object. You can do this using
the copy module. As discussed before, the copy() function of the copy module creates
a shallow copy; if you want a deep copy, you have to use the deepcopy() function. For
Points this is not needed, as there is no difference between shallow and deep copies of
instances of this class.

listing2010.py

from copy import copy

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

class Rectangle:
def __init__( self, point, width, height ):

self.point = copy( point )
self.width = width

self.height = height

def __repr__( self ):
return "[{},w={},h={}]".format( self.point, self.width,
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self.height )

p = Point( 3.5, 5.0 )
r = Rectangle( p, 4.0, 2.0 )
print( r )

p.x = 1.0
p.y = 1.0
print( r )

What you learned

In this chapter, you learned about:

• Classes and objects

• The keyword class

• Creating objects

• __init__(), __repr__(), and __str__()

• Methods

• Nesting objects

• Relationships via aliases

Exercises

Exercise 20.1 Create a version of the Rectangle class that is safe by assuring that both
width and height are positive values (how you do that is up to you). Expand it with
methods that calculate its surface area and its circumference. Also provide a method that
returns the bottom-right corner of the rectangle as a Point. Finally, create a method that
gets a second Rectangle object as parameter, and returns the overlapping area of the two
rectangles as a new Rectangle object (the last one is much harder than the other ones).

Exercise 20.2 A student has a last name, a first name, a date of birth (either a year,
month, and day, or a datetime object if you took the liberty of studying the datetime

module already), and an administration number. A course has a name and a number.
Students can enroll in courses. Create a class Student and a class Course. Create several
students and several courses. Enroll each student in some of the courses. Display a list
of students, showing their number, first name, last name, and age, and per student which
courses he or she is enrolled in.
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Operator Overloading

Operator overloading is a powerful feature of object orientation that allows you to in-
tegrate your new classes into programs in a natural way. Operator overloading is al-
ways based on the definition of some special methods, that have the typical __<name>__()
structure.

21.1 The idea behind operator overloading

When you write Python programs with basic data types, without thinking you use op-
erators to add, subtract, multiply, and divide values, to compare values, and to apply all
kinds of standard functionalities. Such interactions are not defined by default for classes
you define yourself, but Python allows you to specify what should happen when one ap-
plies such an interaction to instances of your class. This is called “operator overloading.”

For instance, suppose that you define a class that represents quaternions.11 You know that
adding and multiplying quaternions are well-defined operations. Therefore, you might
want to define what happens when you combine two of your quaternions with a + oper-
ator. Python allows you to specify that. In fact, Python allows you to specify what the +
operator does for any of your new classes.

Isn’t that great? You can define a class Student, and then define that if you add two stu-
dents together with a + operator, that their ages are added up. Wonderful, isn’t it? No,
it isn’t. It obviously makes no sense to add up two students. You might start thinking
about what a natural interpretation of adding up two students would entail, but the an-
swer is that everything that you can come up with is far-fetched. You should not define
an addition operator for classes which have no natural addition defined. This is one of

11Quaternions are an extension of complex numbers. They consist of 4-dimensional numbers, with a real
factor and three imaginary factors called i, j, and k, with specific definitions for the multiplication of these
factors. Details are not important for this book, they are just an example of numbers that are not native to
Python.
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the dangers of operator overloading: if you apply it without thinking, you get nonsensical
programs.

Still, operator overloading has powerful applications. In the rest of this chapter I will
introduce some of the most common applications of operator overloading.

By the way, operator overloading is a typical example of “polymorphism,” a concept that
allows a function to have different results depending on the type of its arguments. Poly-
morphism is often hailed as one of the powerful features of object orientation.

21.2 Comparisons

In Chapter 20 I discussed that objects can be aliases of each other, but that you can also
make actual copies. What happens if you try to compare them?

listing2101.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

p1 = Point( 3, 4 )
p2 = Point( 3, 4 )
p3 = p1

print( p1 is p2 )
print( p1 is p3 )
print( p1 == p2 )
print( p1 == p3 )

The keyword is compares object identities. Since p3 is an alias for p1, p1 is p3 returns
True, while p1 is p2 returns False. However, since p1 and p2 refer to the same point
in 2D space, it would be nice if p1 == p2 would return True, i.e., that the == would do a
value comparison (as you would expect). It does not. That is not surprising, as Python
does not know how to compare the values of Points, and therefore the == does the only
comparison that Python knows how to do, namely an identity comparison. However,
you can instruct Python how to compare two points using the == operator, by defining an
__eq__()method:

listing2102.py

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y
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def __repr__( self ):
return "({}, {})".format( self.x, self.y )

def __eq__( self, p ):
return self.x == p.x and self.y == p.y

p1 = Point( 3, 4 )
p2 = Point( 3, 4 )
p3 = p1

print( p1 is p2 )
print( p1 is p3 )
print( p1 == p2 )
print( p1 == p3 )

The __eq__() method tells Python, in this case, what to do when two objects of the type
Point are compared with ==. It returns True when their x and y coordinates are equal,
False otherwise. In this example, the interpretation of the comparison operator == is
“overloaded” by defining the __eq__()method.

You can also overload the other comparison operators !=, >, >=, <, and <=:

• __eq__() for equality (==)

• __ne__() for inequality (!=)

• __gt__() for greater than (>)

• __ge__() for greater than or equal to (>=)

• __lt__() for less than (<)

• __le__() for less than or equal to (<=).

If you specify the __eq__() method but not the __ne__() method, the __ne__() method
will automatically return the opposite of what the __eq__()method returns. None of the
other methods have such an automatic interpretation.

You are not limited to comparing only objects that are instances of the same class. For
instance, when I define a class Quaternion that implements a quaternion, I might want to
compare a quaternion with an integer or a float. That is possible:

listing2103.py

class Quaternion:
def __init__( self, a, b, c, d ):

self.a = a

self.b = b

self.c = c

self.d = d

def __repr__( self ):
return "({},{}i,{}j,{}k)".format( self.a, self.b,

self.c, self.d )
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def __eq__( self, n ):
if isinstance( n, int ) or isinstance( n, float ):

if self.a == n and self.b == 0 and \
self.c == 0 and self.d == 0:
return True

else:
return False

elif isinstance( n, Quaternion ):
if self.a == n.a and self.b == n.b and \

self.c == n.c and self.d == n.d:
return True

else:
return False

return NotImplemented

c1 = Quaternion( 1, 2, 3, 4 )
c2 = Quaternion( 1, 2, 3, 4 )
c3 = Quaternion( 3, 0, 0, 0 )
if c1 == c2:

print( c1, "==", c2 )
else:

print( c1, "!=", c2 )
if c1 == c3:

print( c1, "==", c3 )
else:

print( c1, "!=", c3 )
if c3 == 1:

print( c3, "==", 1 )
else:

print( c3, "!=", 1 )
if c3 == 3:

print( c3, "==", 3 )
else:

print( c3, "!=", 3 )
if c3 == 3.0:

print( c3, "==", 3.0 )
else:

print( c3, "!=", 3.0 )
if c3 == "3":

print( c3, "== \"3\"" )
else:

print( c3, "!= \"3\"" )
if 3 == c3:

print( 3, "==", c3 )
else:

print( 3, "!=", c3 )
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The implementation of the __eq__() method in the code above checks if the value the
comparison is made with is a Quaternion, an integer, or a float. If so, it makes the com-
parison and returns True or False. If not, it returns NotImplemented. NotImplemented

is a special value that indicates that the comparison has no sensible outcome. While the
__ne__()method automatically inverts the result of the __eq__()method, it will not (and
cannot) invert NotImplemented.

The last comparison in the code above is noteworthy. It executes comparison 3 == c3.
Normally, when the comparison operator is defined, it will be executed for the left
operand, i.e., the comparison operator of the integer 3 is executed, with c3 as argument.
However, integers have not defined the __eq__() method for Quaternion, and thus this
returns NotImplemented. If that happens, Python inverts the operands, so in this case ex-
ecutes the comparison c3 == 3. This comparison leads to a result as for Quaternion the
comparison with an integer is defined. The same happens with the != operator. Some-
thing similar is done for the other comparison operators, but when the operands are in-
verted, < is swapped with >, and <= is swapped with >=, just as you would expect.

Exercise In Chapter 20, a Rectangle class was defined. Add to this class operators
to test for equality of rectangles (two rectangles are equal if they have exactly the same
shape), and greater/smaller operators (a rectangle is smaller than another rectangle if it
has a smaller surface area). Test the new operators. Note: I am a bit on the fence on
whether these are acceptable definitions for equality and the other comparisons, but for
practice they are okay.

There is one special comparison I want to bring up, and that is testing whether an object
is True or False. Many objects are considered to be False in particular circumstances; for
instance, and empty list evaluates to False. This was briefly discussed in Chapter 6.

buffer = []
if buffer:

print( buffer )
else:

print( "buffer is empty" )

You can define your own evaluation of an object that is called when the object is used as
condition. This is the __bool__()method.

__bool__() is called when an object is treated as a condition. It must return True or False.
If __bool__() is not implemented, __len__() is called (see below), which will evaluate
to False if __len__() returns zero. If neither __bool__() nor __len__() is implemented,
the object is always Truewhen used as condition.

21.3 Calculations

There are methods available to define what should happen when you combine an instance
of a class with a value using a regular calculation operator. The most important of these
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are:

• __add__() for addition (+)

• __sub__() for subtraction (-)

• __mul__() for multiplication (*)

• __truediv__() for division (/)

• __floordiv__() for integer division (//)

• __mod__() for modulo (%)

• __pow__() for power (**)

• __lshift__() for left shift (<<)

• __rshift__() for right shift (>>)

• __and__() for bitwise and (&)

• __or__() for bitwise or (|)

• __xor__() for bitwise xor (^)

For example, for quaternions the addition is defined as: (A + Bi + Cj + Dk) + (E + Fi +
Gj + Hk) = (A + E) + (B + F)i + (C + G)j + (D + H)k. Naturally, you can also add
integers and floats to quaternions. This can be implemented as follows:

listing2104.py

class Quaternion:
def __init__( self, a, b, c, d ):

self.a, self.b, self.c, self.d = a, b, c, d

def __repr__( self ):
return "({},{}i,{}j,{}k)".format( self.a, self.b,

self.c, self.d )
def __add__( self, n ):

if isinstance( n, int ) or isinstance( n, float ):
return Quaternion( n+self.a, self.b, self.c, self.d )

elif isinstance( n, Quaternion ):
return Quaternion( n.a + self.a, n.b + self.b, \

n.c + self.c, n.d + self.d )
return NotImplemented

c1 = Quaternion( 3, 4, 5, 6 )
c2 = Quaternion( 1, 2, 3, 4 )
print( c1 + c2 )
print( c1 + 10 )

If a calculation operator is used with your new class as the right operand, and the left
operand does not support the operator with your new class (it returns NotImplemented),
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Python checks if your new class supports the operation as the right operand. For that, you
need to implement extra methods, which have the same names as the methods above, but
with an r in front of the name, e.g., __radd__() is the addition operator with correspond-
ing object as the right operand (all the other methods can be created in this way too).

The code above will actually produce a runtime error if you try to calculate 10 + c1 (try
it). You will have to implement __radd__() to solve that.

listing2105.py

class Quaternion:
def __init__( self, a, b, c, d ):

self.a, self.b, self.c, self.d = a, b, c, d

def __repr__( self ):
return "({},{}i,{}j,{}k)".format( self.a, self.b,

self.c, self.d )
def __add__( self, n ):

if isinstance( n, int ) or isinstance( n, float ):
return Quaternion( n+self.a, self.b, self.c, self.d )

elif isinstance( n, Quaternion ):
return Quaternion( n.a + self.a, n.b + self.b, \

n.c + self.c, n.d + self.d )
return NotImplemented

def __radd__( self, n ):
return self.__add__( n )

c1 = Quaternion( 3, 4, 5, 6 )
print( 10 + c1 )

As you see, I resolved the problem by making __radd__() a direct call to __add__(). You
might wonder why Python does not do that automatically. The reason is mathematical:
while in many cases + is “commutative,” i.e., you can exchange the operands without the
result changing, this is definitely not always the case. But if your addition operator is
commutative, a simple call from __radd__() to __add__()will do the trick.

For the shorthand operators +=, -=, *=, etcetera, you can also define separate methods.
These have the same names as the methods above, but with an i in front of the name, e.g.,
__iadd__() implements the += operator (again, for all the other methods you can create
this variant too). These methods should actually modify self, and also return the result
(usually self). If they are not implemented, Python reverts to the regular interpretation,
i.e., if a statement is x += y, then Python tries to execute x.__iadd__(y), and if that re-
turns NotImplemented, it will execute x = x.__add__(y). Thus, in general you do not
need to implement methods for the shorthand operators.

Exercise Extend the Quaternion class with subtraction. Subtraction works similar to
addition, except all the pluses are replaced by minuses. Note that subtraction is not com-
mutative, so you cannot implement __rsub__() by a simple call to __sub__(). However,
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it is not hard to implement __rsub__(), so make sure that you do it.

21.4 Unary operators

Unary operators are operators which work only on the object itself, so not in combination
with another object. A typical example is using the minus (-) sign in front of a number to
turn it into a negative number. You can overload some of the unary operators, and also
some of the basic functions that work on an object.

• __neg__() implements the negation (-) of an object

• __pos__() implements placing a plus (+) in front of an object (usually without effect)

• __invert__() implements the bitwise not (~)

• __abs__() implements taking the object’s absolute value when using the abs()
function

• __int__() implements taking the (rounded down) integer value of an object when
using the int() function; must return an integer

• __float__() implements taking the floating-point value of an object when using
the float() function; must return a float

• __round__() implements rounding using the round() function. An optional second
argument can be given to specify the number of decimals; must return an integer or
a float

• __bytes__() implements representing the object as a byte string. It is in that respect
similar to the __str__()method which was discussed in Chapter 20

listing2106.py

class Quaternion:
def __init__( self, a, b, c, d ):

self.a, self.b, self.c, self.d = a, b, c, d

def __repr__( self ):
return "({},{}i,{}j,{}k)".format( self.a, self.b,

self.c, self.d )
def __neg__( self ):

return Quaternion( -self.a, -self.b, -self.c, -self.d)
def __abs__( self ):

return Quaternion( abs( self.a ), abs( self.b ),
abs( self.c ), abs( self.d ) )

def __bytes__( self ):
return self.__str__().encode( "utf-8" )

c1 = Quaternion( 3, -4, 5, -6 )
print( c1 )
print( -c1 )
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print( abs( c1 ) )
print( bytes( c1 ) )

Note: You might think it would be a good idea to also implement the __int__(),
__float__(), and __round__() methods, that, respectively, use the int(), float(), and
round() functions on self.a, self.b, self.c, and self.d. Unfortunately, that cannot
be done, as these methods must return integers or floats, and not Quaternions. Other
than what I propose, I see no sensible interpretation of int(), float(), and round() for
Quaternion, so these methods should not be implemented.

21.5 Sequences

A special kind of class is the sequence class. You have seen several sequence classes,
namely tuples, lists, dictionaries, and sets. Such classes contain a sequence of elements,
that can be accessed using indices or keys. You can create such classes yourself, by over-
loading several methods that support changing or getting information on the elements of
the class.

• __len__() implements the len() function, which should return an integer that in-
dicates the number of elements in the object.

• __getitem__() implements returning the element with the key (or index) that is
supplied as argument. This method is called when the object is referred to with a
value between square brackets after it, e.g., x[key]with x the object and key the key
or index of the element. If key is an index and the index is not appropriately refer-
ring to an object, then you are supposed to raise an IndexError (see Chapter 17). If
key is something else (as with, for instance, a dictionary) and it is not appropriately
referring to an object, then you are supposed to raise a KeyError. When key is an
index, for a complete implementation it should also support slices (implemented as
so-called slice objects).

• __setitem__() implements assigning a value to an element of the object which has
the key or index that is given as argument, and the value as second argument. This
method is called when a value is assigned to the object with a key or index value
between square brackets after it, e.g., x[key] = value.

• __delitem__() implements removing from the object the element that has the key
or index that is given as argument, when the del keyword is used, e.g., del x[key].

• __missing__() is called by __getitem__(), with the key or index as argument,
when the key or index is not referring to an element found in the object. This method
is used in particular by subclasses of the Python dictionary.

• __contains__() should be given an item (and not a key or index) as argument, and
returns True if the item is found in object, and False otherwise. It is called when
the in keyword is used to test for the existence of an item.
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To demonstrate how these methods work, I have implemented a sequence class that im-
plements a Mesostic Puzzle. In Dutch, such puzzles are known as “Filippines,” but out-
side The Benelux they are not well known. The puzzle consists of a list of questions, each
of which is answered by one word. Of each answer, one letter is indicated as “special.”
The special letters, in order of the questions, provide the solution to the puzzle.

I have defined each of the words for the puzzle as an instance of the class MesosticWord,
which consists of the answer, the index of the special letter in the answer, and the question.
The class Mesostic is the complete puzzle, i.e., it is a sequence of MesosticWords. I im-
plemented the __len__(), __getitem__(), __setitem__(), and __delitem__()methods
(the last two are not actually used in the code).

I also implemented two more methods, which demonstrate how the overloaded methods
manage to do their job. display() displays the puzzle, and uses thereby the len() func-
tion and indices on the puzzle object itself. solution() displays the solution, also using
len() and indices.

listing2107.py

class MesosticWord:
def __init__( self, word, index, question ):

self.word = word

self.index = index

self.question = question

class Mesostic:
def __init__( self, name, words ):

self.name, self.words = name, words

def __len__( self ):
return len( self.words )

def __getitem__( self, n ):
return self.words[n]

def __setitem__( self, n, value ):
self.words[n] = value

def __delitem__( self, n ):
del self.words[n]

def display( self ):
print( self.name )
for i in range( len( self ) ):

print( "{}. {}".format( i+1, self[i].question ),
end = " " )

for j in range( len( self[i].word ) ):
if j == self[i].index:

print( " * ", end="" )
else:

print( "_ ", end="" )
print()

def solution( self ):
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s = ""
for i in range( len( self ) ):

s += self[i].word[self[i].index]
return s

puzzle = Mesostic(
"The Monty Python and the Holy Grail Mesostic Puzzle",
[ MesosticWord( "ANTHRAX", 5,

"Sir Galahad ' s tale took place in the Castle" ),
MesosticWord( "PERIL", 2,

"Sir Robin was thrown into the Gorge of Eternal" ),
MesosticWord( "RABBIT", 5,

"Sir Bors was killed by a" ),
MesosticWord( "SHRUBBERY", 1,

"The Knights of Ni ! 's first demand was to get a" ),
MesosticWord( "COCONUT", 5,

"A horse can be replaced by a" ),
MesosticWord( "MINSTRELS", 5,

"They were forced to eat Robin ' s" ) ] )

puzzle.display()

Note: It would have been nicer if the stars, which indicate the special letters, were printed
in a column. However, depending on the editor that you use, the display format does
not always use a fixed letter width, so it is hard to organize that. You may implement a
solution for this on your own, if you like (it is not relevant for the theme of the chapter).

Another important method that you can implement for sequence classes is __iter__().
This one will be discussed in Chapter 23.

When implementing a sequence class, you should also consider creating a suitable im-
plementation of the __add__() method, and possibly a suitable implementation of the
__mul__()method.

Exercise A Sentence is a list of words. A basic Sentence class is given below. Imple-
ment __len__(), __getitem__(), __setitem__(), and __contains__()methods for this
class.

listing2108.py

class Sentence:
def __init__( self, words ):

self.words = words

def __repr__( self ):
return " ".join( self.words )

s = Sentence( [ "There", "is", "only", "one", "thing", "worse",
"than", "being", "talked", "about",
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"and", "that", "is", "not", "being", "talked", "about" ] )
print( s )
print( len( s ) )
print( s[5] )
s[5] = "better"
print( "being" in s )

What you learned

In this chapter, you learned about:

• Operator overloading

• Overloading comparison operators using __eq__(), __ne__(), __gt__(), __ge__(),
__lt__(), and __le__()

• NotImplemented

• __bool__()

• Overloading calculation using __add__(), __sub__(), __mul__(), __truediv__(),
__floordiv__(), __mod__(), __pow__(), __lshift__(), __rshift__(), __and__(),
__or__(), and __xor__()

• Righthand versions of overloading calculation operators

• Shorthand versions of overloading calculation operators

• Overloading unary operators __neg__(), __pos__(), __invert__(), __abs__(),
__int__(), __float__(), __round__(), and __bytes__()

• Overloading operators for sequence classes __len__(), __getitem__(),
__setitem__(), __delitem__(), __missing__(), and __contains__()

Exercises

Exercise 21.1 A playing card consists of a suit ("Hearts", "Spades", "Clubs",

"Diamonds") and a value (2, 3, 4, 5, 6, 7, 8, 9, 10, "Jack", "Queen", "King",

"Ace"). Implement a Card class. Implement that cards are equal when they have an equal
rank, and that the other comparisons use the ranks in the order given above (2 lowest,
Ace highest). Test the class.

Exercise 21.2 Use the Card class as given above. Now also create a Drawpile class. A
Drawpile consists of a sequence of cards. The cards are supposed to form a pile with the
top card having the lowest index, and the bottom card the highest index. Implement the
__len__() and __getitem__() methods. Create an add() method to add a card to the
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draw pile at the bottom, and a draw() method to remove the top card from a draw pile
and return it. Test the class.

Exercise 21.3 Using the definitions created in the previous exercises, create two draw-
piles. The first has the 2 of Diamonds, King of Hearts, and 7 of Clubs (in this order). The
second has the 4 of Hearts, 3 of Hearts, and 8 of Spades (in this order). Let the draw piles
play “War!” This game is played as follows: Draw the top card from each deck. The high-
est of these cards goes on the bottom of its own deck, and the other card goes there too.
The game continues until there is only one pile left.

Hint: With this setup, the game will take 13 rounds and the first deck wins (it has to, as it
contains a card that can never be beaten by the second deck). Do you see what a boring
game “War!” is? Why children insist on playing this – with full decks even – I’ll never
know.

Note: Normally when “War!” is played there are special rules for when two cards have
the same rank, but in this case the draw piles contain only cards of a unique rank. You
do not have to take into account playing the game where that can happen, though if you
want to do that, be my guest.

Exercise 21.4 Implement a FruitBasket class. The FruitBasket contains fruit items,
and it may contain a certain number of each item type. Keep it simple: store the fruit
items as a dictionary, with the name of the fruit as key, and the quantity as value. For
this exercise there is no need to limit what keys can be, anything can be the name of a
fruit. Implement the __add__()method to add a piece of fruit to the basket (and it might
be a good idea to also implement __iadd()__), and implement the __sub__()method to
remove a piece of fruit from the basket (and __isub__() is a good candidate too). Imple-
ment the __contains__() method to check if a certain kind of fruit is in the basket. Also
implement __getitem__() to check how much of a piece of fruit there is, __setitem__()
to add a whole bunch of a piece of fruit at once, and __len__() to check how many differ-
ent pieces of fruit there are in the basket. Note that when nothing more of a piece of fruit
remains in the basket, you have to remove the key.
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Inheritance

Inheritance allows you to create new classes based on existing ones, just by indicating
the difference. It is an extremely powerful concept that allows for the creation of highly
flexible, easily maintainable programs.

22.1 Class inheritance

In Chapter 20 I gave the example of Apple and Orange both being subclasses of a class
Fruit, and Student and Teacher both being subclasses of a class Person. You can imple-
ment such a hierarchy of classes and subclasses using “inheritance.”

Basically, inheritance is really simple. When you define a new class, between parentheses
you can specify another class. The new class inherits all the attributes and methods of the
other class, i.e, they are automatically part of the new class.

listing2201.py

class Person:
def __init__( self, firstname , lastname , age ):

self.firstname = firstname

self.lastname = lastname

self.age = age

def __repr__( self ):
return "{} {}".format( self.firstname , self.lastname )

def underage( self ):
return self.age < 18

class Student( Person ):
pass

albert = Student( "Albert", "Applebaum", 19 )
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print( albert )
print( albert.underage() )

As you can see, the Student class inherits all properties and methods of the class Person.

22.1.1 Extending and overriding

To extend a subclass with new methods, you can just define the new methods for the
subclass. If you define methods that already exist in the parent class (or “superclass”),
they “override” the parent class methods, i.e., they use the new method as specified by
the subclass.

