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Benoı̂t Pasquiet, Sophie Biau, Quentin Trébot, Jean-François Debril, François Durand and

Laetitia Fradet

Detection of Horse Locomotion Modifications Due to Training with Inertial Measurement Units:
A Proof-of-Concept
Reprinted from: Sensors 2022, 22, 4981, doi:10.3390/s22134981 . . . . . . . . . . . . . . . . . . . . 215

Yuliang Zhao, Jian Li, Xiaoai Wang, Fan Liu, Peng Shan and Lianjiang Li et al.

A Lightweight Pose Sensing Scheme for Contactless Abnormal Gait Behavior Measurement
Reprinted from: Sensors 2022, 22, 4070, doi:10.3390/s22114070 . . . . . . . . . . . . . . . . . . . . 229

vi



About the Editor

Giovanni Saggio

Giovanni Saggio (GS) graduated with an M.Sc. degree in Electronic Engineering from

the University of Rome “Tor Vergata” in 1991, and a Ph.D. degree in Microelectronic and

Telecommunication Engineering in 1996. GS is an Associate Professor with tenure at the Electronic

Engineering Department of the University of Rome “Tor Vergata” and is a coordinator of the

Hiteg (Health Involved Technical Engineering Group) Lab. GS participated in 15 scientific

projects, being the coordinator in 10 projects, and founded 3 Spinoffs (Captiks Srl, Seeti Srl, and

Voicewise Srl). To date, GS has authored 9 books, authored/co-authored 255 scientific publications,

authored/co-authored 12 patents, and was Guest Editor for 3 Special Issues related to Electronics.

vii





Preface to ”Sensor Systems for Gesture Recognition

II”

Gesture recognition (GR) aims to interpret human gestures with impacts in a number of different

application fields.

This Special Issue is devoted to describing and examining up-to-date technologies to measure

gestures, algorithms for interpreting data, and applications related to GR.

The technologies involve camera-based systems (e.g. an optical motion capture system), and

wearable sensors (e.g. an accelerometer, gyroscope, inertial measurement unit (IMU), magnetic

inertial measurement unit (MIMU), electromyography (EMG), surface electromyography (sEMG),

force myography (FMG), and data/sensory glove).

Data interpretations are detailed here by means of certain metrics (e.g. Euclidean distance) or of

a number of classifiers (e.g. artificial neural network (ANN), grasshopper extreme learner (KTGEL),

reinforcement learning (RL), deep Q-network (DQN), Random Forest (RF)).

The adopted applications are for medical purposes (e.g. rehabilitation training, control of electric

prostheses, gait behavior recognition, cerebral palsy evaluation, and performance in surgical skill

assessment), for social matters (e.g. emotion recognition and judgment, hand signs, sign language

recognition, and activity recognition), for sports activity analysis (e.g. football kicks), for machine

interaction (e.g. human–computer interaction and visual object tracking), and for animal-related

application (e.g. detecting fatigue).

This Special Issue is addressed to all the researchers, professionals, and designers interested in

GR and to all the users driven by curiosity and passion.

The Guest Editor expresses acknowledgment and thanks to all the involved authors.

Giovanni Saggio

Editor
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Benchmarking Dataset of Signals from a Commercial MEMS
Magnetic–Angular Rate–Gravity (MARG) Sensor Manipulated
in Regions with and without Geomagnetic Distortion

Pontakorn Sonchan , Neeranut Ratchatanantakit , Nonnarit O-larnnithipong, Malek Adjouadi

and Armando Barreto *

Electrical and Computer Engineering Department, Florida International University, Miami, FL 33174, USA;
psonc001@fiu.edu (P.S.); nratc001@fiu.edu (N.R.); nolarnni@fiu.edu (N.O.-l.); adjouadi@fiu.edu (M.A.)
* Correspondence: barretoa@fiu.edu

Abstract: In this paper, we present the FIU MARG Dataset (FIUMARGDB) of signals from the
tri-axial accelerometer, gyroscope, and magnetometer contained in a low-cost miniature magnetic–
angular rate–gravity (MARG) sensor module (also known as magnetic inertial measurement unit,
MIMU) for the evaluation of MARG orientation estimation algorithms. The dataset contains 30 files
resulting from different volunteer subjects executing manipulations of the MARG in areas with and
without magnetic distortion. Each file also contains reference (“ground truth”) MARG orientations
(as quaternions) determined by an optical motion capture system during the recording of the MARG
signals. The creation of FIUMARGDB responds to the increasing need for the objective comparison of
the performance of MARG orientation estimation algorithms, using the same inputs (accelerometer,
gyroscope, and magnetometer signals) recorded under varied circumstances, as MARG modules
hold great promise for human motion tracking applications. This dataset specifically addresses the
need to study and manage the degradation of orientation estimates that occur when MARGs operate
in regions with known magnetic field distortions. To our knowledge, no other dataset with these
characteristics is currently available. FIUMARGDB can be accessed through the URL indicated in the
conclusions section. It is our hope that the availability of this dataset will lead to the development of
orientation estimation algorithms that are more resilient to magnetic distortions, for the benefit of
fields as diverse as human–computer interaction, kinesiology, motor rehabilitation, etc.

Keywords: MARG; MIMU; orientation estimation; sensor fusion algorithm; dataset; orientation
algorithm benchmarking

1. Introduction

1.1. Need for a MEMS MARG Benchmarking Dataset

One of the earliest developments of a micro-machined accelerometer was reported
by Roylance et al. in 1979 [1]. However, it would be about 15 years before these devices
were embedded into end-user products and manufactured in large volumes [2]. By 2009,
miniature gyroscopes, also developed as micro electro mechanical systems (MEMs) would
become commercially available as well [3]. Both of these sensors were then packaged
commercially as “6-degrees-of freedom” MEMS inertial measurement units (IMUs), spark-
ing significant interest due to the advantages that these sensor modules could have in
many prospective applications. These modules were small in size and low in weight,
power consumption and heat dissipation, while simultaneously offering measurements of
acceleration along three orthogonal axes and rotational speed about those same axes. In
principle, these were the same measurements required in aeronautical and maritime inertial
navigation systems that use the “strapdown configuration”. The strapdown approach
estimates orientation by integration of the gyroscope measurements and utilizes it for the
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appropriate projection (“resolution”) of accelerometer readings to an inertial coordinate
frame with one of its axes parallel to the gravitational acceleration [4,5].

For the strapdown approach, the orientation estimate must be very accurate, so that
the acceleration of gravity can be correctly discounted from the resolved accelerometer
readings and then double-integrated to yield a position estimate. Unfortunately, the use of
MEMS IMUs has shown that the quality of the acceleration and rotational speed measure-
ments from these miniature sensors is significantly poorer than that of their navigational
or strategic counterparts [6–8]. In response, researchers have focused efforts on the devel-
opment of orientation estimation approaches that can be resilient to the imperfections of
signals from the MEMS accelerometers and gyroscopes. In particular, the offset frequently
found in the outputs from MEMS gyroscopes is highly damaging to any process that uses
those signals for orientation estimation. This is because rotational speeds must be iteratively
accumulated (integrated) in one form or another to keep a running tally of total rotation
from a starting orientation, i.e., the quantification of the current orientation of a rigid body
with respect to its initial orientation. The offset in the outputs of MEMS gyroscopes varies
from “run-to-run” and it even experiences significant “in-run” fluctuations [7]. This makes
complete and permanent cancellation of gyroscope offsets extremely difficult to achieve
and gives rise to orientation “drift” errors when not properly counteracted.

Accordingly, many new MEMS orientation estimation approaches strive to implement
some form of information fusion, so that the accelerometer readings may be used to
enhance (often correct) initial orientation estimates obtained from gyroscopic readings. In
this spirit, the “6-degrees-of-freedom” IMUs were augmented with tri-axial magnetometers
incorporated first on the same module enclosure and later as additional components in
the same chip as the accelerometer and gyroscope. These are the sensor modules that we
prefer to designate as “magnetic–angular rate–gravity” (MARG) modules, although they
are sometimes identified also as “9-degrees-of-freedom” IMUs or magnetic and inertial
measurement units (MIMUs). For the last several decades, researchers have proposed
multiple approaches to solve the problem of real-time MARG orientation estimatation,
attempting to fulfill the promise that MEMS IMUs first seemed to have in the earlier XXI
century. In their 2021 paper, Nazarahari and Rouhani summarized the breadth and depth
of the different approaches proposed over the last 40 years [9], finding that there may
not be a single existing algorithm that outperforms the rest under all conditions. Instead,
they found that certain algorithms seem to perform better when specific considerations
(e.g., latency, computational complexity, characteristics of the environment in which the
MARG is used, etc.) are given priority. Accordingly, when they identify the future research
challenges in the field, they state “ . . . we suggest that test platforms and benchmarking
studies are required to identify the most effective SFAs (Sensor Fusion Algorithms), as well
as techniques that could improve the accuracy and robustness of SFAs.” [9].

Useful application of MEMS MARG modules in areas such as human–computer
interactions and human motion studies requires significant accuracy and robustness in
the MARG orientation estimation algorithms used. For example, if a physical hand-held
controller with a single MEMS MARG attached to it is used as a ray-casting pointer for
three-dimensional virtual environments (e.g., [10]), orientation estimation errors between
the actual orientation of the hand-held controller and the orientation of the virtual ray
created will be detrimental to the task when pointing to objects at increasing virtual depths,
as a virtual object will span a smaller amount of degrees of visual field when it is simulated
at increasing virtual depth (away from the user). Conversely, any orientation error will be
projected to a longer error distance when the ray intersects deeper planes in the virtual
environment. In more complex uses of MARG modules for human–computer interactions,
such as their utilization in instrumented gloves for real-time hand tracking and gesture
identification (e.g., [11]), each finger is frequently modeled as a kinematic chain. Therefore,
the position of the fingertip is computed as a composition of the lengths and orientations
of all three finger segments (proximal phalanx, intermediate phalanx, and distal phalanx),
as estimated by the MARGs attached to them. If each MARG orientation estimate contains
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errors, the estimated position of the fingertip may be significantly flawed, resulting in an
unacceptable internal representation of the user’s hand in the computer. Furthermore,
developing techniques that will allow a user to “grab” virtual objects with their virtual
hand will demand a high level of accuracy in the virtual representations of position and
orientation of all hand segments.

In principle, MARG module orientation estimation is possible based on gyroscope data,
particularly when periodically corrected by information from the accelerometer and the
magnetometer. However, a critical challenge that emerges is the risk of applying a correction
when the assumptions made for the utilization of secondary sensor (accelerometer or
magnetometer) data are not met [12]. If such inappropriate corrections are fully applied,
significant error may be introduced in the current and future orientation estimates.

For magnetometer corrections, the assumption is, typically, that the geomagnetic
vector has the same magnitude and the same direction throughout the complete operational
space in which the MARG will be used. Indeed, the geomagnetic vector, considered in
isolation, would be constant in magnitude and direction within the reduced environments
(e.g., a room or even a city) in which these types of MARG applications will take place.
However, in the modern built environment, it is essentially unavoidable to find ourselves
near large ferromagnetic objects, such as metal furniture and even structural elements
embedded in our dwellings, laboratories, and buildings. These objects could have high
magnetic permeability that may cause the “bending” of the magnetic field lines, yielding
localized distortions of the magnetic field in their neighborhood. As a result, possible
local geomagnetic distortions cannot be overlooked in the evaluation of MARG orientation
estimation algorithms.

Accordingly, we believe that there is a need for benchmarking datasets that challenge
the MEMS MARG orientation algorithms in different ways. Specifically, the study of
the resilience of MARG orientation algorithms that use magnetometer readings of local
distortions of the geomagnetic field has attracted a lot of attention in recent years and should
be fostered by the creation of calibrated (i.e., containing ground truth orientations) datasets
collected in spatial regions where the geomagnetic field is both normal and distorted. The
impact of magnetic field disruptions on MARG orientation algorithms within fields such as
biomechanics research and human–computer interaction became particularly clear after
the publication of the 2009 paper by deVries et al. [13], who advised researchers to “‘Map’
your laboratory on ferromagnetic characteristics . . . ” and “Preferably use IMUs well away
from floors, walls, and ceilings”. These limiting concerns were echoed more recently (2019)
by Picerno in his comprehensive survey of techniques for studying joint kinematics by
using inertial and magnetic sensors [14]: “Unfortunately, the presence of ferromagnetic
disturbances distorts the sensing of the local magnetic north. This negatively affects the
reliability of the estimated sensor’s orientation and may, thus, compromise the usability of
such application in the clinical settings, which are normally characterized by ferromagnetic
materials and related interferences.”

The perceived need for a calibrated dataset that may be used for benchmarking
the performance of MARG orientation algorithms in regions with and without magnetic
distortions has prompted us to develop the FIU MARG Dataset (FIUMARGDB), which we
introduce in this paper.

1.2. Related Datasets and Studies

As it became clear that different MARG orientation estimators exhibited performance
advantages for different scenarios, and that their “tuning”, i.e., the assignment of specific
numerical values to operational parameters of the estimator, was critical, a more urgent
need for testing common data emerged. One of the earliest data repositories created
specifically for MARG evaluation was “RepoIMU”, developed by Szczesna et al. from The
Silesian University of Technology, Gliwice, Poland, in 2016 [15]. The paper that presented
the dataset expresses the authors’ belief that, at the time, “A similar repository was not
found.” While the authors note three contemporary datasets (one for the study of pedestrian
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navigation [16], one for human activity recognition [17], and one that combines readings
from five Xsens inertial measurement units and data from a Kinect system [18]), they make
a compelling case to conclude that none of those datasets would be truly appropriate for
benchmarking the performance of MARG sensor modules. The third dataset references
is, perhaps, the closest to the kind of dataset needed for MARG orientation algorithm
benchmarking, but includes data from the Kinect system as “ground truth”, which is
known to compare poorly in accuracy and stability to data available from a multicamera
motion capture system.

The RepoIMU repository includes recordings from IMU sensor(s) and a Vicon Nexus
optical motion capture system under two scenarios: (a) movement of a “wand” (T-stick)
with one Xsens MTi-G-28 A53 G35 MARG (in this case, the Vicon system used six markers)
and (b) movement of three custom-built IMUs mounted on each of the three sections of
an articulated pendulum (in this case, the Vicon system used eight markers). Each wand
experiment was reported in a single file. Each pendulum experiment resulted in three
separate files (one for each of the IMU modules). The files are comma-separated value (CSV)
files with headers in the first row. Each file includes records (rows) comprising a timestamp
(in milliseconds) and tri-axial accelerometer, gyroscope, and magnetometer data from the
corresponding IMU, as well as quaternion orientation estimates for the corresponding
segment. The repository contains a total of 95 recordings, and is available in GitHub [19].

The paper implies that the IMU readings and the Vicon system readings were initially
recorded to separate files, as a detailed description of the “data synchronization” process
that needed to be performed is included. In fact, the paper mentions that the Vicon system
was operated always at a sampling frequency of 100 Hz, whereas the sampling frequency
for the IMU signals was different for different tests (as shown in Table 2 of the RepoIMU
paper, which shows values of 90 or 166 Hz). In addition, the IMUs used are not necessarily
the same type as the low-cost miniature MARG boards that are available at the time of
writing (e.g., 3-Space™ Nano IC, from Yost Labs, 3.8 mm × 5.2 mm × 1.1 mm, under USD
20 in large quantities [20]). The Xsens MTi g modules are more complex, combining a
MEMS IMU, a GPS, and a barometer, with dimensions of 58 × 58 × 33 mm [21]. The char-
acteristics of the custom IMUs used in the pendulum recordings are not necessarily similar
to the characteristics of contemporary low-cost miniature MARG chips. Furthermore, the
RepoIMU dataset did not control or insert any form of known magnetic field interference
as part of the test scenarios.

In the last 2 years, the need for an objective and detailed comparison of the perfor-
mance of the many available MEMS MARG estimators has prompted researchers to apply
some of the leading estimators to the same sets of MARG data, which they have collected
for that purpose. In some cases, researchers have made the data available to other interested
parties. That is the case in the study of the accuracy of ten orientation estimation algorithms
performed by Caruso et al. (Politecnico di Torino, Bio Robotics Institute in Pisa, University
of Berlin and University of Sassari) [22]. The aim of their work was to analyze the accuracy
of ten orientation estimators (called sensor fusion algorithms, SFAs), across a matrix of three
rotation rates (slow, medium, and fast) by three (pairs of) commercial MARG modules:
Xsens-MTx, APDM-Opal, and Shimmer-Shimmer3. For all recordings, the six MARGs were
attached to a wooden board, which also had eight reflective spherical markers on it, so
that the reference orientation of the whole board (as a rigid body) could be determined
by a Vicon T20—Nexus 2.7 optical motion tracking system involving 12 cameras. In this
case, also the MARG data and the optical motion capture data seem to have been initially
recorded in separate files (since the optical motion capture data “were first processed in
Nexus 2.7” and the paper describes a two-step process of synchronization). Both the Matlab
algorithm implementations and the three Matlab data (*. mat) files with MARG and Vicon
data were made available through IEEE Dataport [23].

The main emphasis of this research effort was the implementation, “tuning” (i.e., search
for best parameters for each algorithm), and comparison of the algorithms. The creation
of the dataset was a means to that end. All three of the MARG modules used were more
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complex than the low-cost miniature MARG boards most readily available (such as the
Yost Labs 3-Space™ Nano IC). The three recording scenarios did not control or insert any
form of known magnetic field interference as part of the test environment.

Another MARG dataset, which was also developed in order to perform a compar-
ative assessment of orientation estimation algorithms, is the one used for a broad study
comparing the performance 36 orientation estimators (SFAs) performed by Nazarahari
and Rouhani from the University of Alberta, Canada [24]. They applied the algorithms to
data from three Xsens MTws MIMUs attached to rigid plastic plates equipped with four
retro-reflective markers and fixed to the subject’s foot, shank, and thigh. The reflective
markers were tracked by an eight-camera Vicon motion capture system. The recordings
involved the participation of nine able-bodied participants. Each participant performed
actions in two phases; phase I (DataShort.mat records) included standing and brief episodes
of walking, turning, jumping, and hopping in order to explore various motion patterns
and intensities (each complete trial lasted 137 ± 7 s.) and phase II (DataLong.mat records)
included standing and longer intervals of walking and turning to explore highly dynamic
long-duration tasks (each complete trial lasted 393 ± 3 s.)

The Xsens MTws are closer in size to the miniature MEMS MARG chips (e.g., Yost Lab’s
3-Space™ Nano IC), but they are commercialized in a different price range. In this effort,
the main focus was on the implementation, tuning, and comparison of the algorithms, but
the associated data (from Subject 2) remain available (as Matlab data files) on the website of
the Neuromuscular Control and Biomechanics Laboratory of the University of Alberta [25],
and include the ground truth foot, shank, and thigh orientation results (as quaternions)
from the Vicon system. In a paper that describes the comparison of the algorithms, no
mention is made of the introduction or control of known magnetic distortions, other than
the decision to implement the SFA algorithms using the foot-worn MIMU only because
it “was close to the ground surface and experienced the highest magnetic disturbance
compared to shank/thigh MIMUs, according to De Vries et al.”.

Previous studies and datasets have not specifically established contrasting recording
conditions that would expose the MARG to environments with and without magnetic
disturbances. There have been studies where those contrasting magnetic conditions were
studied, but their authors have not made the corresponding MARG datafiles accessible to
other interested parties. Roetenberg et al. [26,27] studied short MARG records where an
Xsense MT9 MARG was rotated in alternating locations that they characterized as “free
space” and “close to 3.75 kg of metal” [26]. Subsequently, they performed three types of
tests [27]. They first studied the magnetic disruption effect on signals from a static Xsens
MT9 MARG as “an iron cylinder of 3.75 kg was placed near the sensor module for 10 min
without moving the sensor”. A second series of 10 quasi-static tests included rotations
of + and −90◦ performed along the three axes. “After these rotations, the iron cylinder
was placed at 5 cm of the module and a new sequence of rotations was performed in
opposite directions. The iron was then taken away and the sensor was rotated 90◦ along
the x axis and −90◦ back.” In the third experiment, three 10 cm carbon fiber sticks with
optical markers in their ends were attached at orthogonal directions on the MARG and the
assembly was attached to a 50 cm long stick “and moved by hand near a large iron tool
case”. This allowed recording of the MARG signals while an orientation reference (ground
truth) was obtained by a Vicon 370 3-D optical tracking system with six cameras. “The
movements consisted of small and large rotations along multiple axes at different velocities
and different distances from the ferromagnetic case.”

In these studies, the data were utilized internally by Roetenberg’s research group to
develop and evaluate their magnetic disturbance compensation approach, in which varying
weight is assigned to the contributions of the magnetometer signals in the correction stage
of a Kalman filter. The emphases of these studies and publications were on the crafting of
the enhanced Kalman filter orientation estimator and no mention was made of availability
of the MARG data to external parties.
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The growing interest in comparing the performance of diverse MEMS MARG ori-
entation algorithms and the lack of available datasets that include recording situations
that deliberately recorded MARG signals in regions with and without geomagnetic field
disruptions has prompted us to develop the FIUMARGDB dataset. Our intent was to
collect recordings partially taken in magnetically disrupted regions that were specifically
and purposely set up. We asked volunteers to execute a fixed sequence of pre-specified ro-
tations and translations moving a low-cost, commercially available MEMS MARG module,
and we have recorded from multiple volunteers so as to capture the different movement
idiosyncrasies that different users of the MARG-based human–computer interaction device
could exhibit.

2. Materials and Methods

In this section, we briefly describe the setup used for the recording of the files, the
MARG module used to record the signals, and the optical motion capture system that
was used to simultaneously produce estimates of MARG orientation and position that can
be used as “ground truth” for benchmarking the results of multiple MARG orientation
algorithms. We also describe in detail the sequence of translations and rotations that the
subjects were instructed to execute.

2.1. Recording Environment

As the goal was to obtain data recordings where the MARG would be operating in
both magnetically undistorted environments and magnetically distorted regions, our initial
concern was to set up an area for the recordings that would not (originally) have magnetic
distortions. To this end, the three locations in which the MARG would be operated were
defined within a region in our laboratory in which we had previously repeatedly mapped
the magnetic field at intervals of 1 foot (25.4 cm) in all three orthogonal directions [28].
The three locations where the MARG would operate during the recordings, (H), (A), and
(B), were defined in the portion of the previously mapped space where the magnetic field
vectors had been found to have the same orientation and magnitude, away from any large
ferromagnetic objects. All the necessary supports were made from wood and glued together
(avoiding the use of metallic fasteners).

A 3′ (91.44 cm) by 2′ (60.96 cm) poster presentation cardboard was placed horizontally
to provide the subjects with a visual plane of reference (although the subjects were in-
structed to hold the MARG above this reference plane, never allowing the MARG to touch
the cardboard, except at the “home location” at the beginning and end of the recording).
The reference plane was at an approximate height of 1 m above the floor of the laboratory.

Paper labels with the letters “H”, “A”, and “B” were pasted on the horizontal reference
plane to guide the movements executed by the subjects. These three locations were arranged
as a capital “L” that had been mirrored along its vertical stroke, with (A) located at the
intersection of the two strokes. (H) was located about 30 cm in the approximate direction
north (For repeatability, the (H), (A), and (B) locations in our setup were placed on lines that
run parallel to the grid defined by the tiles in the floor of our laboratory. That grid is only
approximately oriented south–north and east–west.) from (A) and (B) was located about
55 cm in the approximate direction west of (A). The relative distances between locations
(H), (A), and (B) are displayed in Figure 1.

Since the series of manipulations instructed to the subjects requires them to start by
picking up the MARG from location (H), where it would be resting on a “cradle”, the
inertial frame of reference for orientation purposes would naturally be the same as the
body frame of reference at that initial moment of the recording (which we will refer here as
“startup”). As the MARG we used (see below) adopts a left-handed orthogonal set of axes,
that would be also the one naturally used for the (fixed) inertial frame of reference. Those
axes are as described in Table 1.
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Figure 1. Relative position of locations (H), (A), and (B) with respect to the origin of coordinates for
the optical motion capture Trio system. The Trio system uses a right-handed coordinate system (TX,
TY, TZ). This is used only for position coordinates. The MARG uses a left-handed coordinate system
(x, y, z). (The “Thin” and “Thick” identifiers for the steel bars are explained in Section 2.2.3).

Table 1. Direction of inertial frame axes (for orientations) with respect to labels (H), (A), and (B).

AXIS AXIS DIRECTION

x AXIS Parallel to the (B) to (A) direction, positive towards (A)

y AXIS Parallel to the floor-to-ceiling direction, positive towards the ceiling

z AXIS Parallel to the (A) to (H) direction, positive towards (H)

2.2. MARG Module, Optical Motion Tracking System, and Magnetic Disrupter Used
2.2.1. MARG Module Used

The MARG sensor used for the recordings was a 3-Space™ Wireless 2.4 GHz Attitude
and Heading Reference System (AHRS)/inertial measurement unit (IMU) from Yost Labs,
Portsmouth, OH, USA, 45662 (https://yostlabs.com/, accessed on 15 February 2023). We
chose to use the 3-Space MARG because the manufacturer makes it available in a wide
spectrum of versions, all built surrounding the same basic sensor with different types of en-
closures and communication alternatives [29]. This will accommodate widely varying user
needs in such a way that no superfluous features need to be purchased. The 3-Space family
spans a wide range, from the Nano IC model, a low-cost single surface-mount integrated
circuit, to 2.4 GHz wireless or Bluetooth versions and even a watertight USB/RS232 module
version. The 3-Space sensor has been validated with calibrated movements performed by
an industrial robot and found to be appropriate for a prospective application in a study
performing joint angle analyses of surgeons performing laparoscopic surgery [30].

The version of the 3-Space MARG we used was contained in a 60 mm × 35 mm × 15 mm
plastic enclosure. The MARG exchanges data and commands with the host personal
computer through a matching receiver (“dongle”) connected to a USB port in the host. For
our recordings, the MARG enclosure was firmly attached to the center of an OptiTrack
(plastic) “hand rigid body”. Three M4 12.7 mm (diameter) reflective spheres were attached
to three of the six available prongs of the hand rigid body in such a way that the MARG was
located approximately at the center of the triangle defined by the three reflective spherical
markers. A lightweight wooden handle was added to the plastic “hand rigid body” so that
volunteers could more easily manipulate the MARG. Figure 2 shows the complete wand
assembly manipulated by the volunteer subjects.

7



Sensors 2023, 23, 3786

 

Figure 2. Wand assembly manipulated by the volunteer subjects, shown in Pose 1 <Default Pose>
over location (B).

As mentioned before, the default coordinate axis frame for the MARG we used is
an orthogonal (Cartesian) left-handed system, where the positive Z (body) axis points to
the LED located at one edge of the module’s largest face (ordinarily lit in blue). Since
orientation estimates commonly represent the accumulation of 3D rotations from an initial
orientation, the default inertial frame will be considered to match the body frame at startup,
and therefore all orientations are indicated as rotations from that initial orientation to the
body orientation at any time during the recording. In other words, the orientations of the
(body reference frame of the) MARG are referenced to the body frame orientation at startup,
which becomes the default (fixed) inertial frame orientation. In all the recording runs, an
effort was made to place the MARG in such a way that the initial body frame axes (and
therefore the fixed inertial frame axes) matched the directions described in Section 2.1.

The full set of specifications for the 3-Space MARG we used can be consulted in
the “3-Space Sensor Miniature Attitude and Heading Reference System With Pedestrian
Tracking User’s Manual” (https://yostlabs.com/wp/wp-content/uploads/pdf/3-Space-
Sensor-Users-Manual-3.pdf, accessed on 15 February 2023) [29].

It is important to note that, following the native frame of reference of the MARG used,
the inertial reference frame used for orientations is as described in Section 2.1. However, the
coordinate axis for positions is completely independent of the MARG and will be defined,
instead, in accordance with the standards for the optical motion tracking system, described
next. This is particularly relevant, as the MARG we used generates internal orientation
estimates (as quaternions) utilizing some selectable orientation estimation algorithms. In
our files, we also recorded the quaternion orientations generated internally by the MARG
using a Kalman filter.

2.2.2. Optical Motion Capture System Used

The optical position and orientation tracking system used during the recordings
was the V120:Trio system from OptiTrack (OptiTrack is a company of NaturalPoint, Inc.,
Corvallis, OR, USA, 97339). This is a system that includes three cameras with infrared filters
mounted in a rectangular prism enclosure (58.42 cm × 4.06 cm × 5.08 cm). Each camera is
surrounded by a ring with 26 infrared LEDs illuminating the field of view of the cameras.
Since the cameras are mounted in the enclosure at the factory, the positional relationships of
the camera are pre-calibrated and do not require user intervention. Furthermore, position
tracking of an infrared reflective marker (or set of markers defining a rigid body), as well
as the orientation of a set of markers defining a rigid body, can be set up simply in the
accompanying Motive software (Ver. 2.3.2). A complete list of the technical specifications
of the V120:Trio system can be found at (https://optitrack.com/cameras/v120-trio/specs.
html, accessed on 15 February 2023) [31].
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The longest dimension of the V120:Trio system was placed parallel to the (B)-to-(A)
line of our setup, about 140 cm to the north of the (B)-to-(A) line and leveled approximately
35 cm above the reference plane of our setup (poster presentation cardboard).

The OptiTrack Motive software identifies the position of a particular marker within
each of the three images captured by the cameras. With precise knowledge of the camera
characteristics and the positional relationships between the cameras, the Motive software
calculates the three-dimensional px, py, pz position of the spherical marker in a right-
handed orthogonal coordinate system which has its origin at the location of the central
camara of the Trio device, with its TZ axis coinciding with the optical axis of that camera
(pointing towards the scene viewed by the camera). The TX axis for the positions reported
by the Trio system runs parallel to the longest dimension of the enclosure. Therefore,
with respect to the (H), (A), and (B) labels of our setup, the directions of the Trio axes
are specified in Table 2, with the origin of the positional coordinates at the location of the
central camera of Trio.
Table 2. Direction of V120:TRIO axes (for positions) with respect to labels (H), (A), and (B).

AXIS AXIS DIRECTION

TX AXIS Parallel to the (B) to (A) direction, positive towards (A)

TY AXIS Parallel to the floor-to-ceiling direction, positive towards the ceiling

TZ AXIS Parallel to the (H) to (A) direction, positive towards (A)

If at least three markers can be detected in the images of the three Trio cameras, they
can be designated in Motive as a “Rigid Body”, and the software can then track the position
of the geometric center of the triangle and the orientation of a 3D vector from the center
of the triangle to one designated marker. For our recordings, the designated marker was
selected so that the 3D vector that Trio tracks for orientation runs parallel to the Z axis of the
body frame of the MARG. Therefore, at every sampling interval, the Trio system reported
the three coordinates, px, py, and pz, of the center of the triangle (according to the axes
TX, TY, and TZ) in meters and the orientation of the triangular rigid body as a quaternion.
In order to adapt the orientation estimate from Trio to the conventions established for the
MARG orientation estimates (for example, the internally generated quaternion that used
a Kalman filter for orientation estimations), the following manipulations were applied
to define the recorded qTrio quaternion (cam_qx, cam_qy, cam_qz, cam_qw) from the
quaternion originally calculated by the Trio system stored in rbData (it must be noted
that we used the following ordering of the quaternion components: the 1st, 2nd, and 3rd
components are the qx, qy, and qz vector components, respectively. The 4th component is
qw, the scalar component).

cam_qx = rbData. qz × (−1) (1)

cam_qy = rbData. qw (2)

cam_qz = rbData. qx × (−1) (3)

cam_qw = rbData. qy (4)

The goal of operating the V120:Trio system while the MARG was recording accelera-
tions, rotational speeds, and magnetic field components was to have, for each sampling
instant of the MARG sensor data, an independent measurement of the orientation of the
MARG (orientation of the rigid body defined by the three spherical reflectors) and its
position (the position of the center of the triangle defined by the three spherical reflectors).
Accordingly, the orientation calculated by the V120:Trio system (to be referred as the “Trio
orientation”, qTrio) can act as a “ground truth” for orientation, given its resilience to move-
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ment characteristics and magnetic disruptions. Then, the MARG signals can be processed
by a variety of MARG orientation algorithms, and their results can be compared to the
Trio orientations to assess which algorithm, and under which conditions, yields orientation
estimates that more closely resemble the ones from Trio.

The placement of the Trio device was chosen to obtain a good compromise between
closeness of the cameras to the markers at any point during the recordings and certainty
that the three markers would always remain within the “field of view” of all three cameras.
The difficulty of finding an ideal placement for optical motion capture (OMC) systems
such as the Trio device is recognized in the motion analysis community. For example,
Hindle, Keogh, and Lorimer acknowledge “maintaining a line of sight to each marker
throughout the movement is a major challenge when using 3D OMC as markers often
become displaced and/or occluded” [32]. We tried a number of combinations of the three
distances, d1, d2, and d3, in Figure 1, arriving at the values for these distances shown in
the figure. Nonetheless, there can be rare instances during the manipulations performed
by the subjects in which the line of sight from any of the three cameras to either one of the
spherical markers is obstructed by the MARG holder, or even by another marker. In those
cases, the Trio system cannot provide an orientation estimate and repeats the values of
quaternion components calculated for the last valid estimation. These events (isTracked = 0)
occur in individual sampling instants or in short intervals lasting a few sampling instants
and do not distort the overall progression of the quaternion components significantly.
Nonetheless, to identify those rare instances, the files also include a flag variable for each
sampling instant that is “1” if all the markers were detectable and “0” when at least one
of the markers was not detectable. This “isTracked” flag would allow interested users to
process the dataset files, applying the interpolation approach of their choice to overwrite
the repeated quaternion component values present when “IsTracked” has a value of 0.
We have included the Matlab function qTrioFixed = TrioInterp(qTrio, isTracked) in the
repository, which performs linear interpolation on the individual quaternion components
during the intervals in which “Is Tracked” has a value of 0.

In our data collection setup, both the Trio system and the MARG were connected to
the same personal computer host. Our recording software was set to request samples from
both systems every 8.3 milliseconds (i.e., at a rate of 120 Hz), and both pieces of information
were written simultaneously to a single hard disk file, avoiding the need for after-the-fact
synchronization of two different files from each experimental run.

2.2.3. Magnetic Disrupters

One of the priorities in the creation of the files for the dataset was the inclusion,
in each experimental run, of both intervals where the MARG would be operating in a
magnetically undistorted environment and intervals in which the same device would
be subjected to the same type of manipulations but in a region of space known to have
distortion of the geomagnetic field. To fulfill the assumption of a uniform, undistorted
geomagnetic field in the neighborhood of locations (H) and (A), we defined all three
locations for the experiment in a region of space away from furniture that would comprise
large ferromagnetic objects. Then, in order to introduce a purposeful magnetic distortion
in the neighborhood of location (B), we placed five bars of M35 high speed steel (HSS)
from Accusize Industrial Tools, Richmond Hill, Ontario, Canada, under (B), just below
the poster presentation cardboard that provided a visual reference plane for the subjects.
All five of the steel prisms had a length of 6 inches (15.24 cm), but three of them (“thick”)
were 0.5” × 0.5” (1.27 cm × 1.27 cm) in cross-section, whereas two of them (“thin”) were
0.25” × 0.25” (0.635 cm × 0.635 cm) in cross-section. Both of the “thin” bars and two of the
“thick” bars were aligned north-to-south, and the remaining “thick” bar was placed with a
west-to-east orientation at the south end of the other four bars, as shown in Figure 1.
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2.3. Sequence Instructed to the Subjects

With the recording environment set up as described in the previous sections, we asked
each of the volunteer subjects to grab the assembly containing the MARG module by the
wooden handle and we instructed them to perform a prescribed series of translations and
rotations. This series of movements was first demonstrated by one of the experimenters
who performed the movements following the slides of a PowerPoint slide show that was
being displayed on a computer monitor in front of the subject location, so that the correct
sequence of movements would not depend exclusively on the memorization by the subject.
Then, the subjects were asked to perform the same sequence of movements with the MARG
while they were also shown the PowerPoint slides.

The sequence of movements, listed in Table 1, starts and ends with the MARG resting at
the “home location” (H), such that the two largest faces of the MARG enclosure are parallel
to the floor and the LED in the enclosure is on the edge that is opposite to the subject, as
shown in Figure 2. That initial orientation of the MARG is called the <Default Pose>. After
execution of every translation or rotation, the subjects were asked to hold the corresponding
“pose” for a count of one to five. It was recommended that, in each one of the poses, the
subjects tried to hold the lowest point of the complete MARG holding assembly just below
the height of two cigarette packs stacked one top of each other (measured as 44.1 mm).
(Two actual cigarette packs were placed on the poster board, away from locations (H), (A),
and (B), to serve as a visual reference for the subjects.) Depending on the specific pose, the
lowest point of the assembly could correspond to one of the reflective spheres, one of the
plastic prongs of the plastic rigid body, etc.

In the <Default Pose>, the axes of the body frame of the MARG are oriented in the
same way as the axes of the inertial reference frame, described in Table 1. According to
the movement sequence defined in Table 3, only sequence steps 12 to 19, corresponding
to Poses 6, 7, 8, 9, and 10, take place in the neighborhood of location (B), i.e., under the
influence of a distorted magnetic field (steps 2 and 20 are transitions moving in and then
out of the distorted magnetic field). The rotations in each of the steps are specified with
respect to the fixed inertial frame axes (following the left-hand frame convention).

Table 3. Sequence of steps in each recording run.

Sequence Step Location Rotation Resulting Pose

1 H (Initial location and pose for the task) 1 <Default Pose>

2 (to) A After translation H to A, yields 1

3 A +90◦ Z Axis, yields 2

4 A −90◦ Z Axis, yields 1

5 A +90◦ X Axis, yields 3

6 A −90◦ X Axis, yields 1

7 A +90◦ Y Axis, yields 4

8 A −90◦ Y Axis, yields 1

9 A −45◦ Y Axis and + 90◦ X Axis, yields 5

10 A +45◦ Y Axis and − 90◦ X Axis, yields 1

11 (to) B Just translation A to B 6 (same orientation as 1)

12 B +90◦ Z Axis, yields 7

13 B −90◦ Z Axis, yields 6

14 B +90◦ X Axis, yields 8

15 B −90◦ X Axis, yields 6

16 B +90◦ Y Axis, yields 9

17 B −90◦ Y Axis, yields 6

18 B −45◦ Y Axis and + 90◦ X Axis, yields 10

19 B + 45◦ Y Axis and − 90◦ X Axis, yields 6

20 (to) H Just translation back to H 1
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The volunteer experimental subjects were recruited from the student body, faculty,
and staff of Florida International University. Each subject was given a small enticement
(32 GB USB memory or hand-held multimeter) for his/her participation. The experimental
procedure was approved by the FIU Internal Review Board (IRB). All subjects were 18 years
or older (ages 27.4 ± 7.3 years), without known motion impairments. Each subject held the
MARG assembly with their dominant hand. We placed emphasis on including recordings
from multiple different human subjects because the database was developed for MARG use
in human–computer interaction applications. Therefore, we sought to capture as much as
possible of the variability in speeds, trajectories, and stability of poses that can reasonably
be found in application of MARG modules within hand-held devices for human–computer
communication. This is also the reason why the instructions to the subjects were not
exhaustive, leaving room for the idiosyncrasies of movement from each individual. This
means that we expected variability in the timing and “accuracy” with which each volunteer
subject held the MARG in the instructed poses, which is what would also naturally occur in
the ordinary use of a three-dimensional computer interface device (e.g., WiiMote, Nintendo
Switch Joy-Con, etc.). This “inaccuracy” on the part of each of the subjects does not impact
the intended benchmarking use of the dataset, as the estimation of orientations by new
algorithms (even in imperfectly executed poses) will be compared to a “ground truth”
estimation of the actual pose held, provided by the Trio system. Our reasons for proposing
the orientation estimates from the Trio system as a trustworthy ground truth are detailed in
the discussion section (Section 4.1).

A video recording of the sequence of manipulations listed in Table 3, annotated
with the identifiers of the poses (P1, . . . , P10) as they occur, is available as part of the
Supplementary Materials for this paper.

2.4. Verification of the Magnetic Disruption Established near Location B

We verified that the magnetic field near (B) was disrupted (changed) by the presence
of the steel bars measuring the field in the X, Y, and Z directions (according to the blue
coordinate axes in Figure 1) both at Location (A) and Location (B). We recorded a file
(“LONGRUN.csv”, available in the dataset in folder “Extra_files_1”) in which the MARG
started at (H) in the Default Pose (i.e., Pose 1, with the axes of the MARG body frame in
the directions indicated by the blue arrows in Figure 1), was translated without rotation to
(A), was held there for more than 5 min, was translated without rotation to (B), was held
there for more than 5 min, and then it was taken back to (H) without rotation. When we
examined the mean and standard deviation in Gauss of the magnetometer readings over
500 consecutive samples, first in (A) and then in (B), we found:

MagnetoXYZinA
= [(−0.0568, 0.00013), (−0.2264, 0.00010), (0.2177, 0.00014)]
MagnetoXYZinB
= [(−0.0287, 0.00110), (0.0717, 0.00120), (−0.2707, 0.00130)]

Here, we can see that all three average magnetometer readings have changed sub-
stantially, with the Y and Z components even changing sign, which confirms the magnetic
disruption in (B). We also observed that the standard deviations were small (more than
one order of magnitude smaller than the averages), which confirms that the readings were
essentially constant while the MARG was held in (A) and while the MARG was held in (B).
That is, the magnetic disruption at (B) is constant, without variations through time.

3. Results

The result of our data collection effort is the compilation of the FIUMARGDB dataset,
which contains the simultaneous signals from the MARG sensors and the Trio system for
the sequence described in Table 3, executed by 30 volunteer subjects. The length of each
record varies, as different subjects executed the sequence of steps in Table 3 at slightly
different paces. Amongst the 30 records in the FIUMARGDB dataset, the minimum record
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lasts 51.50 s and the longest record lasts 153.96 s, with an average of 100.46 s and a standard
deviation of 27.21 s. The repository also includes some additional recordings (e.g., the
“LONGRUN.csv” record described in the previous paragraph and others), which are found
inside folders labeled “Extra_Files_1” to “Extra_Files_4”.

3.1. File Organization

Each of the files in FIUMARGDB is a comma-separated value (CSV) ASCII file, where
each row contains data collected at a different sampling instant from both the MARG
module and the Trio system. The only exception is the very first line in the file, which
contains the column headers, also separated by commas.

Table 4 provides the most important aspects of the organization of each file in FIUMARGDB.

Table 4. Organization of the files in FIUMARGDB.

Entity (Units) Column Data (Header)

Timestamp (ms) 1 Timestamp

Trio position (m)

2 pos_x

3 pos_y

4 pos_z

Trio orientation
(normalized unit quaternion)

5 cam_qx

6 cam_qy

7 cam_qz

8 cam_qw

Kalman filter orientation
(normalized unit quaternion)

9 ss_qx

10 ss_qy

11 ss_qz

12 ss_qw

Gyroscope readings (rad/s)

13 gyro_x

14 gyro_y

15 gyro_z

Accelerometer readings (g)

16 acc_x

17 acc_y

18 acc_z

Magnetometer readings (Gauss)

19 mag_x

20 mag_y

21 mag_z

Confidence Factor 22 stillness

isTracked 23 isTracked

The “Confidence Factor” (also described as a “stillness” measure) is a variable com-
puted within the MARG, described as “a value indicating how much the sensor is being
moved at the moment. This value will return 1 if the sensor is completely stationary, and
will return 0 if it is in motion. This command can also return values in between indicating
how much motion the sensor is experiencing.” [29]. Similarly, “isTracked” is a flag that
normally takes on the value of 1, indicating successful operation of the Trio system, but
may take on the alternative value of 0 if one of more of reflective markers tracked by Trio is
not visible.

As shown in Table 4, every file in the FIUMARGDB dataset provides all the elements
needed to compare the performance of any given MARG orientation estimation algorithm
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to the orientation estimates from the Trio system as “ground truth”. Readings from the
accelerometer, the gyroscope, and the magnetometer can be fed to the algorithm under
study and its output, expressed as a quaternion for each sampling instant, can be compared
to the Trio quaternion provided in the file. Entries in columns 9–12 provide the components
of the orientation quaternion calculated in real time by the onboard Kalman filter in the
MARG, as an example of orientation estimate result.

3.2. Visualization of the Contents of a Representative File

In this subsection, we present the data contained in a representative file (rec03.csv)
from the FIUMARGDB dataset. Furthermore, we emphasize in the visualizations how the
level of resilience of a given MARG orientation algorithm to magnetic disturbances might
be gauged. The FIUMARGDB repository also includes the Matlab functions used to create
Figures 3–5.

Figure 3 shows the information obtained from the MARG. This figure was created
in Matlab after the contents of the CSV file were read into the workspace. Here, we
display the evolution through time of the three accelerometer channel values (acc_x, acc_y,
and acc_z), the three gyroscope channel values (gyro_x, gyro_y, and gyro_z), and the
three magnetometer channel values (mag_x, mag_y, and mag_z) in the top three subplots,
respectively. Finally, the bottom subplot displays the evolution of the four components of
the quaternion orientation calculated by the Trio system (cam_qx, cam_qy, cam_qz, and
cam_qw). It is in this plot that the timing of the poses can best be recognized. Poses were
identified by their numbers (underscored), using blue font for Poses 1–5 held at location
(A) and red font for Poses 6–10 held at location (B), where the magnetic field was distorted.
It can be seen that while the accelerometer and gyroscope signals during the 2nd part of
the record are very similar to those in the 1st part (since the sequence of rotations executed
in (B) was the same as those executed in (A)), the magnetometer signals for Poses 6–10 are
clearly distorted with respect to those observed for Poses 1–5, as expected.

Figure 3. From top to bottom: plot of the three accelerometer channels; plot of the three gyroscope
channels; plot of the three magnetometer channels; and temporal evolution of the four components
of the rigid body orientation estimate from the Trio system as a quaternion. (Underlined numbers
indicate the poses).
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Figure 4. From top to bottom: plot of the three position coordinates with respect to the origin of the
Trio frame (TX, TY, TZ); temporal evolution of the four components of the rigid body orientation
estimate from the Trio system as a quaternion (converted to the MARGs left-hand frame); plot of the
isTracked flag through the recording; and temporal evolution of the four components of onboard
Kalman filter quaternion orientation estimate. (Underlined numbers indicate the poses).

Figure 5. From top to bottom: temporal evolution of the four components of the rigid body quaternion
estimate from the Trio system as a quaternion (converted to the MARGs left-hand frame); temporal
evolution of the four components of onboard Kalman filter quaternion estimate; and temporal
evolution of the “quaternion distance” [33] (angle) between the two orientation quaternions plotted
above. (Underlined numbers indicate the poses).
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Figure 4 shows all the information generated by the Trio system. The top subplots
display the evolution through time of the position coordinates (pos_x, pos_y, and pos_z).
The second subplot displays (again) the time evolution of the components of the quaternion
calculated by the Trio system (cam_qx, cam_qy, cam_qz, and cam_qw), with the same
labeling of poses used in Figure 3. The next subplot displays the values of the “isTracked”
flag. This flag recorded a value of 1 (all reflective markers were observable by the Trio
system) most of the time, with only a few occurrences of the value 0, which identifies the
few sampling instants in which not all three of the reflective markers were observable.
These occurrences were rare during the recordings. For example, in the file visualized in
Figures 3 and 4, isTracked was 1 for 98.65% of the samples. This figure also includes, at the
bottom, the time evolution of the four components of the orientation quaternion calculated
by the onboard Kalman filter implemented in the Yost Labs 3–Space MARG.

Figure 5 shows an example of the kind of assessment of MARG orientation estimators
that can be performed using the files in FIUMARGDB. At the top, the quaternion com-
ponents from the Trio system are shown. These orientations, expressed as quaternions,
can be taken as the orientation “ground truth”. The middle subplot in the figure shows
the evolution of the quaternion components generated by the onboard Kalman filter. It
can be observed that during the first part of the recording both estimates are very similar.
However, when the MARG was translated to location (B), where the magnetic field was
distorted (Poses 6–10), the altered magnetometer readings that can be seen in Figure 3
negatively impact the performance of the Kalman filter orientation estimation. As a result,
the Kalman filter components take on erroneous values, whereas the estimation process in
the Trio system is not affected and produces a very similar sequence of orientation estimates
for Poses 6–10 as that produced for Poses 1–5 in location (A).

From the series of four-valued quaternions from Trio and the series of four-valued
quaternions from the Kalman filter, is possible to derive a series of “quaternion distance”
measurements throughout the complete record. This can be obtained through the “dist”
command (angular distance in radians), which, according to Matlab, “returns the angular
distance in radians between two quaternions” [33]. This instantaneous error measure is
similar to the one used in [24].

The bottom subplot in Figure 5 displays the evolution through time of the “quaternion
distance” (already converted to degrees) between the orientation estimates from the Trio
system and the onboard Kalman filter. It is easy to recognize that the distance increases
significantly during the interval of the recording in which the MARG was at location
(B). Therefore, if the orientation estimate from the Trio system is considered the “ground
truth”, this last graph can be interpreted as indicating that the performance of the Kalman
filter in MARG orientation estimation degraded significantly while the MARG was in the
magnetically distorted environment.

Figure 6 shows the root mean square (RMS) value of the quaternion distance in degrees
(Trio vs. Kalman filter) for each of the recordings in the FIUMARGDB dataset. The red
trace is the RMS value incurred only while the MARG was in the neighborhood of location
(B), as identified by negative values in the position coordinate TX (“at B”). The blue trace is
for the RMS value computed in the remainder of the recording run (“not at B”). While the
RMS of the quaternion distance “at B” varies from record to record, we can see that it is
typically much higher than the RMS “not at B”. The average and standard deviation values
are 118.0371◦ and 39.4526◦, respectively, for at B and 11.8065◦ and 5.2525◦, respectively,
for not at B, which suggests that most of the quaternion distance resulted from the lack of
resilience of the orientation estimation algorithm under magnetically distorted conditions.

It should be pointed out that for our recordings we configured the AHRS filter onboard
the Yost 3-Space module to execute the simple implementation of a Kalman filter, just as a
basic item for comparison. The Yost 3-Space module is also capable of implementing faster
orientation filters, such as “Q-COMP (quaternion complementary) filter” and “Q-GRAD
(quaternion gradient descent) filter”, instead of the Kalman filter algorithm [29].
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Figure 6. RMS values of quaternion distance (Trio vs. onboard Kalman filter) for the recordings in
the FIUMARGDB. The red trace represents the RMS value calculated only in the interval when the
MARG was in the neighborhood of Location B (at B). The blue trace represents the RMS value of the
remainder of the record (not at B).

In the repository, within the folder “Extra_Files_2”, we provide three recordings from
runs in which the MARG was configured to implement the Q-COMP filter, and three
recordings from runs in which the MARG was configured to implement the Q-GRAD filter.
For each of those groups of three records, and for the first three records from our main
dataset (rec01.csv, rec02.csv, and rec03.csv), we computed the root mean square (RMS) value
of the quaternion distance (e.g., bottom plot in Figure 5 for the Kalman filter orientations
from rec03.csv) over the complete run. Table 5 shows the means and standard deviations
we found for each type of filter (the values for Kalman filter, KF, refer to RMS computed
from files rec01.csv, rec02.csv, and rec03.csv).

Table 5. RMS values of quaternion distance using various onboard orientation filters.

Q-GRAD Kalman Filter Q-COMP

Q distance mean (◦) 83.8225 96.8412 100.6647

Q distance std. dev. (◦) 8.5298 6.5633 2.1149

We can see in Table 5 that Q-GRAD recorded a slightly lower RMS value of the
quaternion distance and Q-COMP recorded a slightly higher RMS value of quaternion
distance with respect to the Kalman filter used for all the recordings (30) in our main dataset.
Appendix B shows representative plots of quaternion components and quaternion distance
(with respect to the Trio orientations) for Q-GRAD and Q-COMP, which can be compared
to the lower two plots in Figure 5. In the Q-GRAD plots, we can see that the orientation
estimates deteriorate more gradually than for Q-COMP. This might be the reason for the
lower RMS value of the quaternion distance displayed by Q-GRAD.

4. Discussion

The main objective of our development of FIUMARGDB was to create a series of
MARG data files (i.e., readings from the MARGs tri-axial accelerometer, tri-axial gyroscope,
and tri-axial magnetometer) that would be accompanied by the corresponding series of
orientation measurements (obtained by the Trio optical motion capture system) which could
be considered “ground truth” values of MARG orientation. In particular, we sought to
create such combined MARG–ground truth orientation recordings in the following context:
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• The MARG signals should come from a low-cost, commercially available MEMS
MARG module, as it is for these modules that the signal processing requirements are
most challenging but the potential rewards are most promising.

• The environmental context and movements carried out by the MARG module should
be similar to those a MARG module may experience in its application in body move-
ment (e.g., hand and fingers movement) tracking for the purpose of human–computer
interaction (as that is our area of work [12,34,35]).

Accordingly, we used the 3-Space Attitude and Heading Reference System (AHRS)/
inertial measurement unit (IMU) from Yost Labs (https://yostlabs.com/, accessed on
15 February 2023). Yost Labs offers the same basic MARG system in a variety of packages
and with different forms of communication to a host. The basic versions can be affordable
(particularly if purchased in medium or large quantities). However, we employed the
3-Space MARG version that communicates wirelessly to a PC host to avoid the disruptive
tethering effect that a wired connection from the sensor could have.

4.1. Discussion of the Main Set of Recordings

To explore the types of circumstances in which the MARG may operate as part of a
human–computer interaction system, we asked a number of volunteer subjects to perform
the same pre-defined sequence of translations and rotations with the MARG at two loca-
tions. The magnetic field at the first location, (A), was assumed to be the undisturbed local
geomagnetic field. In contrast, magnetic disrupters (described in Section 2.2.3) were placed
under the second location, (B), so that the magnetic field sensed by the MARG would be dis-
torted by design. We aimed at capturing the different movement characteristics that could
be expected from diverse human operators (e.g., speeds, specific trajectories, continuity of
motion, etc.) by recording the same sequence of actions executed by several volunteers.

The generation of independently obtained orientation estimates was achieved by
affixing the 3-Space MARG module to a plastic “rigid body hand (emulator)” with three
reflective markers, as recommended by the manufacturers of the V120:Trio tracking system,
in order to generate orientation measurements of the rigid body defined by the markers.

The appropriateness of using the orientations calculated from the Trio system as
“ground truth” to assess the effectiveness of MARG orientation estimation algorithms stems
from the documented position tracking accuracy of this type of optical motion capture
(OMC) system, and from the fact that the orientation computation procedures from marker
positions are not iterative (as opposed to most MARG orientation estimation approaches).
The manufacturer of the VT120:Trio system makes the general statement (https://optitrack.
com/applications/movement-sciences/#accuracy, accessed on 15 February 2023) that
“OptiTrack systems typically produce less than 0.2 mm of measurement error, even across
large tracking areas—even of those 10,000 sq ft or more. In smaller measurement areas,
OptiTrack systems regularly produce errors of 0.1 mm or less”, which references the
2017 study by Aurand et al. [36], where they assessed the position tracking accuracy
of an OptiTrack system that employed 42 cameras for tracking a large volume of 135 m3.
Aurand et al. concluded that “the OMC system demonstrated submillimeter mean accuracy
at every location in the capture volume, and error was found to be less than 200 μm in 97%
of the capture volume (using all 42 cameras)”, also indicating that the errors were found to
be less than 200 μm in 91% of the capture volume if only 21 cameras were involved. While
their study dealt with a much larger capture volume that necessitates the involvement of
larger numbers of cameras, they also commented that the errors measured in a study by
Eichelberger et al. [37], which “measured inter-marker distance using 6–10 Vicon cameras
within a 13.2 m3 (5.5 m × 1.2 m × 2 m) capture volume . . . were of the same order of
magnitude as the current study”. This level of position tracking accuracy in the same
type of optical motion capture systems as the V120:Trio supports the use of its orientation
estimates as “ground truth”.

While the orthogonal Cartesian axis frames used by the Trio system and by the 3-Space
MARG are not the same (the former is right-handed and the latter is left-handed), care
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was exercised to set the initial orientation of the MARG so that each of its axes would be
precisely parallel to one of the Trio axes (e.g., to make x parallel to TX and y parallel to TY in
Figure 1). If, nonetheless, for a particular recording, the initial direction of the MARG x axis
was inadvertently misaligned with respect to TX by a small rotation, this “rotational offset”
may be compensated for by applying a compensatory rotation (encoded as a quaternion,
qC) to the results of a MARG-based orientation estimate, such as, for example, the Kalman
filter estimate, qKalman:

qKalmanComp = qC ⊗ qKalman (5)

where qKalman is the Kalman filter quaternion at any given sampling instant (whose compo-
nents in the file are ss_qx, ss_qy, ss_qz, and ss_qw according to Table 4), qC is the (constant)
“compensatory quaternion”, ⊗ indicates the quaternion product, and qKalmanComp is the
compensated quaternion for that sampling instant. Appendix A describes how the values
of the components of qC can be obtained from an FIUMARGDB file and the matrix equation
needed for the compensation of each MARG-based orientation quaternion.

4.2. Supplementary Recordings: Reverse Location Itinerary and Alternative Disrupter Placements

Beyond the main set of recordings that constitute our dataset, we have sought to
provide users with two critical variations of the manipulations of the MARG and the
location of the magnetic disrupter.

4.2.1. Reverse Itinerary Recordings

We have included (in the folder Extra_Files_3) seven recordings in which the setup is
the same as in the main recordings of the dataset, except that the locations are visited in a
reverse circuit. That is, at the beginning of the recording, the MARG is picked up from (H)
and it is translated, without rotation, to location (B), where there is a disrupted magnetic
environment, first. At (B), the same sequence of poses as usual (Poses 6, 7, (6), 8, (6), 9, (6),
10, (6)) are held and then the MARG is translated, without rotation, to location (A), where
the usual poses (Poses 1, 2, (1), 3, (1), 4, (1), 5, (1)) are held. Finally, the MARG is returned
to the home location (H). These recordings may be helpful in assessing the capability of a
given orientation estimator to “recover” and provide correct orientation estimates in (A) if
the estimates generated first in (B) were erroneous. These recordings, with names that start
with “rer” (last r meaning “reverse”) instead of “rec”, can also be visualized with the same
Matlab functions and scripts as provided for the standard recordings (e.g., “rec03.csv”).

4.2.2. Alternative Positioning of the Magnetic Disruptor

We also provide five sets of three recordings each in which the magnetic disruptor
cluster shown in Figure 1 was not placed directly under location (B), but instead it was
placed under locations 15 cm to the east of (B) and/or shifted by −15 cm, 0 cm, or +15 cm
from south to north with respect to the original location under (B). Figure 7 shows the
alternative locations of the magnetic disrupter xDy (where x = 1 or 2 and y = 0, 1, or
2). The 15 recordings are included in the folder Extra_Files_4 of the dataset, and their
names follow the convention xDy-n.csv, where n is 1, 2, or 3. For completeness, this folder
also contains three files from the main group of files, which can be used for comparison
purposes: rec01.csv = 1D1-1.csv, rec02.csv = 1D1-2.csv, and rec03.csv = 1D1-3.csv. For a first
assessment of the impact of magnetic disrupter placement on MARG orientation estimate
at Location (B), we evaluated the RMS value of the quaternion difference (Kalman filter vs.
Trio estimates) just while the MARG was at location (B) for each of the 18 files. The itinerary
for all these files was the “standard itinerary”, i.e., the one followed during the recording
of all the files in the main dataset: Location (H)–Location (A)–Location (B)–Location (H).
(We identified that the interval in which the MARG was in the neighborhood of location
(B) with the interval of the recording in which the coordinate TX of the position reported
by Trio was negative.) Figure 7 shows vertical bars with the average RMS quaternion
difference (Trio vs. Kalman filter) observed at location (B) when the magnetic disrupter
was under each of the six locations.

19



Sensors 2023, 23, 3786

Figure 7. Alternative locations of the magnetic disrupter and corresponding effects in Location (B).
(The circled A and B letters represent Locations (A) and (B), respectively.) The red circles are the
locations of the magnetic disrupter labeled as XDY, where 1D1 is the standard placement at (B). The
heights of the blue prisms represent the RMS value of Kalman filter estimation quaternion distance
with respect to the Trio orientation estimation (in degrees) while the MARG was hovering over
location (B) and Poses 6–10 were held according to the standard sequence.

The additional 15 recordings may be used by orientation estimation algorithm de-
signers to expose their algorithms to magnetic distortions that have different degrees of
strength and are centered at locations around the point of MARG test. The heights of the
blue prisms in Figure 7 followed a configuration that was partially expected. Except for
the placement of the disrupter right below the area where the MARG operated (placement
1D1), the impact on the performance of the onboard Kalman filter was greatest when the
disrupter was placed 15 cm to the east (2D1) or to the south (1D0) of the testing point where
the MARG was operated (Location B). There was a smaller impact when the disrupter
was placed 21.21 cm in a southeast direction from B (2D0). However, the impacts on the
performance at (B) when the disrupter was placed at 1D2 and 2D2 did not match the
results for placement in 1D0 and 2D0. This may be, however, a result of the asymmetrical
configuration of the disrupter, which has a “thick” steel bar across its south boundary,
without a corresponding bar across its north boundary. In any case, Figure 7 confirms that
the additional 15 recordings in folder Extra_Files_4 will offer a wider variety of magnetic
disruptions that algorithm designers can use for testing. Ultimately, a truly robust orien-
tation estimation algorithm should not degrade under any of the conditions represented
in the 15 additional files and it should also be resilient to avoid degradation under the
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stronger magnetic disruptions involved in the standard files (rec01.csv through rec30.csv)
of our dataset.

