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Zusammenfassung

Viele Verbundwerkstoffe weisen ein stark nichtlineares und inelastisches
Materialverhalten auf. Hierbei hängt das makroskopische mechanische
Verhalten von der geometrischen Komposition der Einzelphasen und
deren individuelle Materialverhalten auf der mikroskopischen Skala
ab. Multiskalensimulationen sind Werkzeuge, um solche gekoppelten
Probleme zu lösen. Konventionelle Ansätze, die beispielsweise die
Finite Elemente Methode zur Diskretisierung und dem gekoppelten
Lösen des makroskopischen und mikroskopischen Problems verwenden,
fehlen jedoch die numerische Effizienz, um auch Probleme industrieller
Komplexität auf handelsüblicher Hardware berechnen zu können.

Diese Arbeit untersucht einen datengetriebenen und mikromechanisch
inspirierten Homogenisierungsansatz, der als Deep Material Networks
(DMN) bezeichnet wird. In Zweiskalensimulationen fungieren DMNs
als Ersatzmodelle für das mikroskopische Problem. Hierdurch lässt sich
Mikrostrukturinformation in eine makroskopische Simulation integri-
eren.

Zu Beginn dieser Arbeit werden die mathematischen Grundlagen der
DMNs gelegt. Das auf linear elastischen Vorberechnungen beruhende
Training und die mit außerordentlicher Genauigkeit mögliche Extrap-
olation auf nichtlineare und inelastische Problemen wird analysiert.
Hierfür werden Techniken aus der Theorie dynamischer Systeme ver-
wendet und gezeigt, dass das effektive inelastische Materialverhalten
jeder Mikrostruktur in erster Ordnung in der Dehnrate durch lineare
Lokalisierung bestimmt wird.
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Zusammenfassung

Im Weiteren wird eine neue DMN-Formulierung vorgestellt, die sich
durch eine reduzierte Anzahl von Freiheitsgraden auszeichnet und
somit die Robustheit der Parameteridentifikation verbessert. Ein ro-
bustes und effizientes Verfahren zum Lösen von nichtlinearen DMNs
wird vorgestellt, welches die Simulation von komplexen makroskopis-
chen Strukturen mit geringem Berechnungsaufwand ermöglicht. Weit-
erhin wird gezeigt, dass DMNs sowohl thermodynamische Konsis-
tenz als auch Monotonie der Einzelphasen erhalten. Beides sind es-
senzielle Eigenschaften, die von vielen anderen datengetriebenen Ho-
mogenisierungsansätzen nicht ohne Weiteres gewährleistet werden kön-
nen.

Ein neuer Interpolationsansatz wird vorgestellt, der die Berücksichti-
gung von fluktuierenden Mikrostrukturcharakteristiken in makroskopis-
chen Simulationen ermöglicht. Die Effizienz des Ansatzes wird demon-
striert, indem die komplette Prozesskette eines Bauteils aus kurzfaserver-
stärktem Polyamid simuliert wird. Im Weiteren wir der Ansatz verwen-
det, um durch den Herstellungsprozess bedingte Unsicherheiten in
Bauteilen aus Sheet Molding Compound simulativ zu ermitteln.

DMNs werden erweitert, um mehrskalige, thermomechanisch gekop-
pelte Problemstellungen zu berechnen. Die thermomechanische Kop-
plung zeichnet sich durch die Kopplung der makroskopischen absoluten
Temperatur auf das mechanische Verhalten der Einzelphasen auf der
mikroskopischen Skala aus. Weiterhin sind deformationsinduzierte
Änderungen der makroskopischen absoluten Temperatur als Folge von
mechanischer Dissipation und Entropieänderungen auf der mikroskopis-
chen Skala zu beobachten. Es wird gezeigt, dass der gewählte Ansatz
Selbsterwärmungseffekte in kurzfaserverstärkten Polymeren mit hoher
Genauigkeit vorhersagt und demonstriert, dass die Berücksichtigung
solcher Effekte unerlässlich für Multiskalensimulationen von polymer-
basierten Verbundwerkstoffen ist.
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Summary

Many composite materials exhibit a highly nonlinear and inelastic ma-
terial behavior. In this context, the macroscopic mechanical behavior
depends on the geometric composition of the phases and their individual
material behavior on the microscopic scale. Concurrent multiscale sim-
ulation approaches are powerful tools to solve such coupled problems.
However, conventional approaches, such as using the finite element
method to discretize and solve the macroscopic and microscopic problem
in a coupled fashion, lack the numerical efficiency to solve problems of
industrial complexity on commodity hardware.

In this thesis, we investigate the data-driven and micromechanics-
inspired homogenization approach called deep material networks
(DMN). In two-scale simulations, DMNs act as surrogate models for the
microscopic problem. This allows for microstructure information to be
integrated into a macroscopic simulation.

At the beginning of this thesis, we lay the mathematical foundation of
DMNs. We analyze the training based on linear elastic precomputa-
tions and the extrapolation to nonlinear and inelastic problems with
extraordinary accuracy. For this purpose, techniques from dynamical
systems theory are used, and it is shown that the effective inelastic
material behavior of any microstructure is determined by linear elastic
localization to first order in the strain rate.

Furthermore, we present a new DMN formulation which is charac-
terized by a reduced number of degrees of freedom, thus improving
the robustness of the parameter identification process. We present a
robust and efficient solution technique for nonlinear DMNs allowing
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Summary

for the simulation of complex macroscopic structures with minimal
computational effort. In addition, it is shown that DMNs preserve both
thermodynamic consistency and monotonicity of the phases. Both are
essential properties that typically cannot be guaranteed by many other
data-driven homogenization approaches.

A new interpolation technique is presented that enables the considera-
tion of fluctuating microstructure characteristics in macroscopic simula-
tions. We demonstrate the efficiency of the approach by considering a
complete process chain of a component made of a short fiber reinforced
polyamide. Furthermore, the approach is used to determine process-
induced uncertainties in sheet molding compound components.

We extend the DMN framework to treat thermomechanically coupled
multiscale problems. The thermomechanical coupling is characterized by
the coupling of the macroscopic absolute temperature to the mechanical
behavior of the constituents on the microscopic scale. Furthermore,
deformation-induced changes of the macroscopic absolute temperature
as a consequence of mechanical dissipation and entropy changes on
the microscopic scale can be observed. We show that our approach
predicts self-heating effects in short fiber reinforced polymers with high
accuracy and demonstrate that considering such effects is essential for
the multiscale analysis of polymer-based composite materials.

iv
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Chapter 1

Introduction1

1.1 Motivation

1.1.1 On the need for multiscale simulation approaches

Driven by the need for short development cycles, industrial product de-
velopment is relying more and more on numerical methods. Computer-
aided engineering (CAE) (Rix et al., 1995) bundles a set of powerful tools
for simulation and optimization of virtual products with the main goal
of reducing the need for physical prototyping and testing to lower costs
as well as resource expenditure. Restricting to solid mechanics, the finite
element method (FEM) (Fish and Belytschko, 2008) is arguably one of
the most commonly used tools for simulating the deformation of solid
structures and therefore indispensable for the weight-optimized virtual
design of products. Owing its popularity to its versatility, the FEM
allows for treating complex geometries as well as enables multiphysics
simulations, e.g., considering the coupling of thermal and mechanical
problems.

1 This chapter, and in particular Section 1.2, is based in parts on the introductions of
the publications “On the micromechanics of deep material networks” (Gajek et al.,
2020), “An FE-DMN method for the multiscale analysis of short fiber reinforced plastic
components” (Gajek et al., 2021a), “Efficient two-scale simulations of microstructured
materials using deep material networks” (Gajek et al., 2021b) and “An FE-DMN method
for the multiscale analysis of thermomechanical composites” (Gajek et al., 2022).
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1 Introduction

In addition to kinematic relations, universal balance equations and
problem-dependent boundary conditions, the FEM requires constitutive
laws which capture the material behavior with sufficient accuracy. For
material modeling, opposing objectives need to be considered. For
instance, a material law should be sufficiently accurate, even for complex
multiaxial loading, it should be robust but also quick to evaluate.

A widely used modeling approach, still enjoying great popularity in
industry, are phenomenological material models, see, e.g., v. Mises
(1913), Hill (1948), Gurson (1977), de Souza Neto et al. (2008) or Dyck
and Böhlke (2020) for modeling isotropic and anisotropic plasticity or
Bere et al. (2012), Camanho et al. (2013) and Guo and Wu (1999) for
phenomenological models of fracture. A phenomenological material
model itself is postulated and does not necessarily emerge from physical
considerations. The unknown parameters of the model are determined
based on real or virtual experiments by minimizing an error function.
Indeed, these approaches are typically fast and robust if properly de-
signed. However, they are highly problem-dependent, often need to
be identified in a time-consuming and cost-intensive way, and require
knowledge and experience to model nonlinear effects, especially if the
underlying physical mechanisms are not yet fully understood.