Often, when you override a method, you still want to use the method of the parent class.
For instance, if the Student class needs a list of courses in which the student is enrolled,
the course list must be initialized as an empty list in the __init__()method. Yet if I over-
ride the __init__()method, the student’s name and age are no longer initialized, unless
I make sure that they are. You can make a copy of the __init__() method for Person

into Student and adapt that copy, but it is better to actually call the __init__() method
of Person inside the __init__() method of Student. That way, should the __init__()
method of Person change, there is no need to update the __init__()method of Student.

There are two ways of calling a method of another class: by using a “class call,” or by
using the super()method.

A class call entails that a method is called using the syntax <classname>.<method>(). So,
to call the __init__()method of Person, I can write Person.__init__(). I am not limited
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to calling methods of the superclass this way; I can call methods of any class. Since such a
call is not a regular method call, you have to supply self as an argument. So, for the code
above, to call the __init__()method of Person from the __init__()method of Student,
you write Person.__init__( self, firstname, lastname, age ) (I am allowed to use
self here because every instance of Student is also an instance of Person, as Student is a
subclass of Person).

Using super() means that you can directly refer to the superclass of a class by using the
standard function super(), without knowing the name of the superclass. So to call the
__init__() method of the superclass of Student, I can write super().__init__(). You
do not supply self as the first argument if you use super() like this. So, for the code
above, to call the __init__()method of Person from the __init__()method of Student,
you write super().__init__( firstname, lastname, age ).

Of these two approaches, I prefer the use of super(), but only in this specific way: to call
the immediate superclass in single-class inheritance. super() can be called in different
ways and has a few intricacies, which I will get to below.

In the code below, the class Student gets two new attributes: a program and a course list.
The method __init__() gets overridden to create these new attributes, but also calls the
__init__() method of Person. Student gets a new method, enroll(), to add courses to
the course list. Finally, as a demonstration I overrode the method underage() to make
students underage when they are not 21 yet (sorry about that).

listing2202.py
class Person:

def __init__( self, firstname , lastname , age ):
self.firstname = firstname

self.lastname = lastname

self.age = age

def __repr__( self ):
return "{} {}".format( self.firstname , self.lastname )

def underage( self ):
return self.age < 18

class Student( Person ):
def __init__( self, firstname , lastname , age, program ):

super().__init__( firstname , lastname , age )
self.courselist = []
self.program = program

def underage( self ):
return self.age < 21

def enroll( self, course ):
self.courselist.append( course )

albert = Student( "Albert", "Applebaum", 19, "CSAI" )
print( albert )
print( albert.underage() )
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print( albert.program )
albert.enroll( "Methods of Rationality" )
albert.enroll( "Defense Against the Dark Arts" )
print( albert.courselist )

22.1.2 Multiple inheritance

You can create a class that inherits from multiple classes. This is called “multiple inheri-
tance.” You specify all the superclasses, with commas in between, between the parenthe-
ses of the class definition. The new class now forms a combination of all the superclasses.

When a method is called, to decide which method implementation to use, Python first
checks whether it exists in the class for which the method is called itself. If it is not there,
it checks all the superclasses, from left to right. As soon as it finds an implementation of
the method, it will execute it.

If you want to call a method from a superclass, you have to tell Python which superclass
you wish to call. You best do that directly with a class call. However, you can use super()
for this too, but it is pretty tricky. You provide the order in which the classes should be
checked as arguments to super(). However, the first argument is not checked by super()
(I assume that it is supposed to be self).

It is something like this: You have three classes, A, B, and C. You create a new class D
which inherits from all other three classes, by defining it as class D( A, B, C ). When
in the __init__() method of D you want to call the __init__() methods of the three
parent classes, you can call them using class calls as A.__init__(), B.__init__(), and
C.__init__(). However, if you want to call the __init__() method of one of them, but
you do not know exactly which, but you do know the order in which you want to check
them (for instance, B, C, A), then you can call super() with self as the first argument
and the other three classes following it in the order in which you want to check them (for
instance, super( self, B, C, A ).__init__()).

As I said, it is pretty tricky. Multiple inheritance is tricky anyway. My general recom-
mendation is that you do not use it, unless there is really no way around it. Many object
oriented languages do not even support multiple inheritance, and those that do tend to
warn against using it.

So I am not even going to give an example of using multiple inheritance, and neither am I
going to supply exercises for multiple inheritance. You should simply avoid using it, until
you have a lot of experience with Python and object oriented programming. And by that
time, you probably see ways of constructing your programs that do not need multiple
inheritance at all.

22.2 Interfaces
An interface is a class that specifies attributes and methods without an actual implemen-
tation of the methods. The idea is that subclasses implement the methods, while functions
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can be defined as working on the interface class, under the assumption that the methods
will be filled in. Such functions can then be called with instances of the subclasses.

For good understanding, it is probably better to give an example.

Suppose that I want to design an application that works with vehicles. Maybe it is a travel-
planning application that calculates how to get from point A to point B. The application
will have a map containing all possible points and connections between the points. It will
also have a list of vehicles, with certain vehicles being restricted to specific points, and
connecting only specific points (e.g., planes will only be available at airports, and only
connect to specific other airports, while boats are only found in harbors and connect to
specific other harbors). The application gets a start and end point as input, and provides
a list of the sort: take the car to drive from start point to point X, take the plane to fly from
point X to point Y, take the bus to drive from point Y to point Z, and then walk from point
Z to the end point.

This application will need a definition of vehicles. To be able to come to an optimal travel
plan, it must know for each vehicle at what points it is available, to what points it can
travel, and the average speed of travel (so that you do not get a travel plan that says
“walk from Amsterdam to Moscow”). It might also be a good idea to include a verb that
is used when the plan refers to travel with a vehicle (e.g., “walk,” “drive,” or “fly”). You
might need to think a lot about how to implement such vehicles. A possible approach is to
supply each vehicle with a method that gets a point as argument and that returns whether
or not the vehicle is available at that point, a method that gets a point as argument and
that returns whether or not the vehicle travels to that point, a method that gets two points
and returns the average speed of travel of the vehicle between those two points, and a
method that returns the verb (I am not saying that this implementation is a good idea,
just that it could potentially be used).

So you can implement a Vehicle class as follows:

listing2203.py

class Vehicle:
def __init__( self ):

self.startpoint = []
self.endpoints = []
self.verb = ""
self.name = ""

def __str__( self ):
return self.name

def isStartpoint( self, p ):
return NotImplemented

def isEndpoint( self, p ):
return NotImplemented

def travel_speed( self, p1, p2 ):
return NotImplemented

def travelVerb( self ):
return NotImplemented
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A class like this is called an interface or “abstract class” (there are subtle differences be-
tween interfaces and abstract classes in computational theory, but for Python these do not
matter). It is not to be used as a class of which you create instances, which is why all meth-
ods return NotImplemented. Instead, it is to be used as a template to inherit subclasses
from, that will all create implementations for the predefined methods. This means that
regardless which vehicle subclass you define later, you will always have to make sure the
methods of the Vehicle class are implemented. So functions that make use of instances
of subclasses of Vehicle may count on these methods being available.

What you learned

In this chapter, you learned about:

• Inheritance

• Overriding

• Class calls

• super()

• Multiple inheritance

• Interfaces

Exercises

Exercise 22.1 Below I give a Rectangle class that is created with the x and y coordinate
of the top-left corner, a width w, and a height h. Now create a Square class that inherits as
much as possible from the Rectangle class.

exercise2201.py

class Rectangle:
def __init__( self, x, y, w, h ):

self.x = x

self.y = y

self.w = w

self.h = h

def __repr__( self ):
return "[({},{}),w={},h={}]".format( self.x, self.y,

self.w, self.h )
def area( self ):

return self.w * self.h
def circumference( self ):

return 2*(self.w + self.h)
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Exercise 22.2 A Rectangle and a Square can be considered shapes. There are, of
course, different kinds of shapes which are defined differently, but share with rectangles
and squares that they have an area and circumference. Define an interface class Shape,
of which Rectangle and Square are sub(sub)classes. Also define a class Circle that you
derive from Shape.

Exercise 22.3 In the Iterated Prisoner’s Dilemma, two strategies play against each other
over multiple rounds. Every round, the strategies can decide to either Coorperate (C) or
Defect (D). If both cooperate, they both get 3 points. If both defect, they both get 1 point.
If one cooperates and one defects, the one that defects gets 6 points, and the one that
cooperates gets nothing. The goal for each strategy is to score as many points as possible.

Below a simple version of the Iterated Prisoner’s Dilemma is coded. A strategy to play
the game is defined by the class Strategy. The main loop lets two strategies play each
other for 100 rounds (it is not hard to create a main loop that lets more than two strategies
play each other in pairs, but that increases the size of the code quite a bit and is not
important for the exercise). Strategy has not implemented the choice() method. To
create a strategy, you inherit a new class from Strategy, and code the choice()method.
Optionally you can also implement the lastmove() method, and extend the __init__()
method.

Implement the following strategies:

• Random just plays COOPERATE or DEFECT at random.

• AlwaysDefect always plays DEFECT.

• TitForTat starts with COOPERATE, then plays what the opponent played on the
previous move (the lastmove()method gets to see what the opponent played after
a choice has been made).

• TitForTwoTats starts with two COOPERATEs, then plays DEFECT if the opponent
played DEFECT on both the previous two moves, otherwise COOPERATEs.

• Majority starts with COOPERATE, then plays what the opponent played on the
majority of the previous moves.

If you want to implement more strategies, be my guest. Test out some of the strategies
against each other by filling in the assignments for strategy1 and strategy2 (do not
forget to give them a name between the parentheses).

Note that the shorthand way that I use in this code to write a simple condition (with
a statement like 3 if c1 == COOPERATE else 1), which looks like a list comprehension
(see Chapter 12), is just to save some space and make the code a bit more readable. It
would be just as well to write the 4 lines of code that would be needed to do this with a
regular if statement.

exercise2203.py

# Iterated Prisoner ' s Dilemma
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COOPERATE = ' C '
DEFECT = ' D '
ROUNDS = 100

class Strategy:
def __init__( self, name="" ):

self.name = name

self.score = 0
def choice( self ):

# Should return COOPERATE or DEFECT
return NotImplemented

def lastmove( self, mymove, opponentmove ):
# Gets passed the last move made, after a call of choice

()
pass

def incscore( self, n ):
self.score += n

strategy1 = Strategy()
strategy2 = Strategy()

for i in range( ROUNDS ):
c1 = strategy1.choice()
c2 = strategy2.choice()
if c1 == c2:

strategy1.incscore( 3 if c1 == COOPERATE else 1 )
strategy2.incscore( 3 if c2 == COOPERATE else 1 )

else:
strategy1.incscore( 0 if c1 == COOPERATE else 6 )
strategy2.incscore( 0 if c2 == COOPERATE else 6 )

strategy1.lastmove( c1, c2 )
strategy2.lastmove( c2, c1 )

print( "End score of", strategy1.name, "is", strategy1.score )
print( "End score of", strategy2.name, "is", strategy2.score )
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Iterators and Generators

Iterators allow your classes to be used in for ... in ... statements. Generators are an
easy way to create iterators.

23.1 Iterators

You have used the for ... in ... command on many occasions. You may have noticed
that it can be used for many different applications.

listing2301.py

for i in [1,2,3,4]:
print( i, end=" " )

print()
for i in ( "pi", 3.14, 22/7 ):

print( i, end=" ")
print()
for i in range( 3, 11, 2 ):

print( i, end=" ")
print()
for c in "Hello":

print( c, end=" " )
print()
for key in { "apple":1, "banana":3 }:

print( key, end=" " )

List, strings, and dictionaries are all “iterables,” which means they can be used in such
for ... in ... expressions. Many other objects can also be used as iterables. You can
actually ensure that your own classes can be used as iterables as well.
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An “iterator” is an object that returns a new item every time you call the next() function
with the object as argument. When there are no items left, it raises a StopIteration

exception. If you want to avoid the exception, you can give an optional second argument
to next(), which is returned when the iterator is exhausted. You can turn an iterable into
an iterator object using the built-in function iter().

iterator = iter( ["apple", "banana", "cherry"] )
print( next( iterator , "END" ) )
print( next( iterator , "END" ) )
print( next( iterator , "END" ) )
print( next( iterator , "END" ) )

You can use iterators in for ... in ... statements.

iterator = iter( ["apple", "banana", "cherry"] )
for fruit in iterator:

print( fruit )

23.1.1 Iterable objects

An object that should function as an iterable has two elements:

• a method __iter__() that returns the object itself

• a method __next__() that provides access to all the items that the object con-
tains, one by one, and when no more objects are left, raises StopIteration (in a
for ... in ... loop, this will cause the loop to end)

You can loop over all the items of the iterable using for ... in .... There are three main
ways that you can create such an iterable object. The first two ways start with the iterable
as a container of a sequence of items.

The first way, when __next__() is called, removes one of the items and returns it, after
which the iterable holds one less item. Once all items are “consumed,” it can only raise
StopIteration. Here is an example of such an iterator that contains the first 10 numbers
of the Fibonacci sequence.

listing2302.py

class Fibo:
def __init__( self ):

self.seq = [1,1,2,3,5,8,13,21,34,55]
def __iter__( self ):

return self

def __next__( self ):
if len( self.seq ) > 0:

return self.seq.pop(0)
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raise StopIteration()

fseq = Fibo()
for n in fseq:

print( n, end=" " )

The second way keeps track of an index in the sequence of items, increasing it every time
__next__() is called, and raises StopIteration when the index goes beyond the range of
items. In the second way, you can implement a method that resets the index so that the
iterable can be used again.

listing2303.py

class Fibo:
def __init__( self ):

self.seq = [1,1,2,3,5,8,13,21,34,55]
self.index = -1

def __iter__( self ):
return self

def __next__( self ):
if self.index < len( self.seq )-1:

self.index += 1
return self.seq[self.index]

raise StopIteration()
def reset( self ):

self.index = -1

fseq = Fibo()
for n in fseq:

print( n, end=" " )
print()
fseq.reset()
for n in fseq:

print( n, end=" " )

The third way has the iterable not as a container of items, but as a calculator that every
time that __next__() is called, determines the next item. Such an iterable can either be
finite, or have the ability to supply an infinite number of items. It can also be reset if the
programmer supplied a method to do that.

listing2304.py

class Fibo:
def reset( self ):

self.nr1 = 0
self.nr2 = 1

def __init__( self, maxnum=1000 ):



23.1. Iterators 273

self.maxnum = maxnum

self.reset()
def __iter__( self ):

return self

def __next__( self ):
if self.nr2 > self.maxnum:

raise StopIteration()
nr3 = self.nr1 + self.nr2
self.nr1 = self.nr2
self.nr2 = nr3

return self.nr1

fseq = Fibo()
for n in fseq:

print( n, end=" " )
print()
fseq.reset()
for n in fseq:

print( n, end=" " )

Warning: You have to be very careful when making an iterable that in principle may return
an infinite number of items. Programmers count on for ... in ... never leading to
an endless loop, but in the example above, without limiting the number of items to a
maximum of 1000 when creating the fseq object, an endless loop would result. It is best
to force the programmer to set a maximum to the number of items.

Exercise Create an iterator that generates all the squares of integers between 1 and 10.
You may choose whichever approach you prefer.

23.1.2 Delegated iteration

In the examples above, the iterable was created by calling the __iter__()method for the
object, which returned itself. That is not needed. An iterable may delegate12 the iteration
to another object, that it creates and returns when __iter__() is called.

listing2305.py

class FiboIterable:
def __init__( self, seq ):

self.seq = seq

def __next__( self ):
if len( self.seq ) > 0:

return self.seq.pop(0)
raise StopIteration()

12The name “delegated iteration” I came up with myself. If there is an “official” name for the approach, I
gladly update the book.
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class Fibo:
def __init__( self, maxnum=1000 ):

self.maxnum = maxnum

def __iter__( self ):
nr1 = 0
nr2 = 1
seq = []
while nr2 <= self.maxnum:

nr3 = nr1 + nr2

nr1 = nr2

nr2 = nr3

seq.append( nr1 )
return FiboIterable( seq )

fseq = Fibo()
for n in fseq:

print( n, end=" " )
print()
for n in fseq:

print( n, end=" " )

This approach has several advantages:

• You can run several instances of the iterable in parallel without the need to explicitly
create more than one (as they are created automatically when needed, i.e., when you
use for ... in ...)

• You do not need to call a reset()method to start from the beginning

• The delegated iterable is automatically erased from memory after it is used up
(Python automatically frees up memory of objects that the program no longer can
refer to)

23.1.3 zip()

You can create tuples that contain the items of multiple iterables using the standard func-
tion zip(). To give a simple example:

z = zip( [1,2,3], [4,5,6], [7,8,9] )
for x in z:

print( x )

A zip-object is an iterator, i.e., you cannot print the zip-object itself, but you have to loop
over its elements instead. The ith element of the zip-object consists of the ith elements of
each of the iterables that are its arguments. If these iterables are of unequal length, the
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number of elements in the zip-object will be the same as the number of elements of the
shortest of the iterables.

In the example above, I just used lists as arguments. But you can use any kind of iterable
as argument. For example, the following code block I zip together a range, an iterator,
and a list comprehension:

listing2306.py

class Doubles:
def __init__( self ):

self.seq = [2*x for x in range( 1, 11 )]
def __iter__( self ):

return self

def __next__( self ):
return self.seq.pop(0)

seq = zip( range( 1, 11 ), Doubles(), [3*x for x in range(1,11)])
for x in seq:

print( x )

Exercise Create a zip-object that produces tuples of two items: the first item is an inte-
ger, which runs from 1 to 10. The second item is the square of that integer.

23.1.4 reversed()

The built-in function reversed() creates an iterator from an iterable that processes the
items of the iterator in reversed order. It gets the iterable as argument.

Not all iterables can be reversed, but the ones that are part of the standard Python speci-
fication (such as lists) can. For details on how to make sure that iterables that you create
yourself can be reversed(), study the Python documentation.

fruitlist = ["apple", "orange", "cherry", "banana"]
for fruit in reversed( fruitlist ):

print( fruit )

23.1.5 sorted()

The built-in function sorted() creates an iterator from an iterable that processes the items
of the iterator in sorted order. It gets the iterable as argument.

Moreover, it can get two optional arguments. The first is key=<key>, where <key> is the
name of a function that is used to determine the key for the sorting process. This works
exactly as the key=<key> parameter for the list sort()method – see Chapter 12 for more
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information. If no key is given, the sorting is alphabetical order for strings, and numerical
order for numbers. For other data types, or mixed data types, it depends on the specifica-
tion of the key argument.

The second optional argument is reverse=<boolean>, that indicates with True or False
whether or not the sorting should give a reversed result.

fruitlist = ["apple", "orange", "cherry", "banana"]
for fruit in sorted( fruitlist ):

print( fruit )

23.2 Generators

A generator is a function that emulates the behavior of an iterable object. In general,
implementing a generator is shorter and easier than creating an iterable. Several standard
functions are implemented as generators, for example range().

Generators are based on the yield keyword. When calling __next__() on a generator, the
function is executed until yield is reached, then the value that is associated with yield is
returned. At that point, the function “waits” until __next__() is called again, after which
it continues until yield is reached again. StopIteration is raised automatically when
the function ends.

There is no need to explicitly define __next__() and/or __iter__(). A function is a gen-
erator simply because it contains the yield keyword, and the associated iterable object is
automatically created by Python, including appropriate implementations for __next__()
and __iter__().

listing2307.py

def fibo( maxnum ):
nr1 = 0
nr2 = 1
while nr2 <= maxnum:

nr3 = nr1 + nr2

nr1 = nr2

nr2 = nr3

yield nr1

fseq = fibo( 1000 )
for n in fseq:

print( n, end=" " )
print()
for n in fseq:

print( n, end=" " )
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23.2.1 Generator expressions

In Chapter 12, I introduced the concept of list comprehension. Since any list can be turned
into an iterator, and thus into a generator, Python introduced a similar concept for gen-
erators, and calls it “generator expressions.” The syntax for a generator expression is the
same as for a list comprehension, except that the square brackets are replaced by round
brackets.

For example, the following generator expression returns all squares up to 100:

seq = (x *x for x in range( 11 ))
for x in seq:

print( x, end=" " )

If you just replace the outer two parentheses by square brackets in the generator expres-
sion, the code runs with seq being the result of list comprehension. To be absolutely clear
about it: with list comprehension the whole list is generated at once, while with a gen-
erator expression the items are generated when needed. Thus, in principle a generator
expression is preferable, as it saves memory.

23.3 itertools module

The itertools module contains a collection of functions that allow advanced manipula-
tion of iterators. Taken to the extreme, they allow for a sort of “iterator algebra” that can
be used to implement specialized tools in Python. Here I just highlight a few of the basic
functions from itertools that you might find handy at times.

23.3.1 chain()

chain() takes two or more iterables as arguments and functions as an iterable that works
through them in sequence.

from itertools import chain

seq = chain( [1,2,3], [11,12,13,14], [x *x for x in range(1,6)] )
for item in seq:

print( item, end=" ")

23.3.2 zip_longest()

zip_longest() works like zip(), but will create an iterable that generates as many ele-
ments as there are elements in the longest argument. You specify a fillvalue= argument
to indicate what value should be used for empty spots.
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from itertools import zip_longest

seq = zip_longest( "apple", "coconut", "banana", fillvalue=" ")
for item in seq:

print( item )

23.3.3 product()

product() creates an iterable that produces all elements of the Cartesian product of the
iterables that are given as its arguments. To put that in less mathematical terms: if two
iterables are given as arguments, and the first has elements x, y, and z, while the second
has elements a and b, product() produces xa, xb, ya, yb, za, and zb.

from itertools import product

seq = product( [1,2,3], "ABC", ["apple","banana"] )
for item in seq:

print( item )

23.3.4 permutations()

permutations() gets an iterable as argument, and an optional second argument that in-
dicates a length. It creates an iterable that produces all permutations of the elements of
the first argument of the given length. If no length is given, it generates all permutations
that contain all the elements. Note that if the iterable has certain elements multiple times,
you will get copies of permutations.

from itertools import permutations

seq = permutations( [1,2,3], 2 )
for item in seq:

print( item )

23.3.5 combinations()

combinations() gets an iterable as argument, and a second argument that indicates a
length. It creates an iterable that produces all combinations of the elements of the first ar-
gument of the given length. The length is not optional (which is logical, if you think about
it for one moment – for maximum length there is only one combination). The elements of
the combinations will be in the order that they appeared in the original iterable. Note that
if the iterable has certain elements multiple times, you will get copies of combinations.
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from itertools import combinations

seq = combinations( [1,2,3], 2 )
for item in seq:

print( item )

23.3.6 combinations_with_replacement()

combinations_with_replacement() works like combinations(), except that each ele-
ment of the iterable can be used multiple times.

from itertools import combinations_with_replacement

seq = combinations_with_replacement( [1,2,3], 2 )
for item in seq:

print( item )

What you learned

In this chapter, you learned about:

• Iterators

• Iterables

• __iter__(), __next__(), and StopIteration

• Different approaches to implementing iterable objects

• zip()

• Generators

• yield

• Generator expressions

• itertools functions chain(), zip_longest(), product(), permutations(),
combinations(), and combinations_with_replacement()

Exercises

Exercise 23.1 Create a program that asks the user to enter positive integers. The user
can enter as many as desired, and indicates that the last integer was entered by supplying
zero. The program the prints all numbers between 1 and 100 that are not divisible by any
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of the integers entered. Print those numbers in a for ... in ... loop, using an iterator
to produce the numbers.

Exercise 23.2 Create a generator that produces factorials. The first value returned is
1!, the second 2!, the third 3!, etcetera, up to 10!. Do not calculate the factorial every time
from scratch, but retain the value that you used in the previous cycle and use that.

Exercise 23.3 Ask the user to enter a word. Produce all anagrams of that word. If the
word contains multiple copies of a letter, it is acceptable if you produce certain anagrams
multiple times. For example, if the word is "ape", you produce "aep", "ape", "eap",
"epa", "pae", and "pea" (in any order).

Exercise 23.4 Do the previous exercise, but now make sure that all anagrams are
unique, even if the word contains repetitions of letters. For example, if the word is "bee",
you produce "bee", "ebe", and "eeb".

Exercise 23.5 The "subset sum" problem asks the question whether a list of integers
contains a subset of integers that, when summed, gives zero as answer. For instance, for
the list [1, 4, -3, -5, 7] the answer is “yes,” as 1 + 4 - 5 = 0. However, for the list [1, 4, -3, 7]
the answer is “no,” as there is no subset of integers that adds up to zero. Write a program
that solves the “subset sum” problem for a list of integers. If there is a solution, print it; if
not, report that there is no solution.

