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Preface

Flavonoids are the largest and most diverse group of secondary metabolites found in 
plants, including fruits, vegetables, grains, and herbs. They play a variety of signifi-
cant roles in determining plant growth and development, including UV protection, 
pollinator attraction, and defense against environmental stresses, specifically pests 
and diseases. Recently, scientists have conducted a significant amount of research to 
develop an understanding of the biosynthesis and regulation mechanisms of flavonoids,  
as well as their potential future applications in crop breeding.

The discovery of novel enzymes and genes involved in flavonoid biosynthesis pathways 
is a recent and important advance in the understanding of flavonoid metabolism. This 
has enabled scientists to manipulate these pathways in plants, improving overall plant 
health, including stress tolerance and disease resistance, and producing flavonoids 
with desirable properties such as improved antioxidant activity or increased pigment 
content to enhance the nutritional value of the specific crop. For example, researchers 
have been able to increase the flavonoid content of crops such as tomatoes, grapes, rice, 
and soybeans by overexpressing specific flavonoid biosynthesis genes.

Another area of research that has focused on elaborating on the role of flavonoids is 
plant responses to abiotic and biotic stresses. Flavonoids are well known to play central 
roles in protecting plants against environmental stresses such as UV radiation, drought, 
and a variety of pathogens. Through understanding how flavonoids contribute to stress 
tolerance, researchers are seeking to develop new strategies to improve crop yields and 
resilience in the face of changing environmental conditions.

Recently, growing interest has also been observed in studying the potential health 
benefits of flavonoids for humans. Flavonoids have been shown to possess a range of 
beneficial effects on human health, including antioxidant and anti-inflammatory activ-
ities, and they may also exhibit anticancer and cardiovascular protective properties. By 
increasing the flavonoid content of crops, it may be possible to improve and enhance 
the nutritional quality of food to provide additional health benefits to consumers.

Overall, recent advances in flavonoid metabolism research have significant implications 
for crop breeding and food production, playing a critical role in the development of 
healthier and more sustainable food crops, as well as new applications in the pharma-
ceutical and cosmetics industries.

The book consists of seven chapters.

Chapter 1 ‘Chemistry and Role of Flavonoids in Agriculture: A Recent Update’, explains 
the overall importance of flavonoids in plant systems. It describes the detailed biosynthe-
sis and chemistry of these metabolites inside the plants and the pathways they adopt  
to combat biotic and abiotic stress. The importance of flavonoids in determining the 
future of plant breeding with respect to food quality is highlighted.
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Chapter 2, ‘Importance of Flavonoid as Secondary Metabolites’, discusses the anti-
inflammatory, antioxidant, anticancer, anti-cholinesterase, antimicrobial, hepatopro-
tective, neuroprotective, cardioprotective, and antiallergic properties of flavonoids. 
Their scavenging activity enables superoxide, hydroxyl, and lipid radicals to play a 
crucial role against life-limiting diseases such as diabetes, cardiovascular disorder, 
and cancer.

Chapter 3, ‘Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and 
Function Concerning Pharmacodynamics and Pharmacokinetic Properties’, examines 
the biosynthesis pathway of flavonoids in plants and their role against abiotic and 
biotic stress factors. It also highlights the pharmacological functions of flavonoids 
and their impact on certain diseases, including dementia and Alzheimer’s.

Chapter 4, ‘Purple Corn Cob: Rich Source of Anthocyanins with Potential Application 
in the Food Industry’, illustrates the value added by anthocyanins in the food coloring 
and beverage industry due to their antioxidant, anti-inflammatory and cardiovascular 
health benefits. Purple corn cob, a byproduct of corn, is cited as a specific example.

Chapter 5, ‘Application of Liquid Chromatography in the Analysis of Flavonoid 
Metabolism in Plant’, discusses the structural variability of different flavonoids and 
the use of methylation, glycosylation, acylation, and a further selection of different 
chromatographic techniques for analysis of specific compounds.

Chapter 6, ‘Recent Advances in Flavonoid Metabolism: An Updated Review’, describes 
the web of metabolic processes in which flavonoids are involved. It explains the 
influence of physical entities on flavonoid production and the regulatory mechanisms 
through which flavonoids function in plant cells. It also discusses minor entities and 
the interplay of various factors that are often ignored in flavonoid metabolism.

Chapter 7, ‘Flavonoids: Recent Advances and Applications in Crop Breeding’, describes 
the synchronized use of modern tools in breeding programs. The chapter explains the 
precise control exerted by flavonoids on plant reproduction and how it can be used 
to improve modern breeding techniques.

Hafiz Muhammad Khalid Abbas
Department of Plant Sciences,

University of Tennessee,
Knoxville, USA

Aqeel Ahmad
Institute of Geographic Sciences and Natural Resources Research,

Chinese Academy of Sciences,
Beijing, China
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Chapter 1

Chemistry and Role of Flavonoids 
in Agriculture: A Recent Update
Shyamal K. Jash

Abstract

Flavonoids are a remarkable group of plant secondary metabolites, and are 
of importance and interest to a wide variety of physical and biological scientists. 
Continuing works on their chemistry, occurrence, natural distribution and biological 
function have already resulted a lot and have created a stir in the field of chemical and 
biological sciences due to their immense biological and pharmacological/therapeutic 
potential. Also flavonoids play an important role in the biological activities of plant 
system. They can be responsible for the color of flowers and fruits and for the attrac-
tion of pollinators. The plant flavonoids are used naturally to improve their adapta-
tion to environmental stress, to improve food quality, and to increase crop yield. The 
present book chapter deals with chemistry and significance role of reported novel 
natural flavonoids along with a variety of activities in agriculture.

Keywords: naturally occurring flavonoids, biosynthesis, metabolism, chemistry of 
flavonoids, role of flavonoids in plants, agriculture, pest control, patent information

1. Introduction

Nature is an extremely rich source of highly diverse and innovative chemical 
structures with a variety of structural arrangement and interesting biological activi-
ties, which have played a significant role in the process of drug discovery and design. 
Chemistry of Natural Products has lately undergone explosive growth; natural 
products are of much interest and of promise in the present day research directed 
particularly toward drug-design and drug-discovery. Much research works were 
already carried out and also intensive works are now going on world-wide in the 
perspective of academic as well as pharmacological/therapeutic scenario. Statistically, 
only less than ~10–15% of the plants have been investigated so far; a major portion of 
them is still being left. To gather more knowledge on the natural availability of chemi-
cal compounds, their structural variety, properties, and the isolated compounds for 
detailed studies in regards to biological and pharmacological potentials, more and 
more research is demanded for the exploration of chemical nature of plants, par-
ticularly those ones which have been used as traditional medicines all over the world. 
Hence, the present investigator has been motivated to undertake this work on some 
plants traditionally used as medicine in India.

Research into secondary metabolism has long centered on flavonoids. Scientists 
from a wide variety of fields are interested and intrigued by flavonoids, which are 

XIV
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widely found throughout the plant kingdom. Over the past few years, it has been 
revealed that plant flavonoids play a vital role in our lives and in the health of our 
plants. As a result of ongoing research on chemistry, occurrence, natural distribu-
tion and biological function of flavonoids, a number of reviews have already been 
published time to time [1–10]. A PubMed search incorporating the term “flavonoid” 
returns more than 58,180 articles from last 5 years. The role of flavonoids in plants has 
received considerable attention in recent decades [11].

Human culture is facing the greatest threat because of global climate change. 
Increasing global food prices and global warming put the future of humanity at risk. 
Scientists from NASA’s Goddard Institute for Space Studies (GISS) estimate that global 
temperatures have risen by around 1°C since 1880 [12]. Every 2°C increase in global 
temperature could annihilate up to a hundred million people and wipe out up to a 
million species [13]. In addition to using fossil fuels to generate energy, agricultural 
activities are among the biggest contributors to climate change through the emission of 
greenhouse gases [14]. In spite of the convenience, ease of use, and rapid soil nutrient 
recharge, commercial fertilizers have become viewed as a source of toxic and residual 
soil issues. Using less mineral fertilizer may lower GHG emissions by 20% [15]. Global 
warming has made it necessary to rethink outdated and ineffective policies. Eco-
friendly farming practices and a more sustainable agricultural system are urgently 
needed. Bio-based products, for example, might usher in organic farming, bio-fertil-
izers, and bio-control, all of which would be significant steps toward assuring global 
food security in the long run. Flavonoids are one type of biostimulant discussed in 
this chapter, and their role in sustainable agriculture. The flavonoids are an important 
class of polyphenolic secondary metabolites involved in plant physiological function, 
and show protection against biotic and abiotic stresses, including ultraviolet radiation, 
salt stress, and drought [16–18], at least in part by detoxifying the reactive oxygen 
species (ROS) produced when plants are under stress conditions [19]. Flavonoids may 
help protect Mediterranean endemic species from UV radiation and drought stress, as 
evidenced by recent studies that show polyphenol concentrations fluctuate monthly 
with the maximum values occurring at midday during the summer when drought, 
temperature, and UV radiation are high [20, 21]. The flavonoids in some plants play 
a critical role in plant defense and growth. There are several flavonoids that comprise 
plant pigments, including anthocyanins (red, orange, blue, and purple pigments); 
chalcones and aurones (yellow pigments); and flavonols and flavones (white and 
pale yellow pigments), which contribute to a diverse range of plant colors [22]. The 
flavonoids are also crucial in symbiotic associations between plants and microbes, such 
as rhizobial and arbuscular mycorrhizal symbioses [23]. As a signaling compound, 
certain flavonoids trigger the induction of nodule induction in rhizobia, which is the 
first step in legume-rhizobia symbiotic relationships [24]. In addition to preventing 
pests and pathogens, some flavonoids have antimicrobial properties [25]. The color 
pigments contained in some classes of flavonoids make leaf and flower petals distinc-
tive, aiding plants in attracting pollinators [26]. Further, flavonoids have indirect 
effects on nutrient availability and supply since they enhance mycorrhizal symbiosis 
and enhance rhizosphere colonization by beneficial microbes [27].

2. Flavonoids: classification and biosynthesis network in plant

Flavonoids are the most diverse group of natural products; they are found in 
plants in over 10,000 different compounds [28]. In contrast to stilbenes (a class of 



3

Chemistry and Role of Flavonoids in Agriculture: A Recent Update
DOI: http://dx.doi.org/10.5772/intechopen.106571

flavonoids) which has a C6-C2-C6 structure (Figure 1), flavonoids have a C6-C3-C6 
basic structure composed of three phenolic rings, A (6 carbons) and B (6 carbons), 
linked by a 3-carbon heterocyclic ring (ring C). This structure, in turn, can give 
rise to several derivatives and sub-classes of compounds with distinct substituents 
[11, 29]. According to the degree of oxidation of the heterocyclic ring and the number 
of hydroxyl or methyl groups on the benzene ring, flavonoids can be divided into 12 
subgroups: anthocyanins, aurones, chalcones, dihydroflavonols, flavanones, flavones, 
flavanols, isoflavones, leucoanthocyanidins, phlobaphenes, proanthocyanidins and 
stilbenes (Figure 1) [9, 30, 31]. However, in terms of attachment of the B ring to the C 
ring, flavonoids are into three main groups: Flavonoids (2-phenylbenzopyrans): the B 
ring is attached at the 2-position of the C ring, Isoflavonoids (3-phenylbenzopyrans): 
the B ring is attached at the 3-position of the C ring, and Neoflavonoids (4-phenyl-
benzopyrans): the B ring is attached at position 4 of the ring C [11, 32].

The phenylpropanoid pathway produces flavonoids from phenylalanine, 
whereas the shikimate pathway produces phenylalanine [33]. It is generally recognized 
that the first three steps of the phenylpropanoid pathway are known as the general 
phenylpropanoid pathway [28]. Using this pathway, aromatic amino acid phenyl-
alanine is transformed to top-coumaroyl-CoA via phenylalanine ammonia lyase 
(PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL). 
A primary catalytic function of PAL is to catalyze deamination of phenylalanine to 
trans-cinnamic acid, the first in a general phenylpropanoid pathway [34]. Further, 
PAL is essential for the regulation of carbon flux from primary to secondary metabo-
lism in plants [35]. StlA, which encodes PAL in Photorhabdus luminescens, has been 

Figure 1. 
Basic structure of flavonoids subclasses.
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shown to play a role in generating a stilbene antibiotic [34]. PAL activity has also been 
linked to anthocyanins and other phenolic compounds in strawberry fruit [36]. In 
the general phenylpropanoid pathway, the second step involves C4H, a monooxy-
genase found in cytochrome P450 and responsible for hydroxylating trans-cinnamic 
acid to generate p-coumaric acid. The flavonoid synthesis pathway involves this 
first oxidation reaction as well [37]. It has been found that the expression of C4H in 
Populus trichocarpa and Arabidopsis thaliana can be correlated with lignin content, an 
important phenylpropanoid metabolite [28]. The enzyme 4CL catalyzes the synthesis 
of p-coumaroyl-CoA by coupling with a co-enzyme A (CoA) unit to p-coumaric acid 
at the third step of the general phenylpropanoid pathway. A chalcone synthesizing 
enzyme, chalcone synthase (CHS), contributes to the biosynthesis of specific flavo-
noid-based compounds by combining one molecule of 4-coumaroyl-CoA (6-carbon) 
with three molecules of malonyl-CoA. As a result of two different pathways of cell 
metabolism, ring A and ring B are generated via the acetate pathway and shikimate 

Figure 2. 
Biosynthesis network of flavonoids in plant.
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pathway, respectively, with chain linkages delivering ring C. During the acetate path-
way, malonyl-CoA is converted to ring A by carboxylation of acetyl-CoA, whereas 
ring B and the linking chain (ring C) are generated via the shikimate pathway 
(Figure 2) from coumaroyl-CoA. In the phenylpropanoid pathway, coumaryl-CoA is 
directly generated by three enzymatic reactions from phenylalanine [29]. Following 
the condensation of these aromatic rings, these pathways lead to the synthesis of 
chalcone, which will then undergo isomerase-catalyzed cyclization to form flavanone 
(Figure 2). In addition to hydroxylation, glycosylation, and methylation, the latter 
compounds undergo additional modifications, resulting in an enormous variety of 
colors (Figure 2).

3. The production of flavonoids by microorganisms

Since plants and chemical synthesis produce low levels of flavonoids, researchers 
have turned to open fermentation and metabolic engineering to produce flavonoids 
in microorganisms [38]. Toxic chemicals and extreme reaction conditions are neces-
sary for the chemical synthesis of flavonoids [39]. Combinatorial biosynthesis offers 
an advantage in the production of rare and expensive natural products, thanks to 
the rapid development of molecular biology tools and genome information flooding 
from a wide variety of organisms. Unlike the tedious blocking and de-blocking steps 
common to organic synthesis, it also allows for simple and complex transformations 
[40]. In addition to Escherichia coli, Phellinus igniarius, Saccharomyces cerevisiae and 
Streptomyces venezuelae, and, a medicinal mushroom, flavonoids can also be produced 
by additional prokaryotes and eukaryotes [41], a variety of other cultures have been 
used to produce flavonoids.

3.1 Phenylpropanoid pathway

Several flavonoids are synthesized in plants using the phenylpropanoid path-
way from naringenin chalcone. A recently established biosynthesis pathway was 
established in a heterologous microorganism by fermentation of E. coli carrying an 
artificially assembled phenylpropanoid pathway to produce flavanones from amino 
acids such as phenylalanine and tyrosine [42]. Plants use phenylalanine ammonia 
lyase (PAL) to deaminate phenylalanine to produce cinnamic acid as the first step in 
the phenylpropanoid pathway. As a result of the action of cinnamate-4-hydroxylase 
(C4H), cinnamate-4-hydroxylase (C4H) converts cinnamate to p-coumaric acid, 
which is then converted to p-coumaroyl-CoA by 4-coumarate: CoA ligase, cinnamic 
acid becomes p-coumaric acid. The naringenin chalcone is synthesized by three 
acetate units from malonyl-CoA with p-coumaroyl-CoA using Chalcone Synthesis 
(CHS). In vitro, naringenin is converted to naringenin using chalcone isomerase 
(CHI) or nonenzymatically without activating enzymes [43].

3.2 Enhancement of flavonoid synthesis

For heterologous flavonoids production, many molecular biology technologies 
are used, including choosing promoter and target genes, knocking out related genes, 
over expressing malonyl-CoA, and creating artificial P450 enzymes. Genes from the 
phenylpropanoid pathway are cloned in the host under the control of the promoter, 
due to which secondary metabolites are often expressed heterologously. In an effort to 
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promote flavonoids production, several promoters have been used depending on host 
requirements, including T7, ermE, and GAL1 promoters [41]. One of the limitations 
of microbiological flavonoids production was the extremely low concentration of 
malonyl-CoA. An increased production of flavonoids was achieved by co-expressing 
acetyl-CoA carboxylase genes from Photorhabdus luminescens [44]. Also essential for 
flavonoid biosynthesis is the presence of UDP-glucose. Using the udg gene, research-
ers knocked out the endogenous system for consuming UDP-glucose resulting in an 
increase in intracellular UDP-glucose concentrations and subsequently increased 
flavanones and anthocyanins production [45].

Scientists were able to generate a wider range of natural and unnatural products 
when combining bacteria and eukaryotic cells in a pot. Using a modified S. cerevisiae 
strain, de novo generation of the important flavonoid intermediate naringenin from 
glucose was achieved for the first time, leading to four times higher concentrations 
than those seen in previous de novo biosynthesis experiments [46, 47].

4. Chemistry of flavonoids

At the present scenario of scientific research, bioflavonoids are being considered 
as promising drug candidates, and extensive researches directed toward structural 
studies and biological efficacies of such class of compounds are in progress, which 
would eventually boost the on-going efforts leading to the discovery of new effica-
cious lead molecules. This remarkable class of natural compounds draws the atten-
tion of the scientists for their immense biological and pharmacological potentiality. 
Presently, over 10,000 individual flavonoid compounds are known, which are based 
on very few core structural skeletons (viz. flavone, flavanol, isoflavone, flavan, 
flavanone, chalcone, anthocyanin, coumarin etc. see in Figure 1) [9, 10, 30, 31].

Flavonoids are a group of natural compounds with low molecular weight polyphe-
nolic substances based on the flavan nucleus are found mostly in plants. A novel chemi-
cal was extracted from oranges in 1930. It was given the name vitamin P at that time 
because it was thought to belong to a novel class of vitamins. Later, it was discovered 
that this material was a flavonoid (rutin), and as of now, more than 10,000 differ-
ent flavonoid species have been found [48]. According to their chemical structure, 
flavonoids contain a 15-carbon skeleton. This skeleton consists of two benzene rings 
(A and B) linked by a heterocyclic pyrane ring (C) (Figure 1). These include flavones 
(such as luteolin apigenin and Itoside N), flavanols (such as kaempferol, myricetin 
and quercetin), flavanones (such as hesperetin, naringenin and abyssinoflavanone 
VI), and others. Table 1 shows their general structures and other related information. 
Individual compounds within a class differ in the pattern of substitution of the A and 
B rings, whereas the many classes of flavonoids differ in the level of oxidation and 
pattern of substitution of the C ring [48]. Among the many forms of flavonoids, there 
are aglycones, glycosides, and methylated derivatives. Flavonoids contain aglycones as 
their basic structure (Figure 1). The α-pyrone (flavonols and flavanones) or its dihydro 
derivative (flavanols and flavanones) is a six-member ring that is condensed with the 
benzene ring (flavonols and flavanones) is a six-member ring that is condensed with 
the benzene ring. Based on the position of the benzenoid substituent, flavonoids are 
classified as flavonoids with a 2-position and isoflavonoids with a 3-position. Unlike 
flavanones, flavanols contain a hydroxyl group at the 3-position and a double bond 
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Class of 
flavonoids

Examples

Flavones

Flavans

Flavonols

Isoflavones

Isoflavanones

Flavanones
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between C2 and C3 [49–51]. The most common positions of hydroxylation for flavo-
noids are 3, 5, 7, 2, 3′, 4′, and 5′. There is evidence to suggest that alcohol group methyl 
ethers and acetyl esters occur in nature. It is normally found that glycosides form 
when the glycosidic linkage appears in positions 3 or 7, and the carbohydrate is usually 
L-rhamnose, D-glucose, glucorhamnose, galactose, or arabinose [49, 50, 52].

4.1 Spectral characteristics of flavonoids

UV spectroscopic analysis of flavonoids identified two major absorption bands: 
Band I (320–385 nm) representing the absorption of the B ring, and Band II 
(250–285 nm) representing the absorption of the A ring. A shift in absorption can 
occur due to functional groups attached to flavonoid skeletons, such as 367 nm for 
kaempferol (3,5,7,4′-hydroxyl groups) and 371 nm for quercetin (3,5,7,3′,4′-hydroxyl 

Class of 
flavonoids

Examples

Flavanols

Anthocyanins

Chalcones

Coumarins

Table 1. 
Structure of some selective known flavonoids [9, 10, 49].
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groups) and 374 nm for myricetin (3,5,7,3′,4′,5′-hydroxyl groups) [53]. An absence 
of a 3-hydroxyl group distinguishes flavones from flavanols. According to their UV 
spectral properties, flavanones have a saturated heterocyclic C ring with no conjuga-
tion between the A and B rings [54]. Flavanones show only a shoulder for Band I at 
326 and 327 nm and a very significant Band II absorption maximum between 270 
and 295 nm, namely 288 nm for naringenin and 285 nm for taxifolin. In compounds 
with a monosubstituted B ring, Band II shows one peak (270 nm), but when a di-, 
tri-, or o-substituted B ring is present, it shows two peaks or one peak (258 nm) with 
a shoulder (272 nm). The color of anthocyanins varies with the quantity and position 
of the hydroxyl groups because they exhibit discrete Band I peaks in the 450–560 nm 
area due to the hydroxyl cinnamoyl system of the B ring and Band II peaks in the 
240–280 nm region due to the benzoyl system of the A ring [55].

Nuclear magnetic resonance (NMR) spectroscopy has proven essential in the 
structural elucidation of natural products; it is one of the most effective methods 
available to natural product chemists [10].

In 1H NMR investigations, the chemical shifts (δ) and the coupling constants 
(J), also known as and spin–spin couplings, are a good indicator. By comparing the 
recorded chemical shifts with the gathered data, this parameter provides important 
information on the relative number and kind of hydrogens. The number and ano-
meric configuration of the glycoside moieties connected to the aglycone, as well as 
the aglycone and acyl type groups associated to it, may all be determined using this 
[10]. The molecular architecture of flavone (Itoside N) can be learned a lot from the 
analysis of its 1H NMR spectrum data. The presence of an aromatic proton at C-3 in 
ring-C is shown by the one-proton singlet that appears at δ 6.86. The presence of two 
aromatic protons at C-6 and C-8, respectively, in ring-A is indicated by the signals 
that occurred as doublets (d) at δ 6.46 (1H, d, J = 2.0 Hz) and 6.80 (1H, d, J = 2.0 Hz). 
Four aromatic protons of the B-ring in the flavone skeleton may be the cause of the 
doublet (d) signals that emerged at δ 7.97 (2H, dd, J = 8.0 Hz) for two protons and 
δ 6.97 (2H, dd, J = 8.0 Hz) for another pair of protons. Ring B is definitely para-
disubstituted, according to the chemical shifts and coupling constant values for its 
four protons. Moreover, the 1H NMR spectrum of Itoside N (Table 1) indicates that a 
partial structure similar in structure to p,p′-dihydroxy-μ-truxinic acid in Itoside N is 
formed by two p-dihydroxy benzenoid groups that combination with a cyclobutane 
[δ 42.9 (C-2′′′), 43.5 (C-3′′′), 45.5 (C-2′′′′), 42.9 (C-3′′′′)] moiety [9, 10].

When combined with 1H NMR data, 13C NMR data can be used to determine the 
types of groups that are present in molecules. It should be noted, however, that 13C 
NMR is not as responsive as 1H NMR because 13C is less abundant (1.1%) than 1H 
(99.9%) [10]. The C-2/C-II-2 and C-3/C-II-3 sp2-hybridized carbons can be found, 
respectively, at δC 152.5–165.5 and 103–132.1 in 13C-NMR spectra. According to 13C 
NMR data of flavonoid compounds, C-4/C-II-4 appear between δC 176.2 and δC 182.9 
when C-2-C-3 is unsaturated (sp2), but when C-2/C-3 is sp3 hybridized, a down-field 
shift of C-4/C-I-4 is typically observed between δC 196.2 to δC 197.9. The typical range 
of δC 159.6–164.7 includes the aromatic C-5, C-6, C-7, C-8, C-9/C-4a, and C-10/C-8a. 
Generally CMR of glucopyranosyl moiety appeared in the range of δC 60.6–102.11; 
rhamnopyranosyl (Rha) also appeared in the range of δC 17.23–101.0; and glucurono-
pyranoside showed the value in δC 98.4–171.6. The value of glucuronopyranoside 
is nearly identical to that of the glucopyranosyl moiety, however the carboxylic 
group is what gives the compound its high value (δC 171.6). The flavone, Itoside N is 
found to appear around a range δC of 42.9–172.2 for the 4′′/6′′-p-hydroxy-μ-truxinyl 
group [10].
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4.2 Substitution pattern of flavonoids

The main flavonoid classes and some of their discovered structural variants 
are shown in Table 2. Within the primary classes, flavonoids’ structures differ 
significantly by substitutions such as hydroxylation, glycosylation, hydrogenation, 
methylation, malonylation, and sulphation etc. Many flavonoids are found in nature 

Name of flavonoids No. of 
hydroxyl 

(-OH) groups

Position of 
OH groups

Other substitutions 
on the basic 

structure

Position of the 
substitutions

Myricetin 6 3, 5, 7, 3′, 
4′, 5′

— —

Gossypetin 6 3, 5, 7, 8, 3′, 4′ — —

Quercetagen 6 3, 5, 6, 7, 3′, 4″ — —

Hypolactin 5 5, 7, 8, 3′, 4′ — —

Quercetin 5 3, 5, 7, 3′, 4′ — —

Myricetrin 5 5, 7, 3′, 4′, 5′ O-Rha 3

Rutin 4 5, 7, 3′, 4′ O-Rut 3

Kaempferol 4 3, 5, 7, 4′ — —

Quercetrin 4 5, 7, 3′, 4′ O-Rha 3

Fisetin 4 3, 7, 3′, 4′ — —

Rhamnetin 4 3, 5, 3′, 4′ O-Me 7

Orientin 4 5, 7, 3′, 4′ Glc 8

Apigenin 3 5, 7, 4′ — —

Galangin 3 3, 5, 7 — —

Kaempferide 3 3, 5, 7 O-Me 4′

Luteolin-7-glucoside 3 5, 3′, 4′ O-Glc 7

Vicenin-2 3 5, 7, 4′ Glc 6, 8

Sideritoflavone 3 5, 3′, 4′ O-Me 6, 7, 8

Pinocembrin 2 5, 7

Gardenin-D 2 5, 3′ O-Me 6, 7, 8, 4′

Diosrnin 2 3, 3′ O-Rut, O-Me 5, 4′

Robinin 2 5, 4′ O-Galc-Rha, Rha 3, 7′

Cirsimaritin 2 5, 4′ O-Me 6, 7

Xanthomicrol 2 5, 4′ O-Me 6, 7, 8

8-Methoxycirisilincol 2 5, 4′ O-Me 6, 7, 8, 3′

3-OH-Flavone 1 3 —

Techtochyrsin 1 5 O-Me 7

Troxerutin 1 5 O-Rut, O-He, O-He, 
O-He

3, 7, 3′, 4′

Table 2. 
Some example of substitution pattern of flavonoids [9, 49, 59].
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as flavonoid glycosides, and D-glucose, L-rhamnose, glucorhamnose, galactose, 
lignin, and arabinose are some examples of carbohydrate substitutes [9, 49, 50]. The 
most prevalent flavonoid glycosides in the diet are quercitrin, rutin, and robinin. 
Intestinal flora hydrolyzes them to create the physiologically active aglycone (sugar-
free flavonoid). Due to its prominence as the primary flavonoid present in foods, 
quercetin has been the focus of numerous studies examining the biological impacts 
of flavonoids [9, 49, 50].

4.3 Polymerization of flavonoids

In term of units of flavonoids molecules there are three types of flavonoids namely 
monomers, dimers, and oligomers. There are huge differences between the molecular 
weights of different monomers. Polymers of flavonoids make up condensed tannins. 
Epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate are 
the four primary catechin components found in tea tannins. The main catechin in tea, 
epigallocatechin gallate, accounts for more than half of the total catechin content. The 
dimeric theaflavins and polymeric thearubigins of black Indian tea, which generate 
brightness and astringency, respectively, are produced by enzymatic oxidation of tea 
catechins during fermentation of macerated tea leaves [56, 57]. Thearubigins come 
in a wide variety of sizes, from molecules with up to 100 flavonoid units to oligomers 
of four or five units [56]. Green “Chinese” tea does not undergo fermentation during 
processing, in contrast to black tea, hence its flavonoids largely exist as monomers. 
The anthocyanins and other flavonoids in red wine polymerize to create tannins, 
which give the wine its distinctive hues, tastes, and astringency [58, 59].

5. Role of flavonoids in plants

Plants are the key source of natural products and plants had already yielded a vast 
number of phytochemicals and still continue to a major source of biologically active 
molecules. Numerous plants have already established their potentiality as a source 
of naturally occurring insecticides, pesticides, fungicides and agro-chemicals as an 
alternative to toxic and hazardous synthetic chemicals. Owing to ever-increasing 
awareness to the hazardous side effects of synthetic chemicals, more and more 
emphasis is being given on the use of products obtained from natural sources so that 
ecological balance is well-maintained. The WHO has already called for an immediate 
ban on the use of many synthetic chemicals viz. endosulfan is a dangerous synthetic 
pesticide that causes severe damage to the eyes, kidneys, and liver. The Government 
of India had already banned the use of 12 highly toxic and hazardous pesticides and 
imposed restriction on the use of many others to prevent environmental pollution. To 
minimize the hazardous effects and to control environmental pollution, attempts are 
now being made to develop naturally occurring plant-based pesticides. Many phyto-
chemicals such as phytoecdysones, and azadirachtin (from Indian neem) have been 
reported to possess pesticidal and insecticidal properties and are being widely used 
in protecting the loss of crop from the attack of insects and parasites in place of their 
synthetic analogues because of their non-toxic, non-pollutant, readily bio-degradable 
character and harmless nature of their residues.

As a result of changes in plant growth, conditions, and maturity, there are more 
than 10,000 types of flavonoid compounds found in vascular plants, which vary in 
type and quantity according to a variety of factors. There is still a lack of systematic 
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analysis of the flavonoid content of many plant species, which makes it difficult to 
identify and quantify all the flavonoids humans consume [57]. In order to defend 
themselves against herbivores, pathogens, oxidative cell damage, and fungal 
parasites, plants have evolved to synthesize flavonoids [58]. On the other hand, 
flavonoids act as a stimulant that aids in pollination and guides insects on their way 
to food sources. For example, flavonoid compounds anthocyanins are responsible 
for the pink, blue red, light purple and violet colors in flowers, fruits, and veg-
etables [56, 59].

5.1 Combating oxidative stress of flavonoids

It has long been reported that flavonoids have a variety of functions in plants 
[60]. Both abiotic and biotic factors contribute to oxidative stress in plants as 
a result of ROS being generated in plants. A high level of oxidative stress com-
monly enhances the synthesis of flavonoids in plants. The pigments are capable 
of absorbing the most energetic rays of the sun (i.e., UV-B and UV-A), inhibit-
ing ROS production, and quenching ROS once they have been generated [61]. 
When plants moved from water to soil, flavonoids were primarily responsible for 
screening UV-B. Different flavonoids have different antioxidant capacities and 
UV-wavelength-absorbing capabilities based on their substitutions. There is an 
increase in antioxidant capacity in flavonoids with dihydroxy B rings substituted 
for these rings, whereas flavonoids with monohydroxy B rings have a greater ability 
to absorb UV wave lengths. Glycosylation is generally the hallmark of the most 
reactive hydroxyl groups of flavonoids (7-OH in flavones or 3-OH in flavanols). 
Flavonoids can be transported from the endoplasmic reticulum to various cellular 
compartments and secreted from their plasma membrane and cell wall through gly-
cosylation, thereby increasing their solubility in the aqueous cellular environment, 
protecting the reactive hydroxyl groups from auto-oxidation [62]. Studies have 
shown that antioxidant flavonoids are found in cells of the mesophyll and in chloro-
plasts, which generate ROS. Using this method, they are able to easily quench H2O2, 
hydroxyl radicals, and singlet oxygen [61, 63]. Conditions that restrict CO2 diffu-
sion to carboxylation sites and carboxylation efficiency may exacerbate  oxidative 
stress caused by an excessive amount of excitation energy in chloroplasts [61, 64]. A 
number of environmental factors can restrict CO2 assimilation, including drought/
salinity, temperature fluctuations, and nutrient scarcity. This can decrease the 
activity of ROS detoxifying enzymes in the chloroplast [65], which increases the 
production of antioxidant flavonoids. Flavonoids are highly important for plants 
under severe stress conditions because of their reducing properties. In addition to 
their functional roles, dihydroxy B ring substitutes are also highly concentrated 
[66]. It has been suggested that flavonoids represent a secondary antioxidant 
defense system in plants under stress [61]. In response to oxidative stress, lipid 
peroxidation occurs, causing cell membrane degradation. It has been suggested 
that quercetin-3-O-rutinoside (Rutin) interacts with phospholipids polar head at 
the water lipid interface, increasing membrane inflexibility and thereby protecting 
membranes from oxidative damage [67].