To complicate matters, many structural materials are, in fact, strongly
inhomogeneous. Typically, these inhomogeneities manifest at length
scales much smaller than the macroscopic component level. The in-
homogeneities on the microscopic scale are a product of the internal
composition of the material from multiple phases, hence the name
composite materials. In addition, many common engineering materials
are characterized by a two-way thermomechanical coupling. More
precisely, variations in the macroscopic temperature may affect the
mechanical performance of the phases on the lower scale, e.g., by thermal
softening commonly observed in polymers. Microscopic deformations
may lead to changes in the macroscopic temperature as well, for instance,

2



1.1 Motivation

via changes in entropy or energy dissipation. Consequently, considering
the geometry of the microstructure and also taking into account thermo-
mechanically coupled phases for predicting the mechanical response of
composite materials is a daunting task.

To give an example with a complexity routinely encountered in industrial
applications, Figure 1.1a shows a connecting rod made of a metal matrix
composite, i.e., an aluminum matrix reinforced by 30 vol% ceramic
particles. The ceramic particles have a diameter in the micrometer range
and thus are much smaller than the component itself. The material
properties of aluminum may be considered constant for non-isothermal
processes, at least as long as the temperature remains well below the
melting point. Yet, aluminum tends to self-heat as a result of plastic
deformation, which in turn might lead to thermally induced eigenstrains
both on the microscopic and macroscopic scale.

(a) Connecting rod made of a metal matrix
composite (Gajek et al., 2021b)

(b) Drone frame made of a short fiber
reinforced polyamide (Gajek et al., 2021a)

Figure 1.1: Two examples of macroscopic components with a complex microstructure

3



1 Introduction

As a second example, we consider a short fiber reinforced plastic (SFRP)
component. Owing to their formability, short cycle times and low
manufacturing costs, SFRP components are commonly used for semi-
structural applications. Typically, they comprise fibers with a diameter
in the micrometer range which are embedded into a polymer matrix.
Usually fillers are added and pores may also be observed. Figure 1.1b
depicts an injection molded quadcopter frame made of a short glass
fiber reinforced polyamide containing 16 vol% fibers with an aspect
ratio2 of 20. The microstructure characteristics, in this example the
fiber orientation and the fiber volume fraction, strongly depend on the
manufacturing process and fluctuate throughout the component. Both
microstructure characteristics have a significant influence on the material
behavior, e.g., an anisotropic fiber orientation is expected to lead to an
anisotropic material behavior of the composite. In addition, dissipation-
induced self-heating is commonly observed for thermoplastic polymers
subjected to cyclic loading. As such polymers are particularly sensitive
to temperature fluctuations, especially in the vicinity of their glass
transition temperature, deformation-induced self-heating effects may
significantly influence the mechanical properties of the composite and
even lead to premature failure (Katunin, 2019).

A monolithic finite element model of a structural component, also
resolving the microstructure heterogeneities, is typically not feasible with
today’s computational power. As a remedy, many composite materials,
including the examples from above, are idealized as homogeneous on the
macroscopic scale. Of interest is the effective material behavior, which
is obtained by homogenization and which accounts for the geometric
composition of the microstructure and the thermomechanically coupled
material behavior of the constituents on the lower scale.

2 The aspect ratio measures the length to diameter ratio.

4



1.1 Motivation

1.1.2 Key questions of the present work

In this thesis, we restrict to first-order asymptotic homogenization, see
also Bensoussan et al. (1978), Sanchez-Palencia (1980) or Bakhvalov
and Panasenko (1989) for an overview. Considering thermomechan-
ically coupled constituents, Chatzigeorgiou et al. (2016) applied first-
order asymptotic homogenization to composites of small-strain non-
isothermal generalized standard materials (Halphen and Nguyen, 1975)
and deduced the governing equation on the microscopic scale, the ther-
momechanical cell problem. By solving the thermomechanical cell problem
on a suitable microstructure model, the effective, non-isothermal model
of the composite emerges naturally.

Using homogenization to obtain an effective material model has the
distinct advantage that effects arising from the microstructure are im-
plicitly accounted for. Furthermore, the thermomechanical coupling of
the phases may be considered in a natural way.

However, using homogenization introduces additional difficulties,
which might be condensed into the following four questions:

1. How can the cell problem be solved efficiently and robustly, or at
least the effective material response be approximated with sufficient
accuracy, both for arbitrarily nonlinear and inelastic isothermal and
non-isothermal phases and complex microstructure morphologies?

2. How can such a method be incorporated into a state-of-the-art FE
solver, preferably only relying on the provided interfaces?

3. How can spatially varying microstructure characteristics be ac-
counted for?

4. How can the two-way thermomechanical coupling between the micro-
scopic and macroscopic scale be included into a concurrent two-scale
simulation?

To address Question 1, different techniques have been developed for
solving the cell problem, ranging from simple analytical approximations

5



1 Introduction

to complicated numerical methods. For instance, analytical homoge-
nization techniques rely on closed-form solutions of the cell problem
which may be evaluated cheaply and thus be included in a component
scale simulation. Typically, this comes at the cost of using simplifying
micromechanical assumptions, e.g., Eshelby’s (1957; 1959) solution is
only applicable to an isotropic elastic matrix and assumes an infinite
domain. Other commonly used analytical homogenization techniques,
suitable for elastic as well as inelastic materials, are, e.g., the Mori-Tanaka
method (Mori and Tanaka, 1973; Stránský et al., 2011; Kehrer et al., 2020),
the self-consistent method (Hill, 1965; Hutchinson, 1976; Nebozhyn et al.,
2001), the differential scheme (Norris, 1985) or the Hashin-Shtrikman
lower and upper bounds (Hashin and Shtrikman, 1961; 1962; Hashin,
1970; Neumann and Böhlke, 2016; Kehrer et al., 2020). Since analytical
homogenization techniques typically depend on simplifying assump-
tions regarding the statistical properties of the microstructure, they are
not suitable for problems with complex microstructure morphologies,
complex interactions between the material constituents or a highly
nonlinear material behavior of the phases. Also, for heterogeneous
materials with a morphology that strongly differs from matrix-inclusion
microstructures, analytical methods may yield poor results, see, e.g.,
Schneider et al. (2018) and Ettemeyer et al. (2020) for examples of such
structures.

To consider composites with a complex microstructure and highly non-
linear and inelastic constituents, alternative strategies need to be sought.
Here, the major challenge lies with considering internal variables, which
encode the deformation history of inelastic materials. As internal vari-
ables live naturally on the microscopic scale, they cannot be, in general,
“homogenized” to the macroscopic scale. As a remedy, multiscale com-
putational homogenization offers a set of powerful tools for bridging
both scales.
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1.1.3 Concluding remarks

Before recapitulating the state of the art in multiscale computational
homogenization, we finish with some concluding remarks. Using com-
putational homogenization techniques requires an accurate description
of the microstructure. In principle, microstructure data may be obtained
directly from micro computed tomography (𝜇CT) scans, see, e.g., de
Paiva et al. (1996), Shen et al. (2004a) or Schöttl et al. (2020). Typically,
operating directly on 𝜇CT data is a challenging task for numerous
reasons, i.e., high costs for data acquisition, necessary data cleansing,
influence of randomness and lack of periodicity. As a remedy, artificial
microstructures may be used, which serve as substitutes for real mi-
crostructures, and for which essential microstructure characteristics can
be controlled, e.g., the fiber volume fraction and fiber orientation in the
case of SFRP.

In this thesis, different microstructure generation algorithms are used
to obtain realistic microstructure models for different classes of com-
posite materials. For instance, the sequential addition and migration
method of Schneider (2017); Mehta and Schneider (2022) for generating
short fiber reinforced plastic microstructures, see Figure 1.1b, the RSA-
type algorithm of Görthofer et al. (2020) for generating sheet molding
compound composite microstructures, and the mechanical contraction
method of Williams and Philipse (2003) for generating particle reinforced
microstructures, see Figure 1.1a, proved to be powerful tools. Note that
microstructure generation is not the focus of this work, we refer the
reader to Bargmann et al. (2018) for more information. Furthermore,
for efficient stochastic microstructure generation and challenges arising
from dealing with randomness, we refer to Novák et al. (2012; 2013) and
Doškář et al. (2014; 2020) for microstructure generation and compression
based on Wang tiles.
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1.2 State of the art

1.2.1 Concurrent two-scale simulations

FE2 methods, introduced by Renard and Marmonier (1987) and sub-
sequently refined by Smit et al. (1998), Feyel (1999; 2003) and Feyel
and Chaboche (2000), furnish each Gauss point of the macroscopic
finite element model with a finite element model of the microstructure
for which the (thermomechanical) cell problem is solved. Thus, the
evolution of the internal variables is accounted for. The FE2 method
for thermomechanical composites was investigated, for instance, in
the context of thermo-elastoplasticity (Özdemir et al., 2008b;a), phase
transforming polycrystals under dynamic loading (Sengupta et al., 2012)
or single-crystal thermo-elastoviscoplasticity (Li et al., 2019). Recently,
Tikarrouchine et al. (2019) investigated a short fiber reinforced composite
in a concurrent two-scale setting accounting for heat conduction and
convection but temperature-independent material properties.