This is a repetition of one of the exercises of Chapter 12 (Lists). In that chapter I said that
you have to solve the exercise recursively. However, using the itertools module, you
can now solve it without recursion (though I suspect that recursion still is used within the
itertools module – you, however, do not have to).

Exercise 23.6 Write a program that produces all possible sub-dictionaries from a dic-
tionary, and stores them in a list. For instance, if the dictionary is {"a":1,"b":2}, the
program produces [{},{"a":1},{"b":2},{"a":1,"b":2}] (the ordering of the list does
not matter). Again, use the itertools module.

Exercise 23.7 Write a program that determines how you can place eight queens on a
chess board in such a way that none of them attacks any of the other ones. This is a classic
problem that sounds like it has little to do with this chapter, but when you consider that
you may solve it using the permutations() function in a smart way, you will find that
this program can be surprisingly short.
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Command Line Processing

In Chapter 15 I mentioned that when handling large volumes of data spread over multiple
files, you occasionally might want to write a Python program that supports command-line
processing. This chapter tells you how to do that.

24.1 The command line

Chapter 15 explained how you can get access to your computer’s “command prompt”. If
you do not remember, please go refresh your memory. The chapter also explained that
you can start Python programs directly from the command prompt with the command:

python <programname>.py

This works as long as your system knows how to find Python and the program resides
in the current directory. If the program is not in the current directory, it will still work as
long as you specify the complete path to the program in the command.

24.1.1 Batch processing

Suppose you have written a program that asks a user for a filename and maybe for a few
extra parameters, then processes the file with the indicated name using the parameters.
I then ask you to run that program on all the files in a specific directory. The directory
contains over 10,000 files. What will you do?

You might adapt the program so that instead of asking for the name of file and processing
that file, it processes all files in a directory, using parameters that are not asked of the user.
If the parameters that you have to use differ per file, there has to be a way to know what
they are (perhaps you can derive them from the file name), so it should be possible to
calculate them. This solves your problem. But then I ask you to run your program on a
bunch of different directories. What will you do?
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You can adapt your program so that it contains a list of all the directories that you need
to process, then work through them one by one. And every time that I ask you to add
an extra directory, just change the program. Regardless what I ask you, you can always
adapt your program to encompass my requests. Though you might get a bit annoyed that
I am asking you to change the program again and again and again.

There is a different way of handling such requests, and that is through batch processing.
All command lines support the running of so-called “batch files,” which contain a list of
commands that you give to the operating system. Under Windows such files have the
extension .bat, while under Mac and Linux they can have any name. However, you can
install different command shells which use different conventions – potentially you could
even use a Python shell and use Python itself to write batch files.

The batch file can contain commands that use a close derivative of your first program, that
processes just one file, and call it for every file that you want to process. The problem is,
of course, that the program requires user input, and you are not prepared to type inputs
every time the batch file calls the program. The solution is to change the program in such
a way that it processes command line arguments.

24.1.2 Command line arguments

On the command line, you can start a Python program with a list of arguments:

python <programname>.py <argument_1> <argument_2> ... <argument_n>

The arguments are separated from each other by spaces and can be anything, though if
you have an argument that contains spaces, you should enclose it in double quotes. This,
of course, immediately raises the question what you should do if an argument contains a
double quote, and unfortunately the answer is “that depends on the command shell that
you are using.” Most commonly, you either precede the double quote with a backslash,
or you write a double double quote.

Of course, just writing the arguments will not let your program process them automat-
ically. You have to extend your program with code that processes command line argu-
ments, which means you have to be able to access those command line parameters di-
rectly.

24.1.3 sys.argv

You get access to the command line arguments that your program was supplied with via
a pre-defined list that is available when you import the sys module. The list is called
sys.argv. It is a list of strings, each string being one of the command line arguments that
was supplied to the program.

sys.argv always contains at least one element, namely the complete name of the Python
file that you are running, including the directories and (under Windows) the drive letter
of the place where the program file resides. To know how many arguments were supplied
(including the filename), you can, of course, use the len() function.
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When you work from an editor, in general you cannot supply command-line arguments
to your Python programs. So if you want to experiment with this, you actually have
to test your programs on the command line. That is a bit of a hassle, especially during
development time. However, I can tell you how to set up your programs in such a way
that handling command line arguments is optional.

24.2 Flexible command line processing

When I code Python programs, I prefer working from an editor. There are a few editors
that support supplying command line arguments to a program when testing it, but most
do not. So I want to develop my programs in such a way that I can build them as if they
process command line arguments, but that I can test them directly from an editor, and
only need to test whether or not they actually process command line parameters correctly
once. I do that as follows:

For every parameter that can be controlled via the command line, I create a global variable.
I fill these global variables with default values. In the rest of the program, I use these
variables as if they are constants. Only at the very start of the main program I check for
the existence of command line arguments, and if I find those, I overwrite the variables
with values that are supplied on the command line.

The advantage of this approach is that I can develop my program without using command
line arguments. If I want to use different values for the command line arguments for
testing, I simply use different values for the variables in which I will store the command
line arguments. I can even set up the program in such a way that it will either fill a variable
via a command line argument, or will ask the user for the value if it was not supplied on
the command line.

Typically, such code looks as follows:

listing2401.py

import sys

# 3 variables for holding the command line parameters
inputfile = "input.txt"
outputfile = "output.txt"
shift = 3

# Processing the command line parameters
# (works with 0, 1, 2, or 3 parameters)
if len( sys.argv ) > 1:

inputfile = sys.argv[1]
if len( sys.argv ) > 2:

outputfile = sys.argv[2]
if len( sys.argv ) > 3:

try:
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shift = int( sys.argv[3] )
except TypeError:

print( sys.argv[3], "is not an integer." )
sys.exit(1)

In this code, three command line arguments are supported: the first two are strings, and
the third is an integer. The third one is immediately converted from a string (which a
command line argument always is) to an integer, and the program is aborted if this con-
version fails. I could have built in more checks for demonstration, but I assume that at
this point in your programming career that does not pose any problems to you.

All three arguments have a default value: the first string has default value "input.txt",
the second string has default value "output.txt", and the integer has as default value 3.
You are not expected to supply all three arguments on the command line: if you supply
zero, all three default values will be used; if you supply one, the first string will be over-
written with the command line argument, while the other two variables will retain their
default value; etcetera.

24.2.1 sys.exit()

In the example code above the program is aborted using sys.exit() if an argument is not
meeting the requirements set to it. sys.exit() was introduced in Chapter 6. However, I
did not explain at that time that sys.exit() can get a numerical argument, which you see
above. The use of this argument is that it will be returned to the batch file that is running
the program, and the batch file can respond to it if it was designed to. The numerical
argument is supposed to be an error code. Typically, zero is given as argument if every-
thing was processed correctly (a program that ends normally will also return zero), and
otherwise another number is used. As some systems are limited to the values zero to 255
as program return values, it is convention to limit the sys.exit() argument to that range
of values too.

24.2.2 argparse

If you want module support for command line processing, Python supplies a standard
module argparse for that. Frankly, I do not see much use for such a module, as command
line processing is too simple to spend much time on. However, some Python programs,
in particular those that are meant to enhance the system, support a large and complex
variety of command line arguments, and may benefit from such a module. It is up to you
to study it if you think it may help you.

What you learned

In this chapter, you learned about:
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• Command line arguments

• sys.argv

• Flexible command line processing

Exercises

Exercise 24.1 Create a program that can be started with zero or more numerical argu-
ments. If it gets presented with a non-numerical argument, the program gives an error
message. If it gets presented with only numerical arguments, it adds them up and prints
the sum. Test the program on the command line.



Chapter 25

Regular Expressions

When you are facing a problem with text mining, data processing, finding patterns in
large collections of data, or scraping data from web pages, and you explore the Internet
to find a solution to your problem, you will find that often the very first answer given to
questions in this respect is “Why don’t you use regular expressions?” or even “Just use
regex,” without further explanations. Rather smug answers, as many people have never
heard of regular expressions, and if they have, might find them scary and incomprehen-
sible. In fact, at first glance they come over as so arcane and confusing that most people
rather shy away than delve into them. Which is a pity, as regular expressions are a power-
ful tool that should not be missing in the toolbox of anyone who deals with unstructured
data on a regular basis.

In this chapter I will explain how to write and use basic regular expressions with Python.
You will find them indeed a powerful way to quickly express and discover complex and
diverse patterns in data, providing access to functionalities that would be very hard to
implement in vanilla Python. While this chapter does not contain a complete overview
of regular expressions, after studying it you will be able to understand and use regular
expressions for most, if not all, pattern-matching problems that you encounter in practice,
and be confident in telling the uninitiated: “You should use regular expressions to solve
your problems.” Now you can feel smug too!

25.1 Regular expressions with Python
Regular expressions are text strings that describe a “pattern” that can be found in textual
data. For example, the regular expression a+ describes a pattern that consists of a sequence
of one or more times the letter “a.” In the string “aardvark” this pattern can be found
twice, namely as the “aa” at the start of the string, and the single “a” in the second half of
the string.

A regular expression always consists of a string, which may contain any character. Some
characters are “meta-characters” which have a special meaning in regular expressions.
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You should be careful when using them (how you should use them will be discussed
later). The meta-characters are:

. ^ $ * + ? { } [ ] \ | ( )

I will discuss how to write regular expressions later in this chapter. First, I need to discuss
how to use regular expressions in Python code.

25.1.1 The re module

To use regular expressions in Python, you must import the re module.

A regular expression can be considered a piece of code. That code can be “compiled”
by the re module to produce a “pattern object.” That pattern object can then be used to
search for the pattern in data. For instance, in the following code, the regular expression
a+ is compiled to produce a pattern stored as pAplus, which is then used to search for
the pattern in the string “aardvark.” It stores the occurrences of the pattern as a list, and
prints that list.

listing2501.py

import re

pAplus = re.compile( r"a+" )
lAplus = pAplus.findall( "aardvark" )
print( lAplus )

Exercise You can change the word “aardvark” into something else, and see how that
affects the output.

You might be wondering what that letter “r” is doing in front of the regular expression
string. Why did I write r"a+" instead of just "a+"? This letter “r” tells Python that it
should consider the string as “raw data,” i.e., it should not try to convert parts of the string
according to standard Python string interpretations. This is mainly necessary when the
regular expression contains "\b", which for regular expressions means “word boundary”
(I will get to that later in this chapter), but for Python is an escape sequence that means
“backspace.” So it is good practice to always put that “r” in front of a regular expression,
to avoid problems.

While it is seldom done in practice, you may add an optional second parameter (a so-
called “flag”) to the compile() call, which indicates a special way to use the created pat-
tern. The parameter re.I indicates that the pattern should be used case-insensitively,
while re.S indicates that the pattern should also process newlines, and re.M indicates
that the pattern should match the meta-characters ^ and $ to every line of the text, and
not just the text as a whole. You may combine them by putting pipe-lines (|) between
them.
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25.1.2 Shorthand

You are allowed to skip the compile-step, and call the pattern search using a class call to
the re module. Instead of calling methods of the pattern that the compilation produced, I
can directly call the method for re, and use the regular expression as the first parameter.
The code above then becomes:

import re

lAplus = re.findall( r"a+", "aardvark" )
print( lAplus )

If you run this code, you will notice that the output is exactly the same as for the first bit
of code. The second approach still compiles the regular expression, but does not store the
pattern. If a pattern is only needed a few times in a program, the second approach is fine.
However, if it is used many times, the first approach is preferred, as in the first approach
the compilation of the regular expression (which takes by far the most time of the whole
process) is only done once, as opposed to every time.

25.1.3 Match objects

The findall() method used above returns the occurrences of the pattern in the target
string. Often you need more information than just the actual patterns; for instance, you
might want to know where the pattern occurs in the target string. The re module has
methods that result in so-called “match objects,” which are objects that contain, besides
the textual result, more information, such as the index where the result is found in the
target string. For example, the search() method returns a match object for the first oc-
currence of a pattern in a string.

import re

m = re.search( r"a+", "Look out for the aardvark!" )
print( "{} is found at index {}".format( m.group(), m.start() ) )

As you can see, the match object has several useful methods. These are:

• group() to return the found pattern

• start() to return the index at which the pattern starts

• end() to return the index where the pattern has ended

The group() method has some handy applications which you can control with parame-
ters, which I will get to later.

The match()method is similar to the search()method, but checks if the pattern exists at
the very start of a string. Both methods will return None if the pattern is not found, which
as a condition is processed by Python as False.
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import re

m = re.match( r"a+", "Look out for the aardvark!" )
if m:

print( "{} starts the string".format( m.group() ) )
else:

print( "The pattern is not found at the start of the string")

25.1.4 Lists of matches

I already showed that the findall() method creates a list of occurrences of a pattern in
a string. The finditer() method is its complement, which creates a list (or rather, an
iterator) of match objects for where the pattern occurs in a string. The best way to process
such a list is by using the for m in ... approach. For example:

listing2502.py

import re

mlist = re.finditer( r"a+",
"Look out! A dangerous aardvark is on the loose!" )

for m in mlist:
print( "{} starts at index {} and ends at index {}.".format(

m.group(), m.start(), m.end() ) )

25.2 Writing regular expressions

Now the basics of using regular expression in Python via the re module have been ex-
plained, I can get into the actual writing of regular expressions.

25.2.1 Regular expressions with square brackets

The simplest regular expression is a string of characters, which describes a pattern con-
sisting of exactly that string of characters. You may also describe a range of characters
using square brackets [ and ]. For instance, the regular expression [aeiou] describes any
of the characters "a", "e", "i", "o", or "u". This means that if [aeiou] is part of a regular
expression, at that location in the pattern one of these letters must reside (note: exactly one
of them, so not multiple). For instance, to search for the words "ball", "bell", "bill",
"boll" and "bull", the regular expression b[aeiou]ll can be used.

listing2503.py
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import re

slist = re.findall( r"b[aeiou]ll", "Bill Gates and Uwe Boll \
drank Red Bull at a football match in Campbell." )
print( slist )

Exercise Change the regular expression above so that it not only finds the words "ball"
and "bell", but also "Bill", "Boll", and "Bull".

You can use a dash within the square brackets between two characters to indicate that
they represent not only these two characters, but also all the characters in between. For
instance, the regular expression [a-dqx-z] is equivalent to [abcdqxyz]. To describe any
of the letters of the alpabet, either as capital or lower case, you can use [A-Za-z].

Moreover, if you place a caret (^) right next to the opening square bracket, that means
that you want the opposite of what is within the square brackets. For instance, [^0-9]
indicates any character except for a digit.

25.2.2 Special sequences

In a regular expression, just like in strings, the backslash character (\) indicates that the
character that follows it has a special meaning, i.e., it is an escape sequence. The escape
sequences that hold for strings also hold for regular expressions, but regular expressions
have many more. There are also a few meta-characters that are interpreted in a particular
way. The following special sequences are defined (there are more, but these are the most
common ones):

\b Word boundary (zero-width)

\B Not a word boundary (zero-width)

\d Digit [0-9]

\D Not a digit [^0-9]

\n Newline

\r Carriage return

\s Whitespace (including tabulation)

\S Not a whitespace

\t Tabulation

\w Alphanumeric character [A-Za-z0-9_]

\W Not an alphanumeric character [^A-Za-z0-9_]

\/ Forward slash

\\ Backslash

\" Double quote

\' Single quote

^ Start of a string (zero-width)

$ End of a string (zero-width)

. Any character
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Note that “zero-width” means that the sequence does not represent a character, but a po-
sition in the string between two characters (or the start or end of the string). For instance,
the regular expression ^A represents a string that starts with the letter "A".

Moverover, you can place characters or substrings between parentheses, in which case
the characters are “grouped.” Within a group, you can indicate a choice between multiple
(sequences of) characters by placing pipe-lines (|) between them. For instance, the regular
expression (apple|banana|orange) is the string "apple" or the string "banana" or the
string "orange".

You should be aware that some of these special sequences (in particular those without
a backslash, the parentheses, and the pipe-line) do not work like indicated here when
placed within square brackets. For instance, a period within square brackets does not
mean “any character,” but an actual period.

25.2.3 Repetition

Where regular patterns get really interesting is when repetitions are used. Several of the
meta-characters are used to indicate that (part of) a regular expression is repeated multiple
times. In particular, the following repetition operators are often used:

* Zero or more times

+ One or more times

? Zero or one time

{p,q} At least p and at most q times

{p,} At least p times

{p} Exactly p times

You place such an operator after the (part of the) expression it repeats. For instance, ab*c
means the letter "a", followed by zero or more times the letter "b", followed by the letter
"c". Thus, it matches the strings "ac", "abc", "abbc", "abbbc", "abbbbc", etcetera.

A repetition operator after a group (between parentheses) indicates the repetition of the
whole group. For instance, (ab)*c matches the strings "c", "abc", "ababc", "abababc",
"ababababc", etcetera.

Regular expression matching for repetitions is greedy. It will always try to match the
earliest occurring pattern first, extended to its longest possible extension. For example:

listing2504.py

import re

mlist = re.finditer(r"ba+","A sheep says ' baaaaah ' to Ali Baba.")
for m in mlist:

print( "{} is found at {}.".format(m.group(), m.start()))
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Exercise Change the regular expression in the code above so that it finds any "b" fol-
lowed by one or more "a"s, where the "b" might be captitalized. The output should be
"baaaaa", "Ba" and "ba".

Exercise Once you have solved the previous exercise, change the regular expression so
that it finds the pattern consisting of a "b" or "B" followed by a sequence of one or more
"a"s, repeated one or more times. The output should be "baaaaa" and "Baba". You will
need to use parentheses for this. When you think that your regular expression is correct,
also test it on several other strings.

Here is another one, which searches for occurrences of one or more "a"s:

listing2505.py

import re

mlist = re.finditer(r"a+","A sheep says ' baaaaah ' to Ali Baba.")
for m in mlist:

print( "{} is found at {}.".format(m.group(), m.start()))

When you run this code, you see that it finds four occurrences of the pattern: three times
a single "a", and one time a sequence of five "a"s. You might wonder why the pattern
matching process does not also find the four "a"s starting at position 16, the three "a"s
starting at position 17, the two "a"s starting at position 18, and the single "a" starting at
position 19. The reason is that the finditer() and findall()methods, when they find a
match, continue searching immediately after the end of the last found match. Normally,
this is the behavior that you want.

Exercise Now change the r"a+" in the code above to r"a*", which changes it to search-
ing for zero or more "a"s. Before running the code, think about what you expect the
outcome to be. Then run the code and see if your prediction was correct. If it wasn’t, do
you now realize why the outcome is what it is?

You may have noticed that regular expressions may become overly complex fast. It is a
good idea to comment them so that you can understand them on later examination.

25.2.4 Practice

With all you learned until now, you should be able to do the following exercise. It is
wise to solve this one before continuing with the remainder of this chapter. The exercise
consists of a piece of code that you have to complete.

Exercise When you run the code below, it tries to search for all the regular expressions
in relist, in all the strings in slist. It prints for each string the numbers of all the regular
expressions for which matches are found. Your goal is to fill in the regular expressions in
relist according to the specification in the comments to the right of each expression.
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Note that the first seven regular expressions need to cover the string as a whole, so you
should have them start with a caret and end with a dollar sign, which indicates that the
expression should match the string from the start to the end.

listing2506.py

import re

# List of strings used for testing.
slist = [ "aaabbb", "aaaaaa", "abbaba", "aaa", "gErbil ottEr",

"tango samba rumba", " hello world ", " Hello World " ]

# List of regular expressions to be completed by the student.
relist = [

r"", # 1. Only a ' s followed by only b 's, including ""
r"", # 2. Only a 's, including ""
r"", # 3. Only a ' s and b 's, in any order, including ""
r"", # 4. Exactly three a ' s
r"", # 5. Neither a ' s nor b 's, but "" allowed
r"", # 6. An even number of a ' s (and nothing else)
r"", # 7. Exactly two words, regardless of white spaces
r"", # 8. Contains a word that ends in "ba"
r"" # 9. Contains a word that starts with a capital

]

for s in slist:
print( s, ' : ' , sep= ' ' , end= ' ' )
for i in range( len( relist ) ):

m = re.search( relist[i], s )
if m:

print( i+1, end= ' ' )
print()

The correct output is:

aaabbb: 1 3

aaaaaa: 1 2 3 6

abbaba: 3 8

aaa: 1 2 3 4

gErbil ottEr: 7

tango samba rumba: 8

hello world : 5 7

Hello World : 5 7 9

Make sure that you can do all of these correctly before you continue!
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25.3 Grouping

As shown above, when parentheses are used in regular expressions, they create so-called
“groups.” Take for instance the regular expression (\d{1,2})-(\d{1,2})-(\d{4}),
which describes a sequence that could represent a date: one or two digits, followed by
a dash, followed by one or two digits, followed by a dash, followed by four digits (if you
do not understand this regular expression, check back in previous sections of this chapter
until you do understand it). This expression contains three groups: the first containing
one or two digits, the second containing one or two digits, and the third one containing
the four digits at the end. The code below searches for this pattern in a string.

listing2507.py

import re

pDate = re.compile( r"(\d{1,2})-(\d{1,2})-(\d{4})" )
m = pDate.search( "In response to your letter of 25-3-2015, \
I decided to hire a hitman to get you." )
if m:

print( "Date {}; day {}; month {}; year {}".format(
m.group(0), m.group(1), m.group(2), m.group(3) ) )

When you run the code, you see that it not only gets out the result as a whole (using
the method group() or group(0)), but that you can also access each of the groups that
is found in the result, using methods group(1) for the day, group(2) for the month, and
group(3) for the year. You can also use the method groups() to get a tuple with all the
groups.

25.3.1 findall() and groups

The findall() methods returns a list of pattern objects. In the examples where it was
used until now, it returned a list of strings. Indeed, pattern objects are strings if there is at
most one group in the regular expression. If there are multiple groups, pattern objects are
actually tuples that contain all the groups.

listing2508.py

import re

pDate = re.compile( r"(\d{1,2})-(\d{1,2})-(\d{4})" )
datelist = pDate.findall( "In response to your letter of \
25-3-2015, on 27-3-2015 I decided to hire a hitman to get you." )
for date in datelist:

print( date )
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25.3.2 Named groups

It is possible to give each group a name, by placing the construct ?P<name> (where you
replace “name” with the name you want the group to have – you leave the < and > in the
expression in this case) immediately after the opening parenthesis. You can then refer to
the groups by these names, instead of their index.

listing2509.py

import re

pDate = re.compile(
r"(?P<day>\d{1,2})-(?P<month>\d{1,2})-(?P<year>\d{4})")

m = pDate.search( "In response to your letter of 25-3-2015, \
I curse you." )
if m:

print( "day is {}".format( m.group( ' day ' ) ) )
print( "month is {}".format( m.group( ' month ' ) ) )
print( "year is {}".format( m.group( ' year ' ) ) )

25.3.3 Referring within a regular expression

Suppose that you have to create a regular expression that represents a string that contains
an arbitrary non-space character twice. For instance, the string “regular” would not have
a match, but the string “expression” would (as it contains two "e"s and two "s"s). This
cannot be done with the regular expression features that we discussed until now. It can be
solved, however, with groups, and special references within a regular expression, namely
as follows: using the special sequence \x, whereby x is a number, you refer to the group
with index x in the match. Thus, a regular expression that represents a string with an
arbitrary non-space character twice is (\S).*\1.

Since at this point this regular expression might still be a bit hard to understand, let’s look
at it in depth. The \S is a special sequence that represents a non-space character. Putting
it in parentheses turns it into a group, and since this is the first (and only) group in the
expression, its index is 1. The .* represents a sequence of zero or more characters, which
can be anything (the period is a meta-character that represents any character). Finally, the
\1 refers to the first group, and says that here you want to have exactly the same thing
as the first group represents. If you are wondering why you do not need to represent
anything that can be placed before the \S, or anything that can come after the \1, then the
answer is that you are not specifying that this regular expression represents a string as a
whole, so as long as it occurs anywhere in the string, it matches.

Test this pattern with the code below, by replacing the string "Monty Python's Flying

Circus" with different strings, and running the code to examine the results.

listing2510.py
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import re

m = re.search( r"(\S).*\1", "Monty Python ' s Flying Circus" )
if m:

print( "The character {} occurs twice".format( m.group(1) ) )
else:

print( "No match was found." )

Exercise Can you change the regular expression in the code above so that it checks if
the string contains a character at least three times?

Exercise Can you change the regular expression so that it checks whether it contains at
least two characters twice? This is quite hard and therefore optional, but if you try to do
it, make sure that you test it with at least the strings "aaaa", "aabb", "abab" and "abba".
These all should match, unless you also want the two repeated characters different, then
"aaaa" should not match (but note that that makes the regular expression even harder to
design).