5. Conclusions

This paper has presented the FIUMARGDB dataset of MARG signals accompanied by
“ground truth” orientation estimation quaternions. This dataset is meant to facilitate the
benchmarking of orientation estimation algorithms that use signals from the accelerometers,
gyroscopes, and magnetometers in a MARG module to compute the orientation of the
module, typically as a quaternion. Benchmarking has becoming increasingly important
because it has been found that different orientation estimation algorithms may be more
severely affected in their performance under certain circumstances. FIUMARGDB was
created specifically to expose orientation estimation algorithms to operating environments
with and without magnetic distortion.

FIUMARGDB was developed for the benchmarking of orientation algorithms in a
context that might be similar to the one experienced by MARG modules used in human–
computer interaction devices. Accordingly, all the records were obtained while the MARG
module was moved by a human subject with their dominant hand. This defines the
range and speed of MARG rotations and translations that were recorded. Similarly, we
included recordings created with the participation of multiple human volunteers to capture
the corresponding possible variations in speed, trajectory, continuity of movement, and
steadiness of poses held.

We selected a basic, low-cost MARG module for the recordings, since the required
processing of signals from this type of MARG might be the most challenging. At the same
time, very small and low-cost MARG modules will be the best suited type for developing
some human–computer interaction devices, such as an instrumented glove to track the
orientation and configuration of the hand of a computer user (which may require the
inclusion of many MARG modules in the glove). Similar priorities may apply to MARG
usage in the fields of human motion studies and motor rehabilitation.

The FIUMARGDB dataset and Matlab programs for its use can be accessed through this
URL: https://github.com/LABDSP/FIUMARGDB_marg_signals_and_reference_orientations.
git (accessed on 15 February 2023).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23083786/s1, Video: FIUMARGDB_sequence.mp4.
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Appendix A

In reference to Figure 1, where the blue coordinate frame (x, y, z) corresponds to
the initial orientation (at startup) of the MARG and the red coordinate frame (TX, TY,
TZ) corresponds to the Trio system, efforts were made in the recording of the files to set
the initial orientation of the MARG so that x and TX would be parallel, and y and TY
would be parallel too. Most MARG orientation algorithms will adopt the blue frame as
the “inertial frame”, reporting future MARG orientations with respect to it. Under those
circumstances, the conversion equations shown in Section 2.2.2 will adjust the quaternion
results of Trio orientation estimation to be directly comparable to the quaternion MARG
orientation estimates.

If, on the other hand, a misalignment of the red and blue frames exists at startup, such
that, for example, the x axis is rotated with respect to the TX axis, the MARG orientation
estimates will likely be referenced to that inertial frame, which has a constant “rotation
offset” with respect to the estimates generated by the Trio system.

Vince [38] showed that a quaternion, q3, that represents the compounding of the
rotations represented by q1 first, followed by q2 afterwards, is obtained simply through
this quaternion product:

q3 = q2 ⊗ q1 (A1)

Therefore, the “rotation offset” can be removed by obtaining a new, compensated
orientation estimate, e.g., qKalmanComp, which is the composition of the original MARG-
based estimate, e.g., qKalman, modified by an appropriate compensation quaternion, qC:

qKalmanComp = qC ⊗ qKalman (A2)

To figure out the values needed in the components of qC, we focus on the fact that
Equation (A2) must be true throughout the complete record, but, in particular, at startup,
when the MARG-based algorithms would indicate a MARG orientation encoded by the
quaternion qKalman = [ss_qx, ss_qy, ss_qz, ss_qw] = [0, 0, 0, 1], which indicates “no ro-
tation”, i.e., there is no rotation (yet) mediating between the MARG body frame and
the inertial frame. At startup, the Trio orientation in general will be qTrio0 = [cam_qx0,
cam_qy0,cam_qz0,cam_qw0].

(Note: Since the equations in Appendix A are based on those by Vince, the scalar part
of all quaternions in this appendix are placed first, as opposed to the convention used
in the body of the paper, where the scalar is shown as the last (fourth) component of the
quaternions.) Vince [38] indicated that for two quaternions

qa = [sa, a] = [sa, xai + yaj + zak] (A3)

qb = [sb, b] = [sb, xbi + ybj + zbk] (A4)

the product can be computed through this matrix product (note sa and sb are the scalar
components of quaternions qa and qb, respectively):

qa ⊗ qb = [sa, a]⊗ [sb, b]
= [sasb − a·b, sab + sba + a × b]

=

⎡⎢⎢⎣
sa −xa
xa sa

−ya −za
−za ya

ya za
za −ya

sa −xa
xa sa

⎤⎥⎥⎦
⎡⎢⎢⎣

sb
xb
yb
zb

⎤⎥⎥⎦ (A5)
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Therefore, substituting qC = [qC_x, qC_y, qC_z, qC_w], the compensating quaternion
we want to find for qa, and the initial MARG-based orientation quaternion, [0, 0, 0, 1], for
qb, their product should yield the initial qTrio0 quaternion:⎡⎢⎢⎣

qC_w −qC_x
qC_x qC_w

−qC_y −qC_z
−qC_z qC_y

qC_y qC_z
qC_z −qC_y

qC_w −qC_x
qC_x qC_w

⎤⎥⎥⎦
⎡⎢⎢⎣

1
0
0
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cam_qw0
cam_qx0
cam_qy0
cam_qz0

⎤⎥⎥⎦ (A6)

That is:
qC_w = cam_qw0; qC_x = cam_qx0; qC_y = cam_qy0; qC_z = cam_qz0.
In other words, the components of the “compensating quaternion”, qC, are just the

components of the first quaternion generated by the Trio system at startup. Once those
values are read from the first row of any given file in FIUMARGDB, the compensation of
each MARG estimated quaternion (for example the values ss_qx, ss_qy, ss_qz, and ss_qw
from the Kalman filter) only need to be pre-multiplied by the corresponding 4-by-4 matrix
to yield the four values of the compensated quaternion:⎡⎢⎢⎣

qC_w −qC_x
qC_x qC_w

−qC_y −qC_z
−qC_z qC_y

qC_y qC_z
qC_z −qC_y

qC_w −qC_x
qC_x qC_w

⎤⎥⎥⎦
⎡⎢⎢⎣

ss_qw
ss_qx
ss_qy
ss_qz

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ss_qwComp
ss_qxComp
ss_qxComp
ss_qwComp

⎤⎥⎥⎦ (A7)

where the elements in the last column vector to the right in the above equation can be used
to substitute the original elements of the quaternion encoding the original (uncompensated)
result of the MARG-based orientation estimation.

It can be noticed that, for the file visualized in Figure 4, the initial Trio quater-
nion has components cam_qx0 = 0.0032, cam_qy0 = −0.0280, cam_qz0 = −0.0222, and
cam_qw0 = 0.9993. Therefore, the compensating matrix in Equation (A7) will be very simi-
lar to a 4-by-4 identity matrix, which means that the differences between the compensated
quaternion and the original quaternion will probably be negligible.

Appendix B

We recorded six additional files with the standard setup and performing the same
standard sequence of steps indicated in Table 3 but choosing different onboard orientation
filters. A summary of the performance of those filters, in comparison with the performance
of the Kalman filter chosen for the basic set of records in our dataset, is provided in Table 5.

Here, we present plots of the evolution of the quaternion components and the evo-
lution of the quaternion distance (with respect to the Trio orientation estimation, acting
as a ground truth) for the two alternative orientation filters. These plots also display the
numerical value of RMS of the quaternion distance for the complete record (in degrees).

Figure A1 shows the results for a representative file in which the Q–COMP filter was
chosen (file qcomp2.csv). In this case, the RMS value was 100.66◦. The traces in this figure
can be compared with the lower two subplots of Figure 5, which were obtained from file
rec03.csv, in which the Kalman filter was selected. The RMS value for that case was 90.03◦.

Figure A2 shows the results for a representative file in which the Q–GRAD filter was
chosen (file qgrad1.csv). In this case, the RMS value was 86.20◦. This slightly lower level
of error may result from the more gradual deterioration of the orientation estimate that
seems to take place when the Q–GRAD filter was used. However, these observations seem
to confirm that the orientation estimates from the three types of filters degrade noticeably
when the MARG is operating in a magnetically distorted area.

23



Sensors 2023, 23, 3786

Figure A1. (Top) evolution of the quaternion components generated by the Q-COMP onboard filter.
(Bottom) evolution of the quaternion distance between the Trio quaternion result and the Q-COMP
quaternion result.

Figure A2. (Top) evolution of the quaternion components generated by the Q-GRAD onboard filter.
(Bottom) evolution of the quaternion distance between the Trio quaternion result and the Q-GRAD
quaternion result.
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Abstract: A system of emotion recognition and judgment (SERJ) based on a set of optimal signal
features is established, and an emotion adaptive interactive game (EAIG) is designed. The change in
a player’s emotion can be detected with the SERJ during the process of playing the game. A total of
10 subjects were selected to test the EAIG and SERJ. The results show that the SERJ and designed
EAIG are effective. The game adapted itself by judging the corresponding special events triggered by
a player’s emotion and, as a result, enhanced the player’s game experience. It was found that, in the
process of playing the game, a player’s perception of the change in emotion was different, and the test
experience of a player had an effect on the test results. A SERJ that is based on a set of optimal signal
features is better than a SERJ that is based on the conventional machine learning-based method.

Keywords: emotion judgment system; adaptive interactive game; set of optimal signal features; sensor

1. Introduction

Emotion plays an important role in daily life and is a critical factor that affects the
process of an individual’s cognitive, communication, and decision-making abilities. Phys-
iological signals, such as skin electricity, electrocardiogram, pulse wave, and facial elec-
tromyogram, can be used to recognize and judge individuals’ emotions [1]. In the past
few years, research has reported on the recognition and judgment of emotions based
on physiological signals. The fusion of multiple emotional modalities was proposed by
Khezri et al. [2] to improve the performance of an emotion judgment system. In the
presented emotion recognition system, recorded signals with the formation of several clas-
sification units identified the emotions independently, and considerable improvement was
obtained. A new approach for the empirical identification of affected regions, which was
based on skin conductance, was put forward by Liapis et al. [3]. Their findings identified
the regions in the valence–arousal rating space that might reliably indicate self-reported
stress while using interactive applications. A new method recognizing the emotional state
of six individuals was given by Yoo et al. [4]; the method possessed good performance
accuracy and could make a distinction between one emotion and other possible emotional
states. Yang et al. [5] put forward a new method, which was based on skin conductance,
that classified the emotion image based on the electroencephalography signals; the new
method bridged the emotion gap by building a relationship between experiential infor-
mation and the expected emotion experience of the viewer, and the results showed that
the method could bring about a pleasant experience. Jang et al. [6] experimentally eval-
uated the dependability of physiological signal changes initiated by multiple emotions
by measuring six basic emotions; they indicated that the physiological signals based on
heart rate, skin conductance, and blood volume pulse were more reliable than those evalu-
ated at baseline. An algorithm was put forward by Sepulveda et al. [7] to ameliorate the
emotion recognition extracted from electrocardiogram signals using wavelet transform
for signal analysis, and the algorithm, when combined with wearable devices, proved to
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be effective for classifying emotion. In order to recognize emotion based on multimodal
physiological signals, Zhang et al. [8] proposed a deep-fusion framework, which displayed
higher class separability in emotion recognition, and this framework was more effective
in subject-independent emotion recognition than other fusion methods. A framework of
multimodal emotion classification using multichannel physiological signals was proposed
by Yan et al. [9]; they pointed out that it was significant to develop adaptive decision fusion
strategies in the process of emotion classification.

Although some achievements have been made in recognizing and judging emotions
from physiological signals, based on the above research, there is still room for improvement
in the accuracy of judgment and the universality of application, for example, in the field of
interactive games.

There is an increasing interest in creating games that are based on interaction technol-
ogy. Although interactive games belong to the category of human–computer interaction,
they are different from general human–computer interaction in the following aspects:
(1) Compared with general human–computer interaction, interactive games pay more at-
tention to the process of interaction rather than the result of interaction; (2) the meaning
and purpose of general human–computer interaction are determined by the user’s purpose
and task, while those in interactive games are determined by the purpose and operation
form of the game itself; (3) general human–computer interaction is more stable and focuses
on the durability of functions to consolidate the user experience, while interactive games
focus on waking up a series of user experiences; and (4) whether in interactive content or
control systems, interactive games have ample room for innovation.

For a long time, game developers have tried to apply physiological signals to the
process of playing games, hoping that a player’s experiential state could be captured in real
time when a player realized the capture, so as to enhance the interest and intelligence of the
game. As early as 1984, CalmPute designed a device called CalmPrix that operated racing
games based on the skin electrical signals. In 1998, Nintendo released the physiological
sensor Teris64. In 2010 and 2011, Nintendo released Wii accessories based on physiological
signal sensors. In 2011, Ubisoft also announced the development of similar products.
However, these products have not been widely used. One of the reasons is that the
equipment is too cumbersome and complex to wear, and another reason is that it does not
conform to the operation habits of players in some aspects.

Lv et al. [10] designed and evaluated a touchless motion interaction technology and
developed three primitive augmented-reality games with 11 dynamic gestures. Players
interacted with the augmented-reality games using hand/feet gestures in front of the
camera, which triggered the interaction event to interact with the virtual object in the
scene. Vachiratamporn et al. [11] analyzed the affective states of players prior to and after
witnessing a scary event in a survival horror game by collecting the player-affect data
through their own affect annotation tool that allowed the player to report his affect labels
while watching his recorded game play and facial expressions; the results showed that
players were likely to get more fearful of a scary event when they were in the suspense
state, and heart rate was a good candidate for the detection of player affect. Du et al. [12]
presented an approach to detect a subject’s emotions using heartbeat signals and facial
expressions, and the approach had high accuracy and less computational time for four
emotions when playing different games. Baldassarri et al. [13] put forward two kinds of
interactive games to promote communication and attention experience; one is to consider
emotions to measure a user’s attention, concentration, and satisfaction, and the other is to
use a tangible desktop to promote cognitive planning. Kalantarian et al. [14] proposed a
method of automatically extracting emotion marker frames from a game and training a
new emotion classifier to get over the limited function of the existing emotion recognition
platform for children with autism spectrum disorders. Sekhavat et al. [15] studied the
degrees to which the expression of the manifested emotions of an opponent could affect
the emotions and, consequently, the game-play behavior by performing a comprehensive
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user study to estimate the emotions of players in emotion-aware versus emotion-agnostic
game versions.

Nacke et al. [16] divided physiological signals into directly controllable and non-
directly controllable signals and then asked the subjects to rate the game experience with
and without controlled signals, respectively. The results showed that the effect of the
game experience with directly controllable signals was better than that without controlled
signals. However, there is a lack of research on the effect of the game experience with
non-directly controllable signals. In addition, in terms of interactive game design, designers
often deliberately encourage players to consciously change their emotional state through
equipment and testing, which affects the player’s experience. In the design of this paper,
the relationship between the game and the player is exchanged. Instead of letting players
deliberately adapt to the game, the game is designed to automatically change the level
according to the player’s emotional state and to adapt to the player’s emotional changes so
as to increase the self-adaptability and the fun of the game and enhance the intelligence
and naturalness of the interaction when players are not aware of it. Arendse et al. [17]
evaluated the framework using player action data from the platforming game Super
Mario Bros, and the results that were based on the presented framework were better
than the existing work. Svoren et al. [18] built a dataset that consisted of demographic
data assembled from ten participants playing Super Mario Bros and showed that the
video game, together with facial expressions, could be used to predict the blood volume
pulse of the subject. Granato et al. [19] predicted the subjects’ emotions during video
game sessions and indicated that the obtained results could improve the game design.
Izountar et al. [20] proposed a VR-PEER adaptive exergame system and developed a virtual
reality-based serious game as a case study. The test results showed that fifteen participants
expressed the usefulness of the system in motor rehabilitation processes. Kandemir and
Kose [21] presented improved human–computer interaction games in attention, emotion,
and sensory–motor coordination, and specially designed the interface and the difficulty
levels of the games for the use of people from different age groups and with different
disabilities. The tested results showed that the games had a positive effect on children.
Penev et al. [22] examined the engagement level and therapeutic feasibility of a mobile
game platform for children with autism by designing a mobile application, GuessWhat,
which delivered game-based therapy to children in home settings through a smart phone;
the tested results showed that the GuessWhat mobile game was a viable approach for the
efficacious treatment of autism and further support for the possibility that the game could
be used in natural settings to increase access to treatment when barriers to care exist.

Therefore, this paper consists of the following three parts. (1) A system of emotion
recognition and judgment is built by collecting the change in physiological signals induced
by emotional change and obtaining a set of optimal signal features. (2) The test on the
above system is performed by 10 subjects playing the game Super Mario. The player’s
emotional trend is triggered by the special events in the game. Meanwhile, the non-
directly controllable physiological signals are detected to assess the effect of the game
experience. (3) To illustrate the advantages of the optimal signal features, the emotional
trend changes produced by the emotion recognition and judgment system based on the set
of optimal signal features and based on the conventional machine learning-based methods
are compared.

2. Emotion Recognition

Emotions should be evaluated and classified before recognizing and judging them. The
widely used valence–arousal (V-A) model is usually used to evaluate and classify emotions.
In the V-A model, V and A represent the degree of emotional pleasure and emotion arousal,
respectively [23]. Based on the discrete emotion classification, the emotions of fatigue,
tension, happiness, and depression are first designated using the extracted four poles
of emotion classification, which then is extended from four poles into a plane where, as
shown in Figure 1, the four quadrants express, respectively, the high-arousal and positive-
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valence (quadrantI: HAPV), high-arousal and negative-valence (II: HANV), low-arousal
and negative-valence (III: LANV), and low-arousal and positive-valence (IV: LAPV).

 
Figure 1. Valence–arousal model.

3. Emotion Judgment

The establishment of an emotion recognition and judgment system through physio-
logical signals includes the following basic steps.

3.1. Signals of Skin Electricity and Pulse Wave

In a system of emotion recognition and judgment, individuals’ physiological signals
usually consist of pulse wave, skin electricity, electrocardiogram, and facial electromyo-
gram. Which physiological signals should be used depends on the specific situation.
Skin electrical signal and pulse wave signal are used in the present study. Since the skin
electrical signal is easily interfered with by other signals inside the human body in process-
ing, the noise interference generated by the hardware itself should be removed with the
following formula:

f (t) = Serial_P_R−
[(2014 + 2 × Serial_P_R)× 10, 000]

(512 − Serial_P_R)
,

(1)

in which “Serial_P_R” is the data of the skin electrical signal, and the numbers are the
debugged data based on the hardware properties.

In order to improve the performance of the computer analysis and processing, the
discrete wavelet transform is used to denoise the physiological signals and decompose the
signals into different frequency bands with low-pass and high-pass filtering.

The skin electrical signal is decomposed in three layers and then denoised using the
wdencmp function in MATLAB; finally, all segments of the signal are normalized within
the value range from 0 to 100.

The key factors to reflect the pulse wave signal are main wave, dicrotic anterior wave,
dicrotic notch, and dicrotic wave. The amplitudes involved are main, dicrotic anterior,
dicrotic notch, and dicrotic wave. The time refers to the time from the starting point of the
waveform period to the lowest point of the dicrotic notch and to the peak c point of the
main wave and the period of one waveform.

The pulse wave signal is smoothed and filtered using the Butterworth low-pass filter,
which has the characteristics that the frequency response curve in the pass band is flat to
the maximum without ripple and gradually drops to zero in the stop band:
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H(u, v) =
1

1 + [D(u, v)/D0]
2n (2)

The low-pass cut-off frequency is set to 10 Hz. The relevant parameters of the pulse
wave signal are normalized after filtering.

3.2. Dimensionality Reduction in the Original Signal Feature

Dimensionality reduction in the original physiological signals is implemented with
principal component analysis (PCA) because the direct fusion of the original physiological
signals results in too much computation. Dimensionality reduction leads to a high efficiency
and precision in the classification of emotion recognition. In the process of PCA, the
weight of the original feature of the physiological signals is first calculated in the principal
component, and then the weight threshold of each feature is taken as the criterion for
choosing the feature. The original features with a larger weight than the threshold are
chosen to form a new subset of the optimal features.

The method of Pearson correlation coefficient (PCC) is employed to determine the
relation of the emotional interval, and these features are based on the subset of the opti-
mal features. The PCC is performed on the features of four kinds of emotion trends and
employed to extract the significance P of the features; then, the threshold of the optimal fea-
tures correlated with four kinds of emotional trends is obtained according to the correlation
coefficient and significance P of the features. In the present study, the optimal features are
composed of “BpNN50”, i.e., the percentage of the main pulse wave interval larger than
50 ms, “range” of the skin electrical signal, and “1dmean”, i.e., mean value of the first order
difference of the skin electrical signal. “BpNN50”, “range”, and “1dmean” are defined
as follows:

BpNN50 =
count|xi+1 − xi| > 50ms

N − 1
, i = 1, · · · , N − 1 (3)

range = max(x)− min(x)

1dmenn =
1

N − 1

N−1
∑

i=1
(xi+1 − xi)

(4)

where x is the discrete signal value, I is the ith signal, and N is the total number of signals.

3.3. Model of Emotion Judgment

According to the above description, the skin electrical signal and pulse wave signal are
selected as the physiological signals to establish the emotion judgment system. The specific
operation process is shown in Figure 2, where “BpNN50” is the percentage of the main
pulse wave interval larger than 50 ms as shown in Equation (3); “range” is the range of
the skin electrical signal and pulse wave signal as shown in Equation (4); “1dmean” is the
mean value of the first order difference of the skin electrical signal (Equation (4)); nmax and
nmin are n corresponding to maximum and minimum signal xmax and xmin, respectively;
and xth is the normalized threshold of the physiological signal features:

xth =
n

∑
i=1

(
xn − xmin

xmax − xmin
)/n (5)

where n is the number of signals, and xn is the nth signal.
The range of the skin electrical signal shows a strong positive correlation between the

emotional trends of LAPV and HANV, so the range of the skin electrical signal is used to
judge LAPV and HANV. Since the skin electrical signal and pulse wave signal are extracted
with the device worn by the fingers, considering the simplicity of the interactive device,
the pulse wave and skin electrical signals are selected as the physiological signals of the
emotional judgment model.
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Figure 2. Model of emotion judgment.

The program continues when the range of the skin electrical signal is larger than the
normalized threshold xth, otherwise, returning. Then, the program continues if nmax > nmin,
otherwise it is determined as LAPV. Finally, it is determined as HANV if the mean value of
the first order difference of the skin electrical signal 1dmean is larger than the normalized
threshold xth, otherwise, returning to range.

The pulse wave signal meeting “BpNN50” goes to the next step. On the one hand, it is
determined as LANV if the range of the pulse wave signal is larger than the normalized
threshold xth, otherwise, returning. On the other hand, the program continues when
the range of the pulse wave signal is less than the normalized threshold xth, otherwise,
returning. Finally, it is determined as HAPV if “1dmean” > xth, otherwise, returning.

4. Design of Emotion Adaptive Interactive Game

The game Super Mario is adapted through judging the corresponding special events
triggered by the player’s emotional trend, which enhances the player’s game experience.
The game Super Mario was chosen for the following two reasons: (1) The game is simple to
play and easy to operate. It is suitable for players at all levels and can reduce the likelihood
that the test results are affected by the participants’ proficiency in the game. (2) Various
events in the game that affect the subjects’ emotions are independent, clear, easy to divide,
and meet the requirements of our experiment for emotional arousal.

4.1. About the Game Super Mario

(1) The core mechanism of the game

The core mechanism of the Super Mario game is to use the keyboard to move on the
map while acquiring resources and avoiding enemies. When the player presses the left or
right direction keys of the keyboard, the character will move in the corresponding direction.
When the player presses the space bar on the keyboard, the character will jump up, and
this action can be used to avoid an enemy. If the player jumps up and steps on an enemy’s
head, he can destroy the enemy. In addition, the player can also pick up special energy
items by jumping and hitting designated props to make the character bigger, move faster,
jump higher, or attack an enemy with fireballs.
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(2) The gameplay

The Super Mario game is easy to operate, easy to learn, moderate in difficulty, and
suitable for all types of players. The content of the game is easy to understand, the rules are
clear, the rewards and penalties are clear, and each game event is relatively independent.

(3) The objectives of the game and the expected player experience

The goal of the Super Mario game is to let players experience various events in the
game to wake up different emotions. It is easy to cut the emotional change data caused by
the event because the triggering environment and conditions of each event in this game are
relatively independent. It is expected that players will generate corresponding emotional
changes due to various events in the game and recover their emotions to the standard value
in the gentle stage between events.

4.2. Special Events of the Game

In the process of game adaptation, all picture materials come from the materials of
sharing package in the network [24] as shown in Figure 3. The package was chosen from the
network because, first, these pictures can better induce the emotional trend of the subjects,
and second, they can enhance the game experience of the subjects. The special events of
the game are shown in Figure 4.

 

Figure 3. Interactive game based on Unity3D.

When the emotional trend is HANV (high-arousal and negative-valence), the players
enter a state of negative-valence. At this time, the game adaptive system will trigger
an event that is opposite negative-valence and that can directly affect the emotion, i.e.,
rewarding the player with a large number of mysterious bricks that can help the character
upgrade in order to adjust the player’s emotion from negative-valence to positive-valence.
When the emotional trend is LAPV (low-arousal and positive-valence), the players enter a
state of low-arousal. At this time, the game adaptive system will trigger an event that is
opposite low-arousal and that can directly affect the emotion, i.e., making appear a large
number of small monsters that can increase the difficulty of the game and raise the interest
of the player in order to adjust the player’s emotion from low-arousal to high-arousal.
When the emotional trend is HAPV, the subjects are in an ideal entertainment state without
any reaction. When the emotional trend is LANV, the subjects enter a new game scene in
order to stimulate the player’s interest and emotion.
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Figure 4. Special event activation conditions.

The character action is performed using the Vector2.x and Vector2.y functions of
Unity2D. The regeneration and activation of the game are controlled using the instantiate
function, and whether the subject’s emotion remains in the type of emotional trend is
judged using the while loop function.

5. Test Results and Analysis

It is easy to directly observe the variation of emotion trend from the waveform of the
skin electrical signals, which are recorded with the speed function “Time.deltatime*” and
the “Debug.Log()” function for saving the calculation time and accelerating calculation
progress. In the process of the calculation, the time length of the calculation segment is
kept consistent with the test because the skin electrical signals are varying continuously,
and the calculation is carried out every 10 s.

Ten subjects aged between 24 and 30 years were selected for the test. Among the
ten subjects, there were six men and four women, and half of the subjects had previously
participated in similar tests.

5.1. Design of the Emotion Judgment System

In order to illustrate the performance of the emotion judgment system described in
Section 3 and compare the effectiveness of the emotion judgment through the physiological
signal data, two approaches of emotion judgment were designed in the test as shown in
Figure 5.

Figure 5. Two approaches of emotion judgment.

In Approach 1, the conventional machine learning-based method is used to judge the
emotional trend through the physiological signal data, and the data split is set up with 70%
as the training set and 30% as the validation set, i.e., introducing:

using Accord.MachineLearning.VectorMachines.Learning;
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using Accord.Statistics.Kernels;
and then using the support vector machine toolkit of C# language.

In Approach 2, the features of the signal are separated into a time domain, frequency
domain, and feature related with the physiological process. The time domain is determined
with 18 pulse wave signals and 24 skin electrical signals. In the frequency domain, the
feature mold and computation approach for the signals of skin electricity and pulse wave
are similar. The feature related with the physiological process consists of seven skin
electrical signals and 10 pulse wave signals. Based on the separation of features, the
dimensionality reduction in the original signals is conducted to render the emotional
recognition more effective and accurate. Using the PCA, the principal components are
obtained, and the weight threshold of each feature of the signal on the principal component
is taken as the criterion for the selection of the feature. In the end, the original features,
which play the leading role, are defined as a subset of the optimal feature. Based on the
subset, the PCC is employed to determine the relation of the optimal features and emotional
interval. The PCC is used to compute the features of four emotion trends and extract the
significance P of the features. According to the correlation coefficient and significance
P, the threshold of the optimal features related to the emotional trends is defined, and
the threshold is used to judge the emotional trends. Therefore, the real-time ability and
interactivity of Approach 1 and 2 are compared with the tests.

In the test, the number of the subjects’ emotions that was activated by special events
was recorded as shown in Figure 6. Each subject underwent two rounds of tests; Approach
1 and Approach 2 as shown in Figure 5 were used to judge the emotion trend in the first and
second rounds of the test, and the results are shown in Tables 1 and 2, respectively, where
the significance test has been performed in the comparisons. In Tables 1 and 2, the more
times the subject is activated by the emotional trend, the sharper the subject’s perception
to the change in the emotional trend. For example, in Figure 6, subject 3 is activated eight
times by special events as shown in Table 2: two of them enter a new scene and end the
game due to the state of negative-valence and low-arousal (LANV), and the other two
special events are activated three times each.

 

Figure 6. Records of the subjects’ emotions activated by special events.

Table 1. The number of the subject’s activated emotions with Approach 1.

Subjects Participated in Test before HANV LAPV HAPV LANV

1 yes 2 1 1

2 yes 3 0 1

3 yes 2 1 2

4 yes 4 1 1

5 yes 0 2 2

total numbers of 1~5 11 5 7

6 No 0 0 0
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Table 1. Cont.

Subjects Participated in Test before HANV LAPV HAPV LANV

7 No 3 1 0

8 No 0 1 2

9 No 2 3 1

10 No 2 1 1

total numbers of 6~10 7 6 4

total numbers of 1~10 18 11 11

Table 2. The number of the subject’s activated emotions with Approach 2.

Subjects Participated in Test before HANV LAPV HAPV LANV

1 yes 2 3 2

2 yes 4 1 1

3 yes 3 3 2

4 yes 3 1 2

5 yes 4 3 0

total numbers of 1~5 16 11 7

6 No 0 0 1

7 No 2 2 0

8 No 3 1 1

9 No 4 2 2

10 No 2 2 2

total numbers of 6~10 11 7 6

total numbers of 1~10 27 18 13

5.2. Result Analysis

The second round of the test results of the third subject showed that the subject had
activated eight special events in total, two of which were due to the low level of pleasure
and arousal to enter a new scene and end the game, and the other two special events had
been activated three times respectively, i.e., the probability of activation of special events is
higher compared with the first round of the test. Other subjects have similar test results,
indicating that the emotion judgment system based on the set of optimal signal features is
better than that based on the conventional machine learning-based method in interactivity.

Emotion recognition is delayed in most cases, especially at the beginning of the test.
There may be two reasons for this. One is that the subject has just started the test and has
not yet fully entered the test state. The other is that it takes a certain amount of time to
achieve high arousal. However, the recognition results of several emotional trends of most
subjects are basically correct, meeting the expectations of the test.

It can be observed from Tables 1 and 2 that (1) each subject is activated to varying
degrees by emotional trends, showing that the emotion judgment system and design of the
emotional adaptive interactive game presented in this paper are effective; (2) the number
of times that each subject is activated by the emotional trend is different, indicating that
the subjects’ perception to the change in the emotional trend is different; (3) the number
of times activated by the emotional trend for subjects who participated in the test before
are basically larger than that for subjects who did not participate in the test, indicating
that the test experience of the subject has an impact on the test results; and (4) the number
of times activated by the emotional trend obtained with Approach 2 are larger than that
obtained with Approach 1, showing that the emotion judgment system based on the set
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of optimal signal features is better than that based on the conventional machine learning-
based method.

6. Conclusions

In order to further study the effectiveness of an emotion judgment system and the
effect of a game experience with non-directly controllable signals, a system of emotion
recognition and judgment is established, and an emotion adaptive interactive game is
designed by adapting the game Super Mario. A total of 10 subjects were selected for the
test on the interactive game and emotion judgment system; meanwhile, the results using
the emotion judgment system based on a set of optimal signal features and conventional
machine learning- based method are compared. The main conclusions are summarized
as follows.

(1) The emotion judgment system and design of the emotional adaptive interactive
game are effective. The game, which is adapted through judging the corresponding special
events triggered by the player’s emotional trend, can enhance the player’s game experience.

(2) In the process of playing the game, the player’s perception to the change in the
emotional trend is different, and the test experience of the players has an impact on the
test results.

(3) The emotion judgment system based on the set of optimal signal features is better
than that based on the conventional machine learning-based method.
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Abstract: Word-level sign language recognition (WSLR) is the backbone for continuous sign language
recognition (CSLR) that infers glosses from sign videos. Finding the relevant gloss from the sign
sequence and detecting explicit boundaries of the glosses from sign videos is a persistent challenge.
In this paper, we propose a systematic approach for gloss prediction in WLSR using the Sign2Pose
Gloss prediction transformer model. The primary goal of this work is to enhance WLSR’s gloss
prediction accuracy with reduced time and computational overhead. The proposed approach uses
hand-crafted features rather than automated feature extraction, which is computationally expensive
and less accurate. A modified key frame extraction technique is proposed that uses histogram
difference and Euclidean distance metrics to select and drop redundant frames. To enhance the
model’s generalization ability, pose vector augmentation using perspective transformation along
with joint angle rotation is performed. Further, for normalization, we employed YOLOv3 (You Only
Look Once) to detect the signing space and track the hand gestures of the signers in the frames. The
proposed model experiments on WLASL datasets achieved the top 1% recognition accuracy of 80.9%
in WLASL100 and 64.21% in WLASL300. The performance of the proposed model surpasses state-
of-the-art approaches. The integration of key frame extraction, augmentation, and pose estimation
improved the performance of the proposed gloss prediction model by increasing the model’s precision
in locating minor variations in their body posture. We observed that introducing YOLOv3 improved
gloss prediction accuracy and helped prevent model overfitting. Overall, the proposed model showed
17% improved performance in the WLASL 100 dataset.

Keywords: sign language recognition; gloss prediction; transformer; pose-based approach; pose
estimation; deep learning

1. Introduction

Sign language, which has its own underlying structure, grammar, syntax, and com-
plexities, is the main mode of communication among the Deaf Community. To comprehend
sign language, one must consider a plethora of factors involving hand movements, head,
hand posture, shoulder posture, location of the lips, and facial expressions. However, in
an environment where spoken language is much more prevalent, the deaf community
faces challenges of communication barriers and separation from society. To alleviate com-
munication difficulties, understanding sign language as a spoken language is becoming
incredibly valuable.

The early stages of sign language research focused primarily on sign language recogni-
tion (SLR). SLR focuses on action recognition from the performed sign language sequence
without paying attention to its grammatical and linguistic structures. In other words, SLR
interprets the performed signs of alphabets [1], numbers [2], or symbols [3] from either
static images or continuous sequences of images [4] and is categorized into Isolated SLR [5]
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and Dynamic SLR [6]. Continuous SLR recognizes sign postures from a continuous se-
quence of sign language videos which can either be an isolated word video or a continuous
spoken sentence sequence, whereas isolated SLR recognizes sign postures from a single
static image. Prior systems relied on hidden Markov model-based sequence recognition [7]
and per-image feature extraction [8]. The effectiveness of automatic voice recognition
served as inspiration for this pipeline. The design of the features that needed to be retrieved
posed the biggest challenge in SLR. It was challenging to create a reliable algorithm that
could extract the key linguistic elements, such as hand form [9], body movements [10],
and face expression [11], even though they had already been recognized. Later, with the
advancement of deep learning, manually constructed feature extraction was replaced by
automatically extracted features using CNN models [2,12,13]. The overfitting, class imbal-
ance, and exploding gradient problems caused them to perform poorly despite carrying out
automatic feature extraction. Likewise, they significantly lagged in encoding the object’s
orientation and position. Soon, many hybrid models combined with CNN and HMM [14],
CNN with DCGAN [15], CNN with LSTM [16,17], CNN with SVM [18], and CNN with
hybrid segmentation [19] emerged. The outbreak of 3D CNN [17,20,21] created outstanding
growth in spatio-temporal feature extraction.

Although deep learning has produced state-of-the-art results in the various challenges
of SLR [16,22], to enhance the training process of the end-to-end sequence translation
process, deep learning models require annotated datasets to tune CSLR models. For this to
happen, the model should be trained with isolated words to increase the performance of
the CSLR models. To resolve this issue, Chen et al. [23] proposed a transfer learning-based
approach. This approach addressed data scarcity by gradually pretraining visual and lin-
guistic modules from general domains into the target domains to some extent. This strategy
also required annotated data to improve the model’s performance. The development of
better-trained sign language translation models is hampered by a lack of data. Owing to
this issue, the performance of current CSLR models needs to be improved. Though various
methods and architectures have been proposed to address exact interpretations of sign
language through SLR and CSLR, there still lacks meaningful translation of the performed
sign language. Ever since the advent of deep learning and its application in computer
vision, the pairing of vision and language has received a lot of attention.

Sign language translation (SLT) [24] is the transcription of a sign language video to
spoken sentence phrases, paying attention to all the rich underlying grammatical structures
that allow the user to understand the underlying language model, spatial representations,
and the mapping pattern between the sign and spoken language. SLT is far more complex
than SLR because it considers additional visual cues such as body posture, facial expres-
sions, and signing position. While performing sign transcription, which is literally a written
version of sign performance, glosses are the intermediary representation. Glosses are words
associated with a specific sign, also known as a label [25]. The structure of glosses differs
from that of spoken languages. They serve as the foundation of complete sign sequence
translation. For example, if a signer performs a sign sequence for the phrase “The weather
is too cold today”, the sign translation model suggests the relevant glosses, such as “weather”,
“cold”, and “today”. In this paper, we focus on enhancing gloss prediction accuracy in
isolated SLR by reducing computational and timing complexities. The end goal of SLT
is the transcription of sign language into spoken sentences. End-to-end translation and
two-stage translation are the two types of SLT. End-to-end translation directly translates
the sign video from the sign sequence [26], whereas two-stage SLT generates intermediate
glosses from the sign video; from the glosses, the spoken sentence translation is generated
while accounting for the underlying rich grammar [27].

Although end-to-end translation requires less work in terms of components and re-
lies on naturally occurring data rather than domain knowledge and specialist linguistics,
these models require a large amount of training data to achieve the aforementioned ben-
efits. In contrast, in two-stage translation, the intermediate gloss representation settles
out-of-vocabulary issues that frequently occur in end-to-end translation [28]. Therefore,
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understanding the importance of gloss in SLT, in this work, we concentrate on word-level
gloss prediction to enable appropriate gloss prediction in the case of translating continuous
sign sequences.

In this research, we propose a Sign-Pose2Gloss Prediction Transformer that eliminates
the need for expensive and time-consuming labelled data to train the model. Thus, rooting
out a mathematical pattern between elements is unnecessary since our model has self-
supervised learning abilities. In our approach, considering the real-time challenges faced
by the SLT, we suggest a novel pose-based model trained and evaluated on the large-
scale word-level American sign language (WLASL) dataset for gloss prediction. In our
manuscript, we use the sample gloss figures from asl-lex.org. We acknowledge them with
the following citations [29,30]. The model’s input will be dynamic videos made up of
sign words, as shown in Figure 1, which explains how the model operates. To distinguish
essential frames from redundant frames, we propose the modified histogram difference
approach in conjunction with the Euclidean distance algorithm. In comparison to all other
pose-based models and frameworks in use, this process made our model more accurate at
predicting even similar gloss words. Additionally, we employ hand-crafted augmentation
techniques, including in-plane rotation, joint angle rotation, and perspective modification
to extracted pose vectors to enable our model to be considerably more adaptable to real-
world applications. Furthermore, by learning the location of the target pose vectors using
a bounding box, we further prevent our model from overfitting and generalization by
utilizing YOLOv3 to normalize the pose vectors.

Figure 1. Overview of gloss prediction from sign poses—WLASL using a standard transformer.

On the basis of the human pose-based modelling, we emphasize isolated SLR for
gloss prediction knowing that recognizing word-level sign itself is exceptionally hard
and serves as a basic core element for recognizing continuous sentences in CSLR. We
consider that a person’s skeletal motion greatly contributes to the messages they are
expressing. Inspired by the transformer architecture proposed by Ashish et al. [31] with
slight modifications to the standard transformer model, we evaluate the potential of the
proposed transformer model. Transformer models perform remarkably well in tasks
requiring sequence processing and are relatively inexpensive computationally.

Our key contributions in pose-based word-level sign language recognition (WSLR) include:

1. We introduce a novel approach for our pose-based WLSR using a keyframe extraction
technique to discard the irrelevant frames from the critical frames. To perform this
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keyframe extraction, we use a modified histogram difference algorithm and Euclidean
distance algorithm through which our model achieves 5% improvement compared
to other existing pose-based state-of-the-art results on all the subsets of the WLASL
dataset (WLASL 100, WLASL 300, WLASL1000, WLASL 2000).

2. We employ augmentation techniques that let our model fit and be adapted for any
additional real-time dataset in generalizing so that it can handle the real-time scenario.
For this, we adopt in-plane rotation with perspective transformation and joint rotation,
which has the added benefit of enabling our model to recognize poses executed at
various angles, with various hand sizes, and even at various locations.

3. We introduce a novel pose normalization approach in WLSR using YOLO v3, through
which our approach has seen significant improvement of up to 20% for the exact
detection of the pose vectors in the signing space.

4. To predict the glosses from the normalized pose sequence, we propose a novel method
through a Sign2Pose Gloss prediction transformer, which attains the highest top 1%
recognition accuracy of 80.9 in WLASL 100, 64.21 in WLASL 300, 49.46 WLASL 1000,
and 38.65 WLASL 2000, surpassing all state-of-the-art outcomes from the existing
pose-based models.

The body of the article is structured as follows: Section 2 outlines the prior work in
the field of sign language translation and offers insight into the issues that still need to
be resolved to considerably increase identification accuracy using pose-based approaches.
Section 2.1 discusses the significance and impact of gloss in continuous sign language trans-
lation. The two SLT criteria are discussed in depth in Section 2.2 to clarify how two-stage
SLT translation overcomes the challenges of end-to-end SLT. Section 2.3 summarizes the
importance of video summarization techniques in SLT. Section 2.4 explains how key point
generation and pose estimation aid in recognizing finer details in sign sequences for exact
gloss prediction. The procedures and approaches for carrying out gloss prediction with
our suggested model are described in Section 3. Section 4 provides a quick overview of
the proposed Sign2PoseGloss prediction transformer’s detailed architecture. Section 4
discusses the design and validation of the experiment. The performance assessment of our
model with an architecture based on appearance and pose is carried out in Section 5, and
the results are discussed. Finally, we summarize the research with future scope.

2. Related Works

Sign language translation requires visual content and gloss annotation. As discussed
in Section 1, the end goal of SLT is to provide natural language spoken sentences. Sign
language translation is performed after gloss recognition and further continuous sign
language translation. Therefore, in this section, we present the previous literature concepts
of deep learning in CSLR models to understand how the role of gloss stands as the backbone
for CSLT. To facilitate bidirectional communication between the deaf community and
society, building a robust model which would be capable of translating sign language into
spoken sentences and vice versa is necessary. Further, we describe the techniques used
to address the complexities of video processing and the issues with appearance-based
methods in gloss prediction. Furthermore, this study summarizes existing techniques for
keypoint extraction and pose estimation models, as well as the requirement for a systematic
approach to gloss prediction with reduced processing time complexity. The related works
mainly focus on the deep learning-based SLT model to analyze the state-of-the-art results.
The following sections summarize the concepts and methods related to SLT.

2.1. Significance of Glosses in Vision-Based CSLT

Recognizing the exact gloss representation for the performed sign sequence plays
a significant role in CSLT. The biggest challenge of a CSLT system is the insufficient an-
notated dataset, identifying the explicit boundaries of signed words from the extracted
frames of sign video and the transcription of target sentences from the extracted gloss
sequences. In the initial phase of work, Hidden Markov models [32–34] were widely used
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for capturing the temporal feature information. Cui et al. [35] proposed a DNN (Deep
Neural Network) for temporal feature extraction and RNN for sequence learning. In his
framework, he suggested an iterative training process that includes gloss annotations from
video segments and an alignment proposal module that generates the aligned sentence
sequences from the extracted glosses. It is evident from this approach that the iterative pro-
cess of sequence learning eliminates the need for massive amounts of information to train
an HMM model. Although these modalities are superior in learning temporal dependen-
cies, the integrated approach of multiple modalities necessitates more investigation because
the performed sign gestures have concurrently related streams of information. Further,
Sharma et al. [36] proposed a deep transfer learning approach employed for sign sentence
recognition. In their deep learning-based network model, they used a convolutional neural
network along with bi-directional LSTM and connectionist temporal classification (CTC).
The added advantage of using this model is it can be trained to recognize the sequence
of sentences without any requirement of any prior knowledge in an end-to-end fashion.
However, connectionist temporal classification faces severe overfitting during computation.
To resolve this issue, Niu et al. [37] used stochastic fine-grain labelling while training the
model. For extracting gloss information from sign video frames, the model should know
contextual information to extract the actual context of the sign with gloss. To ensure this,
Anirudh et al. [38] proposed a pose-based SLR for gloss identification with contextual infor-
mation using a graph convolutional network (GCN) and BERT transformer. Though this
model concentrates on both spatial and temporal fusion extraction, combining a pose-based
approach with image-based features will further enhance model performance. On the other
hand, Cui et al. [39] proposed a model for real-time CSLR where they used RNN to address
mapping issues with relevant glosses by designing a weakly supervised detection network
using a connectionist temporal and alignment proposal for continuous spoken sentence
translation. Further, this method requires improvement to handle multi-modal information.

To make this easy, transfer learning is employed by initially training the deep learning
network using an isolated word dataset so that the problem is addressed. Rastgoo et al. [16]
adapted this transfer learning technique using a post-processing algorithm to address the
limited labelled dataset issue.

2.2. End-to-End and Two-Stage Translation in SLT

With the recent advancement in neural machine translation, recent works have con-
centrated on designing a gloss-free model to generate textual content directly from visual
domains using cross-modal mappings without any intermediate glosses. Zhao et al. [40]
proposed a novel framework for sign video to spoken sentence generation using three key
modules. In their model, they replaced the gloss generation module with a word existence
module that checks the word existence in the input sign video. For this, they applied a CNN
encoder–decoder for video feature extraction and a logistic regression classifier for word
existence verification. However, in the existing proposed model, there still exist challenges
in visual-to-text direct mappings. Additionally, training an SLT model is challenging for
longer sentences/video sequences, and decoding a sentence from the input sign video after
extracting finite dimensional features is tedious. Further, a key point normalization method
to normalize the skeleton points of the signer was proposed by ref. [41] to translate sign
videos into spoken sentences directly without any intermediate gloss. They applied the
stochastic frame selection method for sampling and frame augmentation and transcribed
sign language videos into spoken sentences using attention models. However, direct sign-
to-text translation outcomes were no better. Since end-to-end translation requires a huge
amount of information to train and tune the model, two-stage SLT is the better option for
CSLT; however, it is time-consuming to process the input sequence.

When compared with gloss, mid-level representation drastically improves SLT per-
formance [24]. Additionally, sign-to-gloss translation averts long-term dependencies [42],
and the number of sign glosses from a particular sign video are minimal when compared
with the number of frames in the video [14]. Therefore, combining gloss representation
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with recognition and translation of sign language, a unified architecture is proposed by
Camgoz et al. [43] that jointly learns continuous sign language recognition and translation
achieved by CTC, thereby improvising sequence-to-sequence learning and performance
independent of ground truth timing information. The detailed summary of the existing
deep learning models for two-stage SLT is discussed in Table 1.

Table 1. Summary of existing methods for gloss prediction using two-stage SLT.

Ref. Translation Type
Technique for

Gloss Prediction
Dataset

Performance
Metric

Remarks

[38] Sign2Gloss2Text

Graph convolution
network (GCN) and

bi-directional encoder
representations from
transformer (BERT)

WLASL

88.67 at top 10%
accuracy on

100 gloss
recognition

Image-based feature
extraction enhances the

performance of
the model.

[44] Sign2Gloss2Text Human
key-point estimation KETI sign language

BLEU4—65.83
(Key points:
Hand, body)

Performance would
improve on improving

key-point detection

[45] Sign2Gloss2Text
Gloss2Text

Spatial-temporal
transformer and

spatial-temporal RNN
Phoenix 2014T BLEU4-24.00 Dataset is restricted to

the weather forecast

[46] Sign2Gloss2Text
Temporal graph

convolution
network (TGCN)

WLASL

62.63% at top 10
accuracy on
2000 gloss

recognition

Labelling a large
number of samples

requires advanced deep
algorithms to pave the

way from word-level to
sentence-

level annotations

[47] Sign2Gloss2Text

Context-aware GAN,
temporal convolution

layers (TCL),
and BLSTM

Phoenix 2014T, CSL,
and GSL

signer independent

23.4%, 2.1%, and
2.26%

WER, respectively

Complexity and data
imbalance in

GAN network

[48] Sign2Gloss2Text Transformer
WLASL100,

WLASL300, and
LSA 64

63.18%, 43.78%,
and 100% recogni-

tion accuracy

Shows better outcomes
on even smaller datasets

[49] Sign2Gloss2Text Intensity modifier Phoenix 2014T BLEU1-26.51

Lacks spatial and
temporal information

for black translation and
lack of proper

evaluation metrics.

In the same way, sign-to-gloss→gloss-to-text is one of the best translation protocols,
where instead of training a network for text-to-text translation from scratch, they pro-
vide better translation results for gloss-to-text translation. In our approach, we propose
a Sign2Gloss translation protocol network using a modified standard transformer.

2.3. Video Analysis and Summarization

Sign language translation takes time to process continuous sign sequences. As a result,
incorporating video summarization or video processing techniques into SLT may improve
gloss recognition accuracy in the Sign2Gloss translation protocol. Video summarization
and video processing, on the other hand, are very common in video recognition and action
recognition tasks [50]. The primary goal of video processing is to choose a set of frames
to facilitate fast computation while processing lengthy videos. Yao et al. [51] proposed
a key frame extraction technique based on multifeatured fusion for processing dance
videos in order to recognize various dance motions and steps. Furthermore, a smart key-
frame extraction technique was proposed by Wang et al. [52] for vehicle target recognition.
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This model integrates the scale-invariant feature transform (SIFT) and the background
difference algorithm, coupled with the concept of criterion factor K, to significantly divide
and categorize the frames into non-mutation and mutation frames. The redundant frames
are dissimilar frames that are discarded. However, because it skips a greater number
of frames compared to SLT, this method is only appropriate for vehicle recognition. To
resolve these missing details in frame extraction methods, Li et al. [53] proposed a new
concept called sparse coding for key frame extraction with log-regularizer. This method
overcomes the challenges of losing pertinent data while discarding redundant frames while
performing key frame extraction. However, this method is unsuitable for complex videos
because it strips away high-level semantic information from the video.

2.4. Pose-Based Methods for SLT

Human pose-based architecture is not only used for action recognition but it has also
been applied to perform specific tasks in WSLR and SLT since the advancement of deep
learning. Pose estimation is either performed using a probabilistic graphical model or
using pictorial structures [54]. So far, human pose estimation has achieved outstanding
results for static or isolated images. However, it underperformed for real-time or dynamic
images such as video because of issues with tracking occlusions, motion blur during the
transition, and its inability to capture the temporal dependency between the extracted
video frames. The poses/skeletal holds positional information of a human body pose and
can provide important cues [55]. Using the RWTH-Phoenix 2014 T dataset, a skeleton-based
graph convolution network was proposed for end-to-end translation. It used only 14 key
points, omitting fine-grained key points in fingers and faces, resulting in poor end-to-
end translation performance. However, skeletal-based methods have gained attention in
modern research methods since they are independent of background variations. Further, in
skeleton-based SLR models, RGB-based skeletal methods outperforms well. To overcome
this performance degradation stated in the previous work, Songyao et al. [50] proposed
a skeleton-aware multi-modal ensemble for RGB frames, which has 33 key points, including
key points in the nose, mouth, upper body, and hands. This framework makes use of
multi-modal information and utilizes a sign language graph convolution neural network
(SL-GCN) to build embedded dynamics. Further, in another work, maxim et al. [56]
investigated the enhancement of recognition performance in SLR models by fine-tuning
the datasets. Additionally, the author analyzed whether it is possible to use these models
in a real-time environment without GPU.

Yang et al. introduced the graph convolution neural network model to deal with the
temporal dependency among extracted frames. Followed by him, many others proposed
various methods for pose estimation, such as the GCN-BERT method [38], key point
extraction methods using open pose [57], action structured graph convolution networks [58],
and MS-G3D for spatial–temporal graphical convolution networks.

The pose-based approach proposed by Youngmin et al. [57] introduced video process-
ing and key point extraction techniques. These techniques aided in frame selection and key
point extraction for precise body movement and location. Sign-to-text translation protocol
was used in this pose-based approach. However, direct translation from sign language
video to spoken sentence produced no good results. In addition to these methods, auto-
matic sign language translation is possible by merging the NLP transformers and computer
vision. For such tasks, the video-transformer network was proposed by Coster et al. [59].
However, these transformer networks require a huge amount of labelled data corpus to
fine-tune and train ASLR models. This method is evaluated using the large-scale anno-
tated Turkish Sign Language data corpus that eliminates the need for a large, annotated
data corpus.

3. Materials and Methods

In this section, we discuss the baseline methods for our proposed Sign2Pose Gloss
prediction transformer architecture that efficiently predicts gloss words from dynamic
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videos. Identifying the explicit boundaries of sign words from sign videos is a practical
difficulty faced by CSLR/SLT systems. Though many techniques have been proposed
earlier to solve the end-to-end translation model for efficient mapping of predicted words
with the target sentence, the existing systems do have some snags. Intermediate gloss
prediction substantially increases the translation outcomes of SLT systems. Therefore, we
propose a novel method for efficient gloss prediction using a Sign2Pose Gloss prediction
transformer that significantly identifies the intermediate gloss for the given input video
sequence. Initially, the system is validated using the WLASL [60] dataset for word-level
gloss videos using a sign-to-gloss network translation protocol. As stated in Section 2.1, the
proposed model can enhance the efficiency of a two-stage SLT system, reducing the need
for a large, annotated vocabulary. Furthermore, it is not required to tune and train a model
from scratch when using this proposed word-level gloss prediction transformer; it can be
employed as a pre-trained gloss network in two-stage SLT. The methods are subdivided
into four phases, namely (i) key-frame extraction, (ii) pose estimation from key-frame, (iii)
pre-processing, and (iv) pose normalization. This section briefly elaborates on the key
components and steps of the proposed Sign2Pose Gloss prediction transformer.

3.1. Dataset Description

We have a wide variety of gestural corpora because sign language is not a universal
language. For example, the Chalearn synthetic hand [61] dataset contains realistic 3D
human male hand gestures, InterHand 2.6 M [62] is a 3D representation of interacting
hands, and the TheRusLan [63] data corpus contains 22,200 audio samples with text
annotations. The AUTSL [64] data corpus is a large corpus multi-modal Turkish Sign
Language dataset with 226 signers and 38,336 isolated sign video samples. MS-ASL [62]
data corpus is a massive corpus with 1000 signs performed by 200 signers in real-world
environments. Because we plan to concentrate on the entire body posture to capture
the most precise details in the body posture for gloss prediction, we opt for the word-
level American Sign Language dataset for our experiments. We train our model using
the large-scale signer-dependent word-level American sign language (WLASL) publicly
available benchmark dataset [46]. The gloss videos for the above-mentioned dataset are
collected from multifarious public websites that hold the gloss annotations for dialects in
ASL along with the details of metainformation such as bounding box, temporal boundary,
and signer diversity. The average length of videos in the dataset is around 2.41 s. The
sign instances are performed by 119 native American signers. Initially, the collected data
from multiple public resources planned for tutoring SL led to diversity in signing dialects,
styles, and backgrounds suitable for real-time sign language classification. This dataset is
categorized into 4 subsets based on different vocabulary sizes such as WLASL 100, WLASL
300, WLASL 1000, and WLASL 2000. These four subsets are grouped by choosing the top K
glosses where K = {100, 300, 1000, 2000}. A detailed description of the dataset is briefed in
Table 2.

Table 2. WLASL dataset description.

Categories Content Type Glosses Samples
Mean (Avg.

Instances/Class)
Signers

WLASL 100
Video with Aligned
Sign/Sentence with

text and Gloss
RGB

100 2038 20.38 97
WLASL 300 300 5117 17.1 109
WLASL 1000 1000 13,168 13.16 116
WLASL 2000 2000 21,083 10.54 119

3.2. Key Frame Extraction Technique

The dynamic sign word video has multiple video frames with multiple repeated
gestures and transition phases between the successive gestures after extraction. This
method retains the best representations of shots from extracted frames and discards the
redundant frames. Thus, processing all such extracted frames requires a high-power

46



Sensors 2023, 23, 2853

computational system and takes a huge amount of computational time. Therefore, we
propose a key frame extraction method using a modified histogram difference algorithm
method for discarding unnecessary frames to efficiently boost the performance of the
proposed Sign2Pose Gloss prediction transformer for dynamic sign word videos and
overcome the timing overhead and computational complexities. The main objective of this
method is to decide the specific key frames from actual frames for each signed word that
are notable in terms of different gesture positions and thereby disposing of the unwanted
poses or gesture positions and transition phases.

We divide this key frame extraction into two phases. In our first phase, we extract the
frames from the given input video in a successive manner and then calculate the threshold
with mean and standard deviation after applying the modified histogram difference algo-
rithm. The distance between the current and the difference frame is calculated using the
Euclidean distance algorithm. After measuring the distance between the frames, the mean
and standard deviation is calculated. In our next phase, the threshold value denoted as
“Th” is set, and the measured distances are compared with the threshold.

Let us denote the input video as “I”, and the frames are represented as “f ”. Initially, the
frames extracted from the input video are RGB frames. Then, RGB frames are converted to
grayscale frames to compute the absolute difference between the frames using the absolute
difference algorithm. Therefore, let the RGB frames be denoted as “fRGB”, grayscale frames
are denoted as “fGRAY”, histogram difference is assumed as “Hdiff”, and ‘N’ denotes the
number of bins in the histogram.

Hdi f f (t) =

∣∣∣∣∣ N

∑
j=0

H(t−1)(j)− H(t)(j)

∣∣∣∣∣. (1)

After computing the difference, we apply mean and standard deviation where “μ” is
used as a symbol for mean calculation, and “σ” denotes standard deviation. The distance
between the successive frames is calculated using the Euclidean difference algorithm “Ed”.

Ed(p, q) =
√
(p1 − q1)

2 + (p2 − q2)
2. (2)

Let “p” and “q” be the two points in a frame, and let the coordinates of “p” be (p1, p2)
and “q” be (q1, q2). For “n” dimensions, the formula can be more generalized as follows:

Ed =

√
n

∑
i=1

(pi − qi)
2, (3)

where “n” denotes the dimensions and pi and qi are the data points. After computing the
Euclidean distance, the threshold value is set. To set the threshold value, we must perform
Hdiff and then calculate the mean and standard deviation.

Th = μ + σ, (4)

Th = ϕ, (5)

where “ϕ” is used to represent the combined value of mean and standard deviation. After
setting the Th value, we compare the measured distance between the consecutive frame and
the threshold value, and the choice between the key-frame “K” and the redundant frame
“R” is conducted. The elements in key-frames are denoted as “kN”, and the elements of
redundant frames are represented as “rM”. Then, the extracted key frames are provided as
inputs for pose extraction for gloss prediction. The detailed steps for key frame extraction
are provided in Algorithm 1.
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Algorithm 1. Key-frame extraction

Input:
Let I be the input sign video
I∈ (1 to N) Ii . . . .IN
Let n be the number of frames in Ii

Output:
Set of key-frames fkey:
f key {1 to m} where m < n

1 for fRGB in n (frames):

2
Convert RGB frames into grayscale frames
fRGB → fGRAY

3 Compute histogram difference Hdiff between successive frames using Equation (1)
4 Calculate mean μ and standard deviation σ of the Hdiff
5 Compute threshold value “Th”:
6 Calculate the Euclidean distance Ed using Equation (2)

7

fGRAY ={elements of K and elements of R}
“R” denotes the set of redundant frames
Such that,
K = {k1, k2, k3, . . . kN}
R = {r1, r2, r4, . . . krM}

8 for I in n:
9 if Ed > Th:

10
R\K = {rM−1} Element obtained belongs to set of redundant frames but not to set
of key-frames
Add the frames to the set fkey

11 else
12 Discard the frame

13
Repeat steps 1 to 12 for the entire dataset, and once completed, discarding
redundant frames stops the process.

3.3. Pose Estimation from Key-Frame

Human pose estimation (HPE) refers to representing the orientation of the human body
in a graphical format. In other words, locating human body parts and joints using computer
vision in images or video. Initially, before the deep learning era, human pose estimation was
performed by recording an RGB image using optical sensors and kinect sensors to detect
the human pose or an object. The three most common types of human models are skeleton-
based, volume-based, and contour-based. Skeleton-based HPE is the most preferred and
frequently followed method since it is flexible with stability in the joint locations and
orientations. For instance, ankles, wrists, knees, elbows, shoulders, fingertips, etc. There
are various standard frameworks for pose estimation. Pischulin et al. proposed a deep-
cut algorithm [65] for multi-person pose estimation with joint objectives. This method
first locates the person’s joints using integer linear programming. The method identifies
the joints much more precisely though occlusions appear from person to person, but the
process is extremely complex and time-consuming. Further, various other frameworks
using deeper cut algorithms [66], PoseNet [67], and OpenPose [68] are used for HPE. In
our proposed framework for pose estimation, we use standard pose estimation of vision
API for locating the head, body, and hand landmarks from each set of “K” video frames.
The landmarks obtained are all 2D and relative to the frames. Its coordinate values for the
top right side to the frame are [1, 1], whereas the bottom left corner is denoted as [0, 0]. We
use a vision image classifier to spot the presence and absence of individual landmarks or
objects. If an object is absent in the relative frame, then the coordinates are represented by 0
and vice versa.