To improve time to solution for solving the (discretized) cell problem,
fast Fourier transform (FFT) based micromechanics as envisioned by
Moulinec and Suquet (1994; 1998) may be used. For instance, Wicht et al.
(2020b) proposed an efficient, fully implicit FFT-based solution scheme
for thermomechanically coupled problems. See also the recent review of
Schneider (2021) for a comprehensive overview of discretizations and
solver technologies used in FFT-based computational homogenization.
In the concurrent multiscale setting, FFT-based micromechanics gives
rise to the FE-FFT method (Spahn et al., 2014; Kochmann et al., 2016;
2018).

The FE2 and the FE-FFT represent powerful and robust frameworks
for solving the cell problem in a thermomechanically coupled two-
scale setting, effectively addressing Questions 1, 2 and 4. However,
considering Question 3 might prove challenging, especially from a point
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of view of memory consumption. Furthermore, despite recent progress
in computational efficiency and parallel computing strategies, see Geers
et al. (2010) and Matouš et al. (2017) for overviews, concurrent multiscale
methods with full-field models on the microscopic scale are typically
too computationally demanding for treating two-scale problems of
industrial complexity as presented in Figure 1.1a and Figure 1.1b.

1.2.2 Model order reduction techniques

Based on the insight that for such multiscale techniques the cell problem
has to be solved repeatedly, several techniques have been developed to
accelerate its solution. In this context, the cell problem is considered as a
parametric partial differential equation (PDE), i.e., a PDE which is solved
repeatedly for slightly different input parameters. As such methods aim
at providing local solution fields, they are of localization type and make
use of model order reduction techniques.

As a prototype for methods of localization type and motivated by
classical mean-field methods, the transformation field analysis (TFA) was
proposed by Dvorak and Benveniste (1992); Dvorak et al. (1994a;b). The
TFA applies to small strain (visco-)plastic material models and assumes
the inelastic strains to be piece-wise uniform on specific subdomains,
and accounts for the resulting elastic deformations via strain localization
tensors. In this way, effective models with a finite number of internal
variables arise, see also Chaboche et al. (2005). Applications include
damage in composites (Chaboche et al., 2001), SiC/Ti composites (Car-
rere et al., 2004) and shape-memory alloys (Marfia, 2005; Marfia and
Sacco, 2005; 2007).

Originally restricted to materials based on Hooke’s law with eigenstrain,
Liu et al. (2016; 2018a;b); Yu et al. (2018) introduced the self-consistent
clustering analysis (SCA), an extension of the TFA, applicable to any
kind of material law. The SCA is inspired by the variational principle of
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Hashin and Shtrikman (1961; 1962) as pointed out by Wulfinghoff et al.
(2018).

Albeit applicable to general material laws, both TFA and SCA exhibit a
very slow convergence rate in terms of the number of clusters (Chaboche
et al., 2005). This phenomenon is intrinsically rooted in the weak approx-
imation capabilities of piecewise constant functions (Schneider, 2019b).
To overcome this limitation, the non-uniform transformation field analy-
sis (NTFA) was introduced by Michel and Suquet (2003), relying upon
problem-dependent inelastic basis functions and inspired by modern,
nonlinear variational estimates (Ponte Castañeda and Suquet, 1997). For
the NTFA, the approximation errors of the fields can be made as small
as desired. However, the difficulty is shifted to efficiently evaluating
the material law (Fritzen and Leuschner, 2013), i.e., the free energy and
the force potential. As a remedy, series expansions of the force poten-
tial (Michel and Suquet, 2016a;b; 2017), a GPU implementation (Fritzen
et al., 2014) or using dedicated "reducible" models (Köbler et al., 2021;
Magino et al., 2022a;b) were proposed. Another difficulty is the selection
strategy for the basis functions (Fritzen and Böhlke, 2013; Largenton
et al., 2014), as they have to be chosen in advance.

The TFA, SCA or NTFA can be incorporated into a concurrent two-scale
framework giving rise to the FE2R (R for reduced) method (Fritzen and
Hodapp, 2016; Fritzen and Böhlke, 2011). To avoid identifying and
storing a reduced order model (ROM) for each Gaussian point, Köbler
et al. (2018) proposed the fiber orientation interpolation for the analysis
of SFRP, which, by interpolating the effective stresses of different ROMs,
allows to take into account the spatially varying fiber orientation on
the macroscopic scale. However, following this approach comes at the
cost of three stress evaluations for each Gaussian point and time step.
Furthermore, the TFA, SCA and NTFA allow for incorporating thermo-
mechanical loading, thermal eigenstrains and temperature-dependent
material parameters, see, e.g., Mojumder et al. (2021). However, they typ-
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ically do not consider the back-coupling of the mechanical deformation
onto the temperature evolution in the composite.

1.2.3 Machine learning approaches

In recent years, phenomenological modeling approaches gained new mo-
mentum, benefiting from advancements in machine learning techniques.
Such methods dispense with local solution fields, but approximate the
effective mechanical properties directly. Motivated by the high regularity
of the effective stress, a machine learning model, preferably an artificial
neural network3 (ANN), is identified based on some labeled training
data, e.g., sampled effective stress-strain paths. Such approaches come
with the distinct advantage that a specific form of the model, except
for choosing suitable hyperparameters, does not need to be supplied
a priori. Typically, the functions to be approximated are defined on a
high-dimensional domain of interest, constituting the primary difficulty
to be overcome for these methods.

For directly approximating effective quantities, a number of works
address training artificial neural networks to approximate the effective
elastic energy of a medium and using automatic differentiation for
obtaining the effective stress, see Yvonnet et al. (2009; 2013), Le et al.
(2015), Nguyen-Thanh et al. (2019) and Shen et al. (2004b). In addition,
the regularity of the effective stress facilitates the direct approximation
of the stress-strain relationship of inelastic problems, see the works of
Jadid (1997), Penumadu and Zhao (1999) or Srinivasu et al. (2012) for
different approaches. By considering the temperature as an additional
degree of freedom of the feature space, ANNs can be extended to

3 Alternative approaches, for instance, support vector machine regression (Zhao et al.,
2014; Zhou and Shen, 2015) was successfully applied to approximate the effective
stress-strain relationship of microstructures. However, due to their greater flexibility, we
restrict to artificial neural networks and related approaches in this section.
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thermomechanical problems, see for example the works of Ji et al. (2011)
or Li et al. (2012).

However, using vanilla ANNs for predicting the effective properties
comes with two significant drawbacks. For a start, the capabilities to
extrapolate beyond the training domain is limited, in general. Secondly,
the underlying physical principles, e.g., thermodynamic consistency
or preservation of stress-strain monotonicity, may be violated unless
specifically accounted for.

As a remedy, physics-informed neural networks (PINN) (Raissi et al.,
2019) were proposed. For PINNs, the solution field of a PDE is approx-
imated by an artificial neural network. The PDE-error, evaluated at
certain collocation points, is added to the loss to account for the inherent
physics of the problem. For a non-exhaustive overview, we refer to
Zhu et al. (2021) for applications in additive manufacturing simulations,
to Wessels et al. (2020) for treating free surface flows and to Henkes
et al. (2022) for investigating applications in solid mechanics. Still, some
challenges have to be resolved. For instance, as the inherent physics of
a problem is only accounted for in a soft way, it might not always be
fulfilled. Furthermore, choosing suitable collocation points might be
challenging and, as a product of globally approximating the solution
of a PDE, PINNs may have difficulties in displaying localized effects
or capturing strong nonlinear effects. As a remedy, adaptive training
strategies and domain decompositions were studied, see Henkes et al.
(2022).

To account for physical principles in a hard way, e.g., material objectivity
or ellipticity, Fernández et al. (2021) proposed physics-augmented neural
networks. They showed that accounting for the physics of a problem
implicitly greatly improves the results. Physics-augmented neural net-
works have been applied to cubic beam lattice unit cells (Fernández et al.,
2021; 2022; Klein et al., 2022) and were also investigated in a two-scale
setting by Gärtner et al. (2021).
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The previously mentioned approaches do not offer a natural way to
consider history dependence as the problem of accounting for internal
variables appears to be unresolved. Motivated by natural language
processing, recurrent neural networks (RNN) may provide a framework
for incorporating such history dependence into the approximation of
the stress-strain relationship, see Mozaffar et al. (2019) and Koeppe et al.
(2019). Gorji et al. (2020) demonstrated that RNNs are able to capture
effects such as the Bauschinger effect, permanent softening or latent
hardening in the context of elastoplasticity.

As an alternative approach for treating inelastic behavior, Masi et al.
(2021b;a) introduced thermodynamics-based artificial neural networks
(TANN). In their approach, they rely on approximating the free energy
by means of an artificial neural network. In addition, they use a second
neural network to account for the evolution of internal variables. Their
findings indicate that the predictive capabilities of TANNs outperform
those of standard ANNs.

ANNs may be used in a concurrent two-scale setting both for isothermal
and non-isothermal problems, see, e.g., Acuna et al. (2020) or Fritzen
et al. (2019). Also, RNNs may be employed in a multiscale setting, see
Ghavamian and Simone (2019), Xu et al. (2021) and Wu et al. (2020).
PINNs may also be used to accelerate a two-scale concurrent simulation
giving rise to the FE-ANN method as proposed by Kalina et al. (2022).
Although only studied on rather simple geometries, TANNs were also
investigated in a two-scale setting by Masi and Stefanou (2022).