25.4 Replacing

While regular expressions are mainly used for searching, you can also use regular expres-
sions to replace substrings in a string with different substrings. You can use the sub()
method for this. sub() gets as arguments the to-be-replaced pattern, the replacement,
and the string. The sub() method returns the new string (remember that strings are im-
mutable, so sub() will not actually change your original string, even if it is stored in a
variable; you will have to store its return value if you want access to the new string).

The replacement is usually just a string, but it may contain references to groups in the
original pattern. You will have to use a format that is different from the \x format shown
before. If you want to refer to group x in the pattern (x being a number), you write \g<x>.
The reason for the difference is disambiguation; it allows you to distinguish a reference
to, for instance, group 2 followed by a character zero, from a reference to group 20.

import re

s = re.sub( r"([iy])se", "\g<1>ze", "Whether you categorise , \
emphasise , or analyse, you should use American spelling!" )
print( s )

What you learned

In this chapter you learned about:



Exercises 297

• What regular expressions are

• Which meta-characters can be used in regular expressions

• How to use regular expressions in Python, using the re module

• Compiling regular expressions with re.compile()

• What match objects are

• Searching for patterns using match(), search(), findall(), and finditer()

• Replacing patterns using the sub()method

• Using square brackets in regular expressions to represent different possibilities for
characters

• Using special sequences in regular expressions, many of which use the backslash
character

• Repeating sub-patterns in regular expressions using repetition operators

• Grouping of sub-patterns using parentheses

• Using groups to unravel results

• Referencing within patterns

• Smugly referring people with pattern mining problems to regular expressions

Exercises

Exercise 25.1 Assume that a word consist of only letters from the alphabet (upper case
or lower case). Write some code that uses a regular expression to make a list of all the
words in a text.

Exercise 25.2 Using a regular expression and the findall() method, create a list of
all the occurrences of the word “the” a sentence. Print the number of items in the list.
Your code should handle the problem in a case-insensitive way. Make sure that you do
not count the letter combination “the” when it occurs as part of another word (e.g., “the-
saurus” or “ether”).

Exercise 25.3 A person’s full name consists of two words, next to each other, consisting
of only letters from the alphabet, all lower case except for the first one, which is upper
case. Between the two words there should only be white spaces. The words start and end
at a word boundary. E.g., according to this specification Cardinal Richelieu is a name, but
Charles d’Artagnan is not, and neither is Gilbert duPrez, Joe DiMaggio, or Unit X1138.
Under this assumption, use a regular expression to list all the two-word combinations in
a sentence which are probably names of persons.
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Exercise 25.4 As a follow-up to the previous exercise, now assume that a person’s name
consists of two or more words that meet the criteria spelled out above. Use a regular
expression to extract all names.

Exercise 25.5 When a person speaks in a piece of text, this is often represented by
enclosing the spoken part within double quotes ("). Write a regular expression that extract
all double-quote enclosed parts from a text. Hint: Use groups, and remember that regular
expressions are greedy.

Exercise 25.6 When scraping data from HTML pages, you can often find the items
you are interested in by looking for mark-ups. Suppose that we have a page with data of
persons, who have an ID and a name. The ID is a nine-digit number, and has a marker
<id> in front of it, and a marker </id> after it. The name belonging to the ID will follow
immediately after the ID, and has a marker <name> in front of it, and a marker </name>
after it. Use a regular expression to extract all the IDs and corresponding names from the
text below, and print them. There should be five of them.

exercise2506.py

import re

text = "<html><head><title>List of persons with ids</title>\
</head><body>\
<p><id>123123123</id><name>Groucho Marx</name>\
<p><id>123123124</id><name>Harpo Marx</name>\
<p><id>123123125</id><name>Chico Marx</name>\
<randomcrap >Etaoin<id>Shrdlu </id>qwerty </name></randomcrap >\
<nocrap><p><id>123123126</id><name>Zeppo Marx</name></nocrap >\
<address>Chicago </address >\
<morerandomcrap ><id>999999999</id>nonametobeseen!\
</morerandomcrap >\
<p><id>123123127</id><name>Gummo Marx</name>\
<note>Look him up on <a href=\"http://www.google.com\">\
Google.</a></note>\
</body></html>"
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File Formats

Data is usually stored in files, which are constructed according to a specific file format.
Standardized file formats often are supported by Python using a particular module. In
this chapter, I discuss some of more common file formats and the modules that support
them.

26.1 Comma-Separated Values (CSV)
Comma-Separated Values (CSV) is the most common text file format that is used for im-
porting and exporting data to and from spreadsheets and databases. The general format
says that each line contains one record (a record is a complete entity), listing each of the
fields of the record in a specific order, separating the fields by commas. The first line of
the file may or may not consist of names for the fields in the CSV file.

The code below loads and displays the contents of a typical CSV file. Appendix E explains
how to get this CSV file.

fp = open( "pc_inventory.csv" )
print( fp.read().strip() )
fp.close()

Unfortunately, the CSV format is not standardized, and different software packages tend
to use slightly different implementations of CSV files. However, over the years the differ-
ent conventions used by the major software packages have converged to something of a
standard, that is implemented in the Python csv module. The module supports “dialects”
of CSV formats to handle files from different sources.

Instead of using the csv module, if you have to deal with an excentric CSV format that
the module does not support, you can try to design your own interpretation of lines of
the file using regular expressions. You can also try to design your own dialect. Neither
option is very appealing.
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26.1.1 CSV reader()

The csv module contains a reader() function that provides access to a CSV file. The
reader() function gets a file handle as argument, and returns an iterator that allows you
to get the lines from the file, as a list with each of the fields as an element of the list. You
should leave the file open while accessing it with reader().

listing2601.py

from csv import reader

fp = open( "pc_inventory.csv", newline= ' ' )
csvreader = reader( fp )
for line in csvreader:

print( line )
fp.close()

The Python documentation recommends that if you use reader() on a file (and that is
what you usually do), you specify a newline='' argument as extra argument when opening
the file (I did this in the code above). This is necessary in case some of the text fields in
the CSV file contain newline characters.

reader() takes extra arguments too. Common ones are delimiter=<character>, which
indicates the <character>which is placed between different fields (default is the comma),
and quotechar=<character>, which indicates which <character> is used to enclose
strings with (default is the double quote).

26.1.2 CSV writer()

Writing a CSV file is just a little bit harder than reading one. You create a file handle to
a file that you open for writing ("w" mode), and use it as an argument when you call the
writer() function from the csv module. The object that is returned from the writer()
call has a method writerow() that you can call with a list of fields, that it then writes to
the output file in CSV format.

The call to writer() can get the same arguments as the call to reader() can get, including
specifying a delimiter and a quotechar. You can also supply a quoting=<quotemethod>
argument, that supports the following methods of quoting:

• csv.QUOTE_ALL, which encloses every field in quotation characters

• csv.QUOTE_MINIMAL, which only encloses fields in quotation characters if it is abso-
lutely necessary (this is the default)

• csv.QUOTE_NONNUMERIC, which encloses fields in quotation characters if they are not
integers or floats

• csv.QUOTE_NONE, which encloses no fields in quotation characters
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Enclosing a string within quotation characters is generally only needed if the string con-
tains exceptional characters, such as newlines or the character that is used as delimiter.

listing2602.py

from csv import writer

fp = open( "pc_writetest.csv", "w", newline= ' ' )
csvwriter = writer( fp )
csvwriter.writerow( ["MOVIE", "RATING"] )
csvwriter.writerow( ["Monty Python and the Holy Grail", 8] )
csvwriter.writerow( ["Monty Python ' s Life of Brian", 8.5] )
csvwriter.writerow( ["Monty Python ' s Meaning of Life", 7] )
fp.close()

Exercise After using the code above to create the file “pc_writetest.csv,” open it and use
reader() to list its contents.

26.2 Pickling

Suppose that you want to store a certain data structure in a file, for instance, a list of
tuples. One way of doing that is to turn the tuples into strings and write those into the
file, one line for every tuple. When you then later want to rebuild the data structure in a
program, you read the file, unravel the lines, and reconstruct the list of tuples. As you can
imagine, this encompasses a considerable amount of quite difficult code.

Fortunately, you do not have to write such code. Python offers a solution for storing data
structures in files, including both structure and content, which is called “pickling.” You
can write the whole data structure to the file in one go, if you just open a binary file for
writing, and call the function dump() from the pickle module with the data structure as
first argument, and the file handle as second argument.

listing2603.py

from pickle import dump

cheeseshop = [ ("Roquefort", 12, 15.23),
("White Stilton", 25, 19.02), ("Cheddar", 5, 0.67) ]

fp = open( "pc_cheese.pck", "wb" )
dump( cheeseshop , fp )
fp.close()

print( "Cheeseshop was pickled" )
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To read the contents of a pickle file, you use the function load() from the pickle module.
load() gets a handle to the file as argument. Do not forget to open the file in binary
mode.

listing2604.py

from pickle import load

fp = open( "pc_cheese.pck", "rb" )
buffer = load( fp )
fp.close()

print( type( buffer ) )
print( buffer )

As you can see, load() restores the data structure completely.

Pickling works even for your own classes:

listing2605.py

from pickle import dump, load

class Point:
def __init__( self, x, y ):

self.x = x

self.y = y

def __repr__( self ):
return "({},{})".format( self.x, self.y )

p = Point( 2, 5 )
fp = open( "pc_point.pck", "wb" )
dump( p, fp )
fp.close()

fp = open( "pc_point.pck", "rb" )
q = load( fp )
fp.close()

print( type( q ) )
print( q )

26.3 JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a file format that is often used in modern applica-
tions, in particular those that communicate via web services. It is supported by many
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languages (JavaScript amongst them, of course). It is similar to pickling in the sense that
it stores in-memory objects to files, retaining their structure. A difference with pickling is
that JSON files are in human-readable format.

The json module works equivalent to the pickle module, with a dump() function that
writes data structures to a file, and a load() function to load data structures from a file.
The file must be a text file, and not a binary file.

listing2606.py

from json import dump, load

cheeseshop = [ ("Roquefort", 12, 15.23),
("White Stilton", 25, 19.02), ("Cheddar", 5, 0.67) ]

fp = open( "pc_cheese.json", "w" )
dump( cheeseshop , fp )
fp.close()

fp = open( "pc_cheese.json", "r" )
buffer = load( fp )
fp.close()

print( type( buffer ) )
print( buffer )

Alternatives for dump() and load() are the functions dumps() and loads(), which do
not get a file argument. Instead, dumps() gets no file argument at all, and just produces
a string that contains the data structure in JSON format, while loads() gets a string as
argument instead of a file, and loads the data structure from that string.

These functions can get many optional arguments that determine how exactly the data
will be stored; for instance, you can set the indent= argument for dump() and dumps() to
determine which indentation value will be used, and you can use arguments to sort the
data in the dump. If you want to know more about this, consult the references.

A weakness of the json module is that it only supports the standard Python data struc-
tures. If you want to use it to store instances of classes of your own making, you have to
find a way to convert your own classes to standard Python structures. The json module
offers special JSONencoder and JSONdecoder classes to help you with that. It goes too far
to discuss these here.

26.4 HTML and XML

HTML and XML are standard formats that are used to display information on webpages.
They consist of readable text files, with many instructions on formatting. It is a common
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task for data miners to “scrape” data from webpages. You can use regular expressions
for that, but if the webpages are reasonably well-formatted, the “Beautiful Soup” module
may help you out.

The Beautiful Soup module is named bs4 in Python (naturally, bs3 came before it, and it
may get more updates later). It contains the BeautifulSoup class that you can use to load
and interpret HTML and XML files. bs4 is not part of the standard Python package; you
have to install it separately, which is quite a hassle, unless you use a tool called pip which
comes standard with Python 3.

There are alternative modules that can ease the pain of web scraping for you, notably
lxml, but Beautiful Soup seems to be the most popular.

Since all such modules require separate installations, I will not discuss them here. I only
wish to indicate that if you need to do web scraping (and it is likely you have to do that
at some point), you should check out some of the standard tools available for that before
you delve into eccentric regular expression-design.

What you learned

In this chapter, you learned about:

• Reading and writing CSV files using the csv module

• Pickling using the pickle module

• Reading and writing JSON files using the json module

• The availability of tools for web scraping

Exercises

Exercise 26.1 Open the file “pc_inventory.csv” and read its contents using reader().
Write the contents to a different CSV file, using a space as delimiter and a single quote as
quotation character. Open the file you created as text file and display its contents to check
them.

Exercise 26.2 Load the contents from the file “pc_inventory.csv,” and put them in a list
of lists (each line in the file being one list in the list of lists). Store the list in JSON format.
Open the file you created as a text file and display its contents to examine them.
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Various Useful Modules

At this point in the book, everything that you really need to know to be an accomplished
Python programmer – or maybe even an accomplished programmer in general – has been
covered. I want to quickly highlight a few useful modules that do not need a chapter of
their own. I will not give many details; once you know what the purpose of a module is,
you can look up more information on it in the Python reference.

27.1 datetime

The datetime module contains functions that allow the manipulation of date and time.
The module contains various classes for date and time manipulation, of which the most
important ones are datetime, timedelta, date, and time. datetime contains attributes
year, month, day, hour, minute, second, microsecond, and tzinfo (the last attribute pro-
vides time zone information). date and time contain subsets of these attributes. Objects
of these types are immutable.

I restrict myself to discussing the datetime and timedelta classes, though related func-
tions and methods exist for the other classes.

datetime objects hold a date and a time. Amongst the methods for datetime objects are:

• now() creates a datetime object that contains the current day and time. You would
typically use a class call to get a value for now().

• datetime() creates a datetime object using given arguments. The first three argu-
ments are not optional, and are year, month, and day. The others, hour, minute,
second, microsecond, and tzinfo are optional. Arguments can either be given in this
order, or by specifying <argument>=<value>, with <argument> an argument name
as specified above.
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from datetime import datetime

print( datetime.now() )

When printing datetime objects you get a specific format as output. If you want a dif-
ferent format (including printing such things as the day of the week) then the datetime

module has functions that allow you to specify different kinds of formatting. For more
information, see the Python reference.

To calculate with datetime objects, you need timedelta. A timedelta object specifies a
difference between two datetime objects. A timedelta object stores days, seconds, and
microseconds. You can create timedelta objects with other period-representing argu-
ments, but it only stores the three mentioned here; other arguments are recalculated into
these three.

You can perform all kinds of calculations with timedelta objects, but the most useful ones
are concerning the difference between datetime objects. So you can add a timedelta

object to a datetime object to get a new datetime object, or subtract two datetime objects
from each other to get their difference as a timedelta object.

listing2701.py
from datetime import datetime , timedelta

thisyear = datetime.now().year
xmasthisyear = datetime( thisyear , 12, 25, 23, 59, 59 )
thisday = datetime.now()
days = xmasthisyear - thisday

if days.days < 0:
print( "Christmas will come again next year." )

elif days.days == 0:
print( "It ' s Christmas!" )

else:
print( "Only", days.days, "days to Christmas!" )

27.2 collections

The collections module contains handy classes that allow you to manipulate iterables
such as strings, tuples, lists, dictionaries, and sets. collections offers many interesting
functionalities, most of which are a bit eccentric, making it unlikely that you will need to
use them soon. I discuss two of them, namely the Counter class and the deque class.

A Counter object is a similar to a dictionary, which contains items as keys, and for each
of the items a “count” as value. You create a Counter object by providing the sequence of
which you want to count the items as argument. It has some useful methods, such as:
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• most_common() gets an integer as argument and returns a list containing the items
that have the highest count, as many as the integer argument indicates. The items
on the list are 2-tuples, the first element of a tuple being the counted item, and
the second element being the count. They are ordered from most common to least
common. If no integer argument is specified, the list contains all the items.

• update() gets an iterable as argument and “adds in” the items of the iterable.

listing2702.py
from collections import Counter

data = [ "apple", "banana", "apple", "banana", "apple", "cherry"
]

c = Counter( data )
print( c )
print( c.most_common( 1 ) )

data2 = [ "orange", "cherry", "cherry", "cherry", "cherry" ]
c.update( data2 )
print( c )
print( c.most_common() )

A deque object is a list that is supposed to be used as a “queue,” i.e., a list for which items
are added and removed from either end of the list. It supports methods that are similar
to list methods, such as append(), extend(), and pop(), which work at the right side end
of the list, but also has similar methods that work at the left side end of the list, such as
appendleft(), extendleft(), and popleft(). For the rest, it has the same methods that
you expect a list to have. You create a deque object with the iterable which you want to
turn into a deque as argument.

from collections import deque

dq = deque( [ 1, 2, 3 ] )
dq.appendleft( 4 )
dq.extendleft( [ 5, 6 ] )
print( dq )

27.3 urllib

The urllib module allows you to access web pages in the same way that you access files.
There are two modules of main interest: urllib.request contains functions to access
Internet content, and urllib.error contains definition for exceptions that can be raised.
You can also use urllib to communicate with webpages; if you want to do so, you need
to study the urllib.parse module. For now, I only give a simple example in which you
want to open a webpage and read its contents.
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listing2703.py

from urllib.request import urlopen

from urllib.error import HTTPError , URLError

from sys import exit

try:
u = urlopen( "http://www.python.org" )

except HTTPError as e:
print( "HTTP Error", e )
sys.exit()

except URLError as e:
print( "URL error", e )
sys.exit()

for i in range( 5 ):
text = u.readline()
print( text )

u.close()

Note that from urllib only urlopen needs to be imported. Once you have opened a web
address, it is returned as a file handle, so you can use the regular file methods on it.

27.4 glob

The glob module provides a function glob() to produce lists of files based on a wildcard
search pattern that is provided as argument. The wildcard search uses Unix conventions,
most of which also hold on other systems. They are as follows:

• A question mark (?) in a file name indicates any character

• A Kleene star (*) in a file name indicates any sequence of characters

• A sequence of characters between square brackets ([]) indicates any of these char-
acters; a dash may be used to indicate a sequence that runs from the character to the
left of the dash to the character to the right of the dash

For instance, the wildcard search "A[0-9]?B.*" looks for all files that start with the letter
A, followed by a digit, followed by any character, followed by a B, with any extension.
It depends on the operating system whether this is a case-sensitive or case-insensitive
search.

Do not confuse a wildcard search pattern with a regular expression. While they have some
superficial resemblance (such as an asterisk indicating “a series of any characters” in both
of them), they are nothing alike. Wildcard searches only support the patterns listed above
(some of which have a different meaning for regular expressions), and are only used for
glob and when directly communicating with the system via the command prompt.



27.5. statistics 309

from glob import glob

glist = glob( " *.pdf" )
for name in glist:

print( name )

The glob module also contains a function iglob(), which has the same functionality as
glob(), but produces an iterator instead of a list.

Exercise Use glob() to list all Python files in the current directory.

27.5 statistics

The statistics module gives you access to various common statistical functions. All of
these functions get as argument a sequence or iterator of numbers (integers or floats).

• mean() calculates the mean (or average) of a sequence of numbers

• median() calculates the median of a sequence of numbers, i.e., the “middle” number

• mode() calculates the mode of a sequence of numbers, i.e., the number that occurs
most often

• stdev() calculates the standard deviation of a sequence of numbers

• variance() calculates the variance of a sequence of numbers

There are a few more functions in the statistics module, but these are the most-used
ones. For more advanced statistical calculations, there are other modules available, which
I do not discuss in this book.

These functions may raise a StatisticsError. This is particularly relevant in the case of
the mode() function, as it is generated when no unique mode can be found.

listing2704.py
from statistics import mean, median, mode, stdev, variance , \

StatisticsError

data = [ 4, 5, 1, 1, 2, 2, 2, 3, 3, 3 ]

print( "mean:", mean( data ) )
print( "median:", median( data ) )
try:

print( "mode:", mode( data ) )
except StatisticsError as e:

print( e )
print( "st.dev.: {:.3f}".format( stdev( data ) ) )
print( "variance: {:.3f}".format( variance( data ) ) )
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Note that for a sequence with an even number of numbers, the median is the average of
the two “middle” numbers. There are different ways of calculating the median in case of
an even number of numbers; if you want to use a different one, examine other functions
in the statistics module.

As for the mode, in the literature you find multiple definitions of what the mode is sup-
posed to be. The general definition is “the most common number,” but what if there are
multiple of those? What if each number is unique? The version of the mode that the
statistics module supports does not seem to be the most common one.

What you learned

In this chapter, you learned about:

• datetime module

• collections module

• urllib module

• glob module

• statistics module

Exercises

Exercise 27.1 Use the Counter class to list the five most common letters in a text, with
their counts.

Exercise 27.2 Create a program that asks the user for numbers, until the user enters
zero. It then prints the mean, median, and mode of these numbers. The statistics

module can be used for the mean and median; however, for the mode, print all those
numbers that have the highest count, even if that entails that you print more than one
number. By definition, for a number to be the mode it must occur at least twice; so if
every number only occurs once, there is no mode. Hint: Consider using the Counter class
to construct the mode.



Epilogue

If you made it through the book and managed to do most of the exercises all by yourself:
Congratulations! You have become a programmer. You have internalized the basics of
dealing with any programming language, and should be able to solve most of the pro-
gramming problems that you encounter in your career as a student or as a professional
worker. If you need to learn another programming language, by now you have a solid
basis to quickly get to grips with any other language. Even better, you have learned to ap-
proach problems like programmers do, which is a valuable skill that you will find many
uses for.

Future editions of this book should have even more information and more interesting
problems to work on. This will all be optional material, but if you enjoy programming as
much as I do, you might want to check it out.

If you have any remarks on the contents of the present version of the book, I’ll be glad to
receive your message at pythonbook@spronck.net.

pythonbook@spronck.net


Appendix A

Troubleshooting

When I run code I get an ImportError

Check the name of the file that your code tries to import. If it is supposed to be one of the
standard Python libraries, you probably made a spelling mistake in the name. Either that,
or you added .py to the name – you should not do that. If the error concerns pcinput

or pcmaze, then probably you either did not build these files (check Appendix C or D to
solve the problem), or you placed them in a location that Python has no access to. In the
last case, make sure you copy them to the same place as where you keep your Python
programs.

I get a FileNotFoundError: [Errno 2]

You try to open a file that Python cannot find. You might have forgotten to include the
complete pathname in the file name, or you think the file is located in the current directory
while actually it is not. Or maybe your code tries to use one of the standard test files that
I use for the book, and you do not have those yet. If that is the case, check Appendix E to
learn how to make them.

I get a SyntaxError but I have no idea what I did wrong

When one or more syntax errors are reported, you should try to solve the one reported
first. Further errors are often caused by the first one. The line of code where Python
discovered the error is reported with the error. Check that line. Also check the line above
it: it might very well happen that you made an error in a line of code, but Python only
notices it when it processes the next line. Syntax highlighting may also give an indication
of where you made your mistake. Common syntax errors that beginning programmers
make are forgetting to include a colon (:) at the end of an if, while, or for statement,
misspelling the name of variables that they created, or making errors in indentation.
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I get a SyntaxError that reports a “Non-UTF-8 code”

You have used a character in your program that Python cannot process. For instance, you
might have placed your own name in the code (maybe even only in a comment), and your
name is spelled with a special character that is not directly found on the keyboard. Stick
to characters that are found on the US keyboard. It is not that you cannot include special
characters in your code, but the rules for doing that are explained in later chapters in this
book.

I get a curious error even when running the example code

Make sure that you use Python version 3.4 or later. The code was written with Python 3.4,
and I have noticed that some code elements do not work correctly with earlier versions of
Python.

When I run my program it doesn’t do anything

Maybe you built an endless loop in your program, so the program is actually working but
never getting to the point where it produces output. Check your loops. Sometimes it is
helpful to include a print() statement at the start of your program, just to see that the
program actually has started. print() statements in the code might also help to discover
where it gets stuck.

I defined a function (or class) in my program, but it seems Python cannot
access it

Make sure that you spelled your call to the function (or class) correctly. Remember that
Python is case sensitive! If the spelling seems to be correct, make sure that you have not
created a variable with the same name as the function (or class). If you did, this will
definitely destroy the possibilities of Python to access your function (or class).

I have been staring at my program for hours and can’t get it to work

Sometimes it is good to take a break. Put the program away, go home, play some games,
exercise, take a shower, anything. Get back to it tomorrow. Ask any programmer: some-
times you get stuck and cannot resolve a problem, for which the solution is immediately
clear to you when you come in the next day. What might also help is get someone else in
and explain your problem to them. Often, during such an explanation, you suddenly see
what you were doing wrong all this time. What you definitely should not do, however,
is continue writing your program without resolving the problem. You will only create
a bigger mess. A much better idea would be to make a copy of your program and then
actually remove/simplify code until the program starts working. That at least gives you
an indication where you have to look for the error.