3.4. Pre-Processing

After acquiring landmark coordinates in pose estimation, we opt for a pre-processing
technique to efficiently enhance the system’s generalizing ability. For the system to adapt to
different datasets and develop a versatile response, we employ spatial augmentation while
training the skeleton data points. Further, the choice of the parameters is random, and they
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have maintained rationale throughout the signing space for every frame. Additionally, this
spatial augmentation technique overrides the overfitting issue. Figure 2 depicts the steps
involved in pre-processing and the outcome of augmentation applied on single frames.

Figure 2. Illustrating the augmentation techniques applied to a single frame while pre-processing.

The initial step in spatial augmentation is applying in-plane rotation to each frame
whose angle of rotation, denoted by “θ”, lies between 0◦ to 15◦. Therefore, by applying
in-plane rotation, the plane is mapped to itself for a particular rotation and does not remain
fixed. Perhaps all the vectors in the planes are mapped to other vectors in the same plane by
rotation. During rotation, the center of rotation confides on the center of the plane (frames)
coordinates (0.5, 0.5). For instance, in a 2D image, the position of point P is represented by
the coordinate (Px, Py), and the numerical representation of point P in a plane is anonymous
until we define a reference coordinate. Once the origin is fixed, the extents of point P from
its x and y axis from the origin are its coordinates (Px, Py).

Followed by in-plane rotation, the next step we carry out is squeezing the frames on
their horizontal sides by setting random proportions ranging up to 15% of the original frame
width w1(right side) and w2 (left side). Once the squeezing is set, the joint coordinates are
recalculated concerning the newly set plane. The third step is perspective augmentation,
where the sign video is recorded with a minor shift in angles of inclination applied to the
signing video. This method helps the system become accustomed to images with different
angles and builds the system’s robustness. Like human vision, which can locate and identify
an object at any distance and any angle of inclination or distance, perspective augmentation
helps the model recognize the same 2D or 3D object on two different projective planes.

By applying perspective transformation, the joint coordinates are made to project on
a new plane with spatially defined projection with a slightly inclined angle. The proportion
and adjustment to the right and left sides of the single frame are picked randomly by
uniform distribution with an interval of [0, 1]. The detailed steps of sequential joint rotation
are explained in Algorithm 2.
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Algorithm 2. Sequential Joint Rotation

1 Input image Iin, x, and y standard coordinates
2 Initialize center point of the frame as Cmid
3 Fix Cmid = 0.5

4

Rotate frame frot according to Cmid, and [x,y]
Standard Rotation Matrix is given as R

R =

(
cos θ − sin θ

sin θ cos θ

)

5

frot with respect to standard coordinates [xy]
(

cos θ − sin θ

sin θ cos θ

)(
(x − 0.5)
(y − 0.5)

)
then the moved state is denoted by x’ and y’
x’ = (x − 0.5) cos θ – (y − 0.5) sin θ + 0.5
y’ = (y − 0.5) cos θ + (x − 0.5) sin θ + 0.5
frot(x’y’) = (x − 0.5) cos θ – (y − 0.5) sin θ + 0.5, (y − 0.5) cos θ + (x − 0.5) sin θ + 0.5

6 Angle of rotation θ ≤ 15◦
7 Generate random moving state Sm based on θ and uniform distribution

8

Within the range of Cmid, move x based on Sm, then y based on Sm to calculate Sm
’ to

obtain a new range of x and x’, y and y’
IAugmentation = Augment (Iin, x, y)
IAugmentation’ = Augment (Iin, x’, y’)

9 Calculate recognized image Iobs and measure the Euclidean distance Ed

10
if Ed(Iobs, Cmid) ≤ Ed(Iobs’, Cmid) then

Improve the recognition accuracy
else stop

3.5. Pose Normalization

Body proportion differs from person to person. Not only this, but positional properties,
such as camera distance, capturing angle, angle of rotation, motion transfer, head, face,
hand, and palm orientation, etc., vary from signer to signer. Further, input landmark
coordinates are associated with values relative to the frame. This leads the model to learn
more irrelevant spatial features than the performed sign. In such cases, training and fine-
tuning the model will be time-consuming. To overcome this issue, we use the normalization
technique, where all such body proportions, distance from the camera, positional properties,
motion transfer overheads, and orientation are precluded. Inspired by SL linguistics [69]
regarding the use of signing space with body landmarks, we use a 3D space in the signing
space in front of the signer and their immediate surroundings. We take the area slightly
above the signer’s waist, reaching slightly above the signer’s head, covering the two loosely
bent elbows with projected body landmarks to identify the sign.

In our previous pre-processing step, we applied augmentation techniques to efficiently
enhance and bring versatile recognition for different body proportions, orientations, and
tilting angles. Though our model is efficient towards generalized input, without normaliza-
tion, the system picks inappropriate spatial features from the signs performed. So, we use
normalization using YOLO version 3 for object detection and pose normalization using
anchor boxes. We define a signing space based on a head portion with 7 head units wide
and 8 head units high where its horizontal center lies with a nose. Additionally, the vertical
side of the anchoring box is fixed, considering the left eye with 0.5 head units upright and
6 units below for the bottom edge. We have two other anchoring boxes for tracking the
hand orientations and their shape, which enables the model to target the hand orientations
and their corresponding signs, eliminating all other insignificant spatial features relative
to the frame. Figure 3 shows the visualization of the normalized pose using YOLO v3 for
an independent frame.
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Figure 3. Sample visualization of normalized pose using YOLOv3.

To calculate the anchor box and its normalization, we need to rescale them between
0 and 1 by dividing the image width by its height. The bounding box network format is
(x, y, width(w) and height(h), confide). In YOLO v3, the predicted output coordinate of
the anchor box is normalized relative to the grid and input image. We do this because we
have diverse signers, and among such a diverse dataset, the model should detect the sign
performed. The confide value is set to 0.5, and depending on the confide value, the object is
detected. As we know, the annotation coordinates are (Xmax, Ymax, Xmin, Ymin), considering
(X1, Y1) as X and Y coordinates of the top left corner of the bounding box. (X2, Y2) are the
X and Y coordinates of the bottom right corner of the bounding box and (Xc, Yc) are the
center x and y coordinates of the bounding box.

Where
(Xmax, Ymax) = (X1,Y1), (6)

(Xmin, Ymin) = (X2,Y2), (7)

Normalized Xmin = (Xmin + w/2)/Wimg), (8)

Normalized Ymin = (Ymin + h/2)/Himg), (9)

Normalized width (w) = w/Wimg, (10)

Normalized height (h) = h/Himg. (11)

The bounding box coordinates, width, and height lie between a particular location of
the grid cell, so they balance between 0 and 1. Furthermore, the sum of the square error is
calculated only when the object is present.

4. Proposed Architecture

The sequence of movements in body parts provides a lot of information in sign lan-
guage. Moreover, in our literature study, we analyzed that pose sequences are outstanding
records in recognition and detection since the model stays focused on features in the pose
images rather than looking into inappropriate components such as background, lighting,
and so on. In our proposed architecture, we used the Sign2Pose Gloss prediction trans-
former, which is a slightly modified version of the transformer with attention [31]. The input
to our proposed transformer model is a normalized pose sequence with a 108-dimensional
pose vector and 54 joint locations. The Sign2Pose Gloss prediction transformer uses atten-
tion skillfully. Figure 4 depicts the entire architecture of our Sign2Pose Gloss prediction
transformer. We have an encoder and a decoder layer where the model first translates the
sequence of sentences and then applies vectorization, and finally, with the attention layers,
transforms them. In our model, we use learned positional encoding rather than spatial
positional encoding to define the actual semantics of the sentences and words. Furthermore,
we add the positional encodings with 108 dimensions to the individual pose vectors. By
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adding the learned encodings to the individual pose vectors, we obtain a sequence of input
vectors to fetch as input to the encoder layer. There are six layers in both the encoder and
decoder, with nine head units in the self-attention module and an input dimension of 108,
followed by 108 hidden dimensions and a feed-forward dimension of 2048. As per the
standard transformer model, there are two self-attention and feed-forward networks.

 

Figure 4. Proposed architecture of the Sign2Pose Gloss prediction transformer.

The standard transformer decoder architecture has query, key, and value vectors as
output vectors for each word. For instance, if the input sequence vector to the encoder
is “It’s too sunny today”, then the input embeddings present in the sentence are four, and
for each input vector/input word, we calculate three output vectors such as query, key,
and value. In the above-stated example, we have “n = 4” words. Thus, for “n” words
in a sentence, there are nQueries, keys, and vectors to be calculated. In our case, we
are proposing a Sign2Pose Gloss prediction transformer for gloss prediction. We use the
word-level American sign language dataset, and the sequence vector processed through
the entire encoder and decoder process will be a single element. For this purpose, we
have one query at the input of the decoder, and that query is called class query since it
decodes the class of sign. Since there is only one element to be processed through the entire
multi-head projection module present in the decoder, the attention has no influence on key
and value vectors, and the SoftMax present in the attention model is always “1”. Hence,
we calculate the input vector in the value space and there is no requirement for key and
query calculation.

After the processing elements pass through the multi-head attention module in the
decoder layer, the vectors are concatenated and processed by the linear layer using logit
vectors. In this linear layer, we provide the class query input where the confidence of each
class is calculated using the SoftMax activation.
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5. Experiments

For our experiments, we used a dataset of American sign language at the word level.
There are four subsets of datasets, as described in Section 3.1, and we utilized every subset
separately for our experimental evaluation. WLASL 100, WLASL 300, WLASL 1000, and
WLASL 2000 comprised the evaluation dataset. The suggested transformer model for gloss
prediction was trained using the aforementioned datasets. The datasets were split in the
ratio of 85:15, out of which 15% of the dataset was used for testing and from 85%, 70%
was used for training, 15% for validating, and the remaining 15% for testing. We proposed
a novel method to build a robust model which is more flexible in recognizing similar
signs, learning different dialects, and coping with different environments with different
signers. We have applied a key-frame extraction module to discard the redundant frames
and implied augmentation technique. After augmentation, we used YOLO version 3 to
normalize the pose vectors in such a way that our system is free from overfitting. With all
these pre-processing steps, we input a normalized pose image with all landmarks to the
proposed transformer architecture. In addition to the original context of the sign, horizontal
flipping was set to 0.5 randomly for all the normalized frames. The details of the parameter
tuning of our model are stated in Table 3.

Table 3. Hyperparameter specifications.

Hyperparameter Tuning Details

Pose vectors 108
Encoder layers 6
Decoder layers 6

Input and hidden dimension 108
Feed Forward dimension 2048

Learning rate 0.001
Weighted decay 0.0001

Optimizer Stochastic Gradient Descent
Epochs 300

The proposed Sign2Pose Gloss prediction transformer was implemented using Ten-
sorFlow in the Anaconda Software tool. The query, key, and value vectors in the standard
transformer models were slightly modified to discard the unnecessary computations inside
multi-head attention in the decoder module that may occur due to the flow of class query
through the module. We run our experiment for 300 epochs, and the learning rate was set
to 0.001 with the weighted decay 10−4, and momentum was set to 0. We used a stochastic
gradient descent optimizer, and the weights were initialized using uniform distribution
ranging (0, 1). This range was randomly fixed, and we used the cross-entropy loss function
to score the models’ performance in terms of correct gloss prediction.

6. Results and Discussions

We evaluated our pose-based proposed model on all the subdivisions of the publicly
available word-level American sign language datasets. As mentioned in Section 3.1, Table 2,
WLASL datasets have Top K classes, where subsets/classes WLASL 100, 300, 1000, and 2000
are based on the number of videos. For instance, the first subset of WLASL has 100 classes,
and each class represents a particular gloss video with different instances performing
the same gloss under the same class category. We compared our results with previous
pose-based and appearance-based models to evaluate the models’ performance and state-
of-the-art outcome achieved by our model in the same dataset. For ease and a prospective
comparison of the advancement of the primary data representation streams for SLR, the
findings of appearance-based techniques were also considered. Table 4 summarizes the
previous pose-based and appearance-based models experimented on subsets of WLASL
and other datasets.
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Table 4. Summary of different models experimented using WLASL datasets with and without
augmentation techniques for prospective comparison of the proposed model.

Model and Dataset I3D [70] Pose-GRU [70] Pose-TGCN [70] GCN-BERT [38] ST-GCN [71] SPOTTER [48] OURS

Appearance-based � × × × � × ×
Pose-based × � � � × � �

Augmentation � � � × � � �
WLASL 100 � � � � � � �
WLASL300 � � � � � � �

WLASL1000 � � � × � × �
WLASL 2000 � � � × � × �

Other datasets × × × × � � ×

As discussed in Section 3.2, sign word videos have multiple frames. In our baseline
model, after the extraction of frames from the sign video, we used the key-frame extraction
technique to preserve key-frames and discard irrelevant frames. This method reduces
processing time complexity and improves the clarity of critical frame predictions for gloss.
Further, to make the system more reliable for generalization, we used special augmentation
techniques, as mentioned in Section 3.4, and we used YOLOv3 to normalize the pose
vectors to fetch as input to the slightly modified standard transformer model proposed
by Camgoz et al. [31]. The use of YOLOv3 not only boosts the systems gloss prediction,
but our method also overrides overfitting issues. Figure 5a shows an example of the
key-frame extraction for the word “Drink”. Frames that were pulled out for the gloss
“Drink” had transitional frames between repeated and idle frames. We applied a modified
histogram difference algorithm and Euclidean distance algorithm to extract the key-frames
and discard the redundant frames, as discussed earlier in Section 3.2. Figure 5b shows the
sample of the discarded frames eliminating the blurred, idle, and transitional frames and
Figure 5c shows the extracted key-frames using Algorithm 1 in Section 3.2.

(a) 

 
(b) 

 
(c) 

Figure 5. Sample images of key-frame extraction for the Gloss “Drink” from the WLASL 100 dataset
(a) sample of extracted frames for the mentioned gloss. (b) Discarded redundant frames. (c) Preserved
key-frame sample from extracted frames.
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Through this technique, we were able to achieve top 1% accuracy of 80.9 in WLASL
100, 64.21% in WLASL 300, 49.46% in WLASL 1000, and 38.65% in WLASL 2000. However,
we contrasted our model with models that are based on both poses and appearances.
Our suggested method outperforms the prior state-of-the-art pose-based approach on the
WLASL100 by 17 percentage points, attaining 80.9% in top 1% accuracy. On the WLASL300
subset, we also created a state-of-the-art result of 64.21% accuracy, outperforming the prior
one by 20 percentage points.

From Figure 6a,b, it is observed that the appearance-based models surpassed pose-
based models. Though these appearance-based models (ST-GCN and I3D) outrun our
model, we contend that these results come at a substantially higher computational cost
owing to the dimensions, which are limited in our system even when coupled with the
pose estimation framework. In Figure 7, we observe the model’s ability to predict top
1% gloss prediction accuracy during validation with the test samples, and the loss accu-
racy determines the predicted number of incorrect glosses by our models. The previous
pose-based model underperforms in recognizing different words with similar signs, such
as “man”, “woman” “read”, “dance”, “wish”, “hungry”, “cold”, “hug”, “circle”, “turn-
around”, “runny nose”, “head-cold”, which slightly vary in their hand orientation. From
observing Figure 6c, it is analyzed that our model has seamless improvement top 1% vali-
dation accuracy of 80.9% when compared with other pose-based models since the proposed
Sign2Pose Gloss prediction transformer uses the hand-crafted input feature representation
of body and hand stance that already has sufficient information to decode the notions
needed for sign language compared to other appearance-based models. As a result, it needs
a much smaller training set to obtain adequate results.

(a) (b) 

 
(c) 

Figure 6. Performance analysis of proposed work with existing appearance and pose-based models.
(a) Graphical representation comparing our approach with the pose-based as well as appearance-
based model. (b) Comparing top 1% recognition accuracy on both pose-based and appearance-based
models; (c) comparing top K macro recognition accuracy on pose-based models.
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Figure 7. Validation accuracy and validation loss of our model.

From Figure 7, it is observed that the model starts to converge from 150 epochs and
attains its maximum top 1% macro recognition accuracy by 220 epochs, and the model
performs consistently after 240 epochs attaining 80.9% accuracy as top 1 class accuracy for
WLASL 100. We tested the model after training it using a fixed dataset split of 15%. Table 5
shows the compositions of techniques and their top 1% recognition accuracies (%) on four
subsets of the WLASL dataset. Our model uses a standard pose estimation algorithm from
apple vision API and YOLO V3 for extracting the bounding and anchoring box for the
hand. Using this technique, our extraction method is strong and effective, especially in
near and different sign viewpoints.

Table 5. Performance analysis on top 1% macro recognition accuracy of proposed Sign2pose Gloss
prediction transformer with other pose-based state-of-the-art models.

Pose-Based Models
WLASL100

Top-1%
Accuracy

WLASL300
Top-1%

Accuracy

WLASL1000
Top-1%

Accuracy

WLASL2000
Top-1%

Accuracy

POSE-GRU [46] 46.51 33.68 30.1 22.54
POSE-TGCN [46] 55.43 38.32 34.86 23.65
GCN-BERT [38] 60.15 42.18 - -

SPOTER [48] 63.18 43.78 - -
Our’s 80.9 64.21 49.46 38.65

Figure 8 illustrates how our proposed initiative, which employs hand-crafted feature
engineering techniques before the gloss prediction transformer, consistently increased its
recognition accuracy in the top k classes WLASL datasets by about 17% compared to prior
state-of-the-art models. We have provided a gloss prediction example from our model for
ease of comprehension. Although our model is pose-based, we have taken into account key
retrieved RGB color mode frames. Table 6 shows that 84.8% of all occurrences presented
under this gloss class group were properly predicted, including the tiniest variation, “Baby”.
Additionally, in contrast to previous pose-based models, the average inference time during
validation was 0.03 s. Our approach also performed well on datasets with few instances. In
comparison to the previous pose-based architecture, the top 5% and top 10% recognition
accuracy for all the WLASL model subsets exhibited a consistent growth of 4 to 10%. In
comparison to appearance-based systems such as I3D and ST-GCN, our Sign2Pose Gloss
prediction transformer proved to be significantly more suitable for applications in the real
world in terms of model size and speed.
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Figure 8. Comparison of the pose-based approaches’ top 1 accuracies (%) and scalability on four sub-
sets of the WLASL dataset.

Table 6. Top 1% accuracy of the predicted gloss matching ground truth label.

Extracted Key-Frames
Top 5

Predicted
Gloss

Top 1%
Accuracy

Ground
Truth

      

Connect
Cut

Chair
Seat
Sit

93.6% Chair

      

Swing
Baby

Tummy
Swaddle
Platter

84.8% Baby

      

Neck
Collar

Necklace
Lip

Smash

88.5% Neck

      

Collide
Hit

Match
Unite
Relate

90.35% Match

Figure 8 shows that our suggested strategy consistently beat all other existing models,
regardless of the size of the datasets, with an improvement of 17 to 20% over the methods
now in use. In the appearance-based model, they face difficulty in predicting gloss words
with slight variations in their hand orientation. Additionally, difficulty arises in detecting
the bounding box when the sign is performed by the signer in the side view angle. When
considering pose-based models, prior approaches could not fully benefit either from nor-
malization or optimizations other than the regular ones carried out to visual data. As our
model relies on body pose sequence representations as its foundation, we used insights
from sign linguistics to develop a solid normalization methodology using YOLOv3 as well
as fresh data augmentation methods tailored to sign language.
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7. Conclusions

A real-world challenge for CSLR/SLT systems is determining the clear boundaries of
sign words from sign videos. Although alternative techniques have been put out in the
past to resolve the end-to-end translation model to ensure efficient mapping of anticipated
words with the target sentence, there remain some limitations with the current systems.
The performance of the SLT systems’ translation is significantly improved by intermediate
gloss prediction. In this paper, we proposed a novel approach for gloss prediction using the
Sign2Pose Gloss prediction transformer. Instead of relying on pre-trained models to tackle
gloss prediction, we used hand-crafted techniques for pose feature extraction that not only
predicted gloss more precisely but also decrease processing overheads. With the help of
a SignPose2 Gloss prediction transformer, we provided a novel approach for effective gloss
prediction that considerably identifies the intermediate gloss for the provided input video
sequence. For efficient gloss prediction by our proposed architecture, we used a modified
HD algorithm for key-frame extraction to differentiate key frames from redundant frames.
We also employed the Euclidean distance algorithm to sort the key-frames and redundant
frames based on the threshold value. Further, we equipped our model with augmentation
steps, making it more adaptable to any real-time dataset. YOLO v3 was then applied to the
pose vectors to detect the precise movements of the hand. The use of YOLO v3 brought
a drastic improvement of about 15–20% in our model accuracy which surpassed all the
current pose-based methods. In all subsets of the word-level ASL data corpus, our model
produced more state-of-the-art results than other pose-based approaches. In the future, we
plan to amplify our model with modern skeleton frameworks that allow for further efficient
continuous sign translation from intermediate gloss representations. We will also evaluate
the proposed work and future frameworks using large-scale annotated data corpora such
as AUTSL, MS-ASL, and others.
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Abstract: Deep learning methods are widely used in sensor-based activity recognition, contributing
to improved recognition accuracy. Accelerometer and gyroscope data are mainly used as input to
the models. Accelerometer data are sometimes converted to a frequency spectrum. However, data
augmentation based on frequency characteristics has not been thoroughly investigated. This study
proposes an activity recognition method that uses ensemble learning and filters that emphasize the
frequency that is important for recognizing a certain activity. To realize the proposed method, we
experimentally identified the important frequency of various activities by masking some frequency
bands in the accelerometer data and comparing the accuracy using the masked data. To demonstrate
the effectiveness of the proposed method, we compared its accuracy with and without enhancement
filters during training and testing and with and without ensemble learning. The results showed that
applying a frequency band enhancement filter during training and testing and ensemble learning
achieved the highest recognition accuracy. In order to demonstrate the robustness of the proposed
method, we used four different datasets and compared the recognition accuracy between a single
model and a model using ensemble learning. As a result, in three of the four datasets, the proposed
method showed the highest recognition accuracy, indicating the robustness of the proposed method.

Keywords: frequency emphasis; ensemble learning; deep learning

1. Introduction

In recent years, the widespread use of smartphones and wearable devices has facili-
tated user activity sensing. These devices can perform activity recognition using accelerom-
eter and gyroscope data as time-series data [1,2]. Activity recognition can be used, for
example, to determine a user’s health status [3,4]. Activity recognition technology can
also be applied to sports such as volleyball and badminton [5,6]. For enhanced service
applications, it is desirable to recognize activities accurately and in detail. For this purpose,
Sikder et al. [7] transformed accelerometer and gyroscope data into frequency and power
spectrum and used them as input to a convolutional neural network (CNN) to classify
six types of activities. That study used the frequency spectrum as input for the model
and evaluate recognition accuracy but did not consider the difference in frequency charac-
teristics between activity. Other studies have focused on the frequency characteristics of
activities. Ooue et al. [8] converted accelerometer data into a power spectrum to determine
the frequency characteristics of different walking patterns and found that they differed
between normal walking and walking with a limp. Therefore, it is likely that the frequency
characteristics of each activity will differ in activity recognition, and there may be important
frequencies for the prediction of each activity. Liu et al. [9] analyzed the power spectrum of
input data to obtain the major frequency bands and proposed a tree-structured wavelet
neural network (T-WaveNet) for time-series signal analysis but did not perform frequency
enhancement of the input data. In this study, we propose an activity recognition method
that identifies the important frequency for recognizing a certain activity, applies a filter that
emphasizes each frequency in the input, and performs ensemble learning during training
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and testing. The aim is to improve the accuracy of activity recognition and to facilitate
the development of various activity recognition services using a general-purpose method
based on frequency enhancement and ensemble learning. As discussed below, parts of
studies on activity recognition proposed converting accelerometer data into a frequency
spectrum as the input of CNN. In contrast, this study makes the following contributions:

• We experimentally identified the important frequency of various activities using the
Human Activity Sensing Consortium (HASC) activity recognition dataset [10].

• We developed a new method to improve the accuracy of activity recognition by
creating a filter that emphasizes the important frequency of each activity and ap-
plying it to training and testing data, training the model with the data, and using
ensemble learning.

2. Related Research

2.1. Sensor-Based Activity Recognition

Various methods for sensor-based activity recognition, including CNN and ensemble
learning, have been developed. Shaohua et al. [11] used three-axis smartphone accelerom-
eter data to perform activity recognition using CNN, Long Short-Term Memory (LSTM),
Bidirectional LSTM, Multilayer Perceptron, and support vector machine (SVM) models, and
compared their accuracies using two large datasets. According to their experimental results,
the CNN model had the highest accuracy. Ito et al. [12] performed Fourier transform pro-
cessing of accelerometer and gyroscope data to create a spectrum image, which was used as
input to a CNN model for activity recognition. This model had three convolutional layers
and three pooling layers. After integrating the features of the spectrogram images from
the accelerometer and gyroscope, classification was performed on all three fully-connected
layers. The best convolution size was obtained by comparing the accuracy of different
convolution sizes in the time and frequency directions. Subasi et al. [13] used ensemble
learning to classify seven types of activities using random forest and SVM methods and
compared their recognition accuracies with that of activity recognition using Adaptive
Boosting combined with these methods. Sakorn et al. [14] used acceleration and gyro data
collected by smartphones for activity recognition. They proposed a method that combines
a 4-layer CNN and an LSTM network, and showed that it improves the average accuracy
by up to 2.24% compared to state-of-the-art methods. Others have proposed models that
combine CNNs and BiGRUs, and have shown to significantly outperform the recognition
accuracy of other RNN models [15]. Nadeem et al. [16] proposed a method for extracting
optimal features using sequential floating forward search (SFFS), and showed that the
recognition accuracy is about 6% higher than when no features are selected. Muham-
mad et al. [17] proposed a two-level model and performed data recognition when multiple
activities are combined. All these studies used data obtained from accelerometers and
gyroscopes as input or spectrogram images to recognize activity. However, none of them
used data that utilized the characteristics of each activity.

2.2. Frequency Characteristics in Activity Recognition

Some studies have used the frequency characteristics of activities. Yoshizawa et al. [18]
used an Infinite Impulse Response (IIR) bandpass filter to detect change points from one
moving activity to another. A change point was detected when the sum of the fluctuations
of each component of the accelerometer data exceeded a certain value. The authors also
identified the important frequency by changing the spectrum coefficients used in the change
point detection method to determine the number of filters and pass frequencies of the IIR
bandpass filter. Fujiwara et al. [19] applied short-term Fourier transform to Doppler sensor
data to calculate the frequency components as features used to construct a lifestyle activity
recognition model. To reduce the dimensionality of the feature values, they used only a
portion of the frequency components. They determined the frequency components reduced
by examining changes in recognition accuracy while reducing high- and low-frequency
components. They found that recognition accuracy was highest when the bandwidth of
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the frequency components used as feature values ranged from 0 to 5 Hz. These studies
have demonstrated that there is an important frequency for activity recognition. However,
such frequency has been used mainly for model analysis or feature reduction and rarely for
improving the accuracy of activity recognition.

2.3. Activity Recognition Using Ensemble Learning

Irvine et al. [20] proposed a neural network ensemble learning method for the recog-
nition of daily activities in a smart home. Zhu et al. [21] used an ensemble learning of
two CNN models to classify seven types of activities. First, they made predictions using
a model that classified the seven types. Subsequently, if the results were of two specific
classes, they made predictions using another model that classified these two types. They
then obtained the final output by performing weighted voting on the outputs of the two
models. Yiming et al. [22] proposed a method that combines extreme learning machines
(ELMs) with pairwise diversity measure and glowworm swarm optimization-based selec-
tive ensemble learning (DMGSOSEN), which achieves higher recognition accuracy with
fewer models than the comparison method. Other methods include a CELearning model
using multiple layers of four different classifiers [23], an ensemble learning model using
Adaboost and SVM [24], a model combining gated recurrent units (GRU), CNN, and deep
neural networks (DNN) [25], and ensemble learning with multiple deep learning mod-
els [26]. Another study [27] applied multiple data augmentation to input data to perform
activity recognition using ensemble learning but did not focus on frequency characteristics.

3. Proposed Method

Figure 1 shows an overview of the proposed method. The proposed method improves
the accuracy of activity recognition by identifying important frequency bands for each
activity, creating a filter to enhance them, and applying each technique (DA: frequency
emphasis in training, TTA: frequency emphasis in testing, and EL: ensemble learning). The
method consists of three phases described in Sections 3.1–3.3.

3.1. Phase 1: Finding the Important Frequency for Each Activity

In this phase, the important frequency for each activity is obtained as follows:

1. The CNN model M is trained using the original accelerometer data xtrain as in general
activity recognition.

2. For acceleration data xvalid the subjects of which differ from that of xtrain, some fre-
quencies are masked by changing f in Equation (1) between (0, fs/2]:

x′ = Fm(x, f ) = i f f t(P( f f t(x), f )). (1)

3. Using the model M trained in step 1, the change in the recognition accuracy of the
data masked in step 2 is examined.

4. Step 3 is performed for each activity C to obtain the set of frequency bands to be
emphasized: F = { f C |C ∈ C} (Figure 1a).

Figure 1. Cont.
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Figure 1. Overview of the proposed method. (a) Phase 1: Finding the important frequencies of each
activity; (b) Phase 2: Emphasis during training; (c) Phase 3: Emphasis during testing.

Note that x ∈ R3×w is the triaxial accelerometer data (w is the window size), f f t(·)
is the Fourier transform, i f f t(·) is the inverse Fourier transform, P(·) is the process of
masking frequency bands, Fm(x, f ) is the data after mask processing, f C is the important
frequency at a given activity C , and fs is the sampling frequency of the accelerometer
data. The frequency of 0 Hz is not masked because it is a DC component. The maximum
frequency to be masked is fs/2 because the frequency of the Fourier-transformed data has a
maximum value of 1/2 of the sampling frequency. The frequency at which the recognition
accuracy decreases is considered the important frequency.

3.2. Phase 2: Emphasis during Training

In this phase, the CNN model Mc is trained on the training data xtrain using F
calculated as described in Section 3.1, with the frequency band enhancement filter of
Equation (1) applied to the data (Figure 1b). The number of models is |C| because the
models are trained using data enhancing the important frequency of each activity. The
frequency band weighting filter is implemented as Equation (1) where P(·) is the process
of frequency band enhancement. The f C obtained in Phase 1 is input to f in Equation (1).

In this study, four types of window functions were used as filters to enhance the
frequency bands. Examples of the filters used are shown in Figure 2. The peak window
does not change the amplitude spectrum of the important frequency of each activity as
determined experimentally but multiplies the amplitude spectrum of the other frequencies
by a factor of 1/2. The Gaussian window is a normally distributed window, with the
important frequency of each activity as the mean and a standard deviation of 10 adjusted
so that the maximum value is 1 and the minimum value is 0.5. The triangular window
is a window with the amplitude spectrum of the important frequency of each activity as
the vertex. The minimum value is set to 0.5. Random window is a random value of 0.5–1
applied to the (0,7.8] Hz portion of the amplitude spectrum. Using the random window, we
determined whether the emphasis on the important frequency of each activity contributes
to improving the accuracy of activity recognition. Figure 2 shows the filter for f c = 3 Hz.
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Figure 2. Examples of frequency band enhancement filters. (a) Peak window; (b) Gaussian window;
(c) Triangular window; (d) Random window.

3.3. Phase 3: Emphasis during Testing

In this phase, Equation (1) was applied to the testing data xtest and inputted to the
model Mc trained in the previous phase. The final output is the result of the majority
voting on the output of each model (Figure 1c). This method can be regarded as a kind
of Test Time Augmentation (TTA) [28], a method in which the testing data are processed
to create several types of data, where the input data are augmented by frequency band
enhancement filters.

Note that in this study, in order to eliminate differences in recognition accuracy due to
differences in model structure, we used VGG16 [29] as the unified model used in Phases 1,
2, and 3.

4. Evaluation Experiment

4.1. Experiment Summary

We first conducted an experiment to determine the important frequency band for each
activity. We masked some frequencies in the accelerometer data and used these data as
input to the model to examine changes in accuracy and identify the important frequency
(i.e., the frequency at which accuracy decreased). Next, using the obtained frequency,
we created a frequency band enhancement filter for each activity and applied it to the
accelerometer data. We then conducted an ablation study to evaluate the contribution
of the three components of the proposed method (frequency emphasis during training,
frequency emphasis during testing, and ensemble learning) to recognition accuracy.
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4.2. Experimental Setup
4.2.1. Model Structure and Training Procedures

In the experiments, we used VGG16 as an activity recognition model modified for 1D
data. To reduce the influence of the model’s classifier, we applied a shallow classifier using
global average pooling, and the classifier was a single fully-connected layer. In training,
the batch size was set to 256, the learning rate was set to 0.001, and the number of epochs
was set to 200. The kernel size was set to three, the stride width was set to one, no padding,
Rectified Linear Unit was the activation function, and the pooling size was set to two.

4.2.2. Dataset

The HASC dataset was used for activity recognition. The sampling frequency was
100 Hz. We randomly sampled the acceleration data from 80 persons for training, 20
for validation, and another 30 for testing. The window size was 256 samples, divided
into time series. Six activity labels were used: stay (standing still), walk (walking), jog
(jogging), skip (skipping), stUp (climbing up a staircase), and stDown (climbing down a
staircase). Accelerometer data contain noise; however, in this study, we assumed that the
deep learning model could solve the classification problem even if the raw acceleration
data have noise. As a preprocessing step, we divided the data into time series using a
sliding window method, and we did not conduct further preprocessing.

4.3. Experiment Conducted to Identify Important Frequency

Figure 3 shows the results of the experiment conducted to determine the important
frequency band for each activity. Figure 3a shows that the accuracy of stay did not change
after the experiment, suggesting that the DC component at 0 Hz was important. Figure 3c
shows that the accuracy increased when the frequency around 1 Hz was masked. Figure 3e
shows that the recognition accuracy decreased when the frequency around 1 Hz was
masked. This frequency was important for stUp. Masking presumably improved accuracy
because it enabled the correct classification of jog data that had been misclassified as stUp.
Table 1 shows the important frequency for each activity. Relatively slow-moving activities,
such as walk and stUp, had low important frequency, while relatively fast-moving activities,
such as jog and stDown, had high important frequency. Based on these results, we created
a filter that emphasized the frequency around the selected frequency.

Figure 3. Important frequency of each activity in HASC. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we use the frequency masked data. Each activity is (a) stay, (b) walk,
(c) jog, (d) skip, (e) stUp, and (f) stDown.

4.4. Ablation Study
4.4.1. Experimental Procedure

In the training emphasis phase, six models were trained since HASC has six different
activities. In ablation study, we compared eight models listed in Table 2 to evaluate the
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effectiveness of DA, TTA, and EL proposed in this paper. (a) is our proposed method.
(b) uses DA and TTA with a single model. (c) uses DA with EL in which each branch uses
the same original sensor value in testing phase. (d) uses only DA with a single model.
(e) uses TTA with EL in which each branch is trained using the same original sensor value.
(f) only uses TTA. (g) is a simple ensemble learning, and (h) is a simple single model. In (b)
and (f), a single model makes six predictions, applying a different enhancement filter to the
test data xtest each time a prediction is made.

Table 1. Important frequency of each activity in HASC.

Activity Frequency (Hz)

stay 0.00
walk 0.78
jog 3.13

skip 1.56
stUp 1.17

stDown 1.95

Table 2. Accuracy of the eight methods used in the experiment. DA, TTA, and EL are denoted by
�for those applied and x for those not applied. The highest accuracy is underlined and bolded, and
the second highest is underlined.

Method DA TTA EL Accuracy

(a) � � � 0.890
(b) � � x 0.877
(c) � x � 0.881
(d) � x x 0.876
(e) x � � 0.880
(f) x � x 0.845
(g) x x � 0.880
(h) x x x 0.873

4.4.2. Results

Table 2 shows the validation results: the highest accuracy in bold and underlined
and the second-highest accuracy in underlined. Our proposed method (a) comprised
of the ensemble learning method with the frequency band enhancement filter applied
during training and testing had the highest accuracy, demonstrating the effectiveness of
the proposed method. Comparing (a) with (b), (c), and (e), the difference between (b)
and (a) was the largest. This suggests that ensemble learning contributed the most to
the improvement in accuracy. Comparing (a) and (g), the accuracy of (a) was about 1%
higher than that of (g), suggesting that applying a frequency band enhancement filter to the
dataset was effective. Between (f) and (h), (f) had lower accuracy. This may be because an
enhancement filter was used only during testing, and data that could not be classified by
the features learned during training were inputted, resulting in low accuracy. Between (b)
and (h), (b) had higher accuracy, suggesting that the use of the enhancement filter during
testing was more effective when combined with its use during training.

4.5. Effects of Window Functions

Table 3 shows the validation results: the highest accuracy in bold and underlined and
the second-highest accuracy underlined. Accuracy was highest when using the Gaussian
window, suggesting that a Gaussian window is appropriate for creating a frequency band
enhancement filter. The lowest accuracy was obtained when a random filter was applied,
suggesting that an emphasis on the important frequency band of each activity when
creating a filter contributes to higher activity recognition accuracy. Furthermore, recognition
accuracy was lower when the peak window was applied than when the Gaussian window
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was applied, suggesting that it is more effective to emphasize the frequency around the
important frequency than a single frequency.

Table 3. Accuracy when each filter was applied. The highest accuracy is underlined and bolded, the
second highest is underlined.

Filter Type Accuracy

Peak window 0.890
Gaussian window 0.896

Triangular window 0.888
Random 0.872

4.6. Validation Using Multiple Datasets
4.6.1. Datasets

To evaluate the robustness of the proposed method, we conducted experiments com-
paring some public datasets: HASC, UniMiB [30], PAMAP2 [31], and HHAR [32]. In this
experiment, we adopted “VGG16” as a single baseline model, “Ensemble learning” as a
simple ensemble model, and “Proposed method” combining DA using Gaussian window,
TTA, and EL. In UniMiB, we randomly sampled the acceleration data from 20 persons for
training, five for validation, and another five for testing. The window size was 151 samples,
divided into time series. There were 17 activities in total. In PAMAP2, we randomly sam-
pled the acceleration data from five persons for training, two for validation, and another
two for testing. The window size was 256 samples, and the stride size was 128 samples for
time series segmentation. There were 12 activities in total. In HHAR, we randomly sampled
the acceleration data from five persons for training, two for validation, and another two for
testing. The window size was 256 samples, and the stride size was 256 samples for time
series partitioning. There were six different activities.

4.6.2. Results

Figures 4–6 show the results of phase 1 of the proposed method to investigate the
important frequency of different activities in UniMiB, PAMAP2, and HHAR, respectively.
Table 4 shows the accuracy of the three models using each dataset. The highest accuracy
for each dataset is shown in bold. The proposed method had higher accuracy than the
ensemble learning when using HASC, PAMAP2, and HHAR and lower accuracy than the
ensemble learning when using UniMiB. Thus, the effectiveness of the proposed method
was demonstrated in three of the four datasets. This indicates that the proposed method
is robust in different domains. Table 4 shows that the difference in accuracy between
ensemble learning and the proposed method is smaller than the difference in accuracy
between VGG16 and ensemble learning. This suggests that the effect of the improvement in
accuracy by ensemble learning is greater than the application of the frequency-enhancement
filter. In PAMAP2 the accuracy of the proposed method is a little less than the conventional
ensemble method but reaches almost the same estimation accuracy. The proposed method
employs a frequency-enhanced method for each activity label compared to the conventional
ensemble. Therefore, the proposed method may not be more effective than the conventional
ensemble method when there are a very large number of behaviors and when similar
behaviors are included. It can also be seen that the accuracy of ensemble learning is higher
than the accuracy of the proposed method when the UniMiB dataset is used. This may be
due to the fact that, as shown in (b), (c), and (p) in Figure 6, there are more activities with a
smaller decrease in recognition accuracy when mask processing is performed than in the
other datasets.
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Figure 4. Important frequency of each activity in UniMiB. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The
red line shows the recognition accuracy when we used the original data. The yellow point is the
lowest recognition accuracy when we use the frequency masked data. Each activity is (a) Standin-
gUpFS, (b) StandingUpFL, (c) Walking, (d) Running, (e) GoingUpS, (f) Jumping, (g) GoingDownS,
(h) LyingDownFS, (i) SittingDown, (j) FallingForw, (k) FallingRight, (l) FallingBack, (m) HittingOb-
stacle, (n) FallingWithPS, (o) FallingBackSC, (p) Syncope, (q) FallingLeft.

Table 4. Accuracy of the three models using each dataset. Bold type indicates the highest accuracy
using the respective dataset.

Method HASC UniMiB PAMAP2 HHAR

VGG16 0.873 0.663 0.787 0.715
Ensemble learning 0.880 0.707 0.812 0.753
Proposed method 0.896 0.703 0.818 0.760
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Figure 5. Important frequency of each activity in PAMAP2. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we used the frequency masked data. Each of these activities is (a) lying,
(b) sitting, (c) standing, (d) walking, (e) running, (f) cycling, (g) Nordic walking, (h) ascending stairs,
(i) descending stairs, (j) vacuum cleaning, (k) ironing, and (l) rope jumping.

Figure 6. Important frequency of each activity in HHAR. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we used the frequency masked data. Each activity is (a) Biking, (b) Sitting,
(c) Standing, (d) Walking, (e) Stair Up, and (f) Stair down.

Table 5 shows that the important frequencies for Falling Right and Falling Left are
identical. This is thought to be because they are almost identical activities, differing only in
the direction of falling. Table 6 shows that, similar to HASC, PAMAP2 was less important
for relatively slow-moving activities such as lying and sitting and more important for
relatively fast-moving activities such as running and rope jumping. Table 7 shows that the
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HHAR includes only relatively slow-moving activities, which may account for the lower
important frequencies.

Table 5. Important frequency of each activity in UniMiB.

Activity Frequency (Hz)

StandingUpFS 0.00
StandingUpFL 4.30

Walking 7.28
Running 2.65

GoingUpS 0.99
Jumping 1.32

GoingDownS 1.65
LyingDownFS 2.98
SittingDown 0.33
FallingForw 1.65
FallingRight 0.66
FallingBack 0.33

HittingObstacle 3.31
FallingWithPS 0.33
FallingBackSC 0.33

Syncope 1.98
FallingLeft 0.66

Table 6. Important frequency of each activity in PAMAP2.

Activity Frequency (Hz)

lying 0.39
sitting 0.78

standing 3.91
walking 1.95
running 2.73
cycling 1.56

Nordic walking 1.95
ascending stairs 1.56

descending stairs 0.39
vacuum cleaning 0.78

ironing 0.39
rope jumping 2.34

Table 7. Important frequency of each activity in HHAR.

Activity Frequency (Hz)

Biking 0.39
Sitting 0.39

Standing 0.39
Walking 0.78
Stair Up 1.17

Stair Down 2.34

5. Conclusions

In this study, in order to improve the accuracy of activity recognition prediction
and to develop a variety of activity recognition services, we proposed a general-purpose
method based on frequency enhancement and ensembles. The proposed method (1) finds
important frequency in predicting each activity and creates a filter that emphasizes the
found frequency, (2) trains the model by applying the filter to training data, and (3) performs
ensemble learning by applying the filter to testing data.

The experiments conducted to identify the important frequency of each activity re-
vealed that the DC component of stay (0 Hz) was important. Relatively slow-moving
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activities are expected to have a lower important frequency, while relatively fast-moving
activities are expected to have a higher important frequency.

Ablation study results showed that the proposed method combining emphasis during
training and testing and ensemble learning resulted in the highest recognition accuracy. En-
semble learning was the element that contributed the most to the accuracy of the proposed
method. The frequency band enhancement filter was effective when applied to both the
training and testing data but not when applied only to the testing data.

In an experiment conducted to examine the effect of the window function, four differ-
ent filtering patterns were tested and compared in terms of recognition accuracy. Accuracy
was highest when the filter was created with a Gaussian window and lowest when a ran-
dom filter was applied, suggesting that emphasizing important frequency when creating
filter results in higher accuracy. In addition, although this study proposes a method of
emphasizing important frequencies for each activity, it is thought that the accuracy of recog-
nition may be further improved by emphasizing or weakening the frequencies according
to their importance.

An experiment was conducted to verify the robustness of the proposed method in
different domains. The results showed that the proposed method performed better than
an ensemble learning method in three out of four datasets (HASC, PAMAP2, and HHAR),
demonstrating its robustness in different domains.

In this study, we used VGG16 in the phase of finding important frequencies and would
like to experiment to see if the important frequencies change depending on the structure
of the model. Additionally, the most important frequency of each activity is emphasized
to improve the estimation accuracy of activity recognition. In addition to emphasizing
the most important frequencies, we believe that the recognition accuracy can be further
improved by emphasizing or de-emphasizing the frequencies according to their importance.
We would like to create a frequency band enhancement filter other than the one used in this
study and verify the change in accuracy. In addition, since the range of values applied to the
amplitude spectrum in this study was between 0.5 and 1, we would like to investigate how
the accuracy changes when the values are varied. We would also like to further improve
the accuracy by using deep learning to create the frequency filter itself. As described above,
we believe that the recognition accuracy can be improved over the current accuracy by
changing the method of creating the frequency band enhancement filter.
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Abstract: The recognition of hand signs is essential for several applications. Due to the variation
of possible signals and the complexity of sensor-based systems for hand gesture recognition, a
new artificial neural network algorithm providing high accuracy with a reduced architecture and
automatic feature selection is needed. In this paper, a novel classification method based on an extreme
learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA)
as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization
algorithm was implemented to select and prune the ELM weights resulting in the proposed k-
tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force
myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG
was investigated to limit the number of sensors at suitable positions and provide adequate signal
processing algorithms for perspective implementation in wearable embedded systems. Based on the
proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated
in the first stage. It was shown that by increasing the number of subjects participating in the data
collection, eight was the minimal number of sensors needed to result in acceptable sign recognition
performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper,
the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition
of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes
to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without
needing an additional feature selection method.

Keywords: extreme learning machine; force myography; grasshopper optimization algorithm;
k-tournament selection

1. Introduction

Hand gestures are part of behavioral attributes that are authentic (emphasize or help
to express a thought or feeling), distinguishable (present a known meaning that depends
on culture, language, and use case), and have unique physiological patterns (physiologi-
cal signals and phenomena resulted from various hand gestures present varying unique
properties). Hand gesture recognition is essential in several applications, such as sign
language, mobile security systems, smart homes, and other IoT-based applications. In
addition, hand gesture recognition involves several challenges concerning the sensors and
machine learning algorithms, including the system design, which needs to fit different
persons, and the influence of the physiological state of the subject on the collected signal
quality. Hand grasp recognition and hand sign recognition are the main subtopics of hand
gesture recognition. The first is dedicated to the identification of the grasping nature, and
the object-handling tasks while sign recognition is dedicated mainly to communication
between persons or between persons and intelligent agents. Hand sign recognition is
valuable, e.g., for communication over long distances, in noisy environments, and with
people with disabilities. Identifying hand signs with camera-based systems is challeng-
ing in such environments and suffers from limited resolution, significant distances, and
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varying light conditions. Myographic measurement methods and sensors, which allow
the direct collection of information on the muscle state during the gesture performance,
can be of great importance in overcoming these limitations. Techniques such as surface
electromyography, force myography, and surface electrical impedance myography show
promising performance for gesture detection, even if only a few current investigations exist
for sign language recognition based on myographic signals. Another challenge for hand
sign classification is in the level of algorithms and features. The classification algorithm
must get a suitable feature subset to be able to realize a high classification accuracy. In addi-
tion, the quality of the classification is variable, along with the number of features. Hence,
the control of the feature number is essential since a limited feature number may cause
data overlapping, which means that the classification becomes not sufficiently grounded.
Too many features increase the dimension of the problem, and more complex classification
algorithms will be needed. Thus, the goal of feature selection is to define the best subset
of features by directly removing the irrelevant and redundant features from the data and
improving the classification performance and stability. Moreover, reduced resource con-
sumption is required to ensure the suitability of the classification algorithm with wearable
hand gesture recognition systems. Most investigations adopt a feature selection based on
metaheuristic optimization methods in binary format. The classification accuracy depends
on many factors, including the gesture types and numbers, the measurement accuracy of
the myographic signals, and the choice of the classifier itself. Furthermore, the classification
method should be suitable for solving multiclass problems with minimal calculation. Such
property is reported to be insured by an extreme learning machine (ELM). It is a single-layer
feed-forward network (SLFN) with randomly generated input weights and biases and
output layer weights calculated via linear algebra methods allowing fast training in only
one iteration, even in multiclassification problems. However, ELM suffers from the incerti-
tude caused by this random weight generation. Many optimization methods have been
suggested in the literature to solve this problem, including controlling the randomization
and pruning the hidden nodes. However, weight pruning is not sufficiently investigated
for the ELM architecture’s optimization. This work proposes a new approach for ELM
network optimization based on a coupled weight and feature selection that allows not only
the elimination of irrelevant weights in the network but also an integrated feature selection
and hidden node number reduction.

The paper is structured as follows: In Section 2, related works are described, which
provide information on the state of the art of ELM pruning and FMG-based gesture recog-
nition. In Section 3, the methodology of implementation of a k-tournament grasshopper
extreme learner, the ELM weight selection concept, and the proposed KTGEL is detailed.
Section 4 shows the study of the number of FMG sensors for an efficient hand sign recogni-
tion system and the influence of the number of subjects on the KTGEL performance. This
section also provides the experimental investigation on the performance of the KTGEL
compared with the state of the art and with a variation of the ambiguity level in the data
set followed by the conclusion.

2. Related Work

In the first part of this section, we present an overview of applied methods for pruning
an extreme learning machine to reduce its model architecture while keeping its good
performance and exposing the gap in approaches exploited to fulfill this aim. In the second
part, an overview of hand gesture recognition based on FMG sensors is presented, focusing
on the number of sensors, the features, the number of subjects, and the American Sign
Language recognition as an application.

2.1. Pruning of Extreme Learning Machine

An extreme learning machine (ELM) is a single-layer feed-forward network (SLFN)
where the fundamental concept is that the weights and biases of the hidden layer are
randomly generated. Moreover, the output layer weights are calculated using a least-
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squares solution defined by the outputs of the hidden layer and the target [1]. Thus, the
weights that connect the hidden nodes to the outputs can be trained very fast in one
iteration according to the pseudocode presented in Algorithm 1.

Algorithm 1: Pseudocode of an extreme learning machine [2].

1 Given a training set N = {(xi, ti)|xi ∈ Rn, ti ∈ R, i = 1 · · · N}, activation function
G(w, b, x), and number of hidden nodes Ñ ;

2 Assign random input weights wi, and biases bi, for i = 1 · · · Ñ ;
3 Calculate the hidden layer output matrix H;
4 Calculate the output weight matrix

β = H†T (1)

where H† is the Moore–Penrose generalized inverse of matrix H and
T = [t1 · · · tN ]

T ; The output weight matrix β;

Since its first introduction, the ELM has been a subject for optimization as it represents
a promising possibility for embedded systems and online real-time classification tasks.
However, it also presents some limitations, especially in its hidden node number and
weights’ randomization method. An ELM also randomly generates the input weights and
the bias of hidden nodes, which has the following consequences: first, a slow learning speed
caused by the minor roles played by some hidden nodes with too small output weights on
the network’s output; second, a slow error reduction during the training process is caused
by these invalid hidden layer neurons, which increase the network complexity [3]. To solve
this, most of the proposed algorithms focus on simplifying the computation process, finding
the optimized depth of the SLFNs, or expanding the range of the generalized methods
via multilayers or a complex domain. However, for random weight optimization, the
proposed solutions tend to replace the completely randomly generated input weight and
bias with fully controllable metrics, which turns the ELM into a controlled method and
reduces the benefits of the weights’ randomness in the ELM results. The optimally pruned
ELM (OP-ELM) was proposed by Miche et al. [4] based on the ELM algorithm in terms
of kernel selection and using the methodology of pruning the neurons, leading to more
efficient algorithms and improving the ELM problems experienced when using irrelevant
or correlated data [4,5]. Compared to the ELM, the OP-ELM enhanced the robustness
and accuracy of the network. However, it had a higher computational time, affecting the
accuracy and training time [6,7]. Genetic algorithms for pruned ELM (GPA-ELM) were
proposed by Alencar et al. [8] to prune the hidden layer neurons based on multiobjective
GAs. It combined the advantages of ELMs and GAs to optimize the performance of the ELM
classifiers and prune the maximum possible number of hidden neurons. In [9], the authors
proposed the PSO-ELM for optimizing the input feature subset selection and the number of
hidden nodes to enhance the classification performance of ELM in the application of power
system disturbances classification. The experimental results showed that the proposed
PSO-ELM was faster and more accurate than the original ELM algorithm. However, the PSO
which was used to perform those optimizations was reported to be outperformed by other
newly introduced swarm intelligence optimization methods, including the GOA [10–12]. In
the literature, the main difference between the various pruned ELM versions is the different
optimization methods implemented to modify the ELM architecture to realize the hidden
nodes’ pruning. However, there is no specific idea proposed so far about weight selection
without controlling the random initialization or connection pruning optimization, which
is an integral part of extreme machine learning in data classification. Hence, in this work,
optimizing the ELM by proposing a weight selection by an improved version of the GOA
after the initial random initialization is presented as a methodology for connection pruning
in ELMs.
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2.2. Sensors for FMG

Since it is possible to perform FMG with either pressure or strain sensors, unlim-
ited choices of sensors are available. However, in 2006, Amft et al. [13] compared the
force-sensitive resistor (FSR) as a pressure sensor with a fabric stretch sensor (FSS) as a
strain sensor and surface electromyography (sEMG) for monitoring muscles’ contraction
for grasping, upper-hand activities, and object lifting. The feasibility of muscle activity
detection by the strain and pressure sensors as alternatives to sEMG was confirmed in
that study. Moreover, the experimental results showed that the pressure sensors were
more suitable as a future alternative to sEMG for gesture recognition applications as they
were able to monitor the contraction of more muscle groups than the strain sensor. Hence,
the FSR pressure sensor for FMG measurement was chosen for this study. Moreover, as
commercial sensors were more suitable for this work’s aims, a study of the FSR sensors
market and publications was conducted. As the cost for various FSR sensors were almost
similar, and the FSR sensor by Interlink Electronics and the FlexiForce™ by Tekscan Ink
were the most popular commercial sensors, which were used in 55% of publications about
FMG applications until 2019 [14], the sensor choice range was limited between both these
sensors. Their characteristics extracted from their data sheets are shown in Table 1.

Table 1. FSR Interlink and Flexiforce properties from data sheets [14].

Title 1 Interlink FSR (FSR402) Flexiforce (FLX-A201-F)

Minimum actuation force (N) 0.1 N/A
Force sensitivity range (N) 0.1–10 0 to 4.4, 0 to 445

Single-part force repeatability ±2% ±2.5%
Part-to-part force repeatability ±6% ±40%

Drift <5% per log10 (time) <5% per log10 (time)
Hysteresis +10% <4.5%

Response time (μs) <3 <5
Linearity error N/A <±3%

Vecchi et al. compared the previous sensors on several points, such as repeatability,
time drift, or dynamic force measurement via an experimental process. The results showed
that the FlexiForce sensors had better performance in terms of linearity, repeatability, time
drift, and dynamic accuracy. However, Interlink’s FSR was more robust [15]. Another
study that compared the same sensors with the LuSense PS3 (Standard 151) sensor was
conducted in 2006 and concluded that the FlexiForce had not only the highest precision but
also the highest noise with the slowest response time and the highest resistance dropping
from the nominal value during subsequent tests [16]. Hence, each sensor has its pros and
cons. The choice was based on the response time as a real-time and fast system was the
goal in this study’s outlook. Thus, the Interlink’s FSR possessing the lowest response time
in the data sheet (see Table 1) and in experiments [16] was chosen to perform the FMG
data collection in this work. A typical Interlink Electronics’s FSR sensor consists of a top
carbon-based ink layer and a bottom conductive substrate layer with a spacer adhesive
located in the middle of the two layers [17]. Therefore, during FMG collection, as the
hand exerts a force, the corresponding muscles on the arm produce a deformation on the
skin’s surface. These deformations apply pressure to the surface of the top layer of the FSR,
changing its resistance. These changes in resistance can be translated into corresponding
changes in voltage by a voltage divider structure resulting in the FMG distinct patterns
that could be used for hand gesture recognition with the best sensitivity, which is ensured
by a reference resistance of 100 kΩ in the voltage divider [17,18].

2.3. Hand Gesture Recognition Based on FMG Sensors

FSRs have been used for hand gesture recognition often in recent years, sometimes
alone [19], sometimes in combination with sEMG [20] or other sensors [21]. In these studies,
the sensors were mostly worn on the forearm or the wrist [14]. In some rare cases, the
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sensors were worn while attached to a glove [20]. Moreover, FSR-based hand gesture
recognition studies have practically focused on grasping [22], upper-arm activities such as
pinching or rotations [21], and robotic hand [23] or prostheses control [24]. Moreover, there
have been studies comparing grasp vs. nongrasp gestures [19]. However, sign language
recognition have rarely been investigated with FMG signals and have never been the
focus of any published scientific work except a few [18,25,26], where the feasibility of sign
language recognition by FMG-based systems and investigations about the measurement
system and the recognition with classic classification methods were conducted. Many
studies have shown the advantages of FMG over EMG signals [19,27]. For example, FMG
does not require much skin preparation and is less affected by skin impedance or sweat.
Furthermore, FMG is characterized by its stability and robustness to external electrical
noise; in addition, it does not necessitate the same amount of signal processing, and feature
extraction as EMG [19]. Thus, all of these factors were the main reason for making the
implementation of FMG in wearable devices more reliable in terms of cost and equipment.
The oldest research discussing FMG features is from 2017 [28], while most research has
implemented FMG as raw signals for gesture recognition. The discussed features for
force myography are primarily used in grasping detection, robot hand control, and gait
analysis [28–32]. Many researchers have achieved hand gesture recognition based on various
machine learning methods. In addition, the hand gesture term includes a massive number
of gestures with different levels of force and acceleration from sign language alphabets that
generally cover postures and some slight motions to grasping and upper-arm activities that
contain the interaction with objects and a high level of muscle contraction force. As for the
different myography measurement techniques considered in this work, the high force level
ensures a higher representation of the gesture. Most hand gesture recognition studies in
the literature have focused on grasping and upper-arm activities. In contrast, sign language
recognition is still an application where more investigations for features and classification
methods are mandatory. Hence for the experimental part of this work, the application
focus is on sign language recognition and, more specifically, American Sign Language (ASL)
recognition. An overview of publications discussing American Sign Language recognition
based on FMG as a standalone system or combining FMG and sEMG are listed in Table 2.

Table 2. State of the art for FMG-sensor-based ASL recognition.

Sensors Features Subjects Gestures Classifier Accuracy

8 colocated MAV, WL 5 10 LDA 91.6%
sEMG FMG ZC, SSC

[33]

8 FMG MAV 5 10 LDA 80%
Self-produced

[33]

16 FMG RAW signal 12 16 LDA 96.70%
[19]

8 nanocompos-
ite sensors

min, max, mean,
RMS, median, STD 10 10 ELM 93%

[34]

For FMG-based hand gesture recognition studies in the state of the art, the number
of sensors is relatively high for portable and user-friendly systems. Moreover, the use
of raw FMG signals in most of the studies limits the signal abilities and the machine
learning methods’ performance. In addition, the applications of FMG are mainly focused
on grasping and robotic hand or prosthesis control where a significant muscle contraction
force is included, and they are rarely investigated for sign language recognition. From
Table 2, for force myography, only one publication presented the sign language recognition
by FMG as a standalone system based on commercial sensors [19]. However, that previous
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study was based on raw FMG only. In our studies in [18,25,35], the feasibility of sign
language recognition by a reduced number of FMG sensors up to four and the investigation
of various features for the recognition from an FMG-based bracelet with classic classification
methods were conducted. In [25], it was proved that for a low-level ambiguity in the gesture
set that the ELM could recognize the signs with an accuracy of 89.65% based on six standard
features extracted from signals collected by four commercial sensors. In [35], the ELM
accuracy for sign recognition based on the same extracted features as in [25] from the FMG
signals collected by six sensors was equal to 91.11%. In this work, an optimized classifier is
proposed, and its adequate minimal number of sensors to recognize various sets of signs
with different levels of ambiguities is investigated.

3. Proposed k-Tournament Grasshopper Extreme Learner

The ELM has been proven in the literature to outperform other algorithms in terms of
accuracy, speed, and model size. Therefore, it is more suitable for embedded systems. How-
ever, the weights’ random tuning remains a source of incertitude in terms of the optimal
result this algorithm could reach. Researchers with different approaches proposed many
optimizations of ELMs to reduce this effect. However, the used optimization methods were
relatively old algorithms in the field. New optimization methods with good performances
in various applications have been newly proposed and could give better results. Moreover,
none of the proposed methods investigated the selection of randomly generated weights to
optimize the architecture of an ELM without controlling its randomization process.

3.1. ELM Weights Selection

A neural network weight selection is one of the pruning types of network architecture,
also named connection pruning, where the number of connections in the network is reduced.
Another type is node pruning, where the number of hidden nodes is reduced by selecting
the more significant hidden nodes [36]. For ELM pruning, researchers have proposed
several methods for node pruning [8,37–42], but the weight pruning problem has not yet
been studied. To cover this gap in the ELM architecture optimization strategies, a weight
selection of the ELM is proposed in this paper as shown in Figure 1.

Figure 1. Proposed ELM architecture optimization strategy.

The selection of initially generated weights proposed in this work has the aim of
keeping only the best subset of weights, which shares the same idea as other feature
selection methods. In the latter methods, the goal, in general, is to define the best subset of
features to improve the performance of the classification stage. Moreover, feature selection
is important because the quality of the classification is variable along with the number of
features. Hence, controlling this number is important because when it is too small, it may
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cause an overlap of data, which means it is not enough for the classification. However, if the
number of features are too great, the dimension of the problem increases, and more complex
classification algorithms are needed. Similar to the number of features, the number of weights
in the ELM also impacts the overfitting, the model size, and the complexity. From there comes
the inspiration to use a feature selection approach as a strategy for ELM weights’ selection.