Note that using, for instance, an ANN as an effective material model in a
two-scale simulation may introduce severe numerical robustness issues.
More precisely, local stress peaks, typically occurring in the vicinity
of notches, may cause the surrogate model to be evaluated outside
of its training domain, which in turn may lead to thermodynamical
inconsistent effective properties and thus divergence of the macroscopic
simulation, see Fritzen et al. (2019) for a discussion. Increasing the mesh
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density may even increase this effect. Also, the approaches mentioned
above only consider a one-way thermomechanical coupling, i.e., from
the temperature onto the effective properties, and not vice versa.

1.2.4 Deep material networks

Applying the concepts of deep learning in a more micromechanics-aware
context, Liu et al. (2019a) and Liu and Wu (2019) introduced a data driven
modeling approach based on an explicit microstructure model consisting
of hierarchical laminates. In analogy to deep artificial neural networks,
they called such a model a deep material network (DMN). To be more
precise, they consider an 𝑁 -phase DMN to be an 𝑁 -ary tree of 𝑁 -phase
laminates as nodes with intermittent rotations associated to the edges of
the tree.

Instead of approximating the effective energy or the effective stress-
strain relationship, DMNs seek an approximation of the underlying
microstructure by means of hierarchical laminates. In this sense, DMNs
may be regarded as statistically similar representative volume elements
(Balzani et al., 2014; Scheunemann et al., 2015), i.e., they may reflect, at
least on an abstract level, the topology of the microstructure which they
serve as a surrogate for (Dey et al., 2022b). As a byproduct of seeking to
approximate the underlying microstructure independently of the phases,
DMNs offer a natural way to account for internal variables and thus
allow for considering inelastic problems with ease.

DMNs are trained on linear elastic data, where the effective stiffness
of a fixed microstructure is considered as a function of the input stiff-
ness tensors of the constituents. For the identification of the unknown
parameters, i.e., the volume fractions of all laminates and the intermit-
tent rotations, automatic differentiation (Paszke et al., 2017; Rall, 1981),
back propagation (Rumelhart et al., 1986b;a) and stochastic gradient
descent (Ruder, 2016) are used. After training, volume fractions and
rotations are fixed and the hierarchical laminate can be applied to
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inelastic problems, even at finite strains, and the resulting effective
stress-strain curves match closely with direct numerical simulations.
DMNs were augmented by cohesive zone models to account for interface
damage (Liu, 2020) or multiscale strain localization modeling (Liu, 2021).

Most importantly, the model identification on linear elastic data is
independent from the online evaluation of the surrogate model. More
precisely, an identified DMN may be applied to any nonlinear material
behavior of the constituents after training. This property contrasts with
other machine learning approaches, where the model identification is
typically problem-dependent and thus linked to the material behavior
of the constituents.

Discarding intermittent rotations and using laminates with a variable
direction of lamination, Gajek et al. (2020) introduced direct DMNs
which are particularly suitable for problems with isotropic phases. Later,
Meyer et al. (2023) introduced micro-oriented direct DMNs to treat
problems with a distinct micro-orientation, i.e., polycrystals or fiber
reinforced composites with anisotropic fibers. Direct DMNs enable a
faster and more robust identification process compared to the original
formulation of Liu et al. (2019a) and Liu and Wu (2019), and also compare
favorably for inelastic constituents. Furthermore, Gajek et al. (2020)
motivated the effect of training on linear elastic data and generalizing
to the nonlinear regime by showing that, to first order in the strain rate,
the effective inelastic behavior of composite materials is determined by
linear elastic localization. As a byproduct, Gajek et al. (2020) showed
that deep material networks inherit thermodynamic consistency and
stress-strain monotonicity from their phases. These properties are of
utmost importance for accelerating two-scale simulations, as they ensure
that the effective model inherits stabilizing numerical properties, like
strong convexity, from the phases. Thus, the aforementioned robustness
issues, typical for many other data-driven approaches, are not observed
for DMNs.
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The extension of the DMN framework to accelerate two-scale concurrent
simulations of short fiber reinforced composites was proposed by Liu
et al. (2020) and Gajek et al. (2021a;b), giving rise to the FE-DMN
method. More precisely, Liu et al. (2019b; 2020) proposed a transfer
learning approach, see also Huang et al. (2022). In contrast, Gajek
et al. (2021a) went beyond this a posteriori approach and identified
a single DMN, covering the entire spectrum of fiber orientations, by
interpolating the fitting parameters during training. Gajek et al. (2021a)
showed the efficiency of their approach by performing a large-scale
concurrent two-scale simulation of an injection molded quadcopter
frame comprising about two million elements as a benchmark. Ad-
ditionally, Meyer et al. (2023) introduced micro-oriented direct DMNs
and proposed to use a volume fraction interpolation in conjunction with
a fiber orientation interpolation to accelerate two-scale simulations of
sheet molding compound composite components. Gajek et al. (2022)
recently extended the DMN framework to account for the two-way
thermomechanical coupling in a large-scale concurrent simulation.

To improve upon the linear training, Nguyen and Noels (2022) proposed
to train the DMN on nonlinear data. A large number of inelastic load
paths must be sampled, so that the computational effort may become pro-
hibitive, depending on the complexity of the underlying microstructure.
Furthermore, the implementation of the model identification routine
must be adapted each time different material models for the phases
are considered. As a remedy, Dey et al. (2022b) proposed a novel
early-stopping technique to retain the favorable properties of the linear
training but still include nonlinear data intro the training. They showed
that direct DMNs can efficiently represent highly nonlinear creep in
short fiber reinforced plastic components. Dey et al. (2022a) suggested
to use direct DMNs as a surrogate for inversely identifying material
parameters of a constitutive inelastic model for short fiber reinforced
thermoplastics.
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1.3 Outline and originality of this thesis

In this thesis, we contribute to the framework of deep material networks
by addressing Questions 1 to 4 for which we restrict to the setting of
small strains and materials without pores and defects. DMNs serve
as surrogate models for full-field simulations on the microscopic scale,
offering speed-ups of several orders of magnitudes. In this way, DMNs
might be regarded as the missing key to finally realize the promise of
concurrent two-scale simulations of large-scale industrial problems.

The remainder of this thesis is organized as follows:

• In Chapter 2, small-strain continuum thermomechanics and its fun-
damental building blocks, i.e., kinematic relations, universal balance
laws and constitutive relations, are briefly recapitulated.

• In Chapter 3, we investigate the framework of deep material networks
from the viewpoint of classical small-strain micromechanics. We aim
to establish the basic micromechanical principles of DMNs and shed
light on the characteristics of the building blocks.

In their original formulation, DMNs are solely trained by linear elastic
data, but applied to nonlinear and inelastic problems with astonishing
accuracy. We clarify this phenomenon theoretically by showing that,
to first order in the strain rate, the effective inelastic behavior of
composite materials is determined by linear elastic localization. Our
argumentation applies to arbitrary microstructures comprising non-
linear small-strain generalized standard materials. The main technical
tool is a Volterra series approximation of the stress of a generalized
standard material, which we adapt from nonlinear dynamical systems
theory.

• In Chapter 4, we show that DMNs inherit thermodynamic consis-
tency and stress-strain monotonicity from their phases. We introduce
direct DMNs which feature a reduced number of degrees of free-
dom compared to the original formulation of Liu et al. (2019a) and

17



1 Introduction

Liu and Wu (2019) by omitting intermittent rotations and utilizing
laminate building blocks with arbitrary direction of lamination. We
present how such building blocks may be efficiently evaluated for
the affine-linear elastic case. In addition, we present a novel solution
technique for nonlinear DMNs with arbitrary tree topologies and
multi-phase laminates, addressing Question 1. We apply our insights
to microstructures of industrial complexity.

• In Chapter 5, we address Questions 2 and 3 by proposing a fully cou-
pled two-scale strategy for components made of short fiber reinforced
composites. In such a two-scale simulation, we assume a constant
fiber volume fraction and equip each Gauss point of the macroscopic
finite element model with a direct DMN which covers different fiber
orientation states. Furthermore, we propose a simplified sampling
strategy of the training data which significantly speeds up the training
process. To enable concurrent multiscale simulations, evaluating the
DMNs efficiently is crucial. We discuss dedicated techniques for
exploiting sparsity and high-performance linear algebra modules,
and demonstrate the power of the proposed approach on an injection
molded quadcopter frame as a benchmark component.

• Chapter 6 is concerned with the development of a virtual process
chain to quantify process-induced uncertainties in sheet molding
compound (SMC) composites. Here, we build upon the results of
Chapter 5, introduce micro-oriented direct DMNs and augment the
framework by a fiber orientation and fiber volume fraction interpola-
tion schemes. This approach allows for fully resolving the spatially
varying fiber volume fraction as well as the spatially varying fiber
orientation in a component scale simulation. By comparing with
experimental results, we demonstrate that process-induced uncer-
tainties, prevalent in SMC components, can be captured with good
accuracy by our approach.
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• For addressing Question 4, we extend the FE-DMN method to fully
coupled thermomechanical two-scale simulations of composite materi-
als in Chapter 7. We provide details on the efficient implementation of
the approach as a user-material subroutine and validate our approach
on the microscopic scale. We show that the identified direct DMN
predicts the effective stress, the effective dissipation and the change
of the macroscopic absolute temperature with high accuracy. After
validation, we demonstrate the capabilities of our approach on a con-
current two-scale thermomechanical simulation on the macroscopic
component scale.