Appendix B

Differences with Python 2

This appendix contains an overview of the differences between Python 2 and Python 3,
as far as they relate to the contents of this book and as far as I am aware of them. You can
ignore this appendix if you are only going to use Python 3.

Operators

The division operator (/) in Python 2 works differently from the one in Python 3. In
Python 3, it is automatically assumed that if you use division, you need floating-point
numbers, so the division will assume that all numbers involved are floats, and will always
result in a float. In Python 2, it is assumed that the division will be of the type that is “most
detailed” for the numbers involved, i.e., if you divide two numbers and at least one is a
float, it will be a floating-point division and the result is a float, but if you divide two
integers, it will be an integer division and the result will be an integer (if the resulting
number would mathematically have decimals, then the decimals are simply removed).
The way Python 2 works is similar to what most programming languages do, but the way
Python 3 works is more intuitive and leads to fewer errors.

Reserved words

In Python 3, print and exec are no longer reserved words (or keywords), as they are now
functions. However, True, False, and None are now keywords, as is the word nonlocal.

Basic functions

A small difference between Python 2 and Python 3 is that when using the type() function,
where Python 3 displays the word class, Python 2 displays the word type. The reason is
that in Python 3, all types are actually implemented as classes.
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The format() function was implemented in later versions of Python 2, but did not exist in
the earlier versions. Instead, it supported a style of formatting, using “percentage-codes,”
similar to what is used in languages such as C++. This was directly implemented in the
print() function, and remained part of the print() function even after the introduction
of format() (for compatibility reasons). Consequently, most Python 2 programs, even the
ones written using the most recent version of Python 2, use this older-style formatting.
These older approaches are no longer supported in Python 3. By the way, the parentheses
after the print() function are not necessary in Python 2, but obligatory in Python 3.

In Python 3, the range() function is an iterator (see Chapter 23). This entails that it needs
very little memory space: it only retains the last number generated, the step size, and the
limit that it should reach. In Python 2 range() is implemented differently: it produces
all the numbers of the range in memory at once. A statement like range(1000000000) in
Python 2 requires so much memory that it may very well crash the program. In Python 3,
such issues do not exist. In Python 2 it is therefore recommended not to use range() for
more than 10,000 numbers or so, while in Python 3 no restrictions exist.

In Python 2, the string manipulation methods were part of the string module, and were
generally called by importing the module and then writing string.<method>(). Such
calls are no longer supported by Python 3.

Data structures

In Python 2, sorting a mixed list does not give a runtime error. The sort() function also
supports an argument cmp=<function>, that allows you to specify a function that does the
comparison between two elements. This function is no longer supported in Python 3, but
you can use the key parameter for the same purpose. In the Python module functools

a function cmp_to_key() is found that turns the old-style cmp specification into the new-
style key specification.

In Python 2, the dictionary methods keys(), values(), and items() return lists instead
of iterators. Python 2 also supports a method has_key() that you can use to check if a
certain key is in a dictionary, but this method has been removed from Python 3.

Python 2 does not support sets natively. You have to import the sets module to use them.
Moreover, to create a set you use the Set()method, not the set() function. To create a set
with elements in them, in Python 2 the only way is to give the elements as a list argument
to the Set()method.

The structure of exceptions has changed a bit between Python 2 and Python 3. In partic-
ular, the exception IOError has been made an alias for the OSError exception, as it was
quite hard to distinguish which each of them tried to capture.

Unicode

Python 2 was not yet supporting Unicode natively, while Python 3 does. Python 3 strings
are Unicode strings. You will not notice the difference as long as strings are ASCII, but
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Python 2 strings might get into troubles when Unicode characters are inserted into the
strings. Python 3 also supports Unicode characters in identifiers such as variable names,
while Python 2 does not. It is not recommended that you do use non-ASCII characters in
identifiers, though.

Python 2 does not have byte strings. There is no need for them in Python 2, as it does not
support Unicode. In Python 2, if you want to write a byte with ordinal value zero, you
just write chr(0). The read() and write()methods for binary files use regular strings in
Python 2. This is not allowed in Python 3.

In Python 2, the pickle module worked on text files. This is no longer possible in Python
3, as Python 3 supports Unicode. Pickle files written with Python 2 cannot be loaded in
Python 3 and vice versa.

Iterators

Python 3 is much more based on iterators and generators than Python 2, which has all
kinds of advantages, mainly as far as speed and memory usage is concerned. Conse-
quently, there are quite a few differences between Python 2 and 3 in this respect. I have
not inventoried all of them, but here are a few that struck me:

Iterators in Python 2 have a next()method. They no longer have it in Python 3, where it
is called __next__().

In Python 2 zip() produces a list rather than an iterable.

The itertools module has some differences too. For instance, in Python 2 it has a func-
tion izip() that produces an iterable, but since in Python 3 zip() does that already, the
function izip() has been removed from itertools.

Modules

Besides pickle and itertools, urllib has been changed considerably between Python 2
and Python 3.

The statistics module does not exist for Python 2.
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pcinput.py

In many of the exercises in this book, it is useful to have a function available that accepts
inputs of a certain type. I created a module called pcinput which contains a number of
such functions. During many of the exercises in this book, I assume that you have that
module available. To get it, download it from http://www.spronck.net/pythonbook, or
copy the code below to a file called “pcinput.py,” and make sure that it is located in same
folder where you keep the files with your own code.

Note that these functions are rather ugly as they print error messages if something is
wrong. However, nicer functions would be more difficult to use (you would have to know
about exceptions, which are not covered until Chapter 17). For the purpose of learning to
code Python, they work fine.

Each of the functions asks the user to supply a value of a certain type (a float, an integer,
a string, or a capital letter), and returns that value. You can call each of the functions with
a string as argument, that will be used as prompt.

pcinput.py

def getFloat( prompt ):
while True:

try:
num = float( input( prompt ) )

except ValueError:
print( "That is not a number -- please try again" )
continue

return num

def getInteger( prompt ):
while True:

try:
num = int( input( prompt ) )

http://www.spronck.net/pythonbook
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except ValueError:
print( "That is not an integer -- please try again" )
continue

return num

def getString( prompt ):
line = input( prompt )
return line.strip()

def getLetter( prompt ):
while True:

line = input( prompt )
line = line.strip()
line = line.upper()
if len( line ) != 1:

print( "Please enter exactly one character" )
continue

if line < ' A ' or line > ' Z ' :
print( "Please enter a letter from the alphabet" )
continue

return line
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pcmaze.py

In Chapter 9 an example of searching a maze is presented. In that example a module
pcmaze is used, that I wrote for this book. The module contains a specific maze, and
functions to access features of the maze. To create the module, download it from http:

//www.spronck.net/pythonbook, or copy the code below to a file called “pcmaze.py,”
and make sure that it is located in same folder where you keep the files with your own
code.

pcmaze.py

def connected( x, y ):
if x > y:

return connected( y, x )
if (x,y) in ((1,5),(2,3),(3,7),(4,8),(5,6),(5,9),(6,7),

(8,12) ,(9,10) ,(9,13) ,(10,11) ,(10,14) ,(11,12) ,(11,15),
(15,16)):
return True

return False

def entrance():
return 1

def exit():
return 16

http://www.spronck.net/pythonbook
http://www.spronck.net/pythonbook
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Test Text Files

In Chapter 16 several small text files are used to demonstrate functionalities. Moreover,
in Chapter 26 I use a CSV file as demonstration. You can download these files either from
http://www.spronck.net/pythonbook, or create them yourself. The contents of these
files are given below: just create them with any text editor (you can even do that with
IDLE), saving them under the name that is given as title. The first one is a small excerpt
from Shakespeare’s Romeo and Juliet, the second is a traditional English tongue twister,
and the third one is taken from Lewis Carroll’s Through the Looking Glass. The last one is
an example CSV file that I built.

pc_rose.txt

'Tis but thy name that is my enemy.

Thou art thyself, though not a Montague.

What's Montague? it is nor hand, nor foot,

Nor arm, nor face, nor any other part

Belonging to a man. O, be some other name!

What's in a name? That which we call a rose

By any other name would smell as sweet.

So Romeo would, were he not Romeo call'd,

Retain that dear perfection which he owes

Without that title. Romeo, doff thy name;

And for that name, which is no part of thee,

Take all myself.

pc_woodchuck.txt

How much wood would a woodchuck chuck

http://www.spronck.net/pythonbook
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If a woodchuck could chuck wood?

He would chuck, he would, as much as he could,

And chuck as much as a woodchuck would

If a woodchuck could chuck wood.

pc_jabberwocky.txt

JABBERWOCKY

'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

'Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun

The frumious Bandersnatch!'

He took his vorpal sword in hand:

Long time the manxome foe he sought--

So rested he by the Tumtum tree,

And stood awhile in thought.

And as in uffish thought he stood,

The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,

And burbled as it came!

One, two! One, two! And through and through

The vorpal blade went snicker-snack!

He left it dead, and with its head

He went galumphing back.

'And hast thou slain the Jabberwock?

Come to my arms, my beamish boy!

O frabjous day! Callooh! Callay!'

He chortled in his joy.

'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.
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pc_inventory.csv

ID,CATEGORY,NAME,STOCK,UNITPRICE

1,Fruit,apple,1000,0.87

2,Fruit,banana,2500,0.34

3,Fruit,cherry,11225,0.07

4,Fruit,durian,0,5.52

5,Cheese,Roquefort,46,12.23

6,Cheese,Blue Stilton,1,19.88

7,Cheese,Gouda,7,11.99

8,Fruit,orange,355,0.77

9,Fruit,mango,24,1.56

10,Cheese,Cheddar,333,13.15
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Answers to Exercises

This appendix provides answers to most of the exercises. They are also available in file
format from http://www.spronck.net/pythonbook.

Note that it is useless to look up answers to exercises if you have not spent a significant
amount of time trying to solve the exercises. You can only learn programming by do-
ing. Only use the answers to compare them with your own, completed solutions, or as
a final resort should you have no idea how to solve a problem. However, if you cannot
solve a problem, it is usually better to return to an earlier part of the book that contains
information that you evidently did not understand or forgot about.

Note that very often, the answers given here are only one of many possible ways to solve
a problem. If you have found a different way to solve a problem, that might be just fine,
though make sure you test your answer extensively to ensure that it is correct.

Moreover, while the answers given here are usually efficient, efficiency is not the first goal
when writing code. You should first make sure that your code solves the problem at hand,
before you look into making the code more efficient. Readability and maintainability are
far more important than efficiency.

Chapter 1
Answer 1.1 A straightforward sorting procedure that first identifies the highest card, then
the next highest card, then the lowest-but-one, and then the lowest card, needs six com-
parisons. You could perform it, for instance, as follows:

Number the cards from 1 to 4, left to right. The number is tied to the spot where the card
is, i.e., when you switch two cards, they exchange numbers. Compare cards 1 and 2, and
switch them if 1 is higher than 2. Compare cards 2 and 3, and switch them if 2 is higher
than 3. Compare cards 3 and 4, and switch them if 3 is higher than 4. Now the highest
card will be the number 4. Then, compare cards 1 and 2 again, and switch them if 1 is

http://www.spronck.net/pythonbook
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higher than 2. Compare cards 2 and 3 again, and switch them if 2 is higher than 3. Now
the next-highest card is number 3. Finally, compare cards 1 and 2 and switch them if 1 is
higher than 2. You have now sorted the four cards, with six comparisons.

To do it with less comparisons, you need a procedure that is a bit more complex. Start
again by numbering the cards from 1 to 4. Compare cards 1 and 2, and switch them if 1
is higher than 2. Compare cards 3 and 4, and switch them if 3 is higher than 4. Compare
cards 1 and 3. If 1 is higher than 3, you switch card 1 and 3, and also card 2 and 4. The
lowest card is now in spot 1, and you also know that card 3 is lower than card 4. Now
compare cards 2 and 3. If 2 is lower than 3, you are done, needing only four comparisons.
If 2 is higher than 3, you switch 2 and 3. You now still have to compare cards 3 and 4, and
switch them if 3 is higher than 4, but then you are done, needing only five comparisons.
So you can do the sorting with a guaranteed maximum of five comparisons.

You might think that you can be smart and, after comparing 1 and 2 and maybe switching
them, and comparing 3 and 4 and maybe switching them, to compare 2 and 3, because if
at that point 2 is smaller than 3, you only need three comparisons. However, should at
that point 2 be higher than 3, if you are unlucky you will need six comparisons in total.

For those new to programming, the more efficient procedure which only needs five com-
parisons is quite hard to design, so do not get discouraged if you cannot come up with
it. It is more important that you solve a task, than that you solve it in the most efficient
manner.

Answer 1.2 You should draw four boxes on a piece of paper, number them, and put each
of the cards in one of the boxes. Tell the person who is following the instructions that
“compare the card in box x with the card in box y” means that they should ask the pro-
cessor to take up those cards, look at them, put them back in the same spots where they
were taken from, and then indicate which of the two is the higher card. Then you can give
them instructions for the simple, six-comparisons procedure outlined above:

1. Compare the card in box 1 with the card in box 2. If the card in box 1 is higher than
the card in box 2, switch these two cards.

2. Compare the card in box 2 with the card in box 3. If the card in box 2 is higher than
the card in box 3, switch these two cards.

3. Compare the card in box 3 with the card in box 4. If the card in box 3 is higher than
the card in box 4, switch these two cards.

4. Compare the card in box 1 with the card in box 2. If the card in box 1 is higher than
the card in box 2, switch these two cards.

5. Compare the card in box 2 with the card in box 3. If the card in box 2 is higher than
the card in box 3, switch these two cards.

6. Compare the card in box 1 with the card in box 2. If the card in box 1 is higher than
the card in box 2, switch these two cards.

Using the idea of drawing boxes that you have numbered to refer to the cards put in those
boxes is similar to using variables in a computer program. Variables will be explained
in one of the early chapters. Trying to write instructions for the more efficient procedure
outlined above is harder, because you need nested conditions and an early escape.
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Chapter 2
Answer 2.1 You now have Python running on your computer. Congratulations!

Answer 2.2 You will see nothing in the shell (apart from a display of the word RESTART

that you always see when running a program). 7/4 is a legal Python statement, so the
program will not give an error. The program just calculates 7/4, but does not display the
result using a print statement, so the program does not show 1.75. The shell, however,
displays the result of running the program. But since a program has no result by itself,
there is nothing for the shell to display either. So you see nothing.

Chapter 3
Answer 3.1

answer0301.py

print( 60 * (0.6 * 24.95 + 0.75) + (3 - 0.75) )

Answer 3.2 Each of the lines should be either print( "A message" ) or
print( 'A message' ). The error in the first line is that it ends in a period. That
period should be removed. The error in the second line is that it contains something
that is supposed to be a string, but starts with a double quote while it ends with a single
quote. Either the double quote should become a single quote, or the single quote should
become a double quote. The third line is actually syntactically correct, but probably it
was meant to be print( 'A message' ), so the f" should be removed.

Answer 3.3

answer0303.py

print( 1/0 )

Answer 3.4 The problem is that there is one closing parenthesis missing in the first line
of code. I actually deleted the closing parenthesis that should be right of the 6, but you
cannot know that; you can only count the parentheses in the first statement and see that
there is one less closing parenthesis than there are opening parentheses.

The confusing part of this error message is that it says that the error is in the second line
of code. The second line of the code, however, is fine. The reason is that since Python has
not seen the last required closing parenthesis on the first line, it starts looking for it on the
second line. And while doing that, it notices that something is going wrong, and it reports
the error. Basically, while trying to process the second line, Python finds that it cannot do
that, so it indicates that there is an error with the second line.

You will occasionally encounter this in your own code: an error is reported for a certain
line of code, but the error is actually made in one of the previous lines. Such errors often
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encompass the absence of a required parenthesis or single or double quote. Keep this in
mind.

Answer 3.5

answer0305.py

print( str( (14 + 535) % 24 ) + ".00" )

Chapter 4
Answer 4.1

answer0401.py

# This program calculates the average of three variables ,
# var1, var2, and var3
var1 = 12.83
var2 = 99.99
var3 = 0.12
average = (var1 + var2 + var3) / 3 # Calculate the average
print( average ) # May look a bit ugly, but we might make this
# look a bit better when we have learned about formatting

Answer 4.2

answer0402.py

pi = 3.14159
radius = 12
print( "The surface area of a circle with radius",

radius, "is", pi * radius * radius )

Answer 4.3

answer0403.py

CENTS_IN_DOLLAR = 100
CENTS_IN_QUARTER = 25
CENTS_IN_DIME = 10
CENTS_IN_NICKEL = 5

amount = 1156
cents = amount

dollars = int( cents / CENTS_IN_DOLLAR )
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cents -= dollars * CENTS_IN_DOLLAR

quarters = int( cents / CENTS_IN_QUARTER )
cents -= quarters * CENTS_IN_QUARTER

dimes = int( cents / CENTS_IN_DIME )
cents -= dimes * CENTS_IN_DIME

nickels = int( cents / CENTS_IN_NICKEL )
cents -= nickels * CENTS_IN_NICKEL

cents = int( cents )

print( amount / CENTS_IN_DOLLAR , "consists of:" )
print( "Dollars:", dollars )
print( "Quarters:", quarters )
print( "Dimes:", dimes )
print( "Nickels:", nickels )
print( "Pennies:", cents )

Answer 4.4

answer0404.py

a = 17
b = 23
print( "a =", a, "and b =", b )
a += b

b = a - b

a -= b

print( "a =", a, "and b =", b )

Chapter 5
Answer 5.1

answer0501.py

s = input( "Enter a string: " )
print( "You entered", len( s ), "characters" )

Answer 5.2

answer0502.py

from pcinput import getFloat

from math import sqrt

side1 = getFloat( "Please enter the length of the first side: " )
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side2 = getFloat( "Please enter the length of the second side: ")
side3 = sqrt( side1 * side1 + side2 * side2 )
print( "The length of the diagonal is {:.3f}.".format( side3 ) )

Answer 5.3

answer0503.py

from pcinput import getFloat

num1 = getFloat( "Please enter number 1: " )
num2 = getFloat( "Please enter number 2: " )
num3 = getFloat( "Please enter number 3: " )

print( "The largest is", max( num1, num2, num3 ) )
print( "The smallest is", min( num1, num2, num3 ) )
print( "The average is", round( (num1 + num2 + num3)/3, 2 ) )

Answer 5.4

answer0504.py

from math import exp

s = "e to the power of {:2d} is {:>9.5f}"
print( s.format( -1, exp( -1 ) ) )
print( s.format( 0, exp( 0 ) ) )
print( s.format( 1, exp( 1 ) ) )
print( s.format( 2, exp( 2 ) ) )
print( s.format( 3, exp( 3 ) ) )

Answer 5.5

answer0505.py

from random import random

print( "A random integer between 1 and 10 is",
1 + int( random() * 10 ) )

Chapter 6
Answer 6.1
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answer0601.py

from pcinput import getFloat

grade = getFloat( "Please enter a grade: " )
check = int( grade * 10 )
if grade < 0 or grade > 10:

print( "Grades have to be in the range 0 to 10." )
elif check%5 != 0 or check != grade *10:

print( "Grades should be rounded to the nearest half point.")
elif grade >= 8.5:

print( "Grade A" )
elif grade >= 7.5:

print( "Grade B" )
elif grade >= 6.5:

print( "Grade C" )
elif grade >= 5.5:

print( "Grade D" )
else:

print( "Grade F" )

Answer 6.2 The grade will always be “D” or “F,” as the tests are placed in the incorrect
order. E.g., if score is 85, then it is not only greater than 80.0, but also greater than 60.0, so
that the grade becomes “D.”

Answer 6.3

answer0603.py

from pcinput import getString

s = getString( "Please enter a string: " )
count = 0
if ("a" in s) or ("A" in s):

count += 1
if ("e" in s) or ("E" in s):

count += 1
if ("i" in s) or ("I" in s):

count += 1
if ("o" in s) or ("O" in s):

count += 1
if ("u" in s) or ("U" in s):

count += 1

if count == 0:
print( "There are no vowels in the string." )

elif count == 1:
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print( "There is only one different vowel in the string." )
else:

print( "There are", count, "different vowels in the string.")

Answer 6.4

answer0604.py

from pcinput import getFloat

from math import sqrt

a = getFloat( "A: " )
b = getFloat( "B: " )
c = getFloat( "C: " )

if a == 0:
if b == 0:

print( "There is not even an unknown in this equation!" )
else:

print( "There is one solution, namely", -c/b )
else:

discriminant = b *b - 4*a *c
if discriminant < 0:

print( "There are no solutions" )
elif discriminant == 0:

print( "There is one solution, namely", -b/(2*a) )
else:

print( "There are two solutions , namely",
(-b+sqrt(discriminant))/(2*a), "and",
(-b-sqrt(discriminant))/(2*a) )

Chapter 7
Answer 7.1

answer0701.py

from pcinput import getInteger

num = getInteger( "Give a number: " )
i = 1
while i <= 10:

print( i, " *", num, "=", i * num )
i += 1
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Answer 7.2

answer0702.py

from pcinput import getInteger

num = getInteger( "Give a number: " )
for i in range( 1, 11 ):

print( i, " *", num, "=", i * num )

Answer 7.3

answer0703.py

from pcinput import getInteger

TOTAL = 10
largest = 0
smallest = 0
div3 = 0

for i in range( TOTAL ):
num = getInteger( "Please enter number "+str( i+1 )+": " )
if num%3 == 0:

div3 += 1
if i == 0:

smallest = num

largest = num

continue
if num < smallest:

smallest = num

if num > largest:
largest = num

print( "Smallest is", smallest )
print( "Largest is", largest )
print( "Dividable by 3 is", div3 )

Answer 7.4

answer0704.py

bottles = 10
s = "s"

while bottles != "no":
print( "{0} bottle{1} of beer on the wall, "\
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"{0} bottle{1} of beer.".format( bottles, s ) )
bottles -= 1
if bottles == 1:

s = ""
elif bottles == 0:

s = "s"
bottles = "no"

print( "Take one down, pass it around, {} bottle{} "\
"of beer on the wall.".format( bottles, s ) )

The backslash (\) at the end of two of the strings in this code concatenates the string on
the next line to the string after which the backslash is found. I use that feature here to
make the code fit in the box. Use of the backslash to allow code to span multiple lines
is discussed in Chapter 10. You do not need it at this time: you can just put the whole
print() statement on one long line.

Answer 7.5

answer0705.py

num1 = 0
num2 = 1
print( 1, end=" " )

while True:
num3 = num1 + num2

if num3 > 1000:
break

print( num3, end=" " )
num1 = num2

num2 = num3

Answer 7.6

answer0706.py

from pcinput import getString

word1 = getString( "Give word 1: " )
word2 = getString( "Give word 2: " )
common = ""
for letter in word1:

if (letter in word2) and (letter not in common):
common += letter

if common == "":
print( "The words share no characters." )

else:
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print( "The words have the following in common:", common )

Answer 7.7

answer0707.py

from random import random

DARTS = 100000
hits = 0
for i in range( DARTS ):

x = random()
y = random()
if x *x + y *y < 1:

hits += 1

print( "A reasonable approximation of pi is", 4 * hits / DARTS )

Answer 7.8

answer0708.py

from random import randint

from pcinput import getInteger

answer = randint( 1, 1000 )
count = 0

while True:
guess = getInteger( "What is your guess? " )
if guess < 1 or guess > 1000:

print( "Your guess should be between 1 and 1000" )
continue

count += 1
if guess < answer:

print( "Higher" )
elif guess > answer:

print( "Lower" )
else:

print( "You guessed it!" )
break

if count == 1:
print( "You needed only one guess. Lucky bastard." )

else:
print( "You needed", count, "guesses." )
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Answer 7.9

answer0709.py

from pcinput import getLetter

from sys import exit

count = 0
lowest = 0
highest = 1001
print( "Take a number in mind between 1 and 1000." )

while True:
guess = int( (lowest + highest) / 2 )
count += 1
prompt = "I guess "+str( guess )+". Is your number"+\

" (L)ower or (H)igher, or is this (C)orrect? "
response = getLetter( prompt )
if response == "C":

break
elif response == "L":

highest = guess

elif response =="H":
lowest = guess

else:
print( "Please enter H, L, or C." )
continue

if lowest >= highest -1:
print( "You must have made a mistake,",

"because you said that the answer is higher than",
lowest, "but also lower than", highest )

print( "I quit this game" )
exit()

if count == 1:
print( "I needed only one guess! I must be a mind reader." )

else:
print( "I needed", count, "guesses." )

Answer 7.10

answer0710.py

from pcinput import getInteger

num = getInteger( "Please enter a number: " )
if num < 2:
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print( num, "is not prime" )
else:

i = 2
while i *i <= num:

if num%i == 0:
print( num, "is not prime" )
break

i += 1
else:

print( num, "is prime" )

There is a small trick in this code to speed up the calculation enormously. The code only
tests dividers up to the square root of num (i.e., it tests up to the point that i*i > num). The
reason that it does this, is that if there is a number bigger than the square root of num that
divides it, there must necessarily also be one smaller than that square root. For instance, if
the number is 21, the square root is between 4 and 5. So the algorithm only tests numbers
up to 4. There is a divider for 21 higher than 4, namely 7. But that means there must also
be one lower than (or equal to) 4, and indeed, there is one, namely 3. This is a gigantic
speedup compared to testing all numbers up to num; for instance, if num is somewhere
in the neighborhood of 1 million, and is prime, you would need to test about 1 million
numbers if you test all of them up to num, while this particular algorithm would only test
about one thousand.