5.2 Role of flavonoids as growth regulator

Role of Flavonoids as Growth Regulator: in plant-environment interactions, flavo-
noids play an essential role. There is evidence that flavonoids control auxin catabolism 
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and movement by using in nanomolar range. When flavonoids produce auxin gradi-
ents, they produce phenotypes with different morphoanatomical characteristics [68]. 
Stress-induced morphogenic responses of plants are controlled largely by flavonoids, 
which may have a direct relevance to flight strategies of sessile organisms exposed to 
unfavorable environments [69]. A species that produces dihydroxy flavonoids exhib-
its phenotypic characteristics that are strikingly different from a species that produces 
monohydroxy flavonoids [70]. In sunny situations, dwarf bushy phenotypes with 
few, tiny, and thick leaves are typically prevalent, shielding leaves deep in the canopy 
from light-induced severe cellular homeostasis disruptions. Alternatively, shaded 
plants, which contain kaempferol and/or apigenin derivatives, have long internodes 
and large leaf lamina, along with reduced leaf thickness [69]. PIN/MDR glycoproteins 
that facilitate cell-to-cell movement of auxin are inhibited by flavonoids at the plasma 

Class of 
flavonoids

Name of 
flavonoids

Dietary sources

Anthocyanidin Peonidin Cranberries, blueberries, plums, grapes, cherries, sweet potatoes

Catechin Theaflavin Tea leaves, black tea, oolong tea

Coumarin Scopoletin Vinegar, dandelion coffee

Flavan Epicatechin Milk, chocolate, commercial, reduced fat

Flavanol Taxifolin Vinegar, citrus fruits

Flavanone Abyssinones French bean seeds

Eriodictyol Lemons, rosehips

Hesperidin Bitter orange, petit grain, orange, orange juice, lemon, lime

Naringenin Grapes

Flavone Diosmetin Vetch

Apigenin Milk, chocolate, commercial, reduced fat

Luteolin Celery, broccoli, green pepper, parsley, thyme, dandelion, perilla, 
chamomile tea, carrots, olive oil, peppermint, rosemary, navel oranges, 
oregano

Tricin Rice bran

Flavanol Fisetin Strawberries, apples, persimmons, onions, cucumbers

Kaempferol Apples, grapes, tomatoes, green tea, potatoes, onions, broccoli, Brussels 
sprouts, squash, cucumbers, lettuce, green beans, peaches, blackberries, 
raspberries, spinach

Myricetin Vegetables, fruits, nuts, berries, tea, red wine

Rutin Green tea, grape seeds, red pepper, apple, citrus fruits, berries, peaches

Quercetin Vegetables, fruits and beverages, spices, soups, fruit juices

Isoflavone Biochanin Red clover, soya, alfalfa sprouts, peanuts, chickpeas (Cicer arietinum), 
other legumes

Daidzein Soyabeans, tofu

Genistein Fats, oils, beef, red clover, soyabeans, psoralea, lupin, fava beans, kudzu, 
psoralea

Table 3. 
Example of some flavonoids and their rich dietary sources [74].
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membrane. In flavonoids, the catechol group is present at the B ring of the flavonoid 
skeleton that is responsible for inhibiting the activity of the efflux facilitator PIN and 
MDR proteins. The chemical structure of flavonoids also influences their action on 
IAA-oxidase significantly [71]. In recent years, it has been found that flavonoids can 
influence the activity of proteins involved in cell growth due to a nuclear location 
of flavonoids as well as the actions of enzymes that produce flavonoids [72]. This 
suggests that flavonoids may be able to regulate transcription [73]. In Table 3 showed 
some flavonoids and their rich dietary sources [74].

6. Role of flavonoids in pest control

There is an ever-growing demand for natural pesticides from plants. As an 
alternative to synthetic pesticides, flavonoids are being used to develop new 
pesticides. A variety of insect larvae can be prevented from growing if they are 
inhibited by these compounds [75]. It is known that some flavonoids inhibit the 
production of juvenile hormone which is involved in molting and reproduction in 
several insects [76]. A number of flavonoids have been shown to suppress agricul-
tural pest activity, such as oviposition, fecundity, mortality, weight reduction, and 
the emergence of adults [77, 78]. In their article, Lena Schnarr et al. [79] reported 
281 different pesticidal active flavonoids that were investigated in either pure form 
or as extracts containing flavonoid, with the most studied compounds being quer-
cetin, kaempferol, apigenin, luteolin and their glycosides [79]. In another study, 
Quercetin, rutin, and naringin were all effective in controlling Eriosoma lanigerum 
Hausmann nymphs and adults. An integrated management program for this aphid 
can use these products as an insecticide [80]. Flavonoids may have an insecticidal 
effect depending on their concentration; if too low, they are ineffective [81]; as a 
result, it is crucial to determine the minimum concentration for flavonoids to be 
effective [79, 81].

7. Patent information

About 40 patent information on agriculture related matter including all necessary 
agenda are presented in Table 4, which deal with, synthesis of various flavonoids in 
plant and their analogs, method for increasing the flavonoids content, pest control 
and pesticidal activity of plant and plant protection.

8. Concluding remarks

Naturally occurring flavonoids are of much interest to the scientific community 
at a large due to their multidirectional therapeutic applications. Besides, knowledge 
about natural distribution of flavonoids of varying structural skeletons is also very 
much essential to the taxonomists for classifying plants in the light of chemotaxon-
omy. Thus, flavonoids are of much interest to the workers of interdisciplinary fields.

The use of plant flavonoids could provide eco-friendly and sustainable approaches 
to improving food quality and crop yield as well as improving their adaptation to 
environmental stress. When applied in practice, flavonoids could be very effective 
in the field, as a result of their phytotoxic and pesticidal properties. Also natural 
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herbicides made from bioflavonoids are being investigated more and more in inte-
grated weed control.

Further research and investigations are required to understand the full range of 
activity of flavonoids produced naturally and/or applied artificially for batter benefit 
in the field of agriculture.

Acknowledgements

SKJ is grateful to the Department of Chemistry, Krishna Chandra College, 
Hetampur for providing necessary infrastructural facilities to carry out this work.

Conflict of interest

The authors declare no conflict of interest.

Author details

Shyamal K. Jash
Department of Chemistry, Krishna Chandra College (Affiliated to the University of 
Burdwan), Birbhum, West Bengal, India

*Address all correspondence to: jash_sh@yahoo.co.in

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding

20

References

[1] Harborne JB, Williams CA. 
Anthocyanins and other flavonoids. 
Natural Product Reports. 2001;18:310-333

[2] Williams CA, Grayer RJ. Anthocyanins 
and other flavonoids. Natural Product 
Reports. 2004;21:539-573

[3] Reynaud J, Guilet D, Terreux R,  
Lussignol M, Walchshofer N. 
Isoflavonoids in non-leguminous 
families: An update. Natural Product 
Reports. 2005;22:504-515

[4] Mackova Z, Koblovska R, Lapcik O.  
Distribution of isoflavonoids in 
non-leguminous taxa – an update. 
Phytochemistry. 2006;67:849-855

[5] Andersen ØM, Markham KR, editors. 
Flavonoids: Chemistry, Biochemistry and 
Applications. 1st ed. Boca Raton: CRC 
Press; 2006

[6] Li J, Jiang Y. Litchi Flavonoids: 
Isolation, Identification and Biological 
Activity. Molecules. 2007;12:745-758

[7] Veitch NC. Isoflavonoids of the 
Leguminosae. Natural Product Reports. 
2007;24:417-464

[8] Veitch NC, Grayer RJ. Flavonoids 
and their glycosides, including 
anthocyanins. Natural Product Reports. 
2008;25:555-611

[9] Jash SK, Brahmachari G. Recent 
progress in the research of naturally 
occurring flavonoids: A look through. 
Signpost Open Access Journal of 
Organic and Biomolecular Chemistry. 
2013;1:65-168

[10] Jash SK, Gorai D, Mandal LC, 
Roy R. Nuclear magnetic resonance 
spectroscopic behaviour of some 

selective natural flavonoids: A look 
through. Mini-Reviews in Organic 
Chemistry. 2020;17(2):185-196

[11] Liu W, Feng Y, Yu S, Fan Z, Li X, 
Li J, et al. The flavonoid biosynthesis 
network in plants. International Journal 
of Molecular Sciences. 2021;22:12824

[12] Observatory Earth. World of change: 
Global temperatures [Internet]. 2020. 
Available from: https://earthobservatory.
nasa.gov/world-of-change/global-
temperatures. [Accessed: 24 March 2020]

[13] Richardson Y, Blin J, Julbe A. A 
short overview on purification and 
conditioning of syngas produced by 
biomass gasification: Catalytic strategies, 
process intensification and new concepts. 
Progress in Energy and Combustion 
Science. 2012;38:765-781

[14] EPA. Global emissions by gas 
[Internet]. 2020. Available from: 
https://www.epa.gov/ghgemissions/
global-greenhousegas-emissions-data. 
[Accessed: 24 March 2020]

[15] Scialabba NE-H, Müller-Lindenlauf M. 
Organic agriculture and climate change. 
Renewable Agriculture and Food Systems. 
2010;25:158-169

[16] Chalker-Scott L. Environmental 
significance of anthocyanins in plant 
stress responses. Photochemistry and 
Photobiology. 1999;70:1-9

[17] Chen S, Wu F, Li Y, Qian Y, Pan X, 
Li F, et al. NtMYB4 and NtCHS1 are 
critical factors in the regulation of 
flavonoid biosynthesis and are involved 
in salinity responsiveness. Frontiers in 
Plant Science. 2019;10:1-13

[18] Shojaie B, Mostajeran A,  
Ghanadian M. Flavonoid dynamic 



Chemistry and Role of Flavonoids in Agriculture: A Recent Update
DOI: http://dx.doi.org/10.5772/intechopen.106571

21

responses to different drought 
conditions: Amount, type, and 
localization of flavonols in roots and 
shoots of Arabidopsis thaliana L. Turkish 
Journal of Biology. 2016;40:612-622

[19] Brunetti C, Di Ferdinando M, 
Fini A, Pollastri S, Tattini M. Flavonoids 
as antioxidants and developmental 
regulators: Relative significance in plants 
and humans. International Journal of 
Molecular Sciences. 2013;14:3540-3555

[20] Gori A, Tattini M, Centritto M,  
Ferrini F, Marino G, Mori J, et al. 
Seasonal and daily variations in primary 
and secondary metabolism of three 
maquis shrubs unveil different adaptive 
responses to mediterranean climate. 
Conservation Physiology. 2019;7:coz070

[21] Gori A, Nascimento LB, Ferrini F, 
Centritto M, Brunetti C. Seasonal and 
Diurnal Variation in Leaf Phenolics of 
Three Medicinal Mediterranean Wild 
Species: What Is the Best Harvesting 
Moment to Obtain the Richest and the 
Most Antioxidant Extracts? Molecules. 
2020;25:956

[22] Grotewold E. The genetics and 
biochemistry of floral pigments. Annual 
Review of Plant Biology. 2006;57:761-780

[23] Singla P, Garg N. Plant flavonoids: 
Key players in signaling, establishment, 
and regulation of rhizobial and 
mycorrhizal endosymbioses. In: 
Mycorrhiza-Function, Diversity, State 
of the Art. Berlin/Heidelberg, Germany: 
Springer; 2017. pp. 133-176

[24] Liu CW, Murray JD. The role of 
flavonoids in nodulation host-range 
specificity: An update. Plants (Basel). 
2016;5:33

[25] Mierziak J, Kostyn K, Kulma A. 
Flavonoids as important molecules of 
plant interactions with the environment. 
Molecules. 2014;19:16240-16265

[26] Dudek B, Warskulat A-C, 
Schneider B. The Occurrence of 
Flavonoids and Related Compounds in 
Flower Sections of Papaver nudicaule. 
Plants. 2016;5:28

[27] Cesco S, Mimmo T, Tonon G, 
Tomasi N, Pinton R, Terzano R, et al. 
Plant-borne flavonoids released into 
the rhizosphere: Impact on soil bio-
activities related to plant nutrition. A 
review. Biology and Fertility of Soils. 
2012;48:123-149

[28] Dong NQ , Lin HX. Contribution of 
phenylpropanoid metabolism to plant 
development and plant-environment 
interactions. Journal of Integrative Plant 
Biology. 2020;63:180-209

[29] Nabavi SM, Šamec D, Tomczyk M, 
Milella L, Russo D, Habtemariam S, 
et al. Flavonoid biosynthetic pathways 
in plants: Versatile targets for metabolic 
engineering. Biotechnology Advances. 
2020;38:107316

[30] Sasaki N, Nakayama T. Achievements 
and Perspectives in Biochemistry 
Concerning Anthocyanin Modification 
for Blue Flower Coloration. Plant & Cell 
Physiology. 2015;56:28-40

[31] Flavonoid W-SB, Biosynthesis. 
A Colorful Model for Genetics, 
Biochemistry, Cell Biology, and 
Biotechnology. Plant Physiology. 
2001;126:485-493

[32] Samanta A, Das G, Das SK. Roles 
of Flavonoids in Plants. International 
Journal of Pharmaceutical Science and 
Technology. 2011;6:12-35

[33] Wang ZL, Wang S, Kuang Y, Hu Z.M, 
Qiao X, Ye M. A comprehensive review 
on phytochemistry, pharmacology, and 
flavonoid biosynthesis of Scutellaria 
baicalensis. Pharmaceutical Biology. 
2018;56:465-484.



Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding

22

[34] Williams JS, Thomas M, Clarke DJ. 
The gene stlA encodes a phenylalanine 
ammonia lyase that is involved in the 
production of a stilbene antibiotic 
in Photorhabdus luminescens TT01. 
Microbiology. 2005;151:2543-2550

[35] Barros J, Dixon RA. Plant 
Phenylalanine/Tyrosine Ammonia-lyases. 
Trends in Plant Science. 2020;25:66-79

[36] Cheng GW, Breen PJ. Activity of 
Phenylalanine Ammonia-Lyase (PAL) 
and Concentrations of Anthocyanins 
and Phenolics in Developing Strawberry 
Fruit. Journal of the American Society for 
Horticultural Science. 1991;116:865-869

[37] Wohl J, Petersen M. Functional 
expression and characterization of 
cinnamic acid 4-hydroxylase from 
the hornwort Anthoceros agrestis 
in Physcomitrella patens. Plant Cell 
Reports. 2020;39:597-607

[38] Wang Y, Chen S, Yu O. Metabolic 
engineering of flavonoids in plants and 
microorganisms. Applied Microbiology 
and Biotechnology. 2011;91:949-956

[39] Park SR, Yoon JA, Paik JH, Jung WS, 
Ban Y-H, Kim EJ, et al. Engineering 
of plant-specific phenylpropanoids 
biosynthesis in Streptomyces 
venezuelae. Journal of Biotechnology. 
2009;141:181-188

[40] Wang A, Zhang F, Huang L, Yin X, 
Li H, Wang Q , et al. New progress in 
biocatalysis and biotransformation of 
flavonoids. Journal of Medicinal Plant 
Research. 2010;4:847-856

[41] Du F, Zhang F, Chen F, Wang A,  
Wang Q , Yin X, et al. Advances 
inmicrobial heterologous production 
of flavonoids. African Journal of 
Microbiology Research. 2011;5:2566-2574

[42] Hwang EI, Kaneko M, Ohnishi Y,  
Horinouchi S. Production of 

plant-specific flavanones by Escherichia 
coli containing an artificial gene 
cluster. Applied and Environmental 
Microbiology. 2003;69:2699-2706

[43] Austin MB, Noel JP. The chalcone 
synthase superfamily of type III 
polyketide synthases. Natural Product 
Reports. 2003;20:79-110

[44] Leonard E, Koffas MAG. Engineering 
of artificial plant cytochrome P450 
enzymes for synthesis of isoflavones 
by Escherichia coli. Applied and 
Environmental Microbiology. 2007;73: 
7246-7251

[45] Leonard E, Yan Y, Fowler ZL, 
Li Z, Lim C-G, Lim K-H, et al. Strain 
improvement of recombinant Escherichia 
coli for efficient production of plant 
flavonoids. Molecular Pharmaceutics. 
2008;5:257-265

[46] Santos CNS, Koffas M, 
Stephanopoulos G. Optimization of a 
heterologous pathway for the production 
of flavonoids from glucose. Metabolic 
Engineering. 2011;13:392-400

[47] Koopman F, Beekwilder J, 
Crimi B, van Houwelingen A, Hall RD, 
Bosch D, et al. De novo production of 
the flavonoid naringenin in engineered 
Saccharomyces cerevisiae. Microbial Cell 
Factories. 2012;11:155

[48] Middleton EJ. Effect of plant 
flavonoids on immune and inflammatory 
cell function. Adv. Exp. Med. Biol. 
1998;439:175-182

[49] Gorai D, Jash SK, Roy R. Flavonoids 
from Astragalus Genus. International 
Journal of Pharmaceutical Sciences and 
Research. 2016;7(7):2732-2747

[50] Gangopadhyay A, Chakraborty S, 
Jash SK, Gorai D. Cytotoxicity of Natural 
Flavones and Flavonols Against Different 



Chemistry and Role of Flavonoids in Agriculture: A Recent Update
DOI: http://dx.doi.org/10.5772/intechopen.106571

23

Cancer Cells. Journal of the Iranian 
Chemical Society. 2022;19:1547-1573

[51] Narayana KR, Reddy MS, 
Chaluvadi MR, Krishna DR. Bioflavonoids 
classification, pharmacological, 
biochemical effects and therapeutic 
potential. Indian Journal of Pharmacology. 
2011;33:2-16

[52] Middleton E. The flavonoids. 
Trends in Pharmacological Sciences. 
1984;5:335-338

[53] Yao LH, Jiang YM, Shi J,  
Tomás-Barberán FA, Datta N, 
Singanusong R, et al. Flavonoids in food 
and their health benefits. Plant Foods for 
Human Nutrition. 2004;59:113-122

[54] Rice-Evans CA, Miller NJ, 
Paganga G. Structureantioxidant activity 
relationships of flavonoids and phenolic 
acids. Free Radical Biology & Medicine. 
1996;20:933-956

[55] Wollenweber E, Dietz VH.  
Occurrence and distribution of 
free flavonoid aglycones in plants. 
Phytochemistry. 1981;20:869-932

[56] Coultate TP. Food-The Chemistry of 
its Components. 4th ed. Cambridge, UK: 
The Royal Society of Chemistry; 2002. 
pp. 195-200

[57] Pierpoint WS. Flavonoids in the 
human diet. In: Plant Flavonoids in 
Biology and Medicine: Biochemical, 
Pharmacological and Structure-Activity 
Relationships. New York, USA: Alan R. 
Liss; 1986. pp. 125-140

[58] Swain T. The evolution of flavonoids. 
In: Plant Flavonoids in Biology and 
Medicine: Biochemical, Pharmacological, 
and Structure-Activity Relationships. 
New York, USA: Alan R. Liss; 1986. 
pp. 1-14

[59] Cook NC, Samman S. Flavonoids---
Chemistry, metabolism, cardioprotective 
effects, and dietary sources. The 
Journal of Nutritional Biochemistry. 
1996;7:66-76

[60] Shirley BW. Flavonoid biosynthesis: 
“new” functions for an “old” pathway. 
Trends in Plant Science. 1996;1:377-382

[61] Agati G, Azzarello E, Pollastri S, 
Tattini M. Flavonoids as antioxidants 
in plants: location and functional 
significance. Plant Science. 
2012;196:67-76

[62] Zhao J, Dixon RA. The “ins” and 
“outs” of flavonoid transport. Trends in 
Plant Science. 2010;15:72-80

[63] Perez-Gregorio MR, Regueiro J, 
Barreiro CG, Otero RR, Gandara JS. 
Changes in antioxidant flavonoids during 
freeze-drying of red onions and 
subsequent storage. Food Control. 
2011;22:1108-1113

[64] Ferdinando MD, Brunetti C, Fini A, 
Tattini M. Flavonoids as antioxidants 
in plants under abiotic stresses. In: 
Ahmad P, Prasad MNV, editors. Abiotic 
Stress Responses in Plants: Metabolism, 
Productivity and Sustainability. New 
York, USA: Springer; 2012. pp. 159-179

[65] Hatier JHB, Gould KS. Foliar 
anthocyanins as modulators of stress 
signals. Journal of Theoretical Biology. 
2008;253:625-627

[66] Tattini M, Galardi C, Pinelli P,  
Massai R, Remorini D, Agati G. 
Differential accumulation of flavonoids 
and hydroxycinnamates in leaves of 
Ligustrum vulgare under excess light 
and drought stress. The New Phytologist. 
2004;163:547-561

[67] Erlejman AG, Verstraeten SV, 
Fraga CG, Oteiza PI. The interaction of 
flavonoids with membranes: potential 



Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding

24

determinant of flavonoid antioxidant 
effects. Free Radical Research. 
2004;38:1311-1320

[68] Taylor LP, Grotewold E. Flavonoids 
as developmental regulators. 
Current Opinion in Plant Biology. 
2005;8:317-323

[69] Jansen MAK. Ultraviolet-B 
radiation effects on plants: induction 
of morphogenic responses. Physiologia 
Plantarum. 2002;116:423-429

[70] Kuhn BH, Geisler M, Bigler L,  
Ringli C. Flavonols accumulate 
asymmetrically and affect auxin 
transport in Arabidopsi. Plant 
Physiology. 2011;156:585-595

[71] Mathesius U. Flavonoids 
induced in cells undergoing nodule 
N organogenesis in white clover are 
regulators of auxin breakdown by 
peroxidase. Journal of Experimental 
Botany. 2011;52:419-426

[72] Rana DK, Saha D, Sengupta PS, 
Sarkar B, Mondal P, Gorai D, et al. 
Computational and Docking Studies of 
5,6-dihydroxy-7,8,4′-trimethoxyflavone: 
A α-Glucosidase Inhibitory Constituent 
from Limnophila indica. Journal of 
Chemistry and Chemical Sciences. 
2018;8:548-561

[73] Naoumkina M, Dixon RA. 
Subcellular localization of flavonoid 
natural products. Plant Signaling & 
Behavior. 2008;3:573-575

[74] Panche AN, Diwan AD, Chandra SR. 
Flavonoids: an overview. Journal of 
Nutritional Science. 2016;5:1-15

[75] Kim JS, Kwon CS, Son KH. Inhibition 
of ά-glucosidase and ά-amylase by 
luteolin, a flavonoid. Bioscience, 
Biotechnology, and Biochemistry. 
2000;64:2458-2461

[76] Oberdorster E, Clay MA, 
Cottam DM, Wilmot FA, McLachlan JA, 
Milner MJ. Common phytochemicals are 
ecdysteroid agonists and antagonists: 
A possible evolutionary link between 
vertebrate and invertebrate steroid 
hormones. The Journal of Steroid 
Biochemistry and Molecular Biology. 
2001;77:229-238

[77] Salunke BK, Kotkar HM, Mendki PS, 
Upasani SM, Maheshwari VL. Efficacy of 
flavonoids in controlling Callosobruchus 
chinensis (L.) (Coleoptera: Bruchidae) a 
post-harvest pest of grain legumes. Crop 
Protection. 2005;24:888-893

[78] Goławska S, Sprawka I, Łukasik I,  
Goławski A. Are naringenin and 
quercetin useful chemicals in pest-
management strategies? Journal of 
Pesticide Science. 2014;87(1):173-180

[79] Schnarr L, Segatto ML, Olssona O, 
Zuin VG, Kümmerer K. Flavonoids as 
biopesticides—Systematic assessment 
of sources, structures, activities and 
environmental fate. Science of The Total 
Environment. 2022;824:153781

[80] Ateyyat M. Impact of flavonoids 
against woolly apple aphid, eriosoma 
lanigerum (Hausmann) and its sole 
parasitoid Aphelinus mali (Hald.). 
The Journal of Agricultural Science. 
2012;4:227-236

[81] Monique S, Simmonds J. 
Importance of flavonoids in insect-plant 
interactions: Feeding and oviposition. 
Phytochemistry. 2001;56:245-252

[82] Dorman SC, Ballard SA. Insecticidal 
composition containing an aromatic 
unsaturated carbonyl compound. 1949. 
Patent number US2465854A

[83] Kydonieus AF. Method and 
compositions for controlling flying insects. 
1980. Patent number US4193984A



Chemistry and Role of Flavonoids in Agriculture: A Recent Update
DOI: http://dx.doi.org/10.5772/intechopen.106571

25

[84] Saotome K. Protecting method 
of field crop. 1982. Patent number 
JPS57120501A

[85] Saotome K. Crop protection method 
by means of Cinnamaldehyde. 1984. 
Patent number FR2529755A1

[86] Miyawaki H, Saotome K. Insect 
pest repellent. 1989. Patent number 
JPH01261303A

[87] Armstrong GL, Dunn-Coleman NS, 
Wach M. Control of fungal diseases in 
the production of mushrooms. 1992. 
Patent number US5149715A

[88] Emerson RW, Jr Crandall BG. Use of 
flavonoid aldehydes as insecticides. 1996. 
Patent number WO1996020594A1

[89] Zobitne KA, Gehret MJ. Insecticidal 
compositions and method of controlling 
insect pests using same. 2003. Patent 
number US6548085B1

[90] Bennett J, Brandt A, Borovsky D.  
Compositions and methods for 
controlling pests. 2003. Patent number 
US6593299B1

[91] Bessette SM, Beigler MA. Pesticidal 
activity of plant essential oils and their 
constituents. 2005. Patent number 
US6841577B2

[92] Brucker D, Sweeney M, Breen T. 
Methods of producing a functionalized 
coffee. 2005. Patent number 
US20050031761A1

[93] Schmidt-Dannert C, Watts K. 
Microorganisms for the recombinant 
production of resveratrol and other 
flavonoids. 2005, 2009. Patent number 
US20050208643A1, US7604968B2

[94] Nappa A, Lorenzini F, Sanhueza A. 
Compositions and methods to add 
value to plant products, increasing 

the commercial quality, resistance 
to external factors and polyphenol 
content thereof. 2007. Patent number 
US20070232495A1

[95] Koffas M, Leonard E, Yan Y, 
Chemler J. Production of flavonoids by 
recombinant microorganisms. 2008. 
Patent number US20060019334A1

[96] Wallace R.G. Flavonoid concentrates. 
2008. Patent number US20080274519A1

[97] Dixon RA, Liu C-J, Deavours B.  
Methods and compositions for 
production of flavonoid and isoflavonoid 
nutraceuticals. 2010. Patent number 
US7750211B2

[98] Dixon RA, Modolo LV, Peel G. 
Production of proanthocyanidins to 
improve forage quality. 2011. Patent 
number NZ580217A

[99] Jones A. Pesticidal compositions 
and methods of use thereof. 2012. Patent 
number US8142801B2

[100] Mouradov A, Spangenberg G. 
Manipulation of flavonoid biosynthetic 
pathway. Patent number 
AU2010306410A1, AU2010306410B2, 
2012, 2015.

[101] Yoshikazu PB, Mason TJ. Flavonoid 
3′,5′ hydroxylase gene sequence and 
method of use thereof. 2012. Patent 
number JP5002848B2

[102] Aguilar MS, Romero YMH, 
Narvaez CMR. Pesticide made of 
isoquinoline alkaloids, flavonoids and 
vegetable and/or essential oils. 2013.
Patent number MX2011010032A

[103] Mouradov A, Spangenberg G. 
Modification of flavonoid biosynthesis 
in plants. 2013, 2017. Patent number 
US20130340118A1, US9567600B2



Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding

26

[104] Ripley I. Plant protection 
composition and method. 2014. Patent 
number WO2014122446A1

[105] Bessette SM, Lindsay AD. Pesticidal 
compositions containing rosemary oil 
and wintergreen oil. 2014. Patent number 
US8877219B2

[106] Philippov SV, Bogorodov IM. 
Method and agrochemical composition 
for using larch wood extracts in 
agriculture. 2014. Patent number US 
2014/0335210A1

[107] Blankenshi L, Habib A, Kang Y, 
Semones S. Compositions and methods 
for enhancing plant growth. 2015, 
2016.Patent number AU2013338110A1, 
AU2013338110B2

[108] Gallifer N, Meeker M,  
Carwin S, Boltlick K, Choisy P. 
Anthocyanin coloured composition. 
2015, 2015. Patent number 
CN104640461A, CN104640461B

[109] Romero YMH, Narvaez CMR, 
Aguilar MS, Pesticide having an 
insecticide, acarcide and nematicde 
action based on isoquinoline alkaloids 
and flavonoids. 2015. Patent number 
US2015/0216181A1

[110] Yanhua W, Liao SY, Hui JX. 
Application of flavonoid compound 
the aflavanoside II to prevention and 
treatment of plant nematode diseases. 
2015. Patent number CN104823979A

[111] Gerardi AR, Method of extracting 
tobacco-derived O-methylated flavonoid 
and use thereof. 2015, 2020.Patent 
number EP2906055A1, EP2906055B1

[112] Romero H, Narvaez R, Aguilar S. 
Pesticide with insecticide, acaricide 
and nematiciated action based on 
isoquinolinic alcaloids and flavonoids. 
2015. Patent number ES2464642B1

[113] Kurisawa M, Lee F, Chung JE, 
Chan PYP. Methods for producing 
crosslinked flavonoid hydrogels. 2016.
Patent number US9439886B2

[114] Spangenberg G, Sawbridge TI, Ong 
E-K, Emmerling M. Manipulation of 
flavonoid biosynthesis in plants. 2016. 
Patent number US9523089B2

[115] Luo J, Butelli E, Jones J, 
Tomlinson L, Martin CR. Methods and 
compositions for modifying plant 
flavonoid composition and disease 
resistance. 2017. Patent number 
US9580725B2

[116] In-Gyu K, Chang-Gil K, Yeol K, 
Mok-Hyeong L, Hae Y, Jeong G, Choi HY, 
Han-Jeung C, Jae-Doo J, Hwan-Sang Y. 
Natural composition and method for 
manufacturing the composition avoiding 
and/or controlling the Hemiptera. 2017. 
Patent number KR101802249B1

[117] Lamb RD, Johnson MD. Agricultural 
compositions and applications utilizing 
essential oils. 2018. Patent number 
US9949490B2

[118] Tsivion Y. Pesticide containing 
antioxidants. 2019. Patent number 
WO2019016806A1

[119] Bailey TV. Arthropod pest trapping 
device, system and method. 2019. Patent 
number US10285393B2

[120] Klykov AG, Murugova GA,  
Timoshinova OA, Borovaya SA, 
Chaikina EL. Method for increasing 
content of flavonoids in buckwheat 
fruits. 2020. Patent number 
RU2729743C1

[121] Ishida S, Inai K, Tanaka M, 
Nomoto T. Plant growth regulating agent. 
2021. Patent number EP3912470A1



27

Chapter 2

Importance of Flavonoid as 
Secondary Metabolites
Shuchi Dave Mehta, Sukirti Upadhyay and Gopal Rai

Abstract

Flavonoids are broad-spectrum secondary metabolites with cosmetics,  
pharmaceutical, nutraceutical, and medicinal applications. They play a crucial role 
in life span shortening complications, including diabetes, CVS disorder, and cancer. 
They are the secondary metabolites essential natural products due to their anti-
inflammatory, antioxidant, anticancer, anti-cholinesterase, disease combating, 
antimicrobial, hepatoprotective, neuroprotective, cardioprotective, antiallergic, 
and many more pharmacological activities causing substantial economic and social 
burdens. They have the ability to scavenge superoxide, hydroxyl, and lipid radicals. 
They are a group of polyphenolic compounds having 15 carbon skeleton consisting 
of two benzene rings with heterocyclic pyran ring, which are classified as antho-
cyanins, flavonols, isoflavonols, and flavanones, and present in vegetables, fruits, 
flowers, seeds, stems, and leaves.

Keywords: flavonoids, classification, phytochemistry, pharmacological, cosmeceutical, 
nutraceutical applications

1. Introduction

Flavonoids are the largest group of naturally occurring phenols as phytochemicals. 
They have the capacity to occur both in the free state and as glycosides (largest natu-
rally occurring phenols). They are the polyphenolic compounds that are biosynthe-
sized by the polypropanoid pathway having a precursor as a phenylalanine molecule. 
The Latin word “flavus” means yellow, which is responsible for colors in flowers, 
fruits, and leaves. They are widely distributed in plants having color component 
properties. They are commonly distributed in the plant kingdom, bryophytes, and in 
pteridophytes, but not distributed in algae.

The precursor of biosynthesis of flavonoid involves condensation of 2 units of 
malonyl CoA, 1 unit of Acetyl CoA, and cinnamic acid (biosynthesized by shikimic 
acid) that results in C15 intermediate, which results in various kinds of flavonoids.

Flavonoids are considered as a major group of plant polyphenols having potential 
for cosmeceuticals and biomedical applications. They are present in food materials 
and plants. They are responsible for protection against pathogens, herbivores, and 
also ultraviolet radiation. They are absorbed from the small intestine and the colon for 
complete absorption. They are widely used as chemotaxonomic markers and belong-
ing to Polygonaceae, Umbelliferae, Rutaceae, Rosaceae, Leguminosae, Lamiaceae, and 
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also Compositae. Solubility properties include soluble in water and alcohol, whereas 
insoluble in organic solvents [1].

Pharmacological properties include anti-inflammatory, antiallergic effects, anti-
thrombotic, vasoprotective, antioxidant activity, diuretic, antispasmodic, antibacte-
rial, antifungal properties, and many more.

Quercetin, kaempferol, quercitrin, flavones, dihydroflavons, flavans, flavonols, 
anthocyanidins, proanthocyanidins, calchones, catechins, and leucoanthocyani-
dins are some of the classes that show biological and pharmacological activities, 
such as anticancer, antimicrobial, antistress, antiallergic, oestrogenic activity, 
vascular activity, and hepatoprotective activity. The antioxidant property is due 
to the suppression of reactive oxygen species (ROS) formation. They are also 
involved in the inhibition process of enzymatic activity in reactive oxygen species 
synthesis.

Figure 1. 
Structure of basic flavonoids and their various types.

S.No. Identification test Procedure Observation

1 Ammonia test Filter paper strip was dipped in 
the alcoholic solution of extract. 
Ammoniated with ammonia 
solution.

Color changed from 
white to orange.

2 Shinoda/Pew Test Test solution (5 ml) + 5 ml. 95% 
alcohol + few drops of conc. 
HCl + 0.5 g magnesium turning.

Appearance of pink 
color.

Table 1. 
Identification of flavonoids.
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Hepatoxicity is generally treated by flavonoids, such as quercetin, catechin, rutin, 
and venoruton. They act by increasing hepatic Gclc expression by increasing cAMP 
levels, which increases Gclc and helps in the transcription. The increased Gclc expres-
sion helps in the depletion of hepatic ROS levels and proapoptotic signaling, which 
protects the hepatic cells. Clinical trials have shown a significant effect of flavonoids 
in the treatment of liver diseases. Table 1 shows various chemical tests of flavonoids.

Naringenin, apigenin, galangin, isoflavones, chalcones, and flavanones are the 
flavonoids that have been observed to have antibacterial activity might be due to 
complex formation with protein by bonding viz. hydrophobic effects or covalent bond 
that inhibit DNA synthesis and RNA synthesis. Vegetables and fruits are the major 
source of flavonoids and have been observed to cure and prevent cancer. Flavonoids 
produce anticancer activity may be due to inhibition of tyrosine kinase activity, which 
is one of the growth factor signaling to the nucleus present in the cell membrane. 
Flavonoids inhibit fatty acid synthase activity and lipogenesis in the prostate cancer 
cell. It may also be due to inhibition of cell cycle arrest or inhibition of heat shock 
protein or inhibition of nuclear type II estrogen binding sites. Quercetin, genistein, 
daidzein, epigallocate-chin-3-gallate, biochanin, and hesperidin are flavonoids acting 
as anticancer [2].