3.2. k-Tournament Grasshopper Extreme Learning Machine for Selection Problems

First, the tournament process is included in the grasshopper repositioning process, as
shown in the pseudocode in Algorithm 2 by controlling the best population evaluation.

Algorithm 2: k-Tournament grasshopper optimization algorithm.

1 Initialization of CMin, CMax and MaxIteration;
2 Initialize the population of particles Xi;
3 Evaluate each solution in the population;
4 Set T as the best solution;
5 while t < MaxIteration do

6 Update c using the controlling parameter equation;
7 for each solution do

8 Normalize the distances between the grasshoppers in [1, 4];
9 Update the step vector ΔXi(i) of the current solution;

10 Bring the current grasshopper back if it goes outside the boundaries;

11 Conduct a K=2 tournament between the current solution and the rest of the
population;

12 Update T with the winners of the tournaments.;
13 t = t + 1;

14 Return T

Furthermore, to perform the selection of this algorithm, the S-shaped transfer function
is applied to the velocity of the search agents in the same way shown in the binary grasshop-
per optimization algorithm proposed in [43] presented by the pseudo-code in Algorithm 3
before combining it with the extreme learning machine shown in the Algorithm 1 as the
wrapper’s evaluation classifier.

Algorithm 3: Binary grasshopper optimization algorithm (BGOA) [43].

1 Initialization of CMin, CMax, and MaxIteration;
2 Initialize the population of particles Xi;
3 Evaluate each solution in the population;
4 Set T as the best solution;
5 while t ≤ MaxIteration do

6 Update c using the controlling parameter equation;
7 for each solution do

8 Normalize the distances between the grasshoppers in [1, 4];
9 Update the step vector ΔXi of the current solution;

10 for i = 1 : dim do

11 if rand ≥ T(ΔXt+1) then

12 Xt+1(i) = 1;
13 else

14 Xt+1(i) = 0;

15 t = t + 1;

16 Return T;
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For this wrapper, the ELM was chosen as the evaluation method of the selected subsets be-
cause it outperformed other classification methods customarily used for wrapper building, such
as KNN and SVM, in terms of accuracy, speed, and minimal computation complexity [44–48].
Moreover, searching for the best feature subset in feature selection is a challenging problem,
especially in wrapper-based methods. This is because the selected subset needs to be evaluated
by the learning algorithm (e.g., classifier) at each individual optimization step. Hence, a proper
optimization method is required to reduce the number of evaluations, which is ensured by the
ELM’s ability to solve multiclass problems in one iteration [49].

3.3. k-Tournament Grasshopper Extreme Learner

The final proposed KTGEL is shown in Algorithm 4. The proposed approach tends
to optimize the extreme learning machine by selecting the most significant weights from
the randomly generated ones during its initialization. The weight selection is integrated
into the training process of the ELM. Moreover, the proposed KTGEL inherits the training
procedure of the ELM, including the coupling between the input data and the input weights.
Hence, the KTGEL is able to perform the feature selection within its training phase as an
effect of the weight coupling relation with the input data during this phase. Each weight is
coupled to one feature, but one feature is coupled to many weights, resulting in a feature being
only eliminated if all its related weights are eliminated. Hence the proposed k-tournament
grasshopper extreme learner is estimated to provide a better classification accuracy than the
original ELM classifier on different biosignal databases for hand gesture recognition with a
smaller model size as nonselected weights are replaced by zero so that no more computations
are devoted to them.

Algorithm 4: Pseudocode of the proposed k-tournament grasshopper extreme learner.
Input: Given the training set N = {(xi, ti)|xi ∈ Rn, ti ∈ R, i = 1 · · · N}, the

activation function g, and the number of hidden nodes Ñ
Output: The output weight matrix β and selected feature vector.

1 Assign random input weights wi and biases bi, for i = 1 · · · Ñ;
2 Initialize the tournament size and maximal iterations;
3 Initialization of CMin, CMax; Initialize the population of grasshoppers Xi:(wi,xi);
4 Run "tournaments" among the k individuals chosen at random from the

population;
5 The winner of each tournament is selected as the best solution;
6 while t < MaxIteration+1 do

7 Update c;
8 for each solution do

9 Normalize the distances between the grasshoppers in [1, 4];
10 Update the step vector ΔXi of the current solution;
11 for i = 1 : dim do

12 if rand ≥ T(ΔXt+1) then

13 Xt+1(i) = 1;
14 else

15 Xt+1(i) = 0;

16 Conduct a k = 2 tournament between the current solution and the rest of the
population;

17 Update T with the winners of the tournaments;
18 t = t + 1;

19 Return T: (w,x);
20 Calculate the hidden layer output matrix;
21 Calculate the output weight matrix: β = H†T where H† is the Moore–Penrose

generalized inverse of matrix H and T = [t1 · · · tN ]
T ;
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4. Experimental Investigations

In this section, three performance metrics were investigated: the accuracy in compari-
son with other works in the state of the art, reproducing the same set of gestures performed
with the same number of subjects under as many similar conditions as possible, the influ-
ence of the number of sensors in relation with the number of subjects on the classification
accuracy, and the influence of the ambiguity level in the set of gestures in comparison
with an ELM after a feature selection step. The ELM and KTGEL were initialized with
3000 hidden nodes and compared on the data collected from eight FSR sensors with a
total of 48 initial features in terms of accuracy, the final network architecture after weight
selection by the KTGEL, the average sensitivity, and the average precision. To investigate
the effect of the ambiguity level between gestures on their classification based on the FMG
eight-sensor band, 40 participants from both genders in the age range between 20 and
32 years old participated in the collection of the 27 letters, the ASL numbers from 0 to
10, and the expression “I love you.”. Each subject participated in collecting only 10 or 9
signs with ten repetitions for each. In total, the collected data included 39 signs from the
ASL, with 100 observations for each one. From this database, two sets of gestures were
exploited in this paper for the investigations of the ambiguity level influence on the KTGEL
performance. As for the evaluation with the accuracy, both the micro precision and the
micro recall are conventionally used for a multiclassification assessment, where TPj, FPj,
FNj are, respectively, the numbers of true positives, false positives, and false negatives of a
class j, to show the overall classifier precision and sensitivity [50].

micro-P =
∑m

j=1TPj

∑m
j=1TPj + FPj

(2)

micro-R =
∑m

j=1TPj

∑m
j=1TPj + FNj

(3)

4.1. Comparison with the State of the Art of FMG-Based Gesture Recognition

In Table 3 a comparison between this work and the 2 studies from the state of the
art was conducted to compare the algorithms’ performance while keeping the number
of sensors, observations, and subjects. In [33], the FMG signals were collected with eight
self-produced sEMG-FMG colocated sensors placed on the forearm of the subjects, and
in this work, eight commercial FSR sensors were integrated into a wristband. In [34],
carbon-nanotube-based FMG sensors were customized to produce more sensitive sensors
with a higher ability to detect signs than commercial FSR sensors.

Table 3. Performance of the proposed classifiers vs. the state of the art of ASL numbers’ recognition
by FMG.

Work
Hand
Signs

Sensor
No.

Sensor Classifier
Accuracy

in % Observations Subjects

[33] 10 8 Customized LDA 80.00 50 5
This work 10 8 FSR KTGEL 88.00 50 5

[34] 10 8 Customized ELM 93.00 100 10
This work 10 8 FSR KTGEL 98 100 10

For FMG, the comparison with [33] showed that the proposed FMG bracelet located on
the wrist and commercial sensors could provide better accuracy for ASL numbers’ classifi-
cation. Moreover, the comparison with [34] was made with the exact same gestures proving
that the KTGEL outperformed the ELM in terms of accuracy, even while implemented on
data collected with commercial sensors. In contrast, the data in [34] were collected with
optimized sensors that had been proved to outperform the commercial FSR sensors when
the same signal processing was applied to data collected by both sensors.
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4.2. Investigation of the Sensors and Subject Number Influence

Force myography is rarely used for sign language recognition, and it has only been
used with raw signals. Thus, it has not been sufficiently investigated in the literature. That
is why it was necessary to conduct tests and observe the results. Both the number of sensors
and the convenient features should be examined in this part. The idea is to find the optimal
number of sensors from the wrist sensor band since previous studies [19] confirmed that the
wrist-positioned band had more sensitivity to ASL than forearm bands. To minimize the
sensors’ number and thereby ensure user comfort, two bands of six and eight commercial
pressure sensors were designed, realized, and tested to find the band that led to the best
accuracy for the ASL gesture recognition system. In the first band, eight sensors were
placed with a gap of 2 cm around the wrist, while the second band had six sensors with
a 2.25 cm gap between sensors. In all systems, Teensy boards with synchronized ADCs
were employed as acquisition boards with a sampling frequency of 100 Hz. The two-band
system was used to collect data during the performance of ASL signs according to the
measurement protocol in Figure 2.

Figure 2. FMG signal collection protocol.

The first investigation aimed to test the feasibility of finger sign detection by the wrist
FSR bands, including a small number of sensors compared to the state of the art, where the
previous studies that implemented sign language included 16 commercial sensors [19] or
8 customized sensors [33,34]. Hence, only one person was asked to wear one of the two
bands each time and perform the nine ALS numbers from one to nine shown in Figure 3
for twenty trials each.

Figure 3. Performed ASL numbers from 1 to 9 .

Gestures have been performed with a resting of two minutes between every two
gestures to avoid muscle fatigue. The collected signal seemed to have stationary behaviors
for the different gestures, so it was estimated that even though features increased the
performance of algorithms in comparison with raw data, there was no need for complicated
features. Hence, six basic features, which were the min, max, RMS, var, STD, and mean,
were extracted and normalized by the min–max method, and the KTGEL was used to
classify the gestures. The classification accuracy was considered here as the evaluation
criterion for the needed number of sensors for further data collection.
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In this set of gestures, the ambiguity level between signs could be described as low
since no dynamic gestures were considered, and the similarity between the gesture perfor-
mance process was limited between the numbers six, seven, eight, and nine between all
the possible combinations of the nine gestures. The collected data from only one person
resulted in a total of 180 observations. In this investigation, 80% of the observations were
used to train and validate the KTGEL using a fivefold cross-validation while saving a
random 20% of each gesture’s data to be used only as testing data. From the confusion
matrices in Figures 4 and 5, it could be confirmed that for only one subject performing
the gestures, both bracelets could detect and allow the classifier to predict the nine tested
gestures correctly. It was proved by this investigation that the six sensors were sufficient to
recognize gestures with a low ambiguity level collected from only one subject.

Figure 4. Confusion matrix of the KTGEL for one person for ASL numbers from 1 to 9:6 sensors.

Figure 5. Confusion matrix of the KTGEL for one person for ASL numbers from 1 to 9:8 sensors.
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The second investigation was to evaluate the system’s stability and accuracy for the
same gesture recognition while increasing the number of subjects to 10 subjects. However,
in that investigation, each person was asked to perform each gesture only ten times. In
total, 1000 observations were used in this implementation of the KTGEL, with 80% of the
observations employed to train and validate the model using fivefold cross-validation
while a random 20% of each gesture observations were safeguarded to be used only as
testing data.

The results in Figure 6 show that with six sensors collecting nine gestures, the KTGEL
had a test accuracy of 71%. Figure 7 shows that the eight sensors band collecting American
Sign Language numbers could be recognized with an accuracy of 95%. These results
confirmed that six sensors were not suitable enough for FMG-based gesture recognition
with several subjects. The additional complexity in the signals induced by the physiological
difference between the various subjects could not be canceled by the use of six sensors
only. It is also observed in Figure 6 that the confusion between gestures could not be
totally obvious from the gestures’ nature, which led to the estimation that the collected
data were not enough to differentiate the gestures. However, observing Figure 7, it could
be seen that the confusions were limited, with the most relevant confusions being between
gestures six, seven, and eight. Hence, this investigation showed that eight FSR sensors
as the minimal number of sensors had an acceptable gesture recognition accuracy from
the data collected from 10 subjects. In addition, to confirm the user’s comfort with the
used number of sensors, subjects were asked about their evaluation of the band. None of
the subjects complained about the sensor band placement, but they announced that the
material used for the actual band was not soft enough. Hence, the eight-sensor band was
kept for further data collection as a possible standalone system for a future investigation
of sign recognition with more features, and a modification of the bracelet material will be
considered as an outlook of the system design.

Figure 6. Confusion matrix of the KTGEL for ten person and nine numbers: 6 sensors.
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Figure 7. Confusion matrix of the KTGEL for ten person and nine numbers: 8 sensors.

4.3. Recognition of ASL Signs with a Middle Ambiguity Level

To investigate the influence of ambiguity on the KTGEL performance for American
Sign Language recognition, the first ten alphabet letters from A to J were collected from
10 healthy subjects. During the data collection, subjects followed an informative video
for ASL teaching. Gestures were collected as postures except for the letter J, which was a
dynamic gesture including a rotation movement of the wrist as symbolized by the arrow
in Figure 8. This set of gestures was considered to have a middle ambiguity level as it
included a dynamic gesture and a similarity in the posture between the signs A, C, and E
and the signs G and H.

Figure 8. Ten ASL letters, A–J.

Implemented with 3000 hidden nodes after a feature selection by the KTGELM, the
ELM had both a microaverage precision and a microaverage sensitivity of 97% when
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trained with only 13 selected features out of the original 48 features, as it is detailed in the
comparison presented in Table 4. The KTGEL initialized with 3000 hidden nodes resulted
in a trained model with only 1000 hidden nodes while it was given the full 48 features as
inputs. The KTGEL reached the same total sensitivity with a reduced total precision by
only 1% in comparison with the ELM after a separate feature selection stage.

Table 4. Comparison between the ELM and KTGEL in recognition of ASL signs with a middle
ambiguity level.

ELM KTGEL

Additional feature
selection algorithm yes no

Initial number of features 13 48

Initial number of hidden nodes 3000 3000

Final number of hidden nodes 3000 1000

Training time with feature
selection in seconds 9.5 2.5

Testing time in seconds 0.22 0.04

Testing accuracy in % 95 94

Precision in % 97 96

Sensitivity in % 97 97

The confusion matrices in Figures 9 and 10 show that even though J was a dynamic
gesture, it was 100% recognized using the FSR wrist band, which could be explained by the
muscle deformation resulting from the rotation of the wrist which resulted in a stronger
level of the signal in comparison with the other signs where the muscle movements in the
wrist level were not visible.

Figure 9. Ten ASL letters, A–J, detected with FMG and classified by the ELM after feature selection
by the KTGELM.
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Figure 10. Ten ASL letters, A–J, detected with FMG and classified by the KTGEL.

4.4. Recognition of ASL Signs with a High Ambiguity Level

The used data set in this part included the 20 ASL letters shown in Figure 11 with 10
of the signs showing a big similarity, namely between “B” and “4”, “M” and “N”, “U” and
“2”, “6” and “W,” “S” and “T”, and a dynamic sign “Z”, so the expected accuracy could be
as low as 50% for this data set.

The same sign set was collected by 20 new subjects while wearing the eight-sensor
band, and 100 observations of each sign were collected as FMG data. The data collected by
the FMG sensor at the wrist level presented not only information about muscle contraction
but also about the tendon state. As the sensors were distributed around the wrist, the FMG
band could cover all the superficial muscles. Hence, more confusion between signs was
noted due to the force transmission through the muscle fibers during the contraction and
the influence of the deep muscle on the superficial ones. Therefore, different signs could
have the same FMG response at the level of one or more sensors when signs shared an
initial hand shape or the same performing fingers. For the ELM after the KTGELM feature
selection shown in Figure 12, it could be seen that the signs “T” and “S”, symbolized as
classes 15 and 11, presented a source of confusion for the rest of the signs as not only
the majority of their observations were misclassified, but also many other classes were
mispredicted as signs “T” and “S”. Based on the FMG data set, the ELM after feature
selection by the KTGELM presented a classification microaveraged precision of 78% with a
sensitivity of 80% among the 20 signs.

Using the same database, the KTGEL resulted a trained model with 1000 hidden
nodes. The original data without feature selection are presented in the confusion matrix
in Figure 13, where similar results to the ELM with feature selection could be seen with
a micro-p of 77% and a micro-r of 80% and a thrice smaller model size. Evaluating the
overall classification accuracy, it could be seen that the ELM after the KTGELM and the
KTGEL had the same performance in most cases, with the second being less complicated
as it had only 1000 hidden nodes and could do the feature selection and the classification in
the same process.
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Figure 11. Data set of 20 ASL letters with expected high ambiguity, namely between “B” and “4”,
“M” and “N”, “U” and “2”, “6” and “W”, “S” and “T”, and a dynamic sign “Z”.

Figure 12. High-ambiguity data set classified by ELM after feature selection by the KTGELM.

92



Sensors 2023, 23, 1096

Figure 13. High-ambiguity data set classified by the KTGEL without a previous feature selection.

5. Conclusions

This work focused on recognizing American Sign Language based on commercial
FMG sensors. We proposed to optimize an ELM by a weight-pruning method to optimize
the network architecture and maintain the randomness of the initial weights. The pruning
reduced the network size in the ELM by removing the weights, which were participating
less in the classification result. We proposed to use the k-tournament grasshopper opti-
mization algorithm (KTGOA) as the core of the ELM’s weight-pruning process due to its
fast convergence in multidimensional optimization spaces. A KTGOA was implemented to
select the ELM weights. Thereby, a k-tournament grasshopper extreme learner (KTGEL)
was proposed as a classifier with a reduced architecture, high performance, and internal
feature selection. The influence of the number of FMG sensors and the number of subjects
on the performance of the KTGEL was first investigated. It was proved in this paper that if
only one subject was performing the data collection, a six-sensor bracelet was sufficient.
However, with an increasing number of subjects, eight sensors were the minimal number
needed to recognize the ASL numbers accurately. The investigation of the influence of the
ambiguity level in the set of gestures on the performance of the KTGEL compared with
the ELM showed that both had similar accuracy in the case of middle and high ambiguity
levels. However, the ELM was trained with fewer features as it was preceded by a feature
selection wrapper, while the KTGEL was trained with all the features. Moreover, in both
tested cases, the KTGEL-trained model reduced the number of initially hidden nodes by
two-thirds. The KTGEL also showed similar sensitivity and precision values with those of
the ELM trained with selected features. The proposed KTGEL was created by the KTGOA
that optimized the process of the best solution selection but inherited the linear behavior
of the exploration–exploitation balancing coefficient from the original GOA. Similarly to
the GOA, this linearity could lead to a trapping into a local optimum during the selection
process of coupled features and weights, during the weight pruning in the KTGEL. Hence,
in future work, the nonlinearization of the exploration–exploitation coefficient for the
weight selection process will be investigated.
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Abstract: Hand gesture recognition systems (HGR) based on electromyography signals (EMGs)
and inertial measurement unit signals (IMUs) have been studied for different applications in recent
years. Most commonly, cutting-edge HGR methods are based on supervised machine learning
methods. However, the potential benefits of reinforcement learning (RL) techniques have shown that
these techniques could be a viable option for classifying EMGs. Methods based on RL have several
advantages such as promising classification performance and online learning from experience. In
this work, we developed an HGR system made up of the following stages: pre-processing, feature
extraction, classification, and post-processing. For the classification stage, we built an RL-based agent
capable of learning to classify and recognize eleven hand gestures—five static and six dynamic—
using a deep Q-network (DQN) algorithm based on EMG and IMU information. The proposed
system uses a feed-forward artificial neural network (ANN) for the representation of the agent
policy. We carried out the same experiments with two different types of sensors to compare their
performance, which are the Myo armband sensor and the G-force sensor. We performed experiments
using training, validation, and test set distributions, and the results were evaluated for user-specific
HGR models. The final accuracy results demonstrated that the best model was able to reach up to
97.50% ± 1.13% and 88.15% ± 2.84% for the classification and recognition, respectively, with regard
to static gestures, and 98.95% ± 0.62% and 90.47% ± 4.57% for the classification and recognition,
respectively, with regard to dynamic gestures with the Myo armband sensor. The results obtained
in this work demonstrated that RL methods such as the DQN are capable of learning a policy from
online experience to classify and recognize static and dynamic gestures using EMG and IMU signals.

Keywords: hand gesture recognition; electromyography; inertial measurement unit; reinforcement
learning; deep Q-network

1. Introduction

In recent years, the use of non-verbal communication techniques has proven useful
for creating human–machine interfaces (HMIs). In particular, hand gesture recognition
(HGR) systems have been used in applications such as sign language recognition, human–
machine interfaces, muscle rehabilitation systems, prosthesis design, robotic applications,
and augmented reality, among others [1–6]. However, designing HGR systems that are
capable of determining with high accuracy the moment a certain gesture was performed is
a challenging problem. This is due in part to the variability of the signals of each gesture
between different users, as well as the similarities that the signals of different hand gestures
may have.

Several HGR systems use vision-based methods, for example, Kinect [7] and Leap
Motion Sensor [8]. On the other hand, sensor-based HGR systems typically use gloves with
inertial measurement units (IMU) [9,10], as well as non-invasive surface electromyography
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(EMG) methods for the detection of arm muscle activity, such as the G-force and Myo
armband sensors [6]. However, the performance of vision-based method systems can be
affected by occlusion and illumination issues, as well as the distance between the sensor
and the hand. For this, sensor-based HGR systems based on EMG or IMU signals are
preferred for different HGR applications. It is worth mentioning that EMG signals (EMG)
are often selected when static gestures are used since the information from muscle activity
is usually sufficient to characterize this type of hand gesture [1,4,5]. On the other hand,
IMU signals (IMUs) are usually selected to characterize dynamic gestures since this type
of gesture primarily depends on hand and arm movements [6]. Therefore, a combination
of EMG and IMU signals to recognize static and dynamic hand gestures could increase
the performance of HGR systems since more information is analyzed for each gesture [11].
However, this is still an open research problem [12,13].

EMG signals can be modeled as a stochastic process that depends on whether the
muscle contraction is static or dynamic. However, to address these problems, machine
learning (ML) and deep learning (DL) techniques have been commonly used to classify and
recognize EMG signals instead of mathematical models since the latter have high design
complexity and performance issues [1,14]. In particular, supervised methods, such as
support vector machines (SVMs), k-nearest neighbors (K-NNs), artificial neural networks
(ANNs), convolutional neural networks (CNNs), a fusion of the transformer model and
the CNN model (transformer-CNN), and long short-term memory (LSTM) networks, have
shown high-performance results for HGR systems (at least 80% classification accuracy
and 300 ms processing time) [1,15–20]. However, these models still require a fully labeled
dataset to be trained, which makes them unsuitable for learning using new experiences
gained online when the user interacts with the system. On the contrary, reinforcement
learning (RL) approaches can help build models that learn online from experience. These
models could help improve the performance of the HGR system over time since the system
can adapt to each user in an online manner after each interaction with the system, which
helps reduce the problem of interpersonal variability. Reinforcement learning methods
are based on the maximization of the accumulated reward that is obtained by trying to
correctly predict a gesture from online experiences, which allows for finding an optimal
policy for an agent to use to predict categories of signals in a given environment [16].

There have been a few attempts to use RL techniques for HGR and arm movement or
hand gesture characterization using sensor-based systems. For example, in [21], the authors
used the Myo armband sensor to extract 9-axis IMU and 8-axis EMG sensor information to
classify dynamic hand gestures using a deep Q-network (DQN) model. The experiment
consisted only of three different hand gestures based on drawing a circle, a rectangle, and a
triangle in the air. Each of these three gestures had 30 training data and 20 test data. The
agent was built using a CNN with and without LSTM layers and was demonstrated to
obtain high classification performance. In [22], the authors used the UCI dataset, which
contains EMG data from six users performing six different hand gestures. From this dataset,
time-domain features were obtained using a CNN-based automatic feature extraction
method. To learn a classification policy, a deep Q-learning dueling technique was used,
which allows for the selection of the most relevant characteristics throughout the training.
The base dataset was composed of a total of 2700 EMG signal samples for the six hand
gestures. As this was a sparse dataset, the authors used data augmentation methods using
Gaussian noise, random horizontal flipping, and vertical flipping on the EMG data to obtain
10,000 samples. The authors showed that CNN performed better than ANN for this dataset.
In another work, the authors proposed a classifier based on the neural reinforcement
learning (NRL) method to classify finger movements using only EMGs [23]. For this, the
authors used four feature extraction methods, which were the variance, mean absolute
value, zero crossing, and waveform length of seven different gesture classes. Then, they
used a k-nearest neighbor classifier based on reinforcement learning to classify the extracted
features using a trial-and-error approach. The authors performed experiments on 10 users
with general and specific models, demonstrating that it was feasible for the NRL user to
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identify typing movements using EMG signals from the forearm. In [24], a reinforcement
learning-based classifier capable of learning to classify arm and finger movements was
designed. For this, a 26T System was used to obtain EMG signals from 10 subjects using 1,
2, and 3 electrodes, respectively, to compare their results. The temporal characteristics that
were used were the length of the waveform, the mean absolute value, the variance, and
the zero crossing. An algorithm based on Q-learning was used for the classification stage,
where the agent was made up of an ANN to infer six classes of arm positions and four
classes of finger movements. The authors used 144 training samples and 95 test samples
to build specific models for each of the 10 subjects. Finally, we presented an approach to
classify and recognize five different static hand gestures based only on the EMGs in [16].
For this, we used Q-learning with an ANN as a policy representation of the agent. However,
we used only the EMG signals to recognize static gestures and data were obtained using
only the Myo armband sensor. Although the results obtained were encouraging, it is still
necessary to explore other types of gestures and sensor behaviors when using different
RL-based methods. Moreover, the use of IMU is still key to recognizing dynamic gestures,
and the combination of EMG-IMU signals still needs to be analyzed and compared to a case
when only EMGs are used to develop HGR systems based on RL methods. In summary, the
use of datasets with a considerable number of samples and participants for both dynamic
and static gestures based on EMG and IMU information still needs to be explored for
different RL-based methods and sensors. To the best of our knowledge, this work is the
first attempt to use EMG-IMU signals from a large dataset from two different sensors (Myo
armband and G-force) and compare the results with other methods.

Considering the literature review presented above, the main contributions of the
present work are listed below:

• We use our large dataset composed of 85 users with information on 11 different hand
gestures (5 static and 6 dynamic gestures) that contain EMG and IMU signals. The
data were taken from two different armband sensors, the Myo armband and G-force
sensors.

• We successfully combine the EMG-IMU signals with the deep Q-network (DQN)
reinforcement learning algorithm. We propose an agent’s policy representations based
on artificial neural networks (ANN).

• We compare the results of the proposed method using both sensors, the Myo armband
and G-force sensors. We also compare the results found in the present work, which
uses EMG and IMU signals, with those of a method previously developed on a dataset
that used only EMG signals and the Q-learning algorithm.

The rest of this work is organized as follows. In Section 2, the proposed method for an
HGR system based on EMG-IMU signals and RL is presented and each stage is explained
in detail. The classification and recognition results of the proposed method are presented
in Section 3. The discussion section is in Section 4. Finally, the conclusions are provided in
Section 5.

2. Hand Gesture Recognition Method

In this section, we present the proposed method for the HGR system based on EMG-
IMU signals and RL (Figure 1). As can be observed, the proposed method is composed
of data acquisition, pre-processing, feature extraction, classification (DQN), and post-
processing stages. The data were taken from two different armband sensors to compare
results, which are the Myo armband and G-force sensors. We combined the EMG-IMU
signals with the deep Q-network (DQN) reinforcement learning algorithm to develop the
proposed HGR system. Next, we explain in detail each stage.
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Figure 1. Hand gesture recognition method based on EMG-IMU and RL.

2.1. Data Acquisition

In this work, we use EMG-IMU data of 12 different hand gesture categories—11
different hand gestures and 1 relax gesture—in which 5 of them are static gestures—wave
in, wave out, fist, open, and pinch—and the other 6 are dynamic gestures—up, down,
left, right, forward, and backward. The data were collected using the Myo armband—a
sensor with 8 channels at a sampling rate of 200 Hz—and the G-force armband—a sensor
with 8 channels at a sampling rate of 1 kHz. The proposed dataset consists of 85 users, of
whom 43 are used for training and validation to find the best possible hyperparameter
configurations. From this group, 16 users are from the Myo armband sensor data and
27 from the G-force sensor data. On the other hand, 42 users are used for testing to
evaluate overfitting and to calculate the final results. From this group, 16 users are from
the Myo armband sensor data and 26 from the G-force sensor data. The data of each user
in the training set is composed of 180 hand gesture repetitions—15 repetitions for each
gesture—and the other 180 samples are for validation. This division of samples is similar
to the test set. We summarize the dataset distribution for both the training and testing
sets in Table 1. The dataset has been made public and is available at the following link
https://laboratorio-ia.epn.edu.ec/en/resources/dataset/emg-imu-epn-100 accessed on
18 November 2022.

Table 1. Dataset distribution to evaluate user-specific models [25].

User-Specific Model (One Model for Each of the 85 Users)

Number of Models Training Validation Test

Training
set

43 models trained
(to find the best

hyperparameters)

180 samples
per user

180 samples
per user -

Testing
set

42 models trained
(to use the best of the found

hyperparameters)

180 samples
per user - 180 samples

per user

2.2. Pre-Processing

The preprocessing of each EMG sample consisted of using a sliding window on each
sample to analyze it separately [1,14]. In this work, we chose a window length of 300 and
a step of 40, where these values were selected based on experimentation to achieve high
classification and recognition accuracy. Since we had two different sensors—Myo armband
and G-force—with different sample frequencies—200 Hz and 1 kHz—a resampling was
performed by applying an FIR antialiasing low-pass filter to the signals so that the EMGs
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and IMUs would have the same number of 1000 points for both sensors. However, only
one window of 300 points was sent to the feature extraction stage to be evaluated at each
time instant. Each EMG sensor had 8 channels, and to obtain the IMU signal, the 4 signals
of the quaternions were used; thus, each EMG-IMU window information had a dimension
of [300, 12].

2.3. Feature Extraction

Feature extraction methods are used to extract relevant and non-redundant features
from EMGs and IMUs. For this purpose, different domains can be used such as time,
frequency, or time-frequency domains. In this work, five different features were extracted
in the time domain over each step of the sliding window. The feature extraction functions
used were root mean square (RMS), standard deviation (SD), energy (E), mean absolute
value (MAV), and absolute envelope (AE), which are typically used to extract features
of EMGs [1,14]. We used all these features in a feature vector since we obtained better
results than when we used only one or a few of them. Since we had 5 feature extraction
methods and an EMG-IMU window size of [300, 12], a feature vector with a size of [60, 1]
was extracted from each of the EMG-IMU windows, which was made up of a feature vector
with a size of [40, 1] that corresponded to the EMGs and a vector with a size of [20, 1] that
corresponded to the quaternions obtained from the IMU.

2.4. Classification of EMGs

The objective of this stage is to identify the category of a hand gesture using an EMG-
IMU signal among a set of categories with which the proposed algorithm was previously
trained. In this work, we used an RL algorithm called deep Q-network (DQN), which is
made up of a neural network to represent the agent’s policy. In this section, we explain
in detail the EMG-IMU signal sequential classification problem that can be modeled as a
partially observable finite Markov decision process (POMDP).

2.4.1. Q-Learning

We can define the sliding window classification on an EMG-IMU signal sample during
the development of a hand gesture as a sequential decision-making problem. In this
problem, the actions correspond to the labels of the hand gestures to be inferred, whereas
the states are the feature vectors corresponding to the observations of each window of an
EMG-IMU sample. In this context, we can learn to estimate the optimal action for each
state. For this purpose, we maximized the expected sum of future rewards by performing
that action in the given states and then following an optimal policy [26]. Thus, considering
a given policy π, the value of the action a taken in the initial state s can be defined as

Qπ(s, a) = Eπ [R1 + γR2 + γ2R3 + . . . + γn−1Rn|S0 = s, A0 = a] (1)

where Ri are the rewards or punishments that the agent receives at each state with i = 1,
2, . . . , n, where n represents the number of states. The variable γ ε [0, 1] is the discount
factor that determines how much future rewards affect the agent’s learning process. Then,
the optimal state-action value function can be expressed as Q∗(s, a) = maxπQπ(s, a). An
optimal policy can be calculated from the optimal function Q∗(s, a) by choosing the highest
valued action at each state according to [27]. Typically, to estimate the optimal state-action
values, we can use the Q-learning algorithm, which is an off-policy temporal difference
RL method [26]. For any finite Markov decision process (MDP), the Q-learning algorithm
can find an optimal policy by maximizing the expected return function that we presented
in Equation (1) given an initial state and an initial action [27]. However, it is important to
consider that we assume that only the observations Ot are measured instead of the complete
state information of the environment st. This is because there may be a discrepancy between
the set of EMG-IMU window observations and the set of feature vectors [16]. For this
reason, in this work, we considered the HGR problem using EMG-IMU as a partially
observable Markov decision process (POMDP) [16].
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The Q-Learning algorithm uses Q-values to iteratively improve the behavior of the
learning agent. The Q-values are an estimation of the performance of a certain action At at
the observation Ot. There are different ways to represent the Q-values such as polynomial
functions, tables, or neural networks [27]. In the proposed method, we used a continuous
observation space represented by the extracted EMG-IMU features and a discrete action
space represented by the predicted hand gestures. Therefore, the Q-learning algorithm
should be combined with a function approximation approach to learningc a parameterized
value function Q(Ot, At; θt). A critic representation can be used to obtain high-performance
results when using discrete action spaces and continuous observations [27]. For a given
observation and action, a critic agent output returns the expected value of the cumulative
long-term reward. The standard Q-learning algorithm updates the parameters θt after
taking action At in observation Ot, obtaining the reward Rt+1 in Ot+1, described as follows:

θt+1 = θt + α
(

YQ
t − Q(Ot, At; θt)

)
· ∇θt Q(Ot, At; θt) (2)

Here, θt+1 and θt are the updated and the previous parameters, respectively, and α is
the learning rate. Finally, the target function YQ

t is defined as

YQ
t ≡ Rt+1 + γ · max

a
[Q(Ot+1, a; θt)] (3)

where the term max
a

[Q(Ot+1, a)] is the estimated optimal future Q value. The term γ is

the discount factor, and a reward Rt+1 is received by the agent when moving from the
observation Ot by taking the action At to the next observation Ot+1.

2.4.2. Deep Q-Networks (DQN)

In this work, we use a deep Q-network (DQN) agent representation, which is com-
posed of an artificial neural network (ANN) as a function approximation method to learn a
parameterized value function. Thus, for a given observation Ot, a DQN returns a vector of
action values Q(Ot, · ; θ), where θ are the parameters of the neural network [24,26,27]. The
number of inputs of the network is the same as the dimension of the feature vector that
represents an observation composed of the extracted EMG-IMU features [60, 1], and the
number of neurons at the output layer is the same as the number of possible actions that
the agent can perform. According to [26,28], there are two key characteristics to consider
in the DQN algorithm that are not considered in the standard Q-learning algorithm. The
first is the use of a target network YDQN

t that is used in Equation (4), which has parameters
θ− that are updated periodically every τ steps from the online network in Equation (2),
with the parameters θt. The rest of the time, the parameters θ− remain fixed until the next
update after τ steps. This helps to remove correlations with the target [26,28].

YDQN
t ≡ Rt+1 + γ · max

a

[
Q
(
Ot+1, a, θ−t

)]
(4)

The second important consideration is the use of experience replay, which randomly
samples the data to remove correlations in the sequences of observations, which accelerates
the training of the agent. For this purpose, the tuple Et = (Ot, At, Rt, St+1) that repre-
sents the agent’s experience at time t is saved in a pool of stored data sample transitions
D = {E1, E2, · · · , ET}. During learning, the parameters of the ANN are updated using
Equations (2) and (4), with the mini-batches of experience drawn uniformly at random
from D [28,29]. The use of the target network with parameters θ− and the experience replay
approach help to significantly improve the performance of the DQN algorithm compared
to the standard Q-learning algorithm [26,28]. The pseudo-code for the DQN algorithm is
presented in Algorithm 1.
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Algorithm 1 DQN with Experience Replay

Initialize action-value function Q with random weights
Initialize replay memory D to capacity N
for episode = 1, M do

Initialize agent in observation Ot
for t = 1, T do

With probability ε select a random action At
otherwise, select max

a

[
Q
(
Ot+1, A, θ−t

)]
store transition Et = (Ot, At, Rt, St+1) in D
Sample random mini-batch of transitions (Ot, At, Rt, St+1) in D
YDQN

t =

{
Rt+1 f or terminal Ot

Rt+1 + γ · max
a

[
Q
(
Ot+1, a, θ−t

)]
f or non − terminal Ot

Perform gradient descent to update θt+1 = θt + α
(

YQ
t − Q(Ot, At; θt)

)
·

∇θt Q(Ot, At; θt)

end for
end for

2.4.3. DQN for EMG-IMU Classification

The proposed method modeled as a partially observable Markov decision process
(POMDP) that we use in this work uses DQN the algorithm to learn an optimal policy,
which allows an agent to learn to classify and recognize hand gestures from EMG-IMU
signals. A figure that represents the interaction between the DQN agent representation and
the proposed environment for the EMG-IMU classification is illustrated in Figure 2. We
briefly explain each part of Figure 2 below.

Figure 2. Scheme of the interaction between the DQN agent representation and the proposed
environment for the EMG-IMU classification.

Agent: The agent is made up of the DQN algorithm and an artificial neural network
ANN as the policy representation. During training, the agent learns a policy that maximizes
the total sum of rewards using the DQN algorithm. The inputs of the neural network are
the features extracted from each window of the EMG-IMU signals (observations), and as
its output, the network returns the values of the predicted gestures (actions). In this way,
the agent learns to classify window observations from EMG-IMU signals. Each EMG-IMU
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signal sample is considered an independent episode, and each sliding window step is
considered an observation during that episode.

Observation: The observation Ot for a given unknown state St is defined as the feature
vector obtained from each EMG-IMU signal window. This vector is composed of RMS, SD,
E, MAV, and AE information. The end of an episode occurs when the agent reaches the last
sliding window observation of an EMG-IMU sample.

Action: An action At is defined as the category of the gesture that the agent predicts
to go from the current observation Ot to the observation Ot+1, after which it receives a
reward Rt+1. The categories of gestures used for this work are: wave in, wave out, fist,
open, pinch, and relax (static gestures), and up, down, left, right, forward, and backward
(dynamic gestures).

Environment: The environment is the defined environment within which the agent
performs an action to move from one observation to the next, which returns a reward. In
this case, we define the environment from the sliding window information—feature vectors
and labels—extracted from each EMG-IMU signal and the ground truth (vector of known
labels) of the EMG-IMU signal.

Reward: The agent receives a positive or negative reward depending on whether
during its interaction with the environment it was able to correctly predict a gesture for a
given observation. We define two different rewards, one for ranking and one for recognition.
An illustration of the rewards that the agent obtains is presented in Figure 2. The agent can
receive a positive reward Rt = +1 or a negative reward Rt = −1 depending on whether or
not it correctly predicts the label of a window gesture. Once an episode ends, the vector
of the known labels—ground-truth—is compared with the vector of the predicted labels,
and if the overlapping factor between these vectors is greater than 70%, then recognition is
considered successful and the agent receives a reward Rt = +1. If the recognition fails, the
agent is penalized with Rt = −1.

2.5. Post-Processing

Once an EMG-IMU sample is processed and the vector of the predicted labels is
obtained, we use post-processing to remove false labels and improve the accuracy of
the proposed HGR system. There are several ways to perform post-processing such as
using filters, majority voting, and heuristics, among others [1,16]. In this work, based on
experimentation, we obtained the best results by calculating the mode on the vector of the
predicted labels that are different from the relax labels. Then all the labels in those vectors
that are different from the mode are replaced with it. The post-processing step is key to
improving the classification and especially the recognition results since a single erroneous
label in an EMG-IMU window can cause the recognition prediction to fail.

3. Results

In this section, we present the validation and testing results for the proposed HGR
user-specific method for both the Myo armband and G-force sensors with regard to static
and dynamic gestures. First, to find the best possible hyperparameters, we perform a
validation procedure, and the best model results found during the validation are presented.
Then, we present the final testing results with the previously found best hyperparameters.
The validation and testing results for the Myo armband and G-force sensors are analyzed to
compare their performance, considering separately static and dynamic gestures. Finally, we
briefly compare the proposed method using the EMG-IMU signals with a similar method
that uses only EMG.

3.1. Validation Results

For the validation results, we trained and tested different user-specific models based
on an agent that uses neural networks as policy representations with the DQN algorithm
that we presented previously in Section 2.4. For each model, we evaluated different
hyperparameters such as the learning rate and mini-batch size to evaluate the classification
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and recognition results. Appendix A contains a summary of several of the tests performed
to find the best hyperparameters. The best hyperparameter values found for the proposed
method are summarized in Table 2.

Table 2. Best hyperparameters found during validation procedure.

Hyperparameter Name Hyperparameter Values

Activation function between layers Relu

Target Smooth Factor 5 × 10−3

Experience buffer length 1 × 106

Learn rate (α) 0.3 × 10−3

Epsilon initial value 1

Epsilon greedy epsilon decay 1 × 10−4

Discount factor 0.99

Training set replay per user 15 times

Sliding window size 300 points

Stride size 40 points

Mini-batch size 64

Optimizer Adam

Gradient decay factor 0.9

L2 regularization factor 0.0001

Number of neurons for layer
60, 50, 50, 7 for the input layer,
hidden layer 1, hidden layer 2,
and output layer, respectively

A training sample illustration of the average reward versus the number of episodes is
illustrated in Figure 3. As can be observed, the curve in the figure shows satisfactory growth
and convergence to the maximum average reward as the number of episodes increased.
It is worth mentioning that this figure varied slightly depending on the data of each user.
However, for all users, the same trend of convergence to the maximum average reward
value was observed.

We present the classification and recognition results per user for the Myo armband
sensor for static and dynamic gestures in Figure 4. Likewise, we present the classification
and recognition results per user for the G-force sensor for static and dynamic gestures
in Figure 5. Moreover, we present a summary of the best classification and recognition
results of the user-specific HGR models obtained during validation in Table 3. It can be
observed that for the validation results, the DQN-based model with the Myo armband
sensor achieved slightly better results than the same model with the G-force sensor. There
was a 6.5% classification accuracy difference between the Myo armband and G-force sensors
for static gestures and a 4.3% difference for dynamic gestures. Moreover, the standard
deviation was also lower for the Myo armband sensor, which was only 2.78% compared to
a value of 9.04% for the G-force sensor. On the other hand, for dynamic gestures, the Myo
obtained slightly better results. For example, for the Myo armband sensor, we obtained a
4.3% higher efficiency in the classification when using dynamic gestures with a standard
deviation of only 1.37% compared to a value of 7.20% for the G-force sensor. The same
analysis applied to the recognition accuracy metrics, demonstrating that the Myo armband
sensor obtained slightly better results using this metric.
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Figure 3. Sample of episode rewards versus episode numbers during the training of one user.

Figure 4. User-specific HGR model classification and recognition accuracy results for the Myo
armband sensor using DQN. (a) Static gestures. (b) Dynamic gestures.
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Figure 5. User-specific HGR model classification and recognition accuracy results for the G-force
sensor using DQN. (a) Static gestures. (b) Dynamic gestures.

Table 3. User-specific validation: best results for Myo armband and G-force sensors.

Sensor Classification Accuracy Recognition Accuracy

Myo armband
(Static gestures) 96.9% ± 2.78% 87.0% ± 9.36%

Myo armband
(Dynamic gestures) 98.6% ± 1.37% 88.2% ± 8.28%

G-force
(Static gestures) 90.4% ± 9.04% 82.2% ± 10.98%

G-force
(Dynamic gestures) 94.3% ± 7.20% 85.5% ± 12.3%

3.2. Testing Results

To present the testing results, we performed experiments on the test set based on
the best hyperparameters previously found during the validation procedure presented
in Section 3.1. This procedure helped us to evaluate our models with different data and
analyze overfitting. We summarized the test results for 306 users with the best-found
hyperparameters in Table 4. The classification results were similar for the two sensors, with
the Myo-armband sensor obtaining slightly better results, with differences of 4.26% for
static gestures and 1.82% for dynamic gestures compared to the G-force sensor. On the
other hand, the recognition accuracy was similar for both sensors for the testing results
compared with the validation results, with the exception of the G-force sensor, in which
the recognition values were 56.45% ± 8.12% and 70.57% ± 11.99% for static and dynamic
gestures, respectively. Overall, the testing classification results were similar to the validation
results, demonstrating that the proposed models are robust to the effect of overfitting in
terms of the classification of the proposed dataset distribution. Only for static gestures
of the G-force sensor were the recognition results slightly lower. This is explained by
the different distribution of the data and the variability of the users, as well as the fact
that the hyperparameters were calibrated only for the validation dataset and not for the
testing dataset.
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We also present the confusion matrices that represent the classification results on the
test set of the Myo armband sensor for static gestures in Figure 6 and dynamic gestures
in Figure 7, as well as for the G-force sensor for static gestures in Figure 8 and dynamic
gestures in Figure 9. In these figures, the results for each hand gesture can be observed
in detail, which include both static and dynamic gestures for both sensors. It is worth
mentioning that the processing time of each window observation was, on average, 33 ms.

Table 4. User-specific testing results for Myo armband and G-force sensors.

Sensor Classification Accuracy Recognition Accuracy

Myo armband
(Static gestures) 97.50% ± 1.13% 88.15% ± 2.84%

Myo armband
(Dynamic gestures) 98.95% ± 0.62% 90.47% ± 4.57%

G-force
(Static gestures) 93.24% ± 3.43% 56.45% ± 8.12%

G-force
(Dynamic gestures) 97.13% ± 2.04% 70.57% ± 11.99%

Figure 6. User-specific HGR model confusion matrix for 16 users from the test set with the best
hyperparameter configuration for the Myo armband sensor for static gestures.
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Figure 7. User-specific HGR model confusion matrix for 16 users from the test set with the best
hyperparameter configuration for the G-force sensor for dynamic gestures.

Figure 8. User-specific HGR model confusion matrix for 26 users from the test set with the best
hyperparameter configuration for the Myo armband sensor for static gestures.

109



Sensors 2022, 22, 9613

Figure 9. User-specific HGR model confusion matrix for 26 users from the test set with the best
hyperparameter configuration for the G-force sensor for dynamic gestures.

3.3. Comparison with Other Methods

We implemented two additional tests for our proposed dataset and method, but the
classification stage was based on supervised learning methods such as k-nearest neighbor
(KNN) and a convolutional neural network (CNN). We also compared the results found in
the present work, which uses EMG and IMU signals, with methods previously developed
using the same sensor, with a similar dataset distribution with similar method stages
that work with supervised and reinforcement learning [16,25]. These comparisons were
useful for evaluating the effect of using EMG-IMU signals with respect to using EMG
signals only, as well as comparing supervised and reinforcement learning methods for
the proposed dataset. The selection criteria for the selected articles were based first on
the type of sensor and its location on the user’s arm, which needs to be consistent with
what we proposed in this work. Another important point that we considered is that we
found that in the works based on EMGs only, the HGR models were trained to recognize
static gestures only. To successfully recognize dynamic gestures, it was necessary to
use IMU signals or a combination of IMU and EMG signals. This is because dynamic
gestures are highly dependent on the user’s arm movements, which can be analyzed using
information obtained from the IMU. We searched for approaches using similar methods
that contained pre-processing, feature extraction, classification, and post-processing to
fairly and objectively assess the effect of using EMG with IMU signals instead of just
using EMG signals to develop HGR systems. The results using EMG and IMU signals that
we obtained in this work for static gestures using the Myo armband sensor can be seen
in Table 5, where we obtained 97.5% ± 1.13% and 88.15% ± 2.84% for the classification
and recognition, respectively. On the other hand, another approach that used only EMG
signals and Q-learning obtained 90.47% ± 14.24% and 87.51% ± 14.1% for the classification
and recognition, respectively [16]. The approach that used EMG and IMU signals with
supervised learning based on KNN obtained 80.04% and 66.12% for the classification
and recognition, respectively, whereas the approach based on a CNN classifier obtained
84.49% ± 7.10% for the classification and 70.02% ± 8.21% for the recognition. Finally,
another approach that used only EMG signals and a supervised learning approach based
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on a support vector machine obtained 95% and 81.6% for the classification and recognition,
respectively [25]. As can be observed, using EMG and IMU signals helped to improve the
classification and recognition results for static gestures when considering models based on
reinforcement and supervised learning. Moreover, it can be observed that our model based
on reinforcement learning with EMG and IMU signals presented the best results for this
application.

Table 5. Comparison of classification and recognition accuracy results on the test set of the proposed
model compared with other methods.

Learning Method Type of Signal Classification Recognition

Reinforcement
learning (this work) EMG + IMU 97.5% ± 1.13% 88.15% ± 2.84%

Reinforcement
learning [16] EMG 90.47% ± 14.24% 87.51% ± 14.1%

Supervised
learning—KNN classifier EMG + IMU 80.04% ± 13.66% 66.12% ± 18.30%

Supervised
learning—CNN classifier EMG + IMU 84.49% ± 7.10% 70.02% ± 8.21%

Supervised
learning [25] EMG 95% 81.6%

4. Discussion

• According to the test results, the best classification accuracies were obtained for static
gestures using the Myo armband sensor and were 97.50%± 1.13% and 88.15%± 2.84%
for the classification and recognition, respectively. On the other hand, for dynamic
gestures using the Myo armband sensor, the accuracies were 98.95% ± 0.62% and
90.47% ± 4.57% for the classification and recognition, respectively. The accuracies of
the test results for static gestures using the G-force sensor were 93.24% ± 3.43% and
56.45% ± 8.12% for the classification and recognition, respectively. On the other hand,
for dynamic gestures using the G-force sensor, the accuracies were 97.13% ± 2.04%
and 70.57% ± 11.99% for the classification and recognition, respectively. This indicates
that the method based on a DQN for the Myo armband sensor obtained slightly better
results than the method based on a DQN for the G-force sensor.

• We compared the proposed method that used EMG and IMU signals with respect
to other similar works where the same sensor was used with only EMG signals for
static gestures. We obtained accuracies of 97.5% ± 1.13% and 88.15% ± 2.84% for
the classification and recognition, respectively, using both EMG and IMU signals
versus accuracies of 90.47% ± 14.24% and 87.51% ± 14.1% for the classification and
recognition, respectively, using only EMG signals. This indicates the benefits of using
EMG-IMU signals over using EMGs alone. This represents a 7% and 1% improvement
in the classification and recognition, as well as a substantial reduction of more than
10% in the standard deviation of these metrics when using EMG-IMU signals instead
of EMG signals alone. This also indicates the benefits of using EMG-IMU signals over
using EMGs alone. Moreover, it can be seen that we are the first study to use RL with
EMG-IMU signals to obtain better results compared to using only EMG signals with
RL. Our results also outperformed those obtained with methods that use EMG or
EMG-IMU with supervised learning.

• In general, the difference between the results of the validation and testing with regard
to the classification and recognition was less than 5%. This difference is small so it
can be said that the proposed method is robust and does not suffer from the effects of
overfitting for the proposed dataset distribution.
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• The processing time of each window observation was, on average, 33 ms for both
sensors. Since this is less than 300 ms, we can consider that both models work in real
time for the proposed application.

• Although the proposed results are encouraging, it is important to mention that in
future works we will focus on the convenience and comfort that users experience when
using static or dynamic gestures. User preference data can impact the development of
HGR architectures so we will study this in depth in future work.

5. Conclusions

In this work, we proposed an HGR system based on the DQN algorithm for the
classification of 11 different hand gestures including static and dynamic gestures. We tested
and compared the results of two different sensors, the Myo armband and G-force sensors,
from which we used the EMG and IMU signals to obtain the feature vectors. The proposed
models were validated on 43 users and tested on 42 different users. The best classification
accuracy was obtained for the Myo armband sensor, reaching up to 97.50% ± 1.13% and
88.15% ± 2.84% for the classification and recognition, respectively, with regard to static
gestures, and 98.95% ± 0.62% and 90.47% ± 4.57% for the classification and recognition,
respectively, with regard to dynamic gestures. The results obtained in this work showed
that the DQN was able to learn a policy from online experience to classify and recognize
gestures based on EMG and IMU signals, significantly improving the results obtained by
similar methods using only EMG. It was also observed that the use of the Myo armband
sensor compared to the G-force sensor obtained better accuracy for this application and
data distribution. Future work includes testing other feature extraction methods and
reinforcement learning algorithms to evaluate the proposed dataset.
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Appendix A

A summary of the validation results from changing the learning rate (alpha) parameter
is presented in Table A1.

Table A1. User-specific validation results for Myo armband and G-force sensors.

Alpha Classification Accuracy Recognition Accuracy

0.07 39.2% ± 16.52% 25.0% ± 16.86%

0.05 38.9% ± 17.5% 22.0% ± 17.86%

0.03 45.9% ± 15.79% 37.0% ± 15.55%

0.01 51.9% ± 16.45% 47.0% ± 14.36%

0.007 54.2% ± 15.58% 48.6% ± 16.57%

0.005 70.5% ± 9.58% 57.2% ± 10.45%

0.003 71.4% ± 10.25% 58.2% ± 13.33%

0.001 77.3% ± 6.78% 73.4% ± 11.56%

0.0007 87.3% ± 4.11% 83.2% ± 12.22%

0.0005 89.2% ± 3.58% 75.2% ± 10.12%

0.0003 96.9% ± 2.78% 87.0% ± 9.36%

0.0001 93.2% ± 4.51% 83.5% ± 9.78%

0.00007 94.3% ± 3.58% 82.1% ± 8.35%

0.00005 88.3% ± 4.58% 80.1% ± 8.89%

0.00003 83.5% ± 6.52% 77.0% ± 13.48%

0.00001 85.3% ± 5.86% 81.0% ± 12.89%
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Abstract: sEMG-based gesture recognition is useful for human–computer interactions, especially for
technology supporting rehabilitation training and the control of electric prostheses. However, high
variability in the sEMG signals of untrained users degrades the performance of gesture recognition
algorithms. In this study, the hand posture recognition algorithm and radar plot-based visual
feedback training were developed using multichannel sEMG sensors. Ten healthy adults and one
bilateral forearm amputee participated by repeating twelve hand postures ten times. The visual
feedback training was performed for two days and five days in healthy adults and a forearm amputee,
respectively. Artificial neural network classifiers were trained with two types of feature vectors: a
single feature vector and a combination of feature vectors. The classification accuracy of the forearm
amputee increased significantly after three days of hand posture training. These results indicate
that the visual feedback training efficiently improved the performance of sEMG-based hand posture
recognition by reducing variability in the sEMG signal. Furthermore, a bilateral forearm amputee
was able to participate in the rehabilitation training by using a radar plot, and the radar plot-based
visual feedback training would help the amputees to control various electric prostheses.

Keywords: surface electromyography; forearm amputee; hand posture; visual feedback training;
pattern recognition; artificial neural network

1. Introduction

Surface electromyography (sEMG) records the electrical biosignals generated by the
action potentials that occur during the contraction of muscle fibers [1]. Various information
in sEMG signals has been used to estimate and diagnose a user’s condition or recognize a
user’s motion and intention [2]. In particular, sEMG-based gesture recognition was sug-
gested to be a promising technology for human–computer interactions (HCIs) [3]. Indeed,
sEMG-based gesture recognition technology has already been applied to both healthy
adults and various patients for rehabilitation training and control of electric prostheses [4].

Electric prostheses have been developed to improve patients’ quality of life following
a limb amputation with the importance of their control [5]. An sEMG-based control system
is the most direct protocol for controlling electric prostheses, and there exist two different
types: non-pattern recognition algorithms and pattern recognition algorithms [6,7]. Non-
pattern recognition algorithms using the magnitude of the sEMG signal and threshold
values have the advantages of ease of use and fast response time, but they work for only a
few hand gestures. As the number of recognized gestures for a non-pattern recognition
algorithm increases, it becomes increasingly slow and difficult to use due to its complexity
and the multiple stages involved in muscle contractions [8]. Therefore, many previous stud-
ies have developed pattern recognition algorithms to classify various gestures. However, it
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has been reported that the muscles of the amputees were lost or weakened, depending on
the surgery and the period of amputation [9]. The differences in the amputees’ muscles
increase the variability in sEMG signals, i.e., different signal patterns appear even when
the same gestures are repeated, and that variability in sEMG signals critically decreases the
classification performance [10]. These results indicate that user training is as important as
optimizing the recognition system.

1.1. Related Work
1.1.1. sEMG-Based Gesture Recognition

Many studies have been performed to recognize hand gestures using multichannel
sEMG sensors. Emayavaramban et al. developed a recognition algorithm for twelve hand
gestures by using five sEMG sensors on the forearm [11]. sEMG signals were measured
in ten healthy adults, and the best classification accuracy (95.1%) appeared with a pattern
net neural network classifier and an autoregressive Burg feature vector. Shi et al. used
two-channel sEMG sensors to measure signals from thirteen healthy adults and develop a
recognition algorithm for four hand gestures to control a bionic hand [12]. MAV and WL
were selected as the feature vectors with the best classification accuracy (93.8%) with the
k-nearest neighbor (k-NN) classifier. However, it was difficult to apply those algorithms
to amputees because the sEMG signals were measured in healthy adults. Adewuyi et al.
developed a hand gesture recognition algorithm by using multichannel sEMG sensors
on sixteen healthy adults and four partial hand amputees [13]. Four classifiers (linear
discriminant analysis [LDA], quadratic discriminant analysis, linear neural network, and
multilayer perceptron artificial neural network [MLPANN]) and five feature sets (time
domain and autoregressive, time domain, sequential forward searching [SFS], separability
index, and all feature vectors) were used to recognize the hand gestures. The healthy adults
showed fewer classification errors than the amputees, and the combination of the MLPANN
classifier and SFS feature vector was the best option for recognizing the hand gestures of
all subjects. Betthauser et al. measured sEMG signals using eight sEMG sensors on eight
healthy adults and two forearm amputees to recognize five hand and wrist gestures [14].
Seven classifiers (LDA, artificial neural network [ANN], regularized LDA, support vector
machine [SVM], non-negative least squares, sparse representation classification [SRC], and
extreme learning machine with adaptive SRC [EASRC]) were trained with three feature sets.
The classification performances of the healthy adults were higher than those of amputees,
and the EASRC classifier showed the fewest classification errors. Most previous studies
suggested that the classifier and feature vectors be optimized using multichannel sEMG
sensors to improve gesture recognition. In addition, the classification performance in the
previous studies was better in healthy adults than in amputees. Variability in the sEMG
signal was increased by muscle loss in amputees, which is a critical factor that decreases the
performance of sEMG-based gesture recognition [10]. For these reasons, rehabilitation and
user training are as important to patients as improvements in the hardware and software
of sEMG-based gesture recognition devices.

1.1.2. Rehabilitation Training for the Amputees

Previous clinical research used two types of rehabilitation training for amputees:
(1) mirror therapy, which trains both the amputated side and the intact side at the same
time; and (2) mental imagery, in which the amputee imagines movements without actually
moving the residual limb [15]. However, neither of those procedures allows the subjects to
check their movements themselves in real time. Few studies have quantitatively examined
the effect of rehabilitation using mirror therapy or mental imagery [16]. In addition, patients
with bilateral amputations cannot participate in rehabilitation with mirror therapy because
they lack an intact side. Powell et al. tested repetitive training with sixteen sEMG sensors
on four amputees to improve the consistency and distinguishability of nine hand and wrist
gestures [17]. The amputees repeated the gestures in a random order by following the
image of a virtual prosthesis on a screen. That study reported that classification accuracy
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for the amputees improved from 77.5% to 94.4% during ten days of training. Rehabilitation
training with a screen could be used for both unilateral and bilateral amputees because only
the amputated side was involved in the rehabilitation. However, that rehabilitation training
was still inefficient, so a way of training that improves the gestures on the amputated side
is still needed.

In this study, sEMG-based ANN classifiers were developed to recognize the hand
postures for the control of myoelectric prostheses. In addition, the radar plot-based visual
feedback training was suggested to improve the performance of hand posture recognition
considering the bilateral forearm amputee. The sEMG signals of healthy adults and a
bilateral forearm amputee were measured by multichannel sEMG sensors. Radar plot-based
visual feedback training, which can be applied to bilateral amputees, was performed by the
healthy adults for two days and by the forearm amputee for five days, respectively. Those
sEMG signals were then used to develop ANN classifiers that could be used with two types
of feature vectors. t-distributed stochastic neighbor embedding (t-SNE) and the silhouette
coefficient (SC) were used to analyze changes in the variability of the sEMG signals during
posture training. In addition, classification accuracy was determined according to the type
of feature vector and the hand postures. The classification accuracies of the healthy adults
and a forearm amputee increased by the visual feedback training and optimized feature
vectors. In particular, the visual feedback training was more effective than the optimization
of the feature vectors to improve the classification performance of the forearm amputee.

2. Materials and Methods

2.1. Participants

Ten healthy adults (HA, seven males and three females, 24.1 ± 1.2 years) and one bi-
lateral forearm amputee (FA, male, 45 years) were recruited to participate in this study. The
healthy adults had no neurological or musculoskeletal disorders. The amputee had no cog-
nitive problems and had lost both his left and right forearms 21 years before participation
in this study. The forearm amputee used a cosmetic prosthesis on the right forearm, which
was shorter than the left side, and an electric prosthesis on the left forearm. At the time of
this study, he had used a three-finger electric prosthesis with two degrees of freedom (DoFs)
for 20 years and a five-finger electric prosthesis with multiple DoFs for 18 months. All
participants were fully informed of the risks associated with the experiments, and they gave
their written consent to participate in this study. The experimental procedures for healthy
adults and a forearm amputee were approved by the Yonsei University Mirae Institutional
Review Board (1041849-202002-BM-018-02) and the Institutional Review Board of the Korea
Orthopedics & Rehabilitation Engineering Center (RERI-IRB-210915-2), respectively.