If you found this trick, great! If not, don’t worry: as long as your code works, you are
doing just fine. The hard part is getting the code to work in the first place. As long as you
accomplish that, you are well under way to becoming a great programmer.

One final note on this code: you should test it extensively! It is very easy to go wrong on
particular numbers. In this case, make sure you test a negative number, zero, 1 (which all
three should be reported as not prime), 2 (which is the lowest prime number and the only
even one), 3 (which is the lowest odd prime), several not-prime numbers, several prime
numbers, and numbers which are the square of a prime. Even better, if you can write a
for loop around your code that tests all numbers between, for instance, -10 and 100, then
you are really doing an extensive test of your code.

Answer 7.11

answer0711.py

num = 9
print( ". |", end="" )
for i in range( 1, num+1 ):

print( "{:>3}".format( i ), end="" )
print()
for i in range( 3*(num+1) ):

print( "-", end="" )
print()
for i in range( 1, num+1 ):



336

print( i, "|", end="" )
for j in range( 1, num+1 ):

print( "{:>3}".format( i *j ), end="" )
print()

Answer 7.12

answer0712.py

for i in range( 1, 101 ):
for j in range( 1, i ):

for k in range( j, i ):
if j *j + k *k == i:

print( "{} = {}**2 + {}**2".format( i, j, k ) )

A more efficient version of this algorithm is:

answer0712a.py

from math import sqrt

for i in range( 1, 101 ):
for j in range( 1, int( sqrt( i ) )+1 ):

for k in range( j, int( sqrt( i ) )+1 ):
if j *j + k *k == i:

print( "{} = {}**2 + {}**2".format( i, j, k ) )

Answer 7.13

answer0713.py

from random import randint

TRIALS = 10000
DICE = 5
success = 0

for i in range( TRIALS ):
lastdie = 0
for j in range( DICE ):

roll = randint( 1, 6 )
if roll < lastdie:

break
lastdie = roll

else:
success += 1
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print( "The probability of an increasing sequence",
"of five die rolls is {:.3f}".format( success/TRIALS ) )

Answer 7.14

answer0714.py

for A in range( 1, 10 ):
for B in range( 10 ):

if B == A:
continue

for C in range( 10 ):
if C == A or C == B:

continue
for D in range( 1, 10 ):

if D == A or D == B or D == C:
continue

num1 = 1000*A + 100*B + 10*C + D

num2 = 1000*D + 100*C + 10*B + A

if num1 * 4 == num2:
print( "A={}, B={}, C={}, D={}".format(

A, B, C, D ) )

The program will generate all combinations of A, B, C, and D that solve the puzzle. In
this case there is only one, but the program continues seeking for more solutions until it
has tested all possibilities. Fortunately, that process is very fast. If you want to stop the
program once it has found a solution, the best approach is to put most of it in a function
and return from that function as soon as a solution is found. Creating your own functions
is discussed in the next chapter.

Answer 7.15

answer0715.py

PIRATES = 5
coconuts = 0
while True:

coconuts += 1
pile = coconuts

for i in range( PIRATES ):
if pile % PIRATES != 1:

break
pile = (PIRATES -1) * int( (pile - 1) / PIRATES )

if pile % PIRATES == 1:
break

print( coconuts )
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This solution start with zero coconuts and keeps adding coconuts to the pile until the pile
is of a size whereby it can let each pirate take his share leaving one coconut, removing
the share from the pile, and removing the remaining coconut. Testing whether a single
coconut remains after division is done using the modulo operator. After all pirates took
their share, the problem is solved if there again would be one coconut remaining when
the pile is equally divided amongst the pirates.

Isn’t it a bit surprising that you can solve a problem for which the description is so long
in so few lines of code?

Answer 7.16 First I give the solution that simulates each Triangle Crawler separately. The
advantage of coding it like this is that it is not hard to accomplish. The disadvantage is
that this code is rather slow. It should be pretty easy to understand how this solution
works:

answer0716.py

from random import randint

NUMCRAWLERS = 100000
totalage = NUMCRAWLERS # They all live at least one day

for i in range( NUMCRAWLERS ):
if randint( 0, 2 ): # Don ' t die on first day

totalage += 1
while randint( 0, 1 ): # Don ' t die on following day

totalage += 1

print( "{:.2f}".format( totalage / NUMCRAWLERS ) )

The second solution considers the population as one big whole, and simply divides it up
into chunks. The first day, it takes out a chunk the size of a third of the population, adds
to the total age the fact that this chunk only lived for one day, and lets the rest remain. On
the second day, it takes out half the population, and adds to the total age that those lived
for two days. On the third day, it again takes out half of the remainder, and adds up that
those lived three days. This continues until no Crawlers remain.

It should be noted that often there will be a Crawler remaining which could not be divided
(as a Crawler either survives or dies, but it cannot be Schrödinger’s Cat). Such a Crawler
is assigned randomly to the group that dies or the group that survives. You can see that
this code can deal with huge numbers of Triangle Crawlers without problems.

answer0716a.py

from random import randint

NUMCRAWLERS = 1000000000
num = NUMCRAWLERS

die = int( num / 3 )
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if NUMCRAWLERS % 3:
if randint( 0, NUMCRAWLERS % 3 ): # Remaining on day 1

die += 1
totalage = die # Day-1 deaths added to totalage
num -= die

age = 2
while num > 0:

die = int( num / 2 )
num -= die # Kill off half the population
if die != num: # There is a single remaining

if randint( 0, 1 ): # Decide on kill of single
die, num = num, die # swap values

totalage += die * age

age += 1

print( "{:.2f}".format( totalage / NUMCRAWLERS ) )

Finally, I present a solution that I did not suggest, but that works great. It is very brief,
incredibly fast, and gives an almost exact answer. It simply calculates 1

3 + 2
3 (

1
2 (2 +

1
2 (3 +

1
2 (4+

1
2 (5+ ...))))) for a limited number of terms, in this case 100, which is plenty to get a

highly accurate approximation. Of course, this a calculation rather than a simulation, but
it is the mathematical expression that you were actually asked to solve.

answer0716b.py

estimate = 1/3
remainder = 2/3
for days in range( 2, 101 ):

remainder /= 2
estimate += remainder * days

print( "{:.2f}".format( estimate ) )

By the way, the exact answer is 2 1
3 days; an approximation should give 2.33 or 2.34.

Chapter 8
Answer 8.1

answer0801.py

from pcinput import getInteger

# multiplicationtable gets an integer as parameter.
# It prints the multiplication table for that integer.
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def multiplicationtable( n ):
i = 1
while i <= 10:

print( i, " *", n, "=", i *n )
i += 1

num = getInteger( "Give a number: " )
multiplicationtable( num )

Answer 8.2

answer0802.py

from pcinput import getString

# commoncharacters gets two strings as parameters.
# It returns the number of characters that they have in common.
def commoncharacters( w1, w2 ):

common = ""
for letter in w1:

if (letter in w2) and (letter not in common):
common += letter

return len( common )

word1 = getString( "Give word 1: " )
word2 = getString( "Give word 2: " )

num = commoncharacters( word1, word2 )
if num <= 0:

print( "The words share no characters." )
elif num == 1:

print( "The words have one character in common" )
else:

print( "The words have", num, "characters in common")

Answer 8.3

answer0803.py

# The function gregoryLeibnitz approximates pi using the Gregory-
# Leibnitz series. It gets one parameter , which is an integer
# that indicates how many terms are calculated. It returns the
# approximation as a float.
def gregoryLeibnitz( num ):

appr = 0
for i in range( num ):
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if i%2 == 0:
appr += 1/(1 + i *2)

else:
appr -= 1/(1 + i *2)

return 4*appr

print( gregoryLeibnitz( 50 ) )

Answer 8.4

answer0804.py
from pcinput import getFloat

from math import sqrt

# This function solves a quadratic equation.
# Its parameters are the numeric values for A, B, and C in the
# equation Ax * *2 + Bx + C = 0. It returns three values: an int
# 0, 1, or 2, indicating the number of solutions , followed by two
# numbers which are the solutions. With no solutions , both
# solutions are set to zero. With one solution, it is returned as
# the first of the two, while the other is set to zero.
def quadraticFormula( a, b, c ):

if a == 0:
if b == 0:

return 0, 0, 0
return 1, -c/b, 0

discriminant = b *b - 4*a *c
if discriminant < 0:

return 0, 0, 0
elif discriminant == 0:

return 1, -b/(2*a), 0
else:

return 2, (-b+sqrt(discriminant))/(2*a), \
(-b-sqrt(discriminant))/(2*a)

num, sol1, sol2 = quadraticFormula( getFloat( "A: " ),
getFloat( "B: " ), getFloat( "C: " ) )

if num == 0:
print( "There are no solutions" )

elif num == 1:
print( "There is one solution, namely:", sol1 )

else:
print( "There are two solutions , namely:", sol1, "and", sol2)

Answer 8.5
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answer0805.py

from pcinput import getInteger

def getNumber( prompt ):
while True:

num = getInteger( prompt )
if num < 0 or num > 1000:

print( "Please enter a number between 0 and 1000" )
continue

return num

def main():
while True:

x = getNumber( "Enter number 1: " )
if x == 0:

break
y = getNumber( "Enter number 2: " )
if y == 0:

break
if x%y == 0 or y%x == 0:

print( "Error: the numbers cannot be dividers" )
return

print( "Multiplication of", x, "and", y, "gives", x * y )
print( "Goodbye!" )

if __name__ == ' __main__ ' :
main()

Answer 8.6

answer0806.py

# Calculates the factorial of parameter n, which must be an
# integer. Returns the value of the factorial as an integer.
def factorial( n ):

value = 1
for i in range( 2, n+1 ):

value *= i

return value

# Calculates n over k; parameters n and k are integers. Returns
# the value n over k as an integer (because it always must be
# an integer).
def binomialCoefficient( n, k ):

if k > n:
return 0
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return int( factorial( n ) /
(factorial( k ) * factorial( n - k )) )

def main():
print( factorial( 5 ) )
print( binomialCoefficient( 8, 3 ) )

if __name__ == ' __main__ ' :
main()

Answer 8.7 The code tries to print the return value of the function area_of_triangle(),
but since this function has no return value, it prints the word None. To display the output
of a function, you can either print the output in the function and then call it without
using the return value, or you let the function produce the output, return it, and print the
return value of the function in your main program. Not both. In general it is preferable
if functions do not do the printing themselves, because it makes them more generally
usable (for instance, the function area_of_triangle(), if it just returns the area instead
of printing it, you can not only use the function to print the area, but also use the area in
calculations). If you do not understand the explanation given here, revisit Chapter 5.

Chapter 9
Answer 9.1

answer0901.py

def fib( n ):
if n <= 2:

return 1
return fib( n-1 ) + fib( n-2 )

print( fib( 20 ) )

Answer 9.2

answer0902.py

def fib( n, depth ):
indent = 6 * depth * " "
print( "{}fib({})".format( indent, n ) )
if n <= 2:

print( "{}return {}".format( indent, 1 ) )
return 1

value = fib( n-1, depth+1 ) + fib( n-2, depth+1 )
print( "{}return {}".format( indent, value ) )
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return value

print( fib( 5, 0 ) )

Answer 9.3 Since the Fibonacci sequence can just as easily be implemented as an iterative
function (you did this in the previous chapter), doing it as a recursive function is not a
good idea. The reasons are the same as for the factorial, explained in the chapter. There is
the additional reason that the recursive definition basically calculates all terms of the se-
quence multiple times, as you can see when you look at the output for the second exercise,
while calculating them just once suffices.

Answer 9.4

answer0904.py

def gcd( m, n ):
if m % n == 0:

return n

return gcd( n, m%n )

print( gcd( 7*5*13 , 2*3*7*11 ) )

Interestingly, while the definition of the algorithm distinguishes the smallest and the
largest number, you actually do not have to make that distinction in your code. If you
call the function with the two exchanged, it just leads to one extra recursive call.

Answer 9.5 The problem in this code is that when I enter a string with two illegal char-
acters, then it will recursively call itself twice, namely once for each of the letters. So, for
instance, if the user enters "route67", it will first call itself recursively for the "6". If the
user then enters a correct string, the function should end. Instead, it continues checking
the original input "route67", finds the "7", and calls itself recursively again to ask for yet
another string. I could explain how you can solve this problem by fixing the code, but the
real fix here is that you should not write recursive functions that interact with the user.

Answer 9.6

answer0906.py

SIZE = 4

def solve_hanoi( pole_from , pole_tmp , pole_to, size ):
if size == 1:

print( "Disc 1 from", pole_from , "to", pole_to )
return 1

moves = solve_hanoi( pole_from , pole_to, pole_tmp , size-1 )
print( "Disc", size, "from", pole_from , "to", pole_to )
moves += 1+solve_hanoi( pole_tmp , pole_from , pole_to, size-1)
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return moves

moves = solve_hanoi( ' A ' , ' B ' , ' C ' , SIZE )
print( moves, "moves needed" )

An iterative approach to solve this puzzle is the following. Repeat these two steps until
the problem is solved: (1) Move disc 1 to the next pole; (2) Move a disc that is not disc 1 to
another pole (there is always exactly one disc for which you can do this). The only deci-
sion that remains is whether you should move disc 1 “clockwise” or “counter-clockwise.”
If the size of the biggest disc is even, go clockwise (A to B, B to C, or C to A). Otherwise,
go counter-clockwise (A to C, C to B, or B to A). This solution is fast and avoids recursion,
which means that it works for bigger disc sizes than the recursive solution tends to allow.
However, it is more complex to implement as you have to represent each pole as a list of
discs (lists will be introduced in Chapter 12), and you have to find a way to check whether
the game is solved (you can just take the number of necessary moves, which is 2N − 1).

Chapter 10
Answer 10.1

answer1001.py

text = """And Saint Attila raised the hand grenade up on high,
saying, "O Lord, bless this thy hand grenade, that with it
thou mayst blow thine enemies to tiny bits, in thy mercy."
And the Lord did grin. And the people did feast upon the lambs,
and sloths, and carp, and anchovies , and orangutans , and
breakfast cereals, and fruit bats, and large chu..."""

counta, counte, counti, counto, countu = 0, 0, 0, 0, 0
for c in text:

if c.upper() == "A":
counta += 1

elif c.upper() == "E":
counte += 1

elif c.upper() == "I":
counti += 1

elif c.upper() == "O":
counto += 1

elif c.upper() == "U":
countu += 1

print( "Counts: a={}, e={}, i={}, o={}, u={}".format(
counta, counte, counti, counto, countu ) )
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Answer 10.2

answer1002.py

text = """And sending tinted postcards of places they don ' t
realise they haven ' t even visited to ' All at nu[m]ber 22, weather
w[on]derful, our room is marked with an ' X '. Wish you were here.
Food very greasy but we ' ve found a charming li[t]tle local place
hidden awa[y ]in the back streets where they serve Watney ' s Red
Barrel and cheese and onion cris[p]s and the accordionist pla[y]s
"Maybe i[t] 's because I ' m a Londoner " ' and spending four days on
the tarmac at Luton airport on a five-day package tour wit[h]
n[o]thing to eat but dried Watney ' s sa[n]dwiches..."""

start = -1
while True:

start = text.find( "[", start+1 )
if start < 0:

break
finish = text.find( "]", start )
if finish < 0:

break
print( text[start+1:finish], end="" )
start = finish

print()

Answer 10.3

answer1003.py

ch = "A"
while ch <= "Z":

print( ch, end=" " )
ch = chr( ord( ch )+1 )

print()

for i in range( 26 ):
rotr13 = (i + 13)%26
ch = chr( ord( "A" ) + rotr13 )
print( ch, end=" " )

Answer 10.4

answer1004.py

text = """How much wood would a woodchuck chuck
If a woodchuck could chuck wood?
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He would chuck, he would, as much as he could,
And chuck as much as a woodchuck would
If a woodchuck could chuck wood."""

def clean( s ):
news = ""
s = s.lower()
for c in s:

if c >= "a" and c <= "z":
news += c

else:
news += " "

return news

count = 0
for word in clean( text ).split():

if word == "wood":
count += 1

print( "Number of times \"wood\" occurs in the text:", count )

Note that in the example text, the word “wood” never occurs with a capital. For a solid
test, you should insert “wood” written with one or more capitals in the text somewhere.

Answer 10.5

answer1005.py

text = "Hello, world!"
newtext = ""

while len( text ) > 0:
i = 0
ch = text[i]
j = 1
while j < len( text ):

if text[j] < ch:
ch = text[j]
i = j

j += 1
text = text[:i] + text[i+1:]
newtext += ch

print( newtext )

Answer 10.6
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answer1006.py

from sys import exit

sentence = "as it turned out our chance meeting with REverend \
aRTHUR BElling was was to change our whole way of life, and \
every sunday we ' d hurry along to St lOONY up the Cream BUn \
and Jam..."

# Just check if there really is a sentence.
if len( sentence ) <= 0:

exit()

# Capitalize first letter
newsentence = sentence[0].upper() + sentence[1:]

wordlist = newsentence.split()
lastword = ""
newsentence = ""

for word in wordlist:

# Correct double capitals
if len( word ) > 2 and word[0] >= "A" and word[0] <= "Z" and\

word[1] >= "A" and word[1] <= "Z" and word[2] >= "a" and\
word[2] <= "z":
word = word[0] + word[1].lower() + word[2:]

# Capitalize days
day = word.lower()
if day == "sunday" or day == "monday" or day == "tuesday" or\

day == "wednesday" or day == "thursday" or \
day == "friday" or day == "saturday":
word = day[0].upper() + day[1:]

# Correct CAPS LOCK
if word[0] >= "a" and word[0] <= "z":

allcaps = True
for c in word[1:]:

if not (c >= "A" and c <= "Z"):
allcaps = False
break

if allcaps:
word = word[0].upper() + word[1:].lower()

# Remove duplicates
if word == lastword:
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continue

newsentence += word + " "
lastword = word

newsentence = newsentence.strip()
print( newsentence )

Chapter 11
Answer 11.1 I created display_complex() to nicely format complex numbers (it will not
show a real part which is zero, or a 1 in front of the i, or clump a plus and minus together).
Creating such a function was not a requirement.

answer1101.py

def add_complex( c1, c2 ):
return (c1[0] + c2[0], c1[1] + c2[1])

def display_complex( c ):
s = "("
if c[1] == 0:

return str( c[0] )
elif c[0] != 0:

s += str( c[0] )
if c[1] > 0:

s += "+"
if c[1] != 1:

if c[1] == -1:
s += "-"

else:
s += str( c[1] )

s += "i)"
return s

num1 = (2,1)
num2 = (0,2)
print( display_complex( num1 ), "+", display_complex( num2 ),

"=", display_complex( add_complex( num1, num2 ) ) )

Answer 11.2 I used a less nice version of display_complex() for this solution.

answer1102.py

def multiply_complex( c1, c2 ):
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return (c1[0]*c2[0] - c2[1]*c1[1], c1[0]*c2[1] + c1[1]*c2[0])

def display_complex( c ):
return "({},{}i)".format( c[0], c[1] )

num1 = (2,1)
num2 = (0,2)
print( display_complex( num1 ), " *", display_complex( num2 ),

"=", display_complex( multiply_complex( num1, num2 ) ) )

Answer 11.3

answer1103.py

inttuple = ( 1, 2, ( 3, 4 ), 5, ( ( 6, 7, 8, ( 9, 10 ), 11 ), 12,
13 ), ( ( 14, 15, 16 ), ( 17, 18, 19, 20 ) ) )

def display_inttuple( it ):
for element in it:

if isinstance( element, int ):
print( element, end=" ")

else:
display_inttuple( element )

display_inttuple( inttuple )

Chapter 12
Answer 12.1

answer1201.py

from random import choice

answers = [ "It is certain", "It is decidedly so", "Without a \
doubt", "Yes, definitely", "You may rely on it", "As I see it, \
yes", "Most likely", "Outlook good", "Yes", "Signs point to yes",
"Reply hazy try again", "Ask again later", "Better not tell you \
now", "Cannot predict now", "Concentrate and ask again", "Don ' t \
count on it", "My reply is no", "My sources say no", "Outlook \
not so good", "Very doubtful" ]

input( "Ask the magic 8-ball your question: " )
print( "The magic 8-ball says:", choice( answers ) )
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The choice() function from random selects a random item from a list. You could also have
used randint(), selecting an index from the range 0 to len( answers )-1.

Answer 12.2

answer1202.py

from random import randint

deck = []
for value in ("Ace", "2", "3", "4", "5", "6", "7", "8",

"10", "Jack", "Queen", "King"):
for suit in ("Hearts", "Spaces", "Clubs", "Diamonds"):

deck.append( value + " of " + suit )

for i in range( len( deck ) ):
j = randint( i, len( deck )-1 )
deck[i], deck[j] = deck[j], deck[i]

for card in deck:
print( card )

Answer 12.3

answer1203.py

fifo = []
while True:

k = input( "> " )
if k == "":

break
if k != "?":

fifo.append( k )
elif len( fifo ) > 0:

print( fifo.pop(0) )
else:

print( "List is empty" )

Answer 12.4

answer1204.py

text = """Now, it ' s quite simple to defend yourself against a
man armed with a banana. First of all you force him to drop
the banana; then, second, you eat the banana, thus disarming
him. You have now rendered him helpless."""