1.1 Classification

The classification is based on the degree of oxidation of the central pyran ring 
where Figure 1 shows a basic structure of flavonoids with the structure of each 
example of various types of flavonoids. The classification is as follows:

1. Flavandiol (3, 4-Hyroxyflavane), for example, leukoanthocyanidine.

2. Flavanones (4-Oxo-flavane), for example, naringenin.

3. Flavanols (3-Hydroxy-4-Oxo-flavane, Catechine), for example, catechin.

4. Flavones (4-oxo-flav-2-ene), for example, apigenin.

5. Flavonols (3-Hydroxy-4-Oxo-flav-2-ene), for example, quercetin.

6. Flavylium (Anthocyanidin), for example, cyanidin.

2. Flavonoids as “cosmeceutical”

Cosmetics products are products that are intended to apply on hair and skin to 
enhance appearance, promote attractiveness, and beautify and cleanse the properties 
of skin and hair. In 1990, the term “Cosmeceuticals” was described as the over-the-
counter skin care products that involve therapeutic properties by addition of plant 
active ingredients, such as alpha-hydroxy acid, retinoic acid, ascorbic acid, and 
coenzyme Q10, which helps in skin elasticity, reduction of wrinkles in skin as antiag-
ing effect, to check degradation of collagen, and also protection against UV radiation. 
The presence of multi-active properties in flavonoids provides protection to skin 
blood vessels, which telangiectasias and petechias cause by rupturing blood vessels. 
The main activity in cosmetic is capillary permeability reduction, blood vessel protec-
tion, and platelet aggregation prevention [3].
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Phytochemicals, such as phenolic compounds, substances structurally character-
ized by having one or more hydroxyls attached to an aromatic ring, are classified into 
simple phenolics and polyphenols, which may be subdivided into tannins and fla-
vonoids. Both flavonoids and non-flavonoids are associated with various interesting 
cosmetic properties, such as photoprotection, antiaging, moisturizing, antioxidant, 
astringent, anti-irritant, and antimicrobial activity [4].

The polyphenol nature is responsible for the colors in many fruits, vegetables, 
and flowers, which protect from environmental stress that act as an antioxidant. 
Flavonoid in cosmetics provides antioxidant protection against UV radiation protec-
tion for our skin [2, 5].

Southeastern Asian medicinal plant Alpinia galanga belonging to Zingiberaceae 
in traditional medicine used to relieve stomach pain, indigestion, and to treat skin 
diseases. Antioxidant, anti-inflammatory, and antibacterial are medicinal properties. 
Flavonoids, phenolic acids, and volatile compounds are present as phytochemicals 
in several parts, such as leaves, seeds, and rhizomes. Flavonoid in A. galanga plays a 
crucial role in the cosmetic area. Isolated and identified flavonoids from seeds and the 
rhizomes of A. galanga are found as 11 flavonols, 4 dihydroflavonols, one flavan 3-ol, 
and flavanone. Galangin (3,5,7-trihydroxyflavone) is the largest compound of the 11 
flavonols, whereas kaempferol, quercetin, and myricetin are popular non-methylated 
flavonols. Alpinone, pinobanksin 3-acetate, and 3-cinnamate are three dihyroflavo-
nols isolated and identified in rhizomes (Figure 2).

In Thailand, Vietnam, and many Southeast Asian countries, A. galanga was used 
traditionally as a major ingredient in cosmetics, which include body soap and skin 
care products, by developing its extract using an easy hot extraction method where 
water was used as a solvent. Figure 2 shows the leaves, rhizome, and whole plant of  
A. galangal.

Recently, people use to order online the dried plant and its extract easily. In 
cosmeceuticals, the authentication process and identification of plants should be 
carried out previously for the development processes. The research on the potential 
of extracts and/or phytochemicals from this medicinal plant is insufficient; a greater 
number of studies focusing on flavonoid identification of the potential extracts from 
this medicinal plant should be conducted. Easy availability, easy cultivation, and low 
price are major reasons to promote the flavonoid bioactive ingredients of A. galanga 
in the field of cosmetics. The anti-wrinkle and antioxidant properties in cosmetics are 
always remembered [6].

Water lily (Nymphaea lotus L.) is a traditional ornamental medicinal and cosmetic 
plant having perennial aquatic flowering nature which is in many countries of Asia 
and Africa, especially in Thailand, Nepal, Vietnam, Indonesia, China, Bangladesh, 
and Sri Lanka. Roots, rhizome, stolon, petiole, young leaves, and flower parts were 
used traditionally as homemade natural cosmetics products, such as skincare and 
perfume, whereas medicinally in the treatment of circulatory system syndrome. It 
is also considered as the symbol of the Hindu Goddess “Sarasvatiji” and “Laxmiji.” 
A high content of flavonoids in flowers help local people to use the ethanolic extract 
for homemade cosmetic products, especially for skincare and perfumery. Several 
publications have specifically revealed the potential in cosmetic and cosmeceuticals 
potential of N. lotus L. Flower and stamen are considered as the richest source of 
flavonoids, which conclude as important bioactive constituents for cosmetic applica-
tions. Chalcone glycoside chalcononaringenin-2”-O-galactoside, flavonol glycosides, 
isorhamnetin-7-O-galactoside, isorhamnetin-7-O-xyloside, isorhamnetin-3-O-xylo-
side, myricetin-3-O-xyloside quercetin-3-O-rhamnoside, quercetin-3-O-xyloside, 
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and kaempferol-3-O-galactoside are major flavonoids present in the N. lotus L. For 
antioxidant activity, in vitro assays include DPPH (2,2-diphenyl-1-picrylhydrazyl), 
ABTS {2,20-azino-bis(3 ethylbenzothiazoline-6-sulfonic acid)}, FRAP (Ferric 
Reducing Antioxidant Power Assay), BHT (Butylated hydroxytoluene), cellular 
assays and animal studies were performed and showed a positive result [7].

Figure 2. 
Leaves, rhizome, and whole plant of Alpinia galanga.

Figure 3. 
(i) Nymphaea lotus, (ii) Nymphaea caerulea, (iii) Nelumbo nucifera, and (iv) Nelumbo lutea.
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Anti-wrinkle, skin whitiliser, coolant, anti-acne, and relaxing activities are 
reported. The anti-acne property is due to antibacterial properties. The literature 
revealed that N. lotus L. has properties to improve skin complexion, reduce skin 
pigmentation, and improve skin with soothing and emollient activity.

The genera lotus of varieties N. lotus, Nymphaea caerulea, Nelumbo nucifera, and 
Nelumbo lutea have potential that can be utilized in herbal cosmetics due to the pres-
ence of a large amount of flavonoids, which reported as anti-acne, skin whitiliser, 
and anti-pimple activity with improve skin texture. Figure 3 shows various varieties 
of N. lotus.

The market formulation includes Veet hair removal gel, AHAVA mineral botanic 
body lotion, Clarisonic daily acne cleanser, Lotus sunscreen, Neutrogena deep 
cleanser, face wash, skin tonner, and many more, which showed a positive response 
from people and increase the demand in the cosmetic industry. Mechanism of 
action includes inhibition of tyosinase which results in skin whitelising, inhibi-
tion of elastase and DOPA oxidase inhibition which results in antiwrinkle activity, 
antiradical property prevents inhibition of Ultraviolet radition which prevent skin 
tanning, and inhibition of melanin which also results skin whitilising and anti-
ageing effects [8].

3. Flavonoids as nutraceuticals

Nutraceuticals may range from isolated nutrients, dietary supplements, diets to 
genetically engineered “designer” food, herbal products, and processed products, 
such as cereals, soups, and beverages. A nutraceutical is any nontoxic food extract 
supplement that has scientifically proven health benefits for both the treatment and 
prevention of diseases. According to Stephen DeFolice, nutraceuticals are food or 
parts of food that provide medical or health benefits, including the prevention and 
treatment of disease. In simple language “nutraceuticals” are food materials utilized 
for treatment and prevention of disease and may range from isolated nutrients, 
dietary supplements, diets to genetically engineered “designer” food, herbal products, 
and processed products, such as cereals, soups, and beverages. Flavonoid rich foods 
are considered as superfoods nutraceuticals include plant origin food mainly tea, 
fruits, grains, legumes, nuts, vegetables, and wine.

Flavonoids rich foods as nutraceuticals have explored the working mechanisms 
which include pharmacological activities, such as anti-wrinkle, antiaging, antican-
cer, antibacterial, hypoglycemic, anti-hypertension, anti-obesity, antiproliferative, 
anti-thrombotic, and anti-platelet aggregation. The presence of phenolic compounds 
is confirmed by potent antioxidant activity and metal chelators agent. Daily diets 
consumed are always rich in these flavonoids. Major active ingredients that are 
considered in the plant are flavonoids that have a long half-life with less side effects 
and are absorbed in the intestine after ingestion. They have a high absorption capacity 
in the intestine.

The mechanisms behind the activities are trapping of free radicals, decreasing 
leukocyte immobilization, and regulation of nitric oxide and xanthine oxidase activ-
ity. The pharmacokinetic studies of flavonoids are shown in Figure 4, which includes 
absorption, distribution, and biotransformation where hydrolysis is an important 
part of absorption in the cecum and colon by enterobacteria, aglycone is absorbed by 
gut epithelial cells and enter the circulation to metabolize in the liver [8–11].
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4. Flavonoids as pharmaceuticals

Flavonoids are the bioactive phytochemical constituents that are present in fruits, 
herbs, stems, cereals, nuts, vegetable, flower, and seeds and give biological activities. 
About 10,000 flavonoid compounds are isolated and identified, showing effective 
antioxidant, anticancer, antibacterial, cardioprotective agents, anti-inflammation, 
immune system promoting, and skin protectant for medical application.

4.1 Anticancer activity

Cancer is a major health problem that can be defined as impaired cell cycle and 
uncontrolled proliferation, which results in the growth of abnormal cells. Increased 
exposure to stress, pollution, radiation, ultraviolet rays, smoking, oxidative stress, 
genetic mutation, and lack of apoptotic function are the major causes of cancer. 
Anthocyanins, flavones, flavones, flavonols, and chalcones are major flavonoids hav-
ing anticancer activities. The mixed mechanism of action of flavonoids as anticancer 
action includes down-regulation of mutant p53 protein, inhibition of expression of 
Ras proteins, estrogen receptor binding capacity, tyrosine kinase inhibition and cell 
cycle arrest. Quercetin was reported to exert a growth inhibitory effect on various 
tumor cells also cell cycle arrest in proliferating lymphoid cells. Dryopteris erythro-
sora Erythrina suberosa, Phaseolus vulgaris L., Medicago truncatula Gaertn, Ceratonia 
siliqua L., Butea monosperma, Glycyrrhiza glabra L. and many more plants reported as 
anticancer due to presence of flavonoids [12–14].

4.2 Antioxidant activity

Plants, animals, and human protection against the effect of reacting oxygen 
species by suppressing reacting oxygen species with chelation of the trace elements 
involved in the free radical generation and enzyme inhibition. They are found in the 

Figure 4. 
Pharmacokinetic studies of flavonoids.
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chloroplast having scavenging activity of singlet oxygen and stabilizers of the chloro-
plast outer envelope membrane [15].

The enzymatic and non-enzymatic systems involve detoxification and removal 
of oxidant species of glutathione [GSH], GSH peroxidase, GSH reductase, and GSH 
S-transferase. The prooxidant activity of flavonoids becomes cytotoxic that undergoes 
transition metal reactions resulting in the formation of highly reactive oxygen species 
that damages protein and DNA [1].

4.3 Antimicrobial activity

According to World Health Organization, multidrug-resistant pathogenic micro-
organisms are major global health complications, which involve various natural 
products. As one of the class of secondary metabolites of the natural class, flavonoids 
play a vast and crucial role to handle multidrug-resistant pathogenic microorganisms 
strains with their versatile pharmacological activities. Prenylation or geranylation 
at C6; and hydroxylation of C5, C7, C3’, and C4’ have reported to enhance bacterial 
inhibition of flavonoids, whereas methoxylation at C3’ and C5 has been studied 
to decrease antibacterial action of flavonoid. It is reported that the cell membrane 
is found at the major site of flavonoid action, which help in the inhibition of the 
respiratory chain and the ATP synthesis that also involves damage to phospholipid 
bilayers. Flavanone is acting as potent antibacterial activity by synthesizing a com-
pound with halogenations of the B ring, as well as lavandulyl or geranyl substitution 
of the A ring [16–18].

4.4 Cardioprotective activity

More than 4000 flavonoids, which include chalcones, flavonols, dihyroflavonols, 
catechins, isoflavones, and catechins have the capacity for cardioprotective activity 
against myocardial ischemia or reperfusion as antihypertensive, anti-atherosclerotic, 
and anti-platelet. The significant role of flavonoids by preventing cardiovascular 
diseases, which may be due to antioxidant, antithrombotic, and antiatherogenic 
activity. For example, red wine consumption will protect against thrombosis and 
atherosclerosis by inhibition of platelet aggregation and LDL oxidation. The literature 
revealed that a daily diet of 100 mg of flavonoid helps in the reduction and possibil-
ity of cardiovascular diseases by inhibition of low-density lipoprotein oxidation and 
reduced platelet aggregability [19–22].

5. Conclusion

For thousands of years, flavonoids in plants are utilized as traditional medicine. 
They are polyphenolic compounds that are biosynthesized by the polypropanoid 
pathway and have potential as cosmeceutical, nutraceutical, and pharmaceutical 
applications. They work in the multi-mechanism of action, such as protecting endo-
thelial cell, inhibiting foam cell formation, regulating lipid metabolism, anti-inflam-
matory, and underlying molecular mechanism. In future prospective, flavonoids as 
nutraceutical, cosmeceutical, and pharmaceutical aspects would help to reduce the 
burden in urban and rural populations of developed and developing countries by 
elevation of its pharmacokinetic, metabolic, and pharmacodynamic characteristics 
and using in novel drug delivery system technology.
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Abstract

Flavonoids are a major class of secondary metabolites that comprises more than
6000 compounds that have been identified. They are biosynthesized via the
phenylpropanoid metabolic pathway that involves groups of enzymes such as isomer-
ases, hydroxylases, and reductases that greatly affect the determination of the flavo-
noid skeleton. For example, transferase enzymes responsible for the modification of
sugar result in changes in the physiological activity of the flavonoids and changes in
their physical properties, such as solubility, reactivity, and interaction with cellular
target molecules, which affect their pharmacodynamics and pharmacokinetic proper-
ties. In addition, flavonoids have diverse biological activities such as antioxidants,
anticancer, and antiviral in managing Alzheimer’s disease. However, most marine
flavonoids are still incompletely discovered because marine flavonoid biosynthesis is
produced and possesses unique substitutions that are not commonly found in terres-
trial bioactive compounds. The current chapter will illustrate the importance of fla-
vonoids’ role in metabolism and the main difference between marine and terrestrial
flavonoids.

Keywords: marine flavonoids, biosynthesis, pharmacodynamics, pharmacokinetics,
defense mechanism

1. Introduction

Flavonoids with more than 6000 individuals are divided into six main categories:
chalcones, flavones, flavonols, flavandiols, anthocyanins, and proanthocyanidins
are present in all plants. The aurones group is present in several species [1]. Legumes
and a few non-legume plants produce isoflavonoids, but few plants produce
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3-deoxyanthocyanins and phlobaphenes. Stabileneds resemble chalcones and are
made from grape and peanuts [2]. Flavonoids have several functions, such as
protecting plants from UV radiation and phytopathogens, regulating signals, promot-
ing male fertility, transporting auxin, and giving flowers their color to draw pollina-
tors [3]. Flavonoids may increase nutrient recovery during senescence by shielding
leaf cells from photooxidative damage. The oldest and most prevalent flavonoids are
flavonols, which have potent physiological effects [4]. The phenylpropanoid pathway,
which turns phenylalanine into 4-coumaroyl-CoA, produces flavonoids. Chalcone
scaffolds are produced by the first flavonoid-specific enzyme, chalcone synthase.
Although the principal method for producing flavonoids in plants is consistent, the
different flavonoid subclasses are produced depending on the species via isomerases,
reductases, hydroxylases, and various Fe2+/2-oxoglutarate-dependent dioxygenases
[4]. Transferases alter the solubility, reactivity, and interaction of flavonoid molecules
with biological targets by adding sugars, methyl groups, and acyl moieties to the
flavonoid backbone [5]. Plants can produce specific organic molecules and prevent
metabolic interference thanks to metabolic channeling. P450s-related metabolons
have been discovered in several biosynthetic pathways, including phenylpropanoid,
flavonoid, cyanogenic glucoside, and others [6]. More proof of intermediate channel-
ing is provided by transgenic tobacco plants that produce two phenylalanine
ammonia-lyase isoforms (PAL1 and PAL2) and cinnamate-4-hydroxylase [7]. For
example, Yeast-two hybrid assays indicate that rice contains an anthocyanin multien-
zyme complex [8]. For flavonoids from marine environments, for example, unknown
and uncommon marine flavonoids precursors of algal flavonoids are biosynthesized
using comparable metabolic mechanisms to those seen in plants. Flavonoids are cre-
ated by several metabolic pathways [9]. There are a variety of structures in algal
flavonoids. Specify flavones, isoflavones, flavanols, flavanones, and favonols. The C6/
C3 unit of t-cinnamic acid and the unit of malonyl-C3 CoA make up the backbone. P-
coumaric acid is present in Anabaena doliolum, Spongiochloris spongiosa, Porphyra
tenera, and Undaria pinnatifida [10]. Phenylalanine Ammonia Lyase is responsible for
producing t-cinnamic acid. While p-coumaroyl-CoA may be converted into a chalcone
derivative by Claisen condensation, Michael addition, and chalcone synthase-
catalyzed enolization, the poly-b-keto ester can be made using the phenylpropanoid
pathway. Chalcone is created from the poly-b-keto ester [11] Chalcone is transformed
into flavonoid structures via several reductases, isomerases, hydroxylases,
acyltransferases, and glycosyltransferases. Within each category, structural heteroge-
neity is brought on by variations in the number of linked hydroxyl groups, position,
degree, type of alkylation, and glycosylation [12].

Further evidence is required for the algal flavonoid synthesis route. For Algal
flavonoid composition, the 15-carbon skeleton of flavonoids comprises two phenyl
rings (A and B) connected by a 3-carbon unit to form a heterocyclic ring. Their
structural categorization is based on where the benzenoid substituent is located [13]:
2-Phenylchromans (flavonoids), which include anthocyanidins, flavanones, flavonols,
flavones, and flavan-3-ols. 2. Pterocarpans, isoflavones, and 3-phenylchroman
isoflavones. Glycosides represent the majority of flavonoids in marine [14].
Phlorotannins are more often used polyphenols in algae than flavonoids. There is not
much literature on these chemicals. Flavanols. The most varied flavonoids found in
algae are flavanols. The double bond between carbons 2 and 3 and the carbonyl group
in carbon 4 of ring C is absent from flavanols. Occupational and health advantages
Polyphenols have a variety of bioactivities in addition to being antioxidants that
protect against UV rays and are poisonous to predators [15]. The bioactivity of
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phlorotannins and flavonoids is regulated by the pattern of -OH group substitutions,
double bonds, and the site of their conjugation [16]. Also, Phytoflavonoids bioactivity
of the flavonoids found in algae is unclear, but there are several applications for
marine flavonoids in medical and cosmetic applications. Acanthophorin A and B,
isolated from A. spicifera, shield the rat liver from lipid peroxidation and stop the
malondialdehyde generation [17]. Because OH groups combine with H radicals to
generate persistent semiquinone radicals, flavonoids have antioxidant properties. Fla-
vonoids scavenge hydroxyl, other functional groups, and unsaturated and conjugated
pi bonds [18]. Flavonoids are vital components of the human diet and potent antiox-
idants that can lower oxidative stress and several diseases in people [19]. Due to their
antioxidant, anti-inflammatory, antibacterial, and affinity/inhibitory properties
toward inflammatory enzymes, plant extract rich in flavonoids are employed in der-
matology and cosmetics. As dietary components, algal flavonoids may protect against
several human diseases (Figure 1 and Table 1) [25].

2. Flavonoids as a defense mechanism

Flavonoids are necessary for plant development and plaque resistance. Flavonoids
are responsible for many of the hues of angiosperm flowers. They can be found
throughout the plant, not just in the blooms [26]. Plant-based foods and drinks like
fruits, vegetables, tea, chocolate, and wine are rich in flavonoids. Plants, animals, and
even microorganisms contain flavonoids. Flavonoids responsible for The color and
aroma of flowers, fruit dispersal, the germination of seeds and spores, and the growth
and development of seedlings in plants are all influenced by flavonoids, which are
produced in particular locations [27]. In addition to acting as UV filters [28], signal
molecules, allopathic chemicals, phytoalexins, detoxifying agents, and antimicrobials,
flavonoids shield plants against biotic and abiotic stresses. Plants’ ability to adapt to
heat and tolerate freezing may be influenced by flavonoids [29]. Early advances in

Figure 1.
The metabolic pathways of flavonoids.
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floral genetics were made possible by mutation techniques that altered flower colors
generated from flavonoids, and functional gene silencing in plants was associated with
flavonoid synthesis. Today, flavonoids treat illnesses and prevent cancer, and more
than 6000 flavonoids color fruits, herbs, vegetables, and medicinal plants. Flavones
are a subclass of flavonoids. Positions 2 and 3 of the C ring have double bonds, and
position 4 is a ketone [30], Most flavones found in fruits and vegetables have a
hydroxyl group at position 5 of the A ring, but other positions—particularly position 7
of the A ring and 30 and 40 of the B ring—can vary depending on the taxonomic group.
Keto-flavonoids are flavanols. Flavanols can act as antioxidants and reduce the risk of
vascular disease [31]. The third hydroxyl group on the C ring of flavonols can be
glycosylated. Compared to flavones, flavonols exhibit distinct methylation, hydroxyl-
ation, and glycosylation patterns. The most varied group of bioactive polyphenols is
flavonoids [32]. A phenyl ring (A ring) joined with heterocyclic benzo-c-pyrone (C
ring), which connects to another phenyl ring (B ring) via a carbon-carbon bond,
makes up the three rings that make up the diphenyl propane skeleton of flavonoids
(C6C3C6). These chemicals contain hydroxyls. The gymnosperms, angiosperms, ferns,
and bryophytes contain more than 4000 flavonoids [2]. The first plant to possess
flavonoids is green algae [33]. According to Bonfante [34], a symbiotic relationship
between algae and a tip-growing fungus is the reason for the plants’ biphyletic origin.
When plants transitioned from marine to terrestrial habitats, flavonoids developed
primarily to protect against rising UV exposure [35].

Research on plant flavonoid production is an important area of research. The
synthesis of flavonoids in algae may differ from higher plants due to algae develop-
ment. Microalgae contained flavonoids and flavonoid intermediates by Goiris et al.
[36]. Phloretin and dihydrochalcone might be intermediates in the production of
flavonoids. The findings suggest that flavonoid biosynthesis enzymes may be present
in microalgae. Diverse flavonoids compatible with better plant flavonoid synthesis are
present in certain algae [36]. Plant-plant interactions may be impacted by flavonoids.
Negative relations are mainly based on the inhibition of seedling development and
germination. Flavonoids are frequently released into the soil by roots, where they
prevent seed germination. They may also be found in leaves and pollen, which pre-
vents the germination of other plants [3, 37]. Barley flavones lessen weed seed germi-
nation, while Centaurea maculosa catechins limit Centaurea diffusa and Arabidopsis
thaliana germination and growth [38]. The precise allelopathic mechanism of flavo-
noids is unknown. Allelopathy can be affected by preventing cell division, ATP pro-
duction, and auxin activity [39]. The Ca2+ signal cascade and root system death are
stimulated by flavanols. Due to its ability to inhibit weed development, allelopathy is
becoming increasingly important in agriculture [40].

Plants may fight against bacteria and fungi with the assistance of flavonoids. The
general antipathogenic properties of flavonoids are largely attributed to their antioxi-
dant properties. They suppress ROS produced by both pathogens and plants [41]. The
B ring of flavonoids can intercalate or form hydrogen bonds with nucleic acid bases,
limiting bacterial DNA and RNA synthesis and influencing DNA gyrase activity [42].
They can bind to viral nucleic acids or capsid proteins and inhibit viral polymerases
[43]. The antipathogenic activity of flavonoids depends on their structure. Flavones
and flavanones without substitution have strong antifungal properties. The antifungal
activities of these compounds are reduced by hydroxyl and methyl groups, but meth-
ylated flavonoids have a greater effect. Isoflavones, flavanes, and flavanones are
powerful antibacterial compounds, whereas flavonoids inhibit root infections, partic-
ularly fungus (Figure 2) [44, 45].

44

Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding



3. Role and function of flavonoids as a protective preventive and curative
effect against various diseases

Therapeutic flavonoids are associated negatively with sickness, according to epi-
demiological research. Conventional flavonoids can interact with key enzyme systems
and show polypharmacological action. It follows that the considerable study of chem-
ical structure-activity connections is not surprising. Strong antiviral properties of
bioactive flavonoids, including those against the hepatitis C virus, and antimicrobial
such as Escherichia coli, have been examined. Chemical processes, including
methoxylation, glycosylation, and hydroxylation, have been mostly responsible for
these effects. Research on the structure-activity relationship (SAR) covers several
elements. C2C3 double bonds are frequently advantageous—hydroxylation substitu-
tion style is important [46–49].

A beneficial role for 5�/7-hydroxyl derivatives in ring A hydroxylation is
suggested by six anti-H5N1 influenzas A virus 5, 7-diOH flavonoid candidates, and
daidzein’s less potent anti-human fibroblast collagenase catalytic domain (MMP1ca)
activities. Better ring B hydroxylation indicates stronger MMP1ca inhibition by 30-OH
and 50-OH drugs. Catechol is the most common functional group. Innovative drug
production has been stimulated by quercetin, more notable than morin inhibition of
canine distemper virus [50, 51]. Compared to luteolin, quercetin considerably con-
tributes to ring C. It also affects how many hydroxyl groups there are. More hydroxyl
groups lessen the hydrophobicity of flavonoids, preventing membrane partitioning.
Hydrophobicity and electronic delocalization impact the intensity of hydroxylation,
which causes some hydroxyl-rich flavonoids to act more strongly. Different hydroxyl
groups may raise C3 charges while decreasing hydrophobicity, which suggests phar-
macological activity. Methylation hurts membrane fluidity and lowers the activity of
several viruses and bacteria according to their physiology. Two PMFs performed less
well against E. coli than equivalent aglycone. Antiviral activities can be found in
flavonoid glycosides [52–54]. Finding the right screening substances for dietary

Figure 2.
The different role of flavonoids and their mechanism of action as a defense mechanism in human Vis plant.
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therapy and medical treatment may result from analyzing the SAR behaviors
displayed by certain flavonoids in antiviral/bacterial situations. Apoptosis induction,
proteasome inhibition, nuclear factor signaling suppression, differentiation induction,
cell cycle arrest induction, receptor contact, and interaction with carcinogenic
enzymes are a few of the mechanisms that have highlighted the importance of flavo-
noids in cancer therapy. Flavonoids have potential as anticancer medications since
they can selectively kill cancer cells. The molecular planarity and conjugation between
rings C and A/B that the C2C3 double bond produces are necessary to prevent tumor
growth. Studies on the C2C3 double bond and its anticancer properties have been
conducted using tumor cell lines, such as colon adenocarcinoma cells. Stronger inhi-
bition was obtained by the C2C3 unsaturation and two hydroxyl groups on ring B
[55, 56].

Numerous studies have demonstrated how hydroxylation affects tumor regulation.
Per-methoxylated flavonoids do not have the same anticancer effects as hydroxylated
flavonoids. To, 6-OH and 5, 7-diOH contribute, Ring B does not become less active
when hydroxyl groups are added [1]. Ring C’s 3-hydroxylation enhances its biological
actions. Without 3-OH, flavonoids have less antiproliferative activity. The 3-OH mol-
ecule’s affinity for the binding site might be greater [30, 57]. Methylated flavonoids
support the enhanced biological action of ringing A polymethoxylation. Among the
Organ flavonoids tested in the cell morphology research, two A-ring PMFs exhibit the
highest proliferative inhibition, demonstrating the significance of the C-8 position in
flavonoids’ antiproliferative impact. The bioactivity of flavonoids against
neurodegeneration has traditionally been linked to their antioxidant properties. How-
ever, new research has highlighted the significance of acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE) interactions, mitochondrial dysfunction, key neu-
ronal signaling pathways, and chelation of transition metals in controlling neuronal
resistance to neurotoxic oxidants and inflammatory mediators. Ring B hydroxylation
may improve learning to avoid cardiovascular disease.

Effects of flavonoids and the eNOS transcription factor the second Krüppel-like
component [58, 59]. The C2C3 double bond produces an effective twofold structure in
eNOS and ET-1 synthesis, and 4-carbonyl moiety results in about 1.35-fold higher
gene expression (quercetin vs. epicatechin/catechin), according to the findings. The
“protein-binding” mechanism was highlighted in a SAR examination of 12 flavonoids
with paraoxonase1 (rePON1) due, at least in part, to different hydroxylation sub-
stitutions, the C2C3 double bond, and the 4-carbonyl group in ring C. Flavones and
flavonols have stronger PON1 interactions because of the C2C3 double bond in ring C,
which increases molecular planarity and may cause electron delocalization between
rings A and B. Coplanarity exists between the 3-hydroxyl group and the 4-carbonyl
oxygen atom. Flavonoids’ greatest therapeutic benefits are in managing leukemia,
sepsis, asthma, and other inflammatory diseases. SAR research is more important
because flavonoids have been extensively investigated and certain mechanisms may
not be unified. Double bonds in C2C3 might encourage molecular planarity. For
example, Hesperetin’s absence results in a lower volume/surface ratio than diosmetin’s
absence [19, 50, 60]. (b) Isoflavones, the ring B catechol moiety, are subject to 30- and
50-hydroxylations that promote cell differentiation. (c) Ionizing hydroxyl groups and
blocking the NF-kB signaling pathway during methylation boost the anti-
inflammatory impact. (d) Because of their decreased hydrophobicity and sterical
hindrance, glycosides with lower lipophilicity have fewer anti-inflammatory effects
[50, 61]. Moreover, a large replacement has been researched. Anti-inflammatory
flavonoids have three taxonomic markers: the C-butyrolactone moiety, the 5-acetic
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acid/lactone group, and the C7C8 double bond. DM is a sophisticated hyperglycemic
condition. The flavonoids that fight diabetes are widely recognized. By hydroxylation
and planarity at position 7, several flavonoids can activate PPAR. Methoxylation
enhances the antidiabetic efficacy of flavonoids on 3 T3-L1 adipogenesis, but hydrox-
ylation has a detrimental effect [62–64]. SAR is the substitution of glycosylation,
particularly glucosylation at position 3. C-3-Glu/detail. More proof is required on Gly’s
mechanism of glucose regulation. Transition metals that promote radical hydroxyl
formation in reduced forms through the Fenton reaction can be bound by flavonoids.
Due to the resorcinol moiety of ring A, isoflavone has the highest antioxidant activity
among studied flavonoids. These numbers indicate the structural elements of antiox-
idants. SAR is aided by the C2C3 double bond conjugated to a 4-carbonyl group in the
flavonoid subclasses ring C. According to some authors, there is no clear connection
between these moieties and antioxidant function when other structural conditions are
satisfied. Despite cellular ROS inhibition and structural moieties being similar, certain
flavonols have strong electron-donating action [32, 65, 66]. A C2C3 double bond
conjugated to a 4-carbonyl group improves antioxidant activity when other structural
requirements are satisfied. The dissociation constant of phenolic hydroxyl groups and
the stability of phenoxy radicals in ring B are both impacted by the 4-carbonyl group’s
propensity to create electron shifts through resonance effects. Ring C and A/B can be
conjugated thanks to the electron coupling and molecular planarity provided by the
unsaturated C2C3 double bond. Likewise, 5-OH creates hydrogen bonds. 4-Carbonyl
delocalizes the ring B electron, increasing the antioxidant effect when combined with
the C2C3 double bond or other electron-donating groups. The degree and location of
hydroxylation affect how anti-oxidative flavonoids are. Stable flavonoid radicals are
created when hydroxyl groups on the ring B absorb hydrogen and electrons. Two
hydroxyl groups in ring B considerably increase antioxidant activity [67–70]. The
primarily responsible pharmacophore is the 30, 40-catechol group, which generates an
ortho-semiquinone radical by electron delocalization and confers high activity
through intra-molecular hydrogen bonding between catechol hydroxyl groups. Out-
side of the two hydroxyl groups on ring B, no one substitution makes sense. With 40-
OH, apigenin promotes erythroid differentiation. Higher inhibitory effects were seen
from flavonoids with an ortho-dihydroxyl group in ring B than those with a 40-
hydroxylation. In comparison to ring A’s meta-dihydroxylation, ring B’s ortho-
dihydroxyl group is more easily oxidized 5, 7-di-OH in ring A inhibits the activity of
antioxidants. Strong 5- and 7-OH as 2, 4-substituted resorcinol substructure activities
are highlighted by luteolin, quercetin, kaempferol, and apigenin [71–73]. There is
proof that alterations in ring A’s positions 5 and 7 that donate electrons prevent the
3-hydroxylation of ring C. 3-OH inhibits antioxidant activity compared to luteolin and
quercetin. When examining overall hydroxylation, both the electron transit within the
resonance system and the total hydroxyl groups are considered. The flavonoid nucleus
with more hydroxyl groups is held up in the hydrophobic cavity because hydrophilic-
ity rises with the number of hydroxyl groups [18, 74, 75]. The antioxidant activity is
decreased by altering the methylation of the free hydroxyl groups on ring B. Methoxyl
flavonoid derivatives have higher antioxidant activity due to flavonoid-flavonoid
interaction [76, 77]. Ring A’s several methoxylation substitutions should offset the
catechol moiety of ring B. Antioxidant activity of flavonoid O- or C-glycosides has
been investigated. Chemical tests have shown that c-glycosides are more effective
antioxidants than O-glycosides. Compared to O-glycosides, C-glycosyl flavonoids
exhibit about 100% higher radical scavenging action [53, 73, 78]. Another experiment
shows that the antioxidant activity of c-glycosides is roughly 50%. The

47

Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning…
DOI: http://dx.doi.org/10.5772/intechopen.108637



aforementioned C-glycoside studies still require in vivo information and in-depth
analysis. Flavonoid glycosides develop in food as A- or C-ringed O-glycosides. The
author speculates that the sugar moiety in position 3 could exacerbate steric hindrance
or polarity. In addition, ring A’s antioxidant capabilities are enhanced by 6-
glucosylation but diminished by 8-glucosylation [54, 79].