• We briefly summarize this thesis in Chapter 8 and close with conclud-
ing remarks.

1.4 Notation and frequently used symbols

We follow a direct tensor notation, and we denote scalar quantities either
by non-bold letters {𝑎, 𝑏, . . . , 𝐴,𝐵, . . .} or by non-bold Greek symbols
{𝜀, 𝜎, . . .}. Vectors are notated by lower case bold letters {𝑎, 𝑏, . . .}.
Second-order tensors are either denoted by upper case bold letters
{𝐴,𝐵, . . .} or by bold Greek symbols {𝜀,𝜎, . . .}. Fourth-order tensors
are noted by upper case blackboard bold letters {A,B, . . .}. We notate
𝑛-tuples of scalars, second-order, fourth-order tensors or other 𝑛-tuples
by ⃗ , i.e., 𝑝⃗ = [𝑎, 𝑏, 𝑐] or 𝑞⃗ = [𝑑, 𝑒,𝑓 ], for which we define element-wise
addition 𝑝⃗+𝑞⃗ = [𝑎+𝑑, 𝑏+𝑒, 𝑐+𝑓 ] and element-wise scalar multiplication
𝜆𝑝⃗ = [𝜆𝑎, 𝜆𝑏, 𝜆𝑐].
Although the type of an element is implied by its notation, all newly-
introduced quantities of any kind are defined upon their first appearance
in each section such as tensor order, domain of definition or function
space.
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We denote the Euclidean vector space in 𝑑 = 2, 3 spatial dimensions by
V𝑑. Its orthonormal base vectors are noted as {𝑒𝑖}𝑑𝑖=1. The following
spaces are repeatedly used:

• We denote the special orthogonal group acting on V𝑑 by SO(𝑑).

• We name S𝑑−1 the (𝑑− 1)-dimensional unit sphere associated to V𝑑.

• The space of symmetric second-order tensors is denotes by Sym2(𝑑).

• The space of fourth-order tensors, endowed with minor and major
symmetries, is denoted by Sym4(𝑑).

• The spaces of positive definite second and fourth-order tensors are
noted as Sym+

2 (𝑑) and Sym+
4 (𝑑), respectively.

The components of a tensor are indexed by Latin indices {𝑖, 𝑗, 𝑘, 𝑙, . . .}.
The Einstein’s summation convention applies, i.e., we sum over identical
indices from 1 to 𝑑, and the following tensor operations are used:

• The inner product between vectors and the Frobenius inner product
between second-order tensors is denoted by 𝑎 · 𝑏 = 𝑎𝑖𝑏𝑖 and 𝐴 : 𝐵 =
𝐴𝑖𝑗𝐵𝑖𝑗 , respectively.

• The linear mapping between a second-order tensor and a vector is
noted as 𝐴𝑏 = 𝐴𝑖𝑗𝑏𝑗 𝑒𝑖.

• Likewise, the linear mapping between two second-order or two
fourth-order tensors is denoted by 𝐴𝐵 = 𝐴𝑖𝑗𝐵𝑗𝑘 𝑒𝑖 ⊗ 𝑒𝑘 and
AB = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝑚𝑛 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑚 ⊗ 𝑒𝑛.

• For the linear mapping of a fourth-order and a second-order tensor,
we write A : 𝐵 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗 . Alternatively, for notating the
stress evaluation, we use the equivalent form C[𝜀] = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗

for reasons of exposition.

We denote the direct product ×, the tensor product ⊗ and the direct sum
⊕ and use the following shorthand notations 𝐴⊗𝑁

= 𝐴⊗ . . .⊗𝐴 and
𝐴⊕𝑁

= 𝐴⊕ . . .⊕𝐴 (𝑁 repetitions).

The material time derivative is denoted by ˙ . Effective quantities are
referred to by ¯ .
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Acronyms

𝜇CT Micro computed tomography
ANN Artificial neural network
DMN Deep material network
FE Finite elements
FEM Finite element method
FFT Fast Fourier transform
FOD Fiber orientation distribution
FRP Fiber reinforced polyamide
MIMO Multiple-input-multiple-output
MMC Metal matrix composite
NTFA Non-uniform transformation field analysis
PDE Partial differential equation
PINN Physics-informed neural network
ROM Reduced order model
RVE Representative volume element
SCA Self-consistent clustering analysis
SFRP Short fiber reinforced plastic
SISO Single-input-single-output
SMC Sheet molding compound
TANN Thermodynamics-based artificial neural network
TFA Transformation field analysis
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Sets

𝒜ℒ Affine-linear GSMs
𝒞Λ Admissible fiber volume fractions and orienta-

tions
D4, D10, D31 Orientation triangle discretizations
Dev2(𝑑) Deviatoric second-order tensors
𝒢𝒮ℳ GSMs
ℐ Loading directions
ℒ Linear GSMs
Λ Admissible fiber orientations
ℒ𝒱 Linear viscoelastic GSMs
N Natural numbers
Ω Macroscopic body
R Real numbers
S𝑑−1 Unit sphere associated to V𝑑

𝒮 Material singular surface
Skw2(𝑑) Skew-symmetric second-order tensors
SO(𝑑) Special orthogonal group acting on V𝑑

Sph2(𝑑) Spherical second-order tensors
Sym2(𝑑) Symmetric second-order tensors
Sym+

2 (𝑑) Symmetric positive definite second-order tensors
Sym4(𝑑) Fourth-order tensors, endowed with minor and

major symmetries
Sym+

4 (𝑑) Positive definite fourth-order tensors, endowed
with minor and major symmetries

𝒯 Simulation time interval
𝒱 Material volume
V𝑑 𝑑-dimensional Euclidean vector space
𝑌 Periodic rectangular unit cell
𝒵 Vector space of internal variables
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1.4 Notation and frequently used symbols

Latin letters

𝒜 Phase-wise average strain localization function
𝐴2 Second-order fiber orientation tensor
𝑎 Acceleration vector
𝑎 Temperature-dependent shift factor
𝐵 Averaging operator
ℬ Homogenization function of a rank-one laminate
B Damage stress extraction tensor
𝑏 Body force density
C Stiffness tensor
𝑐𝜀 Heat capacity at constant strain
𝑐 Volume fraction
𝐷 Symmetrized gradient operator
𝒟 Dissipation
𝒟ℳ𝒩 Homogenization function of a DMN
𝐷f Fiber diameter
𝑑 Dimension
𝑑 Direction vector
𝐸 Young’s modulus
{𝑒𝑖}𝑑𝑖=1 Euclidian base vectors
𝑒 Internal energy density
𝐹 Deformation gradient
𝒢 Generalized standard material
𝐺 Shear modulus
G Relaxation function
𝐻 Displacement gradient
ℎ Heat source density
ℎt Heat transfer coefficient
𝐼 Identity on V𝑑

Is Identity on Sym2(𝑑)
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1 Introduction

𝐾 Number of consecutive laminations
𝐿f Fiber length
𝐿 Microstructure edge length
ℳ Homogenization function
𝑁 Symmetrized rank-one gradient
𝑁 Number of phases
𝑛 Normal vector
𝑃 Thermomechanical coupling term
𝑝⃗ Parameter vector
𝑝Θ Generic production density of Θ
𝑄 Rotation matrix
𝑞Θ Generic flux density of Θ
𝑅 Rotation operator
𝜌 Fiber orientation distribution function
S Compliance tensor
𝑠Θ Generic supply density of Θ
𝑠 Entropy
𝑇 Simulation time
𝑇c Period of sinusoidal loading
𝑈 ,𝑉 Stretch tensors
𝑢 Displacement vector
𝑣 Unconstrained weight
𝑣 Velocity vector
𝑊 Weight operator
𝑤 Constrained weight
𝑥,𝑋 Material points
𝑍 Number of internal variables
𝑧 Vector of internal variables

24



1.4 Notation and frequently used symbols

Greek letters

𝛼 Thermal expansion (scalar valued)
𝛼 Thermal expansion tensor
𝛽 Step size
𝜒 Characteristic function
𝜒 Kinematic function
𝛿 Linear error
𝜀 Infinitisimal strain (scalar valued)
𝜀 Infinitisimal strain tensor
𝜂 Nonlinear error
𝛾 Backtracking factor and learning rate decay factor
𝜅 Thermal conductivity (scalar valued)
𝜅 Thermal conductivity tensor
𝜆0 Reference stiffness
𝜆p Penalty parameter
𝜇 Shear viscosity
𝜈 Poisson’s ratio
𝜔 Infinitisimal rotation tensor
𝜑 Dissipation potential
𝜑* Force potential
{𝜙𝑖}𝑑𝑖=1 Barycentric coordinates
Ψ Condensed Helmholtz free energy potential
𝜓 Helmholtz free energy density
𝜚 Mass density
𝜎 Cauchy stress (scalar valued)
𝜎 Cauchy stress tensor
𝜃 Absolute temperature
Θ Generic 𝑚-th order tensorial field
𝜁 Material contrast
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Operators

˙ Material time derivative
¯ Effective quantity

−1 Inverse
−T Transposed inverse
T Transpose

block-diag ( ) Block-diagonal matrix
𝜕 Subdifferential
det ( ) Determinant
diag ( ) Diagonal matrix
div( ) Spatial divergence
⟨ ⟩+ Macaulay bracket
⟨ ⟩𝑌 Volumetric mean
∇ Spatial gradient
∇s Symmetrized spatial gradient
tr ( ) Trace
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Chapter 2

Fundamentals of small-strain
continuum thermomechanics

2.1 Introduction

This chapter is dedicated to giving a short summary of small-strain
continuum thermomechanics and its elementary building blocks, i.e.,
kinematic relations, balance equations and constitutive relations. In
rational thermodynamics, the last two points may not be considered sep-
arately as thermodynamically consistent constitutive relations depend
implicitly on the balance of entropy and need to fulfill the second law of
thermodynamics.