352

def count_letter( x ):
return x[0], -ord(x[1])

countlist = []
for i in range( 26 ):

countlist.append( [0, chr(ord("a")+i)] )

for letter in text.lower():
if letter >= "a" and letter <= "z":

countlist[ord(letter)-ord("a")][0] += 1

countlist.sort( reverse=True, key=count_letter )

for count in countlist:
print( "{:3}: {}".format( count[0],count[1] ) )

Answer 12.5 There are basically two general approaches to this program: either you make
a list of numbers, or you make a list of booleans and use the index as numbers. In the
solution below, I used the booleans method. I start the list at zero, as that saves many
subtractions while only adding one useless boolean. The method is really fast because I
can work with indices.

answer1205.py

numbers = 101 * [True]
numbers[1] = False
for i in range( 1, len( numbers ) ):

if not numbers[i]:
continue

print( i, end=" " )
j = 2
while j *i < len( numbers ):

numbers[j *i] = False
j += 1

In the code below, I use the alternative method. I use the range() function to create
the list. I actually remove items from the list when I know that they are not prime, which
reduces the number of list manipulations needed when increasing numbers are removed.

answer1205a.py

MAXNUM = 100
numbers = list( range(2,MAXNUM+1) )
i = 0
while i < len( numbers ):

j = i+1
while j < len( numbers ):
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if numbers[j]%numbers[i]:
j += 1

else:
numbers.pop(j)

i += 1
for i in numbers:

print( i, end=" " )

Answer 12.6

answer1206.py

from pcinput import getInteger

EMPTY = "-"
PLAYERX = "X"
PLAYERO = "O"
MAXMOVE = 9

def display_board( b ):
print( " 1 2 3" )
for row in range( 3 ):

print( row+1, end=" ")
for col in range( 3 ):

print( b[row][col], end=" " )
print()

def opponent( p ):
if p == PLAYERX:

return PLAYERO

return PLAYERX

def getRowCol( player, what ):
while True:

num = getInteger( "Player "+player+", which "+what+
" do you play? " )

if num < 1 or num > 3:
print( "Please enter 1, 2, or 3" )
continue

return num

def winner( b ):
for row in range( 3 ):

if b[row][0] != EMPTY and b[row][0] == b[row][1] \
and b[row][0] == b[row][2]:
return True
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for col in range( 3 ):
if b[0][col] != EMPTY and b[0][col] == b[1][col] \

and b[0][col] == b[2][col]:
return True

if b[1][1] != EMPTY:
if b[1][1] == b[0][0] and b[1][1] == b[2][2]:

return True
if b[1][1] == b[0][2] and b[1][1] == b[2][0]:

return True
return False

board = [[EMPTY,EMPTY,EMPTY],[EMPTY,EMPTY,EMPTY],
[EMPTY,EMPTY,EMPTY]]

player = PLAYERX

display_board( board )
move = 0
while True:

row = getRowCol( player, "row" )
col = getRowCol( player, "column" )
if board[row-1][col-1] != EMPTY:

print( "There is already a piece at row", row,
"and column", col )

continue
board[row-1][col-1] = player

display_board( board )
if winner( board ):

print( "Player", player, "won!" )
break

move += 1
if move == MAXMOVE:

print( "It ' s a draw." )
break

player = opponent( player )

Answer 12.7

answer1207.py

from pcinput import getString

from random import randint

EMPTY = "."
BATTLESHIP = "X"
SHIPS = 3
WIDTH = 4
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HEIGHT = 3

def displayBoard( b ):
print( " ", end="" )
for col in range( WIDTH ):

print( chr( ord("A")+col ), end=" " )
print()
for row in range( HEIGHT ):

print( row+1, end=" ")
for col in range( WIDTH ):

print( b[row][col], end=" " )
print()

def placeBattleships( b ):
for i in range( SHIPS ):

while True:
x = randint( 0, WIDTH-1 )
y = randint( 0, HEIGHT -1 )
if b[y][x] == BATTLESHIP:

continue
if x > 0 and b[y][x-1] == BATTLESHIP:

continue
if x < WIDTH-1 and b[y][x+1] == BATTLESHIP:

continue
if y > 0 and b[y-1][x] == BATTLESHIP:

continue
if y < HEIGHT -1 and b[y+1][x] == BATTLESHIP:

continue
break

b[y][x] = BATTLESHIP

def getTarget():
while True:

cell = getString( "Which cell do you target? " ).upper()
if len( cell ) != 2:

print( "Please enter a cell as XY,",
"where X is a letter and Y a digit" )

continue
if cell[0] not in "ABCD":

print( "The first character of the cell",
"should be a letter in the range A-"+
chr( ord("A")+WIDTH-1 ) )

continue
if cell[1] not in "123":

print( "The second character of the cell should be",
"a digit in the range 1-"+str( HEIGHT ) )
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continue
return ord(cell[0])-ord("A"), ord(cell[1])-ord("1")

board = []
for i in range( HEIGHT ):

row = WIDTH * [EMPTY]
board.append( row )

placeBattleships( board )
displayBoard( board )

hits = 0
moves = 0
while hits < SHIPS:

x, y = getTarget()
if board[y][x] == BATTLESHIP:

print( "You sunk my battleship!" )
board[y][x] = EMPTY

hits += 1
else:

print( "Miss!" )
moves += 1

print( "You needed", moves, "moves to sink all battleships." )

Answer 12.8

answer1208.py

# Recursive function that determines if intlist, which is a list
# of integers, contains a subset that adds up to total. It
# returns the subset, or empty list if there is no such subset.
def subset_that_adds_up_to( intlist, total ):

for num in intlist:
if num == total:

return [num]
newlist = intlist[:]
newlist.remove( num )
retlist = subset_that_adds_up_to( newlist, total-num )
if len( retlist ) > 0:

retlist.insert( 0, num )
return( retlist )

return []

numlist = [ 3, 8, -1, 4, -5, 6 ]

solution = subset_that_adds_up_to( numlist, 0 )
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if len( solution ) <= 0:
print( "There is no subset which adds up to zero" )

else:
for i in range( len( solution ) ):

if solution[i] < 0 or i == 0:
print( solution[i], end="" )

else:
print( "+{}".format( solution[i] ), end="" )

print( "=0" )

The recursive function works as follows: It loops through all numbers on intlist. If the
current number is equal to total, it has found a solution and returns a list which contains
only that number. Otherwise, it recursively calls itself with a copy of intlist from which
the current number is removed, for a total which is reduced by the current number (e.g.,
if the current number is 3 and the total is 5, it removes 3 from the list and checks whether
a total of 2 can be achieved with the remaining list, because then 5 could be achieved by
adding 3 to the solution for the remaining list). If the recursive call returns a list that is not
empty, a solution is found, so the current number is appended to the returned list, and
the result is returned. Once all numbers have been processed and no solution was found,
an empty list is returned.

Note: The solution to this problem tests all possible subsets until one is found that solves
the problem, or all of them have been tested. You might wonder whether there are smarter
solutions, considering the fact that the number of subset rises exponentially with the size
of the list. The answer is that there might be solutions which improve upon this one (for
instance, I could take into account that if a number occurs multiple times on the list that
some subsets occur multiple times and need only be tested once), but that for general lists
of numbers, no algorithm is known that avoids having to process each and every subset
if there is no solution. For those who know some complexity theory: the subset sum
problem is “NP-hard.”

Chapter 13
Answer 13.1

answer1301.py

text = """How much wood would a woodchuck chuck
If a woodchuck could chuck wood?
He would chuck, he would, as much as he could,
And chuck as much as a woodchuck would
If a woodchuck could chuck wood."""

def clean( s ):
news = ""
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s = s.lower()
for c in s:

if c >= "a" and c <= "z":
news += c

else:
news += " "

return news

worddict = {}
for word in clean( text ).split():

worddict[word] = worddict.get( word, 0 ) + 1

keylist = list( worddict.keys() )
keylist.sort()
for key in keylist:

print( "{}: {}".format( key, worddict[key] ) )

Answer 13.2

answer1302.py
movies = { "Monty Python and the Holy Grail":

[ 9, 10, 9.5, 8.5, 3, 7.5,8 ],
"Monty Python ' s Life of Brian":
[ 10, 10, 0, 9, 1, 8, 7.5, 8, 6, 9 ],
"Monty Python ' s Meaning of Life":
[ 7, 6, 5 ],
"And Now For Something Completely Different":
[ 6, 5, 6, 6 ] }

keylist = list( movies.keys() )
keylist.sort()
for key in keylist:

print( "{}: {}".format( key, round(
sum( movies[key] )/len( movies[key] ), 1 ) ) )

Answer 13.3 Many answers are possible. Probably the simplest one is to use a dictionary
where the keys are tuples of writers’ last and first names, and the values are lists of all
the books of a writer. A book is a tuple consisting of title and location. To find all the
books of a writer, use the writer’s last and first name to find a list of his books. To find
the location of a specific book of a writer, get the list of his books and find the book on
that list, then get the corresponding location. You could choose to store the book list also
as a dictionary with a book’s title as key, but writers usually do not write so many books
that you need to do that. Of course, using names as keys is not a great idea as it is easy to
make spelling mistakes, and book titles as keys would be even less useful, but these were
the only identifying elements I described. I can’t complain if you want to introduce easier
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and less ambiguous keys in such a data structure (but in general, you should divert to a
database system to deal with libraries).

Chapter 14
Answer 14.1

answer1401.py

allthings = {"Socrates", "Plato", "Eratosthenes", "Zeus", "Hera",
"Athens", "Acropolis", "Cat", "Dog"}

men = {"Socrates", "Plato", "Eratosthenes"}
mortalthings = {"Socrates","Plato","Eratosthenes","Cat","Dog"}

print( men.issubset( mortalthings ) ) # (a)
print( "Socrates" in men ) # (b)
print( "Socrates" in mortalthings ) # (c)
print( len( mortalthings.difference( men ) ) > 0 ) # (d)
print( len( allthings.difference( mortalthings ) ) > 0 ) # (e)

Answer 14.2

answer1402.py

set3 = set( [3*x for x in range( 1, int( 1001/3 ) )] )
set7 = set( [7*x for x in range( 1, int( 1001/7 ) )] )
set11 = set( [11*x for x in range( 1, int( 1001/11 ) )] )

seta = set3 & set7 & set11

setb = (set3 & set7) - set11

setc = set( range( 1, 1001 ) ) - set3 - set7 - set11

Chapter 15
Answer 15.1

answer1501.py

from os import listdir, getcwd

flist = listdir( "." )
for name in flist:

print( getcwd() + "/" + name )



360

Chapter 16
Answer 16.1 The code below is mostly a copy of some code you had to write in Chapter
13. The only difference is that the text here is not provided as a string, but read from a
file.

answer1601.py

def clean( s ):
news = ""
s = s.lower()
for c in s:

if c >= "a" and c <= "z":
news += c

else:
news += " "

return news

fp = open( "pc_woodchuck.txt" )
text = fp.read()
fp.close()

wdict = {}
for word in clean( text ).split():

wdict[word] = wdict.get( word, 0 ) + 1

keylist = list( wdict.keys() )
keylist.sort()
for key in keylist:

print( "{}: {}".format( key, wdict[key] ) )

Answer 16.2

answer1602.py

def clean( s ):
news = ""
s = s.lower()
for c in s:

if c >= "a" and c <= "z":
news += c

else:
news += " "

return news

wdict = {}
fp = open( "pc_woodchuck.txt" )
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while True:
line = fp.readline()
if line == "":

break
for word in clean( line ).split():

wdict[word] = wdict.get( word, 0 ) + 1
fp.close()

keylist = list( wdict.keys() )
keylist.sort()
for key in keylist:

print( "{}: {}".format( key, wdict[key] ) )

Answer 16.3

answer1603.py

from os.path import join

from os import getcwd

def removevowels( line ):
newline = ""
for c in line:

if c not in "aeiouAEIOU":
newline += c

return newline

inputname = join( getcwd(), "pc_woodchuck.txt" )
outputname = join( getcwd(), "pc_woodchuck.tmp" )

fpi = open( inputname )
fpo = open( outputname , "w" )

countread = 0
countwritten = 0

while True:
line = fpi.readline()
if line == "":

break
countread += len( line )
line = removevowels( line )
fpo.write( line )
countwritten += len( line )

fpo.close()
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fpi.close()

print( "Characters read:", countread )
print( "Characters written:", countwritten )

Answer 16.4 The solution below makes use of sets: a set is created for each file, which
contains all the words from that file that have 2 letters or more. You can change the length
of the words searched for by changing WORDLEN. To make the program flexible, it is not
limited to just three sets, but uses as many sets as there are names in the file list. At the
end, the program creates an intersection of all the sets to determine the words that meet
the requirements.

answer1604.py

from os.path import join

from os import getcwd

WORDLEN = 2

def clean( s ):
news = ""
s = s.lower()
for c in s:

if c >= "a" and c <= "z":
news += c

else:
news += " "

return news

files = ["pc_jabberwocky.txt","pc_rose.txt","pc_woodchuck.txt"]
setlist = []

for name in files:
filename = join( getcwd(), name )
wordset = set()
setlist.append( wordset )
fp = open( filename )
while True:

line = fp.readline()
if line == "":

break
wordlist = clean( line ).split()
for word in wordlist:

if len( word ) >= WORDLEN:
wordset.add( word )

fp.close()



363

combination = setlist[0].copy()
i = 1
while i < len( setlist ):

combination = combination & setlist[i]
i += 1

for word in combination:
print( word )

Answer 16.5 Again, in the solution below I chose to be flexible as far as the number of
files is concerned. The program is easier to write if you assume there are three files, and
no more. If you chose such a solution, that is acceptable as long as the program does what
it should do, as allowing it to work with a variable number of files is more an exercise for
the chapter on iterations. However, by now you should be quite familiar with iterations,
so try to apply them whenever they provide a superior solution.

answer1605.py

from os.path import join

from os import getcwd

files = ["pc_jabberwocky.txt","pc_rose.txt","pc_woodchuck.txt"]
letterlist = [ len( files ) *[0] for i in range( 26 ) ]
totallist = len( files ) * [0]

# Process all the input files, read their contents line by line,
# make them lower case, and keep track of the letter counts in
# letterlist , while keeping track of total counts in totallist.
filecount = 0
for name in files:

filename = join( getcwd(), name )
fp = open( filename )
while True:

line = fp.readline()
if line == "":

break
line = line.lower()
for c in line:

if c >= ' a ' and c <= ' z ' :
totallist[filecount] += 1
letterlist[ord(c)-ord("a")][filecount] += 1

fp.close()
filecount += 1

# Write the counts in CSV format.
outfilename = join( getcwd(), "pc_writetest.csv" )
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fp = open( outfilename , "w" )
for i in range( len( letterlist ) ):

s = "\"{}\"".format( chr( ord("a")+i ) )
for j in range( len( files ) ):

s += ",{:.5f}".format( letterlist[i][j]/totallist[j] )
fp.write( s+"\n" )

fp.close()

# Print the contents of the created output file as a check.
fp = open( outfilename )
print( fp.read() )
fp.close()

Chapter 17
Answer 17.1 The code can generate a ValueError when you enter something that is
not an integer, an IndexError when you give an index outside the range {-5,4}, a
ZeroDivisionError when you enter index 2, and a TypeError when you enter index 3.
The code below does the most straightforward handling, but you can also build a loop
around the code so that the user gets asked for new inputs until it works.

answer1701.py
numlist = [ 100, 101, 0, "103", 104 ]
try:

i1 = int( input( "Give an index: " ) )
print( "100 /", numlist[i1], "=", 100 / numlist[i1] )

except ValueError:
print( "You did not enter an integer" )

except IndexError:
print( "You should specify an index between -5 and 4" )

except ZeroDivisionError:
print( "It looks like the list contains a zero" )

except TypeError:
print( "it looks like there is a non-numeric item" )

except:
print( "Something unexpected happened" )
raise

Chapter 18
Answer 18.1 For this program I created a copy of “pc_rose.txt” and called it
“pc_rose_copy.txt.” To demonstrate what happens, I display the contents of the file before
and after the encryption process.
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answer1801.py

FILENAME = "pc_rose_copy.txt"

def display_contents( filename ):
fp = open( filename , "rb" )
print( fp.read() )
fp.close()

def encrypt( filename ):
fp = open( filename , "r+b" )
buffer = fp.read()
fp.seek(0)
for c in buffer:

if c >= 128:
fp.write( bytes( [c-128] ) )

else:
fp.write( bytes( [c+128] ) )

fp.close()

display_contents( FILENAME )
encrypt( FILENAME )
display_contents( FILENAME )

Answer 18.2

answer1802.py

letters = "etaoinshrdlcum "
unencoded = "Hello, world!"

# Print the unencoded string, as a check.
print( unencoded , len( unencoded ) )

# Create a half-byte-list as a basis for the encoding.
halfbytelist = []
for c in unencoded:

if c in letters:
halfbytelist.append( letters.index( c )+1 )

else:
byte = ord( c )
halfbytelist.extend( [0, int( byte/16 ), byte%16 ] )

if len( halfbytelist )%2 != 0:
halfbytelist.append( 0 )

# Turn the half-byte-list into a byte-list.
bytelist = []
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for i in range( 0, len( halfbytelist ), 2 ):
bytelist.append( 16* halfbytelist[i] + halfbytelist[i+1] )

# Turn the byte-list into a byte string and print it, as a check.
encoded = bytes( bytelist )
print( encoded, len( encoded ) )

This solution needs 25 lines of code, of which 4 are comments, 4 are empty lines, and 3
are only for testing purposes. So, basically, 14 lines of code suffices. That wasn’t too bad,
right?

Answer 18.3

answer1803.py

letters = "etaoinshrdlcum "
encoded = b ' \x04\x81\xbb@,\xf0wI\xba\x02\x10 '

# Print the encoded byte string, as a check.
print( encoded, len( encoded ) )

# Create a half-byte-list on the basis of the byte string.
halfbytelist = []
for c in encoded:

halfbytelist.extend( [ int( c/16 ), c%16 ] )
if halfbytelist[-1] == 0:

del halfbytelist[-1]

# Turn the half-byte-list into a string.
decoded = ""
while len( halfbytelist ) > 0:

num = halfbytelist.pop(0)
if num > 0:

decoded += letters[num-1]
continue

num = 16* halfbytelist.pop(0) + halfbytelist.pop(0)
decoded += chr( num )

# Print the string, as a check.
print( decoded, len( decoded ) )

Answer 18.4 This program looks like it is quite long, but it is straightforward. compress()
and decompress() were developed in the previous two exercises (I changed them so that
input and output are byte strings). The rest of the program is mainly the handling of
potential errors in dealing with the files. You often see this in programs: the core func-
tionality needs a few lines, while handling of potential problems takes three-quarters of
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the code.

answer1804.py

from pcinput import getString , getLetter

from os.path import exists, getsize

LETTERS = b"etaoinshrdlcum "

# Compress byte string unencoded , return the compressed version.
def compress( unencoded ):

halfbytelist = []
for c in unencoded:

if c in LETTERS:
halfbytelist.append( LETTERS.index( c )+1 )

else:
halfbytelist.extend( [0, int( c/16 ), c%16 ] )

if len( halfbytelist )%2 != 0:
halfbytelist.append( 0 )

bytelist = []
for i in range( 0, len( halfbytelist ), 2 ):

bytelist.append( 16* halfbytelist[i] + halfbytelist[i+1] )
return bytes( bytelist )

# Decompress byte string encoded, return decompressed version.
def decompress( encoded ):

halfbytelist = []
for c in encoded:

halfbytelist.extend( [ int( c/16 ), c%16 ] )
if halfbytelist[-1] == 0:

del halfbytelist[-1]
bytelist = []
while len( halfbytelist ) > 0:

num = halfbytelist.pop(0)
if num > 0:

bytelist.append( LETTERS[num-1] )
continue

num = 16* halfbytelist.pop(0) + halfbytelist.pop(0)
bytelist.append( num )

return bytes( bytelist )

# Ask for the input file and read its contents.
while True:

filein = getString( "Which is the input file? " )
if not exists( filein ):

print( filein, "does not exist" )
continue
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try:
fp = open( filein, "rb" )
buffer = fp.read()
fp.close()

except IOError as ex:
print( filein, "cannot be processed , choose another" )
print( "Error [{}]: {}".format( ex.args[0], ex.args[1] ))
continue

break

# Ask for the output file and create it.
while True:

fileout = getString( "Which is the output file? " )
if exists( fileout ):

print( fileout, "already exists" )
continue

try:
fp = open( fileout, "wb" )

except IOError as ex:
print( fileout, "cannot be created,",

"choose another file name" )
print( "Error [{}]: {}".format( ex.args[0], ex.args[1] ))
continue

break

# Ask whether the user wants to compress or decompress.
while True:

dc = getLetter( "Choose (C)ompress or (D)ecompress? " )
if dc != ' C ' and dc != ' D ' :

print( "Please choose C or D" )
continue

break

# Compress or decompress the buffer.
if dc == ' C ' :

buffer = compress( buffer )
else:

buffer = decompress( buffer )

# Store the (de)compressed buffer in the output file.
try:

fp.write( buffer )
fp.close()

except IOError as ex:
print( "The writing process failed" )
print( "Error [{}]: {}".format( ex.args[0], ex.args[1] ))
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# Report the sizes of input and output.
print( getsize( filein ), "bytes read" )
print( getsize( fileout ), "bytes written" )

Chapter 19
Answer 19.1

answer1901.py

s = "Hello, world!"
mask = (1<<5) | (1<<3) | (1<<1) # 00101010

code = ""
for c in s:

code += chr(ord(c)^mask)
print( code )

decode = ""
for c in code:

decode += chr(ord(c)^mask)
print( decode )

Answer 19.2

answer1902.py

def setBit( store, index, value ):
mask = 1<<index
if value:

store |= mask

else:
store &= ~mask

return store

# getBit() returns 0 when the bit corresponding to index is set,
# and something else otherwise. As only 0 is interpreted as False
# this function can be used to test the value of the bit.
def getBit( store, index ):

mask = 1<<index
return store & mask

def displayBits( store ):
for i in range( 8 ):
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index = 7 - i

if getBit( store, index ):
print( "1", end="" )

else:
print( "0", end="" )

print()

store = 0
store = setBit( store, 0, True )
store = setBit( store, 1, True )
store = setBit( store, 2, False )
store = setBit( store, 3, True )
store = setBit( store, 4, False )
store = setBit( store, 5, True )
displayBits( store )

store = setBit( store, 1, False )
displayBits( store )

Chapter 20
Answer 20.1

answer2001.py

from copy import copy

class Point:
def __init__( self, x=0.0, y=0.0 ):

self.x = x

self.y = y

def __repr__( self ):
return "({}, {})".format( self.x, self.y )

class Rectangle:
def __init__( self, point, width, height ):

self.point = copy( point )
self.width = abs( width )
self.height = abs( height )
if self.width == 0:

self.width = 1
if self.height == 0:

self.height = 1
def __repr__( self ):

return "[{},w={},h={}]".format( self.point,
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self.width, self.height )
def surface_area( self ):

return self.width * self.height
def circumference( self ):

return 2*(self.width + self.height)
def bottom_right( self ):

return Point( self.point.x + self.width,
self.point.y + self.height )

def overlap( self,r ):
r1, r2 = self, r

if self.point.x > r.point.x or \
(self.point.x == r.point.x and \
self.point.y > r.point.y):
r1, r2 = r, self

if r1.bottom_right().x <= r2.point.x or \
r1.bottom_right().y <= r2.point.y:
return None

return Rectangle( r2.point,
min( r1.bottom_right().x - r2.point.x, r2.width ),
min( r1.bottom_right().y - r2.point.y, r2.height ) )

r1 = Rectangle( Point( 1, 1 ), 8, 5 )
r2 = Rectangle( Point( 2, 3 ), 9, 2 )

print( r1.surface_area() )
print( r1.circumference() )
print( r1.bottom_right() )
r = r1.overlap( r2 )
if r:

print( r )
else:

print( "There is no overlap for the rectangles" )

Answer 20.2 Considering the list that must be displayed, I placed the enroll() method
in Student. For the birth date I use the datetime module; as you have to calculate the stu-
dent’s age, you also need today’s date, which is found in the datetime module anyway.

answer2002.py

from datetime import date

from random import random

class Course:
def __init__( self, name, number ):

self.name = name

self.number = number
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def __repr__( self ):
return "{}: {}".format( self.number, self.name )

class Student:
def __init__( self, lastname , firstname , birthdate , anr ):

self.lastname = lastname

self.firstname = firstname

self.birthdate = birthdate

self.anr = anr

self.courses = []
def __str__( self ):

return self.firstname+" "+self.lastname
def age( self ):

today = date.today()
years = today.year - self.birthdate.year
if today.month < self.birthdate.month or \

(today.month == self.birthdate.month \
and today.day < self.birthdate.day):
years -= 1

return years

def enroll( self, course ):
if course not in self.courses:

self.courses.append( course )

students = [
Student( "Arkansas", "Adrian", date( 1989, 10, 3 ), 453211 ),
Student( "Bonzo", "Beatrice", date( 1991, 12, 29 ), 476239 ),
Student( "Continuum", "Carola", date( 1992, 3, 7 ), 784322 ),
Student( "Doofus", "Dunce", date( 1993, 7, 11 ), 995544 ) ]

courses =[
Course( "Vinology", 787656 ),
Course( "Advanced spoon-bending", 651121 ),
Course( "Research Skills: Babbling", 433231 )]

for student in students:
for course in courses:

if random() > 0.3:
student.enroll( course )

for student in students:
print( "{}: {} {} ({})".format( student.anr,

student.firstname , student.lastname , student.age() ) )
if len( student.courses ) == 0:

print( "\tNo courses" )
for course in student.courses:

print( "\t{}".format( course ) )



373

Chapter 21
Answer 21.1

answer2101.py

SUITS = ["Hearts","Spades","Clubs","Diamonds"]
RANKS = ["2","3","4","5","6","7","8","9","10",

"Jack","Queen","King","Ace"]

class Card:
def __init__( self, suit, rank ):

self.suit = suit # used as index in the SUITS list
self.rank = rank # used as index in the RANKS list

def __repr__( self ):
return "({},{})".format( self.suit, self.rank )

def __str__( self ):
return "{} of {}".format( RANKS[self.rank], \

SUITS[self.suit] )
def __eq__( self, c ):

if isinstance( c, Card ):
return self.rank == c.rank

return NotImplemented

def __gt__( self, c ):
if isinstance( c, Card ):

return self.rank > c.rank
return NotImplemented

def __ge__( self, c ):
if isinstance( c, Card ):

return self.rank >= c.rank
return NotImplemented

c5 = Card( 2, 3 )
d5 = Card( 3, 3 )
sk = Card( 1, 11 )
print( "{}, {}, {}".format( c5, d5, sk ) )
print( c5 == d5 )
print( c5 == sk )
print( c5 > sk )
print( c5 >= sk )
print( c5 < sk )
print( c5 <= sk )

Note: There is no need to implement __ne__(), __lt__(), or __le__(), as they are auto-
matically changed into calls to the methods that have been implemented.