4. Pharmacokinetics and pharmacodynamics of flavonoids

4.1 Pharmacokinetic characteristics of flavonoids

There are several pharmacological functions for flavonoids. However, problems
impede their approval as prescription drugs for usage in clinical settings and, to some
extent, future research. Plant yield, bioavailability, and low solubility are problems. For
20 years, researchers have studied the metabolism and absorption of flavonoids. The
distribution, metabolism, excretion, toxicity, and absorption of flavonoids are not opti-
mal and differ between classes [80]. Flavonoids’ in vivo concentration is decreased by
their low oral absorption. Low solubility, little oral absorption, and significant phase-I
and phase-II hepatic enzyme metabolism. Chemical interactions between bacteria and
small intestine epithelial cells affect flavonoid absorption due to intestinal metabolism.
In small-intestine epithelial cells, flavonoids are glucuronidated, O-methylated, and
sulfated, which reduces their bioactivity [81–84]. In rats, only 20% of oral quercetin was
absorbed; the rest was converted to CO2 and excreted in the feces. Within 48 hours, the
body excretes absorbed quercetin [85]. The PK profile of flavonoids in plants is
influenced by light, temperature, oxygen exposure, pH, and UV radiation. The synthe-
sis of plant flavonoids can be altered by UV light. Flavonoids’ extraction and shelf-life
are influenced by temperature. 45 to 60°C are ideal for extracting flavonoids from the
tissue of the pericarp of litchi fruit [86, 87].

It is challenging to link a single flavonoid molecule to pharmacological action since
flavonoids are available as a plant extract that includes several plant natural compo-
nents. The PK profile of certain flavonoid changes, such as methylation and glycosyl-
ation, can be improved. In the next section, we shall talk about how methylation and
glycosylation impact the pharmacokinetics and bioavailability of flavonoids.
Derivative of Flavonoids with Better PK Properties [88, 89]. Their chemical structure
governs the bioavailability and chemical stability of flavonoids [90–92].

Absorption, distribution, and metabolism are all impacted by changing the flavo-
noid skeleton. Methylation, which is the process of adding a methyl group to a
substrate, controls cellular energy, epigenetics, and gene expression [93, 94]. Methyl-
ated flavonoids, which get a methyl group through the hydroxyl group, and C-
methylated flavonoids, in which the methyl group is directly attached to the C atoms
of the basic skeleton, are two different types of methylation flavonoids, depending on
the location. OMT and CMT catalyze the methylation of O and C, respectively (CMT).
SAM provides the methyl group through a biomolecular nuclear substitution (SN2)
procedure. The first SAM-dependent methyltransferase to crystallize is catechol-OMT
[95, 96]. Methylated flavonoids outperform their non-methylated analogs in terms of
stability, potency, and bioavailability. Chemical characteristics, immunogenicity, and
PK/PD are all influenced by glycosylation. To increase solubility, stability, and toxic-
ity, flavonoids can be glycosylated to produce O- or C-linked glycosides. Glycosylated
flavonoids can either be O-glycosides or C-glycosides, depending on the glycosidic
connection to the basic flavonoid skeleton. While the sugar molecule in C-glycosides is
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connected to the basic flavonoid skeleton by its respective carbon atoms (generally at
C-6 and C-8 positions), the sugar moiety in O-glycosides is coupled to the basic
skeleton by a hydroxyl bond (commonly at 3-C and 7-C positions) [54, 89, 97].
Glycosylation often occurs in the subclasses of flavones and flavanols. Rutin and
hesperidin are two flavonoids that do not dissolve well in water or alcohol. In non-
polar solvents, non-glycosylated flavonoids (glycans) dissolve. Glycosylation
increases the chemical stability of flavonoids in vitro. The stability of glycosylated
flavonoids is increased, making them promising. A few glycosylated flavonoids,
including luteolin-40-O-glucoside and apigenin-7-glucoside, also inhibit BCRP
[1, 73, 98]. Glucosylated were mostly used as examples to keep the effects of glyco-
sylation easy to understand.

4.2 Pharmacodynamics of the polyphenolics

The major concern of several studies was the regulatory effects of polyphenolics on
the human body to understand the Pharmacodynamics mechanism [99–105]. The
current study investigates the effect of 14 polyphenolic compounds from the sponge,
and the pharmacodynamics of the 14 compounds were listed and investigated
according to ADME (Adsorption, Distribution, Metabolism, and Excretion). Not all
bioavailable compounds are physiologically active. Furthermore, polyphenolic com-
pounds’ pharmacodynamics are not linked to their physiological activity [84]. For
that, many studies were established to discover how common polyphenolics’ pharma-
codynamics, especially flavonoids, correlate with their inhibitory activities. The poly-
phenolic bioavailability profiles are classified into subgroups; for example, isoflavones
consider the most absorbed type of flavonoids, followed by quercetin. The previous
study indicates that the amounts of these compounds in plasma (after intestinal and
hepatic metabolism) are very low, indicating their most flavonoids were eliminated
rapidly [106]. Quercetin administered significantly inhibited platelet function and
signaling in vivo studies. Physiological effects of flavonoids correlate with structural
features of these compounds; there is also evidence to show that flavonoid dynamics
in vivo are likely to be complex. Also, flavonoids can reduce the pathological effects of
atherosclerosis, thrombosis, and CVD risk, while flavonoid bioavailability has been
researched extensively [107, 108]. Quercetin is one of the most important plant
molecules that has shown many pharmacological activities, such as being anticancer,
antiviral, and treating allergic, metabolic, and inflammatory disorders, eye and car-
diovascular diseases, and arthritis [109]. It has also shown a wide range of anticancer
properties, and several reports indicate its efficacy as a cancer-preventing agent.
Quercetin also has psychostimulant properties and has been documented to prevent
platelet aggregation, capillary permeability, and lipid peroxidation and enhance
mitochondrial biogenesis. Gallic acids mainly involved MAPK and NF-κB signaling
pathways. It thus greatly reduced the inflammatory response by decreasing the release
of inflammatory cytokines, chemokines, adhesion molecules, and cell infiltration
[110, 111]. Thus the main Pharmacological activities and pharmacodynamics
mechanism of Gallic acids were associated with anti-inflammatory effect. Pyrogallol is
mostly used in pharmaceutical companies for medicinal purposes as a topical
antipsoriatic. Pyrogallol showed both prooxidant and antioxidant activities. Addition-
ally, Pyrogallol act as an antimicrobial activity by generating reactive oxygen species
and is critical for its [112, 113]. Kaempferol has been confirmed to hurt cancerous cells
of different types by triggering apoptosis, cell cycle arrest at the G2/M phase,
downregulation of signaling pathways, and phosphoinositide 3-kinase (PI3K)/protein

49

Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning…
DOI: http://dx.doi.org/10.5772/intechopen.108637



kinase B (AKT). Kaempferol also induces the activation of cysteine proteases involved
in apoptosis initiation, preventing the accumulation of reactive oxygen species (ROS)
in cancer development [114]. coumarin has previously reported a wide range of
pharmacological activities, such as anticancer, anti-inflammatory, antioxidants, anti-
coagulant, and antibacterial [115]. Phenolic acids have two types: hydroxybenzoic
acids, such as gallic, and hydroxycinnamic acids, such as ferulic, caffeic, and o-
coumaric acid. o-Coumaric acid is a hydroxycinnamic acid with different biological
activities, such as anti-lipidemic, antioxidant, and anti-carcinogenic [116]. Further-
more, the therapeutic effect of o-Coumaric acid in a human breast cancer cell line
(MCF7) treatment through CYP isozymes mRNA levels was reported by Sen et al.
[117], that studied the effect of o-Coumaric acid on drug-metabolizing CYP enzymes
at the mRNA and protein expression levels was investigated in a human
hepatocarcinoma cell line (HepG2 cells and that also confirmed in the current study as
the extract exhibit cytotoxicity against HepG2 with 41.2 ug. Hydroxycinnamic acids
(HCAs) (coumaric acid, ferulic acid, caffeic acid, and Chlorogenic acid) in general
and Chlorogenic acid acids specifically are of high importance due to their beneficial
pharmacological effects [118]. HCAs are mainly recognized as potent antioxidants and
have a diverse therapeutic effect against various diseases, for example, cardiovascular
and neurodegenerative diseases and cancer Anti-inflammatory and antimicrobial
activities. Ferulic acid inhibited the synthesis of TNF-alpha and decreased, Ferulate,
their antioxidant mechanism of action through maintaining redox regulation,
suppressing NF-κB activation, and modulating the expression of NF-κB-induced, pro-
inflammatory such as COX-2 and iNOS [50]. Also, the NF-kB suppression by Ferulate
is mediated via suppressing the activation of NIK/IKK and MAPKs. Caffeic acid
inhibits the activities of COX-1 and COX-2 enzymes and inhibits prostaglandin syn-
thesis and COX. Caffeic acid also decreased several inflammatory cytokines such as
interleukin (IL)-beta, IL-6, and tumor necrosis factor (TNF)-. Chlorogenic acid has an
antidiabetic and anti-obesity role and significantly decreases the level of cholesterol
and triacylglycerol [119]. The same effect was observed with ferulic acid as the
mechanism of action of ferulic involved the suppression and/or down-regulation of
lipid metabolism genes [120]. Additionally, chlorogenic acid significantly elevated
beta-oxidation and lipase activity in diabetic animals. The catechol has an anti-
inflammatory role through inhabiting the NF- κB, and TNF- α [50].

5. Role of flavonoids against different diseases

5.1 Role of flavonoids as antioxidants

Phenylalanine, tyrosine, and malonate are used by plants to produce flavonoids.
The flavan nucleus consists of three rings (C6-C3-C6) with 15 carbon atoms each,
referred to as A, B, and C. While individual compounds within a class fluctuate in A-
and B-ring substitution, classes of flavonoids vary in the degree of oxidation and
pattern of C-ring substitution. Interesting flavonoids include flavones, flavanones,
isoflavones, flavonols, flavanonols, flavan-3-ols, and anthocyanidins. Flavonoids
include biflavones, chalcones, aurones, and coumarins. Hydrolyzable tannins,
proanthocyanidins (oligomers of flavan-3-ol), caffeates, and lignans are all examples
of plant phenols. In vitro antioxidant activity. Gutteridge and Halliwell Antioxidants
may upregulate or maintain antioxidant defenses, scavenge ROS, and reduce ROS
formation by inhibiting enzymes or chelating trace elements involved in free radical
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creation [121–128]. The aforementioned procedures are part of flavonoid activity.
Some of their effects might result from interactions between enzymes and radical
scavenging. The ROS-producing enzymes microsomal monooxygenase, glutathione S-
transferase, mitochondrial succinoxidase, and NADH oxidase are all inhibited by
flavonoids [129]. The majority of flavonoids are potent antioxidants, which may
account for their health advantages. Flavonoids (Fl-OH) can reduce highly oxidizing
free radicals with redox potentials of 2.13–1.0 V due to their low redox potentials (0.23
E7 0.75 V) [130]. To do this, they donate a hydrogen atom to the reaction Fl-OH + R•
Fl-O• + RH (1), where R• stands for superoxide anion, peroxyl, alkoxyl, and hydroxyl
radicals. When combined with another radical, the peroxyl radical (Fl-O•) may create
a stable quinone. Free radicals are scavenged by flavonoid antioxidants [131]. Strong
free radical scavengers called flavonoids have drawn interest as potential therapies for
diseases caused by free radicals and oxidative stress [42]. By forming complexes with
them, flavonoids stabilize oxidative free radicals. Studies on the structure of flavo-
noids and their capacity to absorb free radicals are comprehensive. According to
Kumar and Pandey [42], the heterocyclic and B ring structure and substituents
affected the radical-scavenging activity. Radical-scavenging ability is determined by
the presence of a catechol group in ring B, which has enhanced electron-donating
properties and serves as a radical target, and a 2,3-double bond conjugated with the 4-
oxo group. The heterocyclic ring’s 3-hydroxyl group aids in radical scavenging,
whereas the hydroxyl or methoxyl groups at positions 3,5, and 7 of rings A and C seem
to be less important [132]. These structural characteristics increase the antioxidant
power of flavonoids or the stability of the peroxyl radical. Both flavonols and flavones
containing a catechol group in ring B are very active; flavonols, however, are more
potent owing to the presence of the 3-hydroxyl group. Rutin’s capacity to scavenge
free radicals is decreased by glycosylation. A hydroxyl group in ring B of myricetin
increases its antioxidant capacity (pyrogallol). Ring B’s lone hydroxyl lowers activity
[133]. Due to their weak antioxidant properties and 2,3-double bond with the 4-oxo
group, flavanonols and flavanones are. The antioxidant effects of flavan monomers
and flavanonols are comparable (catechin vs. taxifolin). The antioxidant potential is
increased by the allocation of the 3-hydroxyl group or the incorporation of a pyrogal-
lol group in ring B (as in epigallocatechin). If ring B includes catechol, then
anthocyanidins and their glycosides (anthocyanins) are comparable to quercetin and
catechin gallates (like in cyanidin). Kaempferol’s antioxidant activity is decreased
when the 3-hydroxyl group from ring B in pelargonidin is removed (which differs
from quercetin because it has a lone hydroxyl group in ring B) [18].

5.2 Role of flavonoids as neuroprotective against different neurodegeneration
diseases

There is a long history of using flavonoids in medicine. They are a notable thera-
peutic class because of their diversity, dispersion, and seclusion. Flavonoids are
essential for the development of new drugs since they may be used as natural products
and are the basis for many treatments [19]. Medicinal plants, vegetables, fruits, and
wines all contain flavonoids. Flavonoids can bind to body proteins, and alter hor-
mones, enzymes, transporters, and DNA. They can also chelate heavy metals and
scavenge free radicals [134]. Numerous pharmacological studies demonstrate their
efficacy in treating microbiological infections, cancer, cardiovascular diseases, neuro-
logical disorders, and diabetic Mellitus (DM) [135]. A recent study suggests that
consuming foods high in flavonoids may improve cognitive abilities in humans [136].

51

Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning…
DOI: http://dx.doi.org/10.5772/intechopen.108637



In both normal and transgenic preclinical animal models of Alzheimer’s disease (AD),
certain flavonoids have been demonstrated to reduce the progression of the disease’s
pathology [137]. Foods high in flavonoids, such as chocolate, green tea, and blue-
berries, have good health effects as a result of their interactions with certain cellular
and molecular targets [31]. The expression of neuromodulatory and neuroprotective
proteins as well as the quantity and quality of neurons are increased by the interaction
of flavonoids with ERK and PI3-kinase/Akt receptors [138]. They may improve cog-
nitive performance by boosting blood flow to the brain and brain neurogenesis thanks
to their favorable effects on the cerebrovascular system. Recently, many additional
advantages of flavonoids were discovered [139]. Flavonoids lessen symptoms similar
to AD and related neurodegenerative diseases [140]. Inhibiting the major enzymes
involved in the development of amyloid plaques, oxidative stress, and neuronal death
brought on by neuro-inflammation are a few potential treatments [141]. By preserv-
ing neuronal number and quality in key areas of the brain, flavonoids guard against
diseases that impair cognitive function.

5.3 Effectiveness of flavonoids as therapeutic approach in dementia and
Alzheimer’s

In animal models, flavonoids reduce AD and cognitive dysfunctions, demonstrat-
ing their therapeutic utility in neurology. By focusing on important enzymes, flavo-
noids prevent the growth and accumulation of amyloid plaques (A). In an AD mouse
model, anthocyanin-rich flavonoids in bilberry and black currant extracts lessen
behavioral deficits and alter APP processing [138]. In a transgenic PSAPP animal
model of cerebral amyloidosis, chronic therapy with tannic acid may enhance memory
and behavior. Nobiletin improves A-mediated memory deficits and reduces A load in
the hippocampi of transgenic rats. Grape polyphenols improve memory and lower
soluble A oligomers in the brain tissues of Tg2576 rats. Citrus flavonoid luteolin
decreases BACE1 activity and A peptide synthesis in APP transgenic neurons
[139, 140]. Grape seed extracts rich in polyphenols and curcumin lessen the deposi-
tion of A in the brains of AD animals. Through the estrogen receptor, phosphoi-
nositide 3-kinase, and Ak, Epigallocatechin gallate (EGCG) promotes non-
amyloidogenic APP processing. Selective estrogen receptor modulators may be a
treatment option since post-menopausal estrogen depletion is linked to an increased
risk of AD. An alternative to estrogen-based therapy may be EGCG-mediated estrogen
receptor modulation [141, 142]. For neuroprotective benefits, EGCG suppresses
fibrillogenesis and A-rich amyloid fibrils. Unfolded polypeptides are prevented from
converting directly into neurotoxic intermediates by contact with them. Big A fibrils
may be split up into smaller proteins by EGCG, avoiding aggregation and negative
effects. Cognitive deficits linked to neurodegeneration may benefit from myricetin’s
in vitro anti-amyloid activity [143–145]. These findings imply that flavonoids may
inhibit the A-forming enzyme BACE1 and hence prevent the fibrillization process that
leads to the generation of A. The neuro-modulating capacity and therapeutic potential
of flavonoids need more investigation. With 15 carbon atoms organized into three
rings, two of which are aromatic and connected by an oxygenated heterocyclic ring,
flavonoids are polyphenolic chemicals that are obtained from plants. They are con-
sumed by people in fruits, nuts, seeds, flowers, tea leaves, herbs, spices, and red wine
[30, 146]. Recent research links dietary flavonoids to reduced risk of dementia, relief
from neuronal degenerative conditions, and improved memory and learning. Studies
reveal that these compounds’ permeability across the blood-brain barrier (BBB) is
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influenced by their structural configuration, which promotes the investigation of their
therapeutic potential. Several flavonoids, including naringenin, quercetin, hispidulin,
hesperetin, naringenin, and EGCG, may cross the blood-brain barrier due to their
lipophilicity or interactions with BBB efflux transporters, including the P-
glycoprotein. Plasma and blood flavonoids provide evidence that they may enter the
brain. Following the consumption of meals or beverages high in flavonoids, human
plasma contains flavonoids (Figure 3) [147–149].

5.4 The protective and therapeutic role of flavonoids against diabetes

Anti-diabetic flavonoids include quercetin, naringin, hesperidin, epigallocachetin
gallate, apigenin, myricetin, and anthocyanins. They are antioxidants and anti-
inflammatory. Flavonoids have impacts on gene regulation. Cells treated with flavo-
noids reveal an obscure in vivo mechanism. By controlling the activity of the intestinal
carbohydrate, flavanols improve glucose homeostasis [114, 150]. Numerous studies
demonstrate that the anti-apoptotic properties of flavanols increase cellular replica-
tion, insulin secretion, and glucose synthesis. As a result, catechin-rich flavanol
increased insulin release prompted by glucose. Increased flavonoid consumption has
been linked in human studies to a decreased incidence of diabetes. In human clinical
research, flavonoids seem to not affect diabetes Consumption of isoflavones was not
linked to modifications in fasting insulin, glucose, or HbA1c. Individual isoflavones
seldom ever have an impact on insulin sensitivity and glycemic control [151–153]. By
influencing cell mass and function, Insulin sensitivity, and glucose absorption, antho-
cyanins may improve glucose homeostasis. Flavonoids and Type 2 Diabetes Flavo-
noids are plentiful, structurally unique chemicals. Over the last ten years, the anti-
oxidant properties of flavonoids have aided diabetic patients in reducing oxidative
stress. It has been established that diabetes is caused by oxidative stress.
Supplementing with antioxidants has been utilized to lessen oxidative stress caused by
diabetes. Flavonoids modulate transcription factors and proinflammatory mediators

Figure 3.
Shows the protective effect of flavonoids against neurodegenerative disorders. Created with BioRender.
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and have strong in-vitro and in-vivo antioxidant and anti-inflammatory actions.
T2DM may be treated by pancreatic islet isolation and transplantation [154–156].
Pancreatic transplantation and flavonoids may provide new therapeutic insights. A
surplus of flavonoid molecules is also necessary. Since most flavonoids impact how
complicated carbs are digested and how quickly glucose is absorbed, appropriate doses
of pure single flavonoids may improve glycemia. Flavonoids fight against diabetes. As
previously mentioned, signaling pathways are potential targets for treatment because
they play significant roles in the pathophysiology of oxidative stress-induced diabetes.
By limiting the release of cytochrome-c from mitochondria into the cytosol and
inhibiting caspase activity, EGCG exhibits anti-inflammatory actions in pancreatic
cells. A good target for diabetes treatment is AMPK [69, 157, 158]. As a result of
EGCG’s stimulation of the AMPK system, hepatic gluconeogenesis is decreased, fatty
acid oxidation is improved, and mitochondrial biogenesis is controlled. In skeletal
muscles, AMPK activation causes an increase in GLUT4, which facilitates glucose
absorption. Hesperidin and naringin increase WAT GLUT4 while inhibiting liver
GLUT2. The IRS-1-PI3-K-PKB/Akt insulin pathway was controlled by flavonoids from
Oxytropis falcata Bunge chloroform extract, which decreased inflammatory cytokines
by downregulating NF-B expression and increased GLUT4 expression. The flavonoid
fisetin is found in foods including strawberries, apples, grapes, cucumbers, and others
[159–162]. Feinstein treatment decreased glycemia, HbA1c, NF-B p65 unit, interleu-
kin-1 beta (IL-1), and serum nitric oxide (NO) due to improved plasma insulin
antioxidant status, according to animal studies. By modifying NF-epigenetics, fisetin
reduced HG-triggered cytokine levels in monocytes. A diabetic dietary supplement is
B’s Fisetin. A flavonoid called morin may be found in wine, fruits, Prunus dulcis, and
Psidium guajava [163–165]. Morin, which has anti-inflammatory properties and is
useful in treating inflammatory illnesses, was demonstrated by Heeba et al. [166] to
lower the cytokines IL-1, IL-6, and TNF in diabetic mice when administered at a dose
of 30 mg/kg body weight. In rat liver and BRL3A cells, morin reduces fructose-
induced alterations in hepatic SphK1/S1P signals and hepatic NF-B activation with IL-
1b, IL-6, and TNF. The root and fruit of Scutellaria baicalensis Georgi contain a
flavonoid called baicalein, which has potent antioxidant properties [166, 167].
Baicalein reduced food intake, body weight, and HbA1c levels in diabetic rats.
Baicalein reduced iNOS and TGF-1 expression, inhibited NF-B, and enhanced renal
tissue structure. AGEs, TNF, NF-B activation, and histopathological changes are all
decreased by baicalein. Adipocytes, skeletal muscle, cardiomyocytes, and other organs
all have GLUT-4. It is a glucose transporter that is resistant to insulin. Hormone/
metabolic activity and tissue-specific response [168–170]. Insulin and muscle con-
traction cause it to move from its natural location in the cytoplasm to the plasma
membrane, where it absorbs glucose. Insulin-resistant cells across the plasma mem-
brane have changed intracellular GLUT-4. T2DM is a result of increased insulin
resistance, inadequate insulin synthesis, and insulin resistance. According to a study,
flavonoids and polyphenols increase GLUT-4 expression and glucose absorption. In
adipocytes and skeletal muscle cells, quercetin and procyanidins enhance GLUT-4
mRNA. In mouse embryonic fibroblasts, flavonoids increase the expression of GLUT-
4 mRNA. In skeletal muscle cells, epigallocatechin gallate (EGCG) elevates GLUT-4.
Adipocyte and skeletal muscle cells treated with hesperidin and naringin had similar
outcomes [171–173]. A flavonoid called Enicostema little increases the expression of
the IRS-1, Akt-2, and GLUT-4 genes, which in turn stimulates the IRS-1/PI3K/Akt
pathway. Clonal INS-1E cells and pancreatic human islets have shown protective
benefits in response to kaempferol flavonoids. In human -cells and islets, 10 M
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kaempferol enhances viable cell concentration and inhibits apoptosis. By decreasing
caspase-3 proteins and glucotoxicity and lipotoxic effects by reducing Akt and Bcl-2
anti-apoptotic activities, activating signaling pathways guards against apoptosis in
cells. In chronic hyperglycemia or hyperlipidemia, �cell survival is improved by
cAMP-mediated signaling [174, 175]. As previously noted, kaempferol is a special anti-
diabetic chemical. Numerous studies have shown the relationship between flavonoids
and glucose status. An effective treatment target for T2DM and insulin resistance is
provided by flavonoids from banana flowers. Thus, IR/HepG2 cells consume more
glucose when exposed to 10 mg/ml of enicostema littoral flavonoid. Hepatic insulin
resistance may result from endoplasmic reticulum stress. In those with T2D, ER stress
either increases insulin resistance or reduces insulin secretion [176–178]. Unfolded
protein response (UPR) signaling is activated in diabetes by ER stress, which also
increases inositol-requiring enzyme 1 (IRE1). Then, by converting dormant XPP-1 s
into the active form, XBP1 activates IRE1. The IRE1-XBP1 pathway leads to insulin
resistance by phosphorylating IRS-1. This method lowers insulin release from pancre-
atic islet cells. Insulin secretion is suppressed by pro-insulin mRNA degradation
caused by overexpression of IRE1 [179–181]. The medicinal plant pomegranate has
anti-diabetic effects. PGF has been used to treat diabetes for many years. Flavonoids,
in particular, are anti-inflammatory and antioxidant polyphenols found in PGF
extract. It reduces blood glucose, triglycerides, and insulin resistance, according to
animal studies. By activating PPAR- 28, PGF has shown antihyperglycemic effects
[182, 183].

Recently, Chinese researchers administered polyphenol extract PGF to diabetic rat
models for 4 weeks at doses of 50 and 100 mg/kg. The results showed that increasing
insulin-stimulated phosphorylation of IRS-1, Akt, and GSK-3 improved insulin sensi-
tivity. The ER stress signals IRE1 and XBP-1 splicing are reduced by PGF. IRE1, XBPs,
and CHOP were all decreased by PGF. PGF increases insulin resistance, which lowers
glucose levels in T2DM rats, and this effect is likely mediated through Akt-GSK3
signaling and a decrease in ER stress. Unfolded protein response, mitochondrial oxi-
dative stress, endoplasmic reticulum, and other signaling pathways all contribute to
the development of T2DM. Flavonoids function as enzyme inhibitors, peroxide
decomposers, hydrogen and electron donors, quenchers of singlet oxygen, radical
scavengers, and metal chelators [184, 185]. These compounds regulate antioxidant
enzymes, gene expressions, and protein expressions in oxidative stress-induced
in vivo and in vitro models. Concentration, polarity, media, and other antioxidants all
affect effectiveness. Diabetes has been associated with ER stress. Interest has grown in
small molecules that inhibit ER stress and target UPR proteins [135, 186–188]. The
bioavailability and bioefficacy of flavonoids may be increased by employing nano-
technologies, such as nanoparticulate systems. Flavonoids should not affect physio-
logical processes that involve ROS. Significant antioxidant activity, ROS stability,
receptor affinity, low toxicity, and free radical scavenging action are all desirable traits
in flavonoids. It is important to think about the detection of ROS/RNS and the linked
species and physiological levels (Figure 4).

5.5 The antiviral role of flavonoids against various types of virus

Viruses have envelopes made of protein, RNA, and DNA. The metabolism and
environment of the host are necessary for reproduction and survival. They take
advantage of host cells to spread [189]. Flavonoids are phytochemicals that inhibit
viruses in a variety of ways. They could prevent DNA replication, protein translation,
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processing of polypeptides, and viral attachment and entrance into cells. The invasion
of healthy cells by viruses may be stopped by them. Flavonoids might bind to viral
surface proteins and stop the virus from entering host cells. While other flavonoids
obstruct viral assembly, packaging, and release, some of them hinder viral transcrip-
tion and replication. Flavonoids modify the immune system and reduce viral load
[190]. The backbone of flavones is 2-phenyl-1-benzopyran-4-one. Flavones include
apigenin, baicalein, chrysin, luteolin, tangeritin, wogonin, and 6-hydroxy flavone.
Since the 1990s, when it was shown that apigenin and acyclovir boosted antiviral
activity against HSV-1 and HSV-2 in cell culture, flavones have been known to have
antiviral properties [191]. Apigenin is effective against HSV-1, poliovirus type 2, HCV
adenoviruses and hepatitis [192]. African swine fever virus (ASFV) production is
decreased by 3 log due to apigenin’s suppression of viral protein synthesis [193, 194].
According to Shibata et al. [195], apigenin prevents HCV replication by lowering
microRNA122 which is unique to the liver. The production of early and late HCMV
proteins, as well as DNA, was reduced by baicalein, but not polymerase activity.
Baicalein and its analogs may be utilized to treat Tamiflu-resistant viruses, according
to novel baicalein analogs with bromine-substituted B-rings that have shown sub-
stantial activity against the H1N1 Tamiflu-resistant virus [196, 197]. In early-stage
infected cells, baicalin decreased HIV-1 in vitro replication. The antiviral function of
baicalin prevents the HIV-1 envelope protein from interacting with immune cells
[192, 196, 197]. Against the dengue virus, baicalein and baicalin (DENV). By elimi-
nating extracellular viral particles, they prevented the growth of DENV-2.Baicalein
demonstrated a strong affinity for the DENV NS3/NS2B protein (�7.5 kcal/mol)
and the NS5 protein (�8.6 kcal/mol), according to in silico studies [198–201]. Baicalin
may prevent CHIKV infection because of its high binding affinity (�9.8 kcal/mol)
for the CHIKV nsP3 protein. Lutein prevents HIV-1 reactivation by blocking clade
B- and C-Tat-driven LTR transactivation [202–205] . By reducing the binding of the
transcription factor Sp1, luteolin prevented the reactivation of the Epstein-Barr virus
(EBV). discovered that luteolin interfered with viral RNA replication. In addition
to these antiviral characteristics, luteolin or luteolin-rich fractions showed antiviral
efectiveness against rotavirus, CHIKV, JEV, SARS-CoV, and other viruses
[192, 206, 207]. The foundation of flavonol is 3-hydroxy-2-phenylchromen-4-one.
Kaempferol and quercetin showed potential as antiviral agents. For instance, manager

Figure 4.
Showed the protective effect of flavonoids against diabetics disorders.
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antiviral activity against the respiratory syncytial virus (RSV), HSV-1, and HSV-2
were improved by quercetin in dose-dependent ways in cell cultures [208, 209].
Flavans are defined by 2-phenyl-3,4-dihydro-2H-chromene. Flavan-3,4-diol, flavan-
4, and flavan-3,3-ol. Epigallocatechin (EGC), catechin, epicatechin gallate, and
epigallocatechin gallate (EGCG) are tea flavan-3-ols that have antiviral properties.
Since Rawangkan et al. [210] showed that tea catechins, particularly EGCG, may bind
to influenza virus haemagglutinin and prevent its adsorption to Madin-Darby canine
kidney cells, the influenza virus has drawn the most attention as a potential target.
Recent research demonstrates the antiviral potency of quercetin against several influ-
enza virus strains. By interacting with influenza hemagglutinin, it prevents viral-cell
fusion [193]. Quercetin inhibits transcription, protein synthesis, and viral endocytosis.
Infected mice with airway cholinergic hyperresponsiveness and rhinovirus multipli-
cation are both decreased by quercetin. HCMV is prevented by kaempferol. Corona-
virus 3a channel blockers made of kaempferol derivatives with rhamnose residue are
available. The influenza A virus is inhibited in vitro by kaempferol 3-O—L-
rhamnopyranoside from Zanthoxylum piperitum. HIV-1 reverse transcriptase is
inhibited by kaempferol and kaempferol-7-O-glucoside [106, 211–215]. The viral
envelope may be damaged by EGCG, which prevents influenza virus and cellular
membrane hemifusion [216–219]. Studies have shown that tea catechins are anti- HIV.
Due to its ability to combat HIV-1 at all stages of its existence, EGCG is the most
potent tea catechin. It inhibits gp120 binding by forming a direct bond with CD4
molecules. CD4’s Trp69, Arg59, and Phe43 may interact with EGCG. Viral gp120
interacts with residues [192, 220]. By inhibiting the MEK/ERK1/2 and PI3-K/Akt
signaling pathways, EGCG may shorten the EBV lytic cycle. Additionally, HCV can-
not adhere to cells or replicate RNA when EGCG is present. The Zika virus (ZIKV) is
inhibited by EGCG, according to a recent study: In vitro, the flavanone naringenin
inhibits virus multiplication. The absence of anti-Sindbis virus activity in naringenin’s
glycoside form, naringin, demonstrates that rutinose restricts the antiviral action of
this compound. Long-term treatment lowers HCV by 1.4 logs and may inhibit intra-
cellular HCV particle assembly [221–224]. Treatment with naringenin after entrance
reduced CHIKV in infected Vero cells. Bovine herpesvirus type 1 and New World

Figure 5.
Shows the protective effect of flavonoids against viral infection. Created with BioRender.com.
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arenavirus Pichinde replication are decreased by the isoflavonoid genistein, which
inhibits tyrosine kinase. Resting CD4 T cells and macrophages are protected against
HIV infection by genistein. Avian leucosis virus subgroup J, HSV-1, and HSV-2
reproduction were all suppressed by genistein (Figure 5) [192, 225].
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Chapter 4

Purple Corn Cob: Rich Source 
of Anthocyanins with Potential 
Application in the Food Industry
Andreea Stănilă, Teodora Daria Pop and Zorița Maria Diaconeasa

Abstract

As every year, the entire food chain generates huge amounts of food loss and 
waste, and there is a great interest in solving the inefficient waste management by 
implementing the sustainability concept for achieving “waste-to-wealth” goal. This 
refers to recovering renewable bioactive compounds from food wastes in order to use 
them as low-cost source of value-added ingredients for different industries. In this 
way, this work focuses its attention on purple corn cob, a by-product that was not 
very used in food industry. Purple corn has gained attention due to its capability of 
coloring food and beverages and the evidence of the antioxidant, anti-inflammatory, 
and cardiovascular health benefits. As the production is growing year by year, the 
amounts of waste produced is rising. As a result, purple corn cob caught our atten-
tion, reason why in this study we concentrate to summarize and emphasize the 
compounds that give the color of this waste, anthocyanins.