2.2 Kinematics

In 𝑑 ∈ {2, 3} spatial dimensions, we consider a body of material points
in an arbitrarily chosen reference configuration Ω0 ⊆ V𝑑 (Šilhavý, 1997).
The position of each material point in reference configuration is mea-
sured by 𝑋 ∈ Ω0. For every point in time 𝑡 ∈ [0, 𝑇 ], with end time
𝑇 ∈ (0,∞], we describe the current position of each material point by
the continuously differentiable and invertible function

𝜒 : Ω0 × [0, 𝑇 ]→ V𝑑, 𝑥 = 𝜒(𝑋, 𝑡) with 𝑋 = 𝜒(𝑋, 0), (2.1)
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2 Fundamentals of small-strain continuum thermomechanics

which lets us define the current placement of the body (Šilhavý, 1997)

Ω𝑡 = {𝑥 = 𝜒(𝑋, 𝑡) ∈ V𝑑 |𝑋 ∈ Ω0}. (2.2)

With these definitions at hand, we might parameterize any tensorial field
ΘL : Ω0 × [0, 𝑇 ]→ (V𝑑)⊗𝑚

of order 𝑚 w.r.t. the reference configuration,
which we call Lagrangian description. Similarly, the description of the
tensorial field ΘE : Ω𝑡 × [0, 𝑇 ] → (V𝑑)⊗𝑚

as a function of the current
position is commonly referred to as the Eulerian description. Both
descriptions are related by (Haupt, 2002)

ΘL(𝑋, 𝑡) = ΘE(𝜒(𝑋, 𝑡), 𝑡) and ΘE(𝑥, 𝑡) = ΘL(𝜒−1(𝑥, 𝑡), 𝑡). (2.3)

The material time derivative of a tensorial field ΘL(𝑋, 𝑡) in Lagrangian
description is defined (Haupt, 2002; Truesdell and Toupin, 1960) via

Θ̇L(𝑋, 𝑡) = 𝜕ΘL

𝜕𝑡
(𝑋, 𝑡), (2.4)

which let us defined the velocity 𝑣L and acceleration 𝑎L of the body as

𝑣L(𝑋, 𝑡) = 𝜕𝜒

𝜕𝑡
(𝑋, 𝑡) and 𝑎L(𝑋, 𝑡) = 𝜕2𝜒

𝜕𝑡2
(𝑋, 𝑡). (2.5)

Similarly, by applying the chain rule, the material time derivative of a
tensorial field ΘE(𝑥, 𝑡) in Eulerian description computes to

Θ̇E(𝑥, 𝑡) = 𝜕ΘE

𝜕𝑥
(𝑥, 𝑡) · 𝑣E(𝑥, 𝑡) + 𝜕ΘE

𝜕𝑡
(𝑥, 𝑡). (2.6)

Indeed, any tensorial field can be uniquely attributed to one of the two
descriptions via the type of its arguments. Thus, we may refrain from
explicitly distinguishing between both descriptions via subscripts. In
the following, the Lagrangian description is mainly used.
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2.2 Kinematics

For measuring the deformation of the body, we introduce the deforma-
tion gradient

𝐹 : Ω0 × [0, 𝑇 ]→ V𝑑 ⊗V𝑑, (𝑋, 𝑡) ↦→ 𝐹 = 𝜕𝜒

𝜕𝑋
(𝑋, 𝑡), (2.7)

which describes how infinitesimal line d𝑋 , area d𝐴 and volume d𝑉
elements are transformed from the reference Ω0 to the current Ω𝑡 config-
uration by the following relations (Haupt, 2002)

d𝑥 = 𝐹 d𝑋, d𝑎 = det (𝐹 ) 𝐹 −T d𝐴 and d𝑣 = det (𝐹 ) d𝑉. (2.8)

However, the deformation gradient may not be a suitable measure
for measuring the deformation of a body. For instance, 𝐹 does not
necessarily vanish for a vanishing deformation, i.e., evaluating 𝐹 in the
(undeformed) reference configuration, we obtain

𝐹 (𝑋, 0) = 𝐼, (2.9)

where 𝐼 ∈ Sym2(𝑑) denotes the identity on V𝑑. Furthermore, the
deformation gradient 𝐹 may include rigid body rotations. As a remedy,
we may use a polar decomposition to represent the deformation gradient
as the product of a special orthogonal part 𝑅 ∈ SO(𝑑), accounting for
the rotation, and symmetric positive definite parts 𝑈, 𝑉 ∈ Sym+

2 (𝑑),
representing the stretch, for which the relation

𝐹 = 𝑅𝑈 = 𝑉𝑅 (2.10)

holds (Haupt, 2002). More precisely, the local deformation consists of a
rotation 𝑅 followed by a subsequent stretch 𝑉 or a stretch 𝑈 followed
by a rotation 𝑅. Note that the two stretches 𝑈, 𝑉 do not vanish for an
undeformed body as we also observed for the deformation gradient
itself.
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2 Fundamentals of small-strain continuum thermomechanics

In this work, we restrict to small strains. For this, further simplifying
assumptions can be made. First, we introduce the displacement field
𝑢 : Ω0 × [0, 𝑇 ] → V𝑑 as the difference between current and reference
position of each material point via

𝑢(𝑋, 𝑡) = 𝜒(𝑋, 𝑡)−𝑋. (2.11)

With the displacement 𝑢 at hand, we define the displacement gradient

𝐻 : Ω0 × [0, 𝑇 ]→ V𝑑 ⊗V𝑑, (𝑋, 𝑡) ↦→𝐻 = 𝜕𝑢

𝜕𝑋
(𝑋, 𝑡) (2.12)

which relates to the deformation gradient by the relation

𝐻 = 𝐹 − 𝐼. (2.13)

Then, we may speak of small strains if the Frobenius norm of the
displacement gradient

‖𝐻‖F =
√︀

𝐻𝐻T ≪ 1 (2.14)

is small (Bertram, 2005). If Relation (2.14) holds, we may linearize the
deformation gradient at 𝐹 = 𝐼 , giving rise to the two stretches and the
rotation

𝑈 ≈ 𝐼 + 𝜀, 𝑉 ≈ 𝐼 + 𝜀 and 𝑅 ≈ 𝐼 + 𝜔. (2.15)

Here, 𝜀 ∈ Sym2(𝑑) is called the infinitisimal strain tensor and 𝜔 ∈ Skw2(𝑑)
is denoted the infinitisimal rotation tensor (Haupt, 2002). Both are given as
the symmetric and skew symmetric parts of the displacement gradient

𝜀 = 1
2(𝐻 + 𝐻T) and 𝜔 = 1

2(𝐻 −𝐻T). (2.16)

Indeed, the infinitisimal strain tensor vanishes for a vanishing deforma-
tion and excludes infinitisimal rotations.
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2.3 Balance laws

By assuming small displacements (in conjunction with small strains),
the difference between reference and current configuration is negligible
such that a distinction between Lagrangian and Eulerian description is
no longer necessary and the approximation

Θ(𝑋, 𝑡) ≈ Θ(𝑥, 𝑡) (2.17)

holds (Haupt, 2002).

2.3 Balance laws

Besides kinematic relations and the formulation of constitutive laws,
the thermomechanical behavior of a body is determined by physical
principles, which are typically stated in the form of so-called balance
laws. For the case of continuum thermomechanics, the balance of
mass, linear and angular momentum, inner energy and entropy form a
complete1 system of governing partial (integro-)differential equations.

Indeed, these equations share a common form such that we may express
them by a general balance equation. To fix ideas, we consider an arbitrary
material volume 𝒱𝑡 ⊆ Ω𝑡, which is divided by a material singular
surface 𝒮𝑡 into the two sub-volumes 𝒱+

𝑡 and 𝒱−
𝑡 with 𝒱𝑡 = 𝒱+

𝑡 ∪ 𝒱−
𝑡 .