2.2. Equipment

A commercial sEMG system, Delsys Trigno wireless sEMG system (Delsys Inc., Natick,
MA, USA), was used to measure sEMG signals at a sampling rate of 1926 Hz with the
amplification factor of 909 in the analog mode (Figure 1a) [18]. Baseline hand dynamometers
(Fabrication Enterprises, Inc., White Plains, NY, USA) were used to minimize the effects
of muscle fatigue and the confounding factor of grasp force (Figure 1b) [19]. The bilateral
forearm amputee, who could not use the hand dynamometers, performed the hand postures
with their preferred power, and the radar plot from the sEMG signal was used to monitor
their present power.

The forearm muscles used for sEMG-based hand posture recognition were selected
from previous studies [12,20–24]. Nine sEMG sensors were positioned on the healthy
adults’ muscles: flexor digitorum superficialis (FDS), extensor digitorum (ED), extensor
digitorum minimi (EDM), extensor pollicis (EP), flexor carpi radialis (FCR), flexor carpi
ulnaris (FCU), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), and brachioradi-
alis (BR). Magnetom Skyra MRI (Siemens Healthineers AG, Erlangen, Germany) recording
and 3D reconstruction (Mimics Research 20.0, Materialise NV, Leuven, Belgium) were
performed at Chungnam National University Hospital to analyze the residual muscles of
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the amputee, and eight forearm muscles were selected on the amputee: BR, FCR, ECR, ED,
ECU, flexor digitorum profundus (FDP), FDS, and FCU (Figure 2). The muscle bellies were
found for the right place of the electrodes based on the human anatomy, the amputee’s 3D
reconstruction data, and palpation.

Figure 1. Experimental equipment: (a) multichannel sEMG system, (b) hand dynamometers.

Figure 2. The amputated limb of the forearm amputee: (a) 3D reconstruction data of the forearm
amputee, (b) position of the sEMG sensors on the forearm amputee.

A graphic user interface (GUI) was developed using LabVIEW (National Instruments
Corp., Austin, TX, USA) for real-time monitoring and recording of the sEMG signals. The
GUI was designed with a radar plot (Figure 3), and the radar plot was useful to directly
visualize the patterns of sEMG signals. The participants controlled their muscle contractions
by following the displayed sEMG patterns for each hand posture.

2.3. Experimental Protocol

Twelve hand postures (Figure 4) were suggested in the previous study considering
the hand function and the frequency of use in daily life [25–36]. All participants performed
each hand posture for five seconds in a random order during one session. The sessions
were repeated ten times each training day. The healthy adults used hand dynamometers
to maintain 20% of their maximum voluntary contraction, and the experiments were
performed for two days. On the first day of the experiment (the untrained session), the
participants performed the postures without visual feedback training. On the second day of
the experiment (the trained session), the sEMG signals were measured during the sessions
with the radar plot-based visual feedback training. Participants tried to control the patterns
in the sEMG signals to match those on the radar plot. The forearm amputee participated in
the experiments for five days because they needed more time for hand posture training to
control the pattern of the sEMG signal. For the amputee, the first day of the experiment
was defined as the untrained session, and the other days of the experiment were defined as
trained sessions.
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Figure 3. The radar plots of the forearm amputee on LabVIEW GUI: (a) rest, (b) spread, (c) finger
pointing, (d) scissor sign, (e) V sign, (f) O.K. sign, (g) thumb up (hook), (h) cylindrical grasp,
(i) spherical grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch.

Figure 4. Hand postures for the sEMG-based posture recognition: (a) rest, (b) spread, (c) finger
pointing, (d) scissor sign, (e) V sign, (f) O.K. sign, (g) thumb up (hook), (h) cylindrical grasp,
(i) spherical grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch.

2.4. Feature Vectors and Classifier

sEMG signals were filtered using the fourth-order Butterworth bandpass filter with a
bandwith of 10–500 Hz, and the filtered sEMG signals were used to calculate the feature
vectors. As suggested in a previous study [37], the mean absolute value (MAV) and
Hudgins’ set (MAV, waveform length [WL], zero crossing [ZC], and slope sign change
[SSC]) were selected as the time-domain feature vectors. The previous studies reported that
these feature vectors were useful to provide various information, such as MAV and WL for
amplitude information and ZC and SSC for frequency information in the time domain for
the pattern recognition algorithms [25,37–43]. The threshold values used to calculate the
ZC and SSC feature vectors were selected following the optimization method of a previous
study [21]. Table 1 shows the formulas for the feature vectors.

The ANN classifiers were developed using the Matlab software (Mathworks, Inc.,
Natick, MA, USA). Ten session data of each participant were divided into the training
sessions and the testing sessions. The ANN classifiers were trained and validated using the
automatically partitioned data within the training session data (yellow boxes in Figure 5) in
the Deep Learning Toolbox of Matlab. The recognition performances of the ANN classifiers
were evaluated following the ten-fold cross-testing protocol with the remained session data
(blue boxes in Figure 5). The number of training data ranged from one session (TRN1) to
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nine sessions (TRN9) among the ten session data, and the remaining session data were
used for the testing of the classifier.

Table 1. Formulas for the feature vectors.

N : window size, i : data sample, EMGi: sEMG signal

MAV = 1
N

N
∑

i=1
|EMGi|

ZC =
N−1
∑

i=1
[ f (xi × xi+1) ∩ |xi − xi+1| ≥ threshold]

SSC =
N−1
∑

i=2
[ f [(xi − xi−1)× (xi − xi+1)]]

WL =
N−1
∑

i=1
|EMGi+1 − EMGi| f (x) =

{
1, i f x ≥ threshold
0, otherwise

Threhold value = R × RMSsEMG at rest, R = 0.0:0.5:10.0

Figure 5. Ten-fold cross-testing of the ANN classifiers.

2.5. Performance Evaluation

t-SNE and the SC were used to analyze changes in the sEMG signals according to
the radar plot-based visual feedback training. Most previous studies used a principal
component analysis (PCA) to reduce the dimensions of the data or feature vectors [44–47].
A PCA is an unsupervised linear transformation algorithm that provides new features by
determining the maximum variance of the data, and it can visualize data as a scatterplot [48].
However, a PCA is difficult to apply to nonlinear data processing and is affected by the
scale of data when selecting the maximum variance axis [49]. For these reasons, some
previous studies suggested using t-SNE, which uses Student’s t distribution to compute
the similarity between two points in a low-dimensional space, to solve the problems of the
PCA [50]. t-SNE is effective for nonlinear data processing and shows better visualization
results than a PCA. In the sEMG signals, the number of dimensions was decided by the
number of channels in the sEMG system. Furthermore, sEMG signals depend on the muscle
size and power. Therefore, in this study, the t-SNE function in Matlab software was used
to reduce the dimensions of multichannel sEMG data and to visualize clusters of sEMG
signals. In addition, the SC was calculated to quantify changes in the sEMG signal clusters
according to the visual feedback training.

The SC quantifies data clustering by comparing inter- and intracluster similarity [51].
In this study, the Mahalanobis distance was used to calculate the similarity of a cluster by
considering the relationships within the multivariable data [52]. The calculation of the SC
is as follows:

a(i) =
1

|CI | − 1 ∑j∈CI , j =i d(i, j) ; b(i) = min
J =I

1∣∣CJ
∣∣ ∑j∈CJ

d(i, j) (1)

s(i) =

{ b(i)−a(i)
max{a(i), b(i)} , i f |CI | > 1

0, i f |CI | = 1
(2)
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SC = max
1≤J≤K

š(J) (3)

where a(i) is the average distance between data points within a cluster (intracluster similar-
ity). CI is the number of sample data points in the Ith cluster, and d(i, j) was the distance
between the ith data point and the jth data point. b(i) was the average distance between
cluster CI and cluster CJ and indicates intercluster similarity. s(i) was the Silhouette value
for the specific data in a cluster, and š(J) was the average Silhouette value for the Jth cluster.
The SC was defined as the maximum Silhouette value in each cluster. A high SC indicates
good clustering, with high intracluster similarity and low intercluster similarity, and the
SC range is from −1 to 1.

The performance of sEMG-based hand posture recognition in healthy adults and
a forearm amputee was evaluated using classification accuracy and confusion matrixes.
Significant differences (p < 0.05) between the classification performance results were sta-
tistically analyzed using the Kruskal–Wallis H test and pairwise comparison in IBM SPSS
Statistics (IBM, Corp., Armonk, NY, USA).

3. Results

3.1. t-SNE and SC with Visual Feedback Training

In this study, the effects of radar plot-based visual feedback training on variability in
the sEMG signal were visually analyzed using t-SNE and quantified using the SC.

The t-SNE results show that the clusters of both the healthy adults and the forearm
amputee were improved by the visual feedback training (Figure 6, Figure 7 and Figures
S1–S9). In particular, the sEMG signals of the forearm amputee were well-clustered after
Day 3, compared with those from Days 1 and 2.

Figure 6. t-SNE visualization of variability in the sEMG signals of a healthy adult (subject 1): (a) Day
1, (b) Day 2.

The SCs of all participants increased with the visual feedback training, and these
results correlate well with the t-SNE visualizations (Figure 8). Most of the healthy adults
had SCs higher than zero before the visual feedback training (Day 1: 0.000021 ± 0.000115),
and those SCs were improved by the hand posture training (Day 2: 0.0001 ± 0.000159). In
the forearm amputee, the SCs were higher than zero after Day 3 (Day 1: −0.000198, Day 2:
−0.000033, Day 3: 0.000004, Day 4: 0.000018, Day 5: 0.000010).
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Figure 7. t-SNE visualization of variability in the forearm amputee’s sEMG signals: (a–e) Day
1–Day 5.
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Figure 8. SC quantification of variability in the sEMG signals: (a) healthy adults, (b) forearm amputee.

3.2. Classification Accuracy

Tables 2 and 3 show the classification accuracy with MAV only and Hudgins’ feature
vector set. The classification accuracies of both the healthy adults and the forearm amputee
improved as the number of training sessions increased. Significant improvements in the
classification performance appeared after six and five training sessions in the healthy adults
and forearm amputee, respectively.

Table 2. Classification accuracy with visual feedback training using MAV only (bold: p < 0.05).

Classification Accuracy (%): Mean (Standard Deviation)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

Healthy
Adults

Day 1 70.6 (7.7) 77.2 (6.9) 80.1 (6.3) 82.0 (6.2) 83.7 (5.7) 85.4 (5.5) 85.9 (6.1) 86.8 (6.3) 87.7 (6.5)

Day 2 75.0 (6.8) 81.7 (6.8) 84.8 (6.8) 86.4 (6.4) 87.6 (6.0) 88.4 (5.9) 89.1 (5.7) 89.9 (5.4) 90.3 (4.7)

Forearm
Amputee

Day 1 28.1 (4.3) 30.4 (4.6) 31.4 (3.0) 30.8 (2.1) 31.8 (2.3) 31.3 (2.7) 30.7 (3.7) 31.2 (6.0) 32.8 (5.7)

Day 2 34.5 (4.9) 36.9 (5.0) 40.3 (4.2) 40.3 (2.6) 42.0 (2.1) 43.6 (3.6) 44.5 (4.8) 44.5 (9.1) 48.3 (9.5)

Day 3 45.3 (3.8) 48.6 (4.7) 50.0 (3.9) 49.2 (5.4) 49.4 (4.6) 51.8 (4.8) 54.1 (2.2) 56.4 (3.9) 59.7 (10.6)

Day 4 67.0 (3.1) 70.0 (2.3) 68.3 (3.0) 71.9 (3.4) 72.1 (2.6) 74.0 (3.2) 75.5 (4.2) 78.4 (5.4) 80.7 (11.9)

Day 5 58.5 (5.0) 61.3 (5.5) 61.7 (4.8) 62.2 (6.1) 63.9 (2.9) 65.2 (4.1) 70.3 (3.2) 72.0 (5.4) 76.5 (11.1)

Table 3. Classification accuracy with visual feedback training using Hudgins’ set (bold: p < 0.05).

Classification Accuracy (%): Mean (Standard Deviation)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

Healthy
Adults

Day 1 75.2 (7.1) 81.5 (5.8) 84.4 (4.8) 86.1 (4.8) 87.5 (4.6) 88.9 (4.4) 89.7 (4.4) 90.9 (4.3) 91.2 (4.3)

Day 2 82.5 (6.7) 87.4 (5.7) 89.7 (5.1) 91.2 (4.8) 92.1 (4.6) 92.9 (4.3) 93.5 (4.3) 94.3 (4.0) 95.1 (3.4)

Forearm
Amputee

Day 1 29.4 (4.2) 31.2 (4.5) 32.2 (3.6) 32.2 (2.6) 32.1 (2.4) 32.5 (2.4) 31.2 (3.5) 32.0 (7.2) 30.9 (8.9)

Day 2 36.3 (4.2) 41.0 (4.5) 43.0 (3.5) 45.2 (2.7) 45.5 (1.8) 46.9 (4.7) 47.7 (5.0) 47.3 (7.3) 49.5 (9.0)

Day 3 46.3 (3.9) 50.8 (4.9) 52.7 (3.9) 53.2 (4.1) 55.8 (2.6) 56.5 (3.9) 58.8 (3.9) 60.2 (3.1) 64.3 (9.8)

Day 4 71.0 (4.4) 72.5 (3.0) 72.7 (2.7) 74.1 (3.9) 75.3 (3.1) 75.9 (3.4) 78.2 (4.0) 81.1 (5.7) 85.5 (9.8)

Day 5 64.8 (4.0) 68.2 (3.5) 69.3 (4.2) 70.6 (5.8) 72.6 (6.0) 74.9 (5.3) 77.9 (3.1) 80.1 (5.7) 84.2 (6.7)
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The radar plot-based visual feedback training effectively increased the classification
accuracy of all participants (Figure 9). In the healthy adults, visual feedback training
improved the accuracy of the ANN classifiers from 87.7 ± 6.5% to 91.2 ± 4.3% and from
90.3 ± 4.7% to 95.1 ± 3.4% when using MAV only and Hudgins’ set, respectively. However,
the classification accuracy did not differ significantly between Day 1 and Day 2. For
the forearm amputee, the classification accuracy changed from 32.8 ± 5.7% (Day 1) to
76.5 ± 11.1% (Day 5) with MAV only and from 30.9 ± 8.9% (Day 1) to 84.2 ± 6.7% (Day 5)
with Hudgins’ set. The forearm amputee showed significant improvements in classification
accuracy on Day 3 and Day 4 with MAV only and Hudgins’ set, respectively. In addition,
most of the classification results, excluding Day 1 of the forearm amputee, show that
the classification accuracies with Hudgins’ set were higher than those with MAV only.
However, a significant difference on Day 2 occurred only for the healthy adults. The
classification results with MAV only and Hudgins’ set did not differ significantly for the
forearm amputee.

Figure 9. Classification accuracy according to the feature vectors and visual feedback training
(*: p < 0.05).

3.3. Confusion Matrix

Figures 10 and 11 are the confusion matrixes showing the classification accuracy
for each hand posture in the healthy adults and forearm amputee, respectively. With
MAV only, the healthy adults showed high misclassification rates for cylindrical grasp
vs. spherical grasp (14.5 ± 0.2%) and palmar pinch vs. tip pinch (15.0 ± 0.3%). Those
misclassifications improved when Hudgins’ set was applied (cylindrical grasp vs. spher-
ical grasp: 13.1 ± 1.7%, palmar pinch vs. tip pinch: 10.2 ± 1.8%) and following visual
feedback training (cylindrical grasp vs. spherical grasp: 11.7 ± 0.8%, palmar pinch vs. tip
pinch: 11.7 ± 1.1%). The fewest misclassifications (cylindrical grasp vs. spherical grasp:
6.4 ± 0.9%, palmar pinch vs. tip pinch: 5.7 ± 0.7%) were found when Hudgins’ set and
visual feedback training were used together.

In the forearm amputee, only the hand postures of rest (MAV: 95.1%, Hudgins’ set:
99.8%) and spherical grasp (MAV: 94.1%, Hudgins’ set: 86.0%) were well-recognized with
either feature vector on Day 1, which was the experiment before visual feedback training.
The classification accuracies of each hand posture were improved by the visual feedback
training, and most of the hand postures were recognized with a classification accuracy of
higher than 70.0% on Day 4. In the data from Day 5, the last day of visual feedback training,
MAV only showed many misclassifications of scissor sign vs. tip pinch (32.3 ± 6.2%) and
cylindrical grasp vs. lateral pinch (21.7 ± 1.1%). Those misclassifications remained high
with Hudgins’ set (scissor sign vs. tip pinch: 22.3 ± 2.0%, cylindrical grasp vs. lateral pinch:
11.1 ± 0.8%).
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Figure 10. Confusion matrixes for the healthy adults: (a) Day 1 with MAV only, (b) Day 2 with MAV
only, (c) Day 1 with Hudgins’ set, (d) Day 2 with Hudgins’ set.

Figure 11. Cont.
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Figure 11. Cont.
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Figure 11. Confusion matrixes for the forearm amputee: (a–e) Day 1 to Day 5 with MAV only, (f–j)
Day 1 to Day 5 with Hudgins’ set.

4. Discussion

An electric prosthesis can perform some of the functions of a lost limb by using
electromechanical motors and structures; it is an essential device for improving the quality
of life for amputees [53]. The hand is an especially important body part that is used to
perform many gestures in daily life, so amputees who lose a hand need a multiple DoF
electric hand prosthesis. Many previous studies have reported the development of various
electric hand prostheses with improved motors or newly designed structures [53–57].
However, few studies have designed algorithms to control electric prostheses. Therefore,
despite advances in the hardware of electric prostheses, hand amputees have had access
to only a few functions because the control algorithms have recognized only a few hand
gestures [19].

This study was performed to develop a multichannel sEMG-based gesture recognition
algorithm for twelve hand postures using data from healthy adults and a bilateral forearm
amputee. In addition, it reports the design of a radar plot-based visual feedback training
protocol that was usable by all subjects, even the bilateral amputee, to reduce variability
in the sEMG signals. The visual feedback training effectively improved classification
performance with data from both the healthy adults and the forearm amputee. These
findings could help to efficiently improve sEMG-based gesture recognition for amputee
rehabilitation and the control of electric prostheses.

Various training protocols have been tested for amputee rehabilitation in the previous
studies. However, most of them show low training effects due to a lack of feedback,
and few studies have quantified the effects of rehabilitation [15,16]. Furthermore, most
published rehabilitation training protocols involve comparison with an intact side, which
excludes bilateral amputees. Powell et al. suggested a rehabilitation protocol that uses only
the amputated side with sixteen-channel sEMG sensors and a virtual electric prosthesis
on the screen [17]. After ten days of rehabilitation training, the classification accuracy
for data from the amputees increased from 77.5% to 94.4%, and that performance was
maintained beyond the end of training. However, Powell’s training protocol still lacked
real-time feedback to suggest methods for improving the gestures. Fang et al. used sixteen
sEMG sensors to measure signals for nine hand gestures in twelve healthy adults, and they
analyzed the effects of visual feedback training on sEMG-based gesture recognition [58].
Their training protocols were divided into three types: no feedback, label feedback, and
clustering feedback. No feedback was the only repetition without any feedback option,
and its classification accuracy was 74.3%. Label feedback involved gesture repetition with
the classification results provided as feedback, and it had a classification accuracy of 75.1%.
The clustering feedback used a PCA algorithm to provide the visualized sEMG pattern,
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and it had the highest classification accuracy of 82.6%. These results indicate that visual
feedback that includes real-time changes in the sEMG pattern improved the classification
performance more effectively than the label feedback training. Therefore, in this study,
a radar plot visualizing the sEMG pattern was used in the visual feedback training, and
the effects of that radar plot-based visual feedback training were analyzed in both healthy
adults and a bilateral forearm amputee.

t-SNE was a well-known visualization method with the dimension reduction, and SC
was useful to quantify the clustering of sEMG signals. Zhang et al., measured sEMG signals
in twelve healthy adults by using an armband-type sEMG sensor to recognize five hand
gestures [59]. The feature vectors were calculated with various window sizes in sEMG
signals. The best classification accuracy of 98.7% appeared with the selection of window size
based on the cluster of feature vectors through t-SNE. Those results indicate that dimension
reduction and data visualization through t-SNE were suitable for improving sEMG-based
gesture recognition algorithms. In this study, t-SNE was used to analyze the cluster of
sEMG signals in visualizations with dimension reduction. The visualized clusters of each
sEMG signal correlated well with the classification accuracies, which were themselves
improved by the visual feedback training. Likewise, the SC quantitatively showed that the
sEMG signals of healthy adults and the forearm amputee were well clustered by the visual
feedback training. The sEMG signals analyzed by t-SNE and the SC in this study seem to
have lower clustering than reported in previous studies because of the characteristics of
the muscles and sEMG sensors considered here. The sEMG signals visualized by t-SNE
showed dispersed clusters even after the visual feedback training, and the SCs were only
slightly higher than zero. These results were caused by the cocontractions of various
muscles required by the hand gestures used in this study, such as agonist muscles for the
main activity, antagonist muscles for the balance of tension with resistance, and synergist
muscles to assist in the activity [60]. Because the movements required complex muscle
activation, sEMG signals of all the muscles were measured during the movements, which
caused dispersed clusters of sEMG signals to appear. In addition, the crosstalk among
the sEMG sensors, which indicates that each sEMG sensor also measured signals from
other muscles through the skin, also increased complexity and variability in the sEMG
signals [61]. Nevertheless, the improved results in the t-SNE and SCs following the visual
feedback training show that the training effectively reduced variability in the sEMG signals
and improved the data clustering.

The previous studies measured the amputee’s sEMG signals to practically improve an
sEMG-based gesture recognition algorithm for the control of myoelectric prostheses. Benatti
et al., used four-channel sEMG sensors and an SVM classifier to develop a recognition
algorithm with four hand gestures for the control of multijoint prostheses [62]. They
reported a classification accuracy of 89.1% for four amputees. Ahmadizadeh et al., used
five force-sensitive resistor (FSR) sensors and two sEMG sensors to control a commercially
available bebionic hand (Ottobock SE & Co. KGaA, Duderstadt, Germany) [63]. Their
gesture recognition algorithms were developed based on k-NN, SVM, and LDA, and an
amputee participated in the training and testing of each one. The classification accuracies
were reported as 75.2%, 78.5%, and 81.6% for ten, six, and three hand gestures, respectively.
Most previous studies that enrolled amputees reported low classification accuracy when
recognizing various hand gestures, and they improved classification accuracy by applying
fewer hand gestures to the recognition system. However, the recognition of four or fewer
hand gestures significantly limits the control of a multijoint prosthesis, and non-pattern
recognition algorithms are more efficient when the number of hand gestures is small.
In this study, sEMG signals from forearm muscles were measured using nine and eight
sEMG sensors on the healthy adults and forearm amputee, respectively. ANN classifiers
were then developed to recognize twelve hand postures by using two types of feature
vectors, MAV only and Hudgins’ set. The healthy adults showed classification accuracies
of 87.7% with MAV only and 90.3% with Hudgins’ set. The classification accuracies for
the forearm amputee were 32.8% with MAV only and 30.9% with Hudgins’ set. Thus,
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the optimized feature vectors (Hudgins’ set in this study) improved the classification
performance in healthy adults, which agrees with the results of previous studies [11–14,19].
However, the classification accuracies for the forearm amputee decreased when using the
optimized feature vectors because of high variability and low consistency in the sEMG
signals. Those problems were solved by the radar plot-based visual feedback training.
After the visual feedback training, the healthy adults showed classification accuracies of
91.2% with MAV only and 95.1% with Hudgins’ set, and the forearm amputee showed
classification accuracies of 76.5% with MAV only and 84.2% with Hudgins’ set. Thus,
the radar plot-based visual feedback training successfully improved both classification
accuracy and the effect of the optimized feature vectors by reducing variability in the sEMG
signals. For these reasons, reducing variability in the sEMG signals was more important
for the amputee than the advanced hardware and software in the sEMG-based gesture
recognition system.

The classification accuracies for each hand posture are shown as confusion matrixes
in this paper. Misclassifications appeared mainly for cylindrical grasp vs. spherical grasp
and palmar pinch vs. tip pinch, which had misclassification rates of 14.5% and 15.0%,
respectively. Those misclassifications occurred because those gestures are similar and
require cocontractions of the same muscles. We reported similar results in our previous
study of armband-type sEMG sensors [25]. Some of the misclassifications in our previous
studies, which appeared in palmar pinch vs. lateral pinch, finger pointing vs. scissor sign,
and thumb up (hook) vs. scissor sign, did not occur in this study because we minimized
the effects of crosstalk in the sEMG system by positioning the sEMG sensors on specific
muscles. In addition, misclassification of the movements of healthy adults was improved
by the optimized feature vectors (Hudgins’ set) and visual feedback training, with the mis-
classification rates after applying both Hudgins’ set and visual feedback training reduced
to 6.4% and 5.7% for cylindrical grasp vs. spherical grasp and palmar pinch vs. tip pinch,
respectively. In the forearm amputee, only the hand postures of rest and spherical grasp
were well-recognized, with classification accuracies of 95.1% and 94.1%, respectively. The
radar plot-based visual feedback training improved the classification accuracies of most
hand postures to be higher than 70.0%. However, misclassifications persisted for scissor
sign vs. tip pinch and cylindrical grasp vs. lateral pinch, which had misclassification rates
of 32.3% and 21.7%, respectively, even after five days of hand posture training. In the
healthy adults, misclassifications appeared between similar gestures, whereas the forearm
amputee showed misclassifications between dissimilar gestures because of muscle loss.
The forearm amputee had lost his extensor digitorum minimi and extensor pollicis muscles
on the amputated side. In particular, the loss of the extensor pollicis, which contracts to
move the thumb, caused information loss in the sEMG patterns that decreased classification
accuracy. Misclassifications for the forearm amputee remained high, even when the feature
vectors were optimized—22.3% in scissor sign vs. tip pinch and 11.1% in cylindrical grasp
vs. lateral pinch. These results indicate that the optimized feature vectors effectively rein-
forced the consistency of the sEMG pattern in healthy adults, but they were not effective for
the forearm amputee because of information loss in the sEMG patterns. Therefore, training
for users, such as visual feedback training, would improve the classification performance
for amputees more effectively than optimizing classifiers or feature vectors.

Many previous studies have suggested optimized classifiers and feature vectors and
advanced hardware to improve the performance of sEMG-based gesture recognition. How-
ever, other optimization is required to successfully increase the number of recognized
gestures or change users. In this study, the classification performance was efficiently im-
proved by reducing variability in the sEMG signals through visual feedback training. Our
method will not only reduce the time and cost of system optimization but also improve the
user accessibility of future systems.

This study has three limitations. The first is that only one forearm amputee participated
in the experiment. Amputees have larger individual differences in their sEMG patterns
than healthy adults because of variations in the size of their residual limbs and periods
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of amputation. Specifically, misclassifications will differ for each amputee depending on
which muscles have been lost. The second limitation is that the period for the hand posture
training was shorter than the rehabilitation periods reported in previous studies [15,16].
Typically, the amputee rehabilitation programs lasted for several months in previous
clinical research, whereas the visual feedback training in this study lasted for only five days.
Our visual feedback training was useful to improve the classification performance of the
bilateral forearm amputee dramatically within a short period. However, it is also important
to analyze whether the number of recognizable gestures could be increased by reinforcing
muscles through continuous posture training and whether the improved classification
performance would be maintained after the end of training. The third limitation is the
number of sEMG sensors used to recognize hand postures. A small number of sEMG
sensors is more efficient in rehabilitation protocols and the control of electric prostheses.
Specifically, the eight-channel sEMG sensors used in this study and their positions would
be difficult to apply to an electric prosthesis because of the size of the socket on the
amputated limb.

5. Conclusions

An sEMG-based hand posture recognition algorithm and radar plot-based visual feed-
back training were developed for the control of myoelectric prostheses and the amputee’s
rehabilitation in this paper. The classification accuracies for the healthy adults and a fore-
arm amputee were improved by the visual feedback training and optimized feature vectors.
The visual feedback training improved the classification performance of the healthy adults
and a forearm amputee by 2.6% and 43.7%, respectively. The optimization of feature vectors
(Hudgins’ set) increased the classification accuracy by 4.8% more in trained healthy adults
and 7.7% more in a trained forearm amputee, respectively. t-SNE and the SC both showed
that the visual feedback training reduced variability in the sEMG signals in both healthy
adults and the forearm amputee. The radar plot-based visual feedback training was very
effective to improve the classification performance of the bilateral forearm amputee by the
real-time monitoring of activation patterns of sEMG in the residual limb.

These findings could be used to improve the performance of sEMG-based hand posture
recognition, not only in rehabilitation and the control of electric prostheses for amputees,
but also in HCI systems for healthy adults. In future work, the measurement of sEMG
signals and visual feedback training will be performed with various forearm amputees,
and the number and positions of the sEMG sensors will be analyzed to develop an efficient
sEMG-based hand posture recognition algorithm.
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Abstract: Cerebral palsy, the most common childhood neuromotor disorder, is often diagnosed
through visual assessment of general movements (GM) in infancy. This skill requires extensive
training and is thus difficult to implement on a large scale. Automated analysis of GM performed
using low-cost instrumentation in the home may be used to estimate quantitative metrics predictive of
movement disorders. This study explored if infants’ GM may be successfully evaluated in a familiar
environment by processing the 3D trajectories of points of interest (PoI) obtained from recordings of
a single commercial RGB-D sensor. The RGB videos were processed using an open-source markerless
motion tracking method which allowed the estimation of the 2D trajectories of the selected PoI and
a purposely developed method which allowed the reconstruction of their 3D trajectories making
use of the data recorded with the depth sensor. Eight infants’ GM were recorded in the home at 3,
4, and 5 months of age. Eight GM metrics proposed in the literature in addition to a novel metric
were estimated from the PoI trajectories at each timepoint. A pediatric neurologist and physiatrist
provided an overall clinical evaluation from infants’ video. Subsequently, a comparison between
metrics and clinical evaluation was performed. The results demonstrated that GM metrics may be
meaningfully estimated and potentially used for early identification of movement disorders.

Keywords: markerless; RGB-D; general movements; infant movement analysis; movement disorders

1. Introduction

Cerebral palsy (CP) is the clinical description given to a constellation of neuromotor
impairments stemming from perinatal brain injuries such as periventricular leukomalacia,
intracerebral hemorrhage, infection, and infant stroke [1]. A systematic review and meta-
analysis [2] estimated the worldwide prevalence of CP at 2.11 births per 1000. Subsequent
studies of various populations in Africa [3] Asia [4], and North America [5] suggest that
the prevalence of CP is on the rise, at a rate of more than three per 1000, a phenomenon
which may be due to the increasing likelihood of survival of early, preterm infants [6].
The average age for diagnosis of CP is 12–24 months in high-income countries and as late
as five years in less well-resourced countries [7]. There are many reasons for diagnostic
delay: the lack of definitive biomarkers for CP and definitive signs on traditional clinical
examination, reluctance to communicate what might be a false positive to parents and
triggering grief, uncertainty, and stigma, as well as the absence of curative treatments [8].
Arguably, the greatest boon to early identification of infants with CP has been the valida-
tion and dissemination of the general movement assessment, GMA. This instrument came
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into being as the understanding of the significance of infants’ spontaneous movements
increased during the latter decades of the 20th century [9,10]. Two patterns in particular,
predominantly cramped-synchronized movements and the absence of fidgety movements
at three to five months of age reliably predict a later finding of CP [11]. Despite the power
of the GMA in early identification, its key mechanism of gestalt pattern recognition (from
video) requires a significant investment in assessor training and validation [12], making
the GMA challenging to implement broadly across clinical practices. Early intervention
depends on early identification, which suggests the need for a widely disseminated screen-
ing process, which is not found in the current approach to delivering CP care [8]. Families
have been identified as the cornerstone of early intervention [13] and exploration of a
more integral role for families in neurodevelopmental monitoring and therapy may result
in earlier detection of developmental delays as well as earlier application of appropriate
therapies. Engagement of families of infants with CP whose early signs of impairment are
subtle may be particularly helpful given that these infants have been shown to be at greater
risk for not receiving early diagnosis and intervention than are more profoundly affected
infants [14]. Computationally assisted screening procedures likewise suggest a way to
manage the increased clinical workflow that would result from broader application of
neuromotor assessment among infants. Marker-based, multi-camera, 3D analysis of infant
movement has been used to detect both upper [15] and lower extremity movements [16]
correlated with GMA assessment of CP. Given that marker-based systems typically require
multiple cameras and a laboratory setting; an accurate and reliable markerless computer
vision approach that can be operationalized in either the home or clinic setting may make
screening more widely accessible. Markerless computer vision technology further preserves
the non-intrusive character of the GMA, leveraging, as does the GMA itself, video to assess
an infant’s movements unhampered by markers or other sensing devices [12].

Computer vision techniques to automate the analysis of infant movements captured
on 2D video have been under exploration for over a decade [17,18]. 3D recordings, however,
may provide added value through higher spatial resolution, depth information, and higher
accuracy and reliability; however, exploration has been limited by high technology cost
and computational overhead [19]. Markerless computer vision systems have the ability to
implement a kinematic model [20,21] and have been presented as a promising alternative
to marker-based systems [22].

Avoiding markers may be particularly appropriate in the case of infants where they
may be poorly tolerated and, as a result, introduce movement patterns that are not part of
the infant’s typical GM repertoire [12].

Some markerless systems have employed a multi-camera approach [23] but a more
accessible and practical solution is to use a single camera, which enhances portability and
makes it possible to carry out assessment in more confined spaces [24] such as the home or
clinic. Use of a commercial RGB-D sensor system that integrates an RGB camera with a
depth sensor in the same hardware is a promising approach.

Such an integrated system promises to help fill the current gap in infant movement
assessment by providing a low-cost, compact platform that can be implemented repeatedly
and longitudinally in the infant’s naturalistic environment, where movement repertoires
are most likely to characterize the actual behaviors of the infant [19].

RGB-D sensors have been used in upper limb rehabilitation for adult patients post-
stroke, as well as for analyzing balance recovery [25]. They have also been used in adult
Parkinson’s disease patients to evaluate upper limb tasks [26], gait, and postural stability [27,28].

The current study aimed at recording infants’ upper body movements with a single,
commercial RGB-D sensor; at tracking the 2D trajectories of selected points of interest (PoI)
leveraging DeepLabCut [29], a well-established, open-source deep learning algorithm for
pose estimation, i.e., generating 2D coordinates for tracked PoI; at obtaining the 3D PoI
trajectories by applying a newly developed method; and finally at extracting GM metrics
from the PoI 3D trajectories. This study proposes a novel method for assessing infants’ GM
that features a simplified instrumental setup, suitable for home (or clinic) use.
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This article presents in detail first the characteristics of the subjects involved and the
experimental setup utilized, then how data were processed distinguishing what was already
available from what was newly developed, and finally how GM metrics were obtained
from 3D PoI trajectories. In presenting the results obtained, the clinical evaluation of two
pediatric physicians with expertise in neurology and physiatry were taken into account.

2. Materials and Methods

The parents of eight infants recruited from the community volunteered to perform
video recordings of their babies at their home. Infants, sitting in a baby seat covered with
a green cloth to facilitate background exclusion during identification of infant PoI, were
positioned on the floor in front of an RGB camera with an integrated depth sensor. The
children’s natural movements were recorded for a target duration of three minutes at
three different timepoints (3, 4, and 5 months from birth).

Infants used the same, washable seat throughout testing across different timepoints for
consistency. Light conditions and interactions with humans were controlled to the degree
possible in a home environment replicating the most natural conditions and guaranteeing
the simplicity of the protocol.

Two expert physicians analyzed the recorded videos at each timepoint and were asked
to report if they observed any cause for concern in the development of the infants.

The camera used for the recordings was a commercial RGB-D sensor (Intel RealSense D435,
Intel, Santa Clara, CA, USA, combining a pre-calibrated RGB camera with 1280 × 720 native
resolution and frame rate of ∼30 fps with a depth sensor generating depth-coded images
with 640 × 480 native resolution and frame rate of ∼30 fps). Each pixel of the depth image
had an intensity proportional to the distance of the surfaces in the image from the camera.
Depth images were generated by the stereo vision of two infrared sensors mounted on the
device with the left sensor used as point of view. If a region is seen only by the left sensor,
the resulting depth image in that region remains black (“black area”). RGB and depth
images were pre-calibrated; however, a residual misalignment between the two remained.

The markerless motion tracking software used in this study was DeepLabCut (Swiss
Federal Institute of Technology, Lausanne, Switzerland) [29], an open-source toolkit for
pose estimation in which a training set of images is manually labeled and returns the
x, y coordinates of the tracked points along with a confidence level, varying from 0 (lowest
confidence) to 1 (maximum confidence). DeepLabCut provides a framework for supervised,
deep learning to tune an existing, high-performance convolutional neural network (ResNet,
Microsoft Research, Redmond, WA, USA) to the features of a specialized dataset to produce
a high level of recognition accuracy.

A sequence of steps was implemented to reconstruct the time series of the 3D coordi-
nates of the selected points from the recorded RGB-D videos and to extract the associated
GM metrics (Figure 1).

All blocks are explained in detail in the following sections.
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Figure 1. Block diagram of the proposed markerless-based method.

2.1. RGB and Depth Images Acquisition and Time Alignment Refinement

The images acquired with the RGB camera and the depth sensor required refinement
of the time alignment with respect to that obtained using the manufacturer’s proprietary
software, since neither frame rate is exactly constant. The timestamps provided by the
acquisition software were used for this purpose. Three alignment scenarios were, each of
them requiring a different countermeasure:

1. The timestamp of an RGB image was closer to one or more RGB image timestamps
than the closest depth image timestamp. Countermeasure: a gap of the proper number
of frames was inserted in the sequence of depth frames;

2. The timestamp of a depth image was closer to one or more depth image timestamps
than the closest RGB image timestamp. Countermeasure: a gap of the proper number
of frames is inserted in the sequence of RGB frames;

3. The difference between the RGB and depth image timestamp was less than half the
duration of the nominal sampling interval (<17 ms). The two frames were considered
time aligned.

All gaps generated were then filled by applying a cubic spline interpolation.

2.2. 2D Tracking Algorithm

RGB images were converted into video files using ImageJ (National Institute of Health,
Bethesda, MD, USA) [30] and fed to the DeepLabCut (Swiss Federal Institute of Technology,
Lausanne, Switzerland) image processing tool. The tracking software was trained to
identify six PoIs on the infant’s upper body: left and right shoulders (LS and RS), elbows
(LE and RE), and wrists (LW and RW). All PoIs were manually labeled on 10% of the video
frames (identified by DeepLabCut using a k-means algorithm that selected frames based
on pixel characteristic variability) to create a training set.

After the network was trained and validated, DeepLabCut provided the PoI positions
in all RGB frames, together with their confidence levels. When a PoI was occluded, its
position was provided with a low confidence level. A recognition network was trained
individually for each infant video to achieve the greatest possible accuracy prior to the
association of RGB and depth coordinates of PoI.
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2.3. Depth Reconstruction and 3D Coordinates Estimation

The 3D position of PoIs tracked in the RGB images was obtained by developing a
method which exploits the depth sensor recordings. The location in the depth image
corresponding to that of a tracked PoI in the concurrent RGB image was determined after
addressing the three possible causes of incorrect or undefined PoI 3D positions:

1. the RGB location of a tracked PoI falling over the “black area” in the corresponding
depth image, therefore lacking depth information (Figure 2a);

2. PoI occlusions corrupting the estimation of PoI 3D positions. Since the tracking
algorithm determines PoI locations exclusively from RGB information, the estimated
location of a PoI could fall over a body segment covering the PoI in the RGB image
(as when the head covers a shoulder). In such cases the estimate of the relevant
depth coordinate would be affected by an error equal to the distance, along the depth
direction, between the surfaces of the two body parts. To compensate for this error,
the prediction confidence level values provided by the tracking software were used.
The depth values obtained for frames with a confidence level lower than 0.6 were not
considered (Figure 2b);

3. a residual spatial misalignment between RGB and depth images causing errors in the
estimation of the tracked PoI depth coordinate. Such a misalignment is responsible
for errors in estimating depth coordinates when a tracked PoI is near a substantial
depth discontinuity (Figure 2c). To compensate for the consequences of this error, the
following procedure was implemented: the first derivative of the PoI depth coordinate
was calculated; when its value was higher than a threshold value set based on the
physical limits of the subject motion speed, the relevant depth value was removed.

All resulting depth coordinate gaps were then filled by applying a cubic spline interpolation.

Figure 2. Issues causing undefined 3D PoI positions: (a) RS falling on the “black area”, (b) occlusion
of the LS from the head, and (c) residual spatial misalignment between RGB and depth images.
Subjects are made unidentifiable by using white patches. The coloured circles represent PoIs.

Finally, the identification of PoIs in the RGB images is conditioned by the way the PoI
area is seen by the camera. Depending on the RGB frame, a single PoI may be identified in
different areas of the infant’s body surface (Figure 3).
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Figure 3. (a) RE is identified in the middle between epicondyles and (b) RE is positioned on the
medial epicondyle. Subjects are made unidentifiable by using white patches. The coloured circles
represent PoIs.

The performance of the markerless method described above was evaluated both on a
physical model [31] as well as on real infants [32].

2.4. Kinematic Parameters and Metrics Estimation

From PoI 3D trajectories, the following metrics for quantifying GMs were estimated [16]:

• area in which the trajectories of the wrists differed from the moving average for the
same trajectories, normalized with respect to the length of the moving average window
(two seconds);

• area in which the trajectories of the wrists were outside of the standard deviation of the
moving average for the same trajectories, normalized with respect to the samples in
which the trajectories were outside the standard deviation (no information regarding
the normalization was provided in the reference work);

• periodicity in the wrist trajectories;
• area in which the speed profiles of the wrists differed from the moving average for the

velocity profiles, normalized with respect to the length of the moving average window
(2 s);

• area in which the speed profiles of the wrists were outside of the standard deviation
of the moving average for the velocity profiles, normalized with respect to the length
of the moving average window (2 s);

• periodicity in the wrist velocities;
• the skewness of the velocities of the wrists;
• the cross-correlation of accelerations between left and right wrists.

In addition, we estimated the range of motion (ROM) of the elbow angle (EA), defined
as the angle between the forearm segment and the upper arm segment.

To limit the influence of extended intervals of lack of upper limb movements to
the estimated parameters described above, bouts of activity were introduced. The time
intervals during which the infants’ wrists were moving were extracted from the rest of the
acquisition. Bouts were defined as intervals of time characterized by wrist speed higher
than a fixed threshold (5% of the wrist maximum velocity).

The blocks A, C, and D of Figure 1 were implemented in MATLAB R2021b (The
MathWorks Inc., Natick, MA, USA).

3. Results

The two expert physicians involved in the study evaluated the RGB videos of the
infants at 3, 4, and 5 months from birth to identify any features raising concern that an
infant might not be typically developing (TD). Not all videos were commented on, but
an overall evaluation of each infant was provided. The two physicians agreed that four
infants (S1, S5, S7, and S8) appeared to be TD, and that one infant (S2) did show signs
of possible atypical development. The physicians did not agree on the evaluation of the
remaining three infants (S3, S4, and S6). Table 1 provides a complete description of the
evaluations. The values of the nine GM metrics estimated from the upper body 3D PoI
kinematics obtained by applying the proposed markerless method are reported in Figure 4
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for each infant at each timepoint for left and right sides, both separately and together. To
link the clinical evaluation to the metrics extracted, the range defined by the values found
for those infants not suggesting atypical development was grayed in each plot.

Table 1. Report of the evaluation of the RGB videos performed by two expert physicians (A and B);
subjects not suggesting atypical development are grayed.

Sub# Clinician 3 Months 4 Months 5 Months

Overall Evaluation
No: Nothing Here Suggests the

Infant Is Not Developing Typically
Yes: I Did Observe Some Features

that Raise Concern

A - - - No
S1

B lots of midline gaze midline/R gaze but
toddler on R No

S2
A - -

Slow upper
limb movements;

no hands to mouth
and midline;
opens hands;

thumbs frequently
adducted

Yes

B Yes

S3
A - - - No

B Yes

S4

A - - - No

B

decreased fidgety
movements;

subtle R hand preference?
more fidgety movements

on R

decreased fidgety
movements;

subtle R hand preference?
more fidgety movements

on R

-
Yes

Lots of midline hand clasping and
midline gaze preference at all ages

A - - - No

S5
B - - -

No
Hands at midline;

great gen and fidgety movements

S6

A - - - No

B non social smile;
midline grasp

social smile; L fingers in
mouth 65% of video;

L fingers in mouth entire
video; no clear

fidgety movements
Yes

A - - - No

S7
B

Great visual attention;
great gen and

fidgety movements
- -

No
Grabbing toes; sucking on

fingers; social

A - - - No

S8
B - - -

No
Appears sleepy;

improved visual attention and
social engagement;

good general movements;
fingers or thumb in mouth
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Figure 4. Metrics obtained from wrist trajectories and velocities for each infant at each timepoint
(3, 4, and 5 months). Infants not suggesting atypical development to both physicians are identified
with circles, infants raising the concern of both physicians are identified with triangles, and infants
differently evaluated by the physicians are identified by squares. Infants not suggesting atypical
development define the gray interval at each time point.
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Figures 5 and 6 show the cross-correlation between left and right wrists accelerations
and the range of motion of the elbow angle for each subject at each timepoint (3, 4, and
5 months), respectively.

Figure 5. Cross-correlation between the left and right wrist acceleration for each infant at each
timepoint (3, 4, and 5 months). Infants not suggesting atypical development to both physicians are
identified with circles, infants raising the concern of both physicians are identified with triangles,
and infants differently evaluated by the physicians are identified by squares. Infants not suggesting
atypical development define the gray interval at each time point.

Figure 6. Range of motion of the elbow angle for the left and right side for each infant at each
time point (3, 4, and 5 months). Infants not suggesting atypical development to both physicians are
identified with circles, infants raising the concern of both physicians are identified with triangles,
and infants differently evaluated by the physicians are identified by squares. Infants not suggesting
atypical development define the gray interval at each time point.

Figure 7 shows the mean and standard deviation of the bout durations for each subject
at each timepoint (3, 4, and 5 months) together with the number of bouts and movement
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duration, calculated as percentage of the acquisition time. Infants not suggesting atypical
development (grayed) appeared to move their arms more than the other infants especially
at the 4 and 5 month time points.

 

Figure 7. Mean and standard deviation of bouts duration for each infant at each timepoint (3, 4, and
5 months). The left side is the lighter color while the right side is the darker one. The number of
bouts and the movement duration, calculated as percentage of the acquisition time, are reported in
the table on the left. Subjects not suggesting atypical development are grayed.

Numeric values are reported in Appendix A.
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4. Discussion

The recording and the analysis of an infant’s upper body movements in a familiar
environment has been a difficult and challenging task due to both technological and envi-
ronmental factors. The technology used in previous studies has shown some limitations,
since it is normally developed for and applied to the analysis of adults’ or children’s move-
ments [33]. Markerless methods for the analysis of human motion have opened new possi-
bilities for movement analysis, although initially it was mainly in two dimensions [20,21,34].
The analysis of infants’ movements may benefit substantially from markerless methods
given the problems normally encountered in securely and safely positioning markers on
their small body segments.

The low cost RGB-D cameras currently available in the consumer electronics market
allow extending markerless techniques to 3D movement analysis without increasing the
complexity of the experimental setup, a factor that allows leverage of the technique in
environments outside the lab and promotes repeated measurement over time. The latter
observation is of primary importance when infants’ movements are studied. Sensorimotor
integration occurs rapidly in the first months of life through a process of activity-dependent
neuronal modeling [35]. More frequent, routinized monitoring of infants’ movement in the
convenient and familiar environment of the home increases the likelihood that infants who
display abnormal movement repertoires will be identified promptly and interventions to
prevent loss of neural connections and their specific functions instituted [7].

In this work we applied a markerless method to the RGB images recorded from a
commercial RGB-D camera and used selected upper body PoIs extracted from the RGB
video frames together with the recorded depth information to reconstruct 3D PoI kine-
matics [31] from which both some novel and already published metrics were calculated.
The metrics used in this study were originally proposed to quantify GM [16,36], given the
demonstrated power of GM assessment to predict the development of movement disorders
very early in infancy [11]. Notably, since the key requirement of our approach to infant
screening for neuromotor delay was that measurement be easily carried out in an informal
environment such as the home, we did not attempt to replicate the General Movements
Assessment in our protocol. For example, our infants were videoed in whatever attire their
parents had chosen for the temperature in their homes, they were seated in a standard
infant seat, versus lying supine, and videoed from the front using a commercial camera
tripod versus from overhead requiring a special, suspended camera apparatus. The shift
in infant posture likely caused the trends we calculated for GM parameters to vary from
those reported by [36] for infants from three to five months of age.

Due to the small size of our sample, it was not possible to conduct meaningful statis-
tical analyses. Rather, we describe visualized trends across three-, four-, and five-month
measurement timepoints. Refer to Figure 4 for plots of parameters 1–7, to Figure 5 for a
plot of parameter 8, and to Figure 6 for a plot of range of motion of the elbow angle. Table 2
summarizes the relationship between observed GM patterns and parameters, as well as
the expected fluctuation in parameter values from three to five months of age in both
TD and those later identified with CP. However, it should be noted that large differences
between TD and non-TD infants would not be expected in our sample, as there was no
documented injury that would have classified any of our non-TD infants as at-risk. In most
of the metrics, variability in the data made it difficult to compare to predictions. However,
in two metrics, trends were consistent with literature (described below).
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Table 2. Mapping of observed patterns of general movements at 3–5 months of age to kinematic
parameters. Adapted from ref. [16].

Metrics Movements

# Class Description Aspect
Observed

TD
Characteristics

Measured
TD

Characteristics

Observed
Non-TD

Characteristics

Measured
Non-TD

Characteristics

1 Trajectories

Area where wrist
trajectories differ
from the moving

average of the
same trajectories

Diversity and
Variability

Fluid and
congruent

No significant
change in area Chaotic

Area smaller than
TD, continues to

diminish

2 Trajectories

Area where wrist
trajectories of are
outside the SD of

the moving
average of the

same trajectories

Diversity and
Variability Multi-facetted

Smaller area, less
diversity at
3 months

(Increases after
5 months)

Poor-repertoire,
spastic

Area smaller than
TD, continues to

diminish

3 Trajectories Periodicity in the
wrist trajectories

Unpredictability
and

Complexity
Fidgety Periodicity

decreases with age Poor-repertoire Periodicity greater
than in TD

4 Velocities

Area where the
wrist speed profiles

differs from their
moving average

Diversity and
Variability

Fluid and
congruent

Area does not
change Chaotic Area decreases

5 Velocities

Area where the
wrist speed profiles
are outside the SD

of the moving
average the speed

profiles

Diversity and
Variability Fidgety Variation in

velocity is constant Cramped

Variation in
velocity

continuously
decreases

6 Velocities Periodicity in the
wrist velocities

Equability of
Velocity Fidgety Periodicity does

not change
Cramped or

chaotic
Periodicity does

not change

7 Velocities
Skewness of the

velocities of
the wrists

Velocity
Distribution of
the Movement

Slow, small in
amplitude

Skewness increases
with age Cramped, spastic

Skewness already
increased by

3 months relative
to TD

8 NA

The cross-
correlation of
accelerations

between left and
right wrists

Similarity and
Coordination
of Movement

Similar,
coordinated,
synchronous

Cross-correlation
increases

Dissimilar,
uncoordinated,
asynchronous

Cross-correlation
does not increase

The area where the wrist trajectory differs from the moving average of that same
trajectory is suggested to quantify the diversity and variability of GM with respect to
fluidity and congruence (metric #1). No significant change in the metric is expected from
three to five months of age in TD infants, while those who are not TD are expected to
exhibit smaller areas. Consistent with expectations, at four months, all infants about whom
at least one of the clinicians evaluating videos expressed concern (S2, S3, S4, and S6) had
smaller metric values relative to typical development (S1, S5, S7, and S8). The metric is
expected to continually decrease in non-TD infants during the three-to-five month window.
We did not, however, observe this trend as some infants have large swings in values across
the timepoints.

The cross-correlation of acceleration between left and right wrists (metric #8) also
showed trends consistent with previous work. This metric is associated with the observed
characteristics of similarity and coordination of movement. TD infants may be expected
to display movements that are similar, coordinated, and synchronous in the three-to-five-
month window. Non-TD infants are expected to demonstrate the opposite movement
pattern: dissimilar, uncoordinated, and asynchronous. This metric is expected to increase in
TD infants between three and five months of age and to not increase during that time period
in non-TD children. The metric values were higher at 5 months than 3 months in all infants
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for whom there was no concern (S1, S5, S7, and S8). However in S8, the cross-correlation
at 4 months peaked sharply then regressed at five months but to a point still greater than
the three-month cross-correlation. The cross-correlation measured for S6 (split concern)
decreased monotonically between three and five months. Infants S2 (agreed concern) and
S3 (split concern) virtually flatlined across all time points and logged cross-correlation
metrics near the bottom of the cohort, well below the TD range at 5 months. Infant S4
(split concern) did not follow this pattern of decreasing or flatlined change over time. In
summary, seven of the eight infants followed a pattern consistent with expectations.

We introduced elbow range of motion (Figure 6), a novel exploratory metric. Most
infants’ ROM on the left arm fell within a narrow band changing little from three to
five months. S1 (no concern) displayed very limited range at three months but increased
to resemble the ROM of the cohort generally at four months. S2 (concern) demonstrated
a ROM for the left arm among the highest in the cohort at three and five months but
presented as the lowest at four months. The range of ROM angles was more diverse on
the right side. S1 (no concern) was markedly low at three months and increased at four
and five months, though not as much as had been noted on the left side. S2 (concern) lost
range markedly at five months. A larger sample will be needed to determine how useful
this metric will be for screening of non-TD infants.

Visualization of infants’ movement data suggest that the metrics are not independent.
Environment influences that impact one impact others as well. Based on inspection of
videos, several recommendations can be made for further work in this area. Better control
of environmental factors might decrease variability in the data. While the protocol speci-
fications were to have no one in the infant’s visual field during testing, it was difficult to
enforce this in infants’ homes for all of the videos. In one case, a sibling approached the
infant from the right causing him to lateralize in that direction. In another case, the infant
had one hand in his mouth for a large portion of the video. For infants with this tendency,
multiple capture sessions within the same day might be needed. For younger infants, the
use of a baby seat was not optimal, as sitting posture was not fully developed. In the
protocol, it was decided infants should use the same, washable seat throughout testing
across different time points for consistency, sanitation, and to prevent infants from crawling
away at older ages. Both the seat and infants’ upright position in the seat constrained their
movements to an extent not experienced in the standard GM assessment protocol for which
the quantification metrics we used were developed. Future studies should consider use of
a standardized postural support method for younger seated infants.

In clinical practice, to determine whether an infant is typically developing or not,
clinicians base their judgment on a full range of motor characteristics such as hand opening
and closing and whether the infant brings his/her hands to the mouth. Characteristics
such as these have assessment validity, but lie outside Prechtl et al.’s criteria for which the
eight kinematic parameters proposed by [16,36] and colleagues (and applied in this study)
were developed. Midline gaze, bringing hands to the midline, visual field preference,
visual attention, social smile, and social engagement figure prominently among the criteria
applied by our clinicians in applying their clinical discernment to our infant cohort. It
would increase the power of 3D markerless movement assessment in infants to quantify
observed clinical criteria such as those just enumerated to apply side-by-side with explicitly
GM kinematics.

While evaluating videos, clinicians were also sensitive to the infants’ state. Character-
istics of seeming to be sleepy, distraction from persons inevitably close to the home-based
testing area, and, for infants who had not yet developed trunk control, being slumped
to the side introduced ambiguity into the association of movement criteria with typical
or pathological development. For example, infant S2, whom both clinicians flagged as
exhibiting characteristics that caused concern, was documented as being slumped to the
right at both the 3- and 4-month testing session. Being slumped to the side and concurrent
lack of trunk control reasonably would predispose this infant to move asymmetrically.
Notably, the cross-correlation between the left and right wrist accelerations of infant S2
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were quite low, falling toward the bottom of the typical range at three months as defined
by the range of values calculated for the cohort of infants whom clinicians evaluated as
not of concern. Similarly, infant S6, for whom the highest left/right wrist acceleration
cross-correlation was logged at three months, came in at the bottom of the not-of-concern
cohort at four months but went on to log the lowest cross-correlation at five months of
age. Clinician notes reveal that the infant had his finger in his mouth about 65% of the
time at four months and for almost the entire duration of the video at five months. Clearly,
when the infant’s spontaneous movements are restricted, as in the case of infant S2 who
may not have been positioned so that both arms could move freely and as in the case of
infant S6 whose side was (self-)constrained, the synchroneity, similarity, and coordination
of movement on the left and right sides, summarized by the cross-correlation metric, is not
representative of the infant’s actual movement characteristics. The constraint should be
remediated and, ideally, the test repeated.

5. Conclusions

This work has shown the feasibility of estimating GM metrics with a single low-cost
RGB-D sensor. The simplicity and portability of the proposed markerless protocol allows its
use as a screening tool at home or any familiar environment and further makes it possible
to avoid clinical environments which are artificial from a child’s perspective, and hence
challenging for the assessment of true neurodevelopmental performance.

Compared with previous research, this article aimed to characterize GM without
markers attached to the infants’ skin, which might interfere with infants’ spontaneous
movements and consequentially affect their behavioral state. In addition, this markerless
system provides 3D coordinates of each PoI, and is significantly advantageous over 2D
motion capture when dealing with out of plane rotations and allowing more reliable
characterization of GMs. Thanks to depth information provided by the RGB-D sensor, this
protocol is able to deal with PoI occlusions that occur when using single-camera motion
analysis. Our markerless system was designed especially for a home environment. This
focus could be very beneficial for enhancing screening of neurodevelopmental disorders
particularly for infants and families in rural and remote areas, a population with reduced
health services. Due to the small size of our sample, it was not possible to conduct
meaningful statistical analyses. For this reason, future studies will be devoted to validating
the proposed protocol on a larger number of infants for testing its use in clinical practice.
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Appendix A

Table A1. Relevant values of parameters of “Left side” and “Right side” described in Figure 4
obtained from wrist trajectories and velocities for each infant at each timepoint (3, 4 and 5 months).
“M” is month, “Area 1” is “Area differing from moving average”, “Area 2” is “Area out of standard
deviation of moving average”, “PI” is “Periodicity Index” and “Sk.” is “Skewness”. “Area 1” was
normalized by the length of the moving average window (2 s) while “Area 2” was normalized by
the samples in which the signal was outside the standard deviation. Subjects not suggesting a non-
normal development are grayed.

Left Side Right Side

Trajectory Velocity Trajectory Velocity

Sub M
Area 1
[mm·s]

Area 2
[mm·s]

PI
Area 1
[mm]

Area 2
[mm]

PI Sk.
Area 1
[mm·s]

Area 2
[mm·s]

PI
Area 1
[mm]

Area 2
[mm]

PI Sk.

3 19 2.5 0.024 203 5.6 0.724 15.61 14 2.4 0.048 203 5.6 0.829 4.91

4 137 7.9 0.060 1043 28.8 0.521 5.31 94 5.5 0.049 787 19.7 0.572 5.75S1

5 47 5.0 0.036 500 12.2 0.769 4.77 43 4.7 0.041 439 10.8 0.780 5.41

S2

3 82 10.8 0.021 532 14.6 0.498 11.47 53 5.5 0.033 463 10.1 0.717 5.63

4 59 7.3 0.025 387 11.0 0.584 6.52 38 5.2 0.024 316 8.3 0.709 10.78

5 48 7.6 0.015 355 11.6 0.569 6.63 121 17.3 0.026 736 30.7 0.486 6.89

S3

3 67 8.2 0.021 455 13.4 0.548 5.47 49 7.3 0.012 398 10.8 0.675 3.74

4 43 6.1 0.038 406 10.8 0.749 7.62 25 5.4 0.046 340 8.2 0.922 6.23

5 72 10.8 0.016 577 16.4 0.666 8.50 110 16.9 0.019 808 28.5 0.604 16.87

S4

3 125 12.2 0.039 1401 42.1 0.677 5.94 72 11.5 0.027 742 20.9 0.726 3.19

4 76 8.9 0.016 643 17.8 0.524 4.39 72 9.2 0.013 554 15.5 0.527 3.88

5 81 8.0 0.029 578 17.7 0.526 4.58 92 8.8 0.032 641 20.5 0.508 5.38

3 92 7.5 0.035 641 19.6 0.503 4.69 60 5.4 0.030 365 11.2 0.555 5.57

4 87 9.7 0.018 653 18.9 0.490 4.79 72 9.2 0.022 546 16.5 0.551 3.95S5

5 49 6.5 0.021 377 10.7 0.552 4.86 66 7.5 0.023 475 13.4 0.501 6.07

S6

3 110 9.1 0.024 878 22.1 0.532 5.34 120 12.7 0.028 907 23.5 0.525 4.05

4 58 8.6 0.019 328 10.8 0.463 6.59 40 12.4 0.005 355 11.0 0.565 8.24

5 37 5.2 0.018 329 10.4 0.694 8.26 35 6.1 0.024 360 10.0 0.817 6.81

3 119 12.2 0.023 626 28.4 0.334 6.55 58 5.6 0.021 409 11.8 0.543 3.91

4 135 7.9 0.044 898 23.6 0.444 3.70 125 7.8 0.041 831 22.6 0.489 3.76S7

5 106 8.8 0.038 691 22.8 0.411 7.85 146 13.7 0.028 958 33.5 0.414 4.88

3 72 6.5 0.036 600 16.0 0.597 8.76 83 7.2 0.039 658 18.3 0.615 9.01

4 83 10.2 0.026 631 24.3 0.449 4.95 96 7.7 0.032 735 22.0 0.513 7.09S8

5 59 5.7 0.032 456 14.2 0.538 5.97 75 6.6 0.039 572 17.5 0.554 5.07
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Table A2. Relevant values of parameters of “Left + Right sides” described in Figure 4 obtained from
wrist trajectories and velocities for each infant at each timepoint (3, 4 and 5 months). “M” is month,
“Area 1” is “Area differing from moving average”, “Area 2” is “Area out of standard deviation of
moving average”, “PI” is “Periodicity Index” and “Sk.” is “Skewness”. “Area 1” was normalized
by the length of the moving average window (2 s) while “Area 2” was normalized by the samples
in which the signal was outside the standard deviation. Subjects not suggesting a non- normal
development are grayed.