Keywords: anthocyanins, bioactive compounds, food waste, purple corn cob,  
food industry

1. Introduction

To date, adding coloring to food and drink color is as significant as it has always been, 
especially in a society where the quantity of processed food has increased rapidly over 
the previous half-century. Being the first attribute that potential buyers are aware of, 
color plays a vital role in motivating the customer to purchase the product [1]. Over the 
last few years, the food industry’s interest in natural colorants replacing synthetic ones 
has increased, mainly due to safety issues [2]. Among natural alternatives for synthetic 
dyes, anthocyanins represent an important class of compounds that provide red to a blue 
color to food by incorporating into aqueous systems. Also, in the European Union and 
Japan, anthocyanins are recognized as food colorants with the code E-163 [3].

Purple corn (Zea mays L.) represents a rich source of anthocyanins, originated in 
South America, mainly Peru, and cultivated also in Ecuador, Bolivia, and Argentina. 
Generally, it is used for the preparation of traditional drinks and desserts, generating 
important quantities of residues, and its disposal involves major economic expenses 
[4, 5]. Besides this, generated wastes can cause major environmental problems due 
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to their high organic charge. However, over the last decades, using these residues has 
been encouraged as they are good sources of potentially useful bioactive chemicals, 
and valorizing them might be a viable technique for mitigating their environmental 
implications and thereby improving the food industry’s sustainability [5].

As a major route for their valorization, the recovery of bioactive molecules from 
food by-products has gained popularity. In this framework, the present review aims 
to highlight purple cob’s capability to be an available source of bioactive compounds 
with several potential applications, focusing our work on its food industry utilization.

2. Purple corn cob is a rich source of bioactive compounds

The current state of knowledge shows us that purple corn cob represents a  
rich source of phenolic compounds, especially phenolic acids, flavonoids, and antho-
cyanins [6, 7].

Purple corn gained attention mainly because of its rich content in anthocyanins, 
but comparing the seeds (0.5–6.8 mg/g fresh weight) with the cob, the reported 
values regarding anthocyanins content were higher for the latest (0.8–71.5 mg/g fresh 
weight) [4].

Based on the previous statement, our focus is on a purple corn cob, as the antho-
cyanins content makes them potential contributors as natural colorants, varying from 
blue to red tonalities. Despite their great coloring capacity, these compounds have 
been increasingly used in the food industry due to their ability to confer bioactive 
properties to the products [8]. Along with a great coloring capacity, anthocyanins 
act as antioxidants and antibacterial compounds and help prevent cardiovascular 
diseases, cancer, diabetes, and have neuroprotective effects [9–13].

Regarding the anthocyanins content, some researchers characterized the purple 
corn cob. Among them, Díaz-García et al., obtained higher values than other stud-
ies, 41.32 ± 0.95 mg C3GE/g DW, compared with 9.30–15.16 mg C3GE/g DW, both 
using pH differential measurement [4, 14]. Using the same method, Lao and Giusti 
[15] obtained for the purple corn cob values ranging from 3.1 to 100.3 mg C3G/g. 
By using a conventional spectrophotometric method, Pascual-Teresa et al. obtained 
34 g per 100 g powder, expressed in cyanidin-3-monoglucoside [16]. Another study 
showed that the anthocyanin content of purple corn cob was calculated to be 92.3 ± 
2.1 mg/100 g, expressed in cyanidin-3-glucoside [17]. A much higher value of antho-
cyanins was presented in another study, where the authors obtained 1219.4 mg/100 g 
[18]. The comparison between the anthocyanin contents in purple corn cob is difficult 
as there are several factors to consider, including the harvesting region, methods used 
by researchers, storage time, and genetic differences [19].

The profile of anthocyanins present in purple corn cob has been characterized 
by Fernandez-Aulis et al., by identifying the structures using HPLC method, are 
fragments corresponding to cyanidin, pelargonidin, and peonidin, and they are: 
cyanidin-3-glucoside, cyanidin-3-(6″-malonyl) glucoside, pelargonidin-3-glucoside, 
peonidin-3-glucoside, pelargonidin-3-(6″-malonyl) glucoside, and peonidin-3-(6″-
malonyl) glucoside, which was in accordance with the previous reports. Among these, 
the main anthocyanin was cyanidin-3-(6″-malonyl) glucoside obtained in case of 
enzymatic assisted extraction [20]. Moreover, cyanidin-3-(6″-ethylmalonyl) gluco-
side, pelargonidin-3-(6″-ethylmalonyl) glucoside, and peonidin-3-(6″-ethylmalonyl) 
glucoside are three more compounds identified by Pascual-Teresa et al. besides those 
mentioned above [16].
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The reported results suggest that purple corn cob can be considered a promising 
source of anthocyanins, and this statement can be strengthened by comparing values 
with other dietary sources, remarked for their rich content in anthocyanins. As shown 
in Figure 1, purple corn cob is a valuable waste that can be successfully used as a rich 
source of anthocyanins, and by this, an important number of applications can be 
taken into consideration.

Throughout the years, purple corn gained attention due to its recognized antioxi-
dant property, becoming consumed as food, but also incorporated in new products, 
fact highlighted too by international data bases, as in 2009, Peru exported total 
value of US$9,782,564, while in 2013, the export reached the approximate value of 
US$17,981,398 [19, 35]. In 2015, AgriFutures Australia reported a total of 7000 tones as 
being traded globally each year, with the majority producer, Peru, and for 348 tones, 
China [36]. National Institute of Statistics and Information Science analyzed the purple 
corn production index from 1990 to 2018, highlighting the fact that the data reached an 
all-time high in April 2018 [37]. As the production is rising and the consumption per 
capita has increased from 6.8 to 12.3 kg per year [19], the amount of generated waste is 
also recording higher values, the cob representing 15% of the purple corn ear [38]. Also, 
taking into consideration its richness in bioactive compounds and its growing range of 
applications, purple corn cob is becoming a topic of interest for future studies.

3. Anthocyanin recovered from by-products

3.1 Extraction methods

As anthocyanins are found as secondary plant metabolites in the case of purple 
corn cob, it is important to take into consideration their extraction and isolation from 

Figure 1. 
Comparison between rich in anthocyanin sources and purple corn cob based on the concentration (mg/100 g), 
reported by different authors a—[17], b—[18], c—[14], d—[4], e—[15], f—[16], g—[17], h—[7], i—[21], j—
[22], k—[23], l—[24], m—[25], n—[26], o—[27], p—[28], q—[29], r—[30], s—[31], t—[32], u—[33], v—[34].
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the tissue with adequate method, as their main issue is their high susceptibility to 
degradation, when isolated. Among the factors that affect anthocyanins’ stability, 
the most referred are pH, when it has values above 7, explaining the requirement of 
acidified environment for most of the extraction protocols and temperature. The last 
one impacts the levels of anthocyanin extracted, a higher temperature being likely 
to induce degradation and impact in this way the extraction factor [39]. An ideal 
extraction procedure for food-grade anthocyanins would maximize pigment output 
while reducing degradation and changing the natural state of the target compounds 
[40]. When choosing the extraction method, it is important to take into consideration 
the application, as for food industry the solvents play a decisive role. In most of the 
times, anthocyanins’ extraction is conducted by grinding, drying or lyophilizing the 
matrices, or soaking fresh materials into solvents such as water, ethanol, methanol, 
acetone, or others. As mentioned, the solvents are frequently acidified to make the 
extraction process easier and to keep the pigments stable during the process. Other 
possible influences on anthocyanin extraction that should be considered beside pH 
and temperature are time, solid:liquid ratio, assistance with microwave, ultrasound, 
and sonication [3]. In the case of purple corn cob, different optimized extraction 
techniques have been developed, both conventional and new methods (Table 1), 
taking into consideration the time, temperature, and solid: liquid ratio. In this way, 
Yang and Zhai [17] macerated the matrices and used methanol as solvent, the same 
one used by Li et al. in their study [41]. Another solvent used by Nisi et al. is acetone, 
but due to safety concerns, these two, methanol and acetone, are not desirable if the 
extract is used in food applications. The same author tested also the efficacy of water 
and ethanol solvent, by comparing with acetone, and the results were similar [42]. 
Also, Lao and Giusti optimized an extraction protocol using a combination of water 
and ethanol (EtOH), which is food-friendly. Besides analyzing the best extraction 
ratio, they focused also on its acidity in order to increase extraction efficiency [3]. 
Yang et al.’s work focused on choosing the optimum conditions for the extraction of 
anthocyanins from purple corn cob taking into account the main factors related to 
the process, including solvent, acid, solvent concentration, and acid concentration, 
using a mixture of solvent and water. The maximum yield for purple corn cob extrac-
tion was obtained with 80% methanol and 1% citric acid, and using ethanol, the 
best conditions were obtained with 80% solvent and 0.5% citric acid [43]. Based on 
safety concerns related to certain organic solvents, Rajha et al. managed to study the 
efficiency in terms of anthocyanins’ extraction using β-cyclodextrin-water as solvent, 
β-cyclodextrin being generally recognized as safe (GRAS) solvent. They suggested a 
low-cost extraction protocol for the valorization of purple corn cobs, obtaining the 
best extraction rate using 39.8 mg/mL β-cyclodextrin at 68.8°C for 60.4 min [44].

Recently, there is a focus on reducing or eliminating the use of toxic solvents by 
taking advantage of the potential that emerging extraction strategies have, which 
are capable of reducing the processing time, maintaining also the bioactivity of the 
compounds [48]. Piyapanrungrueang et al. realized a comparison study between the 
conventional extraction methods and the emerging ones, having a purple corn cob 
hybrid as matrices. They characterized and optimized methods for conventional, 
ultrasound-assisted extraction, microwave-assisted one, and for ohmic heating. By 
taking into consideration the amount of anthocyanin extracted, energy efficiency, 
and color value, the best method for extracting anthocyanin from purple corn cob is 
the microwave-assisted one [45]. There are also other authors that optimized emerg-
ing methods for extracting anthocyanins as presented in Table 1. When choosing the 
extracting protocol, the future applications should be taken into consideration, as 
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there are plenty possibilities for anthocyanin from purple corn cob. Related to this, 
the next chapter focuses its attention on studies that emphasize purple corn cob’s 
applications in different industries.

3.2 Recent studies and future perspective

In terms of using the cobs in order to minimize the waste production, Nisi et al. pro-
posed a quick and cheap extraction method to obtain anthocyanin with the aim of using 
them as dye for different natural fibers. Moreover, they managed to recover and use all the 
material to produce nutraceuticals and pigmented litter for pets [42]. In this framework 
of the biorefinery approach in valorizing purple corn cob, authors proposed a natural dye 
for fabrics, showing also ultraviolet protection of the dyed clothes. They present the final 
product as having good durability, acceptable stability, excellent aesthetic appearance 
and also sustainable, since are dyed with natural pigments. Also, they demonstrated that 
the extract possesses good anti-inflammatory properties, highlighting the possibility of 
incorporating in food products to take advantage of its full potential related to health 
benefits. The purple lignocellulosic solid residue is considered feasible for animal bedding, 
which can be compostable, nulling in this way the waste produced [42].

Within the same frame, Gullón et al. characterized purple corn cob’s potential in 
order to comprehend whether it can be used as multifunctional ingredient for food 
and pharmaceutical industries and what properties does it possess [5]. After the 
extraction conditions of bioactive compounds from purple corn cob were success-
fully performed, oligosaccharides and phenolic compounds, including flavonoids 
and anthocyanins were characterized. The bioactive compounds showed complex 
structures as the extract was stable at high temperatures when subjected to thermo-
gravimetric analysis. Overall, their research concluded that purple corn cob repre-
sents a sustainable source of bioactive compounds with economical value, therefore 
improving the food industry’s competitiveness [5].

Regarding its culinary applications, purple corn cob is used as a base ingredient in 
the process of obtaining traditional drink chicha morada and dessert named mazamorra 
morada. For both of then, the whole corn including the corn cob is boiled in order to 
extract the color. To obtain the drink, some fruits, spices, and sugar are mixed together. 
Besides these, the dessert requires a binder followed by cooking. Regarding the heat 
treatments that can affect the product nutritional quality, some studies concluded that 
thermal processing such as boiling, roasting, or frying is associated with a decrease in 
bioactive compounds, as they are not stable in such conditions [19].

Also related to food industry, a recent study developed and optimized a low-calorie 
tea formulation containing purple corn cob, stevia as sweetener, cinnamon, and clove 
as flavoring and quince as a pH regulator that improves the color. The product exhibits 
enhanced antioxidant capacity, which, in future studies, will be evaluated on human 
volunteers in order to offer information on the true impact of the new antioxidant 
product [4]. In a similar area of products, Wattanathorn et al. [49] obtained a func-
tional drink containing the extract of purple corn cob and pandan leaves, being the first 
study that showed that a polyphenol-rich supplement can improve cognitive function in 
a menopausal animal model. The functional drink has a cognitive boosting effect that is 
comparable to donepezil, a common medicine used to treat memory problems today. In 
this way, the product based on purple corn cob extract and pandan leaves can be used as 
a viable supplement to lower the risk of memory deterioration in menopausal women, 
which is simple to achieve, based on its advantages and low raw material prices. Clinical 
trial research and subchronic toxicity, one the other hand, are necessary [49].
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As presented, purple corn cob is a valuable source of bioactive compounds, with 
different possible applications, but related to food industry, several studies need to be 
made in order to benefits from its full potential.

4. Conclusions

As one of the humanity’s greatest difficulties is to live in a society without hunger 
but with high quality and safe food, it can be assumed that global food loss and waste 
must be dramatically decreased, because the inefficient waste management causes 
environmental damages. In this framework, circular bioeconomy represents a great 
potential approach for reducing these insufficiencies by implementing the term 
“waste-to-wealth,” which refers to the converting of renewable biological supplies 
with high-end commerce, into valuable resources for a longer period of time, with no 
waste generation. In this context, agri-food by-products and wastes are of great inter-
est as they are rich in bioactive compounds, which gives them multiple applications.
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Chapter 5

Application of Liquid 
Chromatography in the Analysis of 
Flavonoid Metabolism in Plant
Ngoc Van Thi Nguyen

Abstract

Plants have evolved the capacity to create a wide range of chemicals during the 
process of their existence. In contrast to specialized metabolites that accumulate in 
a small number of plant species, flavonoids are broadly distributed across the plant 
kingdom. Therefore, a detailed analysis of flavonoid metabolism in genomics and 
metabolomics is an ideal way to investigate how plants have developed their unique 
metabolic pathways during the process of evolution. Among the analysis methods 
used for flavonoids, the coupling of liquid chromatography (LC) with ultraviolet 
(UV) and/or electrospray ionization (ESI) mass spectrometric detection has been 
demonstrated as a powerful tool for the identification and quantification of pheno-
lics in plant extracts. This chapter mainly introduces of chemistry and metabolism 
of flavonoids and the application of liquid chromatography in the analysis of plant 
flavonoids.

Keywords: flavonoid metabolism, liquid chromatography, secondary metabolites, 
phenolics and phenylpropanoids, flavonoids

1. Introduction

For decades, it has been commonly accepted that plant compounds have a wide 
range of biological activities. They are secondary metabolites that have considerable 
pharmacological characteristics and play an important role in improving human 
health, and flavonoids are one of the substances that have been isolated. Flavonoids, 
which are responsible for the color and perfume of flowers, have long been known to 
be synthesized in specific locations, and there are presently around 6000 flavonoids 
that contribute to the colorful pigments of fruits, herbs, vegetables, and medicinal 
plants [1]. Flavonoids are hydroxylated phenolic substances known to be formed by 
plants in response to microbial infection and are a broad set of polyphenolic chemi-
cals with a benzo-pyrone structure synthesized through the phenylpropanoid path-
way [2–4]. Fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine all 
contain it. The chemical properties of flavonoids are determined by their structural 
class, degree of hydroxylation, various substitutions and conjugations, and degree of 
polymerization [5].
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Flavonoids and other phenylpropanoids are generated from phenylalanine in 
plants, including the subgroups of flavanones (e.g., flavanone, hesperetin, and 
naringenin), flavones (e.g., flavone, apigenin, and luteolin), isoflavones (e.g., daid-
zein, genistein, glycitein). The quantity of oxidation and pattern of substitution of 
the C ring change within flavonoid classes, whereas individual compounds within 
a class differ in the pattern of substitution of the A and B rings [6]. Flavonoids are 
regarded to have health-promoting effects as dietary components due to their strong 
antioxidant activity in both in vivo and in vitro systems [7, 8]. Flavonoids’ functional 
hydroxyl groups influence their antioxidant activities by scavenging free radicals and/
or chelating metal ions [9, 10]. In addition to antioxidant capabilities, flavonoids have 
been shown to have antiviral, antibacterial, anti-inflammatory, vasodilatory, anti-
cancer, and anti-ischemic activities. The metabolism of flavonoids is performed by 
one or more membrane-associated multienzyme complexes rather than free-floating 
“soluble” enzymes [11]. The primary enzymes involved in flavonoid metabolism are 
chalcone synthase (a key enzyme in the phenylpropanoid pathway).

Although the separation, identification, and quantification of constituents in 
complex plant extracts and most likely will be a challenging task, today a multiplic-
ity of different separation techniques, specific stationary phases, and detectors are 
available, helping to achieve the desired selectivity, sensitivity, and speed for nearly 
any separation problem. The most prominent and popular technique in this area of 
research is liquid chromatography [12]. Chromatographic techniques contributed 
significantly to the area of natural products, especially regarding identification, 
separation, and characterization of bioactive compounds from plant sources [13]. 
Flavonoid metabolism is a strong supporter in disease treatment and prevention with 
chemicals and is an indispensable ingredient in many nutritional, pharmaceutical, 
and cosmetic applications. The extensive research of flavonoid metabolism in the 
genome and metabolism is a great technique to investigate how plants’ unique meta-
bolic pathways originated during evolution. The coupling of liquid chromatography 
(LC) with ultraviolet (UV) and/or electrospray ionization (ESI) mass spectrometric 
detection is a potent instrument for the identification of phenolics in plant extracts. 
This chapter focuses on the chemistry and metabolism of flavonoids, as well as the use 
of liquid chromatography in the study of plant flavonoids.

2. Overview of chemistry and metabolism of flavonoid

Flavonoids are phytonutrients that belong to the polyphenol class. Polyphenols 
have been employed in Chinese and Ayurvedic medicine for centuries. A novel chemi-
cal was extracted from oranges in 1930. It was thought to be a member of a novel 
class of vitamins at the time and was labeled as vitamin P. Later, it was discovered 
that this chemical was a flavonoid (rutin), and over 4000 other flavonoids have been 
found [14].

2.1 Basic chemistry

2.1.1 General characteristics of the C15 unit

Flavonoids exist in the form of aglycones, glycosides, and methylated derivatives. 
Flavonoids have a diphenyl propane skeleton with 15 carbon atoms in their main 
nucleus: two six-membered rings coupled with a three-carbon unit that may or may 
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not be part of a third ring. Two benzene rings (A and B in Figure 1) are primarily 
connected together by a third heterocyclic oxygen-containing pyrene ring (C) [15].

Isoflavones are flavonoids in which the B ring is connected in position 3 of the 
C ring. Those with the B ring linked in position 4, are referred to as neoflavonoids 
whereas those with the B ring linked in position 2 can be further classified into many 
subgroups based on the structural characteristics of the C ring. Flavones, flavonols, 
flavanones, flavanonols, flavanols or catechins, anthocyanins, and chalcones are the 
subclasses [1].

2.1.2 Hydroxylation patterns of A-, B-, and C-rings

Positions 3, 5, 7, 2, 3′, 4′, and 5′ are frequently hydroxylated in flavonoids. The 
most prevalent A-ring hydroxylation pattern is 5,7-hydroxylation; however, a 
7-hydroxy ring (also known as a 5-deoxy ring) is seen in isoflavonoid subgroups and 
several proanthocyanidins. On rare occasions, a 5,7,8 or 5.6.7-hydroxylation pattern is 
discovered. The B-ring is often 4′-, 3,4′-, or 3′,4,5′-hydroxylation. Rare flavonoids do 
not have B-ring oxygenation. A 2′-hydroxylation pattern is present in isoflavonoids. 
In isoflavonoids, the C ring is commonly hydroxylated at the carbon 3 position and 
occasionally at the carbon 6a position. This six-membered ring can have a carbonyl 
group, a hydroxyl group, a double bond between positions 2 and 3, or it can be totally 
unsubstituted, as in unsubstituted flavans. The isoflavonoid pterocarpans have extra 
rings as a consequence of 2′-hydroxylation of the original B-ring or cyclization of the 
added prenyl groups (Figure 2) [16].

2.2 Basic substitution

2.2.1 Hydroxylation

There are just a few flavonoid structures with no hydroxyl groups in the A-ring or 
one hydroxyl group in position 6 [17]. Such unusual structures appear to occur most 
frequently in the Primulaceae, Rutaceae, and Thymelaeaceae groups. However, the 
mechanisms of their biochemical synthesis remains unclear. The great majority of 
flavonoids have a basic 5,7-hydroxylation pattern of the A-ring, which is formed from 
malonyl-CoA during chalcone synthesis.

The C6-C3 precursor employed by chalcone synthase determines the hydroxyl-
ation pattern of the B-ring first. The physiological standard precursor is typically 
p-coumaroyl-CoA (4-hydroxycinnamoyl-CoA). The resultant basic C15 chalcone 

Figure 1. 
General structure of flavonoid.
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intermediate, naringenin chalcone, has a hydroxyl group in position 4′, which is seen 
in typical flavonoid structures, and all derived flavonoid structures have the hydroxyl 
group in position 4′. Thus, cinnamate 4-hydroxylase, a cytochrome P450-dependent 
monooxygenase that catalyzes the production of p-coumaric acid [18, 19], performs a 
pre-flavonoid step by introducing the hydroxyl group in position 4′.

The majority of flavonoid families have a hydroxyl group in C-ring position 3. 
(Figure 1). The well-studied flavanone 3-hydroxylase, a 2-oxoglutarate, Fe(II), and 
ascorbate-dependent dioxygenase [20], introduces the hydroxyl group at the flava-
none level. The soluble dioxygenase catalyzes the 3-hydroxylation of the flavanone 
C-ring to create 3-hydroxyflavanone (flavanol). The same dioxygenase has also been 
linked to the catalysis of flavone synthases in several plants, with a 2-hydroxylation of 
the flavanone C-ring proposed as an intermediary step [16].

2.2.2 Methylation

Methylated flavonoids are a form of natural flavonoid derivative with possibly 
many health advantages, including enhanced bioavailability when compared to flavo-
noid precursors [21]. According to studies, methylating these flavonoids might boost 
their promise as pharmacological agents, leading to innovative uses [22]. Flavonoids 
have been shown to have a wide range of bioactivities, including anticancer, immu-
nomodulation, and antioxidant activities, which can be enhanced to some extent by 
methylation [21]. Methylation of flavonoids through their free hydroxyl groups or C 
atoms significantly boosts their metabolic stability and improves membrane trans-
port, resulting in easier absorption and significantly enhanced oral bioavailability 
[22]. Although cinnamic acid derivatives are methylated at the phenylpropanoid level 
in certain circumstances, and feruloyl-CoA serves as a poor substrate for chalcone 
synthase in others, methylation mainly happens at the C15 level. Poulton presents 
an overview of plant transmethylation and demethylation processes [23]. Grisebach 
documented the substrate specificities of several O-methyltransferases from parsley 
and soybean cell cultures, as well as shoots of Chrysosplenium americanum [24], while 
Heller and Forkmann added further test characteristics [25]. The methyl donor in all 
of these reactions is S-adenosyl-L-methionine. Ibrahim’s group has now identified five 
different O-methyltransferases in the flavonol pathway from C. americanum [26].

Figure 2. 
Structure backbone of the main flavonoid group.
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2.2.3 Glycosylation

The stability of flavonoids under glycosylation reaction circumstances is an 
important element to consider. For some flavonoids, direct glycosylation might result 
in the degradation of the changed molecules. It should also be noted that glycosylation 
is more than just attaching the carbohydrate residue to the flavonoid component of 
the molecule; it also involves the removal of the protecting groups. Some flavonoids 
may be partially destroyed as a result of this procedure [27]. It is generally agreed 
that glycosylation is a late or terminal step in flavonoid glycoside biosynthesis, except 
for acylation and prenylation reactions. Since the glycosylation step converts the 
flavonoid into a more water-soluble constituent, a step necessary for the retention of 
some flavonoids in the vacuole, the site of the glycosylation might be expected to act 
at the tonoplast boundary during transfer via the cisternae of, or vesicles derived from 
the endoplasmic reticulum [16]. The process of direct glycosylation for some classes 
of flavonoids can lead to the destruction of the modified compounds. There are two 
major types of linkages that form either O-glycosides or C-glycosides. Parsley prepa-
rations contain both types. There is a strict specificity for the position of the hydroxyl 
group, generally at the 3, 5, and 7 positions of the C- and A-rings. Both 3′ and 4’ 
B-ring glycosides are known. Recently, rarer 2′ and 5′ glycosides of highly methylated 
flavonol glucosides have been identified in Ibrahim’s laboratory [26].

2.2.4 Acylation

Many flavonoid families include acylated sugars. They exhibit a variety of 
physicochemical characteristics and biological activity; however, they have limited 
solubility and stability. To make use of these features, various publications have 
indicated that enzymatic acylation of these molecules with fatty and aromatic acids 
by protease and lipase under varied working conditions is a potential strategy. 
However, it is critical to strike a balance between increasing stability and solubility 
while maintaining biological activity. In fact, the acylation site (regioselectivity) 
can significantly alter these features [28]. The acyl groups are often aromatic acids 
like hydroxycinnamic acids or aliphatic acids like malonic acid. They appear to be 
position-specific for glucoside. Malonyl glucosides, which are catalyzed by malonyl 
transferases, are found in isoflavonoids, flavones, flavonols, and potentially anthocy-
anins. O-Malonyltransferases were isolated from parsley, which included malonated 
flavones and flavonols. Aromatic acylation, particularly of anthocyanins, has been 
observed in Silene and Matthiola sp. In both cases, the acyl groups transferred were 
either 4-coumaroyl or caffeoyl. Acylation has been observed to promote flavonoid 
absorption into parsley vacuoles; alterations in the molecular symmetry of the 
malonylglucosides are thought to be responsible for flavonoid vacuolar entrapment 
inside the vacuole [29].

2.2.5 Prenylation

Prenylflavonoids are useful natural compounds found in a wide range of plants. 
They frequently have diverse biological features, such as phytoestrogenic, antibacte-
rial, antitumor, and antidiabetic qualities [28]. Prenyl groups are frequently found 
in phytoalexins and stress-induced isoflavonoids. They are occasionally cyclized. 
Pterocarpans having a 2′-oxy function and a phenyl group linked to the B-ring were 
the most active insect feeding deterrents [30]. Elicitor-challenged bean cell cultures 
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include a prenyltransferase in a microsomal fraction that adds a prenyl group at posi-
tion 10 on the “B-ring” (also known as the D-ring) of 3,9-dihydroxypterocarpan to 
create phaseollidin, which is then cyclized to phaseollin. Dimethylallylpyrophosphate 
was the prenyl donor. The identical preparations were capable of introducing prenyl 
groups into medicarpin and coumestrol, but the products were not recognized. 
Previously, two distinct flavonoid-specific prenyltransferases that need Mn2+ for full 
activity were discovered in soybean cotyledons and cell suspension cultures [31].

2.2.6 Sulfonation

Nature mostly employs sulfation of endogenous and external substances to mini-
mize possible harm. Sulfonated flavonoids have recently been found in substantial 
numbers. The majority of them are sulfate esters of common flavones and flavonols. 
Flavone sulfates are mostly composed of apigenin, luteolin, or its 6- and 8-hydroxy 
derivatives. Flavonol glycosides were sulfated through the sugar or a separate 
hydroxyl group. They are found in both dicots and monocots, primarily in herbaceous 
species or advanced morphological groupings. They are exclusively seen in ferns on 
rare occasions and have not been identified in bryophytes or gymnosperms [32].

2.3 Stereochemistry

Flavanones have a unique structural property known as chirality that separates 
them from all other groups of flavonoids (Figure 3). The chemical structure of 
all flavanones is based on a C6–C3–C6 configuration consisting of two aromatic 
rings connected by a three-carbon bond [33]. Almost all flavanones have one chiral 
carbon atom in position 2 (Figure 3). Except for a subgroup of flavanones known 
as 3-hydroxyflavanones or dihydroflavonols, which have two chiral carbon atoms in 
positions 2 and 3 (Figure 4). In the C7 position of ring A, certain flavanones include 
an extra d-configured mono or disaccharide sugar. These flavanone-7-O-glycosides 
occur as diastereoisomers or epimers with opposing configurations at just one of two 
or more tetrahedral stereogenic centers in the corresponding chemical entities [34].

Most natural flavonoids now only have one stereoisomer at C-2. The RS nomenclature 
identifies the R or S that changes at carbon 2 without any change in stereochemistry, 

Figure 3. 
Spatial disposition of the enantiomers of chiral flavanones.
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depending on the choice of the change adjacent groups should lead to confusion for 
flavonoid metabolism. It is not sufficient to utilize (+) - or 2,3-cis or -trans alone to define 
the four potential isoforms of dihydroquercetin or catechin; consequently, consideration 
should be given to alternate terminology. For mirror pictures, the ent-prefix is utilized. 
(+)-Catechin (2,3-trans isomer) with 2R, 3S absolute stereochemistry is simply known as 
catechin, whilst its mirror counterpart (−)-catechin (2,3-trans) with 2R, 3R stereochem-
istry is simply known as ent-catechin. Similarly, the (−)-epicatechin (2,3-cis) isomer (2R, 
3R) and its mirror image (2S,3S) are known as epicatechin and ent-epicatechin [35].

There are other structures designated for hydroxylation patterns and inter-liquid 
bonding. To minimize ambiguity in the RS system of the configuration of the interfla-
vanoid bond at C-4, Porter and Hemingway provided sugar chemistry terminology, 
particularly when defining proanthocyanidin isomers. The words are also used to 
characterize the stereochemistry of the added hydroxyl group at the C-3 position, 
which results in the 2,3-cis (a-OH) and more prevalent 2,3-trans (B-OH) forms. 
However, such language does not accurately describe the metabolic route [16].

2.4 Overall pathways metabolism of flavonoid

Flavonoids, which include chalcones, flavones, flavonols, anthocyanins, and 
proanthocyanidins, are abundant in plants and have been extensively researched 
using biochemical and molecular biology approaches. Until recently, liverworts and 
mosses were thought to be the earliest flavonoid-producing plants. Genes encod-
ing enzymes in the phenylpropanoid biosynthetic pathway, including the first two 
enzymes for flavonoid biosynthesis (chalcone synthase and chalcone isomerase), 
have not been found in the algal genera Chlamydomonas, Micromonas, Ostreococcus, 
and Klebsormidium, whereas genes encoding enzymes in the shikimate pathway have 
been found in algae, liverwort [36].

The overall route to main flavonoid groups via 5,7-hydroxy A-rings. The key inter-
mediates in the production of flavonoids are 4-coumaroyl-coA and 3-malonyl-coA. 
Synthesis of 4-coumaroyl-CoA and malonyl-CoA naringenin chalcone is synthesized 
by chalcone synthase, an enzyme involved in the phenylpropanoid pathway. Naringenin 
chalcone has the ability to spontaneously cyclize to naringenin. Furthermore, nar-
ingenin chalcone synthesizes a variety of chemicals such as chalcones, aurones, and 
biflavonoids (it can synthesize from flavanones). Naringenin has three routes for drug 
synthesis. The first is the direct synthesis of isoflavonoids, followed by the addition of  

Figure 4. 
Chemical structure of the chiral 3-hydroxyflavanones or dihydroflavonols.
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3’ OH to produce eriodictyol, followed by the addition of 5’OH to produce 5’OH-erio 
flavones. Eriodictyol may be combined with 3-OH to get DHQ (dihydroquercetin), 
then with 5’OH to form DHM (dihydromyricetin) to form flavonols and flavan-3,4-di-
ols (it can synthesize flavan-3-ols, proanthocyanidins, and anthocyanidins). Finally, 
adding 3-OH to naringenin results in DHK (dihydrokaempferol) (Figure 5) [16].

3. Liquid chromatography in the analysis of flavonoid metabolism

To show the chemical variety of flavonoids, chromatographic methods have been 
utilized to examine their structures. Previously, the major methods used to analyze 
flavonoids were paper chromatography, thin layer chromatography, column chroma-
tography, and liquid chromatography (LC) [36]. Efficient screening of plant extracts 
may be accomplished using biological assays as well as chromatographic techniques 
such as high-performance liquid chromatography (HPLC) in conjunction with dif-
ferent detection modalities [37]. Because it permits systematic profiling of complex 
plant samples and especially focuses on their identification and consistent assessment 
of the found compounds, HPLC is a potent tool for the quick investigation of bioac-
tive ingredients. Modern HPLC separation of flavonoids nearly entirely uses reversed-
phase liquid chromatography (RP-LC), with significant exceptions being normal 
phase liquid chromatography (NP-LC) for oligomeric proanthocyanins [38] and the 
recent rising use of hydrophilic interaction chromatography (HILIC). Other flavonoid 
separation methods include mixed-mode ion-exchange-reversed phase separation 
of anthocyanins [39–41], size exclusions chromatography (SEC) analysis of flavonol 
glycosides [42], and theaflavins and proanthocyanidins [43]. However, because of the 
infrequent usage of the later modes, this chapter will concentrate mostly on RP-LC in 
line with the extent and predominance of this method in flavonoid literature.