The boundary of 𝒱𝑡 is denotes by 𝜕𝒱𝑡 also consisting of the two parts
𝜕𝒱+

𝑡 and 𝜕𝒱−
𝑡 with 𝜕𝒱𝑡 = 𝜕𝒱+

𝑡 ∪ 𝜕𝒱−
𝑡 and with the outer normal vector

denoted by 𝑛𝒱 ∈ S𝑑−1. The normal vector of the material singular
surface 𝒮𝑡, which is directed from 𝜕𝒱−

𝑡 to 𝜕𝒱+
𝑡 , is denotes by 𝑛𝒮 ∈ S𝑑−1.

Following Liu (2002), we express the general balance of the tensorial

1 Typically, the balance of entropy is not solved explicitly but used to derive restrictions
on the constitutive relations as we will see in Section 2.4.
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2 Fundamentals of small-strain continuum thermomechanics

field Θ : Ω𝑡 × [0, 𝑇 ]→ (V𝑑)⊗𝑚

of order 𝑚 in integral form by

d
d𝑡

∫︁
𝒱𝑡

Θ d𝑣 =
∫︁

𝒱𝑡

𝑝Θ + 𝑠Θ d𝑣 +
∫︁
𝜕𝒱𝑡

𝑞Θ · 𝑛𝒱 d𝑎, (2.18)

where 𝑝Θ : Ω𝑡 × [0, 𝑇 ] → (V𝑑)⊗𝑚

and 𝑠Θ : Ω𝑡 × [0, 𝑇 ] → (V𝑑)⊗𝑚

name
the internal production and the external supply of quantity Θ in each
regular point 𝑥 ∈ 𝒱𝑡 ∖ 𝒮𝑡. In addition, 𝑞Θ : Ω𝑡 × [0, 𝑇 ] → (V𝑑)⊗𝑚+1

denotes the non-convective flux over 𝜕𝒱𝑡. Please note that we assume a
vanishing flux on 𝜕𝒮𝑡, the intersection of 𝒮𝑡 and 𝜕𝒱𝑡, and no production
and supply of Θ on 𝒮𝑡. For the general balance equation including these
terms, we refer to Müller (1985).

Using Reynolds transport theorem (Liu, 2002) and the divergence theo-
rem (Haupt, 2002), the general balance equation in integral form (2.18)
translates to its local form in regular points 𝑥 ∈ 𝒱𝑡 ∖ 𝒮𝑡,

𝜕Θ
𝜕𝑡

+ div(Θ⊗ 𝑣) = 𝑝Θ + 𝑠Θ + div(𝑞Θ), (2.19)

where 𝑣 : Ω𝑡 × [0, 𝑇 ] → V𝑑 denotes the tensorial velocity field. For
each point on the material singular surface 𝑥 ∈ 𝒮𝑡, we obtain the jump
condition

J𝑞ΘK · 𝑛𝒮𝑡
= 0 with J𝑞ΘK = 𝑞+Θ − 𝑞−Θ, (2.20)

with the right- and left-hand limits 𝑞+Θ and 𝑞−Θ of 𝑞Θ, respectively.

Balance of mass

For deriving the balance of mass, we identify the quantity to be balanced
Θ with the mass density 𝜚 : Ω𝑡 × [0, 𝑇 ]→ R. Furthermore, the produc-
tion 𝑝Θ, supply 𝑠Θ and flux 𝑞Θ vanish identically (Liu, 2002). Then, the
local form of the balance of mass in regular points reads

𝜚̇+ 𝜚 div(𝑣) = 0. (2.21)
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2.3 Balance laws

As we consider a material singular surface with a vanishing flux 𝑞Θ, the
balance of mass on 𝒮𝑡 is identically fulfilled.

Note that for continuum solid mechanics, the balance of mass (2.21)
is usually not solved explicitly. Indeed, for any given deformation
gradient 𝐹 , the density 𝜚 at a material point may be expressed by the
density 𝜚0, associated to the reference configuration, via 𝜚 = det (𝐹 )−1

𝜚0,
see Liu (2002). For the special case of small strains, see Section 2.2, the
former equation reformulates to 𝜚 = (1− tr (𝜀))𝜚0. We see that as long as
we consider small strains, we may approximate the density as constant,
i.e., 𝜚 ≈ 𝜚0 holds.

Balances of linear and angular momentum

With the mass density 𝜚 and the velocity 𝑣 at hand, we consider the
linear momentum density 𝜚𝑣 as the quantity to be balanced. In addition,
we associate the external supply term 𝑠Θ with the volume force density
𝑏 : Ω𝑡 × [0, 𝑇 ] → V𝑑 and the flux 𝑞Θ with the Cauchy stress 𝜎 : Ω𝑡 ×
[0, 𝑇 ]→ V𝑑 ⊗V𝑑. As we consider the conservation of linear momentum,
the production term 𝑝Θ vanishes identically. Then, assuming the balance
of mass holds, the local balance of linear momentum in regular points
reads

𝜚𝑣̇ = 𝑏 + div(𝜎). (2.22)

For points on the material singular surface, the jump condition (2.20)
reformulates to

J𝜎K𝑛𝒱 = 0 ⇐⇒ 𝜎+𝑛𝒱 = 𝜎−𝑛𝒱 , (2.23)

i.e., the stress vector 𝑡 = 𝜎𝑛𝒱 is continuous on the material singular sur-
face. For the special case of quasi-static processes, the acceleration term
vanishes and we obtain the quasi-static balance of linear momentum in
regular points

0 = 𝑏 + div(𝜎). (2.24)
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2 Fundamentals of small-strain continuum thermomechanics

Following a similar argument, we derive the balance of angular momen-
tum Liu (2002) which reads in local form

𝜎 = 𝜎T. (2.25)

In other words, for non-polar materials (no moment densities acting
on the material volume 𝒱𝑡), the symmetry of the Cauchy stress tensor
ensures the conservation of angular momentum.

Balance of energy

First, we consider the volume-specific internal energy density 𝑒 : Ω𝑡 ×
[0, 𝑇 ] → R, which measures the stored energy of a thermodynamical
system excluding kinetic or potential energy contributions. Typically,
the mass-specific internal energy 𝑒 = 𝑒/𝜚 is the quantity of interest in
classical thermodynamics. However, as we derived earlier, the mass
density 𝜚 might be approximated by a constant factor in the small-strain
setting such that volume-specific and mass-specific energy formulations
might be used for formulating balance equations. Indeed, considering
volume-specific energetic quantities such as the internal energy, the free
Helmholtz energy or the entropy is more convenient for the considera-
tions in Section 2.4, such that we follow this approach subsequently.

We consider the sum of the internal energy density 𝑒 and the kinetic
energy density 1

2 𝜚(𝑣 · 𝑣) as quantities to be balanced. With the sum
of the internal heat source density ℎ : Ω𝑡 × [0, 𝑇 ] → R and the power
of volume forces 𝑏 · 𝑣 as supply term 𝑠Θ, the sum of the negative heat
flux −𝑞 and the power of external forces 𝜎T𝑣 as flux term 𝑞Θ and a
vanishing production term 𝑝Θ, we arrive at the local balance of total
energy in regular points

𝑒̇+ 1
2𝜚(𝑣 · 𝑣)· = −div(𝑞) + div(𝜎T𝑣) + 𝑏 · 𝑣 + ℎ. (2.26)
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2.3 Balance laws

The former equation is commonly referred to as the first law of thermo-
dynamics. For points on the material singular surface, we obtain the
jump condition

J𝜎T𝑣K · 𝑛𝒮 = J𝑞K · 𝑛𝒮 . (2.27)

By assuming that the balance of linear momentum (2.22) holds, we may
multiply Equation (2.22) by the velocity field 𝑣 and subtract it from the
balance of total energy (2.26) to obtain the balance of internal energy in
local form

𝑒̇ = ℎ− div(𝑞) + 𝜎 : 𝜀̇. (2.28)

Note that the internal energy is not conserved. Thus, we refrain from
evaluating the jump condition (2.20) on the material singular surface.

Balance of entropy

While the equations stated above are universal in nature, a universal
balance of entropy may not be found without making additional consti-
tutive assumptions on the flux and the supply of entropy, see for instance
Cimmelli et al. (2014) for a summary of different approaches. To arrive
at the balance of entropy in its most universal form, we consider the
volume-specific2 entropy density 𝑠 : Ω𝑡 × [0, 𝑇 ]→ R as the quantity to
be balanced and introduce the general entropy flux 𝑞𝑠 : Ω𝑡× [0, 𝑇 ]→ V𝑑,
the general entropy production density 𝑝𝑠 : Ω𝑡 × [0, 𝑇 ] → R and the
general supply density of entropy 𝑠𝑠 : Ω𝑡 × [0, 𝑇 ]→ R, giving rise to the
local balance of entropy in regular points

𝑠̇ = div(𝑞𝑠) + 𝑝𝑠 + 𝑠𝑠. (2.29)

2 As for the internal energy 𝑒, we work with volume-specific quantities. The mass-specific
entropy 𝑠 = 𝑠/𝜚 may be computed using the mass density 𝜚.
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2 Fundamentals of small-strain continuum thermomechanics

For points on the material singular surface, we obtain

J𝑞𝑠K · 𝑛𝒮 = 0. (2.30)

The second law of thermodynamics states that the production density of
entropy may never be negative (Coleman and Noll, 1963)

𝑝𝑠 ≥ 0. (2.31)

As abstract as this statement may be, it has far-reaching implications for
the direction of thermomechanical processes, as we will see in the next
section.