Left + Right

Trajectory Velocity

Sub M
Area 1
[mm·s]

Area 2
[mm·s]

PI
Area 1
[mm]

Area 2
[mm]

PI Sk.

3 33 4.9 0.072 407 11.3 1.553 20.52

4 230 13.4 0.110 1830 48.5 1.093 11.07S1

5 91 9.6 0.077 938 23.0 1.549 10.19

S2

3 135 16.3 0.053 995 24.7 1.215 17.10

4 97 12.5 0.049 703 19.3 1.293 17.30

5 169 24.9 0.041 1091 42.3 1.055 13.53

S3

3 116 15.5 0.033 853 24.2 1.224 9.21

4 68 11.5 0.084 745 19.0 1.670 13.85

5 182 27.7 0.035 1385 44.9 1.269 25.37

S4

3 197 23.7 0.066 2143 63.0 1.403 9.13

4 148 18.1 0.029 1197 33.3 1.051 8.27

5 173 16.9 0.061 1219 38.1 1.034 9.97

3 152 12.9 0.065 1007 30.8 1.058 10.27

4 160 18.9 0.040 1199 35.4 1.041 8.74S5

5 115 14.0 0.044 852 24.1 1.053 10.94

S6

3 231 21.8 0.052 1784 45.6 1.057 9.39

4 98 21.0 0.024 683 21.8 1.028 14.83

5 72 11.3 0.042 689 20.4 1.511 15.08

3 176 17.8 0.043 1035 40.1 0.878 10.47

4 260 15.6 0.085 1729 46.3 0.933 7.46S7

5 253 22.5 0.066 1649 56.3 0.825 12.73

3 156 13.7 0.075 1259 34.4 1.212 17.77

4 179 17.9 0.058 1365 46.3 0.962 12.04S8

5 134 12.3 0.071 1028 31.7 1.092 11.05
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Table A3. Relevant values of parameters described in Figures 5 and 6 for each infant at each timepoint
(3, 4, and 5 months). Subjects not suggesting.

Sub M
Elbow’s Range of Motion [◦] Cross-Correlation between Left and Right

Wrists AccelerationsLeft Right

3 79 71 0.146

4 176 127 0.114S1

5 156 119 0.211

S2

3 175 179 0.063

4 148 177 0.064

5 179 124 0.077

S3

3 164 174 0.085

4 165 152 0.101

5 158 174 0.078

S4

3 176 166 0.179

4 174 159 0.274

5 163 163 0.223

3 178 140 0.026

4 178 170 0.123S5

5 178 176 0.147

S6

3 177 145 0.210

4 179 178 0.086

5 163 138 0.040

3 179 176 0.084

4 176 179 0.084S7

5 170 174 0.244

3 162 139 0.116

4 160 171 0.412S8

5 167 146 0.206
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Abstract: This paper introduces a new dataset of a surgical knot-tying task, and a multi-modal deep
learning model that achieves comparable performance to expert human raters on this skill assessment
task. Seventy-two surgical trainees and faculty were recruited for the knot-tying task, and were
recorded using video, kinematic, and image data. Three expert human raters conducted the skills
assessment using the Objective Structured Assessment of Technical Skill (OSATS) Global Rating
Scale (GRS). We also designed and developed three deep learning models: a ResNet-based image
model, a ResNet-LSTM kinematic model, and a multi-modal model leveraging the image and time-
series kinematic data. All three models demonstrate performance comparable to the expert human
raters on most GRS domains. The multi-modal model demonstrates the best overall performance,
as measured using the mean squared error (MSE) and intraclass correlation coefficient (ICC). This
work is significant since it demonstrates that multi-modal deep learning has the potential to replicate
human raters on a challenging human-performed knot-tying task. The study demonstrates an
algorithm with state-of-the-art performance in surgical skill assessment. As objective assessment of
technical skill continues to be a growing, but resource-heavy, element of surgical education, this study
is an important step towards automated surgical skill assessment, ultimately leading to reduced
burden on training faculty and institutes.

Keywords: deep learning; surgical skills assessment; machine learning; computer vision; surgical
education; biomedical engineering; multi-modal; human activity recognition

1. Introduction

There has been a gradual evolution in surgical education towards objective assessment
of competence as a requirement for trainee advancement and an increased reliance on
simulation-based training [1]. This paradigm responds to mounting pressures to shorten the
surgical trainee workweek, and improve operating room efficiency and safety at teaching
institutions. However, competency-based medical education (CBME) can increase the
burden on supervising surgical faculty and increase program reliance on the objectivity
and validity of their CBME assessments [2].

Machine learning techniques, along with increased data-collection abilities across a
variety of settings may offer the ability to tackle these challenges by automating some
surgical skills assessments, potentially improving their objectivity and reducing the burden

155



Sensors 2022, 22, 7328

of CBME on training faculty and institutes. Deep learning in particular is well suited
for tackling technical skills assessment due to its robustness to noise and flexibility to
learn an optimal feature set representative of task performance from large, unstructured,
and multi-modal data sources. Further, new innovations allow for the collection of large-
scale multi-modal data in previously unwelcoming environments, such as the operating
room [3].

However, existing work on surgical skills assessment has yet to fully exploit deep
learning networks and large-scale data availability to automate skills assessment. Instead,
previous research relies on classical machine learning algorithms [4], only classify high-level
categories of performance [5], and rely on small datasets [6].

In this study, we investigate a unique multi-modal model to automate surgical skills
assessment across multiple categories and evaluate its performance on a novel dataset.
Specifically, our main contributions are as follows:

• Development of a multi-modal deep learning model that combines data from both
images of the final surgical product and kinematic data of the procedure. We demon-
strate that this model can assess surgical performance with comparable performance
to the expert human raters on several assessment domains. This is significant since
existing approaches are limited in scope and predominately focus on predicting solely
high-level categories.

• Ablation studies comparing the image-based, kinematic-based, and combined multi-
modal networks. We show that the multi-modal network demonstrates the best overall
performance.

• A new dataset of seventy-two surgical trainees and surgeons collected during a
University of Toronto Department of Surgery Prep Camp and Orthopaedics Bootcamp.
This consists of image, video, and kinematic data of the simulated surgical task, as well
as skills assessment evaluations performed by three expert raters. This large dataset
will present new and challenging opportunities for data-driven approaches to surgical
skills assessment and gesture recognition tasks. (The dataset can be downloaded here:
https://osf.io/rg35w/ ).

In the following section we provide a brief synopsis of previous works related to
surgical skills assessment and activity recognition. In Section 2 we describe the details
of our data-collection, processing, and deep learning model development. We present
the experimental results in Section 3, with a discussion of the results, comparisons with
existing studies, and motivations behind the methodologies presented in Section 4. Finally,
we summarize our main findings and discuss the broad impact of this work in Section 5.

Related Work

Successful CBME is dependent on domain-specific assessment and feedback for
trainees, as is currently provided by faculty members. Previous research in automat-
ing surgical skills assessment has shown promising results in effectively assessing global
performance. For example, several recent studies [4,7–9] use machine learning techniques
to classify surgical performance into “novice” or “expert” categories from kinematic time-
series data. Other studies employ standard assessment frameworks, such as the Objective
Structured Assessment of Technical Skills (OSATS) [10], to assess skill on various domains.
However, many of these studies only classify performance in each domain into high-level
categories (beginner, intermediate, advanced) [5,11,12]. Some studies do predict OSATS
scores in a regression framework [11,13], however, the score prediction is only a small part
of their work, and limited performance metrics are presented.

Instead of directly quantifying surgical performance, previous studies also focus on
capturing proxies indicative of surgical performance, such as detecting surgical instru-
ments [14], tracking instruments [15], or identifying events such as incisions [5]. Our
work directly predicts the OSATS scores across five domains in a continuous regression
framework. This is advantageous as it provides specific fine-grained assessment akin to
that performed by a real faculty member, and eliminates ambiguities caused by broader
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discrete categories. Further, we present numerous performance metrics to understand the
model’s performance, including direct comparisons with three expert human raters.

Machine learning algorithms have been applied to surgical skills assessment by previ-
ous studies [4,7,9,12,16]. Classical machine learning, combining engineered features with
learned classifiers, as well as deep learning models have shown promising results for both
skills assessment works [17], as well as human activity recognition tasks (HAR) [18–23].
More recent work has focused on deep learning networks because of their ability to better
exploit rich data sources (e.g., images, videos, motion tracking), which has led to improve-
ments in performance. The deep learning models applied generally use fully convolutional
or convolutional-recurrent networks; leveraging one-dimensional convolutional layers as
feature extractors and recurrent layers to capture temporal dependencies. This investigation
expands upon the convolutional-recurrent networks [18,19] by applying a much deeper
ResNet-18 based architecture, combined with a multi-modal approach. To our knowledge,
no other works have reported leveraging deeper ResNet-LSTM based models to analyze
kinematic data for surgical skills assessment tasks. We discuss this approach in more detail
in Sections 2 and 3.

Further, no existing studies use multi-modality approaches in surgical skills assess-
ment. Multiple data sources (i.e., images of the final product, kinematic data of the proce-
dure) can capture different information necessary for good performance across multiple
domains of surgical skills assessment. Similarly to some image-based approaches [24], we
employ a late-fusion approach. Some HAR studies investigate concatenating extracted
features from different gestures for classical machine learning algorithms, and report that
which features were extracted was more important than the fusion technique [23]. Unlike
the studies in [23,24], we investigate fusing features extracted from disparate modalities
(kinematic time-series + images) and not a single modality (images), and fuse learned
features extracted from the raw data by the neural networks, instead of fusing hand-
crafted features.

Previous investigations applying machine learning to surgical skills assessment have
relied on small custom datasets, or the open-source JIGSAWS dataset [6]. The JIGSAWS
dataset consists of video and kinematic data captured using a DaVinci Robotic system [25]
from eight subjects (four beginner, two intermediate, two expert). These small datasets
have presented a large limitation for data-driven methods such as machine learning.
Many previous studies focus solely on data acquired using robotic systems or virtual
simulators [5,11,17], and not on human-performed surgical tasks. In contrast, the dataset
presented in this work larger and encompasses greater participant skill levels, contain-
ing 360 total samples from 72 participants across ten surgical divisions, with experience
levels ranging from first year residents to staff surgeons. This challenging real-world
dataset will enable new opportunities for research into automated surgical skills assess-
ment. The dataset is described further in Section 2.

2. Materials and Methods

This project sought to develop and validate deep learning models for automated
surgical skill assessment, specifically for the assessment of technical skill for a simulated
knot-tying task. To facilitate this, 72 participants performed a knot-tying task, which were
subsequently rated by human experts. Video and kinematic data of the task was recorded,
as well as a photograph of the final product. In this study, the anonymized video recording
was used for assessment by the human raters; the machine learning models used only
image and kinematic data.

2.1. Surgical Task

Seventy-two surgical trainees and surgeons were recruited for participation in this
study during the 2018 University of Toronto Department of Surgery Prep Camp and
Orthopaedics Bootcamp suturing modules. Participants performed a simulated vessel
ligature task using one-handed knot-tying with 0-silk ties on polypropylene tubing. Each
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participant performed the task five times consecutively, with each performance as a separate
task. No feedback was provided to participants between executions of the task. The overall
goal of this task is to determine if the trainees can correctly tie off, or occlude, the simulated
blood vessel using the silk suture.

2.2. Data Collection

The vessel ligature tasks were recorded using three modalities, which are visualized
in Figure 1:

• High resolution digital photograph of the final product
• Anonymized video recording of the operative field
• 3D kinematic motion tracking of the hands using a Leap Sensor

Figure 1. The trials were recorded using three modalities. The top is an image of the final product,
the middle is a screen capture of the video data with a visualization of the joints tracked by the
Leap sensor. The bottom is an example of the kinematic time series data, representing the temporal
3-dimensional movement of the hand joints during the knot tying task.

2.3. Task Ratings

Three blinded independent raters conducted the technical skills assessment from the
recorded video and photograph of the final product. The raters were senior surgical resi-
dents (PGY4 and above) with expertise in the assessed skill. Performance at the simulated
surgical task was assessed by each rater using the Objective Structured Assessment of
Technical Skill (OSATS) Global Rating Scale (GRS) [10] on the following four domains:

1. Respect for Tissue
2. Time and Motion
3. Quality of Final Product
4. Overall Performance
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Each domain was scored on a 5-point scale (1–5). All raters were oriented to the
OSATS GRS and domain specific anchors using example performances and suggested
ratings. An example of the rating scale used by the human raters can be seen in Table 1.

It was also important to ensure that the dataset was collected from a diverse and
representative set of participants, including diversity in aspects such as surgical divi-
sion, and prior experience level. The plurality of participants were from the division of
orthopaedics, with participants from nine other surgical divisions included. Most partic-
ipants were Post-Graduate Year 1 (PGY1) trainees, with experience levels ranging up to
Fellows and Staff surgeons. A summary of the experience level and surgical division of the
participants can be seen in Figure 2.

Figure 2. Participants came from 10 surgical divisions, with experiences ranging from PGY1 to Fellow.

Table 1. Rating scale used when evaluating surgical skill on the GRS Domains.

Domain Rating Scale

Respect for Tissue
1—Very poor: Frequent or excessive pulling or sawing of tissue
3—Competent: Careful handling of tissue with occasional sawing or pulling
5—Clearly superior: Consistent atraumatic handling of tissue

Time and Motion
1—Very poor: Many unnecessary movements
3—Competent: Efficient time/motion but some unnecessary moves
5—Clearly superior: Clear economy of movement and maximum efficiency

Quality of Final Product
1—Very poor
3—Competent
5—Clearly superior

Overall Performance
1—Very poor
3—Competent
5—Clearly superior

The sequence of tasks was randomized so that the raters were not consecutively
exposed to tasks performed by the same individual. Further, the randomization was seeded
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separately for each rater, providing each rater with a different random order of tasks to
assess. Forty random samples were also selected to be rated a second time by each rater for
test-retest reliability assessment.

2.4. Data Pre-Processing

The three-dimensional position data of each joint in the phalanges from both hands
was extracted from the Leap Motion Sensor’s kinematic data capture. This 120 channel
timeseries data was used as input into the deep learning models. The kinematic models
require a fixed-length input, and the trials were not uniform in length. The Seglearn
library [26] was used to truncate or zero-pad each data sample to a length of 4223 samples,
which represents the 90th percentile of the sample lengths. This means that most samples
were padded instead of truncated, so that as much information as possible was preserved.
With a sampling rate of 110 Hz, this 4223-timestamp sequence is approximately 36 s long.

The Python implementation of OpenCV was used to pre-process the image data.
The images were first temporarily masked to a binary image, isolating the black suture
from the background. A dilating operation was applied to this image to enlarge the knot
center. The OpenCV blob detector was then used to detect the suture knot, and a 512 × 512
bounding box was drawn around the center. The cropped image was then unmasked back
to full RGB color. The kinematic and image data were also normalized between [0,1]. This
is a standard deep learning procedure to speed computation time and avoid local minima
in model optimization.

2.5. Data Augmentation

Although our dataset is not small relative to other relevant datasets, deep learning
almost always benefits from larger quantities of data. Thus, the entire dataset was ran-
domly oversampled to increase the number of training examples. Additionally, the trials
with ratings that were greater or less than one standard deviation from the mean were
further oversampled by a factor of three. By more evenly balancing the score distribution,
the network can better learn to predict these minority classes.

However, increasing the size of the dataset without introducing any variation may
lead to degraded performance, as the network may rely on memorizing specific features of
the training data and fail to generalize to unseen data. Data augmentation may be used
to alter the input instances, thus artificially increasing the variety of training data and the
network’s ability to generalize. To minimize the model overfitting to the training data,
the oversampled data was also augmented prior to input into the networks. The images
were augmented with random 90-degree rotations and reflections about the x- or y-axis,
largely to help mirror the varying knot orientation in the real data. The kinematic data
was augmented based on recommendations in previous literature [27]: random rotations,
reflections, and injection of Gaussian noise.

2.6. Machine Learning Models

We developed and analyzed three deep learning models. The first uses the RGB
image data of the simulated vessel and ligature as input and the Quality rating as output.
The second model uses the hand kinematic data as input and predicted the three other
domains (Respect for Tissue, Time and Motion, and Overall Performance). The final is a
composite model containing both RGB and kinematic modalities and output all four GRS
rating domains. The video data was not used by the model.

The models were trained in a supervised regression learning framework, with the
mean scores of the three expert raters as the ground truth. We trained the models to
minimize a mean-squared error loss, however the number of output targets varied between
the models since some predicted only one OSATS domain and others multiple.

L =
1
N

N

∑
i=1

K

∑
j=1
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i − ŷk

j ) (1)
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Here, N is the number of samples in the training batch, and K is the number of output
targets. For example, the image-only model has a K = 1 since it predicts only the Quality
score, whereas the multi-modal has K = 4 since all four domains are predicted.

Deep residual models (ResNets) are particularly powerful in training deeper neural
networks with increased capacity to learn and model complicated relationships, achieving
state-of-the-art performance on many image recognition tasks [28]. These improvements
largely stem from the use of “skip connections”, or residual blocks, between layers which
allow for deeper networks without suffering from vanishing gradient problems. This ability
to effectively train very deep networks is the major advantage of the ResNet architecture.
Although ResNet’s are often employed in image related tasks, they can also be implemented
using one-dimensional convolutions for time-series data.

The image model is depicted in the bottom branch of Figure 3, and consists of a ResNet-
50 backbone with pre-trained weights from the ImageNet dataset. Prior to input, the images
were resampled to 1024 × 1024, further cropped 30% tighter, and normalized based on the
ImageNet metrics. Following best-practises, the pre-trained networks were initially frozen
for the first 200 epochs, and only the final dense layer was trained. This is to avoid the
large gradient magnitudes from the new randomly initialized dense layer destroying the
pre-trained weights [29]. Subsequently, the learning rate was reduced and the top layers
of the ResNet model were fine-tuned for another 200 epochs. This freezing/fine-tuning
method was followed for all subsequent pre-trained models and experiments.

Previous works demonstrate that convolutional-recurrent neural networks can been
used to successfully perform human activity recognition from kinematic data [18,19]. In our
work, the network was tasked with scoring surgical skill across multiple domains from a
relatively high-dimensional dataset (120 channels). To ensure the network had the capacity
to perform these tasks, a one-dimensional ResNet-18 model was used as a feature extractor
on the kinematic data. The extracted features were then inputted into two bi-directional
LSTM layers to model the temporal nature of the data. Finally, three dense layers were
used to score the ‘Overall Performance’, ‘Respect for Tissue’, and ‘Time and Motion’ from
the learned features. This model was trained for 200 epochs, and the architecture can be
seen in the top branch of Figure 3.

Figure 3. Images were analyzed using a ResNet-based network, and the kinematic data was analyzed
using a 1D ResNet-18 as a ‘feature extractor’, followed by 2 bidirectional LSTM layers. The com-
bined multi-modal network is concurrently trained on both the image and kinematic data as input,
and predicts all four GRS domains.

The previous two models are combined so that all four GRS domains can be scored.
The time series and image networks are trained concurrently, and the extracted feature sets
are concatenated. These are then inputted into fully-connected layers to perform the final
task scoring for each domain, as seen in Figure 3. The 2D ResNet network also leveraged
pre-trained ImageNet weights and followed a fine-tuning scheme similar to that described
above, where the ResNet layers were initially frozen for 50 epochs and used solely as a
feature extractor, followed by fine-tuning the top layers of the ResNet for another 50 epochs.
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The dataset was randomly split into 80%/10%/10% training/validation/testing sets.
This means there were 58 participants (and 290 trials) in the training set, and 7 participants
(35 trials) in the validation and testing sets. Further, the training epochs were tuned
heuristically; we trained either until we saw substantial overfitting, or our computing
resources were exhausted. Table 2 summarizes the hyper-parameters of the final multi-
modal model.

Table 2. Summary of the hyper-parameters used to train the multi-modal network. Hyper-parameters
were tuned heuristically.

Hyperparameter Value

Learning rate 1 · 10−4

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Batch size 16
Dropout 0.50
Epochs (frozen backbone) 50
Epochs (fine-tuning backbone) 50
Loss function Mean Squared Error
Image dimensions (1024, 1024)
Timeseries length 4223 timestamps

2.7. Statistical Analysis

The collected dataset was analyzed to ensure its reliability and validity prior to being
used for training and evaluating the deep learning models. The analysis of the expert
human raters also serve as a baseline for understanding the model’s best achievable
performance. The Intraclass Correlation Coefficient (ICC) and Standard Error of Measure
(SEM) were used to analyze the human and AI ratings for agreement and consistency.
To assess the interrater reliability on the entire collected dataset, the ICC (2,3), ICC(2,1),
and SEM scores were calculated for each of the GRS domains [30]. The ICC (2,3) model is
selected since our raters are chosen as representative of a larger population, and the mean
of the three raters is used as the ground-truth. The ICC (2,1) was also used to assess the
human raters on their test-retest consistency, using the randomly repeated trials that were
rated twice. Our hypothesis was that the human raters show moderate to good agreement
on the GRS domains and good consistency in their ratings.

In addition to measuring the average human rater reliability on the entire dataset, we
also looked at the ICC score of the raters on the held-out testing subset of the data. Since
the AI models were evaluated on this test set, finding the human rater’s reliability on this
subset alone can allow for a more direct comparison with the network performance.

The experience levels of the participants and their ratings were also investigated to
help establish construct validity. A one-way ANOVA was performed between the beginner
(PGY1 & PGY2, n = 48), intermediate (PGY3, PGY4, & PGY5, n = 18), and expert (Staff
& Fellow, n = 6) level participants. A Tukey–Kramer post hoc test was then done to
determine which groups were different from each other. These tests were all done using
the participants performance on the “Overall Performance” GRS domain.

Several tests were done to evaluate the model’s performance. The point difference be-
tween the model’s predictions and the human ratings with the ground truth was evaluated
using the mean squared error (MSE). The goodness of fit of the model was evaluated using
R2. Finally, the agreement amongst each (human or AI) rater and the ground truth was
determined using the ICC (2,1) score. This means that the ICC between the AI ratings and
the ground truth was determined, as well as the ICC between each human rater and the
ground truth. This allows us to consider how our model performs as a single generalized
rater [30] in terms of its agreement with the ground-truth data, as well as compare the
AI agreement with that exhibited by the humans. Our hypothesis was that the AI would
demonstrate comparable point errors (MSE) and agreement (ICC) with the ground truth
data as the human raters.
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Although previous research seeking to directly predict GRS scores is sparse, existing
studies report performance using the mean Spearman Correlation Coefficient ρ across the
predicted vs. true GRS scores [13]. For consistency in the reported metrics, we also evaluate
the Spearman Coefficient on the multi-modal model.

Finally, some studies that directly predict the GRS domain scores report their perfor-
mance in terms of accuracy [11]. For a comparable metric, we also find the accuracy of our
multi-modal model. Since our predictions are continuous and accuracy deals with discrete
data, we first round the ground-truth and model predictions; for example, a score of 2.7
will get rounded to 3.0, which is necessary to compute the accuracy metric. Our model is
designed to predict continuous scores so this is not a perfect metric, but serves to gain a
general comparison with previous studies.

3. Results

3.1. Dataset Analysis

The human raters showed ICC scores corresponding to moderate agreement on the
four GRS domains, when measured on the entire collected dataset, as summarized in
Table 3.

Table 3. The expert human raters demonstrate moderate to good agreement on their evaluations
when as measured using the mean. The AI model was trained & evaluated on the mean value of
the ratings.

GRS Domain ICC (2,3) SEM (2,3) ICC (2,1) SEM (2,1)

Respect for Tissue 0.71 0.45 0.47 0.62

Time and Motion 0.70 0.47 0.44 0.64

Quality of Final Product 0.83 0.40 0.63 0.61

Overall Performance 0.73 0.39 0.47 0.55

There was some variance in the test-retest performance of the human raters, with ICC
scores ranging from 0.49 to 0.88, and SEM ranging from 0.37 to 0.58. Overall, Rater 1
demonstrated better consistency amongst their ratings than Rater 2 or 3. Although some
raters performed better than others, overall, they all showed moderate to good consistency,
and the results are summarized in Table 4.

Table 4. Test-retest performance of the human raters on the forty repeated trials. Although the raters
performance varies, they all show moderate to good consistency.

GRS Domains
Rater 1 Rater 2 Rater 3

ICC SEM ICC SEM ICC SEM

Respect for Tissue 0.84 0.43 0.49 0.55 0.55 0.54

Time and Motion 0.83 0.46 0.57 0.58 0.62 0.48

Quality of Final Product 0.88 0.40 0.79 0.47 0.69 0.43

Overall Performance 0.85 0.37 0.60 0.49 0.58 0.48

On the held-out test set, the human raters showed good to excellent agreement, as seen
in Table 5. Greater agreement was seen on this smaller subset of the overall data likely
because there are fewer samples for the human raters to disagree on.

The one-way ANOVA returned a p-value of 0.0038, suggesting there was a signifi-
cant performance difference amongst the surgeon experience groups. The Tukey analysis
resulted in a significant difference between the Beginner (n = 48, mean = 2.31) and Inter-
mediate (n = 36, mean = 2.79) groups (p = 0.003), and no significance between the Expert
group (n = 6, mean = 2.50) and either of the two groups. The lack of significance in the
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Expert group may be due to the relatively small sample size compared to the other two.
The results of the ANOVA are depicted in Figure 4.

Table 5. Human raters show good to excellent agreement on the held-out test set. Determining
agreement on the same test set the AI model is evaluated on can help provide a better baseline for
expected performance.

GRS Domain ICC (2,3) SEM (2,3) ICC (2,1) SEM (2,1)

Respect for Tissue 0.78 0.44 0.54 0.63

Time and Motion 0.81 0.41 0.58 0.61

Quality of Final Product 0.93 0.30 0.82 0.49

Overall Performance 0.86 0.30 0.68 0.30

Figure 4. Participant experience and rating on the ‘Overall Performance’ domain. A significant
difference was found between the Beginner and Intermediate groups.

3.2. Deep Learning Model Performance

The kinematic, image, and multi-modal models were all trained and evaluated inde-
pendently of each other on the same reserved testing set. The model performance was
evaluated by how well it can predict the mean OSATS GRS ratings provided by the raters,
as well as the intrarater reliability between the model predictions and the expert raters.

Table 6 highlights the performance relative to the ground-truth. For a direct compar-
ison with the human performance, the same metrics are presented for each individual
rater’s score compared to their mean scores, for the test-set trials. These metrics serve as
an understanding for how close the model predictions are to the dataset’s ground truth.
The model’s predictions do appear close to the ground-truth, with lower point errors than
two of three human raters, and with the multi-modal model exhibiting the lowest point
error overall.

The error between the ground-truth and the model predictions, as well as human rat-
ings, is also seen in Figure 5. The improvements of the multi-modal model were particularly
noted on the Overall Performance domain.
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Table 7 summarizes the agreement between the AI model and the ground truth scores
(i.e., mean of the human ratings). For comparison, we also considered the ICC scores
between each individual rater and their mean score. The AI model demonstrated ICC
scores ranging from 0.3 to 0.90, with the human raters ranging from 0.60 to 0.92. The multi-
modal model demonstrated better agreement based on the ICC and SEM than the kinematic
or image-only models on all domains except for Respect for Tissue. The multi-modal model
also demonstrated better agreement with the ground truth than 2 of the 3 human raters on
the Overall Performance and Quality of Final Product domains, however its performance
was poorer on the remaining two domains.

Table 6. Performance metrics, including mean squared Error (MSE), of the AI predictions and human
ratings, compared to the ground truth (mean of human scores).

Model Metric Respect for Tissue Time and Motion Quality of Final Product Overall Performance

Image Model

MSE - - 0.146 -
RMSE - - 0.392 -
MAE - - 0.293 -

R2 - - 0.778 -

Kinematic Model

MSE 0.336 0.420 - 0.373
RMSE 0.579 0.648 - 0.610
MAE 0.523 0.456 - 0.431

R2 0.337 0.244 - 0.453

Multi-modal Model

MSE 0.480 0.356 0.186 0.194
RMSE 0.693 0.597 0.431 0.440
MAE 0.545 0.459 0.331 0.315

R2 0.136 0.476 0.838 0.618

Rater 1
MSE 0.464 0.348 0.531 0.505

RMSE 0.681 0.590 0.729 0.710
MAE 0.528 0.474 0.449 0.407

Rater 2
MSE 0.546 0.553 0.545 0.466

RMSE 0.739 0.744 0.738 0.683
MAE 0.586 0.483 0.425 0.436

Rater 3
MSE 0.288 0.363 0.193 0.290

RMSE 0.537 0.602 0.439 0.539
MAE 0.409 0.426 0.291 0.336

Figure 5. Graphical comparison of the MSE on the GRS Domains—lower MSE is better.

165



Sensors 2022, 22, 7328

The Spearman Correlation Coefficient, ρ, of our multi-modal model is reported in
Table 8. This represents the correlation between the model’s predictions and the ground truth.

The discretized scores are used to evaluate the model’s accuracy, and are summarized
in Table 9. As mentioned, accuracy is not a perfect metric for our continuous data predic-
tions, however it is indicative of the difference between the predictions and ground-truth
on the datasets.

Overall, the multi-modal model demonstrated comparable results to the humans on
most of the GRS domains. The AI had a lower point error on the ground truth scores than
the human raters on three of the four GRS domains, as exhibited by the lower MSE. The ICC
metrics suggest that in general, the human raters were in better agreement with the ground-
truth scores. The multi-modal model demonstrated the best performance, with higher ICC
on some domains (e.g., Quality of Final Product) than two of the three raters.

Table 7. Intraclass Correlation Coefficient (ICC) and Standard Error of Measurement (SEM) scores
between the ground truth and the AI models & human raters.

Model Metric Respect for Tissue Time and Motion Quality of Final Product Overall Performance

Image Model ICC(2,1) - - 0.888 -
SEM(2,1) - - 0.257 -

Kinematic Model ICC(2,1) 0.477 0.621 - 0.534
SEM(2,1) 0.464 0.441 - 0.416

Multi-modal Model ICC(2,1) 0.301 0.591 0.904 0.746
SEM(2,1) 0.499 0.428 0.309 0.305

Rater 1 ICC(2,1) 0.717 0.779 0.823 0.616
SEM(2,1) 0.476 0.414 0.512 0.502

Rater 2 ICC(2,1) 0.606 0.627 0.758 0.508
SEM(2,1) 0.516 0.524 0.521 0.689

Rater 3 ICC(2,1) 0.797 0.797 0.924 0.789
SEM(2,1) 0.377 0.423 0.308 0.379

Table 8. Spearman Correlation Coefficient between the multi-modal AI predictions and the ground
truth. Best performing model on the JIGSAWS dataset included as reference [13].

GRS Domain
ρ

Multi-Modal Model (Ours) FCN [13]

Respect for Tissue 0.18 -

Time and Motion 0.73 -

Quality of Final Product 0.95 -

Overall Performance 0.82 -

Mean 0.67 0.65

Table 9. Accuracy of the multi-modal model, determined by first rounding the continuous ground-
truth and predicted scores. Best performing model on the JIGSAWS dataset included as reference [11].

GRS Domain
Accuracy

Multi-Modal Model (Ours) Embedding Analysis [11]

Time and Motion 0.54 0.32

Quality of Final Product 0.76 0.51

Overall Performance 0.76 0.41
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4. Discussion

This paper presented a new dataset consisting of multi-modal recordings (image, video,
& kinematic) of a simulated surgical knot-tying task, with skill assessment conducted by
expert human raters based on the OSATS GRS framework. A thorough statistical analysis
was conducted to ensure the validity of the dataset. Three deep-learning models were
trained and evaluated on this dataset: a ResNet-50 image model, a unique “ResLSTM”
kinematic model, and a combined multi-modal model.

All three models were able to successfully perform the skills assessment, with the
multi-modal model performing the best overall. In comparison to previous studies con-
ducted on the JIGSAWS dataset [6], which contains video and kinematic data from eight
surgeons performing three surgical actions (knot tying, needle passing, and suturing) using
the DaVinci Robotic System [25], our multi-modal model achieves better performance.
For comparison, previous literature report a mean Spearman Correlation of ρ = 0.65 on the
knot-tying task in the JIGSAWS dataset [13], as seen in Table 8. This means that on average,
our multi-modal model demonstrates better correlation between its predictions and the
ground-truth on our dataset, than reported on similar datasets in previous literature. Fur-
ther, Khalid et al. [11] present a study that directly predicts the GRS scores in a regression
fashion, using the video data of the JIGSAWS dataset. As seen in Table 9, they report a
mean accuracy of 0.32 for Time and Motion, 0.51 for Quality of Final Product, and 0.41 for
Overall Performance.

This is particularly encouraging as assessing surgical skill from human performed
knot-tying is seemingly more challenging than evaluating a robotically operated dataset.
This result means that our model can be used in a wider range of environments and
facilities, where robotic surgery systems are not available for surgical trainees or faculty.
Further, while some studies attempt to indirectly compute performance metrics for surgical
skill [14,15], our model directly predicts performance on the GRS domains and provides
the most pertinent assessment of surgical skill to trainees.

The AI performance was comparable to the human rater on three out of the four
GRS domains. Further experiments are required to determine why the model consistently
struggles on the Respect for Tissue domain. A possible explanation is that since the Leap
Sensor is only tracking the subjects’ hands, important information on the handling of the
“tissue” (or polypropylene tubing) is not captured using this modality. Respect for Tissue
was better assessed on video which was available to raters but not used by the model.
Future analysis will investigate leveraging the video modality within the multimodal
model to improve performance on this domain.

The image-only model was trained solely on the Quality of Final Product domain,
since it is not likely that the images alone contain enough relevant information for this
model to perform well on the other categories (e.g., Time and Motion). Smaller models were
investigated for this task, such as 5- and 7-layer convolutional neural networks, however
these all exhibited poor performance in the rating task and were abandoned. This suggests
that the ResNet’s increased capacity to extract important and meaningful features from the
image data is important in assessing surgical skill. We also explored using a pre-trained
MobileNet as the imaging backbone, however found the performance to be poorer than the
ResNet-50. The ResNet-50 presents a good balance between performance (better ImageNet
performance than VGG [28]), and reasonable computing requirements. Future studies
may investigate the use of alternate backbone networks, including models such as Vision
Transformers [31].

Similarly, shallow recurrent neural networks exhibited poor performance on the
kinematic data and were also discarded. Learning to score various categories of surgical
skill is a complex task and these models likely did not have the capacity to extract the
necessary features from the kinematic data. This justifies the development of a deeper, more
powerful “ResLSTM” model; the one-dimensional ResNet-18 backbone and bi-directional
LSTM layers exhibited far better performance on our dataset than shallower networks.
This outperforms a LSTM-only network for two likely reasons: (1) the ResNet extracts
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meaningful features from the raw sensor data, and (2) the convolution operators reduce
the length of the time-series sequences, which are easier for the LSTM layers to learn than
longer sequences.

Leveraging transfer learning was also important to increasing the image model’s
performance. Training a ResNet-50 model without weights pre-trained on ImageNet leads
to an RMSE of 0.523 (0.274) for the quality of final product score, compared to the RMSE
score of 0.392 (0.146) exhibited with pre-training. Although the ImageNet dataset does
not contain examples of surgical sutures, the low-level features learned on the large-scale
generic dataset are helpful starting points when transitioning to a domain-specific task. Our
results further suggest the need for even larger datasets that can be used for pre-training the
kinematic portion of the model. The image only model performed better than the kinematic
model, likely in part due to the availability of ImageNet pre-trained weights for the image
feature extractor.

Combining both the kinematic and image modalities allows for a single model to
rate all four surgical skill assessment categories. Further, training a single model on both
modalities led to an increase in performance across all the categories, except for Respect
for Tissue. It is unclear why this model sees a degradation in performance in this category
compared to the kinematic-only model; further experiments are required to discern this.
Notably, the Overall Performance category saw a large increase in MSE and R2 scores.
Training on both kinematic and image data allows for the combined model to learn a more
optimal feature set that is better representative of the task performances.

This study is limited in that the AI was trained and evaluated on data collected from a
single training center. It remains to be studied how the model performance is affected by
increased participant diversity, e.g., trainees from different institutes or countries. Future
studies can investigate how the model generalizes to new participants. Further, while the
OSATS was used in this study to evaluate the knot tying performance, improved assess-
ment tools, such as a modified OSATS score which incorporates additional domains [32],
may be more suitable in future studies as more complex tasks are considered in more
physiologically challenging environments.

5. Conclusions

This study demonstrated a multi-modal deep learning model for surgical skill as-
sessment with performance comparable to expert raters. This investigation highlights
the importance of multi-modal data sources (image, kinematic, video) in surgical skill
assessment. Automation of surgical skill assessment has the potential to transform surgical
education, making training more effective, equitable, and efficient; trainees can receive
quicker and more frequent feedback, while surgical faculty will have less of a burden to
evaluate, allowing for greater focus on educational and clinical tasks. Further, with the
addition of data collection systems to the operating room, skill assessment technology has
the potential to lead to greater surgeon skill and improved patient outcomes.
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Abstract: Siamese networks have recently attracted significant attention in the visual tracking com-
munity due to their balanced accuracy and speed. However, as a result of the non-update of the
appearance model and the changing appearance of the target, the problem of tracking drift is a regular
occurrence, particularly in background clutter scenarios. As a means of addressing this problem, this
paper proposes an improved fully convolutional Siamese tracker that is based on response behaviour
analysis (SiamFC-RBA). Firstly, the response map of the SiamFC is normalised to an 8-bit grey image,
and the isohypse contours that represent the candidate target region are generated through thresh-
olding. Secondly, the dynamic behaviour of the contours is analysed in order to check if there are
distractors approaching the tracked target. Finally, a peak switching strategy is used as a means of
determining the real tracking position of all candidates. Extensive experiments conducted on visual
tracking benchmarks, including OTB100, GOT-10k and LaSOT, demonstrated that the proposed
tracker outperformed the compared trackers such as DaSiamRPN, SiamRPN, SiamFC, CSK, CFNet
and Staple and achieved state-of-the-art performance. In addition, the response behaviour analysis
module was embedded into DiMP, with the experimental results showing the performance of the
tracker to be improved through the use of the proposed architecture.

Keywords: visual tracking; Siamese tracker; tracking drift; background clutter

1. Introduction

Visual object tracking has become increasingly important in many application fields,
including surveillance, robotics and human–computer interfaces. However, the challenges
of reliable tracking due to cluttered backgrounds, occlusion and different illuminations still
remain.

Inspired by artificial neural networks [1–5] and deep learning [6], breakthroughs in
many areas such as deep learning-based methods have attracted growing interest in the
visual object tracking field. According to the network architecture, there are four categories
of deep learning trackers: convolutional neural network- or CNN-based trackers, recurrent
neural network- or RNN-based trackers, generative adversarial network- or GAN-based
trackers and Siamese neural network- or SNN-based trackers [6].

(1) CNN was the first deep learning model to be used in the visual object tracking field
due to its powerful representation of a target. Wang [7] proposed a tracking algorithm
that used fully convolutional networks pre-trained on image classification tasks, and
this performed better than the majority of other trackers regarding both precision
and success rate at that time. Nam [8] pre-trained a CNN using a large set of videos
with tracking ground truths for obtaining a generic target representation. CNN-based
trackers have inherent limitations, including computational complexities and the
requirement of large-scale supervised training data.
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(2) RNN-based trackers are excellent for dealing with temporal information of video
frames, including object movement or motion. Yang [9] embedded a long short-
term memory (LSTM) network into a recurrent filter learning network as a means
of achieving state-of-the-art tracking. Ma [10] exploited a pyramid multi-directional
recurrent network to memorise target appearance. However, RNN-based trackers are
generally difficult to train and have a considerable number of parameters that require
tuning, and the number of these trackers is limited.

(3) GAN-based trackers can generate desired training positive images in the feature space
for tackling the issue of sample imbalance [11]. Guo [12] proposed a task-guided
generative adversarial network (TGGAN) to learn the general appearance distribution
that a target may undergo through a sequence. As RNN trackers, it is also difficult to
train and evaluate GAN-based trackers, so their number is also limited.

(4) Recently, Siamese networks (SNN), which follow a tracking using a similarity compar-
ison strategy, have received significant attention from the visual tracking community
due to their favourable performance [13–17]. SNN-based trackers formulate the visual
object tracking problem by learning a general similarity map through cross-correlation
between the feature representations learned for the target template and the search re-
gion. Due to the satisfactory balance between performance and efficiency, SNN-based
trackers have become the most widely used and researched trackers in recent years.

Although these tracking approaches can obtain balanced accuracy and speed, some
problems must be urgently addressed, the most important of which is the object locating
strategy or motion model. With traditional Siamese trackers, the new position of the target
is always the location with the highest score in the response map for every input image
frame. This strategy can potentially result in tracking drift if distractors exist near to the real
target, particularly if one of them has a higher response score than the real target. In order
to address this problem, an improved SiamFC tracker based on response map analysis
is proposed. Extensive experiments on visual tracking benchmarks including OTB100,
GOT-10k and LaSOT demonstrated that the proposed tracker improves the performance in
terms of both tracking accuracy and robustness.

The main contributions of this work are as follows:

• A new distractor detecting method is proposed that analyses the response map without
training. Following an experimental comparison, it is proven that the proposed
response behaviour analysis module can be embedded into other response map- or
score map-based trackers as a means of improving tracking performance, making this
a common strategy for many other trackers.

• The behaviour of real targets and distractors can be observed and recognised through
the analysis of the dynamic pattern of the contours in the response map. This method
enables a simple, effective and dynamic analysis of the movement trend of the tar-
get and the surrounding distractors over a period of time to be performed for the
prediction of the potential impact the distractors have on the target object.

• The performance of the classic SiamFC can be significantly improved through the
adoption of the response analysis model during the tracking process. This shows that
for certain problems with classical visual target tracking algorithms such as SiamFC,
tracking performance can be improved more substantially through the use of well-
designed but simple strategies, which do not necessarily require the reconstruction of
complex network structures or long training periods.

This paper is organised in the following way. A basic introduction and work relating
to Siamese trackers are introduced in Section 2. Section 3 outlines the proposed response
analysis method that includes the response map contour, distractor approaching analysis
and peak switching strategy. In Section 4, the proposed method is compared to DaSi-
amRPN [15], SiamFC [17], SiamRPN [18], CFNet [19], CSK [20] and Staple [21] using the
OTB100, GOT-10k and LaSOT benchmarks. In addition, the experimental results and
analyses are also provided. Finally, Section 5 presents conclusions and suggests future
research directions.
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2. Related Work

The Siamese network consists of two subnetworks with identical network architectures
and shared weights. It was initially proposed by Bromley et al. [22] for signature verification,
and the pioneering work of the use of the Siamese network in the visual object tracking field
is SINT [23], which simply searches for the candidate that is most similar to the exemplar
that is provided in the starting frame.

2.1. SNN-Based Trackers

Bertinetto et al. proposed a fully convolutional Siamese network (SiamFC) [17] for the
estimation of the feature similarity between two frames. SiamFC adopts the Siamese network
as a feature extractor, introducing the correlation layer for combining response maps, and the
position of the target is determined by locating the maximum value of the response map.

Following the proposal of the classic SiamFC, many further works have been pro-
posed on its basis, including CFNet, DCFNet, RASNet, SiamRPN, CHASE and COMET.
CFNet [19] interprets the correlation filters as a differentiable layer in a Siamese tracking
framework, thereby achieving end-to-end representation learning. However, the perfor-
mance improvement is limited in comparison to SiamFC. In order to improve the tracking
performance when faced with challenges such as partial occlusion and deformation, Flow-
Track [24] exploits motion information in the Siamese architecture as a means of improving
the feature representation and tracking accuracy. RASNet [25] was proposed by Wang et al.
and embedded diverse attention mechanisms into the Siamese network for adapting the
tracking model to the current target. For more accurately estimating the target bounding
boxes, Li et al. integrated the regional proposal network (RPN) into the Siamese network
and proposed the SiamRPN tracker [18]. The results demonstrated superior tracking perfor-
mance in comparison to classical trackers with the presence of RPN. Following the proposal
of the SiamRPN tracker, many researchers have attempted to improve tracker performance.
One typical tracker is DaSiamRPN [15], which utilises a distractor-aware module for per-
forming incremental learning of background distractors. SiamRPN++ [13] made further
improvements based on DaSiamRPN, using a spatial-aware sampling strategy and training
a ResNet-driven Siamese tracker with a significant performance gain. CHASE [26] was
proposed by Marvasti-Zadeh et al., and it is a novel cell-level differentiable architecture
search mechanism with early stopping for automating the network design of the tracking
module. It has the objective of adapting backbone features to the objective of Siamese
tracking networks during offline training. In order to address the problem of tracking
an unknown small target from aerial videos at medium to high altitudes, the researchers
also proposed a context-aware IoU-guided tracker (COMET) [27] to exploit a multitask
two-stream network and an offline reference proposal generation strategy. Several trackers
have recently been introduced using transformers, including TransT [28] and ToMP [29].
They have gained significant attention in the visual tracking community. Similar to Siamese-
based trackers, these transformer trackers take a pair of image patches as the inputs of the
backbone network and employ a feature fusion network consisting of multiple self- and
cross-attention modules.

2.2. Discriminative Object Representation and Improvement Solutions

The object representation model plays a crucial role in all visual tracking algorithms.
A good representation model can help a tracker distinguish between real targets and
distractors. A disadvantage of Siamese trackers is poor performance when distractors are
close to the true target, as the Siamese network does not have the strategy of discovering
distractors during tracking and is only concerned with the highest score of the response
map in tracking without any focus on the background clutter situation. Many solutions
have been proposed by scholars for solving this problem. They can be classified into the
following five categories: (1) Learning distractor-aware. Zhu et al. [15] discovered that the
imbalanced distribution of training data makes the learned features less discriminative,
proposing the DaSiamRPN algorithm. This method introduced a new sampling strategy
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and made the model focus on semantic distractors. Similarly, target-aware deep tracking
(TADT) [30] chose the target-aware features based on activations to represent the targets.
As both trackers utilised pre-trained deep features, and due to the fact that the targets of
interest can be arbitrary objects in visual tracking, the problem of being less effective in
modelling arbitrary targets to distinguish them from the background still exists.

(2) Combing confidence map. R-FCSN [31] adaptively weighted each region response
as a means of forming a joint confidence map. This confidence map placed greater em-
phasis on reliable regions and eliminated the clutter that is caused by drifting regions.
LTSN [32] used a multi-confidence map strategy as a means of improving the adaptiveness
of appearance changes and background distractors. The advantage of these algorithms is
that they require no training and are fast, but the disadvantage is that they are too simple
and do not consider the motion information of the target.

(3) Mining hard samples. Siam R-CNN [33] proposed an embedding network for
extracting an embedding vector for every ground truth bounding box that represents the
appearance of the object. In this way, the tracker discovered hard examples for re-detection
conditioned on the reference object through the retrieval of objects from other videos.
DaSiamRPN also used hard sample mining technology to improve object representation.
Mining and training hard samples represent an incredibly useful method that leads to the
improvement of the performance of distinguishing similar objects, but finding and training
hard samples are generally quite difficult.

(4) Integrating background appearance. DiMP [34] proposed an end-to-end architec-
ture based on a target model prediction network, which is derived from a discriminative
learning loss, and integrated background appearance as a means of achieving state-of-the-
art performance.

(5) Using classification components. ATOM [35] designed special dedicated target
estimation and classification components, combining them to create a novel tracking
architecture. Both DiMP and ATOM utilised a similar state update strategy based on the
comparison of the two maximum peaks of the response map. With this strategy, when
some distractors were near to the target, the response map scores were below a certain
threshold, resulting in the tracking state being labelled as ‘uncertain’. The position had the
highest score returned as the new tracking position, which was not reasonable as this could
result in tracking drift as the position with the highest score has a greater probability of
being a distractor.

Different to the aforementioned Siamese-based trackers where the problems of back-
ground clutter and distractors were addressed through training with different network
structures or different data samples, this paper proposes a distractor analysis method for
tracking without retraining the network based on a Siamese tracker. The proposed method
can handle the tracking drift problem, particularly in background clutter scenarios.

The proposed method process is as follows. Firstly, the response map of the SiamFC is
normalised to an 8-bit grey image, and the isohypse contours that represent the candidate
target region are generated through thresholding. Secondly, the dynamic behaviour of the
contours is analysed to ascertain whether there are distractors approaching the tracked target.
Finally, a peak switching strategy is used for determining the real tracking position of all
the candidates. In addition, a new Siamese network does not need to be constructed for this
method, and there is only a need to modify the tracking update process. Following the use
of this response analysis method, classic SiamFC tracking performance can be improved to
state-of-the-art level. An overview of this proposed method can be seen in Figure 1.
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Figure 1. Overview of the proposed tracking method.

3. Proposed Method

In Figure 1, an overview of the visual object tracking method proposed in this paper
is presented. In this section, the details of the algorithm will be introduced, including
a brief introduction to Siamese trackers, details of response behaviour analysis and the
pseudo-code for the proposed method.

3.1. Siamese Trackers

With a typical Siamese network, a pair of images (x, z), where x and z are the target
template patch and search patch, is used for training. The images are sent into a deep
network as a means of obtaining two feature maps:

gρ(pt, ps) = fρ(pt) ∗ fρ(z) + b (1)

where fρ(pt) is a deep convolution network, ρ is a learnable parameter, b is a scalar offset
value, ∗ denotes the cross-correlation operation and gρ(pt, ps) represents the response map,
denoting the similarity between pt and ps. The training goal is to enable the maximum
value of the response map to correspond to the target position.

During the testing stage, similarities between the target template patch and the search
patch are presented by a single channel response map, and the estimated location of the
target can be predicted as follows:

q = argmax f (pt) ∗ f (ps) (2)

where q is the central position of the target.
A more detailed explanation of Siamese trackers can be found in [17].

3.2. Improved SiamFC Tracker Based on Response Behaviour Analysis

With traditional Siamese trackers, the new position of the target is predicted using
the location with the highest score of the response map for every input image frame. For
the frame without background cluttering, the response map is a single model, but if some
distractors exist that are similar to the template patch in the searching region, the response
map has a general tendency to be multi-model. In certain cases, the distractor has a higher
score than the true object. If the tracking strategy involves always changing to the position
with the highest score in every frame, the tracking will drift to other background distractors,
as can be seen in Figure 2.
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Figure 2. Tracking drift from frame 381 to frame 382.

Detailed analysis of the response map is essential for improving tracking performance
and addressing this problem. It was found that changing the response map from frame to
frame exhibited interesting behaviour that could be used to analyse whether distractors are
approaching. Based on this motivation, this paper proposes an improved SiamFC tracker based
on response behaviour analysis. An overview of the proposed method can be seen in Figure 3.

 

Figure 3. Overview of the proposed response analysis.

3.2.1. Response Isohypse Contour

A response map can be normalised to an 8-bit grey-level image where a higher value
represents a higher score of the original response map. In this normalised response map, a
binarisation operation with a certain threshold is equivalent to drawing a contour plane of
the original response map. The blob regions of the binarised image can then be used for
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analysing the behaviour of the response map frame by frame. An overview of the response
isohypse contour method can be seen in Figure 4.

 

Figure 4. Illustrations of response isohypse contour.

3.2.2. Distractor Approaching Analysis

An obvious phenomenon can be witnessed when an analysis of the response map is
performed. When there is no distractor with a similar appearance around the target, the
response map is unimodal, but when an obvious distractor is nearby, it will generally be
multi-modal. By transferring the response map to the response isohypse contour map, the
situation where there is only one contour in the middle of the map represents tracking
without background cluttering, and when the map has more than one contour, this indicates
the presence of distractors around the target. In addition, if one contour gradually becomes
closer to the centre contour in each frame, this indicates an approaching distractor to the
true target. The process of distractor approaching analysis can be seen in Figure 5. On this
basis, the approaching distractor can be analysed through the following three steps:

Figure 5. The process of distractor approaching analysis.

Step one: Contour number judgement. If only one contour exists and is located in the
central part of the response map, this represents good tracking conditions. Otherwise, if
there is more than one contour, distractor approaching analysis is utilised.
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Step two: Calculate the minimum distance between contours.

dk,i,j =

√(
xc1

k,i − xc2
k,j

)2
+

(
yc1

k,i − yc2
k,j

)2
(3)

dk = min
{

dk,i,j

}
(4)

where k is the kth frame of the tracking sequence; c1 represents the contour with the
highest response score and c2 represents the contour with the second highest response
score; i ∈ (0, Nc1) j ∈ (0, Nc2), where Nc1 and Nc2 are the total points of contours c1 and c2;
dk,i,j represents the distance between the ith point of contour c1 and the jth point of contour
c2 in the kth frame; and dk is the minimum distance between contours c1 and c2.

Step three: Analyse the trend of the distance change.

MDk =
∑k−M≤n≤k(dn − dn−1)

M
(5)

where M means there are M frames that are used for analysing the approaching trend, and
MDk is the mean different distance in the M frames before the kth frame. If MDk is less
than a certain threshold Tmd, this indicates that some distractors are approaching.

3.2.3. Object Centre Switching Strategy

Most Siamese trackers choose the location with the highest response score as the
target position in each frame, although this strategy can result in tracking drift in certain
situations. Consider this situation: if in the (k − 1)th frame, a response peak with a score of
255 (after being normalised) is located in the central part of the response map and another
peak with a score of 254 is located at the edge of the response map, while the score of the
central peak in the kth frame changes to 254 and the score of the edge peak becomes 255,
then the target position will change to the edge peak, ultimately resulting in tracking drift.
This is obviously not an ideal tracking strategy when there are distractors nearby.

In order to address this problem, most existing Siamese trackers employ the strategy
of restricting the possible region of the response peak, focusing only on a small region that
is close to the position in the previous frame. However, if the peak of the response is at the
edge of the response map, it will be abandoned. In certain cases, this strategy can improve
performance, but the information of the location of distractors will be lost, and this is useful
for further analysis. Unlike traditional Siamese trackers, the proposed method utilises a
new strategy that is based on peak angle judgement, as seen in Figure 6.

θ = arctan
(

Dh
Dp

)
(6)

where Dh is the difference in height between two peaks, and Dp is the distance between
two peaks. With the proposed strategy, the object centre can only be changed to the edge
peak if the angle θ is above a certain threshold.

Figure 6. Object centre switching strategy.

Figure 7 shows that the peak angle θ changes throughout the entire sequence. In these
plots, angles larger than 0 demonstrate that there is more than one peak in the response
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map and the central peak is higher than the edge peak. At the same time, when the angle is
less than 0, this means the edge peak will have a higher score, and the rest of the points
with an angle equal to 0 indicate only one peak in the response map, which means that
no distractors can be found near to the true target. The figure demonstrates that the angle
changes from a positive number to a negative number at approximately the 380th and
690th frames, and these frames are distractors that are moving close to the true target.

Figure 7. Peak angle plots of sequence ‘Basketball’ of OTB100.

3.2.4. Pseudo-Code of the Proposed Method

The possibility of distractors approaching and their positions can be calculated by
using the above-introduced response behaviour analysis, the pseudo-code can be seen in
Algorithm 1.

Algorithm 1: Proposed tracking method

Input: I = {in}N
n=1c (N is the total number of sequences)

for i = 1, . . . N do

Ri ← gi(x, z) # Response map
POi ← argmax f (x) ∗ f (z) # Target position offset
NRi ← Ri

max(Ri)
× 255 #Normalisation

Ci,j ← NRi # Find j isohypse contours
if j > 2

dk,i,j ←
√(

xc1
k,i − xc2

k,j

)2
+

(
yc1

k,i − yc2
k,j

)2
# (Equation (3))

MDk ← ∑k−M≤n≤k(dn−dn−1)
M # (Equation (5))

if MDk < Tmd
f lagdistracotr ← true

end if

θ ← arctan
(

Dh
Dp

)
# (Equation (6))

if θ > Tpa
POn = POi

end if

else

POn = POi−1 # use the position of previous frame
end else

else

POn = POi
end for
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4. Experiments and Discussion

The approach in this study was implemented in Python using PyTorch on a PC with Intel
i7, 32G RAM, NVIDIA GeForce RTX 3060. In this section, detailed results are provided. All
tracking results are provided by official implementations in order to ensure a fair comparison.

4.1. Datasets

As a means of verifying the efficiency of the proposed method, it was evaluated
using the well-known OTB100, GOT-10k and LaSOT tracking benchmarks. OTB100 [36]
consists of 100 videos of 22 object categories with 11 tracking attributes. These attributes
include abrupt motion, background clutter, blur and deformation. The average resolution
of OTB100 is 356 × 530, while the length ranges between 71 and 3872 frames. GOT-10k [37]
consists of 10,000 videos from the semantic hierarchy of WordNet [38]. This is divided
into training, validation and test splits. The training split contains 9340 sequences with
480 object categories, while the test split contains 420 videos with 83 object categories, each
sequence having an average length of 127 frames. LaSOT [39] is a high-quality benchmark
that applies to large-scale single-object tracking. LaSOT consists of 1400 sequences with a
total of over 3.5 million frames.

4.2. Evaluation Metrics

OTB100 evaluation is based on two metrics: precision plot and success plot.
The precision plot is based on the central location error, which is defined as the average

Euclidean distance between the predicted centres of the target object and the ground truth
centres in a frame. This is generated by plotting the distance precision over a range of
thresholds. Distance precision is defined as the percentage of frames in which the target
object is located within a centre location error of 20 pixels.

However, the precision plot does not reflect the size or scale accuracy of the target,
so the IoU (Intersection over Union) is utilised for the measurement of prediction error.
Given the estimated bounding box p and the ground truth bounding box g, IoU is defined
as (p ∩ g)/(p ∪ g). Therefore, the success rate is the percentage of frames in which the
IoU is below a certain threshold, and the success plot is generated by varying the overlap
threshold from 0 to 1.

For the GOT-10k dataset, the average overlap (AO) and success rate (SR) are utilised
as the metrics. AO is measured by calculating the average of overlaps between all ground
truth and predicted bounding boxes. SR is measured by calculating the percentage of
successfully tracked frames where overlaps exceed a certain threshold. In the evaluation,
AO is exploited for the overall performance ranking.

4.3. Implementation Details

Training: The parameters that were used in the training stage were the same as
SiamFC. The ILSVRC15 dataset was used, and the training was performed over 50 epochs,
each consisting of 50,000 sampled pairs. The gradients for each iteration were estimated
using mini-batches of size 8, and the learning rate was annealed geometrically at each
epoch from 10−2 to 10−5.

Tracking: Unlike with classic SiamFC, the proposed response analysis was added to
the tracking pipeline as a means of optimising tracking accuracy.

The peak angle threshold Tpa that was used in the peak switching strategy was
determined through experiments (as can be seen in Figure 8) and was set to 0.15. The Tmd
in distractor approaching analysis was set to 15, and the frame number M was set to 10.
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Figure 8. Experimental results of different angle thresholds of the OTB100 benchmark.

4.4. Performance Evaluation

For evaluating the performance of the proposed method, which is known as SiamFC-
RBA, the tracker was compared against six different trackers: SiamFC, SiamRPN, DaSi-
amRPN, CFNet, CSK and Staple. SiamFC is the classic Siamese tracker, and SiamRPN is an
advanced Siamese tracker that exhibits state-of-the-art performance.

In addition, the response behaviour analysis module was embedded into DiMP, named
DiMP-RBA, as a means of testing the effectiveness of the proposed response behaviour
analysis module in the majority of response map-based trackers.

The precision and success plots of OTB100 can be seen in Figure 9. The results
demonstrate that the two DiMP-based trackers performed better than the others, and the
DiMP-RBA that uses the proposed response behaviour analysis method was approximately
0.2% more precise than the original DiMP. The precision of SiamFC-RBA was 10% greater
than that of the classic SiamFC and approximately 0.2% higher than that of SiamRPN, but
it was 0.3% lower than the state-of-the-art tracker DaSiamRPN. Although the result of the
tracker in this study is almost at the same level as DaSiamRPN, as the training structure
was not rebuilt, the same training result as classic SiamFC was used and the update strategy
was modified during the tracking process, the performance is still quite impressive. The
same phenomenon can be observed in the success plot result. It can also be seen that the
proposed method, DaSiamRPN and SiamRPN performed far better than the four other
trackers (SiamFC, CFNet, CSK and Staple).

 
(a) (b) 

Figure 9. Comparison between the proposed method and baseline trackers on the OTB100 benchmark:
(a) precision plots; (b) success plots.
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The comparison results for GOT-10k are shown in Figure 10. The performances of the
two DiMP-based trackers were far better than those of the other trackers, and the DiMP-RBA
which utilises the proposed response behaviour analysis method had approximately 0.9% better
precision than the original DiMP. The overall scores of the tracker in this study and SiamRPN
are almost identical (0.517) and far better than those of the four other trackers. Although the
proposed tracker and SiamRPN have similar scores, they exhibit different performance patterns.
When the overlap threshold was below 40, the tracker in this study exhibited better performance
than SiamRPN, whereas SiamRPN was better in the opposite situation.