RP-LC has proved its applicability for the separation of flavonoids depending on 
the nature of the aglycone (including the oxidation state, substitution patterns, and 
stereochemistry), the type and degree of glycosylation, and the nature and degree 
of acylation. The vast majority of RP-LC separations are accomplished using C18 

Figure 5. 
Overall pathway to major flavonoid groups with 5,7-hydroxyl a rings (DHK = dihydrokaempferol; 
DHQ = dihydroquercetin; DHM = dihydromyricetin).
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octadecyl-silica (ODS) phases, however, C8 [44], C12 [45], phenyl or phenyl-hexyl 
[46–50], pentafluorophenyl (PFP) [51–53] and polar embedded RP phases [54–56] 
as well as polymeric RP-LC phases were still widely used [57]. Aqueous/organic 
phases including methanol, acetonitrile, and less commonly tetrahydrofuran [58], 
isopropanol [59] or ethanol [57], and acidic modifiers such as acetic acid, formic 
acid, ammonium acetate, or trifluoroacetic acid (TFA) [59] are typical mobile phases 
(phosphoric, citric, or perchloric acids have also been used in combination with UV 
detection, although these are not suited to hyphenation with MS). Highly acidic 
mobile phases (>4–10% formic acid, 0.1–0.6% TFA) [60–63] are utilized for antho-
cyanins to assure the presence of flavylium cationic species in solution and therefore 
increase chromatographic efficiency. To detect and/or identify flavonoids, a variety 
of detectors may and have been used in conjunction with HPLC separation. These 
include electrochemical detection (ED) [64, 65], fluorescence (FL) [66], UV–Vis, 
diode array [59, 67], NMR [68, 69], and of course MS detectors [70, 71]. The most 
prevalent currently are diode array and MS detectors, which will be explored briefly 
in this and the next sections.

3.1 Liquid chromatography (LC) with ultraviolet (UV) detector

Particularly in early flavonoid research, the conjugated aromatic nature of flavo-
noids proved to be a significant advantage: absorption at relatively long wavelengths 
increases the selectivity of qualitative and quantitative spectrophotometric methods, 
and the distinctive spectra of various classes of flavonoids allow differentiation between 
them. These qualities are similarly helpful when HPLC separation is combined with 
UV–Vis detection. Flavonoids exhibit two UV–Vis absorption maxima: Band II (Band 
II), which is attributed to the A-ring, and Band III (Band III), which is attributed to 
the B-ring (Band 274 I). Due to the fact that it offers more specialized information and 
since all flavonoids absorb between 240 and 285 nm, the latter of these is more useful. 
Due to the absence of conjugation between the A and B rings, flavanols, flavanones, 
dihydroflavonols, and isoflavones only display Band II absorption (269–279 nm). 
Anthocyanidins may be easily identified by their Band I absorption between 460 and 
550 nm in the visible range, in contrast to flavonols and flavones, which exhibit Band I 
absorption between 300 and 380 nm [72]. Figure 6 provides typical illustrations of the 
UV–Vis absorbance spectra of the major groups of flavonoids.

Figure 6. 
UV–vis absorbance spectra of the principal classes of flavonoids: (a) Luteolin [73]; (b) quercetin [74].
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In research by Mohamed A. Farag et al., an integrated approach utilizing HPLC–
UV was used for the large-scale and systematic identification of polyphenols in 
Medicago truncatula root and cell culture. UV spectra (200–600 nm) were recorded 
for different flavonoid sub-classes including 26 isoflavones (peaks 1–6, 8, 10, 12, 14, 
19–29, and 31–35), 4 flavones (peaks 9, 13, 18, and 31), 2 flavanones (peaks 21 and 
30), 2 aurones (peaks 7 and 11), and a chalcone (peak 32) with isoflavone represent-
ing the major sub-class. For example, isoflavones typically have a maximum absor-
bance near 255 nm with a second maximum between 300 and 330 nm (peak 34 in 
Figure 7), whereas aurones have the first maximum near 250 nm and the second peak 
around 390 nm (peak 7 in Figure 7) [75].

Kim-Ngan Huynh Nguyen et al.’s study quantified seven major compounds, 
including phenolic acids (chlorogenic acid, caffeic acid, and p-coumaric acid) and 
flavonoids (rutin, quercitrin, quercetin, and kaempferol) in three aerial parts of 
Physalis angulata, that is, leaves, calyces, and fruits. Chromatographic separation was 
carried out on a Kromasil C18 column (150 mm × 4.6 mm i.d., 5 μm) with a gradient 
elution of 0.1% formic acid in acetonitrile, 0.2% ammonium acetate/0.1% formic acid 
in water and methanol at a flow rate of 1.0 mL/min; detection was at 250 and 300 nm. 
The applications of liquid chromatography (LC) with ultraviolet (UV) for the analy-
sis of flavonoid metabolism of plants that show in Table 1 (Figure 8) [81].

3.2 Liquid chromatography (LC) with mass spectrometry (MS)

In contrast to 30 years ago, routine separation and preliminary identification of 
complex mixtures of flavonoids ranging over many orders of magnitude in concentra-
tion are now achievable because of the combination of chromatographic resolution 
offered by HPLC and structural data offered by MS. Furthermore, during the past 
10 years, significant advancements in LC technology have been realized. UHPLC 
(ultra-high pressure liquid chromatography), alternative stationary phases including 
monoliths and superficially porous phases, high-temperature HPLC [82, 83], and 
multidimensional HPLC [84–87] are a few noteworthy advancements.

Cheminformatics methods combined with LC-MS/MS provide a potent tool for 
high-throughput surveys of flavonoid variety [88, 89]. Utilizing straightforward sol-
vent combinations and LC columns, glycosylated, acylated, and prenylated flavonoid 
molecules and their aglycones may be separated. For MS/MS analysis, the isolated 

Figure 7. 
HPLC–UV at 260 nm (a), 1 and 2 represent UV spectra of peak 7 (hispidol 40-O-glucoside) and peak 34 
(afrormosin), respectively [75].
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molecules are ionized next. In order to analyze flavonoids, LC-tandem mass spec-
trometry (LC-MS/MS) has emerged as the method of choice. Algae had previously 
been thought to have no flavonoids. But using an LC-MS/MS technique, flavonoids 
were identified as intermediates and end products, demonstrating the occurrence of 
flavonoid production in microalgae [90]. It implies that the undiscovered flavonoids 
in every plant species can be discovered using cutting-edge metabolomics technology.

With an emphasis on general ionization and fragmentation processes, a brief 
overview of the underlying knowledge pertinent to the MS detection and MS/MS 
structural elucidation of flavonoids will be provided in this part. Additionally, special-
ized research reports provide much more in-depth information on particular classes of 
flavonoids, including dihydroflavonols [91], isoflavones [92], flavone-di-C-glycosides 
[93], flavonoid-aglycones [94], flavonoid-O-glycosides [95], and flavonoid glycosides 
[96]. The discussion that follows will be restricted to the API sources electrospray 
ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmo-
spheric pressure chemical ionization, which are presently the most pertinent LC-MS 

Plant Flavonoid Detection 
wavelength

Stationary 
phases (column 
dimensions)

Mobile phase Ref.

Medicago 
truncatula

isoflavone 
afrormosin, irilone

260-321 nm, 
260-325 nm

C18, 5 μm, 
4.6 × 250 mm 
column

Water (0.1% 
acetic acid) and 
acetonitrile using 
gradient mode

[75]

Brassica 
rapa L. Ssp. 
chinensis L. 
(Hanelt.)

Quercetin, 
kaempferol, 
isorhamnetin

204 nm, 
254 nm, 
352 nm

Alltima HP C18 
column

0.5% 
orthophosphoric 
acid (v/v) in 
30% methanol 
(v/v) and 0.5% 
orthophosphoric 
acid (v/v) in 
methanol

[76]

Lupinus 
albus, Lupinus 
angustifolius

Genistein 
(isoflavone), 
2′-hydroxygenistein 
glycosides

259 nm RP C-18 silica gel A (95% 
acetonitrile, 4.5% 
H2O, 0.5% acetic 
acid; v/v/v)

[77]

Brazilian 
Vernonieae 
(Asteraceae)

flavones, flavonols, 
flavone C-glycosides, 
flavonol O-glycosides

200–600 nm Kinetex 1.7 mm 
XB-C18

Water and 
acetonitrile, both 
with formic acid 
0.1% (v/v) using 
gradient mode

[78]

Sutherlandia 
frutescens (L.)

Four flavonoids 260 nm C18 column Water (0.1% 
acetic acid) and 
acetonitrile (0.1% 
acetic
acid) using 
gradient mode

[79]

Orange juice Flavanones, flavones, 
flavonols

280 nm, 
265 nm, 
265 nm

C18 standard-bore 
column

Aqueous formic 
acid (pH 2.4)/
and acetonitrile 
(80:20, v/v)

[80]

Table 1. 
Applications of liquid chromatography (LC) with ultraviolet (UV) for the analysis of flavonoid metabolism.
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ionization sources (APPI). The applications of liquid chromatography (LC) with mass 
spectrometry (MS) to the analysis of flavonoid metabolism are shown in Table 2.

Shoucuang Wang et al. (2017) researched comprehensive profiling of metabo-
lites in citrus fruits. Non-targeted high-performance liquid chromatography with 
diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-
ESI-MS/MS) was used to profile the metabolites in fruit tissues. As a result, 7416 
metabolic signals were detected. In addition to those reported metabolites, seven 
O-glycosylpolymethoxylated flavonoids were newly annotated in the study. To better 
characterize these flavonoids, the 3′,4′,5,6,7,8-hexamethoxyflavone standard (m70, 
RT 15.3 min, m/z 403.1389, error − 0.5 ppm) was analyzed first. The precursor ions 
of the standard compound lost one to four methyl radicals in the MS/MS spectrum 
to form the base peaks of [M + H - 15]+, [M + H - 30]+, [M + H - 45]+, or [M + H - 
60] + (Figure 9A). The characteristic loss of 162 Da was observed in the MS/MS 
spectra corresponding to the dissociation of a hexose moiety and a series of methyl 
loss of the diagnostic fragments of 15 and 30 Da (Figure 9B–D) [102].

Paola Montoro et al. (2012) researched the metabolic profiles of different extracts 
(obtained by petals, stamens, and flowers) by LC-ESI-IT MS (liquid chromatography 
coupled with electrospray mass spectrometry equipped with an ion trap analyzer). 
MS/MS experiments were diagnostic for the identification of specific fragmentation 
patterns, that is, sugar loss for flavonoid O-glycosides or the loss of specific esterifica-
tion units. Interpretation of the ESI-MS/MS experiment obtained by the analysis of 
Crocus sativus petals extracts allowed us to tentatively identify 31 flavon derivatives in 
the extracts under investigation, mainly glycosidated and metoxilated derivatives of 
kaempferol, quercetin, isorhamnetin, and tamaryxetin (Figure 10) [103].

3.3 High-performance liquid chromatography in chiral flavonoid

Enantiomer separation, resolution, and analysis have traditionally been achieved 
by the transitory or covalent synthesis of diastereoisomers. Diastereoisomers can be 
separated on an achiral chromatographic column by differential contact and retention 
because they have distinct physicochemical characteristics in an achiral environment. 
On a chemically bonded chiral stationary phase (CSP) with an achiral mobile phase, 

Figure 8. 
HPLC chromatogram of the mixed standards solution (a), P. angulata leaves (b). P1–P13: Phenolic acids, 
including P4: Chlorogenic acid, P6: Caffeic acid, and P8: p-coumaric acid. F1–F9: Flavonoids, including F4: 
Rutin and F9: Quercetin [81].
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racemic flavonoid resolution has typically been achieved through chromatographic 
enantiospecific resolution through transient production of diastereoisomers.

In 1980, one of the earliest publications on flavanone glycoside HPLC separation 
appeared. Both naringin and narirutin may be acetylated using an equal mixture of 
pyridine and acetic anhydride and then resolved at low temperatures (between 0 
and 5 OC) [104]. Prunus callus (sweet cherries), oranges, and grapefruit’s prunin 
(naringenin-7-O-glucoside) epimers were initially separated in the middle of the 
1980s using benzoylated derivatives [105]. On Cyclobond I columns, the separation of 

Plant Flavonoids Stationary phase 
(column dimensions)

Mobile 
phase(s)

MS 
analyzer

Ref.

Arabidopsis 
thaliana

Chrysoeriol  
(3′ -O-methylluteolin), 
kaempferol, myricetin, 
and quercetin

A Superspher 100 RP-18 
column

A (95% 
acetonitrile, 
4.5% H2O, 
0.5% formic 
acid, v/v/v) 
and B (95% 
H2O, 4.5% 
acetonitrile, 
0.5% formic 
acid v/v/v)

ESI-QqQ [97]

Citrus fruits Naringin, apigenin, 
eriodictyol, 
homoeriodictyol, 
and hesperetin

Waters BEH C18 
column, Phenomenex 
Kinetex C18 column, 
and Agilent Poroshell 
120 EC-C18 column. 
(2.1 mm × 50 mm, 
1.7 μm)

Water and 
methanol, 
both with 
0.1% formic 
acid

ESI-QqQ [98]

Chenopodium 
hybridum

Rutin, 3-kaempferol Eclipse XDB-C18 
(150 × 4.6 mm, 5 μm

A: 0.1% Acid 
formic, B: 
Acetonitrile 
with 0.1% 
Acid formic

ESI 
QqQ-IT

[99]

Orange peel Kaempferol, 
neohesperidin, 
luteolin, 
homoorientin, 
tangeretin, diosmetin 
formononetin 
quercetin, 
hesperidin, apigenin, 
naringenin, naringin, 
and oleuropein

Mediterranea Sea C18 
(150 × 0.46 mm, 3 μm);

A: 0.1% Acid 
formic, B: 
Acetonitrile 
with 0.1% 
Acid formic

ESI-QqQ [100]

Vitex 
negundo var. 
cannabifolia

Vitexin, hyperoside, 
luteoloside, liquiritin, 
and albiflorin

ACQUITY UPLC 
Cortest C18 
(100 × 2.1 mm, 1.6 μm);

A: 
Acetonitrile, 
B: 5% 
MeOH:H2O 
with 0.1% 
acid formic

ESI-QqQ [101]

*ESI: electrospray ionization; QqQ: triple quadrupole MS, IT: ion trap MS.

Table 2. 
Applications of liquid chromatography (LC) with mass spectrometry (MS) for the analysis of flavonoid 
metabolism.



Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding

102

prunin benzoate and naringin benzoate has also been shown. Naringenin derivatiza-
tion to naringenin tribenzoate and separation on a Chiralcel OD column are also 
mentioned in the literature. Naringenin’s hydroxyl groups may prevent chiral identifi-
cation in this stationary phase as the enantiomers could not be resolved [34].

The main advantage of chiral separation methods over achiral methods is a bet-
ter understanding of the pharmacokinetics of flavanones and the development of 
effective dosing regimens. In the case of racemic flavanones or stereochemically pure 
flavanones, this requires knowledge of the in vivo behavior of the enantiomers and 
epimers. During the drug development process, understanding and comprehending 
the conformational stability of chiral compounds may have a significant influence on 
the pharmacological, pharmacokinetic, and pharmacodynamic data. Using stereospe-
cific analytical techniques, racemization and enantiomerization/epimerization may be 
studied. Rapid interconversion in vivo would eliminate any potential distinctions in the 
enantiomers’ medicinal or harmful effects, making the synthesis of stereochemically 
pure enantiomers useless. Chirality must be taken into account from the beginning of 
the development process for stereochemically pure compounds and racemates [34].

In a study by Gaggeri R et al. (2011), the HPLC enantioselective separation of 
(R/S)-naringenin (Figure 11), a chiral flavonoid found in several fruits juices and 
well-known for its beneficial health-related properties, including antioxidant, 
anti-inflammatory, cancer chemopreventive, immunomodulating and antimicrobial 

Figure 9. 
Mass spectra and structures of polymethoxylated flavonoids glycosides in citrus. (A) 3, 4, 5, 6, 
7,8-hexamethoxyflavone (m070). (B) Dihydroxy-trimethoxyflavone -O-hexoside (m117). (C) 
Hydroxytetramethoxyflavone-O-hexoside (m119). (D) Monohydroxy-hexamethoxyflavone-O-hexoside (m133). 
PMFs, DFI, diagnostic fragment ions of polymethoxylated flavonoids [102].



103

Application of Liquid Chromatography in the Analysis of Flavonoid Metabolism in Plant
DOI: http://dx.doi.org/10.5772/intechopen.107182

activities, has been performed on both analytical and (semi)-preparative scale using 
amylose-derived Chiralpak AD chiral stationary phase (CSP). A standard screen-
ing protocol for cellulose and amylose-based CSPs was firstly applied to analytical 
Chiralcel OD-H and Chiralpak AD-H, as well as to Lux Cellulose-1, Lux Cellulose-2, 
and Lux Amylose-2 in order to identify the best experimental condition for the sub-
sequent scaling-up. Using Chiralpak AD-H and eluting with pure methanol (without 
acidic or basic additives), relatively short retention times, high enantioselectivity, and 
good resolution (Rs = 3.48) were observed. Therefore, these experimental conditions 
were properly scaled up to (semi)-preparative scale using both a prepacked Regispack 
column and a Chiralpak AD column packed in-house with bulk CSP [106]. 

4. Conclusion

Many beneficial health effects have been attributed to flavonoids, which are 
popular in the plant. The study of metabolism and bioavailability is very important in 

Figure 10. 
LC-ESI-MS. TIC and reconstructed ion chromatograms for Crocins qualitative analysis in H2O/EtOH extract of 
Crocus sativus petals [103].

Figure 11. 
(R/S)-Naringenin.
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defining the pharmacological and toxicological profile of these flavonoid compounds. 
Due to great structural diversity among flavonoids, these profiles differ greatly from 
one compound to another, so the most abundant polyphenols in our diet are not 
necessarily the ones that reach target tissues. Therefore, careful analysis of flavonoids 
and their metabolites in biological systems is critical. Several hundred papers on the 
HPLC of flavonoids have been published in the past 20 or so years, yet HPLC methods 
can detect flavonoids across one, two, or perhaps three subclasses in one run. The 
improvements in HPLC flavonoid analysis closely resemble and, to a certain extent, 
build on those in domains like proteomics and metabolomics, which are supported by 
important breakthroughs.
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Chapter 6

Recent Advances in Flavonoid 
Metabolism: An Updated Review
Indireddy Theja and Banoth Ramya Kuber

Abstract

Flavonoids are polyhydroxylated natural chemicals that have been shown to 
improve human health. These are a type of bioactive molecules that can be found 
in abundance in plants. These polyphenolic chemicals are naturally generated from 
plant metabolites. Before entering the intestine, flavonoid glycosides are deglycosyl-
ated, while aglycones can readily pass-through cell membranes. They are absorbed 
and transferred to the liver, where they undergo substantial metabolism, resulting in 
glucuronides, sulfates, and methylation compounds. These conjugates are responsible 
for the health-promoting possessions of flavonoids. The flavonol subclass was the first 
to be researched, with quercetin as the most common dietary flavonol, and informa-
tion on other flavonoid subclasses is still developing. Cellular signaling pathways 
mediate the antidiabetic benefits of dietary flavonoids in the pancreas, liver, and 
skeletal muscle. Flavonoids modulate distinct signaling pathways in pancreatic cells, 
hepatocytes, adipocytes, and skeletal myofibers via acting on various molecular 
targets. Flavonoids may help people with diabetes firstly by improving hyperglycemia 
through glucose metabolism regulation in hepatocytes and secondly by reducing insu-
lin resistance, inflammation, and oxidative stress in muscle and fat and by increasing 
glucose uptake in skeletal muscle and white adipose tissue. A greater understanding 
of the flavonoid pathway’s regulatory mechanisms would likely favor the progress of 
novel bioprocessing techniques for the production of value-added plants with optimal 
flavonoid content.

Keywords: deglycosylated, hyperglycemia, molecular targets, plant metabolites, 
polyhydroxylated natural chemicals

1. Introduction

Flavonoids are secondary metabolites found in high concentrations in vascular 
florae and minor amounts in lichens. They get to build up in all structures and mat-
ters at various periods of expansion and in response to conservational factors. These 
compounds are of prodigious significance to social nourishment and wellbeing, and 
their many characteristics in plant progress and variation in the atmosphere. They do 
help in the organoleptic eminence of plant-derived goods, as well as being helpful to 
social wellbeing and cell aging anticipation. Increased consumption of vegetables and 
fruits has been known to protect against cancer and cardiovascular disease. These are 
a major class of natural antioxidants found in a plant-based diet and may have a role in 
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this protective effect. Fruits (cherry, grapes, and apple), vegetables (onion, broccoli, 
and spinach), beverages (coffee and tea), soy products, and basils are all good sources 
of flavonoids [1]. They can be found inside the cells of all plant tissues as well as on 
the exteriors of many plant tissues. The phenylpropanoid unit, C6C3, is a common 
building component in the carbon skeleton of these phenols. This route creates a wide 
range of plant phenols during biosynthesis. The molecular structure of this class of 
composites is created on a diphenyl propane (C6-C3-C6) skeleton with 2 aromatic 
rings joined by a 3-carbon “bridge” to form a 6-member heterocyclic ring. Flavonoids 
are classified into 3 groups based on the aromatic ring’s link to the heterocyclic ring: 
flavonoids (2-phenylbenzopyrans), isoflavonoids (3-phenylbenzopyrans), and 
neoflavonoids (4-phenylbenzopyrans) [2]. They can be separated into numerous sets 
based on the degree of oxidation and saturation in the heterocyclic C-ring, as shown 
in Figure 1. Hydroxylation occurs in positions 3, 5, 7, 3′, 4′, and/or 5′ in flavonoids. 
Methylated, acylated, prenylated, or sulfated hydroxyl groups are frequently found. 

Figure 1. 
Subclasses of flavonoids.
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Flavonoids are commonly found in plants as O- or C-glycosides. Sugar substituents are 
destined to a hydroxyl group of the aglycone, commonly at site 3 or 7, in O-glycosides, 
whereas saccharide groups are connected to a carbon of the aglycone typically at site 
C6 or C8 in C-glycosides. Rhamnose, glucose, galactose, and arabinose are the most 
common saccharides. Plant metabolism, defense, signaling, disease, and symbiosis all 
benefit from flavonoids [3, 4]. These chemicals are accountable for floral color and are 
implicated in stress retort mechanisms, such as UV-B radiation [5, 6], microbial  
infection [7], and herbivore attacks by animals and insects [8].

2. Role of flavonoids in plant development

Polyphenols are a wide class of phenolic chemicals that includes flavonoids. 
Phenolic chemicals were important during evolution because they helped plants for the 
adaptation to life on land. At least 6000 molecules make up the flavonoid family, which 
could be split into, aurones, phlobaphenes, isoflavonoids, flavonols, flavones, antho-
cyanins, and flavonols [9]. The general phenylpropanoid route is utilized to produce 
these compounds from the starting compound phenylalanine. Several divisions of the 
general phenylpropanoid pathway supply precursors for synthesizing hundreds of 
chemicals. Lignins are structural polymers that give the secondary cell wall strength 
and stiffness and are necessary for waterproofing vascular cells [10]. Anthocyanin 

Figure 2. 
Biosynthetic route for phenolic compounds.
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pigments are generated from the flavylium cation (2-phenyl benzo pyrylium) and are 
glycosylated anthocyanidin precursors, as shown below in Figure 2.

This subgroup contains at least 400 molecules that range in hue dependent on 
pH, co-pigmentation, obtainable positive metallic ion, and backbone alterations. The 
color ranges from orange-red to purple. They are synthesized in the ground plasm and 
subsequently stored in the follicle. They are also present in cell membranes, chloro-
plasts, centers, and even the extracellular space, depending on the plant types, mate-
rial, or phase of progress. Flavonoids, and phenolic chemicals, play a role in biotic 
stress resistance [11]. Since most of these chemicals have antibacterial and pesticide 
capabilities, serving as a vile and preventing pest progress and change, they may be 
constitutively produced or gather in retort to the bacterial incursion. In addition to 
their many activities in plants, Flavonoids have a wide range of medical, pharmaco-
logical, and nutritional qualities, earning them the moniker “nutraceutical” chemicals 
[12]. These metabolites provide promise for the prevention of a variety of illnesses, 
including cancer. They cause cancer cells to die, stimulate DNA repair, protect them 
from oxidative stress, and prevent cancer cells from multiplying [13].

3. Metabolism of flavonoids

In the uptake of flavonoids, two major compartments must be considered. The 
first compartment contains tissues such as the small intestine, liver, and kidneys. The 
colon is the body’s second compartment (Figure 3). Flavonoids that have been con-
sumed and then released with bile will make their way to the colon. Although around 
40% of the absorbed ()-catechin was released in rats, the role of biliary secretion in 
humans is unclear in the small intestine with bile [14]. Metabolism of flavonoids in 
tissues and in the colon is discussed below in detail.

3.1 Metabolism in tissues

Biotransformation enzymes operate on flavonoids in the first compartment, 
including the small intestine and liver. Flavonol biotransformation enzymes can 
also be found in the kidney. Flavonoids and their colonic metabolites have been 
found to have polar hydroxyl groups conjugated with sulfate, glucuronic acid, or 
glycine [15]. Furthermore, O-methylation of flavonoids and their colonic metabo-
lites by the enzyme catechol-O-methyltransferase is significant in the inactivation 
of the catechol moiety, that is, the two contiguous (ortho) aromatic hydroxyl 
groups. The conjugation reactions are exceedingly efficient in humans, as indicated 
by the fact that flavonoids primarily appear as conjugates in plasma and urine and 
that flavonoid aglycones in plasma are difficult to detect since they are mainly 
below the analytical methods’ detection limits. Differential (HPLC) tests demon-
strate the existence of flavonoid conjugates in humans, including O-methylated 
couples, with and deprived of hydrolysis of the model with a combination of 
b-glucuronidases and sulfatases: flavonols, flavones, catechins, flavanones, and 
anthocyanins. Anthocyanins, on the other hand, take a diverse approach. The 
indication is mounting that anthocyanidin glycosides can tolerate deglycosyl-
ation events in humans, at least in part. LC-MS [16] has revealed the presence of 
peonidin-3-glucoside, as well as peonidin-3-sambubioside [17] and pelargonidin-
3-glucoside in urine.
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3.2 Metabolism in the colon

Microbes break down the flavonoid fragment, splitting the flavonoid core, i.e., 
heterocyclic oxygen-containing ring, and the breakdown products are detected in 
urine and plasma. Several hydroxylated phenyl carboxylic acids are among them. 
Flavonols are broken down into phenylacetic acids and phenyl propionic acids. 
However, the effects of these phenyl propionic acids have yet to be proven in humans 
[18, 19]. In bodily tissues, these phenyl carboxylic acids are extra degraded by bacteria 
and transformed by enzymes. The phenyl propionic acids will be oxidized to benzoic 
acids as a result. Although roughly 60 possible phenolic acid metabolites were recog-
nized and measured, only a small amount of phenolic acids were discovered. Hippuric 
acid, the glycine ester of benzoic acid, was an actual significant metabolite in people 
who had subsequent tea consumption [19, 20]. Microorganisms in the colon have 
been found to show an imperative role in the conversion of flavonoids to phenolic 
acids. Colonic bacteria generate glucuronidases, glycosidases, and sulfatases, which 
can shred flavonoid conjugates of their sugar moieties, glucuronic acids, and sul-
fates, in addition to the destruction of the flavonoid ring structure O-glycosides and 
C-glycosides that could be hydrolyzed by human gut bacteria [21].

3.3 The extent of metabolism of flavonoids

Flavonols were the initial to be examined, and human urine excretion was found 
to be quite modest. Only 0.1 percent to 3.6% of quercetin in the diet was eliminated in 

Figure 3. 
Compartments involved in the metabolism of plant phenols.
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urine as quercetin conjugates. The sum of complete quercetin in blood plasma will be 
correlated with urinary excretion. Because the fascination of quercetin glucosides is 
high (up to 50%), while the evacuation of whole quercetin in urine is low, this indicates 
that quercetin undergoes substantial metabolism. Additional subclasses were investi-
gated with helpers, and urine evacuation of metabolites with intact flavonoid struc-
tures was measured. Isoflavones have the highest rate of excretion of all flavonoids. 
Although isoflavones have a high bioavailability, flavonols glucosides have a higher 
bioavailability but a lower urine elimination. This would suggest that with isoflavones, 
the ring arrangement’s metabolic modification level is less than through flavonols.

4. Recent advances in the role of flavonoids

Plant metabolites containing one oxygenated ring and two aromatic rings are 
known as flavonoids. Flavonoids are categorized depending on the degree of oxida-
tion of their carbon rings; they can then undergo glycosylations, hydroxylations, 
acylations, methylations, or prenylations to modify their properties. As a result of 
these modifications, a new emergence of a huge number of different chemicals with 
varied functions in plants has occurred. UV wavelengths absorb all flavonoids, which 
are mostly present in the epidermis of plant cells and are produced in response to UV 
exposure. As a result, it has been proposed that they shield plants from this type of 
radiation. Anthocyanins, which absorb light in the visible range, are an example of 
flavonoids that absorb light at various wavelengths. Furthermore, certain flavonoids 
have antioxidant properties, which implies they serve as reactive oxygen species 
scavengers. However, most findings to date have remained based on in vitro studies, 
with little indication of how their functions are carried out in real life. In this assess-
ment, we discuss recent advances in the study of the role of flavonols, flavones, and 
anthocyanins, three of the most prevalent flavonoids, in protecting plants from UV 
and high light exposure [22].

4.1 Advances in topical drug delivery

Topical delivery is one of the greatest popular methods for overcoming the dis-
advantages of other methods such as parenteral, oral, and so on. Oral distribution of 
phytochemicals is undesired due to the drug’s distinctive flavor and odor, as well as 
the possibility of gastrointestinal (GI) breakdown until absorption [23].

4.1.1 Flavonols

Flavonols are O-glycosidic, ketonic chemicals with a 3-position sugar fraction. 
Flavonols are antioxidants that prevent the development of ROS. Due to UV, ozone 
radiation, and other damaging substances, the skin is the most prevalent target for 
oxidative stress. The combination of conjugated double bonds in the C-ring and adja-
cent hydroxyl groups in the B-ring gives flavonols their antioxidant properties [24]. 
Quercetin, kaempferol, myricetin, and other compounds are included in this class.

4.1.2 Quercetin

Quercetin is a flavonol in various foods, including leafy greens, citrus fruits, ber-
ries, and other fruits and vegetables. Quercetin inhibits edema, leukocyte production, 
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and irritation. It helps reconstruct the skin’s structure by endorsing the synthesis of 
new collagen fibers and generating ground substances [25]. Inflammatory mediators 
such as interleukins (IL) and prostaglandins (PGs), which are generated by COX, 
LOX, and LPS, are likewise suppressed by quercetin. The enzyme nitric oxide syn-
thase, which also creates reactive nitrogen species like peroxynitrite, produces nitric 
oxide (NO), an inflammatory mediator. Quercetin is an antioxidant that prevents 
oxidative stress by inhibiting all of the mediators that cause it [26]. It avoids cell death 
by inhibiting the caspase-3 pathway and lowers mast cell development by inhibiting 
mast cell synthesis has an anti-allergic impact on histidine decarboxylase, IL-6, and 
monocyte chemoattractant protein (MCP-1).

4.1.3 Kaempferol

Kaempferol is primarily present in berries and plants of the allium and brassica 
family. It has antineoplastic, anti-inflammatory, and anti-allergic properties. It works 
as an anti-inflammatory drug by inhibiting NO synthase, which produces NO, a 
pro-inflammatory mediator. With the help of nuclear factor-inducing kinase (NIK) 
and mitogen-activated protein kinase (MAPKs), it also suppresses (NF-kappa B) 
[27]. It also inhibits COX-2 via decreasing nitric oxide synthase and TNF-, resulting in 
anti-inflammatory action. However, because kaempferol suffers significant first-pass 
metabolism and has a bioavailability of about 2%, topical application is preferable. 
UVB-induced cancer and photo-inflammation are treated with kaempferol, a new 
drug. It has been tested in skin cancer patients who have high levels of COX 2 enzymes. 
JB6 P+ mouse epidermal cells reduce AP-1 (Activator protein) activity via reducing 
COX-2. To test for AP-1 transactivation, JB6 P+ mouse epidermal cells were transfected 
with a luciferase reporter plasmid containing AP-1, and it was discovered that kaemp-
ferol reduces COX and AP-1 activities in a dose-dependent way, assisting in anticancer 
activity. The protooncogene tyrosine protein-kinase Src (Src) is a protooncogene that 
plays a key role in cell propagation, differentiation, and survival. Src activity is inhib-
ited by kaempferol, which strives with ATP for the Src requisite position.

4.2 Flavanones

Consequent to the flavones origin, these fragrant ketones in citrus fruits like 
oranges and lemons. As a byproduct of citrus farming, a substantial quantity of 
hesperidin is produced. They are cytotoxic and inhibit tumor development; therefore, 
they might be used as anticancer drugs. Flavanones also serve as an anti-inflamma-
tory and constrain protein tyrosine kinase, affecting cell development, distinction, 
mitosis, and death [28].

4.2.1 Hesperetin and hesperidin

Hesperidin has anti-inflammatory, antidiabetic, neuroprotective, and other proper-
ties. The aglycone component of hesperidin has antioxidant and anti-inflammatory 
properties by intruding with arachidonic acid, inhibiting COX and LOX enzymes, and 
limiting inflammatory mediator production [29]. It can whiten skin by reducing hyper-
pigmentation caused by UV radiation. Hesperetin and hesperidin generate anti-allergic 
action by constraining the issue of histamine from mast cells. They can also lower HMG 
CoA reductase and acyl CoA levels, resulting in a hypolipidemic effect. Hesperetin has a 
log P value ranging from 1.7 to 2.20, making it lipophilic and hard to absorb orally.
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4.2.2 Naringenin

Naringenin has numerous properties, including antioxidant, antidiabetic, 
anti-inflammatory, and antineoplastic properties. It demonstrates antioxidants. 
MC1R: Melanocortin 1 receptor, MSH: Melanocyte stimulating hormone, MiTF: 
Microphthalmia associated transcription factor, Type-1: Tyrosinase related 
protein 1, Type-2: Tyrosinase related protein 2, ASIP: Agouti signaling protein] 
[− MSH: Melanocyte stimulating hormone, MC1R: Melanocortin 1 receptor, 
MiTF: Microphthalmia associated transcription factor, Type-2: Tyrosina Journal of 
Controlled Release 296 (2019) 190–201 R.L. Nagula, S. Wairkar 195 acts via chelating 
metal ions and constraining xanthine oxidase, averting oxygen radical generation and 
lipid peroxidation. It can also scavenge ROS through the ∙OH substitution. Because 
naringenin is hydrophobic and has low solubility and bioavailability, it can be used 
topically to create an effective formulation [30].

4.3 Flavanols

They are not to be mistaken with flavonol since they lack the ketone group. 
Epigallocatechin-3-gallate, proanthocyanidins, and other members of this class are 
included. Tea, chocolate, and a variety of vegetables and fruits contain them naturally 
[31]. The FDA, for use in a variety of medicinal formulations, has approved catechins 
and their derivatives.