Answer 21.2 For readability, I deleted the methods from Card that are not needed here.
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answer2102.py

SUITS = ["Hearts","Spades","Clubs","Diamonds"]
RANKS = ["2","3","4","5","6","7","8","9","10",

"Jack","Queen","King","Ace"]

class Card:
def __init__( self, suit, rank ):

self.suit = suit

self.rank = rank

def __str__( self ):
return "{} of {}".format(

RANKS[self.rank], SUITS[self.suit] )

class Drawpile:
def __init__( self, pile=[] ):

self.pile = pile

def __len__( self ):
return len( self.pile )

def __getitem__( self, n ):
return self.pile[n]

def add( self, c ):
self.pile.append( c )

def draw( self ):
if len( self ) <= 0:

return None
return self.pile.pop(0)

def __repr__( self ):
sep = ""
s = ""
for c in self.pile:

s += sep + str( c )
sep = ", "

return s

dp1 = Drawpile( [Card(0,1), Card(0,5), Card(2,4), Card(1,12)] )
print( dp1 )
print( dp1[1] )
dp1.add( Card(3,12) )
print( dp1 )
print( dp1.draw() )
print( dp1 )

Answer 21.3

answer2103.py
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SUITS = ["Hearts","Spades","Clubs","Diamonds"]
RANKS = ["2","3","4","5","6","7","8","9","10",

"Jack","Queen","King","Ace"]

class Card:
def __init__( self, suit, rank ):

self.suit = suit

self.rank = rank

def __repr__( self ):
return "({},{})".format( self.suit, self.rank )

def __str__( self ):
return "{} of {}".format(

RANKS[self.rank], SUITS[self.suit] )
def __eq__( self, c ):

if isinstance( c, Card ):
return self.rank == c.rank

return NotImplemented

def __gt__( self, c ):
if isinstance( c, Card ):

return self.rank > c.rank
return NotImplemented

def __ge__( self, c ):
if isinstance( c, Card ):

return self.rank >= c.rank
return NotImplemented

class Drawpile:
def __init__( self, pile=[] ):

self.pile = pile

def __len__( self ):
return len( self.pile )

def __getitem__( self, n ):
return self.pile[n]

def add( self, c ):
self.pile.append( c )

def draw( self ):
if len( self ) <= 0:

return None
return self.pile.pop(0)

def __repr__( self ):
sep = ""
s = ""
for c in self.pile:

s += sep + str( c )
sep = ", "

return s
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dp1 = Drawpile( [Card(3,0), Card(0,11), Card(2,5)] )
dp2 = Drawpile( [Card(3,2), Card(3,1), Card(1,6)] )

i = 1
while len( dp1 ) > 0 and len( dp2 ) > 0:

print( "Round", i )
print( "Deck1:", dp1 )
print( "Deck2:", dp2 )
c1 = dp1.draw()
c2 = dp2.draw()
if c1 > c2:

dp1.add( c1 )
dp1.add( c2 )

else:
dp2.add( c2 )
dp2.add( c1 )

i += 1

print( "The game has ended" )
if len( dp1 ) > 0:

print( "Deck1:", dp1 )
print( "The first deck wins!" )

else:
print( "Deck2:", dp2 )
print( "The second deck wins!" )

Answer 21.4 Do not forget that in the __add__() and __sub__()methods you have to cre-
ate a (deep) copy of the fruit basket, which you change and return. If you would change
the fruitbasket itself instead of a deep copy, newbasket = fruitbasket + "apple"
would make newbasket an alias for fruitbasket. It is unlikely that the programmer
who uses the class wants that. It is up to the programmer of the main program to decide
whether he wants to actually change the fruit basket, or just wants to see what a changed
version looks like.

However, in __iadd__() and __isub__() you are actually supposed to change the fruit
basket, and still return self. Because a statement like fruitbasket += "apple" clearly
is intended to change fruitbasket.

The rest of the class is pretty straightforward, as long as you take into account that you
have to delete fruits when their number has dropped to zero or less.

answer2104.py

from copy import deepcopy

class FruitBasket:
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def __init__( self, fruits={} ):
self.fruits = fruits

def __repr__( self ):
s = ""
sep = "["
for fruit in self.fruits:

s += sep + fruit + ":" + str( self.fruits[fruit] )
sep = ", "

s += "]"
return s

def __contains__( self, fruit ):
return fruit in self.fruits

def __add__( self, fruit ):
fbcopy = deepcopy( self )
fbcopy.fruits[fruit] = fbcopy.fruits.get( fruit, 0 ) + 1
return fbcopy

def __iadd__( self, fruit ):
self.fruits[fruit] = self.fruits.get( fruit, 0 ) + 1
return self

def __sub__( self, fruit ):
if fruit not in self.fruits:

return self

fbcopy = deepcopy( self )
fbcopy.fruits[fruit] = fbcopy.fruits.get( fruit, 0 ) - 1
if fbcopy.fruits[fruit] <= 0:

del fbcopy.fruits[fruit]
return fbcopy

def __isub__( self, fruit ):
self.fruits[fruit] = self.fruits.get( fruit, 0 ) - 1
if self.fruits[fruit] <= 0:

del self.fruits[fruit]
return self

def __len__( self ):
return len( self.fruits )

def __getitem__( self, fruit ):
return self.fruits.get( fruit, 0 )
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def __setitem__( self, fruit, n ):
if n <= 0:

if fruit in self.fruits:
del self.fruits[fruit]

else:
self.fruits[fruit] = n

fb = FruitBasket()
fb += "apple"
fb += "apple"
fb += "banana"
fb = fb + "cherry"
fb["orange"] = 20
print( len( fb ) )
print( fb )
print( "banana" in fb )
print( "durian" in fb )
fb -= "apple"
fb -= "banana"
fb = fb - "cherry"
fb -= "durian"
print( fb )
print( "banana" in fb )
fb["orange"] = 0
print( fb )

Chapter 22
Answer 22.1

answer2201.py

class Rectangle:
def __init__( self, x, y, w, h ):

self.x, self.y, self.w, self.h = x, y, w, h

def __repr__( self ):
return "[({},{}),w={},h={}]".format( self.x, self.y,

self.w, self.h )
def area( self ):

return self.w * self.h
def circumference( self ):

return 2*(self.w + self.h)

class Square( Rectangle ):
def __init__( self, x, y, w ):
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super().__init__( x, y, w, w )

s = Square( 1, 1, 4 )
print( s, s.area(), s.circumference() )

Answer 22.2

answer2202.py

from math import pi

class Shape:
def area( self ):

return NotImplemented

def circumference( self ):
return NotImplemented

class Circle( Shape ):
def __init__( self, x, y, r ):

self.x, self.y, self.r = x, y, r

def __repr__( self ):
return "[({},{}),r={}]".format( self.x, self.y, self.r )

def area( self ):
return pi * self.r * self.r

def circumference( self ):
return 2 * pi * self.r

class Rectangle( Shape ):
def __init__( self, x, y, w, h ):

self.x, self.y, self.w, self.h = x, y, w, h

def __repr__( self ):
return "[({},{}),w={},h={}]".format( self.x, self.y,

self.w, self.h )
def area( self ):

return self.w * self.h
def circumference( self ):

return 2*(self.w + self.h)

class Square( Rectangle ):
def __init__( self, x, y, w ):

super().__init__( x, y, w, w )

s = Square( 1, 1, 4 )
print( s, s.area(), s.circumference() )
c = Circle( 1, 1, 4 )
print( c, c.area(), c.circumference() )
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Answer 22.3 I implemented a MemoryStrategy class to derive TitForTat, TitForTwoTats,
and Majority from. MemoryStrategy keeps track of all the moves in the game. That is
overdoing it a bit, as TitForTat only needs to keep track of the last move, TitForTwoTats
only needs to keep track of the last two moves, and Majority could make do with just
a count of all the COOPERATEs and DEFECTs of the opponent. Still, if more elaborate
strategies need to be implemented, MemoryStrategy is a good starting point.

One interesting thing to notice is that in any pairing AlwaysDefect has a higher score than
its opponent. However, if you let each strategy play every other strategy and add up the
scores, the only strategy that does worse than AlwaysDefect is Random. If you want to
know why that is, take a course on Game Theory.

answer2203.py

from random import random

COOPERATE = ' C '
DEFECT = ' D '
ROUNDS = 100

class Strategy:
def __init__( self, name="" ):

self.name = name

self.score = 0
def choice( self ):

# Should return COOPERATE or DEFECT
return NotImplemented

def lastmove( self, mymove, opponentmove ):
# Gets passed the last move made, after call to choice()
pass

def incscore( self, n ):
self.score += n

class AlwaysDefect( Strategy ):
def choice( self ):

return DEFECT

class Random( Strategy ):
def choice( self ):

if random() >= 0.5:
return COOPERATE

return DEFECT

class MemoryStrategy( Strategy ):
def __init__( self, name="" ):

super().__init__( name )
self.history = []

def lastmove( self, mymove, opponentmove ):
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self.history.append( (mymove, opponentmove) )

class TitForTat( MemoryStrategy ):
def choice( self ):

if len( self.history ) < 1:
return COOPERATE

return self.history[-1][1]

class TitForTwoTats( MemoryStrategy ):
def choice( self ):

if len( self.history ) < 2:
return COOPERATE

if self.history[-1][1] == DEFECT and \
self.history[-2][1] == DEFECT:
return DEFECT

return COOPERATE

class Majority( MemoryStrategy ):
def choice( self ):

countD = 0
for i in range( len( self.history ) ):

if self.history[i][1] == DEFECT:
countD += 1

if countD > len( self.history ) / 2:
return DEFECT

return COOPERATE

strategy1 = AlwaysDefect( "Always Defect" )
strategy2 = Majority( "Majority" )

for i in range( ROUNDS ):
c1 = strategy1.choice()
c2 = strategy2.choice()
if c1 == c2:

strategy1.incscore( 3 if c1 == COOPERATE else 1 )
strategy2.incscore( 3 if c2 == COOPERATE else 1 )

else:
strategy1.incscore( 0 if c1 == COOPERATE else 6 )
strategy2.incscore( 0 if c2 == COOPERATE else 6 )

strategy1.lastmove( c1, c2 )
strategy2.lastmove( c2, c1 )

print( "Score of", strategy1.name, "is", strategy1.score )
print( "Score of", strategy2.name, "is", strategy2.score )
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Chapter 23
Answer 23.1

answer2301.py

from pcinput import getInteger

class NotDividableBy:
def __init__( self ):

self.seq = list( range( 1, 101 ) )
def __iter__( self ):

return self

def __next__( self ):
if len( self.seq ) > 0:

return self.seq.pop(0)
raise StopIteration()

def process( self, num ):
i = len( self.seq )-1
while i >= 0:

if self.seq[i]%num == 0:
del self.seq[i]

i -= 1
def __len__( self ):

return len( self.seq )

ndb = NotDividableBy()
while True:

num = getInteger( "Give an integer: " )
if num < 0:

print( "Negative integers are ignored" )
continue

if num == 0:
break

ndb.process( num )

if len( ndb ) <= 0:
print( "No numbers are left" )

else:
for num in ndb:

print( num, end=" " )

Answer 23.2

answer2302.py

def factorial():
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total = 1
for i in range( 1, 11 ):

total *= i

yield total

fseq = factorial()
for n in fseq:

print( n, end=" " )

Answer 23.3

answer2303.py

from itertools import permutations

word = input( "Please enter a word: " )
seq = permutations( word )
for item in seq:

print( "".join( item ) )

Answer 23.4 The only change I made with respect to the previous answer is that I cast the
iterable to a set.

answer2304.py

from itertools import permutations

word = input( "Please enter a word: " )
seq = permutations( word )
for item in set( seq ):

print( "".join( item ) )

Answer 23.5

answer2305.py

from itertools import combinations

numlist = [ 3, 8, -1, 4, -5, 6 ]
solution = []

for i in range( 1, len( numlist )+1 ):
seq = combinations( numlist, i )
for item in seq:

if sum( item ) == 0:
solution = item
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break
if len( solution ) > 0:

break

if len( solution ) <= 0:
print( "There is no subset which adds up to zero" )

else:
for i in range( len( solution ) ):

if solution[i] < 0 or i == 0:
print( solution[i], end="" )

else:
print( "+{}".format( solution[i] ), end="" )

print( "=0" )

Note: While this code seems to create all possible subsets, which is a number that rises
exponentially with the size of numlist, since iterators are used no more than one subset is
in memory at any time. So this solution works fine even for large lists of integers (though
it may get slow, which cannot be helped as this is an NP-hard problem).

Answer 23.6

answer2306.py

from itertools import combinations

testdict = {"a":1, "b":2, "c":3, "d":4 }
result = [ {} ]

keylist = list( testdict.keys() )
for length in range( 1, len( testdict)+1 ):

for item in combinations( keylist, length ):
subdict = {}
for key in item:

subdict[key] = testdict[key]
result.append( subdict )

print( result )

Answer 23.7 If rows and columns are numbered 0 to 7, then every row and column num-
ber will occur exactly once in the solution. Take a list of the eight possible column num-
bers, and consider the index in the list as the row number. All potential solutions are
represented by permutations of this list. You only need to check these permutations un-
til you find one where never a diagonal is shared by two of the queens, i.e., where the
absolute difference between the row numbers of any two queens is equal to the absolute
difference of their column numbers.
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answer2307.py

from itertools import permutations

SIZE = 8 # Board size.

def display_board( columns ):
for i in columns :

for j in range( len( columns ) ):
if i == j:

print( ' Q ' , end=" " )
else:

print( ' - ' , end=" " )
print()

def is_solution( columns ):
for row in range( len( columns ) ):

col = columns[row]
for i in range( row+1, len( columns ) ):

if i - row == abs( columns[i] - col ):
return False

return True

columns = list( range( SIZE ) )

for p in permutations( columns ):
if is_solution( p ):

display_board( p )
break

else:
print( "No solutions found" ) # Should not happen.

Chapter 24
Answer 24.1

answer2401.py

import sys

total = 0
for i in sys.argv[1:]:

try:
total += float( sys.argv[i] )

except TypeError:
print( sys.argv[i], "is not a number." )
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sys.exit(1)

print( "The arguments add up to", total )

Chapter 25
Answer 25.1

answer2501.py

import re

sentence = "The price of a 2-room apartment in Manhattan \
starts at 1 million dollars, and may actually be the 10-fold \
of that on 42nd Street."

pword = re.compile( r"[A-Za-z]+" )
wordlist = pword.findall( sentence )
for word in wordlist:

print( word )

Answer 25.2

answer2502.py

import re

sentence = "The word ether can be found in my thesaurus \
using the archaic spelling ' aether '."

pthe = re.compile( r"\bthe\b", re.I )
thelist = pthe.findall( sentence )
print( len( thelist ) )

Answer 25.3

answer2503.py

import re

sentence = "Michael Jordan, Bill Gates, and the Dalai Lama \
decided to take a plane trip together."

pname = re.compile( r"\b([A-Z][a-z]*\s+[A-Z][a-z]*)\b" )
namelist = pname.findall( sentence )
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for name in namelist:
print( name )

Answer 25.4

answer2504.py

import re

sentence = "William Randolph Hearst attempted to destroy all \
copies of Orson Welles ' masterpiece ' Citizen Kane ' , because he \
did not appreciate the fact that the protagonist Charles \
Foster Kane was a thinly disguised caricature of himself. I \
wonder whether William Henry Gates The Third would attempt to \
do the same."

pname = re.compile( r"\b([A-Z][a-z]*(\s+[A-Z][a-z]*)+)\b" )
namelist = pname.finditer( sentence )
for name in namelist:

print( name.group(1) )

Answer 25.5

answer2505.py

import re

sentence = "Client: \"I wish to register a complaint! \
Hello miss!\"\n\
Shopkeeper: \"What do you mean, miss?\"\n\
Client: \"I am sorry, I have a cold.\"\n"

pspoken = re.compile( r"\"[^\"]*\"" )
spokenlist = pspoken.findall( sentence )
for text in spokenlist:

print( text )
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Answer 25.6

answer2506.py

import re

text = "<html><head><title>List of persons with ids</title>\
</head><body>\
<p><id>123123123</id><name>Groucho Marx</name>\
<p><id>123123124</id><name>Harpo Marx</name>\
<p><id>123123125</id><name>Chico Marx</name>\
<randomcrap >Etaoin<id>Shrdlu </id>qwerty </name></randomcrap >\
<nocrap><p><id>123123126</id><name>Zeppo Marx</name></nocrap >\
<address>Chicago </address >\
<morerandomcrap ><id>999999999</id>nonametobeseen!\
</morerandomcrap >\
<p><id>123123127</id><name>Gummo Marx</name>\
<note>Look him up on <a href=\"http://www.google.com\">\
Google.</a></note>\
</body></html>"

pidname = re.compile( r"<id>([^<]+)</id><name >([^<]+)</name>" )
mlist = pidname.finditer( text )
for m in mlist:

print( m.group(1), m.group(2) )

Chapter 26
Answer 26.1

answer2601.py

from csv import reader, writer

fp = open( "pc_inventory.csv", newline= ' ' )
fpo = open( "pc_writetest.csv", "w", newline= ' ' )
csvreader = reader( fp )
csvwriter = writer( fpo, delimiter= ' ' , quotechar=" ' " )
for line in csvreader:

csvwriter.writerow( line )
fp.close()
fpo.close()

fp = open( "pc_writetest.csv" )
print( fp.read() )
fp.close()
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If you did it correctly, you notice the quotes around “Blue Stilton,” which are there because
it contains a space, which is the delimiter.

Answer 26.2

answer2602.py

from csv import reader

from json import dump

data = []

fp = open( "pc_inventory.csv", newline= ' ' )
csvreader = reader( fp )
for line in csvreader:

data.append( line )
fp.close()

fp = open( "pc_writetest.json", "w" )
dump( data, fp )
fp.close()

fp = open( "pc_writetest.json" )
print( fp.read() )
fp.close()

Chapter 27
Answer 27.1

answer2701.py

from collections import Counter

sentence = "Your mother was a hamster and \
your father smelled of elderberries."
sentence2 = ""
for c in sentence.lower():

if c >= ' a ' and c <= ' z ' :
sentence2 += c

clist = Counter( sentence2 ).most_common( 5 )
for c in clist:

print( "{}: {}".format( c[0], c[1] ) )



390

Answer 27.2

answer2702.py

from collections import Counter

from pcinput import getInteger

from statistics import mean, median

from sys import exit

numlist = []
while True:

num = getInteger( "Enter a number: " )
if num == 0:

break
numlist.append( num )

if len( numlist ) <= 0:
print( "No numbers were entered" )
exit()

print( "Mean:", mean( numlist ) )
print( "Median:", median( numlist ) )

clist = Counter( numlist ).most_common()
if clist[0][1] <= 1:

print( "There is no mode" )
else:

mlist = [str( x[0] ) for x in clist if x[1] == clist[0][1] ]
s = ", ".join( mlist )
print( "Mode:", s )

For the mode I did a reasonably smart list comprehension, but you can write this out as
multiple lines of code, of course.
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__sub__(), 254
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abs(), 39
abstract class, 265
add(), 184
addition, 19
algorithm, 24
algorithm design, 86
alias, 163, 250
and, 53
anonymous function, 118
append(), 158, 307
appendleft(), 307
argparse, 284
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args, 215
argument, 36, 98
argv, 282
art, 6
ASCII, 142, 229
ascii, 207
assignment, 24, 51

basename(), 205
batch processing, 281
Beautiful Soup, 304
being smug, 286
binary, 228
binary file, 219
binary mode, 219
bit, 228
bit manipulation, 231
bitwise and, 231
bitwise not, 232
bitwise operations, 233
bitwise operator, 228
bitwise or, 232
bitwise xor, 233
boolean, 50
break, 76
bs4, 304
buffer, 197
byte, 228
byte string, 220
bytes casting, 222
bytes(), 222

C++, 3
C#, 3
calculation, 18
character encoding, 142, 229
chdir(), 193
chr(), 143
class, 239, 240
class call, 263
class hierarchy, 239
clear(), 185
close(), 198, 219
code block, 54
collection, 73, 155, 173
collections, 306
command line, 281

command line argument, 282
command prompt, 191
comment, 22, 33, 108
comparison, 51
compile(), 287
condition, 50
conditional statement, 54
constant, 29
consuming, 271
continue, 79
contributors, vi
copy, 165
copy(), 166, 175, 247
count(), 160
Counter, 306
creating programs, 12
CSV, 299

data types, 16
date, 305
datetime, 305
datetime(), 305
debugging, 30
decimal counting, 135
decode(), 222
deep copy, 165
deepcopy(), 165, 247
default parameter values, 100
del, 160, 174
deque, 306, 307
dictionary, 173
difference(), 186
dirname(), 205
discard(), 185
display, 15
division, 19
Downey, Allen B., vi
dump(), 301, 303
dumps(), 303

elif, 59
else, 57, 76, 214
encapsulation, 97
encode(), 222
encoding, 206
end, 41
end(), 288
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endless loop, 71, 122
errno, 216
escape code, 221
escape sequence, 135, 287
evaluation order, 54
except, 211
Exception, 215
exception, 210
exclusive or, 233
exercises, 8
exists(), 204
exit(), 63, 284
exp(), 46
expression, 18
extend(), 158, 307
extending, 263
extendleft(), 307

False, 50
file appending, 203
file encoding, 206
file format, 299
file handle, 196
file handling, 195
file pointer, 196
file processing, 197
file reading, 198, 200
file system, 192
file writing, 201
FileNotFoundError, 213, 312
finally, 214
find(), 140
findall(), 288
finditer(), 289
flat text file, 195
float, 18
float(), 21, 38
floating-point number, 18
floor division, 19
flow chart, 58
flush, 197
for, 72, 270
format(), 42
frozenset, 188
frozenset(), 188
function, 35, 96
function advantages, 96

function name, 35, 107
functions, 35

game programming, 7
generalization, 97
get(), 176
getcwd(), 193
getfilesystemencoding(), 206
getFloat(), 47
getInteger(), 47
getLetter(), 47
getsize(), 206
getString(), 47
glob, 308
glob(), 308
global, 112
global variable, 112
group(), 288, 294
groups(), 294

hard typing, 31
hexadecimal counting, 135
HTML, 303
HTTPError, 307

IDLE, 12
if, 54
iglob(), 309
immutability, 139, 151
imperative programming, 236
ImportError, 312
in, 52, 270
indentation, 55
index, 136, 150
index out of bounds, 137
index(), 160
IndexError, 213
infinite loop, 71
inheritance, 239, 262
initialization, 240
input(), 40
insert(), 159
installing, 11
instance, 239
int(), 21, 38
integer, 17
integer division, 19
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interface, 265
intersection(), 186
IOError, 213, 215, 216
is, 164
isdir(), 204
isdisjoint(), 187
isfile(), 204
isinstance(), 99
issubset(), 187
issuperset(), 187
items(), 175
iter(), 271
iterable, 270
iterable object, 271
iterator, 270

Java, 4
join(), 141, 205
JSON, 302
json, 303

key, 173, 178
key-value pair, 173
KeyError, 213
keys(), 175
keyword, 27

lambda, 118
latin-1, 207
len(), 40
lifetime, 108
limitations, 4
Linux, 190
list, 155
list comprehension, 168
list operators, 157
list(), 167
listdir(), 194
load(), 301, 303
loads(), 303
local variable, 110
log(), 46
log10(), 46
logical operator, 53
lookup speed, 180
loop, 66
loop control, 75

loop design, 86
loop under user control, 70
loop-and-a-half, 82
lower(), 140
lxml, 304

Mac OS, 190
magic number, 29
main(), 117
mainainability, 97
manageability, 97
managing complexity, 112
match object, 288
match(), 288
math, 45
max(), 39
maze, 125
mbcs, 207
mean(), 309
meaningful name, 27
median(), 309
membership test operator, 52
mesostic, 258
meta-character, 287, 290
method, 244
min(), 39
mode(), 309
modifier, 38
module, 44, 117
modulo, 19
most_common(), 307
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