Figure 10. Comparison between the proposed method and baseline trackers on the GOT-10k benchmark.

The comparison results of LaSOT can be seen in Figure 11. The overall trend is the
same as for the other two benchmarks. The performance of DiMP-RBA was improved
by approximately 1% following the use of response behaviour analysis, and SiamFC-RBA
demonstrated both a higher precision and success rate than the original SiamFC and the
remaining trackers.

 
(a) (b) 

Figure 11. Comparison between the proposed method and baseline trackers on the LaSOT benchmark:
(a) precision plots; (b) success plots.

The experiment results are shown in Table 1, and the qualitative results for some typical
challenging scenarios are shown in Figure 12. The performance of the proposed method
was the same as that of DaSiamRPN. The tracker in this study was better with the GOT-10k
benchmark than DaSiamRPN, while the opposite is true with the OTB100 benchmark.
As has previously been mentioned, as the training structure was not rebuilt, meaning
that the same training result as the classic SiamFC was used and the update strategy
was just modified during the tracking process, the performance of the proposed method
showed a different method for addressing the problem of tracking drift in background
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clutter scenarios. This proves that this type of strategy can also be used to achieve the
state-of-the-art level.

Table 1. Comparison between the proposed method and baseline trackers on the OTB100, GOT-10k
and LaSOT benchmarks. Red and blue indicate the two trackers that use the proposed response
behaviour analysis method.

Trackers
OTB100 GOT-10k LaSOT FPS

Precision Success AO SR Precision Success

DiMP-BRA 0.904 68.6 0.705 0.819 0.651 0.673 15.1
DiMP 0.902 68.4 0.696 0.816 0.642 0.663 15.2

DaSiamRPN 0.88 65.9 0.444 0.53 0.605 0.615 134.4
SiamFC-RBA 0.85 62.6 0.517 0.584 0.420 0.382 42.7

SiamRPN 0.83 61.9 0.517 0.615 0.570 0.588 3.17
SiamFC 0.77 57.4 0.348 0.353 0.372 0.319 43.8
CFNet 0.76 57.4 0.261 0.243 0.312 0.258 2541
Staple 0.77 38.49 0.246 0.248 0.278 0.240 28.7
CSK 0.52 57.2 0.205 0.174 0.149 0.125 133.3

 
CFNet; blue—SiamFC; pink—SiamRPN; red—Staple; green—SiamFC-RBA 

Figure 12. Qualitative results for some typical challenging scenarios.

In addition to the benchmark dataset evaluation, the algorithm was implemented
using the online real-time video stream of the surveillance camera that is installed in
our laboratory. In this scenario, two men wearing similar clothes walked into the lab
and crossed paths several times. The distractor approaching process can be seen in the
corresponding response map in Figure 13, with the tracker still performing well in most
cases. Due to the data of the new scenario not being included in the benchmark and the
situation with real-time online application, the performance of the method that was used
in this study was not compared to other trackers.
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Figure 13. Human tracking with similar objects online in real time.

5. Conclusions

This paper proposes an improved SiamFC tracker that is based on response map
analysis as a means of addressing the problem of tracking drift in background clutter
scenarios. The key point of this method is that it can be used for judging whether there
are distractors near the real target by analysing the behaviour of the response map and
by updating the target positioning strategy on the basis of this information. Extensive
experiments on visual tracking benchmarks including OTB100, GOT-10k and LaSOT found
that by using the proposed method, in comparison to the original SiamFC, the precision
performance of SiamFC-RBA increased by approximately 8%, 16% and 5%, respectively,
while also outperforming SiamRPN, CSK, CFNet and Staple. The response behaviour
analysis module was also embedded into DiMP, which is known as DiMP-RBA, for testing
the effectiveness of the proposed response behaviour analysis module in most response
map-based trackers. The experimental results found that DiMP-RBA outperformed the
original DiMP by 0.2%, 0.9% and 0.9%, respectively, in the three benchmarks. Although the
DiMP improvement was relatively small, this proved that the proposed response behaviour
analysis module can be embedded into other response map- or score map-based trackers
as a means of improving tracking performance.
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Abbreviations

Symbols and abbreviations Full meaning
pt Target template patch
ps Search patch
ρ Learnable parameter of Siamese trackers
b Scalar offset value
q Central position of the target
gρ(pt, ps) Response map denoting the similarity between pt and ps
xc1

k,i x coordinate of the ith point in the c1 contour of the kth frame
dk,i,j Distance between the ith point of contour c1

and the jth point of contour c2 in the kth frame
MDk Mean distance before the kth frame
Ri Response map of the ith frame
NRi Normalised response map of the ith frame
Ci,j The jth contour of the ith frame
Tmd Distance threshold
θ Angle between the two highest peaks
AO Average overlap
SR Success rate
IoU Interaction over Union
FPS Frame per second
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1. Duer, S.; Bernatowicz, D.; Wrzesień, P.; Duer, R. The diagnostic system with an artificial neural network for identifying states in
multi-valued logic of a device wind power. In Proceedings of the International Conference: Beyond Databases, Architectures and
Structures, Poznan, Poland, 18–20 September 2018; pp. 442–454.

2. Majewski, M.; Kacalak, W. Smart control of lifting devices using patterns and antipatterns. In Proceedings of the Computer
Science Online Conference, Prague, Czech Republic, 26–29 April 2017; pp. 486–493.

3. Duer, S.; Zajkowski, K.; Płocha, I.; Duer, R. Training of an artificial neural network in the diagnostic system of a technical object.
Neural Comput. Appl. 2013, 22, 1581–1590. [CrossRef]

4. Duer, S.; Zajkowski, K. Taking decisions in the expert intelligent system to support maintenance of a technical object on the basis
information from an artificial neural network. Neural Comput. Appl. 2013, 23, 2185–2197. [CrossRef]

5. Kacalak, W.; Majewski, M. New intelligent interactive automated systems for design of machine elements and assemblies. In
Proceedings of the International Conference on Neural Information Processing, Doha, Qatar, 12–15 November 2012; pp. 115–122.

6. Marvasti-Zadeh, S.M.; Cheng, L.; Ghanei-Yakhdan, H.; Kasaei, S. Deep Learning for Visual Tracking: A Comprehensive Survey.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 3943–3968. [CrossRef]

7. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 3119–3127.

8. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302.

9. Yang, T.; Chan, A.B. Recurrent filter learning for visual tracking. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2010–2019.

10. Ma, D.; Bu, W.; Wu, X. Multi-Scale Recurrent Tracking via Pyramid Recurrent Network and Optical Flow. In Proceedings of the
BMVC, Newcastle, UK, 3–6 September 2018; p. 242.

11. Song, Y.; Ma, C.; Wu, X.; Gong, L.; Bao, L.; Zuo, W.; Shen, C.; Lau, R.W.; Yang, M.-H. Vital: Visual tracking via adversarial learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8990–8999.

12. Guo, J.; Xu, T.; Jiang, S.; Shen, Z. Generating reliable online adaptive templates for visual tracking. In Proceedings of the 2018
25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 226–230.

13. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 4277–4286.

185



Sensors 2022, 22, 6550

14. Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R. Siamese Box Adaptive Network for Visual Tracking. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 6667–6676.

15. Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; Hu, W. Distractor-aware Siamese Networks for Visual Object Tracking. In Proceedings
of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008.

16. Guo, Q.; Wei, F.; Zhou, C.; Rui, H.; Song, W. Learning Dynamic Siamese Network for Visual Object Tracking. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

17. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P. Fully-Convolutional Siamese Networks for Object Tracking. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.

18. Bo, L.; Yan, J.; Wei, W.; Zheng, Z.; Hu, X. High Performance Visual Tracking with Siamese Region Proposal Network. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

19. Valmadre, J.; Bertinetto, L.; Henriques, J.F.; Vedaldi, A.; Torr, P. End-to-End Representation Learning for Correlation Filter Based
Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

20. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In
Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 702–715.

21. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for real-time tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1401–1409.

22. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. Adv.
Neural Inf. Processing Syst. 1993, 6, 737–744. [CrossRef]

23. Tao, R.; Gavves, E.; Smeulders, A.W. Siamese instance search for tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1420–1429.

24. Zhu, Z.; Wu, W.; Zou, W.; Yan, J. End-to-end flow correlation tracking with spatial-temporal attention. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 548–557.

25. Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning attentions: Residual attentional siamese network for high
performance online visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–23 June 2018; pp. 4854–4863.

26. Marvasti-Zadeh, S.M.; Khaghani, J.; Cheng, L.; Ghanei-Yakhdan, H.; Kasaei, S. CHASE: Robust Visual Tracking via Cell-Level
Differentiable Neural Architecture Search. In Proceedings of the BMVC, Online, 22–25 November 2021.

27. Marvasti-Zadeh, S.M.; Khaghani, J.; Ghanei-Yakhdan, H.; Kasaei, S.; Cheng, L. COMET: Context-aware IoU-guided network for
small object tracking. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November–4 December 2020.

28. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8126–8135.

29. Mayer, C.; Danelljan, M.; Bhat, G.; Paul, M.; Paudel, D.P.; Yu, F.; Van Gool, L. Transforming model prediction for tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 8731–8740.

30. Li, X.; Ma, C.; Wu, B.; He, Z.; Yang, M.-H. Target-aware deep tracking. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1369–1378.

31. Yang, L.; Jiang, P.; Wang, F.; Wang, X. Region-based fully convolutional siamese networks for robust real-time visual tracking. In
Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2567–2571.

32. Dai, K.; Wang, Y.; Yan, X. Long-term object tracking based on siamese network. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3640–3644.

33. Voigtlaender, P.; Luiten, J.; Torr, P.H.; Leibe, B. Siam r-cnn: Visual tracking by re-detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6578–6588.

34. Bhat, G.; Danelljan, M.; Gool, L.V.; Timofte, R. Learning Discriminative Model Prediction for Tracking. In Proceedings of the
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019.

35. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. Atom: Accurate tracking by overlap maximization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4660–4669.

36. Wu, Y.; Lim, J.; Yang, M. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef] [PubMed]
37. Huang, L.; Zhao, X.; Huang, K. Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Trans.

Pattern Anal. Mach. Intell. 2019, 43, 1562–1577. [CrossRef] [PubMed]
38. Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
39. Fan, H.; Bai, H.; Lin, L.; Yang, F.; Chu, P.; Deng, G.; Yu, S.; Huang, M.; Liu, J.; Harshit; et al. LaSOT: A High-quality Large-scale

Single Object Tracking Benchmark. Int. J. Comput. Vis. 2021, 129, 439–461. [CrossRef]

186



Citation: Lin, W.; Li, C.; Zhang, Y.

Interactive Application of Data Glove

Based on Emotion Recognition and

Judgment System. Sensors 2022, 22,

6327. https://doi.org/10.3390/

s22176327

Academic Editor: Stefano Berretti

Received: 14 July 2022

Accepted: 22 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Interactive Application of Data Glove Based on Emotion
Recognition and Judgment System

Wenqian Lin 1,*, Chao Li 2 and Yunjian Zhang 3

1 School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
3 College of Control Science and Technology, Zhejiang University, Hangzhou 310027, China
* Correspondence: jiangnanshui253@126.com

Abstract: In this paper, the interactive application of data gloves based on emotion recognition and
judgment system is investigated. A system of emotion recognition and judgment is established based
on the set of optimal features of physiological signals, and then a data glove with multi-channel
data transmission based on the recognition of hand posture and emotion is constructed. Finally, the
system of virtual hand control and a manipulator driven by emotion is built. Five subjects were
selected for the test of the above systems. The test results show that the virtual hand and manipulator
can be simultaneously controlled by the data glove. In the case that the subjects do not make any
hand gesture change, the system can directly control the gesture of the virtual hand by reading the
physiological signal of the subject, at which point the gesture control and emotion control can be
carried out at the same time. In the test of the manipulator driven by emotion, only the results driven
by two emotional trends achieve the desired purpose.
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1. Introduction

Though virtual reality (VR) is a way for human beings to interact with computers and
complex data, its main purpose is to allow users to enter the virtual environment, wherein
they can have the same experience and feeling as in real life. VR involves many fields and
advanced technologies.

VR systems can be divided by different aspects. In terms of system functionality,
the essential function of a VR system is environment simulation, so it can be applied to
many fields such as military, medicine, and so on. At present, there are three kinds
of VR systems: (1) systems used for simulation exercise or training in military field,
(2) systems for planning and designing places and environment in the field of architec-
ture, and (3) entertainment equipment and high-immersion systems in the entertainment
field. In terms of interaction mode and user immersion mode, VR systems can be divided
into non-interactive experience, human-virtual environment interactive experience, and
group-virtual environment interactive experience. In terms of data input channels, VR can
be divided into platform data, model data, perception data, and control data. In terms
of interaction mode and interaction equipment, VR can be divided into four types: scene
display, force/touch interaction, tracking and positioning, and walking interaction. The
scene display type includes a helmet such as the popular VR glasses, desktops, projections,
handhelds, and free stereoscopic displays. The force/touch interaction type includes the
data glove with transmission functions, joysticks with force feedback, etc. The tracking
and positioning type includes source and non-source tracking and positioning systems.
The walking interaction type includes pedal walking and ground walking. In the design
of VR system, attention should be paid to the elements of multi-perception, immersion,
interaction, and imagination space.
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Hand gesture recognition is an interactive type of VR system that relies on sensor
technologies such as the electromyographic (EMG) and inertial measurement unit (IMU).
There have been numerous studies on hand gesture recognition based on EMG and IMU.
For example, Kundu et al. [1] presented a hand gesture based control of an omnidirectional
wheelchair using IMU and myoelectric units as wearable sensors, and recognized and
classified seven common gestures using a shape-based feature extraction and a Dendrogram
Support Vector Machine (DSVM) classifier. Classification involved recognizing the activity
pattern based on periodic shape of trajectories of the triaxial wrist tilt angle and EMG-RMS
from the two selected muscles. Classification accuracy of 94% was achieved by DSVM
classifier on ‘k’ fold cross validation data of 5 users. Zhang et al. [2] computed a deep
learning technique known as the long short-term memory (LSTM) algorithm to build a
model to classify hand gestures by training and testing the collected IMU, EMG, and finger
and palm pressure data. The experimental results showed an outstanding performance
of the LSTM algorithm. Song et al. [3] proposed a force myography (FMG), EMG, and
IMU-based multi-sensor fusion model for hand motion classification, and evaluated the
feasibility by motion classification accuracy and qualitative of subjects’ questionnaires.
They showed that the offline classification accuracy of adopting combined FMG-EMG-IMU
was 81.0% for the 12 motions, which was obviously higher than single sensing modality;
that is, only EMG, FMG, and IMU were 69.6, 63.2, and 47.8%, respectively. Jiang et al. [4]
presented the design and validation of a real-time gesture recognition wristband based on
surface EMG and IMU sensing fusion, which can recognize 8 air gestures and 4 surface
gestures with 2 distinct force levels. The results showed that classification accuracies for the
initial experiment were 92.6% and 88.8% for air and surface gestures, respectively, and there
were no changes in accuracy results during testing 1 h and 1 day later. Yang et al. [5] applied
the multivariate variational mode decomposition to extract the spatial-temporal features
from the multiple channels to the EMG signals and used the separable, convolutional
neural network for modeling by proposing an extensible two-stage machine learning
lightweight framework for multi-gesture task recognition. The experimental results for
a 52 hand gestures recognition task showed that the average accuracy on each stage is
about 90%. Alfaro and Trejos [6] presented a user-independent gesture classification
method combing EMG data and IMU data. They obtained average classification accuracies
in the range of 67.5–84.6%, with the Adaptive Least-Squares Support Vector Machine
model obtaining accuracies as high as 92.9%. Wu et al. [7] proposed a wearable system
for recognizing American Sign Language (ASL) by fusing information from an inertial
sensor and surface EMG sensors. Four popular classification algorithms were evaluated
for 80 commonly used ASL signs on four subjects. The results showed 96.16% and 85.24%
average accuracies for intra-subject and intra-subject cross session evaluation, respectively,
with the selected feature subset and a support vector machine classifier. Shin et al. [8]
studied a myoelectric interface that controls a robotic manipulator via neuromuscular
electrical signals generated when humans make hand gestures. They proposed a system
that recognizes dynamic hand motions and configuration of a hand over time. The results
showed that the average real-time classification accuracy of the myoelectric interface was
over 95.6%. Shahzad et al. [9] studied the effects of surface EMG signal variation on
the performance of a hand motion classifier due to arm position variation, and explored
the effect of static position and dynamic movement strategies for classifier training. A
wearable system was made position aware (POS) using IMU for different arm movement
gestures. The results showed the effectiveness of the dynamic training approach and
sensor fusion techniques to improve the performance of existing stand-alone surface EMG-
based prosthetic control systems. Ordóñez Flores et al. [10] proposed a new methodology
and showed its particular application to the recognition of five hand gestures based on
8 channels of electromyography using a Myo armband device placed on the forearm.
Romero et al. [11] presented the application of hand gestures and arm movements to
control a dual rotor testbench. Chico et al. [12] employed a hand gesture recognition system
and the inertial measurement unit integrated in the Myo armband sensor as a human-
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machine interface to control the position and orientation of a virtual six-degree-of-freedom
(DoF) UR5 robot.

Hand gesture recognition mainly includes two methods. One is gesture recognition
based on data gloves (i.e., the motion characteristics such as the bending degree), angle,
and displacement of each key joint of the hand are obtained through the motion sensor
and are then inversed to the system database as much as possible. The other is image-
based gesture recognition (i.e., the image data of the hand are collected through camera),
wherein the background segmentation and motion modeling are carried out through image
recognition, and the hand motion is ultimately restored in the computer. The above two
methods have their own advantages and disadvantages. Data gloves need subjects to wear
external equipment, which may affect the user interaction experience and have delay in data
processing, but they have strong anti-interference to data acquisition, more accurate data
acquisition, and are not easily affected by the external environment. The image recognition
method is more convenient, and the user’s operation is more natural, but it has certain
requirements for the environment and is easy to be disturbed by environmental factors. In
this paper, the data glove is selected as the interactive device because its data acquisition is
more accurate and the sensor used in this paper must contact the user’s hand to obtain the
physiological signal. In addition, data gloves are easy to implement modification measures,
such as adding additional sensors, and have more advantages and pertinence than other
interactive devices in hand movement.

Some achievements have been made in the research and development of data gloves,
such as 5DT data gloves, cyberglove force feedback data gloves, measurand high-precision
data gloves, X-IST music simulation data gloves, etc. Tarchanidis et al. [13] presented a data
glove equipped with a force sensor with a resolution of 0.38 N and a sensitivity of 0.05 V/N.
Kamel et al. [14] implement data glove from motion animation to signature verification and
showed a high accuracy in finding the similarities between genuine samples as well as those
differentiated between genuine-forgery trials. Yoon et al. [15] presented a data glove with
adaptive mixture-of-experts model and showed the excellent performance and adaptability
through tests. Kim et al. [16] used a data glove to present a sign language recognition
system and indicated that the system was useful when employed to smartphones in some
situations. Chen et al. [17] presented a data glove with highly stretchable conductive
fiber strain sensor, which could recognize various gestures by detecting the finger motion.
Fang [18] proposed a data glove to recognize and capture the gestures of 3-D arm motion,
and the test results verified its effectiveness. Lin et al. [19] presented a data glove with
characteristics of low cost, high reliability, and easy wearability. Wang et al. [20] presented
a data glove with the feedback force control of a safe, lightweight, yet powerful and stable
passive force feedback. Li [21] developed a data glove to monitor the hand posture and
operated the division between sensor and base signal to decrease the test error induced
by instability of light sources. Wu et al. [22] presented a data glove for catching finger
joint angles and tested its effectiveness. Sarwat et al. [23] used a data glove to construct an
automated assessment system for in-home rehabilitation, helping poststroke patients with
a high level of recovery. Takigawa et al. [24] developed a controlled functional electrical
stimulation to realize multiple grasping postures with data glove.

The previous research on data gloves has mostly focused on improving the accuracy
of motion recognition and pressure simulation of force feedback. However, the study
on the data glove which can capture the user’s behavior and obtain the user’s emotion
through physiological signal sensor is rare. Therefore, in this paper, a kind of data glove
with functions of emotion recognition and interaction between human and computer, or a
human and hardware device according to the user’s emotion, is presented. The data glove
can be used in medicine, health, military training, academic research, and other fields.

2. Classification of Emotion Trends

In order to obtain user’s emotion through physiological signal sensor, a system of
emotion recognition is needed, while emotion recognition is based on the emotion evalua-
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tion [25]. Here the valence-arousal (V-A) model is used for the emotion classification. In
the V-A model, as shown in Figure 1, V and A indicate the degree of emotional pleasure
and emotional arousal, respectively. Four poles of the emotion classification model are ex-
tracted and used to represent tired, tense, happy, and depressed, respectively. The emotion
classification system based on the V-A model is extended to a plane, and four quadrants of
the plane stand for high-arousal and positive-valence (quadrant I: HAPV), high-arousal
and negative-valence (quadrant II: HANV), low-arousal and negative-valence (quadrant
III: LANV), and low-arousal and positive-valence (quadrant IV: LAPV), respectively.

 

Figure 1. Valence-arousal model.

3. System of Emotion Recognition and Judgment

3.1. Data Analysis of Physiological Signal (PS)

In the present study, skin electricity and pulse wave are taken as PS. The former
is easily disturbed by other signals, so the noise interference should be removed before
advancing. In order to facilitate computer analysis and processing, the discrete wavelet
transform is used to decompose the signal into different frequency bands through low-
pass and high-pass filtering. The unit of the frequency used for the filter is Hertz. The
wdencmp function in MATLAB 9.0 R2016a is used to denoise the skin electrical signal, and
all segments of skin electrical signal were normalized within the range of 0 to 100.

As shown in Figure 2, the signal of pulse wave is composed of main wave, dicrotic
anterior wave, dicrotic notch and dicrotic wave. In the figure, the key feature points
include: (1) c (peak systolic pressure), (2) e (starting point of left ventricular diastole),
(3) g (maximum pressure point of anti tide wave), (4) d (point of aortic dilation depres-
surization), (5) f (origin of anti tide wave), and (6) b1 (point of aortic valve opening). The
key amplitude includes: (1) main wave h1, (2) dicrotic anterior wave h2, (3) dicrotic notch
h3, and (4) dicrotic wave h4. The key time includes: (1) the time from the starting point of
waveform period to the peak c point of main wave t1, (2) the time from the starting point of
waveform cycle to the lowest point of dicrotic notch t2, and (3) duration of one waveform
period t. The pulse wave is smoothed and filtered using Butterworth low-pass filter and
the relevant parameters of pulse wave are normalized after filtering.

 
Figure 2. Key feature points of pulse wave.
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3.2. Extraction of Optimal Feature of PS

Features of PS are divided into a time domain, a frequency domain, and a feature
related with physiological processes [26]. The direct fusion of original signal features will
result in too much computation. As such, the dimensionality reduction of original signal
feature is performed using the method of principal component analysis (PCA) to make
the classifier more efficient and accurate in emotion recognition. Principal components are
obtained using PCA, and then the weight threshold of each feature of PS on the principal
component is taken as the criterion for selecting feature. Finally, some original features
that play a major role can be determined as optimal feature subset. After obtaining optimal
feature subset, the Pearson correlation coefficient (PCC) is used to judge the relationship
between the emotional interval and these features. The PCC is calculated for features of
four emotion trends and can be used to draw the significance P of the features. Based on P
and correlation coefficient, the normalized threshold of optimal features correlated with
emotional trends is determined. These optimal features include BpNN50 (percentage of
main pulse wave interval >50 ms), the “range” of skin electrical signal (the mean value
of first order difference for skin electrical signal), and 1dmean (mean value of first order
difference of skin electrical signal).

3.3. Establishment of the System of Emotion Judgment

The range of skin electrical signal has a high positive correlation between the two
completely opposite emotional trends (i.e., HVLA and LVHA). As such, the skin electrical
waveform corresponding to the emotional trend is studied. The results show that it is
necessary to add a directional judgment to the range of skin electrical signal. Based on the
set of optimal signal feature from the Pearson correlation coefficient, the system of emotion
recognition and judgment can be built according to the process as shown in Figure 3.

 
Figure 3. Process of emotion judgment model.

4. Design and Connection of Data Glove

The design framework of data glove with emotion recognition function is shown in
Figure 4 where the data glove equipment consists of data acquisition and the controller.
The data are acquired from the finger movement and physiological signal. The data glove
customized based on DN-01 data module is taken as an example as shown in Figure 5,
wherein the data module is an attitude acquisition board, which is used to collect the
information of hand motion such as finger motion parameters, angular velocity of hand
rotation, hand rotation acceleration, and angle change. The controller processes and
integrates the collected information of hand motion, and then packages the processed
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data and sends it to the host computer for processing through Bluetooth or USB to serial
port. The interface of the attitude acquisition board is connected with the sensor, and the
acquisition board and the controller are connected by a flat cable as shown in Figure 6.

 

Figure 4. Design framework of data glove with emotion recognition function.

 
Figure 5. DN-1 composition of data glove module.

 

Figure 6. Data glove hardware structure framework.

The data acquisition module in the data glove mainly collects two kinds of data: one
is gesture data, and the other is physiological signal data. The prototype design of the
data glove is shown in Figure 7, where the sensor of gesture data is Flex2.2 bending sensor
which can capture the bending degree of five fingers and the motion posture of the palm,
including acceleration, angular velocity, and angle. The length of the bending sensor is
7.7 cm, the non-bending resistance is 9000 Ω, the 90-degree bending resistance is 14,000 Ω,
and the 180-degree bending resistance is 22,000 Ω.
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Figure 7. Prototype design of data glove based on emotion recognition of physiological signal.

The skin electrical signal is acquired using a Grove-GSR skin electrical kit, as shown
in Figure 8 (left). Two finger sleeves containing electrodes were put on the middle part of
the middle finger and the thumb of the left hand, and the frequency of signal sampling was
20 Hz. A pulse sensor, as shown in Figure 8 (right), was used to acquire the signals of the
pulse wave and heart rate. The pulse sensor was fixed on the tip of the middle finger of the
left hand with a bandage, and the frequency of signal sampling was 100 Hz.

 

Figure 8. GSR skin electrical kit (left) and pulse sensor (right).

Gestures are reflected by the bending of fingers, and the output format of finger
bending is: 0xaa a1 a2 a3 a4 a5 0xbb, where 0xaa and 0xbb are the head and tail of the
frame, and a1, a2, a3, a4, and a5 represent the bending data of five fingers from thumb to
little thumb, respectively. The data x read on the interface (a1–a5) is the quantization of the
voltage value on the bending sensor:

x =
Vx × 3.3

4096
(1)

where Vx is voltage at sensor. Based on

Vx = 3.3 × R
(R + 20)

(2)

the resistance value R can be obtained. The value of R is proportional to the bending degree
of the bending sensor—i.e., the values of a1, a2, a3, a4, and a5 are inversely proportional to
the degree of finger bending.

The finger bending data can be analyzed through the following functions: (1) the
resume function is used to determine whether the data related to the finger part is received
correctly (i.e., the correctness of frame header and tail), (2) finger_calculate function is
used to calculate the bending data of the finger, (3) judge function is used to determine
whether the finger is bent within a reasonable range (i.e., filtering out wrong motion
information), and (4) calculate function is used to process data related to finger bending
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including bending data of a single finger, storing and recording the data, calculating the
offset of bending data, etc.

The acquisition sensors of physiological signal are the skin electrical sensor Grov-GSR
skin electric kit (fixed on the middle part of the middle finger and the thumb of the glove)
and the pulse sensor (fixed on the tip of the middle finger of the glove). The sensors are
connected to the data acquisition module with a wire, and then the acquisition module is
connected to the PC end and external hardware equipment through the Bluetooth interface.
Unity3D receives the data information transmitted by the data acquisition board through
the IO interface.

5. Test of Virtual Gesture Change Driven by Emotion

5.1. System Design

The data glove is used to control the hand gesture of the virtual hand and manipulator,
and then the gesture of the virtual hand is changed through the awakened emotion of the
subjects and compared with the gesture of the manipulator. The technological process
of the system is shown in Figure 9, where DN-1 data glove is adopted and two kinds of
sensors are added to DN-1 data glove.

 
Figure 9. The technological process of the system that virtual gesture change driven by emotion.

The virtual hand model comes from network shared resources. The fingers of index
finger, middle finger, ring finger, and little thumb have 5 movable joint points, respectively,
and the thumb has four movable joint points. There are 24 movable joint points for changing
the gesture of the hand, as shown in Figure 10.

 

Figure 10. Virtual hand model.
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Each joint of the hand is taken as a changeable unit, and two sets of attitude change
systems are loaded for the virtual hand model in Unity3D. One is the gesture system which
is related to the data of finger gesture transmitted from the data glove; that is, the virtual
hand changes the gesture according to the related data of finger gesture, which is consistent
with the subject’s hand gesture. Another set of action templates is the gesture animation file
designed in advance; that is, the corresponding gesture action of virtual hand is activated
after the activation conditions are met.

5.2. Virtual Hand Control Driven by Emotion

Five subjects, aged between 24 and 30, participated in the test. Music materials were
used to awaken the subjects’ emotions in the test. The DN-1 customizable five fingers
mechanical claw with the most basic functions is used as external hardware equipment,
and the connection of test equipment is shown in Figure 11.

 
Figure 11. Connection of test equipment that virtual gesture change driven by emotion.

The principle and test process are as follows: (1) playing the music with style of
terror, sadness, grandeur, and freshness to awake subjects’ emotion; (2) the physiological
signals (skin electricity and pulse wave) caused by the subjects’ emotion are collected by
sensors placed in the data glove; (3) four emotional trends HANV, LANV, HAPV, and LAPV
corresponding to terror, sadness, grandeur, and freshness are detected using the system
of emotion recognition and judgment as described in Section 3 based on the physiological
signals; (4) the emotion changes of the subjects are detected by the system which is built
based on the relationship between the emotion and gesture of the virtual hand; and (5) the
system drives the virtual hand to make four animation gestures of “1”, “2”, “3”, and “4”
corresponding to HANV, LANV, HAPV, and LAPV as shown in Figure 12.

 
Figure 12. Four hand animation gestures.

The virtual gesture changes of subject 3 as driven by emotion are shown in Figure 13,
where we can see the corresponding relationship between physiological signal and virtual
gesture change.
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Figure 13. Gesture changes of subject 3 driven by emotion.

A gesture data acquisition module is also placed in the data glove as described in
Section 4. The system can drive the virtual hand and the manipulator to make the gesture
consistent with the gesture of the subject. In the process described above, when the
virtual hand makes the gestures of “1”, “2”, “3”, and “4”, the subjects also make the
same gesture, which drives the manipulator also to make the same gesture as shown in
Figure 13. Therefore, there is a time deviation between the gestures of the virtual hand and
the manipulator as show in Table 1.

Table 1. The time deviation between virtual hand change driven by emotion and manipulator change.

Subjects 1 2 3 4

1 −8.44% +13.42% −7.12% −5.03%

2 −14.62% X +3.94% −21.01%

3 −16.38% −18.93% +11.27% −15.50%

4 −15.11% X −9.21% +10.48%

5 −15.57% −17.81% −7.44% x

In Table 1, the time deviation between virtual hand change driven by emotion and
manipulator change is basically less than 20%, showing that the virtual hand and manipu-
lator can be controlled synchronously through the data glove. When the user’s data glove
does not make any gesture change, the system can directly control the gesture of the virtual
hand by reading the physiological signal of the subject, and gesture control and emotion
control can be carried out at the same time to achieve the desired purpose.

5.3. Manipulator Control Driven by Emotion

The manipulator with six degrees of freedom, weight of 4.5 kg, and load capacity of
5 kg is directly controlled using data glove as shown in Figure 14, where the DN-1 data
glove is adopted and two kinds of sensors are added to DN-1 data glove.

 

Figure 14. Manipulator in the test.
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The control of manipulator is divided into gesture control of finger part and arm
part. The control of the finger part can be seen in Section 4, and the arm part controls the
movement angle, including the elbow joint (float anglere), the wrist joint (float anglere 1)
and the finger root joint on the palm (float anglere 2).

The output angle related data includes acceleration, angular velocity, and angle.

(1) Acceleration:

0 × 55 0 × 51 AxL AxH AyL AyH AzL AzH TL TH SUM (3)

where 0 × 55 and 0 × 51 are the head and tail of the frame; AxL, AyL, and AzL are the low
byte of x, y, and z axes; AxH, AyH, and AzH are the high byte of x, y, and z axes; TL and
TH are the total data transmission; and SUM is the acceleration output checksum:

0 × 55 + 0 × 51 + AxH + AxL + AyH + AyL + AzH + AzL + TH + TL (4)

where the symbols are the same as those in Equation (3).

(2) Angular velocity:

0 × 55 0 × 52 wxL wxH wyL wyH wzL wzH TL TH SUM (5)

where 0 × 55 and 0 × 51 are the head and tail of the frame; wxL, wyL, and wzL are the low
byte of x, y, and z axes; wxH, wyH, and wzH are the high byte of x, y, and z axes; TL and
TH are the total data transmission; and SUM is the acceleration output checksum:

0 × 55 + 0 × 52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL (6)

where the symbols are the same as those in Equation (5).

(3) Angle:

0 × 55 0 × 53 RollL RollH PitchL PitchH YawL YawH TL TH SUM (7)

where 0 × 55 and 0 × 53 are the head and tail of the frame, RollL and RollH are roll angle
for x axis, PitchL and PitchH are pitch angle for y axis, YawL and YawH are yaw angle for z
axis, TL and TH are total data transmission, and SUM is the acceleration output checksum:

0 × 55 + 0 × 53 + RollH + RollL + PitchH + PitchL + YawH + YawL + TH + TL (8)

where the symbols are the same as those in Equation (7).
The angle related data is parsed by the following function:

(1) port_noanglesure function is used to reverse judgment. The data packet is not the
angle packet of the hand.

(2) angle_resume function is used to verify whether the data received by the angle
package is correct, and to obtain 11-bit data of angle packet (angle_data0, angle_data1,
angle_data2, . . . , angle_data9, angle_data10).

(3) angledata_calculodegree function is used to convert the received angle data into
two-bit angle data in degrees.

The angle drive data are replaced with physiological signal data. The driving con-
ditions of the manipulator steering are determined by the system of emotion recognition
and judgment as shown in Section 3. The steering settings are up (HANV), left (LANV),
right (HAPV), and down (LAPV), respectively. Each piece of music lasts 30 s ± 1 s. The
manipulator steering change driven by emotion is shown in Figure 15. We can see that the
manipulator completes the steering action only driven by the emotions of LANV and HAPV,
and there was no response under the emotion conditions of HANV and LAPV, showing that,
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although the scheme of manipulator driven by emotion is feasible, it needs to be further
improved in the recognition rate of emotion and the response speed of the manipulator.

Figure 15. Manipulator steering change driven by emotion.

6. Conclusions

In this paper, the interactive application of data glove based on emotion recognition
and judgment system is studied. A data glove with multi-channel data transmission
based on hand gesture recognition and emotion recognition is constructed. The system
of virtual hand control and manipulator driven by emotion is established using Unity3D
as a construction tool of computer system. In the test of virtual hand control driven by
emotion, the data glove is used to simultaneously control the virtual hand on the PC side
and external mechanical claw, while the system of emotion recognition and judgment is
only used in the virtual hand control. In the test of the manipulator driven by emotion, the
data glove is used to directly control the manipulator, and the arm angle control is replaced
by the optimal features of physiological signal. The test results show that the virtual hand
and manipulator can be simultaneously controlled by the data glove. The main innovation
lies in the discovery that, in the case that the subjects do not make any hand gesture change,
the system can directly control the gesture of the virtual hand by reading the physiological
signal of the subject, and the gesture control and emotion control can be carried out at the
same time. In the test of the manipulator driven by emotion, only the results driven by two
emotional trends achieve the desired purpose. Although the system of the manipulator
driven by emotion is feasible, it needs to be improved.
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Abstract: A greater variety of technologies are being applied in sports and health with the advance-
ment of technology, but most optoelectronic systems have strict environmental restrictions and are
usually costly. To visualize and perform quantitative analysis on the football kick, we introduce a
3D motion analysis system based on a six-axis inertial measurement unit (IMU) to reconstruct the
motion trajectory, in the meantime analyzing the velocity and the highest point of the foot during
the backswing. We build a signal processing system in MATLAB and standardize the experimental
process, allowing users to reconstruct the foot trajectory and obtain information about the motion
within a short time. This paper presents a system that directly analyzes the instep kicking motion
rather than recognizing different motions or obtaining biomechanical parameters. For the instep
kicking motion of path length around 3.63 m, the root mean square error (RMSE) is about 0.07 m.
The RMSE of the foot velocity is 0.034 m/s, which is around 0.45% of the maximum velocity. For
the maximum velocity of the foot and the highest point of the backswing, the error is approximately
4% and 2.8%, respectively. With less complex hardware, our experimental results achieve excellent
velocity accuracy.

Keywords: sports technology; football; motion analysis; IMU; trajectory reconstruction

1. Introduction

For any sports, repeated practice is required to improve performance and techniques.
In addition to the amount of training, it is more important to use the correct method to
enhance the quality of training. Practicing with improper methods is not only ineffective
but also more likely to cause sports injuries. While performing a shot, players maximize
speed and power, trying to make the shot more effective. However, for amateurs, exerting
excessive force can easily lead to stiffness of the kicking leg. This results in insufficient knee
bending which leads to momentum reduction during the foot swing before contacting with
the ball. This problem is difficult to realize by athletes themselves. One way to analyze
the motion is by applying multiple high-speed cameras combined with image analysis
software to reconstruct the human body model and the state of motion. However, such
equipment is relatively expensive and has environmental restrictions since image-related
equipment needs to be set in a specific space or venue. On the other hand, IMU sensors
have features such as light weight, low power, low cost and small size. An IMU can consist
of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer. With
proper filtering and data fusion, the information can be used for attitude and position
estimation. Applications of IMU include military, automobile and sports.

1.1. Related Work
1.1.1. IMU in Sports

Wearable sensors with IMUs have been utilized in pedestrian dead-reckoning systems
by detecting the stationary stance phase and applying zero-velocity updates (ZUPTs) for
position tracking [1]. Inertial sensors were placed on the side of the shoe in [2] to obtain
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information about foot clearance and mean step velocity, which helps assess foot kinematics
in steady-state running. Another study [3] developed a system for field-based performance
analysis based on IMUs which are attached to both ankles. The system detects stance
duration, providing users with real-time feedback. In [4], the study used eight IMU sensors
with velocity-based localization to capture the human spatial behavior and velocity during
motions such as walking, jumping and running. The system was reduced to three IMU
sensors and utilized the velocity-based localization with acceleration fine tuning [5].

To help prevent shoulder injuries, ref. [6] presented a classification approach by
tracking and discriminating shoulder motions using an IMU. The wearable motion capture
platform proposed in [7] provides physical quantities during the high-speed motion of
baseball pitchers. With an array of inertial and magnetic sensors, the method allows for
the analysis of various biomechanical parameters. A wearable device was developed by
incorporating IMU sensors with flow sensors. The device in [8] measures human limbs
velocity, acceleration and attitude angles. Experiments include boxing motion capture with
the device on the forearm and kicking motion capture with the device on the shank. Ref. [9]
presented a wearable sensing system consisting of multiple IMU sensors for basketball
activity recognition. The system is able to identify walking, jogging, running, sprinting and
shooting. Another basketball-related study built a wrist-worn sensor consisting of an IMU,
five environmental sensors, a processor and a microcontroller. The activity recognition part
was conducted by machine learning [10]. The algorithm proposed in [11] detects four key
temporal events and three temporal phases in skateboarding. It can provide quantitative
assessment for injury prevention.

1.1.2. Football-Related Motion Analysis

Lower extremity and pelvis kinematics such as linear velocities and angular velocities
were measured by an off-the-shelf product of 17 inertial sensors during kicking. The
measurements were then compared with those obtained from an optoelectronic motion
analysis system [12]. The hip joint motion of football players during practice was recorded
directly on a sports field by a three IMU system [13]. The motion was characterized by
hip acceleration and orientation. To quantify movement intensity and improve training
load estimation, the system in [14] obtained knee and hip joint kinematics for football-
specific movements performed at different intensities. A pressure-sensitive material was
placed on the kicking foot in [15]. The device measured the force and center of pressure
during the impact phase for players to further improve their technique. Biomechanical
differences were observed during kicking with the preferred and the non-preferred leg [16].
Both kinetics and kinematics were derived from the filmed movements. By the full-body
modeling and three-dimensional motion capture system, quantitative evaluations of kick
quality were provided [17]. Using a single IMU and the acceleration data, the system
in [18] distinguished between running and dribbling, passing and shooting. The study
also compared three sensor locations (inside ankle, lower back and upper back) for better
accuracy. Detection and segmentation of a soccer kick were performed by a system of
wearable sensors and video cameras for sports motion analysis [19].

From the above paragraphs, most IMU-related motion analysis research focuses on
activity classification or motion recognition during training or in a match. With the en-
vironmental limitations possessed by camera-based optoelectronic systems, the size and
weight of IMU has a clear advantage. It is a popular choice when performing motion
analysis. Although some research studies look at the motion itself, most of them dive into
the information related to training load or biomechanical parameters on a specific joint
or body part. In particular, no previous research reconstructed and analyzed the instep
kicking motion with a single IMU. This paper aims to present a motion analysis system
with increased accessibility, providing football players of all levels with instant feedback
and an auxiliary training method to improve the instep kicking technique.

The field application of this study is expected to help players or general football lovers
to adjust their movement posture before actual kicking. Preliminarily changing the posture
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in the empty kick stage will make the players develop good kicking habits more effectively,
resulting in a better performance when actually kicking the ball. Therefore, this paper is
mainly focusing on dealing with the trajectory of the foot during the kicking motion. The
sensors are calibrated and the threshold setting is tailored for the kicking motion to avoid
some tiny impact.

To validate the reliability of the system, we utilize the high-speed cameras to obtain
the golden pattern for the trajectory. According to the systematic review study [20], one of
the most commonly used measures of agreement is the Bland–Altman plot. It is a scatter
plot which shows the relationship between two methods. The metric is used in this study
to evaluate the accuracy of the trajectory reconstructed from the IMU data.

The system architecture is shown in Figure 1. We collect acceleration and angular
velocity data during movement through the accelerometer and gyroscope in the six-axis
inertial measurement unit (IMU). After the steps of deviation calibration, attitude estimation
with quaternions, the transformation of coordinates, and gravity compensation, we analyze
the maximum velocity and highest point of the foot before contacting with the ball while
reconstructing the 2D and 3D trajectory of the kicking motion.

Acceleration 

Deviation 
Calibration

Attitude 
Adjustment

Gravity 
Deduction

Integrator

Integrator

Angular 
velocity 

Offset Shifting

Quaternion 
Acquisition

ICM-20649 

Bluetooth Rx 

position 

velocity

quaternions

raw data

attitude

MATLAB

Figure 1. An illustration of the proposed system. The three colored small axes on the trajectory
represent the coordinates of the sensor.

This paper aims to present a 3D motion analysis system which allows users to observe
the kicking motion and acquire significant motion information, with only a single IMU
sensor attached to the kicking foot, avoiding complex accessories which might affect
training and eluding the hassle of setting up optoelectronic devices. The main contributions
of this study are: (1) the synthesis of a simple motion trajectory reconstruction system
for the data collected by a single six-axis IMU during an instep kicking motion, which
employs the quaternion representation of orientation to describe the attitude change;
(2) the customized adjustments to various parameters for the football kicking action during
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the signal processing, and the elimination of various possible noises to ensure that the
accumulation of integral errors is minimized; (3) the extraction of specific motion data from
the reconstructed trajectory to provide motion parameters that affect the quality of the kick
during the process from backswing to kicking.

2. Methodology

The proposed sensing system includes data collection and several data processing
procedures. More detailed steps will be given later in this chapter.

2.1. Data Collection and Deviation Calibration

The sensor selected in this research is ICM-20649 [21]. It is a wide-range six-axis motion
tracking device which contains a three-axis accelerometer and a three-axis gyroscope,
each with a 16-bit ADC, and the sampling frequency is set to 100 Hz. In the previous
measurement, we found that the upper limit of the kicking motion is about 12 g, so we
set the full signal range to ±30 g and ±4000 ◦/s for the application in this research. The
precision measured from this range is acceptable because there are subsequent mechanisms
for threshold and stationary judgement to distinguish the state of motion.

This experiment uses Bluetooth to transmit real-time data. After pairing the sensor
with the Bluetooth receiver, the acceleration data and angular velocity data will be trans-
ferred to the computer and stored as text files. After the data are converted to decimal, it is
necessary to perform the two’s complement to obtain the negative number.

A modified sphere model is applied in the calibration process for sensor deviation.
First, we assume the calibration equation to be G = L(g + b), G is the acceleration before
calibration, g is the real acceleration, L is the linear proportional deviation of the sensor
itself and b is the deviation of the center value of the sensor. In an ideal static state, the sum
of the squares of the three-axis acceleration should be equal to one, so the gravitational
acceleration values at various angles will form a sphere with a radius of one. When
calculating, one must first assume that the linear proportional deviation is one, and one
must use the least square method to obtain the center of the three axes. The same method
can be used to find the linear proportional deviation, but the actual test found that the
three-axis acceleration square sum will be less than one when the sensor is stationary.
Therefore, normalization is performed in the end to complete the accelerometer calibration.

2.2. Attitude Estimation with Quaternion

In the common state of motion, rotation is bound to participate, and the acceleration
received by the three axes of the sensor is actually the acceleration of the sensor’s coordi-
nates, not the acceleration of the earth coordinates. Data can only be applied and analyzed
through attitude processing. The six-axis sensor chosen for this research only includes an
accelerometer and a gyroscope. Without a magnetometer, we can only obtain the sensor
attitude by obtaining the respective angle changes of the sensor and comparing them with
that of the initial coordinates.

Quaternion representation of rotation is derived from the characteristics of inner and
outer products between vectors. It can be considered to be the extension of two-dimensional
real and imaginary numbers to four-dimensional to show the rotation in three-dimensional
space. Similar to complex numbers, quaternions are composed of real numbers and three
elements i, j and k. Each quaternion q can be represented by a linear combination of them,
generally expressed as q = a + bi + cj + dk, and they follow the following relationship:

i2 = j2 = k2 = ijk = −1 (1)
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The attitude quaternion (q) is a column vector of four parameters to describe a rotation
along a specific axis, which can be written as:

q =

⎡⎢⎢⎣
q0

qx
qy
qz

⎤⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎢⎣
cos

(
θ
2

)
Ex sin

(
θ
2

)
Ey sin

(
θ
2

)
Ez sin

(
θ
2

)

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

However, in a general movement, it is difficult to know the rotation axis of each sam-
pling point, and the angle information is of the sensor axes instead of the axis with which
the sensor rotates along. Since the angle information is obtained through the gyroscope, we
decide to directly update the quaternion by using the angular velocity data. The vector Sω

which contains the angular velocities is defined as:

Sω =
[
0 ωx ωy ωz

]
(3)

Then, we consider the quaternion derivative that describes the rate of change in orientation:

dQk
dt

=
1
2
·Q̂k−1

⊗
Sω (4)

The first parameter, dQk
dt , is the derivative at time step k expressed in quaternion, Q̂k−1

is the estimated orientation at time step k, and ⊗ is the quaternion product operator. By
integrating the quaternion derivative, it would be possible to estimate the orientation
over time:

Q̂k = Q̂k−1 +
dQk
dt

· Δt (5)

Finally, we can use the following equation to complete the quaternion update:

Qk+ = 0.5 × Qk−1 × angVel × dt (6)

In addition, after each update of the quaternion, the quaternion must be normalized
to obtain the true quaternion, so as to avoid the phenomenon of scaling while the vector is
rotating. When a new quaternion is obtained, the acceleration data of the sensor can be
converted into the acceleration data of the initial coordinates through the following formula:

accltransformed = Q × accl × Qconj (7)

where accltransformed is the acceleration data in initial coordinates, accl is the acceleration
data before attitude processing, Q and Qconj represent the quaternion and the conjugate
quaternion, respectively.

2.3. Gravity Compensation

This subsection will introduce the method of compensating the gravity components
and the transformation of coordinates. Since the sensor data during the entire motion have
been converted into the initial sensor coordinates, we can subtract the average acceleration
of the first 500 sampling points obtained in the static state offset_accl from the raw accelera-
tion data. Through this process, we can obtain the movement data of the sensor without
the influence of gravity.

After gravity compensation, the misalignment between the initial coordinates and
the earth coordinate still needs to be dealt with. If this problem remains unsolved, the 2D
and 3D motion trajectory will be tilted. Different from the previous processing of attitude
changes, since the initial coordinates are those at rest and cannot be processed with angular
velocity information, we implement the rotation matrix of the initial coordinates to the
earth coordinates to calculate the inclination of the gravity component.
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First, we divide the rotation into three parts: roll, pitch and yaw. The tilt of a three-
dimensional space can be achieved with two axial rotations.

roll = arctan
(

offsety

offsetz

)
, pitch = −arctan

(
offsetx

offsetz

)
, yaw = 0 (8)

After obtaining the rotation angles around each axis, we find the rotation matrix, and
combine the three with matrix multiplication to obtain the complete rotation matrix, written
as the following matrices:

Rx =

⎡⎣1 0 0
0 cos(roll) − sin(roll)
0 sin(roll) cos(roll)

⎤⎦

Ry =

⎡⎣ cos(pitch) 0 sin(pitch)
0 1 0

− sin(pitch) 0 cos(pitch)

⎤⎦
Rz =

⎡⎣cos(yaw) − sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

⎤⎦
Trotate = Rz × Ry × Rx

(9)

Lastly, we multiply it by the three-axis acceleration after compensating the gravity to
complete the transformation of the coordinates, written as:

acclcorrected = Trotate × acclcorrected (10)

2.4. Quadratic Integration and Threshold Setting

After completing the transformation of the coordinates and the gravity compensation,
we proceed to the trajectory construction part. The velocity can be obtained by integrating
the acceleration once, and the displacement can be obtained after the second integration.
The displacement between every two sampling points can be used to reconstruct the
trajectory of the sensor movement.

In this research, we slightly modified the integration method by averaging the acceler-
ation value between two sampling points to calculate the acceleration value belonging to
the time interval. The formula can be written as:

vi = vi−1 +
ai + ai−1

2
Δt (11)

The result calculated by this integration method is more accurate than that calculated
by the original formula vi = vi−1 + aiΔt. The velocity change, which is the area calculated
by this method, is shown by the area a′Δt in Figure 2, and a′ is the average acceleration of
a1 and the acceleration from the previous sampling point. It can be found that the purple
area on the left can be roughly compensated to the original missing area, so the integral
error will be smaller than the original formula. We perform the integration separately on
the three-axis data collected by the sensor to obtain the velocity of each axis, and then we
use a similar integration technique to obtain the displacement.

Threshold setting is a crucial aspect when integrating. During the experiment, the
sensor will inevitably be affected by some external factors, such as vibration, wind and
incomplete compensation of gravity components. The slight fluctuation of acceleration has
a considerable influence on the error of the integration. Therefore, after repeating several
experiments, we found that the acceleration of the target motion is mostly above 3.92 m/s2.
We set 0.392 m/s2 as the acceleration threshold to filter the acceleration value of the target
movement before integration.
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Figure 2. Illustration of integration error cancellation. The average acceleration of two adjacent
sampling points is taken for calculation.

In addition, there will be a physical blind spot in the actual acceleration integration.
When the sensor is stationary after a motion, the acceleration integration area during
acceleration and deceleration cannot completely offset each other. Even if the sensor is at
rest and the acceleration has become exactly zero, the velocity remains at the same value
of the previous sampling point. In this case, when the velocity is integrated to obtain the
displacement, the sensor will seem to continue its motion at a constant velocity instead
of being in a static state. Therefore, a new judgment condition is added here. When the
acceleration of fifteen consecutive sampling points is zero, it is determined to be a static
state, and the velocity is returned to zero. A reasonable velocity threshold is also obtained
through multiple experiments, and is set to 0.196 m/s to ensure that the above-mentioned
accumulation of errors will not occur.

3. Results

3.1. Experimental Setup

Two high-speed cameras are used to capture the image from the front and side view to
provide golden patterns for the experiment; we use tripods to secure the camera to avoid
shaking, and place multiple scale bars within the capture range as a reference for depth
correction. After setting up the cameras, we tie the sensor (ICM-20649) on the top of the
athlete’s foot with a rubber band, and perform an instep kicking motion without hitting a
ball. The data received from the IMU will be collected and imported to MATLAB for data
processing, then we draw trajectory diagrams and analyze different motion data.

The theoretical value of the experiment is provided by the video of the cameras. We
import the video into Tracker for mapping and export the 2D data of each angle of view,
align the peaks through the front view and the side view, and then perform the depth
correction separately. The 3D data can be combined and the data can also be imported into
MATLAB as the theoretical values. The results will then be used to calculate the error of
each analysis.

3.2. Experimental Results
Motion Trajectory Analysis

After completing the data processing introduced in the previous chapter, the 3D
position information of each sampling point of the IMU will be obtained, and the 3D
trajectory diagram will be drawn with MATLAB. The average path length in several
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repeating experiments and the root mean square error (RMSE) with the theoretical value of
the entire path will be calculated to verify the accuracy of the system. The two trajectories
are aligned from the beginning of the motion, and then we utilize the relative sampling rate
according to the different sample rates of the IMU and the frame rate of the camera. We
calculate the distance between the corresponding sample points and calculate the RMSE of
the position and the velocity in the direction of the kick. Figure 3 is a 3D motion trajectory
diagram, the blue solid line in the figure is the theoretical trajectory obtained by Tracker, and
the line composed of the red dots is the trajectory obtained after IMU data are processed.

Figure 3. Three-dimensional motion trajectory diagram. For an instep kicking motion of path length
around 3.63 m, the position RMSE and the velocity RMSE of the two trajectories are 0.07 m and
0.034 m/s, respectively.

3.3. Foot Velocity Analysis

On the football field, whether it is passing or shooting, the velocity of the ball is a
crucial factor. We hope to observe the maximum velocity of the athlete’s foot swing and
where the maximum value occurs so that we can help athletes transmit the most kinetic
energy to the ball. With the golden pattern obtained by Tracker, we can compare the velocity
of the sensor with the velocity from the video. Figure 4 is a 2D motion trajectory diagram,
the blue cross is the position where the maximum velocity appears in the theoretical
trajectory, and the red circle is the position where the maximum velocity appears in the
IMU motion trajectory.
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Figure 4. Two-dimensional trajectory diagram with maximum velocity position. The maximum
velocity occurs when the foot reaches the bottom of the motion trajectory. An average value of the
maximum instantaneous velocity in repeated experiments is around 7.4 m/s, and an error of 4%
is achieved.

3.4. Backswing Height Analysis

When shooting or hitting a long ball, if the knee of the kicking foot is not bent enough to
increase the height of the foot, the power of the ball will be significantly affected. Therefore,
we would like to observe the height of the highest point of the foot during the pull-back
motion on the reconstructed trajectory. With the golden patterns obtained by Tracker,
we can discuss the accuracy of the system by comparing the highest points during the
backswing. We can also use the 3D trajectory graph to obtain the position of the highest
point for visualization. Figure 5 is the 3D motion trajectory diagram and the highest point
of the backswing.

 
Figure 5. Three-dimensional trajectory diagram with backswing height illustrated. An error of 2.8%
is achieved for an average backswing height of 0.756 m. The image on the right shows the highest
point during the backswing.
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Table 1 shows the quantified results generated from IMU data and also the results
from high-speed cameras. From the results below, we can observe that in the motion with
an average path of about 3.6 m, the entire trajectory obtained by IMU’s data processing
with the theoretical trajectory only has an absolute error of about 0.07 m. It is considered a
very accurate result when constructing a motion trajectory, thus it proves that our signal
processing system has a certain degree of credibility. As for the instantaneous velocity of
the foot and the backswing height, the error is approximately 4% and 2.8%, respectively.

Table 1. Comparison of reconstructed trajectory, instantaneous velocity and backswing height
generated by IMU data with high-speed cameras’ results.

Instep
Kicking
Test of
Sample
Size 10

Reconstructed Trajectory
Foot Velocity Analysis

(Instantaneous Velocity)
Backswing Height Analysis

Average
Length

(m)

Position
RMSE

(m)

Velocity
RMSE
(m/s)

IMU
(m/s)

Image
Analysis

(m/s)
Error

IMU
(m)

Image
Analysis

(m)
Error

3.63 0.07 0.034 7.468 7.409 4.0% 0.741 0.756 2.8%

Figure 6 shows the validation of position (three axes) during the motion by comparing
the IMU algorithm results with high-speed camera results. From the Bland–Altman plot,
it can be seen that only 4.17% (10 out of 240) of the points are outside the 95% limits of
agreement, the extent of the difference is clinically acceptable, so the two methods can be
considered to be in good agreement, inferring that this IMU algorithm can be clinically
substituted for high-speed camera.

–

–– – –

–

– –

Figure 6. Validation of position during the motion by comparing the IMU algorithm results with
high-speed camera results. The Bland–Altman plots for the three axes show that the data obtained by
these two methods have high similarity.

4. Discussion

While camera-based optoelectronic systems can provide high accuracy for motion
capturing, it has environmental restrictions and has limitations in capture rate. When
calculating derivatives greater than or equal to second order using the measurement data,
it has a high level of noise, often resulting in limited or no physical meaning unless the raw
data are filtered to 10–20 Hz [22]. When these optoelectronic systems are applied to targets
moving in high speed, although the position will be accurate, the velocity and acceleration
might not be of adequate accuracy. At the same time, the device settings of these image
analysis systems are cumbersome and can only be used in a specific environment. The
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IMU sensor is undoubtedly a perfect substitute in this case. It provides the information of
inertial data such as acceleration and angular velocity directly. The sensor can be easily
mounted on the person without interfering with their performance, and since the sensor is
light, players can easily adapt to the existence of the new device.

Focusing on the football kicking motion, we constructed a motion analysis system
based on an IMU sensor, trying to analyze the physical quantities related to improving the
football kicking performance. To preliminarily evaluate and assess a kicking motion, the
foot velocity and backswing phase are both key factors related to the quality of the kick.
In [23], the results showed that the foot velocity at the initial instant at the initial impact
phase affects the ball velocity more than any other factors. The quality of foot–ball contact
is crucial to the spin and speed of the ball. Higher foot velocity is related to more powerful
kicks [24].

For the reconstructed trajectory, our system has achieved results with high accuracy
and low RMSE in both position and velocity. Since the types of target motions are different,
it sometimes cannot fully explain whether a method outplays another simply by comparing
the RMSE without considering the length of the motion and the dimensions evaluated.
For the gait analysis algorithm that Zhou et al. performed in [25] on the action of striding
forward, they achieved an RMSE of about 0.05 m in a stride of about 1.5 m. As for the
acceleration-based simultaneous localization and capture method (A-SLAC) proposed
in [5], the RMSE in the main walking direction is 0.038 m for a length of 3.6 m for each trial.
The RMSE is 0.032 m for the vertical direction and 0.057 m in the sideways direction, which
is about 2% of the trial length. While they focus on performing the error calculation on the
direction of the stride, we conduct the error calculation of the 3D motion. For an instep
kicking motion with the average path length of around 3.63 m, our system achieved the
position RMSE of 0.07 m.

For velocity, we extracted the maximum instantaneous velocity from the kick; the
results showed a 4% error compared to the image captured by the high-speed cameras.
Moreover, the RMSE of the foot velocity is about 0.034 m/s, which is around 0.45% of the
maximum velocity (7.47 m/s). For the velocity in the main walking direction in [5], the
RMSE is 0.051 m/s, which is around 3% of the maximum velocity (1.5 m/s). The results
indicate our system performs better in the accuracy of velocity. Table 2 shows the accuracy
evaluation results obtained for different types of motion using different IMU-based systems.

Table 2. Accuracy evaluation results obtained for different types of motion using different IMU-based
systems. For the position RMSE in the gait-related system and A-SLAC system, the error is calculated
according to the direction of movement, while our system performs it with the 3D trajectory.

Motion Type
Motion
Length

Position
RMSE

Maximum
Velocity

Velocity
RMSE

Velocity
RMSE %

IMU
Used

Gait-related stride 1.5 m 0.05 m N/A N/A N/A 2
A-SLAC walking 3.6 m 0.038 m 1.5 m/s 0.051 m/s 3% 3

Our system instep kicking 3.63 m 0.07 m 7.47 m/s 0.034 m/s 0.45% 1

With the steady evolvement of wearable IMUs, inertial components are now com-
monly integrated onto a single die, allowing users to receive various motion-related data.
The development of high-resolution and wide-range devices would be ideal for measuring
motion poses in high-intensity motion. Moreover, the stretchable electronics would enable
devices with multiple sensors to be embedded into forms that are more suitable for mount-
ing on the body [26–28]. Multiple inertial sensor nodes would even provide better motion
tracking; since there are more data, we can use the gradient descent method to fuse data
and obtain a more accurate trajectory [29]. Moreover, by fusing the position and orientation
data from the optoelectronic systems with the inertial data obtained from the IMU, we
might be able to obtain the best set of kinematics data. By applying sensor fusion techniques
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based on a multiple-model linear Kalman filter for deflection estimation, the data can be
fused with low processing cost, compatible with real-time embedded applications [30].

5. Conclusions

For the motion analysis, we develop a data processing procedure to fuse data from
the accelerometer and gyroscope of the IMU. According to the experiment results, for the
instep kicking motion of trajectory length around 3.63 m, the root mean square error of the
position and the velocity compared with the golden patterns obtained from the high-speed
cameras and image analysis software is about 0.07 m and 0.034 m/s, respectively. For the
maximum velocity of the foot, the error is approximately 4%. This metric is related to the
contact point with the ball and the timing of acceleration. The error for the highest point of
the foot before hitting the ball is 2.8%.