4.3.1 Catechins

Catechins have antioxidant, photoprotective, anti-aging, anti-inflammatory, 
anticancer, neuroprotective, cardioprotective, antiviral, and antibacterial properties, 
among others. Epigallocatechin and epicatechin are abundant in grape seed extract 
and tea polyphenols. By scavenging free radicals, it has an antioxidant action [32]. 
Anti-inflammatory action is induced via inhibiting the COX enzyme, NO, PGs, and 
H2O2 production. Catechins help wounds heal faster by foraging free radicals at the 
wound site.

4.3.2 Anthocyanins

Anthocyanins are colorful glycosylated, water-soluble pigments that give fruits 
and vegetables their blue, red, and purple hues. They have been revealed to have 
antioxidant, anti-inflammatory, and depigmentation qualities in numerous scientific 
research.

Delphinidin contains anti-inflammatory, antioxidant, antitumorigenic, and 
antiangiogenic effects and is identified to suppress osteoclastogenesis in osteoporosis. 
Delphinidin inhibits the production of seditious intermediaries such as iNOS, NO, 
IL-6, MCP-1, and TNF-, which are produced when LPS inhibits the NF-B pathway 
and MEK1/2-ERK1/2 signaling [33]. It was tested for psoriasis on flaky skin mice 
and shown to reduce epidermal thickness. Infiltrating macrophages and caspase 14 
downregulation were also seen. Keratin-14, which induces hyperproliferation, was 
also reduced. By inhibiting keratin-14, delphinidin serves as an antiproliferative. The 
level of pathological indicators of psoriasis lesions is reduced when delphinidin is 
applied to flaky mouse skin.
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4.3.3 Role of anthocyanins in promoting human health

Anthocyanins may play a beneficial role in human health, according to numer-
ous research. They function as neuroprotective agents and have antidiabetic and 
antiobesity properties. These substances could be helpful in lowering inflammation 
and protecting the heart [34]. Additionally, they appear to be effective in halting 
and preventing the spread of cancer. The biological activity of anthocyanins in rats 
was recently confirmed by a study by Vanzo and colleagues [35], where the ability 
of anthocyanins to influence mammalian metabolism was shown in an investigation 
of metabolomic changes in the brain and plasma of adult rats after intravenously 
administering cy-3- glc [36]. In the blood, kidneys, and liver of rats, it was demon-
strated that cy-3-glc changes a number of significant cellular metabolites, including 
bile acids, glutathione, oxidized glutathione, and certain lipids [35]. Due to the high 
anthocyanin concentration in blueberries, this fruit may be a food that improves or 
promotes health. Routray and Orsat [37] provided evidence for this in a study that 
analyzed a number of factors related to the potential health effects of anthocyanins, 
emphasizing understanding [35].

Prebiotics present in brown rice, such as arabinoxylan and -glucan, are advanta-
geous for the Bifidobacterium and Lactobacillus that make up the human gut micro-
biota. They are thought to play a part in creating an anti-obesity impact. Additionally, 
brown rice was employed as a preventative measure for type 2 diabetes due to its 
antidiabetic benefits. This is probably because one of their constituents, −oryzanol, is 
crucial in regulating the ER stress brought on by a high-fat diet in the hypothalamus, 
which aids in lowering the desire for fatty foods. Additionally, brown rice’s oryzanol 
has been shown to lower blood cholesterol levels and stop pancreatic cells from dying. 
Through their antioxidant action, dietary rice brans, which give brown rice its brown 
color, also demonstrate powerful anticancer properties [37, 38].

5. Biotechnological applications of flavonoids

Accepting the complex control of flavonoid production has apparent implications, 
such as the generation of distinct flower colors and fruit types with appealing esthetic 
and/or agronomic traits, thereby increasing natural selection that has happened 
from the beginning of time. Petunia an1 (bHLH) or an2 (MYB) variations, morning 
glory Ipivs (bHLH), c (InMYB1), and ca (InWDR1) mutants, and gentian GtMYB3 
mutants have all been characterized as having flowers with a diversity of coloration 
produced by mutations in the encrypting arrangement of one or more components 
of the MBW composite. An alteration produces the lack of coloration in fruits in the 
coding arrangement of the MYB genetic factor VvMYBA2 and MrMYB1, as well as a 
jumping gene pullout in the promoter of the MYBA1 gene. Grape berry and Chinese 
bayberry are two examples. Manipulation of flavonoid production to produce fruit 
and vegetables high in antioxidants and nutritious components, befitting the moniker 
“superfruit. Nutraceuticals,” would be of prodigious importance to human wellbeing 
than ever [39]. Anthocyanin accumulation was caused by the ectopic appearance of the 
MYB-encoding gene LeANT1 in tomato skin and subepidermal cell layers. Likewise, 
co-expression of the bHLH Delila and MYB Rosea 1 genes below the regulator of the 
fruit-specific promoter E8 resulted in a significant upsurge in anthocyanin pigments 
in the flesh and skin resulting in dark purple fruits. Their lifespan was significantly 
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increased when cancer-prone p53 knockout mice were given these transgenic toma-
toes. This study is the first step in developing fruits that are high in flavonoid bioactive 
components and might be part of a healthy daily diet. MdMYB10 and IbMYB1 are two 
genes that control anthocyanin accumulation in apples [40]. This flavonoid is found by 
modifying the expression of these commonly eaten foods. The content of these foods 
might be raised. In tomatoes, constitutive expression of ZmLc, Delila, and MYC-RP/
GP led to anthocyanin accumulation in aerial tissues and roots, suggesting that plant 
transformation with bHLH transcription factors may be investigated. Finally, increas-
ing PA content in forage crops (mainly alfalfa and clover) may assist in preventing 
pasture bloat in ruminant animals by delaying fermentation in the rumen. PA accu-
mulation may arise from overexpression of ZmLc in alfalfa leaves. Overexpression of 
ZmSn in the bird’s foot trefoil increased PA biogenesis and anthocyanin accumulation 
in certain leaf areas. However, constitutive expression of a transgene in many circum-
stances under Ecological pressure, such as cold and bright light, is necessary since a 
heterologous system is insufficient to stimulate flavonoid accumulation automatically. 
In Arabidopsis 35S::PAP1 plants, for example, poor growth circumstances led to the 
downregulation of positive regulators and the overexpression of putative transcrip-
tional repressors AtMYB6, AtMYB3, and AtMYBL2 [41].

6. Utilizing modern technology to research the flavonoid pathway

We currently have extraordinary knowledge about how different chemical compo-
nents in plants are controlled in abundance, thanks to the recent rapid development 
of metabolomics and the use of varied populations for genetic mapping [42]. In a 
population of rice Zhenshan 97 and Minghui 63 recombinant inbred lines (RILs), 
metabolic QTL were discovered using high-throughput genotyping and metabolomics 
data, and some of the candidate genes for flavonoid content were further validated 
by looking at over-expression transgenic rice lines [43]. Flavonol 3-O-gentiobioside 
7-O-rhamnoside (F3GG7R) synthesis in an Arabidopsis RIL population has recently 
been linked to a novel gene (BETA GLUCOSIDASE 6; BGLU6) [44, 45]. Following 
genome wide association studies (GWAS) on a diverse maize population that revealed 
the genetic effects underpinning metabolic heterogeneity, hundreds of loci related 
with metabolites from numerous pathways, including flavonoid metabolism, were 
found in maize [46]. The co-expression and direct target genes of the R2R3-MYB 
transcription factor P1 were also studied using near isogenic lines (NILs) carrying 
P1-rr and P1-ww. This discovery marked a significant advancement in our understand-
ing of P1’s gene regulation circuitry because targeted molecular tests showed that P1 
regulates some well-known genes involved in flavonoid biosynthesis, such as FLS1 and 
A1 [47]. The corn earworm (Helicoverpa zea), which may cause significant damage to 
maize in the Americas, is naturally resistant to maysin (C-glycosyl flavone), which is 
contained in maize silks. Through QTL mapping [29] in 2004, two loci that can impart 
the salmon silks phenotypes salmon silks 1 (sm1) and salmon silks 2 (sm2) were found. 
Additionally, earlier genetic investigations suggested that P1 would be epistatic to 
the salmon silk mutation [13]. The molecular identification of the sm1 and sm2 gene 
products is revealed as an UDP-rhamnose synthase and a rhamnosyl transferase, 
respectively, based on the knowledge of the genes regulated by P1 and the existing sm1 
and sm2 mapping information [48, 49]. The maysin biosynthetic pathway is therefore 
finished with the molecular characterization of sm1 and sm2.It can thus be anticipated 
that deep probing of further profiling studies will facilitate the elucidation of the 
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genetic complexity of maize flavonoid biosynthesis. Indeed, integrative approaches are 
increasingly applied to enhance our understanding of metabolic pathway structure and 
regulation and how these affect the end-phenotypes of plants [50].

7. Conclusion

Over the last 5 years, our understanding of the metabolism of entire subclasses 
of flavonoids has progressively improved. Flavonoids are probable nutraceuticals 
abundantly distributed in vegetables and fruits, given the special focus on wellbe-
ing and illness anticipation over stable nourishment incorporating ordinary goods. 
This information is crucial for fully assessing their possible health implications, and 
it still needs to be expanded. We still need to explore information on the quantities 
and metabolic forms of flavonoids that tissues and cells get exposed to after their 
consumption. The next stage is investigating possible biological impacts at the tissue 
and cellular levels. New genomic approaches will open up a world of possibilities 
in this discipline. Knowing which metabolites will reach tissues and cells, at what 
concentrations, and to what extent they will be taken up and changed in cells after a 
flavonoid-rich diet is crucial. The high-throughput genomics technologies will then 
help us better understand how flavonoids influence metabolic paths and, as a result, 
improve social health.
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Abstract

Flavonoids are secondary metabolites that perform a wide range of roles in plants. 
These include their involvement in plant growth, pigmentation, and UV protection, 
to a variety of defense and signaling activities. Flavonoids such as chalcones, flavones, 
flavanols, anthocyanins, and proanthocyanins are widely distributed in the plant 
kingdom. The metabolic routes of the flavonoids are exploited extensively using 
several biotech approaches to enhance the crop variety and incorporate varied nutri-
tional benefits. Many flavonoids are key components of medicinal plants and possess 
nutritional significance. Specific mutations in flavonoid-related genes are typically 
responsible for the diversity in flavonoids, resulting in quantitative and qualitative 
variations in metabolic profiles. Thereby numerous attempts have been made to 
increase flavonoid content in agronomically important species. Flavonoids are also 
employed in the regulation of inflammation, in arthritis, and in cancer prevention 
strategies, due to their ubiquity in the human diet. Advances in the comprehension of 
flavonoid biosynthesis and modulation have prompted a surge in researches aiming at 
modifying the flavonoid pathway to improve nutritional value, plant defenses against 
infections and the feeding value of livestock. This chapter briefly discusses the varied 
role of flavonoids, their biosynthesis, and their distribution over the plant kingdom. 
Furthermore, it exclusively highlights the several biotech-based trending pieces of 
research based on introducing flavonoid biosynthesis in commercial crops.

Keywords: biosynthesis, crop breeding, flavonoids, genetic engineering, 
mediterranean crops, plasticity

1. Introduction

1.1 What are flavonoids?

Flavonoids are naturally occurring secondary metabolites in plants, possessing 
a polyphenolic structure. They are widely distributed in the leaves, seeds, barks, 
flowers, fruits, and vegetables. Over 8000 flavonoids have been identified to date and 
most of them have been found to be engaged in various biological activities in plants, 
animals, and bacteria. Apart from imparting pigmentation in plants, flavonoids 
afford protection against UV radiation, herbivores, and pathogens [1–3]. In addition, 
flavonoids have also been found to serve as detoxifying and antimicrobial defense 
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agents in the animal world. They appear to have played a significant part in the effec-
tiveness of ancient medicinal therapies, and since then, their usage has continued to 
this day. Notably, detailed pieces of evidence from various studies have confirmed 
flavonoids’ role in growth metabolism and gene regulation as well [4].

1.2 Structure and types of flavonoids

The name ‘Flavonoids’ refers to a group of plant pigments generated mostly from 
benzo-γ-pyrone (Figure 1). Advanced techniques such as [1H-1H]-correlated spec-
troscopy, [1H]- and [13C]-NMR spectrometry, X-ray diffraction, mass spectrometry, 
circular dichroism, and optical rotatory dispersion help us to analyze and elucidate 
the flavonoid structures and configurations [4]. The class of flavonoids primarily 
comprises of anthocyanidins, proanthocyanins, flavonols, iso-flavonoids, chromones, 
flavones, iso-flavones, flavanes, flavanones, flavanols, catechins, aurones, benzo-
furones, and coumarins.

The variability observed in the flavonoids mainly occurs due to differences in the 
following features:

1. Changes in the aglycone’s ring structure and state of oxidation/reduction.

2. Variations in the aglycone’s hydroxylation extent and the locations of hydroxyl 
groups.

3. Various methods of derivatizing the hydroxyl groups, such as using methyl 
groups, polysaccharides, or isoprenoids [4].

Flavonoids exhibit a range of beneficial effects in human health like

1. anticholinesterase activity and combating neurodegenerative diseases [5].

2. anti-inflammatory activity [6].

3. steroid-genesis modulators [5].

Figure 1. 
Basic structure of flavonoid.
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4. xanthine oxidase modulator [7].

5. radical scavenging agent [8].

6. anti-carcinogenic activity [6].

1.3 Role of flavonoids in plants

Flavonoids are responsible for distinct flavor and color, which draw pollinators, 
as well as characteristic color and fragrance of flowers. Additionally, they facilitate 
the germination of seeds and spores, as well as the growth and development of 
seedlings, by fruit dispersal. Plants can be protected from biotic and abiotic chal-
lenges by flavonoids, which also operate as UV filters, signal molecules, phytoalexins, 
detoxifying agents, and antimicrobial defense components. They are recognized for 
their ability to frequently play a useful role in the capacity of plants to adapt to heat, 
to cold, to frost, to drought, and to both. Early advances in floral genetics have mostly 
been made by mutation techniques that impact flower colors that are produced from 
flavonoids, and it has been proven that plants that are involved in flavonoid produc-
tion are capable of functional gene silencing [1].

1.3.1 Role in pigmentation

Flavonoids play a prominent role in floral coloration, as well as pollinator attrac-
tiveness and UV protection [9, 10]. A study on Papaver flowers has revealed that the 
spatial occurrence of flavonoids is responsible for its wide-range variation in flower 
color [11]. Approximately 8000 flavonoids contribute to the vibrant colors seen in 
fruits, herbs, vegetables, and medicinal plants.

1.3.2 Role as a growth regulator

Flavonoids have the ability to regulate auxin movement and catabolism. Recent 
research has revealed that flavonoids are capable of modulating protein activity dur-
ing cell growth [12].

1.3.3 Role in nitrogen metabolism

Flavonoids, through inducing root nodulation, play a significant role in nitro-
gen metabolism in nitrogen-fixing plants. Dinitrogen-fixing bacteria, such as the 
Rhizobium strain, exist in symbiosis with leguminous plants and are found in these 
nodules. The major action of flavonoids is likely to be the stimulation of genes that 
express proteins necessary by nodule cells, but because they are antioxidative, they 
are also well adapted to participate in dioxygen removal [4].

1.3.4 Role in combating oxidative stress

As a result of a variety of biotic and abiotic stimuli causing oxidative stress, 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in 
plants. Nearly all of the increase in flavonoid synthesis in plants comes from oxidative 
stress. Flavonoids like mono-apigenin and mono-kaempferol and dihydroxy B-ring-
substituted (Luteolin and Quercetin) flavonoid glucosides reduce ROS generation, 
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quench ROS once they have formed, and absorb the UV-B and UV-A wavelengths. 
When early plants went from the water to the land, flavonoids performed key UV-B 
screening roles. The type of substitution on distinct rings of flavonoids determines 
the extent of antioxidant capability and ability to absorb UV wavelengths [12].

1.3.5 Role in defense against pathogens and insects

Flavonoids in plants are also helpful in protecting plants from harmful bacteria 
and fungus. Catechins and other flavanols potentially act as a plant’s defensive mecha-
nism against insects that are damaging to it [13–15].

2. Flavonoid metabolism and Biosynthesis

2.1 Distribution of Flavonoid subclasses in the plant kingdom

According to study, flavonoids may be found in angiosperms, gymnosperms, and 
pteridophytes. Due to the wealth of information available on flavonoids in many spe-
cies, flavonoid subclasses (such as anthocyanins, chalcones, flavones, flavonols, and 
proanthocyanidins) are present in each subgroup of plants can be identified. Flavone 
and flavanone are present in all plant groups, with the exception of hornworts. Plant 
families that produce flavonoid subclasses have evolved and diversified as well. For 
instance, the angiosperms have the most varied flavonoid aglycones. The liverworts 
Radula variabilis and Radula spp. contain prenyldihydrochalcone, whereas more than 
1000 prenylflavonoids have been found in legumes. These results indicate that either 
the two plant groups independently evolved the ability to make prenylflavonoids or 
that many species lost this capacity over evolution. Flavonoid molecules show that 
plants have genes for the manufacture of flavonoids. Therefore, analytical approaches 
for identifying flavonoids are necessary to comprehend the evolution of flavonoid 
metabolism in the plant kingdom [16] (Figure 2).

2.2 Evolution of Flavonoid metabolism

The enzymes, chalcone isomerase (CHI) and isoflavone reductase in 
Chlamydomonas, dihydrokaempferol-4-reductase and naringenin chalcone synthase 
(CHS) in Phaeodactylum, and CHI and dihydroflavonol reductase in Ectocarpus were 
created as a result of several evolutionary processes in representatives of bryophytes 
(mosses), liverworts, and hornworts. CHI-like enzymes were discovered in certain 
proteobacteria and fungi, and they may have been acquired by horizontal gene 
transfer. Contrarily, the recruitment and gene duplication of polyketide synthases and 
oxoglutarate-dependent dioxygenases from primary metabolism, respectively, led to 
the evolution of CHS and F3H. The first three flavonoids, chalcones, flavanols, and 
flavones, were created as a result of the CHS, CHI, and F3H activities. These metabo-
lites, which have not altered in 500 million years, are essential intermediates in today’s 
irreducibly complicated flavonoid manufacturing pathways in plants [17, 18].

The number of key events that sparked the flavonoid pathway’s gradual rise, 
variety, and evolutionary successes are:

• the recruitment of enzymes from fundamental metabolisms, such as the 
polyketide, phenylpropanoid, and shikimate pathways
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• horizontal gene transfer between bacteria and fungi in plant/algal symbioses

• variations in the substrate selectivity and regiospecificity (the ability to change 
specific regions of the substrate molecules) of metabolic enzymes (ability to 
bind to different substrates)

• modifications in the regulation of the flavonoid gene

Figure 2. 
Distribution of flavonoids in plant kingdom and their respective structures.
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• the flexibility of flavonoid pathways and their capacity to shift intermediate 
molecule fluxes towards the production of complex scaffolds of quite varied 
chemicals depending on the needs of the local ecosystem.

More than 10,000 of these compounds have been found in over 9000 current plant 
species as a result of these evolutionary processes, making flavonoids one of the most 
extensively distributed routes in plants today [16, 19].

2.3 The flavonoid biosynthetic pathways

From a genetic standpoint, a lot of work has been done to decipher the flavonoids’ 
biosynthesis routes. Flavonoid synthesis mutants have been discovered in a vari-
ety of plant species. The first important experimental models in this system were 
snapdragon (Antirrhinum majus), petunia (Petunia hybrida), and maize (Zea mays), 
which led to further discovery of several structural and regulatory flavonoid genes. 
Arabidopsis (Arabidopsis thaliana) has recently contributed to the study of flavonoid 
pathway regulation and subcellular localization [20].

2.3.1 Following are the biosynthetic pathways of some major flavonoids

The Figure shows the eight branches of flavonoid biosynthetic pathway (showed 
in the eight different colored boxes) and four important intermediate metabolites 
(represented by the green boxes) (Figure 3). The abbreviated forms of enzyme 
names and flavonoid compounds mentioned in the figure are as follows: (i) ANR: 
anthocyanidin reductase; (ii) ACCase: acetyl-CoA carboxylase; (iii) AS: aureusidin 
synthase; (iv) 4CL: 4-coumarate: CoA ligase; (v) CHS: chalcone synthase; (vi) 
CHI: chalcone isomerase; (vii) CHR: chalcone reductase; (viii) C4H: cinnamic acid 
4-hydroxylase; (ix) CH2′GT: chalcone 2′-glucosyltransferase; (x) CH4′GT: chalcone 
4′-O-glucosyltransferase; (xi) ANS: anthocyanidin synthase; (xii) CLL-7: cinna-
mate–CoA ligase; (xiv) FNS: flavone synthase; (xv) F6H: flavonoid 6-hydroxylase; 
(xvi) IFS: isoflavone synthase; (xvii) HID: 2-hydroxyisoflavanone dehydratase; 
(xviii) FNR: flavanone 4-reductase; (xix) F8H: flavonoid 8-hydroxylase; (xx) F3’5’H: 
flavanone 3′,5′-hydroxylase; (xxi) F3H: flavanone 3-hydroxylase; (xxii) DHK: 
dihydrokaempferol; (xxiii) DHM: dihydromyricetin; (xxiv) DFR: dihydroflavonol-
4-reductase; (xxv) DHQ: dihydroquercetin; (xxvi) FLS: flavonol synthase; (xxvii) 
OMT: O-methyl transferases; (xxviii) PAL: phenylalanine ammonia lyase; (xxix) 
UFGT: UDP-glucose flavonoid 3-Oglucosyltransferase; (xxx) LAR: leucoanthocyani-
din reductase [21].

2.3.1.1 Phenylpropanoid pathway

The phenylpropanoid route produces flavonoids from phenylalanine, whereas the 
shikimate pathway produces phenylalanine [22, 23]. The general phenylpropanoid 
route refers to the first three steps of the phenylpropanoid pathway [24]. The aro-
matic amino acid phenylalanine is transformed to p-coumaroyl-CoA in this route. 
The typical phenylpropanoid route begins with the deamination of phenylalanine 
to trans-cinnamic acid, which is catalyzed by the enzyme phenylalanine ammonia 
lyase (PAL) [25]. In plants, PAL also has a significant role in controlling the transfer 
of carbon from primary to secondary metabolism [26]. The second step in the gen-
eral phenylpropanoid route is catalyzed by the activity of C4H, a cytochrome P450 
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monooxygenase found in plants that hydroxylates trans-cinnamic acid to produce 
p-coumaric acid [27]. The quantity of lignin, a crucial phenylpropanoid metabolite, 
in Populus trichocarpa and Arabidopsis thaliana, is connected to the degree of C4H 
expression [24, 28]. In the third step, 4-coumarate (4CL) catalyzes the production 
of p-coumararoyl-CoA by incorporating a coenzyme A (CoA) unit into p-coumaric 
acid [29].

2.3.1.2 Chalcone biosynthesis

Specific flavonoid synthesis, which starts with chalcone formation, is initiated with 
the entry of p-coumaroyl-CoA into the flavonoid biosynthesis pathway [30]. One 
molecule of p-coumaroyl-CoA and three molecules of malonyl-COA are converted 
into naringenin chalcone (4,2′,4′,6′-tetrahydroxychalcone [THC]) by the action of 
CHS (produced from acetyl-CoA) [31]. CHS, a polyketide synthase, is the main and 
first rate-limiting enzyme in the flavonoid biosynthesis pathway [32]. An intermedi-
ate of the CHS reaction is subjected to action by the aldo-keto reductase superfamily 
member chalcone reductase (CHR), which catalyzes its C-6′ dehydroxylation to 
produce isoliquiritigenin (4,2′,4′-trihydroxychalcone [deoxychalcone]) [33]. In 

Figure 3. 
The branches of flavonoid biosynthetic pathway.
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one of the studies, the amount of anthocyanin decreased, when the Lotus japonicus 
CHR1 gene was overexpressed in petunia [21, 34]. Chalcones are recognized as the 
first important intermediate metabolite in the production of flavonoids, and are also 
considered as a crucial yellow pigment in plants [35].

2.3.1.3 Flavanones biosynthesis

The intramolecular cyclization of chalcones by CHI, which occurs in the cytoplasm 
to produce flavanones and the heterocyclic ring C, is a step in the flavonoid pathway 
[30]. According to the substrate used, CHIs in plants may often be split into two 
classes. Type I CHIs, which are present throughout the entire vascular plant, trans-
form THC into naringenin. Type II CHIs may manufacture naringenin and liquiriti-
genin utilizing either THC or isoliquiritigenin and are primarily found in leguminous 
plants [36]. More than these two forms, there are two other variants of CHI (type 
III and type IV) that retain the catalytic activity of the CHI fold but lack its ability 
to cycle chalcones [37]. Additionally, flavanones are a frequent substrate for the 
downstream flavonoid pathway as well as the flavone, isoflavone, and phlobaphene 
branches [38, 39].

2.3.1.4 Aurone biosynthesis

Aurones, a family of flavonoids produced from chalcone, are significant yellow 
pigments in plants. Aurone pigments generate a stronger yellow hue than chalcones 
and are responsible for the golden coloration of numerous common ornamental 
plants. Snapdragon, sunflowers, and coreopsis are only a few of the plant species that 
contain aurones [40, 41]. Aurone production requires THC as a direct substrate [42]. 
In the cytoplasm of the plant cells, chalcone 4′-O-glucosyltransferase catalyzes the 
production of THC 4′-O-glucoside from THC. The former is transferred to the vacu-
ole by aureusidin synthase (AS), where it is converted into aureusidin 6-O-glucoside 
(aurone) [43].

2.3.1.5 Flavone biosynthesis

In all higher plants, flavone production is an essential branch of the flavonoid 
pathway. Flavone synthase (FNS) converts flavanones into flavones (FNS) [44, 45]. 
When present in flavanones, FNSI and FNSII encourage the formation of a double 
bond between C-2 and C-3 positions of the ring C [46]. FNS is a crucial enzyme in the 
production of flavones. Both naringenin and eriodictyol can be used as substrates by 
Morus notabilis FNSI to produce flavones [47]. Overexpression of Pohlia nutans FNSI 
causes apigenin accumulation in A. thaliana [48]. FNSII expression levels in flower 
buds of Lonicera japonica were shown to be congruent with flavone accumulation 
patterns [46]. Flavanones can be transformed into C-glycosyl flavones as well [21].

2.3.1.6 Isoflavone biosynthesis

Leguminous plants serve as the primary source of isoflavones [49]. Isoflavone 
synthase (IFS) transports flavanone to the isoflavone route [50] and appears to be 
able to convert liquiritigenin and naringenin into 2,7,4′-trihydroxyisoflavanone and 
2-hydroxy-2,3-dihydrogenistein, respectively [51, 52]. Under the action of hydroxyi-
soflavanone dehydratase (HID), they are further transformed to the isoflavones 
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genistein and daidzein [53]. Additionally, HID, IFS, and isoflavanone O-methyl 
transferase can catalyze the conversion of liquiditigenin to 6,7,4′-trihydroxyflava-
none, which can then be converted to glycitein (an isoflavone) [54]. IFS and HID 
catalyze two processes that result in the formation of isoflavone: the formation of a 
double bond between C-2 and C-3 positions of ring C and the transfer of ring B from 
C-2 position to C-3 position of ring C [55, 56]. The isoflavone production route begins 
with IFS, a cytochrome P450 hydroxylase. The accumulation of the isoflavone genis-
tein in invitro tissues was caused by Glycine max IFS overexpression in Allium cepa 
[57]. The use of CRISPR/Cas9 to knock off the expression of the IFS1 gene resulted in 
a considerable drop in isoflavones like genistein [44].

2.3.1.7 Flavanol biosynthesis

Flavonols are flavonoid metabolites that have had their ring C-3 hydroxylated [38]. 
Because their C-3 position is very susceptible to glycosidation, they frequently occur 
in glycosylated forms in plant cells. Flavonol synthase (FLS) converts the dihydrofla-
vonols like dihydroquercetin (DHQ ), dihydrokaempferol (DHK), and dihydromyric-
etin (DHM) to the flavonols quercetin, kaempferol, and myricetin, respectively [58]. 
Through the activity of enzymes such as GTs, methyltransferases, and acyltransferase 
(AT), quercetin, kaempferol, and myricetin are further changed to numerous flavonol 
derivatives [59]. A C-2 and C-3 double bonds are formed in ring C via the desatura-
tion of dihydroflavonol, which is catalyzed by FLS, a FeII/2-oxoglutarate-dependent 
dioxygenase. In the flavonol biosynthesis pathway, FLS is considered the key rate-
limiting enzyme [21].

2.3.1.8 Anthocyanin and Leucoanthocyanidin Biosynthesis

Major enzyme in flavonoid metabolism in the anthocyanidin and proanthocyanidin 
pathways is dihydroflavonol-4-reductase (DFR). A hydroxyl group is produced at 
C-4 position of ring C by the NADPH-dependent reductase known as DFR [60–62]. 
Dihydroflavonols, DHQ , DHK, and DHM are reduced by DFR to produce leucocy-
anidin, leucopelargonidin, leucoanthocyanidins, and leucodelphinidin [63]. DFR, 
for example, transforms DHK to leucopelargonidin in Vitis vinifera [64]. The direct 
synthetic precursor of anthocyanidin and proanthocyanidin. Leucoanthocyanidin, 
is a crucial intermediary by-product in the flavonoid pathway. The colorless leuco-
pelargonidin, leucocyanidin, and leucodelphinidin are converted into the equivalent 
anthocyanidins under the catalysis of anthocyanidin synthase (ANS) (the colored 
pelargonidin, cyanidin, and delphinidin) [65, 66]. An alternative name for ANS is 
leucoanthocyanidin dioxygenase (LDOX). Similar to FNSI, F3H, and FLS, ANS/
LDOX is a FeII/2-oxoglutarate-dependent dioxygenase that stimulates the dehydrox-
ylation of C-4 and formation of a double bond in ring C [67]. In Strawberries, antho-
cyanin content has been found to get enhanced when ANS is overexpressed [68].

2.3.1.9 Proanthocyanidin biosynthesis

Condensed tannins, also known as proanthocyanidins, are a form of flavonoid 
made up of leucoanthocyanidins and anthocyanidins [69]. The primary pro-
anthocyanidin units are cis-flavan-3-ols, trans-flavan-3-ols, and flavan-3-ols. 
Proanthocyanidins are produced when flavan-3-ols are polymerized (or condensed) 
[70, 71]. To make colored tannins (yellow to brown), polyphenol oxidase (PPO) 
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converts colorless proanthocyanidins into plant vacuoles [72]. The major and rate-
limiting enzymes in proanthocyanidin production are leucoanthocyanidin reductase 
(LAR) and anthocyanidin reductase (ANR). Studies have revealed that overexpres-
sion of putative leucoanthocyanidin reductase gene (PtrLAR3) significantly elevates 
proanthocyanidin levels in Populus tomentosa [73]. Additionally, in alfalfa (Medicago 
sativa), overexpression of OvBAN, an ANR gene obtained from Onobrychis viviaefolia, 
increases the concentration of proanthocyanidin and the activity of the ANR enzyme 
[74]. However, proanthocyanidin and anthocyanin biosynthesis pathways have a 
competitive relationship since they utilize the same substrates [75].

2.4 Flavonoid biosynthesis in plants is regulated by transcriptional regulation

In the modification of flavonoid production, transcriptional control is crucial. 
The major transcriptional regulator in flavonoid biosynthesis is the MBW complex, 
which consists of WD40, bHLH, and MYB. The MYB domain at the N-terminus of 
MYB transcription factors (TFs) is needed for DNA binding and interaction with 
other proteins [76]. According to the amount and location of MYB domain repeats, 
MYB proteins is categorized into four groups: 3R-MYB, 4R-MYB, R2R3-MYB, and 
1R-MYB/MYB-related. Among the four, R2R3-MYB members are mostly engaged in 
flavonoid metabolism regulation [21].

2.5 Plasticity of flavonoid pathway

Flavonoids have been discovered in epidermal cells such as trichomes, palisade, 
and spongy mesophyll. Moreover, flavonoids are found intracellularly in numer-
ous cell compartments such as chloroplasts, vacuoles, and the nucleus [77–79]. The 
shikimate, phenylpropanoid, flavonoid, anthocyanin, and lignin pathways produce 
plant phenolics. The aromatic amino acids, including phenylalanine, are produced 
through the shikimate pathway, and the flavonoids are formed by a series of elonga-
tion and cyclization stages. Flavonoids get divided into numerous 15-carbon families, 
including flavanone, flavonol, flavone, flavan-3-ol, anthocyanidin, and isoflavone. It 
is evident that the level of B-ring hydroxylation is the sole difference between most of 
the main molecules [80].

2.5.1 Anthocyanin-proanthocyanidin pathway cross-talk

Despite the fact that the anthocyanin and proanthocyanidin routes use identical 
biochemical intermediates, they are the most and least studied flavonoid processes, 
respectively. Both branches include the formation of precursors from 4-coumaroyl-
CoA and malonyl-CoA. ANS, DFR, and a variety of anthocyanidin-modifying 
enzymes transform dihydromyricetins, dihydroquercetins, and dihydrokaempferols 
into anthocyanins. Anthocyanidin rhamnosyltransferases, UDP-glucuronosyl/
UDP-glycosyltransferases, methyltransferases, glutathione transferases, and 
Glycosyltransferases are among the anthocyanidin-modifying enzymes. On the 
other hand, the family of DFR, LAR, and ANR enzymes convert dihydroflavonols 
to trans- and cis-epimeric forms of gallocatechins, catechins, and afzelechins in the 
proanthocyanidin-specific pathway [19, 72, 81, 82].

In a number of plant species, cross-talk between members of the flavonoid 
pathways’ anthocyanin- and proanthocyanidin-specific branches has been seen. 
Studies have revealed that overexpression of the ANR gene in tobacco has suppressed 
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anthocyanin production and induced proanthocyanidin biosynthesis in flower 
petals. Meanwhile, upregulation of ANR has caused a subset of leaf cells in Medicago 
truncatula plants to produce three times more proanthocyanidin and cut anthocyanin 
synthesis by half [83, 84].

2.5.2 Lignin-flavonoid pathway cross-talk

Chemical scaffolds of lignin polymers originated and evolved to offer mechanical 
support to plants, shield them from UV damage and pathogen invasion, as well as 
increase the hydrophobicity of their vasculature. As a result, these metabolites have 
played a critical role in the development of land plants and also, in the colonization 
of various geographical and ecological environments. Similar to flavonoids, this route 
assisted the manufacture of H and G lignin in early terrestrial plants by enlisting 
enzymes from primary metabolism [85].

Redirecting metabolic fluxes between the lignin and flavonoid pathways showed 
molecular and metabolic cross-talks in a variety of plants with down-regulated genes 
implicated in the phenylpropanoid, lignin, and flavonoid processes. The flow from 
feruloyl-CoA to G and S units is lessened when the CCR gene is silenced in tobacco, 
tomato, and poplar, which resulted in a decrease in the amount of phenolic chemicals 
which are particular to lignin [86, 87]. The quantities and composition of several 
stress-related flavonoid intermediates and derivatives, on the other hand, were 
significantly increased in these transgenic lines.

3.  Effect of gene regulation and modification in flavonoid research  
and production in crop breeding: recent advances and applications

3.1 Engineering of flavonoid pathway

The flavonoid pathway has been extensively employed in the industry with the 
goal of accumulating compounds on purpose. Plant species like gerbera, petunia, 
rose, lisianthus, torenia, and carnation have been genetically modified for the pro-
duction of novel flower colors. This was achieved by modification of the flavonoid 
biosynthesis pathway, either via transcriptional down-regulation, inactivation of key 
anthocyanin pathway enzymes, or by heterologous expression of key enzymes.

There are two significant, possible ways for improving flavonoid biosynthesis. The 
first is based on the discovery of TFs as a viable alternative to multi-step engineering, 
while the second is based on the use of inducible promoters to avoid the negative 
consequences of a constitutive production system. Virus-induced gene silencing has 
also been proven to be a simple and rapid method of functionalizing TF genes [88].

A few years ago, it was discovered that the pathway to pelargonidin might be 
opened by transferring a gene encoding DFR from a species where the enzyme does 
not really exhibit substrate selectivity into a petunia line Lacking F3′5′H activity. 
In another study, Brick red petunia flowers were produced using the maize gene 
A1 and petunia lines with vivid orange blooms obtained from an ornamental plant 
Gerbera hybrida [89]. Now various initiatives are being undertaken to boost antho-
cyanin concentrations beyond those found naturally. According to a previous short 
study undertaken, the high-anthocyanin tomatoes have been found to slow tumor 
development in cancer-prone rats. However, the consequences on human health 
still require additional research. In this subject, basic proof-of-concept research has 
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been undertaken on a variety of vegetable and fruit species, including apple, grape, 
tomato, and cauliflower.

3.2  Natural flavonoids variation in horticultural species and horticulture 
breeding

The molecular basis of various flavonoid production focuses on the activation of 
genes along with respective pathways by diverse means. The majority of the important 
structural enzymes, part of the central flavonoid metabolism is encoded by single-copy 
genes, although some, such as PAL, CHS, F3H, or FLS, are encoded by several genes. The 
expression of biosynthetic (structural) genes varies significantly between species [19].

Activation of flavonoid and anthocyanin biosynthetic genes in response to light 
has been reported in most horticultural types. Accumulation of anthocyanin is 
regarded as one of the most investigated mechanisms in potatoes. This is because 
colored potato varieties are considered to be a strong source of phytochemicals at 
levels similar to cranberries, blackberries, blueberries, and grapes. Potato, like other 
species, has numerous genetic loci that influence anthocyanin production. StAN1, 
StAN2, StMYBA1, and StMYB113 are important regulators of the phenylpropanoid 
and anthocyanin pathways. However, bHLH co-factors also play a role, since StAN1 
and StAN2 associates with StbHLH1 and StJAF13 in diverse organs, such as the 
tuber and leaf. A WD40-repeat gene, namely StAN11 has been recently postulated 
as a regulator of the system via modulating the expression of DFR among other TFs 
encoding genes, impacting anthocyanin accumulation in potatoes [90]. Apart from 
potatoes, few other horticulture species have also been exploited due to their antioxi-
dant property via molecular plant breeding techniques [15].

Recently, a variety of red-fleshed and high-flavonoid containing apple genetic 
resources had been embodied in the complexities of the control of flavonoid produc-
tion. In one of the studies, red-fleshed apple flavonoid metabolism has been found to 
get influenced by both hereditary and environmental variables. Numerous flavonoid 
biosynthesis cascade genes have also been discovered and cloned, so as to identify the 
flavonoid metabolism that get affected by several environmental factors and genetic 
variabilities [91].

All these current researches make it evident that flavonoids play a significant role 
in both food and primary agriculture development and will soon be an intriguing 
target for molecular plant breeding.

3.3 Flavonoids in tomato breeding

Tomatoes (Solanum lycopersicum) are the most abundant dietary source of carot-
enoids (lycopene), polyphenols, and flavonoids, which are key bioactive compounds 
favorable to human health. The flavonoids that are mainly produced in tomatoes 
are predominantly produced mostly in the peels. Naringenin chalcone and rutin 
(quercetin-rutinoside) are the two primary flavonoids found in tomato fruit so far 
[92, 93]. To date, three approaches have been made to engineer the flavonoid pathway 
in tomatoes (S. lycopersicum) with the goal to alter its agronomical traits such as its 
nutritional value, its flower and fruit color as well as its ability to build resistance 
against insects [94]. They are as follows:

a. Use of structural or regulatory genes to increase endogenous tomato flavonoids; 
Structural genes are the genes that encode enzymes that directly engage in the 
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synthesis of flavonoids. On the other hand, regulatory genes are the ones that 
influence the expression of structural genes.

b. Use of RNA interference methods to block particular stages in the flavonoid 
pathway.

c. Introduction of new flavonoid pathways to produce novel tomato flavonoids [93].

Knowing the fact that there is a lack of flavonoid expression in tomatoes, to date, 
several attempts have been previously undertaken to generate transgenic tomatoes 
(Table 1).

For example:

i. Heterologous expression of the FNS-II gene obtained from Gerbera was 
employed in an attempt to create flavones in tomato. This seemed to have 
been a good approach to get novel flavone-derived metabolites into tomato 
fruit [93].

ii. Several components of the MBW complex in tomatoes have recently been 
discovered and partially described as an anthocyanin biosynthesis regulator. 
Anthocyanins1 (SlAN1) and Anthocyanins2 (SlAN2), are the two paralog 
genes that encode for homologous R2R3-MYB TFs. Both of these paralogs are 
found in tomatoes on chromosome 10. Thereby, SIAN1 and SIAN2 expression 
in transgenic tomato lines have been found to be responsible for anthocyanin 
production in multiple organs [92].

iii. To establish hairy root cultures (HRCs), Agrobacterium rhizogenes was used 
to transfer a construct for PhAN4 expression into the micro tomato genotype 
MicroTom. HRCs were created to serve as a testbed for whole-plant engineering 
methodologies that might enhance attributes for space culture [95].

iv. Using TFs to improve a broad spectrum of flavonoids. In addition to the 
elevated number of flavonoids in tomato fruit caused by DET1 silencing, the 
transcription regulator AtMYB12 expression in tomatoes has been found to 
trigger flavanol production as well as the caffeoylquinic acid biosynthetic 
pathway [96].

Crop Variety/Name Gene responsible Name of Flavonoid Induced Reference

Tomato FNS-II gene of Gerbera N/A [93]

Tomato SlANT1 and SlAN2 (coding 
for R2R3-MYB)

Anthocyanin [92]

Tomato CHI gene from red onion by 
transgenesis

Flavanol and Anthocyanin [94]

Tomato Del/Ros1 gene from 
snapdragon by transgenesis

Flavanol and Anthocyanin [94]

Table 1. 
Genes responsible for different flavonoid production in tomato.
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v. The CHI gene from red onion and the Del/Ros1 gene from snapdragon has been 
employed to boost the flavanol and anthocyanin content of tomatoes, respec-
tively, via transgenic techniques [94].

vi. In one of the studies, simultaneous overexpression of the two maize TFs C1 
and Lc have resulted in a 60-fold upregulation in kaempferol glycosides in 
tomato flesh tissue [96].

In one of the studies, it was concluded that despite having intense debate over the 
advantages, disadvantages, and risks of genetically modified food, around 96% of 
the customers showed interest in purchasing high flavonoid containing tomatoes. It is 
considered that this changing mindset of people will prove to be crucial for the devel-
opment of transgenic vegetables in the future [94]. Moreover, various other studies 
are in process to make transgenic tomato breeding more productive and nutritional in 
the coming future.

3.4 Flavonoids in rice breeding

Rice is staple food in many Asian countries. Even though white rice is the most 
popular, Asian cuisine often includes colored rice. Several pieces of evidence reveal 
that pigmented rice has important biological properties, including antioxidants, anti-
allergic, and neuro-protective properties. The rich flavonoid and nutritional content 
of colored rice warrants enhancement flavonoid content in rice by implementation of 
different breeding strategies (Table 2).

The functional activities of TFs influence the color of rice grains. In black rice, the 
Kala3 gene, which codes for R2R3-Myb, and the Kala4 gene, which codes for basic 
helix–loop–helix (bHLH), activate the flavonoid biosynthesis genes ANS CHS, and 
DFR resulting in anthocyanin pigment buildup in the grain. In red rice, the Rc gene 
expressing bHLH activates CHS, DFR, and LAR, resulting in the buildup of proantho-
cyanidin pigment in the grain. The promoter of Kala4 in white rice differs from that 
in pigmented rice, and loss of 14 base pairs inside the Rc open reading frame, resulted 
in lack of color in the grain. In addition, the gene CYP75B3 is strongly expressed in 
pigmented rice grains, along with other flavonoid pathway genes. This explains why 
leucocyanidin-derived anthocyanin and proanthocyanidin pigments are abundant in 
colored rice grains [97].

Recently, in order to create flavone, isoflavone, and flavonol in rice grain, the 
flavonol (AtF3H/AtFLS), isoflavone (GmIFS), and flavone (PoFNSI/GmFNSII) 
biosynthetic enzyme genes, as well as OsPAL and OsCHS, were expressed in a 

Crop Variety/
Name

Gene responsible Codes for Name of Flavonoid 
Induced

Reference

Black Rice Kala3 R2R3-Myb N/A [97]

Black Rice Kala4 bHLH Anthocyanin [97]

Red Rice Rc bHLH Proanthocyanidin [97]

Rice OsCOP1 gene introduced 
via CRISPR-Cas9

N/A N/A [98]

Table 2. 
Genes responsible for different flavonoid production in rice.
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seed-specific way. These biosynthetic genes were expressed in seed using the GluB-1 
promoter and the 18-kDa oleosin promoter [99]. In another study, the OsCOP1 gene, 
an ortholog of Arabidopsis thaliana constitutive photomorphogenic 1 (COP1) was 
introduced in rice using CRISPR-Cas9. This not only turned the pericarp of the rice 
variety yellowish but also caused embryonic death. Moreover, this also reduced the 
size of the transgenic seeds [98]. According to a study, a total of 82 flavonoids have 
been chemically identified in transgenic rice seeds. Moreover, exogenous enzymes 
produced flavonoids in rice seeds that were later altered by endogenous enzymes and 
transported, causing persistent accumulation in PB-I and/or PB-II. Based on these 
results, the heterologous and ectopic expression of biosynthetic enzymes in rice seeds 
not only serves as a productive platform for the production of flavonoids but can also 
be used to broaden the structural diversity of flavonoids and hence open up a new, 
untapped source of bioactive substances [100].

Increasing the flavonoid biosynthesis and its accumulation in rice have been found 
to contribute to the enhanced heat tolerance under stress, as well as plays a regulatory 
role in the activation of the antioxidant enzyme system [101].

3.5 Flavonoid research in maize

Obtaining security of grain supply in the twenty-first century with limited arable 
land is a big challenge because of the constantly changing environment and increas-
ing global population [102–104]. Maize plays a very important role in global grain 
production. Drought is a significant factor restricting plant development and pro-
ductivity. Drought stress affects growth and development of plants, which is directly 
related to yield. Under drought stress, doi57 gene is observed to play an important 
role in maintaining the plant to grow and survive in order to give good yield. doi57 
gene is one of the key genes involved in biosynthesis of flavonoid. With less soil water 
content (SWC), doi57 guard cells can accumulate more flavonols and less hydrogen 
peroxide (H2O2). Furthermore, under drought conditions, doi57 seedling extracts 
had a stronger potential to scavenge oxygen free radicals than B73 maize genome. 
Moreover, in terms of transpiration rates, photosynthetic rates, water consumption 
efficiency, and stomatal conductance, doi57 seedlings outperformed B73, resulting in 
high biomass and enhanced root/shoot ratios in doi57 mutant plants [105].

3.6 Flavonoid profile in millets breeding

Millet polyphenols protect the neurological system by lowering oxidative stress, 
and vitexin is a crucial component of millet polyphenols. Vitexin, a flavonoid derived 
from millet, is present in many foods such as millet, mung bean, and others. It is also 
known chemically as apigenin-8-C-glucoside. According to research, vitexin contains 
potent free radical scavenging and antioxidant enzyme protection properties that may 
protect cells from oxidative damage [106].

3.7 Flavonoids in olive breeding

With almost 1200 olive varieties listed, the olive has a great genetic diversity. 
High heterozygosity, prolonged juvenile phase, and a paucity of information on 
trait heritability have all been major limiting factors in olive breeding. Attempts to 
obtain new varieties have concentrated on improving olive response to varied grow-
ing situations through systematic breeding. New olive breeding methods uses two 
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varieties “Picual” and “Arbequina” as controls along with other varieties. The phenolic 
compound metabolism in the olive tree is quite complex, and is controlled by environ-
mental and genetic factors that regulate the final phenolic composition of olive fruits. 
The unique breeding selection UCI2–68 demonstrated an optimal phenolic profile, 
resulting in good agronomic performance [107].

3.8 Flavonoids in soybean breeding

In adverse conditions, soybean (Glycine max) productivity drops significantly. 
Soybean breeding might benefit from discovering regulatory components that impart 
stress tolerance. HSFB2b, a class B heat shock factor, enhances salt tolerance by 
activating one subset of flavonoid biosynthesis-related genes and blocking the repres-
sor GmNAC2 to release another collection of flavonoid biosynthesis-related genes. 
Silencing GmFNSII, the principal flavone-producing gene, reduces flavone levels and 
increases salt sensitivity in hairy soybean roots [108]. Leaf-chewing insects are severe 
pests of soybeans, lowering seed quality and limiting output (G. max). The CRISPR/
Cas9 expression vector was introduced into the soybean cultivar via agrobacterium-
mediated transformation, resulting in Glyma.07 g110300-gene mutants. A 33-bp 
deletion and a single-bp insertion in the GmUGT coding domain increased resistance 
to Cotton bollworm (Helicoverpa armigera) and Tobacco cutworm (Spodoptera litura). 
Furthermore, GmUGT overexpression made soybean species susceptible to H. armig-
era and S. litura [109].

3.9 Molecular breeding of peanut with high flavonoid content

Peanuts include a variety of bioactive substances in addition to helpful fatty 
acids and minerals. Flavonoids found in peanuts include flavonol, dihydroquercetin, 
C-glycoside flavone, dihydroflavonol, flavonone, and 5,7-dimethoxyisoflavone. 
BARI2011 is the most drought-tolerant of the peanut cultivars. According to one 
study, BARI2011 retained more water. MYB123 encodes an R2R3 MYB domain-
containing TF that has been demonstrated to upregulate flavonoid production and is 
a critical determinant in proanthocyanidin accumulation. Correlational investigation 
of TF expression with flavonoid biosynthesis and accumulation of phenolics, flava-
nols, and anthocyanins in peanuts revealed that TFs coregulated flavonoid production 
under water stress [110].

3.10 Flavonoid content in mustard

The seed coat color of Brassica crops is an essential horticultural feature. Seeds 
with a yellow seed coat have higher oil quality, more protein, and less fiber. As a 
result, the yellow seed coat color is seen as a good characteristic in Brassica juncea, 
Brassica rapa, and Brassica napus hybrids. The majority of seed coat color is produced 
by the accumulation of proanthocyanidins, the ultimate product of the flavonoid 
biosynthetic pathway, which is mostly deposited in the innermost cell layer of testa 
(chalaza, micropyle, and endothelium) [111].

3.11 Flavonoid content in lettuce breeding

Lettuce (Lactuca sativa) is one of the world’s most important vegetables. The 
GWAS identified 5311 expression quantitative trait loci (eQTL) that influence the 
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expression of 4105 genes, including nine eQTLs that regulate flavonoid biosynthetic 
genes. GWAS has found six candidate loci for anthocyanin variation in lettuce 
leaves [112].

UV-A supplementation increased flavonoids, anthocyanin, and polyphenol levels 
and the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging rate. 
UV-A can modify plant phenolic contents and flavonoid metabolism by increasing the 
expression of associated genes such as CHS and MYB in the flavonoid pathway and PAL 
in the propane metabolic pathway. Under additional UV-A and FR light, anthocyanin 
levels in lettuce seedlings were 11% higher and 40% lower, respectively [113] (Table 3).

Transformation of L. sativa L. with rol C gene inducing an increase in total flavo-
noid contents [114].

The gene expression of rol ABC genes was used to boost secondary metabolites in 
L. sativa L. (cv. Grand Rapids), particularly antioxidants such as phenolics and flavo-
noids. A. tumefaciens GV3101 and the rol ABC genes were used to transform Lactuca 
sativa L. (cv. Grand Rapids). The transformation increased the secondary metabolites 
in lettuce and also induced free radical inhibitor effect and lipid peroxidation scav-
enging properties [115].

Thereby, the three key categories that is used to group the goals of current lettuce 
breeding programmes include: (1) Improvement in horticultural traits such as quality 
and resistance to early bolting, (2) resilience to diseases and pests, and (3) to attain 
higher yield and uniformity [116].

3.12 Flavonoid content in buckwheat

Buckwheat (Fagopyrum esculentum) is an annual crop that is planted all over the 
world. Buckwheat seeds, leaves, and stems are high in flavonoids such as rutin and 
proanthocyanidins (PAs). The discovery of the ANR and LAR buckwheat genes 
could result in the development of buckwheat cultivars with different PA levels. 
In one investigation, one gene sequence (AT1, Fes sc0002933.1.g000003.aua.1) 
encoding ANR was found, along with three gene sequences encoding LARs (LT1, 
Fes sc0001063.1.g000007.aua.1; LT2, Fes sc0016501.1.g000002.aua.1; and LT3, Fes 
sc0010963.1.g000003.aua.1) [117].

The flavonoid contents in buckwheat sprouts were commonly in the following 
order: rutin > quercetin > isovitexin > vitexin > isoorientin > kaemferol [118]. Tartary 
buckwheat grain contains orientin, vitexin, rutin, and quercetin and is used to make 
drinks and biscuits. Because of its high content of flavonoids and other phenolic com-
pounds, tartary buckwheat is resistant to pests, plant diseases, and UV-B radiation 
damage. As a result, Tartary buckwheat can be cultivated organically and without 
synthetic fertilizers or chemical treatments [119].

Crop Variety/
Name

Gene used Name of Flavonoid 
Induced

Method Used Reference

Lettuce rol C N/A Agrobacterium-mediated 
transformation

[114]

Lettuce rol ABC N/A Agrobacterium-mediated 
transformation

[115]

Table 3. 
Genes responsible for different flavonoid production in Lactuca sativa L.
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3.13 Distinctive flavonoid profiles in legume

Legumes have sparked a lot of attention because of their health benefits and their 
polyphenolic compounds. The xanthine oxidase XO inhibitory activity appears to be 
reduced when a glycoside or a methyl group is substituted for the hydroxyl groups at 
C7 and C3 of the basic flavonoid structure [120].

Recently, isolation of genes encoding the critical enzymes of various phenylpro-
panoid branch pathways has opened the door for engineering crucial agricultural 
plants like alfalfa for:

a. improving the forage digestibility through lignin composition and content,

b. enhancing the disease resistibility via introducing novel phytoalexins, or by 
changing transcriptional regulator expressions,

c. improving nodulation efficiency by overproduction of flavonoid nod gene 
 inducers [121].

The recognition of flavonoids in legume root exudates by the bacterium, originates 
in the rhizosphere and activates a particular set of genes involved in bacterial nodula-
tion (Nod). These nodulations produce and secretes a very specific signal known as 
lipochito-oligosaccharides or Nod factors. The formation of rhizobia-infected root 
nodules is the result of a variety of host responses brought on by the perception of 
Nod factors by the plant LysM receptors, including bacterial invasion of the root 
hairs, root hair curling, cortical cell divisions and induced expression of the host 
symbiotic genes [122].

4. Other functions and applications of flavonoids

4.1 Effects and influence of flavanol rich cocoa on cognitive performance

The potential of flavonoids to alter signaling pathways enhancing neuronal func-
tion and brain connection appears to be one of the processes underlying the health 
benefits of frequent cocoa consumption [123].

4.2 Role for polyphenols in the prevention of degenerative diseases

Flavonoids protect the brain cells in a multitude of ways, such as by strengthening 
the functional neurons or by promoting neuronal regeneration. After 6-hydroxydo-
pamine lesioning, it has been found that the citrus flavanone tangeretin preserves 
nigro-striatal integrity and functioning in the context of Parkinson’s disease [124].

4.3  Flavonoids in decorticated sorghum grains exert antioxidant and antidiabetic 
activities

Flavonoids are said to be helpful in preventing metabolic disorders including 
type 2 diabetes, obesity, hypertension, and several malignancies. They are primarily 
abundant in the bran portion (pericarp, testa, and aleurone tissues) of the plants. 
According to the findings, decorticated sorghum grains contain significant amounts 
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of flavonoids, which may inhibit glucose hydrolyzing enzymes and lessen the symp-
toms of diabetes and its companion disorders [125].

4.4  Chrysoeriol7: a natural chemical and repellent, against brown planthopper in 
rice

Brown Planthopper (BPH), a rice pest, causes severe damage such as viral infec-
tions, leaf blights, nutrition loss, and tissue death, all of which have a direct impact 
on rice productivity. Chrysoeriol7, a secondary metabolite, has been reported to be 
effective against BPH by establishing resistance due to the presence of an aromatic 
group from the flavonoid family that emanates a distinct scent that repels BPH [126].

4.5  Quinoa-derived polyphenols regulate glucose and lipid metabolism: 
protecting against chronic human illnesses

Quinoa is known as the “golden grain” because of its excellent protein profile, high 
polyphenol and vitamin content, and health advantages such as anti-diabetic, antioxi-
dant, and anti-obesogenic properties. Furthermore, quinoa leaves are high in phenolic 
compounds, which can help reduce the risk of cardiovascular disease, neurological 
illnesses, and diabetes. Quinoa extracts contains significant quantities of sinapinic, 
ferulic, and gallic acids, isorhamnetin, kaempferol, and rutin. These chemicals are 
associated directly to a reduction in prostate cancer cell growth and motility [127, 128].

4.6  B. juncea (L.) Czern. leaves show high flavonoid content: reducing rheumatoid 
arthritis caused by adjuvants

The leaves of B. juncea contain certain medicinal components that have been found 
to reduce the synovial inflammation as well as treat the damage caused by rheumatoid 
arthritis [129].

4.7  Nutritional value of Tartary buckwheat for humans and activity evaluation of 
its major flavonoids

Tartary buckwheat, which is produced mostly in northern India, Nepal, Bhutan, 
China, and central Europe, has been found to be more cold resistant and drought 
tolerant than regular ones. The phenolic compounds, resistant starch, and protein con-
tained in grains, as well as interactions between these constituents, are largely respon-
sible for reduction of the risk of a number of chronic illnesses such as cardiovascular 
disease, obesity, hypertension, and gallstone formation. Tartary buckwheat is resistant 
to pests, plant diseases, and UV-B radiation because it contains flavonoids such as 
rutin, vitexin, orientin, and quercetin, as well as other phenolic compounds [119].

4.8  Using purple tomato anthocyanins as new antioxidants to improve human 
health

It is generally known that tomatoes help to lessen the risk of developing cancer 
since they contain carotenoids and polyphenols. According to several recent research, 
anthocyanins can have a variety of impacts on the health of the eye.

Recently, in order to examine the potential impacts of genetically modified 
“Indigo” tomatoes on the host gut microbiota, inflammatory reactions and the signs 
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of inflammatory bowel diseases (IBDs) were tested in an unexpected ulcerative colitis 
mouse model. In addition, consumption of anthocyanins, in particular, has shown 
a favorable correlation with a decrease in cardiovascular risk, as well enhanced the 
vascular health and prevented the formation of atherosclerotic plaque [130].

5. Effect of gene regulation and modification in Flavonoid production

5.1  A citrus cytochrome P450 gene, CsCYT75B1 helping to induce drought 
tolerance by antioxidant Flavonoid accumulation

Cytochrome P450 gene present in Citrus sinensis (CsCYT75B1) is linked with 
flavonoid metabolism and reported to be notably induced after drought stress. 
CsCYT75B1 gene when overexpressed in A. thaliana significantly increased total 
flavonoid content. It also enhanced antioxidant activity in the transgenic Arabidopsis 
plant. Diverse genes responsible for flavonoids biosynthesis showed increased induc-
tion (2–12 folds) as a result of CsCYT75B1 gene overexpression in these transgenic 
Arabidopsis lines. After induction of draught stress, these plants showed enhanced 
drought tolerance along with antioxidant flavonoids accumulation, lower level of ROS 
and superoxide radicals when compared to wild type plants. These transgenic lines 
also exhibited significantly lower levels of electrolytic leakage than wild types [131].

5.2  Selected mutagenesis of GmUGT augmented soybean resistance against  
leaf-chewing insects via flavonoids Biosynthesis

Seed quality and yield in Soybeans (G. max) is negatively affected by Leaf-
chewing insects. Minimization of insecticide use and loss reduction can be achieved 
by breeding Leaf-chewing insects-resistant soybean varieties. Marker genes for QTL-
M, Glyma.07 g110300 (LOC100775351) encoding UDP-glycosyltransferase (UGT) is 
the major deciding factor for resistance against leaf-chewing insects in soybean. It 
manifests loss of function in insect-resistant germplasms of soybean. Zhang Y et al. 
reported a study, where they have introduced CRISPR/Cas9 expression vector into 
the soybean cultivar Tianlong No. 1 using Agrobacterium-mediated transformation to 
generate Glyma.07 g110300-gene mutants. A 33-bp deletion and a single-bp insertion 
in the GmUGT coding region obtained from this experiment resulted in enhanced 
resistance to Helicoverpa armigera and S. litura. Soybean varieties further sensitive to 
H. armigera and S. litura was generated by upregulation of GmUGT. This particular 
coding sequence is also involved in providing resistance to leaf-chewing insects via 
alteration of flavonoid content and gene expression pattern related to flavonoid 
biosynthesis and defense [109].

5.3  Transferability and polymorphism of simple sequence repeats (SSRs) In the 
Flavonoid pathway genes of strawberry (Fragaria) and Rasberry (Rubus Sp.)

Fragaria and Rubus are two extremely popular crops, whose breeding programs 
are increasingly reliant on the use of functional DNA markers. Improvement in the 
nutritional quality and disease resistance abilities are essential challenges in breed-
ing programs of these crops. There is a total of 118 microsatellite (simple sequence 
repeat-SSR) loci in the nucleotide sequences of genes that are involved in flavonoid 
production and pathogenicity and a count of 24 SSR markers that represent some of 
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these structural and regulatory genes have yet been discovered. Using these markers, 
48 specimens of Fragaria and Rubus, comprising unusual cultivars and wild species 
were examined in one of the studies to determine their overall genetic diversities. It is 
believed that the enhancement of anthocyanin-related phenotypes in strawberry and 
raspberry breeding programs may get benefited from the use of SSR markers collec-
tion as a molecular tool [132].

5.4  B. napus L.’s efficient oil production is controlled by targeted mutation of 
BnTT8 homologs

B. napus is an important oil crop, but despite its importance, no naturally occurring 
or artificially produced yellow seed germplasms have been discovered yet. Recently, 
in one of the studies, CRISPR/Cas9 system has been used to produce yellow mutant 
rapeseeds (Brassica napus). The targeted alterations of the BnTT8 gene were persis-
tently passed down through generations, and a variety of homozygous mutants with 
damaged alleles of the target genes were acquired for phenotyping. BnA09.TT8 and 
BnC09.TT8b are the two targeted mutants of BnTT8 which were able to restore the 
yellow-seeded phenotype. These mutants generated seeds with increased protein and 
oil content, improved fatty acid (FA) composition, and no significant abnormalities 
in yield-related parameters [133].

6.  Mediterranean crop modification techniques: from the laboratory to 
the field

6.1 Marker-assisted breeding (MAB)

This method/strategy selects plants and animals for breeding programs early in their 
development by exploiting DNA markers linked with desirable features. Thus, it sig-
nificantly shortens the time required in a breeding cycle, to locate/identify variations or 
breeds that display the desired trait. Two separate studies in tomatoes recorded before, 
one using a mutant inbred line and the other using an interspecific Solanum Chmielewski 
population, discovered that the colorless-peely mutant on chromosome 1 is controlled 
by a SlMYB12-regulated transcriptional network that controls the accumulation of 
yellow-colored flavonoid (naringenin chalcone) in the fruit epidermis [134, 135].

6.2 Crop plants that have undergone genetic modification

Overexpression and competition with the target route, overriding rate-limiting 
steps, preventing the catabolism pathway of the desired product, and blocking other 
pathways are all part of the process of maximizing the synthesis of specialized target 
molecules [136]. For example, the principal flavonoid metabolic route has been stud-
ied to optimize these critical molecules in Solanum lycopersicum. Flavonoids (such 
as naringenin, chalcone, and rutin) are predominantly found in tomato peel, with 
just trace levels found in tomato flesh [137]. Ectopic expression of a single structural 
gene (CHI) or many structural genes (CHS, CHI, F3H, and FLS) increased the 
number of flavonols (quercetin- and kaempferol- glycosides) in tomato peel and 
flesh. The co-expression of onion CHI in the purple tomato Delila bHLH and Rosea1 
R2R3-MYB recently transformed flavonoid to flavanol and boosted anthocyanin 
concentration [138].
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6.3 Modern breeding methods (MBTs)

The rapid growth and usage of genome editing tools has opened up new ways for 
introducing change and influencing gene expression at multiple levels, including 
transcription, mRNA processing, and mRNA translation. CRISPR/Cas9 technology 
has primarily been used to study plant biosynthetic potential by blocking compet-
ing biosynthetic pathways and changing metabolite flux towards target chemical 
synthesis. One such example, the Salvia miltiorrhiza rosmarinic acid synthase 
(SmRAS) gene was edited using the CRISPR/Cas9 technology [139]. This mutation 
led to a decrease in phenolic acid content, such asrosmarinic acid, and an increase in 
its precursor, 3,4-dihydroxyphenyl lactic acid, especially in the homozygous variety. 
Another study in S. miltiorrhiza employed CRISPR/Cas9 to knock out the SmCPS1 
gene, which codes for a diterpene synthase involved in tanshinone synthesis. This was 
done to investigate the feasibility of encouraging the accumulation of the substrate for 
taxol synthesis as tanshinones and taxol sharing the same precursor (Geranylgeranyl 
Pyrophosphate) [140].

6.4 Regulation of specific metabolism and transcription factor modulation

The functional characterization of TFs involved in the control of anthocyanin 
metabolism is an outstanding example of how transcriptional regulatory research can 
be carried out to fine-tune specialized metabolic pathways. The WD-repeat/bHLH/
MYB complex regulates anthocyanin accumulation in plants by positively regulat-
ing the gene expression of DFR, anthocyanin synthase, and glucosyltransferase. 
This molecular pathway, conserved across many species via orthologous TFs, which 
is essential in the color determination of flowers and fruits such as those of apples, 
grapes, and oranges [141].

6.5  A target for molecular biology-based breeding and other biotechnological 
approaches: metabolism of plant glandular Trichomes

Trichomes are specialized biosynthetic, storage structures composed of epidermal 
extensions found on the surface of aerial plant parts. They can exist in both non-
glandular and glandular trichrome forms and are widespread throughout the plant 
kingdom. Glandular trichomes can produce, store, and release exudates containing a 
wide range of chemo-diverse compounds such as essential oils, oleoresins, phenols, 
glycerids, and extremely complex terpenes [142]. Efficient isolation techniques such 
as laser microdissection pressure catapulting (LMPC) has aided with the separation 
and enrichment of specific cell types, such as multicellular glandular trichomes allow-
ing chemical, transcriptional, and biosynthetic studies to focus solely on specialized 
glandular metabolites [143].

7. Future prospect

Flavonoid-rich diets have been shown to delay the onset of dementia-related 
diseases and prevent age-related cognitive decline. Alterations in cerebral blood 
flow caused by flavonoids, progenitor cells, quantitative changes in brain stem 
cells and gray matter density, as well as electrophysiological anomalies, can all be 
examined utilizing imaging and spectroscopic tools such as NMR and MRI. All of 
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these initiatives will result in mechanism-based linkages between flavonoid medica-
tion and brain activities, as well as therapeutic dosage data. Flavonoids have been 
shown to concentrate in the brain and activate Akt-CREB and ERK-CREB mediated 
memory, making them interesting therapeutic candidates for memory enhancement. 
Flavonoid-loaded nanoparticles, liposomes, or other nanocarriers can pave the way 
for flavonoids in the future by increasing the half-life of flavonoids in organisms, drug 
delivery strategies boost their effects. Moreover, since flavonoids are naturally occur-
ring dietary components, therapeutically effective amounts of flavonoids can have 
varying lethal effects on cancer cell lines as well as tissues due to cancer heterogeneity. 
Ototoxicity is a side effect of chemotherapeutic medicines that patients experience 
during chemotherapy. According to one study, epigallocatechin-3-gallate protects 
patients against ototoxicity, which can also pave the door for flavonoids to be utilized 
as additive treatments to reduce the side effects of chemotherapy drugs. It is predicted 
that addressing difficulties like as bioavailability and metabolism, building physi-
ologically acceptable in vitro models, determining the effects of processing, standard 
measuring methodologies, and adequate clinical biomarkers will surely influence the 
future of flavonoid research [144–146].

8. Conclusion

The use of phytochemicals, particularly flavonoids, in disease prevention and 
treatment is well documented. Each flavonoid discovered in nature has distinct 
chemical, physical, and physiological features. The structure-function link of fla-
vonoids is the pinnacle of major biological functions. Incorporation of flavonoid in 
various horticulture species and the practice of molecular plant breeding will bring 
in a great revolution in the coming future. This will elevate numerous therapeutic 
potentials of several plant species and would thereby provide aid in the advance-
ment of the food, pharmaceutical, floricultural, and chemical industries. Additional 
accomplishments will bring in other newer insights and will almost probably usher in 
a new era of flavonoid-based pharmacological agents for the treatment of numerous 
infectious and degenerative disorders.
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