This system can be applied to players of all ages and levels, whether it is to observe
movement changes by trajectory, or simply to measure the height or velocity of the feet. The
motion information provided in the quantified form allows players or coaches to have a
more specific and clear method to analyze the action. The experiment in this research does
not require a large amount of equipment, nor does it need to be carried out in a specific
place or room, hence the convenience of practical application is greatly improved.
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Abstract: Detecting fatigue during training sessions would help riders and trainers to optimize their
training. It has been shown that fatigue could affect movement patterns. Inertial measurement
units (IMUs) are wearable sensors that measure linear accelerations and angular velocities, and
can also provide orientation estimates. These sensors offer the possibility of a non-invasive and
continuous monitoring of locomotion during training sessions. However, the indicators extracted
from IMUs and their ability to show these locomotion changes are not known. The present study
aims at defining which kinematic variables and indicators could highlight locomotion changes during
a training session expected to be particularly demanding for the horses. Heart rate and lactatemia
were measured to attest for the horse’s fatigue following the training session. Indicators derived
from acceleration, angular velocities, and orientation estimates obtained from nine IMUs placed on
10 high-level dressage horses were compared before and after a training session using a non-
parametric Wilcoxon paired test. These indicators were correlation coefficients (CC) and root mean
square deviations (RMSD) comparing gait cycle kinematics measured before and after the training
session and also movement smoothness estimates (SPARC, LDLJ). Heart rate and lactatemia measures
did not attest to a significant physiological fatigue. However, the statistics show an effect of the
training session (p < 0.05) on many CC and RMSD computed on the kinematic variables, indicating
a change in the locomotion with the training session as well as on SPARCs indicators (p < 0.05), and
revealing here a change in the movement smoothness both in canter and trot. IMUs seem then to be
able to track locomotion pattern modifications due to training. Future research should be conducted
to be able to fully attribute the modifications of these indicators to fatigue.

Keywords: horse locomotion; training effect; inertial measurement units

1. Introduction

Assessing the athlete, including a sport horse gives meaning to his training. Fatigue
and, in particular, muscular fatigue, is a normal outcome of physical exercise. However,
delaying the onset of fatigue is a key aim to any training program and is essential for
athletic success. [1]. The challenge within a training program is not to cross the limit from
which muscular fatigue causes detrimental effects to the musculoskeletal system [2], as
fatigue is associated with injury and underperformance [3,4]. Identifying the onset of
fatigue and understanding its effects are then essential to optimize training.

Physiological indicators such as heart rate, body temperature, and lactatemia [5] or
muscle damage biomarkers [6] provide indications of fatigue during physical exercise. As
a consequence of these muscular and physiological effects, movement and locomotion
are also modified, which can be seen in the kinematics and spatio-temporal indicators.
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This has been shown in humans [7,8] and also in horses [9,10]. For horses, their length
and stride frequency are thus affected by fatigue. More specifically, difficulty keeping
a stable stride frequency [9] and a decrease in stride length [10] have been reported. During
endurance events, trot asymmetry was seen to increase as a response to an increase in
physical demands [11]. A more recent study also highlighted a decrease in the diagonal
step length for thoroughbred horses during canter races. According to the authors, this
decrease suggests that horses could not extend their body when fatigued [12].

By combining electromyographic and kinematic analyses, some studies have linked
these spatio-temporal modifications to muscular activity changes. Takahashi et al. [13]
found that fatigue induced a decrease in the activity of the splenius and brachiocephalicus
muscles during canter and trotting exercises, whereas the infraspinatus and deltoid muscles’
activity did not change. This decrease in muscular activity affected the horse’s speed and
stride frequency. A change in splenius muscular activity related to fatigue has also been
shown to impact head and neck movements [14].

The methods used in these studies were based on optoelectronic systems or elec-
tromyography, which are difficult to use in field conditions. Inertial measurement units
(IMUs) are wearable sensors that measure 3-dimensional acceleration, angular velocity, and,
most of the time, sensor orientation using a combination of accelerometers, gyroscopes,
and, most of the time, magnetometers. IMUs have been used effectively in the field to
characterize anomalies in horse locomotion since they offer a non-invasive wearable mea-
surement of locomotor indicators. These sensors have been proposed as an aid for lameness
detection [15–17], for gait classification [18], for horse speed estimation [19], for evaluation
of the effect of shoes on break over [20], or for the evaluation of different rehabilitation
methods [20]. They also offer an alternative to traditional systems such as optoelectronic
systems to identify the phases of locomotion [21–25] or estimate the horse’s protraction
and retraction angles [16].

In addition to the question relative to the indicators that could be used to detect fatigue,
another question concerns the location of the sensors. A recent study measured the trot
movement symmetry of reining horses with three IMUs fixed at the head, wither, and
sacrum [15]. Several lameness detection systems are now available on the market (Lameness
Locator® (Equinosis, LLC, Columbia, MO, USA), Equigait® (Equigait UK, London, UK))
that are based on three locations, the head, croup, and withers, whereas the Equimoves
system® is based on measures located at the four cannons [26]. Thus, no specific sensor
location seems to be more favourable to attest for changes in locomotion.

Locomotion indicators modified by fatigue are probably not exhaustive and, as such, it
is difficult to determine which of them are the most pertinent for the detection of locomotion
changes associated with fatigue. In fact, since IMUs measure acceleration and angular
velocities they offer a wide spectrum of kinematic variables. In human studies, they have
also been used to assess movement smoothness, which enable the appreciation of defects
in motor control [27]. A smoother movement is indeed associated with a skilled behaviour,
which represents less effort [28]. Indicators have been developed for the analysis of the
smoothness of periodic movements [29]. Among these indicators, the SPARC (for spectral
arc length) and the LDLJ (log dimensionless jerk) can be computed from the acceleration
and angular velocities measured by IMUs [30]. SPARC has been applied, for example, to
IMUs monitoring patients with Parkinson’s disease [31].

The aim of this study is to define which kinematic variables and indicators could be
the best to highlight locomotion changes during a training session. To meet these objectives,
the evolution of indicators characterising gait derived from acceleration, angular velocities,
and orientation estimates extracted from IMUs were compared before and after a training
session. The findings from this study could be used to help develop an on-board system to
detect in horses the locomotion changes that could be associated with fatigue.
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2. Materials and Methods

2.1. Horses

Ten high level dressage horse/rider combinations competing at the advanced level
were involved in this study (1 male, 5 geldings, 4 females; average age of 9.2 ± 2.6 years).
These horses were free of clinical signs of lameness.

2.2. Material

Nine time-synchronised IMUs (Opal, APDM Inc., Portland, OR, USA) were placed on
the horse on the forehead and the pool, at the withers, the sternum and the sacrum, and on
the distal forelimbs and hindlimbs (Figure 1). They were positioned such that the x-axis of
the sensor case was aligned with the segment longitudinal axis and the y-axis or the z-axis
was roughly parallel to the segment medio-lateral axis.

Figure 1. IMUs’ localizations and orientations.

The recordings took place in a horse-riding arena. A straight corridor was marked
with bars on one side of the arena. The length of this corridor allowed for at least
two canter strides to be taken on each hand.

Two monitoring methods were applied to obtain the physiological state of each horse:
measurement of the heart rate with a Polar® monitor during the session; measurement of
the lactatemia at the end of the work using an Akray® Lactate Pro 2 portable analyser.

2.3. Protocol

After a warm-up, the horses were equipped with the IMUs. A first series of locomotion
measurements including 2 passages at each gait (trot, canter) was performed in the corridor,
one for each direction. Then, the working session was carried out. Immediately at the end
of the training session, lactate was taken. Afterwards, a new series of 2 passages at each
gait was undertaken in the corridor. Per run, a total of 4 recordings were obtained.

High-level horse training requires individualized planning. Warm-up and working
session were decided by the rider, the instruction being that it had to be the most demanding
of the sessions scheduled for that period. The volume of the session (gait duration, gait
order, and figure repetition) was then entirely managed by the rider. It was not possible to
impose the same fatigue protocol to horses of that level with an individualized planning
of training.

2.4. Data Processing

Figure 2 presents data processing.
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Figure 2. Data processing.

2.4.1. Kinematics Data

First, the accelerations and angular velocities expressed along the three axes of the
IMU reference frame were extracted. With the IMU orientation estimation, we expressed
the acceleration in a global coordinate system in order to calculate the components of the
acceleration along the vertical axis and in the horizontal plane. In addition, the angle of each
axis of the inertial unit was calculated relative to the earth’s vertical. Finally, for the sensors
placed on the limbs, a swing–twist decomposition [26,32] was applied. This decomposition
provides the rotation angle around the limb axis (twist) and the angle around the lateral
axis of the horse (swing).

In total, 13 kinematic signals for the cannons and 11 for the other sensors placed on
the head or the sacrum and sternum were recorded.

2.4.2. Stride Segmentation

From the vertical acceleration of the sternum, a stride segmentation of the collected
data was taken. For that, we applied a 4th order Butterworth filter to the raw signal. We
chose a low-pass filter with a cut-off frequency of 3 Hz, which is a sufficient value to
include stride frequency in passband for each gait [33]. A search for consecutive peaks in
the filtered signal was performed, imposing a delay greater than 75% of the period between
two successive peaks. A manual check on the signal graph was conducted to ensure the
correct stride segmentation.

2.4.3. Stride Kinematics’ Comparison

Strides were recorded before and after the training session. A Pchip interpolation
provided the same signal length for each stride (100 points). For each one of the kinematics
previously described and each gait, strides of a same run (before work or after work) were
then grouped. For each group, the stride that minimized the root mean square deviation
(RMSD) from this average signal was chosen as the stride of reference.

We then compared each stride to the reference stride of the same run (intra before
work or intra after work) or the other run (inter before work vs inter after work), in order
to highlight possible modifications in coordination and/or movement amplitude. For this,
Pearson correlation coefficient (CC) and root mean square deviation (RMSD) were used.
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2.4.4. Smoothness

Two movement smoothness indicators were qualified according to Melendez-Calderon [30].
More specifically, for each stride and each signal, the spectral arc length (SPARC) was
calculated, with a cut-off frequency of 10 Hz. Spectrum magnitudes were normalized by
their maximum values, to avoid division by zero. The SPARC on angular velocity norm
was calculated. In addition, the log dimensionless jerk on acceleration vector (LDLJ-A)
after removing gravity was also calculated.

SPARC uses spectrum to quantify sub-movements’ dispersion. It uses magnitude
spectrum curve length, until a cut-off frequency. For a signal v(t), with normalized Fourier
magnitude spectrum ˆV( f ) and a cut-off frequency fc, SPARC is defined as

SPARC = −
∫ fc

0

√
( 1

fc
)

2
+ ( d ˆV( f )

d f )
2

d f (1)

LDLJ is an indicator built from the minimum jerk model. For acceleration vector
→
a (t),

over time segment [t1, t2], LDLJ-A is computed as
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‖
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where apeak is acceleration magnitude peak after removing the mean acceleration vector.
All calculations were made using MATLAB 2019b software (The MathWorks Inc.,

Natick, MA, USA).

2.5. Statistical Analysis

To define the effect of the training session, the indicators computed before and after
the training session were compared as well as the CC and the RMSD intra versus inter-run.
Intra-run values give a null hypothesis as the training session does not cause differences.
For these comparisons, we used a non-parametric Wilcoxon paired test. Significance was
set to p = 0.05. R 4.0.2 software was used to perform statistical analysis.

3. Results

3.1. Energetic Solicitation during the Training Session

The durations of the training sessions were variable (28 ± 10 min), while the results
of HR and lactatemia were homogeneous. The average heart rate of the 10 horses was
112 ± 9 bpm (96 < Fcmav (bpm) < 123) and the blood lactate at the end of the session
reached 1 ± 0 mmol/L on average (0.7 < lactate (mmol/L) < 1.1).

3.2. Kinematics’ Modifications

The processing of the IMU data made it possible to calculate 834 indicators. The
Wilcoxon test provides a p-value < 0.01 for 72 indicators and a p-value between 0.01 and
0.050 for 168 indicators (see Table S1).

There was no significant difference for the stride durations before training vs after.
Some coefficient correlations computed on variables on the pre-training gait cycles

were small. Only the variables for which CC on the pre-training gait cycles were greater
than 0.80 were kept. Table 1 presents these significant indicators for CC, Table 2 for SPARC,
and Table 3 for RMSD. Appendix A proposes the complete significant results for CC.

Thirteen indicators related to the CC were significantly affected by training for the
canter and 12 for the trot. Six indicators related to the SPARC were significantly affected by
training for the canter and four for the trot. LDLJ did not provide any significant difference.
Finally, 43 indicators related to the RMSD were significantly affected by training for the
canter and 58 for the trot.

Eight of them were common to trot and canter for the CC, 39 for RMSD, and none
for the SPARC. Among them, both the CC and the RMSD were significantly affected by
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the training session when computed for: the acceleration along the x- and z-axes of the
forehead sensor, along the x-axis of the pool sensor, as well as for the vertical acceleration
of the sternum sensor; the angle between the x-axis of the sternum sensor and vertical axis;
the angular velocities obtained around the y-axis of the sacrum and sternum sensor.

Sixty-six indicators related to the acceleration (obtained in the global or local coordinate
system) were modified as a result of the training, whereas 34 were related to angles and
36 to angular velocities.

Regarding the location of the sensor where the significant indicators were seen
(Figure 3), when including all the CC significantly affected by the training session,
41 of them were obtained at the sensor located at the forelimb, 38 at the hindlimb cannon,
37 at the sternum, 27 at the pool, 26 at the forehead, and 21 at the sacrum, and none at
the withers.

From these results, it emerges, for the trot and the canter, that the CC computed
between intra-run strides were superior to the CC computed between inter-run strides.

For the RMSDs, the results go in the same direction, since the RMSD applied to
two cycles of a same run was on average lower than the RMSD calculated between
two cycles of two different runs.

Regarding the SPARC, at canter, most of the SPARC indicators tend to increase after
training, while they tend to decrease at trot.

Table 1. CC significantly affected by the training session. Only the variables for which CC were
greater than 0.8 were kept. In grey are highlighted indicators common to canter and trot.

CANTER TROT

Variable Axis Position
p-

Value
Before/Intra Post/Inter Variable Axis Position

p-
Value

Before/Intra Post/Inter

Acceleration

h FH 0.031 0.8 (0.06) 0.76 (0.07)

Acceleration

x St 0.008 0.83 (0.06) 0.77 (0.06)
x FH 0.016 0.94 (0.03) 0.92 (0.04) x FH 0.047 0.93 (0.03) 0.91 (0.03)
x Po 0.008 0.92 (0.04) 0.84(0.11) x Po 0.047 0.93 (0.03) 0.91 (0.03)
z FH 0.016 0.88 (0.06) 0.81 (0.12) z Po 0.004 0.94 (0.02) 0.91 (0.03)
z St 0.039 0.92 (0.04) 0.89 (0.03) z Sa 0.031 0.96 (0.03) 0.93 (0.05)
z Po 0.008 0.92 (0.05) 0.87 (0.09) v St 0.039 0.94 (0.04) 0.93 (0.05)
v St 0.004 0.91 (0.04) 0.87 (0.04) v Sa 0.031 0.95 (0.03) 0.93 (0.05)

Angle x/v Sa 0.031 0.88 (0.25) 0.86 (0.26)
Angle

x/v Sa 0.031 0.82 (0.13) 0.69 (0.24)
x/v St 0.027 0.96 (0.03) 0.95 (0.04) x/v FC 0.039 0.84 (0.17) 0.51 (0.5)

Angular
Velocity

y FH 0.016 0.87 (0.09) 0.83 (0.11) x/v St 0.004 0.9 (0.07) 0.82 (0.15)
y Sa 0.031 0.82 (0.27) 0.76 (0.28) Angular

Velocity
y Sa 0.031 0.84 (0.08) 0.76 (0.12)

y St 0.02 0.89 (0.07) 0.85 (0.08) y St 0.008 0.89 (0.07) 0.83 (0.13)
y Po 0.004 0.82 (0.12) 0.75 (0.2)

FH: forehead, Po: pool, St: sternum, Sa: sacrum, FC: forelimb cannon, HC: hindlimb cannon. v: vertical,
h: horizontal according to the global reference frame. x, y, z: axis in IMU reference frame. x/v, y/v, z/v: angle
between IMU axis and global reference frame vertical. (cf. Figure 1).

Table 2. SPARC significantly affected by the training session. No indicators were common to canter
and trot.

CANTER TROT

Variable Axis Position
p-

Value
Before/Intra Post/Inter Variable Axis Position

p-
Value

Before/Intra Post/Inter

Acceleration v Po 0.02 −6.8 (1.6) −6.2 (1.2) Acceleration v FC 0.039 −7.5 (1.8) −8.5 (1.6)

Angle
Swing HC 0.004 −2.4 (0) −2.4 (0) Angle Twist HC 0.004 −2.1 (0.1) −2.4 (0.1)
y/v FH 0.031 −2.4 (0) −2.4 (0) Angular

Velocity
y Po 0.008 −2.7 (0.2) −2.5 (0.2)

z/v HC 0.004 −2.4 (0) −2.4 (0) z St 0.012 −2.5 (0.2) −2.7 (0.3)
Angular
Velocity

y Sa 0.031 −2.3 (0.2) −2.4 (0.3)
Norm FH 0.016 −2.3 (0.1) −2.2 (0.1)

FH: forehead, Po: pool, St: sternum, Sa: sacrum, FC: forelimb cannon, HC: hindlimb cannon. v: vertical,
h: horizontal according to the global reference frame. x, y, z: axis in IMU reference frame. x/v, y/v, z/v: angle
between IMU axis and global reference frame vertical. (cf. Figure 1).
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Table 3. RMSD significantly affected by the training session. In grey are highlighted indicators
common to canter and trot.

CANTER TROT

Variable Axis Position
p-

Value
Before/Intra Post/Inter Variable Axis Position

p-
Value

Before/Intra Post/Inter

Acceleration
(m/s−2)

h FC 0.047 24.7 (1.8) 29.1 (3.9)

Acceleration
(m/s−2)

h FC 0.016 12.8 (2.7) 17.4 (4)
h HC 0.02 22 (2.3) 24.7 (2.5) h HC 0.016 10.1 (2) 13.6 (4.6)
h FH 0.031 3.5 (0.9) 4.3 (0.7) h FH 0.016 2.7 (0.9) 3.2 (1)
h St 0.004 3.1 (0.4) 3.7 (0.8) h Sa 0.031 2.8 (0.2) 3.4 (0.3)
x FC 0.031 24.4 (3) 30.3 (5.1) h St 0.008 2.7 (0.4) 3.1 (0.5)
x HC 0.027 21.8 (2.3) 25.5 (4.1) h Po 0.008 4.5 (1.1) 5.1 (1)
x FH 0.016 3.2 (0.8) 3.8 (0.9) x FC 0.02 12.6 (3.3) 17.3 (5.2)
x Sa 0.031 3.7 (1.1) 4.9 (1) x HC 0.016 10.9 (2.8) 15.1 (5.3)
x St 0.008 3.5 (0.5) 4.3 (0.7) x FH 0.016 3.1 (0.5) 3.6 (0.7)
x Po 0.004 4.1 (1.2) 5.4 (1.8) x Sa 0.031 2.2 (0.3) 3 (0.8)
y FC 0.031 36.2 (4.2) 42.6 (4.6) x St 0.008 2.7 (0.5) 3.2 (0.6)
y HC 0.02 28.2 (2.7) 32.9 (4.7) x Po 0.004 3.3 (0.5) 4.2 (0.8)
y St 0.012 3.9 (0.5) 4.4 (0.7) y FC 0.027 21.3 (5.1) 29.6 (9)
z FC 0.039 15.2 (3.1) 16.7 (2.5) y HC 0.039 15.2 (4.1) 21.3 (8.1)
z HC 0.039 13.9 (1.3) 15.4 (1.8) y FH 0.016 2.2 (0.6) 2.8 (1)
z FH 0.016 2.3 (1) 2.8 (1) y St 0.004 2.3 (0.5) 3.1 (1)
z St 0.039 2.7 (0.5) 3.1 (0.3) y Po 0.004 2.3 (0.4) 3 (0.8)
z Po 0.004 2.6 (0.8) 3.5 (1.2) z FC 0.016 8.7 (1.4) 10.5 (1.6)
v FC 0.031 29.6 (1.8) 35.8 (5.2) z HC 0.039 8.3 (1.4) 10.3 (3.2)
v HC 0.039 28 (2.6) 32.7 (4.6) z FH 0.016 2 (0.5) 2.7 (0.8)
v St 0.004 2.8 (0.5) 3.5 (0.5) z Sa 0.031 2 (0.5) 2.7 (0.6)
v Po 0.039 6.6 (3) 7.3 (2.7) z St 0.012 2.1 (0.4) 2.4 (0.5)

Angle
(◦)

Swing FC 0.031 8.1 (4.7) 10 (5.8) z Po 0.004 2.1 (0.4) 2.7 (0.4)
Twist FC 0.008 65.6 (7.7) 149.1 (77.9) v FC 0.031 25.7 (3.1) 29.4 (3.5)
x/v FC 0.016 15.3 (6) 17.5 (6.6) v HC 0.039 21.7 (1.4) 25.2 (3.4)
x/v HC 0.004 10.9 (1.6) 12.8 (2.1) v Sa 0.031 2.2 (0.4) 2.8 (0.5)
x/v St 0.008 3.2 (1.2) 4.7 (1.6) v St 0.02 2.2 (0.3) 2.5 (0.4)
y/v HC 0.039 16.1 (2.8) 17.9 (2.7) v Po 0.02 4.4 (2.1) 5 (2)
y/v Po 0.02 4.7 (1.1) 6 (2)

Angle
(◦)

Swing HC 0.02 4.5 (0.9) 7 (2.9)
z/v FC 0.031 8.1 (4.7) 10 (5.8) Twist FC 0.016 88.3 (10.7) 122 (40.7)
z/v Sa 0.031 2.9 (0.9) 3.3 (0.9) Twist HC 0.039 51.3 (18.8) 112.5 (67.3)
z/v St 0.02 3.4 (1.2) 4.5 (1.6) x/v FC 0.016 5.6 (2.8) 16.9 (16.4)

Angular
Velocity
(rad/s)

x FC 0.031 2.5 (0.4) 3.1 (0.6) x/v HC 0.008 5 (2.8) 9.4 (5.9)
x HC 0.02 2.2 (0.4) 2.6 (0.6) x/v St 0.004 2.3 (0.5) 3.7 (1.6)
x FH 0.047 0.6 (0.1) 0.7 (0.1) y/v FC 0.016 8.4 (7.7) 24.6 (21.4)
x St 0.004 0.6(0.1) 0.7(0.1) y/v Sa 0.031 4.9 (1.3) 6 (1.8)
y FC 0.02 1.3 (0.2) 1.5 (0.3) y/v Po 0.02 3.4 (0.8) 4.7 (2.6)
y HC 0.02 1.2 (0.3) 1.4 (0.4) z/v FC 0.012 4.9 (2) 6.8 (2.4)
y FH 0.016 0.5 (0.2) 0.6 (0.2) z/v HC 0.02 4.5 (0.9) 7 (2.9)
y Sa 0.031 0.5 (0.3) 0.6 (0.3) z/v FH 0.031 5.5 (1.2) 8.2 (5)
y St 0.008 0.4 (0.1) 0.4 (0.1) z/v Sa 0.031 2.5 (0.7) 3.7 (1.5)
y Po 0.02 0.5 (0.2) 0.6 (0.2) z/v St 0.004 2.6 (0.5) 4.4 (1.7)
z Sa 0.031 0.4 (0.1) 0.5 (0.1) z/v Po 0.008 4.9 (0.9) 7.7 (3.6)

Angular
Velocity
(rad/s)

x FC 0.016 1.7 (0.4) 2.4 (0.9)
x HC 0.008 1.3 (0.4) 1.9 (0.9)
x FH 0.016 0.5 (0.1) 0.6 (0.3)
x St 0.004 0.4 (0.1) 0.6 (0.3)
x Po 0.004 0.4 (0.1) 0.5 (0.1)
y FC 0.031 0.8 (0.3) 1.2 (0.4)
y HC 0.023 0.7 (0.2) 0.9 (0.5)
y FH 0.031 0.4 (0.1) 0.5 (0.2)
y Sa 0.031 0.3 (0) 0.3 (0)
y St 0.008 0.3 (0.1) 0.4 (0.1)
z FC 0.031 1.6 (1) 3.6 (2.8)
z HC 0.02 1.4 (0.7) 2.4 (1.7)
z FH 0.016 0.3 (0.1) 0.4 (0.1)
z St 0.02 0.3 (0.1) 0.6 (0.4)
z Po 0.004 0.4 (0.1) 0.5 (0.2)

FH: forehead, Po: pool, St: sternum, Sa: sacrum, FC: forelimb cannon, HC: hindlimb cannon. v: vertical,
h: horizontal according to the global reference frame. x, y, z: axis in IMU reference frame. x/v, y/v, z/v: angle
between IMU axis and global reference frame vertical. (cf. Figure 1).
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Figure 3. Number of indicators significantly affected by the training session for each sensor location
for canter/trot. Here, for the CC, all the significant results are considered.

4. Discussion

The aim of the present paper was to define which kinematic indicators extracted from
the IMUs’ data could identify locomotion changes following a training session. These
indicators could be used in the future to build an on-board system that could help to
anticipate detrimental fatigue during training. For this, various locomotion indicators were
considered to assess for changes in the kinematics following a training session.

It was expected for the training session to induce fatigue. The riders all interpreted
the instruction in the same way and worked with the same objective; however, it was
well below the physiological reality. Given the heart rate and blood lactate values, the
energy demand (anaerobic and aerobic) was indeed not elevated. The anaerobic threshold
expected for the measurements [34] was then not reached, even if the horses were felt
to be fatigued according to their riders. In the present study, the maximal blood lactate
value measured did not exceed 1.1 mmol/L, which is below the values presented in [35]
following two standardised exercise tests with dressage horses and well below the 4 mm/L
that can be found following exercises implying running at a specific intensity level [35].
Regarding the heart rate, the maximal heart rate did not exceed 123 bpm in the present
study when values over 170 bpm were obtained following the two standardised exercise
tests with dressage horses presented in [35].

Despite this, some locomotor indicators were statistically different after vs before
the training session. CC and RMSD show a stronger similarity between strides of a same
measurement run than between strides of two different runs, which indicates a change
in the locomotion following the training session. The change in CC can be interpreted as
a modification in the kinematics pattern, whereas a change in the RMSD, in the absence
of a change in the pattern, can be seen as a modification in the movement amplitude. We
could have expected the forehead and pool kinematics to be more affected than the other
kinematics by the training session since modifications in the horse’s head movement has
previously been associated with fatigue [14]. In human athletes, it has been shown that
the trunk kinematics changed notably and prematurely with fatigue during cycling [36]
or running [7]. The absence of a larger effect on the forehead and pool kinematics might
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be due to the rider, who might influence and reduce the head movements, especially in
dressage during which the horse’s posture is evaluated.

The variation in SPARC also reveals a change in the fluidity of movement. The SPARC
values were greater in the present study when computed on the angular velocity than in
elderly humans during assessments of their gait [31], with values between −2 and −3
obtained in the present study against values around −5 obtained by Beck et al. [31]. The
greater smoothness found in the present study might come from many factors such as
the fact that horses walk/run on four limbs whereas humans walk/run on two, the “age”
of the subjects (adults in the present study vs elderly in [31]), or the potential difference
in the IMUs’ noise. At trot, the sternum sensor was impacted regarding this SPARC
indicator. It is assumed that this location reflects the body movement because of its rather
constant proximity to the centre of gravity at trot, whereas this constant proximity is rather
questionable in canter, in particular, because of the pitch of the gait [37]. Thus, the SPARC
coefficient calculated from the angular velocity of the sternum seems interesting, and the
results show a degradation of the fluidity of the trot after the effort. In canter, SPARC
presents an increase in the fluidity, except for the sacrum’s angular velocity. It is known that
gluteal muscles and biceps femoris, actors of flexion/extension and abduction/adduction
of the hindlimb, can be fatigued at canter [12]. This suggest that fatigue could affect the
pelvis movements.

It appears that the indicators could attest to changes in the horse’s locomotion patterns
and smoothness following a training session. To the best of our knowledge, no such study
has been conducted in horses. In humans, changes in the kinematic range of motion or
spatio-temporal indicators have been investigated [38] as well as indicators associated with
performance [39].

However, some of the proposed indicators, the CC and RMSD, characterising the
evolution in the kinematics might not be the most appropriate to use to develop an on-
board device for fatigue detection. This requires the detection on-line of the strides, to
save the corresponding stride kinematics, and to compute the CC and RMSD on consecu-
tive kinematic strides and regularly between non-consecutive strides. Approaches based
on artificial intelligence could be developed to identify and compare gait cycles during
a training session [40].

Because the traditional physiological indicators used to evidence fatigue were moder-
ately affected, a doubt remains: were the observed modifications due to a slight fatigue or
were the modifications due to something else such as the technical exercises? If the results
are due to the effort itself, then the indicators are very sensitive, which would be promising
for the development of a system helping to monitor fatigue.

In fact, the training session was expected to induce a fatigue so important that it would
affect these physiological indicators, which was not the case. However, the small impact of
the training session on the heart rate and lactate does not necessarily mean that the horses
did not experience muscular fatigue. It has been shown that, during sub-maximal exercises,
lactatemia does not necessarily significantly increase despite a decrease in the maximal force
production [41]. Unfortunately, more elaborated protocols that could attest for a decrease
in force production, which is the recognized method to attest for muscular fatigue [42], are
not that easy to implement, especially with horses. Nevertheless, other studies measuring,
for instance, EMG, as proposed by Takahashi et al. [13] but for locomotion on a treadmill,
should be performed to confirm that the modifications seen in the present study can really
be attributed to muscular fatigue.

The greatest number of significant variations were obtained in descending order from
the fore and hind cannons, then for the sternum, the pool, the forehead, and lastly the
sacrum sensors. The sensor located at the withers did not show significant modification, but
this is probably due to parasite movements resulting from an inadequate fixation chosen
for this sensor. In fact, with the number of indicators being relatively close for the other
sensors, it is not possible to really discard a sensor location from the present study.
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As a limitation of the present study, the absence of clear fatigue limited the scope of
the results. A second limitation is related to the heterogeneous training session chosen by
the riders. Another limitation of the study is the lack of information about the warm-up, in
terms of duration, intensity, and type (active, passive, specific). It is indeed assumed that
these elements improve performance as well as negatively impact it if the content is poorly
managed [43]. The warm-up must also be adapted to the needs of the horse according to
its lifestyle, its pains, etc. [44]. This is why it is difficult to impose the warm-up on these
competitive horses for a protocol of research. However, it would have been relevant to
equip the horses with sensors as soon as they had left the stables.

Regarding the kinematics affected by the training session, acceleration and angular
velocity-based indicators were numerous even when the kinematics were not expressed
in a global reference frame. This can be viewed as positive since these indicators do not
require much computation time, which makes it possible to consider the integration of
these indicators in an on-board system, to follow the changes in locomotion due to training.

5. Conclusions

The aim of the present paper was to define indicators extracted from IMUs’ data
that could reveal locomotion changes associated with fatigue in horses. For this, various
locomotion indicators were considered to assess for changes in the kinematics following
a training session supposed to provoke fatigue in the horses.

If the training session did not seem to induce an important physiological fatigue,
some locomotor indicators were statistically different after vs before the training session,
indicating that IMUs seem appropriate to track locomotion pattern modifications due to
training. Future research should be conducted to be able to fully attribute the modifications
of these indicators to fatigue.
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Appendix A

Other CC values significantly different between the comparison of cycles from the
same run (intra) versus the comparison of cycles measured before and after training
(inter) according to the statistical tests. They were not presented in the corpse text of the
manuscript because the CC values were smaller than 0.80 for the intra-run.
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Table A1. CC values significantly different at canter.

CANTER

Variable Axis Position p-Value Before/Intra Post/Inter

Acceleration

h FC 0.027 0.28 (0.09) 0.18 (0.14)
h St 0.004 0.61 (0.14) 0.5 (0.19)
x FC 0.031 0.31 (0.11) 0.1 (0.1)
x HC 0.039 0.39 (0.08) 0.26 (0.12)
x Sa 0.031 0.77 (0.23) 0.67 (0.21)
x St 0.008 0.72 (0.09) 0.59 (0.07)
y FC 0.031 0.32 (0.07) 0.16 (0.1)
y HC 0.039 0.41 (0.07) 0.29 (0.11)
z FC 0.020 0.24 (0.07) 0.12 (0.07)
z HC 0.023 0.33 (0.1) 0.23 (0.12)
v FC 0.016 0.45 (0.12) 0.28 (0.14)
v HC 0.027 0.36 (0.08) 0.21 (0.1)
v Po 0.039 0.63 (0.26) 0.56 (0.27)

Angle
Twist FC 0.008 0.65 (0.09) 0.15 (0.57)

x/v FC 0.031 0.24 (0.13) 0.13 (0.07)
z/v St 0.012 0.74 (0.29) 0.66 (0.37)

Angular
velocity

x FC 0.027 0.36 (0.08) 0.25 (0.13)
x HC 0.020 0.38 (0.1) 0.25 (0.1)
x FH 0.016 0.27 (0.07) 0.1 (0.12)
x St 0.039 0.2 (0.06) 0.07 (0.13)
y FC 0.031 0.35 (0.12) 0.23 (0.11)
y HC 0.016 0.29 (0.11) 0.17 (0.1)
z FH 0.039 0.28 (0.14) 0.14 (0.24)

FH: forehead, Po: pool, St: sternum, Sa: sacrum, FC: forelimb cannon, HC: hindlimb cannon. v: vertical,
h: horizontal according to the global reference frame. x, y, z: axis in IMU reference frame. x/v, y/v, z/v: angle
between IMU axis and global reference frame vertical. (cf. Figure 1).

Table A2. CC values significantly different at trot.

TROT

Variable Axis Position p-Value Intra Inter

Acceleration

h FC 0.02 0.62 (0.16) 0.37 (0.25)
h HC 0.039 0.54 (0.18) 0.22 (0.4)
h Sa 0.031 0.53 (0.14) 0.33 (0.28)
h St 0.008 0.6 (0.13) 0.5 (0.15)
h Po 0.039 0.61 (0.14) 0.51 (0.19)
x FC 0.016 0.6 (0.2) 0.32 (0.34)
x HC 0.016 0.62 (0.15) 0.34 (0.33)
x Sa 0.031 0.76 (0.09) 0.53 (0.28)
y FC 0.039 0.62 (0.2) 0.32 (0.36)
y HC 0.004 0.62 (0.18) 0.29 (0.35)
y FH 0.016 0.55 (0.13) 0.22 (0.37)
y St 0.008 0.57 (0.21) 0.28 (0.37)
y Po 0.004 0.63 (0.13) 0.35 (0.39)
z FC 0.008 0.42 (0.14) 0.18 (0.18)
z HC 0.004 0.56 (0.13) 0.24 (0.29)
z FH 0.016 0.75 (0.09) 0.6 (0.21)
v FC 0.012 0.26 (0.13) 0.04 (0.21)
v HC 0.02 0.22 (0.13) 0.09 (0.14)

Angle
Twist HC 0.039 0.66 (0.4) 0.33 (0.67)

z/v Sa 0.031 0.7 (0.19) 0.55 (0.26)
z/v St 0.004 0.72 (0.26) 0.66 (0.28)
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Table A2. Cont.

TROT

Variable Axis Position p-Value Intra Inter

Angular
velocity

x FC 0.004 0.7 (0.12) 0.43 (0.21)
x HC 0.039 0.74 (0.12) 0.49 (0.38)
x FH 0.016 0.5 (0.14) 0.11 (0.34)
x St 0.039 0.67 (0.22) 0.27 (0.57)
x Po 0.008 0.51 (0.17) 0.22 (0.31)
y FC 0.02 0.67 (0.23) 0.26 (0.44)
y HC 0.039 0.63 (0.17) 0.35 (0.43)
y FH 0.031 0.64 (0.13) 0.48 (0.29)
y Po 0.02 0.56 (0.18) 0.4 (0.32)
z Po 0.008 0.51 (0.16) 0.13 (0.37)

FH: forehead, Po: pool, St: sternum, Sa: sacrum, FC: forelimb cannon, HC: hindlimb cannon. v: vertical,
h: horizontal according to the global reference frame. x, y, z: axis in IMU reference frame. x/v, y/v, z/v: angle
between IMU axis and global reference frame vertical. (cf. Figure 1).
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Abstract: The recognition of abnormal gait behavior is important in the field of motion assessment
and disease diagnosis. Currently, abnormal gait behavior is primarily recognized by pressure and
inertial data obtained from wearable sensors. However, the data drift and wearing difficulties for
patients have impeded the application of these wearable sensors. Here, we propose a contactless
abnormal gait behavior recognition method that captures human pose data using a monocular
camera. A lightweight OpenPose (OP) model is generated with Depthwise Separable Convolution to
recognize joint points and extract their coordinates during walking in real time. For the walking data
errors extracted in the 2D plane, a 3D reconstruction is performed on the walking data, and a total of
11 types of abnormal gait features are extracted by the OP model. Finally, the XGBoost algorithm
is used for feature screening. The final experimental results show that the Random Forest (RF)
algorithm in combination with 3D features delivers the highest precision (92.13%) for abnormal gait
behavior recognition. The proposed scheme overcomes the data drift of inertial sensors and sensor
wearing challenges in the elderly while reducing the hardware requirements for model deployment.
With excellent real-time and contactless capabilities, the scheme is expected to enjoy a wide range of
applications in the field of abnormal gait measurement.

Keywords: abnormal gait behavior; OpenPose; machine learning; XGBoost; random forest

1. Introduction

Abnormal gait behavior is highly-related to many neurodegenerative diseases, such
as Parkinson’s disease, cerebral palsy, lumbar disc herniation, cerebral infarction and
osteoarthritis. Therefore, the recognition and measurement of abnormal gait behavior has
been an important topic of research in the field of diagnosis and treatment [1]. Abnormal
gait behavior is highly prevalent, especially in the elderly. According to the statistics of
the China Parkinson’s Disease Registry (CPDR), more than 3 million patients suffer from
Parkinson’s symptoms in China. This indicates an urgent need for recognition systems
for behavioral disorders [2]. Preliminary diagnosis of a patient’s disease based on their
abnormal gait behavior is needed in many everyday life settings, such as houses, nursing
homes, and other public places, which saves much cost and time for the patient. At
present, the abnormal gait behavior of patients can be recognized by two main categories
of methods: by using inertial measurement units (IMUs) and by using contactless models
and machine learning algorithms.

A preliminary diagnosis of abnormal gait behavior can be achieved by wearing micro
sensors. SIJOBERT et al. [3] extracted features from frozen gait by placing a wireless inertial
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sensor on the patient’s lower leg to acquire changes in gait parameters. Zhao et al. [3,4]
developed a gait analysis system consisting of a bipedal IMU. By using an inequality-
constrained zero-velocity update (ZUPT) aided INS algorithm, this system provides an
efficient method for estimating gait parameters and characterizing gait performance to
assess the rehabilitation process of patients with gait disorders. Wang et al. [5] developed a
new IMU-based clinical gait assessment method. Their experiment extracted nine variables
from two calf-mounted IMUs and used them to quantify the patient’s gait deviation.
Based on these parameters, an IMU-based gait normal index (INI) was derived to assess
the overall gait performance. However, the use of sensors to recognize abnormal gait
behavior in patients with mobility impairments suffers from data drift problems and
wearing difficulties [5].

In recent years, inertial and pressure sensors have been widely used in hospitals and
nursing homes for analyzing patients’ gait [6]. However, such methods are suitable for
patients who have difficulty wearing sensors for data acquisition. Therefore, it is necessary
to explore contactless systems for diagnosing different behavioral disorders [7]. Kursun
et al. [2] proposed a method that combines the support vector machine (SVM) algorithm and
a recognition model for the preliminary diagnosis of patients with Parkinson’s symptoms.
Using acoustic data with the smallest deviation, the method can distinguish patients
with Parkinson’s disease from healthy people at an accuracy of 92.75%. Yaman et al. [1]
found through experiments that patients with Parkinson’s disease have poor verbal ability,
so they proposed a method in which SVM and k-nearest neighbors (KNN) algorithms
are used to obtain features from the Parkinson’s acoustic data set for the recognition of
Parkinson’s disease. The accuracy was calculated to be 91.25% and 92.33%, respectively,
by using the two algorithms. Sato et al. [8] obtained frozen gait and Magnetic step data of
Parkinson’s patients by using OP forward gait features. By analyzing the data curve, they
found patients with Parkinson’s disease have a different movement curve from healthy
people. Liu et al. [9] proposed a locally weighted discriminant-preserving projection
embedding ensemble algorithm to solve the problems of high noise and small sample size
with Parkinson’s disease data. The algorithm achieved improved accuracy in Parkinson’s
disease recognition. Studies have found that contactless methods can better differentiate
patients with Parkinson’s disease and healthy people.

However, there is still a lack of studies on the recognition of gait behavior differences
caused by diseases such as cerebral infarction, cervical compression, cerebellar lesions,
and lumbar disc herniation. When it comes to diagnosing a patient, it is necessary for the
doctor to first make a preliminary diagnosis of the type of disease that causes the abnormal
gait behavior.

Guo et al. [10] went a further step by using an OP model to assess six abnormal toe
types with a mobile 3D gait analysis system. Later, D’Antonio et al. [11] solved the problem
of information concealment in videos with a corrected OP model. They also used an IMU
sensor to calibrate the collected data, which verified the authenticity of features extracted
by the OP model. At present, SVM and KNN are among the mainstream algorithms for the
recognition of behavioral disorders. Chen et al. [12] used a new FKNN model to classify the
Parkinson’s data set and achieved an experimental accuracy of 96.07%. Hariharan et al. [13]
adopted a feature reduction/selection technique and a recognition algorithm to detect
Parkinson’s symptoms. The recognition process was performed using least squares SVM
(LS-SVM), probabilistic neural network (PNN), and general regression neural network
(GRNN), and the recognition accuracy was as high as 100%.

To sum up, most of these techniques emphasized the recognition accuracy of abnormal
gait behavior over the recognition efficiency. This means challenges remain to deploy
these techniques in devices in daily applications. When a traditional OP model is used,
in particular, it can be difficult to achieve real-time disease identification without the
support of powerful hardware. Therefore, we developed a novel method that can recognize
abnormal gait behavior accurately and efficiently. First, an ultra-lightweight OP model was
developed to enable much-increased efficiency at the price of a little bit lower accuracy.
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Then, based on the gait features obtained using the OP model, a simple 3D reconstruction
model was developed to supplement more accurate features. At last, some highly efficient
machine learning algorithms were used to recognize abnormal gait behavior. Our scheme
achieves a contactless recognition of abnormal gait behavior due to multiple types of
diseases compared to previous work.

Here is a summary of what we did and accomplished in this work:

1. We constructed a lightweight OP model with Depthwise Separable Convolution
for real-time extraction of abnormal gait features. This significantly reduced the
computing workload required for hardware-intensive devices.

2. We performed a 3D reconstruction on the 2D lower limb data extracted from subjects
and obtained a total of 11 abnormal gait features from that data. Then, we further
processed the extracted data to obtain step length features. These steps improved the
data structure and diversified feature types.

3. We used machine learning algorithms to filter and classify abnormal gait features to
the measurement of abnormal gait behavior caused by different diseases.

2. Experimental Method

2.1. Establishment of Experimental Models

Usually, the lower limb behavior of the human body is captured by a lightweight OP
model, which offers a quick solution to process video and image data in real time [11,14].

Our work used this model to identify the 2D joint coordinates of patients during
walking and to obtain their walking pose data by extracting the coordinates of their lower
limb joints [15,16]. This vision-based model eliminates the inertial drift problem with
traditional sensors, and its structure is illustrated in Figure 1. With the image stream data
to be processed by the OP model, the feature map F was obtained through the VGG19
network. Then, the data entered the dual-branch convolutional neural network in multiple
stages through the feature map F. The upper branch was used to predict the heat map of
the joint, which was obtained as the heat map S. The lower branch was used to predict the
affinity field of the joint. Each stage was further predicted, and finally, the joint heat map
and affinity field of the entire network were obtained after t times of recognition [14].

Figure 1. Structure of the OP model.

In Figure 1, ρt and ϕt are convolutional neural networks used to read features in stage
t to generate a joint heat map S1 = ρ1(F) and joint affinity field L1 = ϕ1(F); ρ1, ρt, ϕ1, ϕt

were composed of five convolution blocks and two 1 × 1 ones. The input for each stage
was the image feature F and the recognition result of the previous stage. St, Lt are the heat
map and affinity field of joint at stage t, respectively. Then, the convolutional network of
this stage was used to predict the joint heat map and joint affinity field of this stage. The
recognition process can be expressed as follows:

St = ρt(F, St−1, Lt−1), ∀t ≥ 2 (1)

Lt = ϕt(F, St−1, Lt−1) (2)
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To obtain the coordinates of the lower limbs for real-time gait recognition, a Depthwise
Separable Convolution structure, instead of the conventional convolution in VGG19, was
used in our experiment. This can significantly reduce the number of model parameters
required [17]. The size of all convolution kernels was set to 3 × 3, and the number of convo-
lution kernels increased with the number of layers. The Depthwise Separable Convolution
used different convolution kernels to convolve different channels, and decomposed the
ordinary convolution into two processes: Depthwise Convolution and Pointwise Convo-
lution, so as to decouple channel correlation and spatial correlation [17]. The Depthwise
Convolution process split the convolution kernel into single channels and convolved each
channel without changing the depth of the input feature image. The Pointwise Convolution
process was used to up- and down-dimension the feature map with 1 × 1 convolution. The
combination of these two processes made the model more lightweight. N conventional
convolution kernels of size DK × DK × M were equivalent to one Depthwise Convolution
and N Pointwise Convolutions. Therefore, the FLOPS and Params of the Depthwise Sepa-
rable Convolution were reduced to (1/N) + (1/ DK

2) conventional convolutions. Since there
were 16 convolutions of size 3 × 3 in VGG-19, the FLOPS and Params of the lightweight
OP model dropped to 17.36% of the original model.

A convolutional neural network with a smaller size and less computation was formed,
which was well-suited for mobile devices and enabled faster and more efficient extraction of
features from video stream data and reduced hardware requirements for model deployment.

2.2. 3D Construction of Lower Limbs

During data acquisition, the camera was located in the middle of the walking distance
of the person, at a distance of 3 m from the vertical position of the person. There was
a smaller angle between the video of the person during walking and the position of the
camera, as shown in Figure 2a. The computer displayed the knee angle in motion, the
velocity of the knee angle variation, and the acceleration of the knee angle variation. The
positions of the thighs, calves and feet in the video were mapped to a two-dimensional
(2D) plane. Therefore, errors were present in the length and angle data mapped in the
video, and traditional IMU sensors have demonstrated errors in the knee angle measured
by the OP [11,16,17]. As shown in Figure 2b,c, in the 3D space, there was an angle θ1 error
between the mapped thigh and the real thigh. The real knee angle is represented by θ2, and
the false knee angle of the mapped surface is represented by θ3.

Figure 2. (a) Data acquisition process. (b) The 3D spatial relationship between the real knee and the
mapped knee. (c) The lower limb reconstructed through the 2D data.
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Since the data output from the OP model was 2D data, the angle data output by the
leg needed to be reconstructed, and the reconstruction process is shown in Figure 2c. We
obtained all the position coordinates of the leg joints and generated length and angle data
by connecting the positions of the joint points. In the 2D image, L1, L2 and L5 denote length
data directly output by the OP model as extractable quantities, while L3 and L4 denote the
real leg lengths in space. In the experiment, the data of the person standing in the video
was used as the real leg length data. Finally, the 3D knee angle θ2 was obtained as follows:

cos θ2 =
L2

1 − L2
5 + L2

2 + 2
√

L2
3 − L2

1 ×
√

L2
4 − L2

2

2L3 × L4
(3)

3. Extraction of Step Length Features

Traditional gait features include multidimensional features such as step length, average
stride time, average pace time, average stride length, and the lowest knee angle [6,18]. With
the OP extraction model, we obtained abnormal gait features directly by intercepting each
gait cycle in the program. In addition, the left and right step length features needed to be
obtained by further processing the extracted data. Therefore, we designed an experiment
for step length data extraction by observing the walking pose of the subject, as shown in
Figure 3.

Figure 3. (a) The lightweight OP model captures the phases of the knee angle change during walking.
(b) Step length calculation process. (c) Step length correction process.

The human walking process mainly consists of forward, swing and fall, as shown in
Figure 3a. Patients with gait behavioral disorders generally walk with left and right swings
and rapid changes in step length. Therefore, step length data was extracted to serve as the
predictive features for the subsequent experiments.

The step length feature extraction process is shown in Figure 3b. The distance for
which a person walks one step with one foot is determined by the person’s leg length and
knee angle during walking [19]. When a person leans forward, the raised foot is affected by
the bending angle of the knee and moves forward. Taking the fixed angle of the step length
as the lowest knee angle, we designed an experiment to measure the walking distance of
a single person. We denoted the length of the thigh as Γ1, the length of the calf as Γ2, the
lowest knee angle as αmin, and the angle between the calf and the vertical direction of the
knee at the lowest knee angle as βmin.
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When the step length was completely determined by thigh length Γ1 and lowest knee
angle αmin, we obtained:

lα1 = Γ1 × cos(αmin − 90) (4)

lα1 represents the predicted real step. The predicted distances in Figure 3c represent
the time-varying movement distance curve fitted by this step method. As time went by, the
difference between the predicted real distance and the real value became larger. Therefore,
it was necessary to process the experimental data. It was found that the position coordinate
of the knee at the lowest angle did not accurately reflect the distance moved by a single
step during the real walking process.

When the step length was determined by thigh and calf lengths Γ1, Γ2 and knee angles
αmin and βmin, we obtained:

lα2 = Γ1 × cos(αmin − 90)− Γ2 × sin(βmin) (5)

The processed single-step step length data is also presented in Figure 3c. This data
was close to the real data. This demonstrated that this contactless step length measurement
method is scientifically feasible. In the experiment, left and right step lengths were used as
the features for classifying different types of abnormal gait behavior.

4. Analysis of Abnormal Gait Behavior

4.1. Analysis of Gait Characteristics for Different Diseases

In the medical field, behavioral disorders are mostly diagnosed in patients with
Parkinson’s disease, lumbar disc herniation, cerebral infarction, diabetes mellitus, and
cerebellar lesions. Stimulation of electrical muscle signals can cause abnormal gait when
walking. Therefore, there is a need to classify and assess these patients’ disorders in a
quantitative and contactless manner. In our experiments, we extracted gait data by asking
the subject to walk for a distance under an indoor camera. Then, using machine learning
algorithms, we achieved a preliminary diagnosis of these diseases.

Table 1 lists five different abnormal gaits that may be caused by behavioral disorders
and their characteristics. These characteristics can be used as the motor characteristics of
subjects who showed such abnormal behavioral symptoms in the experiment. Five types of
abnormal gait behaviors are caused by different types of diseases. When the walking stride
is small and the movement is stiff and slow, it is a manifestation of Parkinson’s disease.
Therefore, this scheme is convenient for doctors to pre-diagnose patients by classifying
abnormal gait.

Table 1. Characteristics of abnormal gait behavior for different diseases.

Gait Gait Characteristics Corresponding Types of Diseases

Magnetic step (or
Freezing gait)

The walking steps are small
and the movements are stiff

and slow.

This gait may indicate Parkinson’s
disease. The patient has symptoms

of tremor, stiff limbs, and slow
movement [20]

Mop step

The patient moves their left
and right legs at inconsistent
paces, and tends to walk by

dragging their feet.

This gait may indicate lumbar disc
herniation or cervical spondylitis

myelopathy. Due to nerve
compression, the patient has weak
muscle on one leg, and generally

drags one foot during walking [18]

Scissor Step
The patient tends to walk with
their toes facing inward and

their legs crossed.

This gait may indicate cerebral
palsy or spinal cord injury, which
can lead to impaired neurological

function and affect physical
activity [21]
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Table 1. Cont.

Gait Gait Characteristics Corresponding Types of Diseases

Intermittent
fragmentation

The patient experiences
lameness and often feels the
need to stop and rest due to
pain and numbness in legs.

This gait may indicate osteoarthritis,
lumbar spinal stenosis, vasculitis, or

diabetes [22]

Drunk step
The patient cannot walk in a

straight line and tend
to stagger.

This gait may indicate cerebral
hemorrhage, cerebral infarction,

brain tumor, or cerebellar lesions.
These diseases can cause cerebellar

damage or cerebellar
dysfunction [23].

4.2. Collection of Experimental Data

Due to sensitive neuromuscular changes, patient gait can serve as an important tool
for patient state prediction and classification, widely affecting most gait features such as
knee angle, step size, and stride length [24,25]. Exploring the gait changes caused by the
muscles caused by lesions can help to understand the gait changes and the rehabilitation
process of various diseases [26].

A total of eight subjects of different heights and weights (five males and three females)
were involved in this experiment for data collection. Based on the behavioral characteristics
of the disease in Table 1, the subjects were asked to imitate walking with a normal gait
and five abnormal gaits. All the subjects walked back and forth along a five-meter-long
experimental route. Five sets of experimental data were collected from each subject for
each gait. Through the method of data undersampling, the imbalanced data set becomes
balanced, and 40 experimental data are saved for each type of feature. The knee angle
changes as the subjects walked with different gaits are shown in Figure 4. During the
experiment, the subjects showed significant differences in knee angle changes among the
six gaits. The changes in the left and right knee angles during walking with abnormal gaits
suggested that the body was unbalanced.

Figure 4. Variation curves of left and right knee angles under different gait. (a) Standard walking.
(b) Mop step. (c) Drunk step. (d) Intermittent fragmentation. (e) Magnetic step. (f) Scissor step.
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4.3. Feature Screening

We set one step for each left and right leg as a motion cycle. By collecting and
processing the raw data, we obtained a total of 11 gait features, including left step length
(LSS), right step length (RSS), lowest left knee angle (LLK), lowest right knee angle (LRK),
average stride length (AS), average pace time (APT), average stride time (AST), variance of
right knee angle variation (VOR), variance of left knee angle variation (VOL), average value
of knee angular velocity (KAV), and average value of knee angular acceleration (KAA).
We performed a 3D reconstruction on four of these features: LSS, RSS, LLK, and LRK. The
four feature statistics of the six gaits with large differences are shown in Figure 5. Through
statistical data, it is found that there are large differences in the features of different gait
types, which contributes to higher accuracy of classification.

Figure 5. Difference distribution statistics of six gaits. (Features included are LLK, LRK, LSS, RSS).

Admittedly, accidental errors and interfering characteristics were present in this exper-
imental data. Therefore, before classifying abnormal gait behavior, we screened the feature
data and obtained the importance scores of each feature using the XGBoost algorithm [27],
as shown in Figure 6. (After GridSearch, it is determined that the parameter combination
is booster is gbtree, the learning rate is 0.3, tree depth is 6, and the maximum number of
iterations is 100).

Figure 6. 2D and 3D feature importance scores after XGBoost screening.

From Figure 5, five of the eleven features, i.e., AST, KAV, APT, RSS, and LSS, have
relatively high importance scores in both 2D and 3D conditions. For the four features
processed with 3D reconstruction, the models showed increased importance scores on LSS,
RSS, LLK and a decreased importance score on LRK. For models containing 3D features,
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AST achieved the highest importance score. For models containing 2D features, LRK
achieved the highest importance score. The experimental results showed that the overall
model performance varied greatly with the type of feature used in the experiment. Some
features produced low importance scores, indicating that these features did not contribute
much to the overall model performance due to the masking problem and the randomness
of different subjects during data collection. Better results were achieved for AST and KAV
than for the other features, indicating that the average stride time and knee angular velocity
played a bigger role in assessing body balance during walking.

XGBoost is used as a key machine learning algorithm for feature importance ranking,
which can eliminate unfavorable features of machine learning models [27–29]. As shown
in Table 2, by reducing the low-scoring features in order of importance scores, we obtained
the acceptance scores for different numbers of features. With 3D features, the acceptance
scores decreased as the number of features decreased in the range of 1~8. The best score of
0.9306 was achieved with 11 or 8 features. For the 2D features, the best score was achieved
with 11 features, and the score basically decreased as the number of features decreased.
Since the same score was obtained with 8 or 11 3D gait features, the abnormal gait behavior
is recognized with 8 and 11 features, respectively.

Table 2. Acceptance scores for different numbers of features.

Number of Features Score-2D Score-3D

11 0.9167 0.9306
10 0.9028 0.8889
9 0.8889 0.9167
8 0.8472 0.9306
7 0.8611 0.8611
6 0.8472 0.8750
5 0.8056 0.8333
4 0.7639 0.6944
3 0.7083 0.7083
2 0.5556 0.5833
1 0.3333 0.4028

5. Discussion

The five abnormal gaits were mainly determined by different types of gait behavioral
disorders. In our experiment, we used five recognition methods, i.e., Gradient Boosting
(GB), KNeighbors (KN), Multilayer Perception (MLP), Random Forest (RF), and SVM,
to classify the six gait features [28–33]. The parameter settings of the machine learning
model obtained by GridSearch are shown in Table 3. Finally, 2D adopts 11 features for
classification, and 3D adopts 8 and 11 features for classification, respectively, as shown
in Table 4. For the multi-classification problem of abnormal gait behavior, we introduce
the evaluation index Macro-average method and use Recall and Precision to express the
classification results.

Table 3. Parameter combinations for machine learning models.

Machine Learning
Algorithms

Parameters

GB α = 10, loss function = deviance, subsample = 1.0.
KN Weights = distance, n = 4, distance measure = 1.

MLP Activation = ReLU, χ = (50,50), optimizer = Adam, α = 800, γ = 1.
RF Number of decision trees = 57.

SVM Kernel = ‘linear’, Kernel coefficient = 1.
n is the number of neighbors, α is the maximum number of iterations, γ is the state of the random
number generator.
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Table 4. Recognition results obtained for 8 and 11 features using five machine learning algorithms.

Machine Learning
Algorithms

2D—11 Features 3D—8 Features 3D—11 Features

Recall Precision Recall Precision Recall Precision

GB 0.7661 0.7778 0.8333 0.8611 0.8194 0.8472
KN 0.7211 0.7361 0.7500 0.7778 0.7533 0.7638

MLP 0.7557 0.7778 0.7944 0.8055 0.8344 0.8472
RF 0.8888 0.8918 0.9167 0.9213 0.9032 0.9048

SVM 0.7881 0.7918 0.8917 0.9027 0.8571 0.8611

TP represents the number of samples that predict the correct gait as the correct gait;
FN represents the number of samples that predict the correct gait as the incorrect gait; FP
represents the number of samples that predict the incorrect gait as the correct gait; TN
represents the number of samples that predict incorrect gait as incorrect gait;

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Precisionmacro =
1
n

n

∑
i=1

Precisioni (8)

Recallmacro =
1
n

n

∑
i=1

Recalli (9)

In this experiment, we used five machine learning algorithms to classify the feature
data of abnormal gait behavior. As seen in Table 3, the recognition accuracies were improved
after the 3D reconstruction of some features extracted from the OP model, with the highest
precisions being 89.18% for 2D features and 92.13% for 3D features. As shown in Figure 7,
high recognition accuracy was achieved for all gaits using random forest (RF). The lower
recognition accuracy of abnormal gait types also reached 83%, and the highest recognition
can reach 100%. The different gait recognition accuracy of 3D features has been improved
to varying degrees, indicating that abnormal gait features show more obvious differences
after 3D reconstruction. The highest recognition accuracy for abnormal gait (Magnetic step)
caused by Parkinson’s disease is 92%. Under the interference of a large number of different
abnormal gaits, Parkinson’s gait achieved the same level of accuracy as previous work [1,2].
The overall experimental results were as expected, and high recognition accuracy was
achieved for different types of abnormal gaits.

Figure 7. Best recognition precisions for 2D and 3D features.
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This work realizes the lightweight of the model and quickly completes the gait recog-
nition of volunteers, which overcomes the problems caused by wearing sensors and in-
clude multiple types of abnormal gait diseases and is no longer limited to Parkinson’s [1].
However, with the introduction of a more abnormal gait, there may be some impact on
Parkinson’s recognition.

6. Conclusions

In this paper, we presented a lightweight contactless pose sensing scheme for abnor-
mal gait behavior recognition. With this scheme, a lightweight OP model was used to
extract abnormal gait features in experiments and satisfactory results were achieved for the
recognition of diseases with abnormal gait behavior. The scheme offered a more lightweight
and less hardware-intensive alternative to traditional approaches for the recognition of
abnormal behavior in the elderly. Specifically, we used Depthwise Separable Convolution
to make the OP model more lightweight, with its FLOPs and Params reduced to 17.36%
of the original model. This design reduced the hardware requirements for the model and
allowed for real-time contactless recognition of abnormal gait behavior by cameras.

For the data collected by the OP model, we first performed 3D reconstruction on
the lower limb data to obtain the real walking data. Then, we screened out the invalid
features from the acquired features, completed feature importance analysis and filtered
out gait features with poor results. Finally, we used five machine learning algorithms
to classify the gait data and performed disease type recognition based on abnormal gait
features. In the experiments, the RF algorithm achieved the best recognition precisions,
which was 92.13%. The experiments verified that our proposed scheme can classify diseases
with abnormal gait behavior accurately and efficiently. This scheme can assist doctors to
recognize patient lesions by different abnormal gait behavior caused by different diseases.
With this scheme, we can continue to study high-precision quantitative evaluation of such
diseases in the future.
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