2.4 The Clausius-Duhem inequality

For any thermomechanical process, the balance of mass, linear and an-
gular momentum as well as the first and second law of thermodynamics
need to be universally fulfilled. In continuum solid mechanics, the
entropy balance is typically not solved explicitly. Rather, the second
law of thermodynamics, i.e., a non-negative entropy production, is
embedded implicitly in the constitutive relations so that Relation (2.31)
holds universally. This approach is commonly referred to as rational
thermodynamics (Truesdell, 1984).

We combine the balance of internal energy (2.28), the balance of en-
tropy (2.29) and the second law of thermodynamics (2.31). For this,
constitutive assumptions on the entropy flux 𝑞𝑠 and the entropy supply
density 𝑠𝑠 need to be made first. We follow the work of Coleman and
Noll (1963) and assume for the flux and supply density of entropy the
constitutive relations

𝑞𝑠 ≡
𝑞

𝜃
and 𝑠𝑠 ≡

ℎ

𝜃
(2.32)
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2.4 The Clausius-Duhem inequality

to hold, where 𝜃 : Ω𝑡 × [0, 𝑇 ]→ R>0 denotes the absolute temperature.
With the volume-specific3 Helmholtz free energy density 𝜓 = 𝑒− 𝑠𝜃, we
obtain the so-called Clausius-Duhem inequality

𝜎 : 𝜀̇− 𝜓̇ − 𝑠𝜃 − 𝑞 · ∇𝜃
𝜃
≥ 0. (2.33)

For deriving meaningful restrictions imposed by the seconds law of
thermodynamics, we assume4 the Helmholtz free energy density

𝜓 : Sym2(𝑑)× R>0 ×𝒵, (𝜀, 𝜃,𝑧) ↦→ 𝜓(𝜀, 𝜃,𝑧) (2.34)

to be a function of the strain 𝜀 : Ω𝑡 × [0, 𝑇 ] → Sym2(𝑑), the absolute
temperature 𝜃 : Ω𝑡× [0, 𝑇 ]→ R>0, and an n-tuple of internal variables 𝑧 :
Ω𝑡 × [0, 𝑇 ]→ 𝒵 , living in a sufficiently large Banach vector space 𝒵 . By
assuming that the Helmholtz free energy density 𝜓 is sufficiently smooth
in all its arguments, we obtain the following form of the Clausius-Duhem
inequality

[︂
𝜎 − 𝜕𝜓

𝜕𝜀
(𝜀, 𝜃, 𝑧)

]︂
: 𝜀̇ +

[︂
−𝑠− 𝜕𝜓

𝜕𝜃
(𝜀, 𝜃, 𝑧)

]︂
𝜃 − 𝑞 · ∇𝜃

𝜃

− 𝜕𝜓

𝜕𝑧
(𝜀, 𝜃, 𝑧) · 𝑧̇ ≥ 0. (2.35)

The former equation has to hold for any feasible thermomechanical
process. Consequently, restrictions on the Helmholtz free energy might
be derived.

For instance, as 𝜀̇ and 𝜃 might be chosen arbitrarily (assuming suit-
ably boundary conditions have been chosen), the first two terms in

3 See Footnote 2.
4 Here, assuming a variety of functional arguments of 𝜓 is possible. However, this is not

always reasonable, as a variety of other physical principles have to be fulfilled as well,
for instance the principle of material objectivity or determinism. We refer the interested
reader to Liu (2002) for a summary.
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2 Fundamentals of small-strain continuum thermomechanics

the Clausius-Duhem (2.35) inequality must vanish identically. This is
ensured by choosing the following potential relations for the stress and
the entropy density

𝜎 = 𝜕𝜓

𝜕𝜀
(𝜀, 𝜃, 𝑧) and 𝑠 = −𝜕𝜓

𝜕𝜃
(𝜀, 𝜃, 𝑧). (2.36)

By this choice, the Clausius-Duhem inequality is certainly fulfilled if the
thermal 𝒟heat and mechanical 𝒟mech dissipation

𝒟heat = −𝑞 · ∇𝜃
𝜃

and 𝒟mech = −𝜕𝜓
𝜕𝑧

(𝜀, 𝜃, 𝑧) · 𝑧̇ (2.37)

are non-negative. Typically, both terms are treated separately for reasons
of simplicity, giving rise to two remaining residual inequalities

𝒟heat ≥ 0 (2.38)

and
𝒟mech ≥ 0. (2.39)

The objective of material modeling is to propose constitutive relations
that satisfy the above-mentioned potential relations and adhere to these
two residual inequalities. Such a material model is then called thermome-
chanically consistent.

For instance, restricting to linear heat conduction, we might ensure the
non-negativity of the thermal dissipation𝒟heat by modeling the heat flux
𝑞 in terms of Fourier’s law

𝑞 = −𝜅∇𝜃, (2.40)

where 𝜅 ∈ Sym+
2 (𝑑) denotes the positive definite second-order thermal

conductivity tensor and ∇𝜃 denotes the spatial gradient of the absolute
temperature.
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2.5 Generalized standard materials

In the following sections, we consider the two-potential framework of
generalized standard materials, a powerful tool for material modeling,
which ensures thermodynamic consistency and encompasses many com-
monly used material models such as (visco-)elasticity, (visco-)plasticity
or non-softening damage (Görthofer et al., 2022b).

2.5 Generalized standard materials

We consider a small-strain, quasi-static, non-isothermal generalized stan-
dard material (GSM) (Biot, 1954; Halphen and Nguyen, 1975; Germain
et al., 1983) to be a quadruple 𝒢 = (𝒵, 𝜓, 𝜑, 𝑧0) consisting of

• a (sufficiently large) Banach vector space 𝒵 of internal variables,

• a Helmholtz free energy density 𝜓 : Sym2(𝑑)× R>0 ×𝒵 → R,

(𝜀, 𝜃, 𝑧) ↦→ 𝜓(𝜀, 𝜃, 𝑧), (2.41)

which we assume to be differentiable w.r.t. all its arguments,

• an extended-real-valued dissipation potential 𝜑 : R>0 × 𝒵 → R ∪
{+∞},

(𝜃, 𝑧̇) ↦→ 𝜑(𝜃, 𝑧̇), (2.42)

which we assume to be proper, convex, lower semicontinuous in its
second argument, and to satisfy 𝜑(·,0) = 0 as well as 0 ∈ 𝜕𝑧̇𝜑(·,0),
where 𝜕𝑧̇𝜑 denotes the subdifferential of the convex function 𝜑 w.r.t.
its second argument,

• and a field 𝑧0 : Ω𝑡 → 𝒵 serving as initial condition for the dynamics.

For every strain 𝜀 : Ω𝑡 × [0, 𝑇 ]→ Sym2(𝑑), temperature 𝜃 : Ω𝑡 × [0, 𝑇 ]→
R>0 and internal variables 𝑧 : Ω𝑡× [0, 𝑇 ]→ 𝒵 with final time 𝑇 ∈ (0,∞],
the Cauchy stress 𝜎 : Ω𝑡 × [0, 𝑇 ]→ Sym2(𝑑) is expressed in terms of the
potential relation

𝜎 = 𝜕𝜓

𝜕𝜀
(𝜀, 𝜃,𝑧). (2.43)
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2 Fundamentals of small-strain continuum thermomechanics

Furthermore, the evolution of the internal variables 𝑧 is governed by the
initial value problem described by Biot’s (generalized) equation

−𝜕𝜓
𝜕𝑧

(𝜀, 𝜃, 𝑧) ∈ 𝜕𝑧̇ 𝜑(𝜃, 𝑧̇) (2.44)

with the initial condition 𝑧(·, 0) = 𝑧0. Here, the dot ˙ denotes the
material time derivative, which in the context of small strains is equal
to the local time derivative. For GSMs, the internal variables may be
considered, in general, as unobservable. Nevertheless, there might be
cases where observable state variables are chosen as internal variables.

Any GSM, which fulfills the assumptions stated above, is thermodynam-
ically consistent, i.e., conforms to the Clausius-Duhem inequality (2.35).
Clearly, by definition, the stress and entropy follows the potential rela-
tions (2.36). Furthermore, we will show that the residual inequality (2.39)
is fulfilled as well. For this, we use the definition of the subdifferential
(Rockafellar, 1970, Theorem 25.1) of 𝜑(𝜃, 𝑧̇) and rewrite Equation (2.44)
as

𝜑(𝜃, 𝑦̇) ≥ 𝜑(𝜃, 𝑧̇)− 𝜕𝜓

𝜕𝑧
(𝜀, 𝜃, 𝑧) · (𝑦̇ − 𝑧̇) ∀𝑦̇ ∈ 𝒵. (2.45)

As Equation (2.45) holds for any 𝑦̇ ∈ 𝒵 , we choose 𝑦̇ ≡ 0 and, using the
assumptions for the dissipation potential 𝜑(𝜃, 𝑧̇) from above, we obtain

𝒟mech = −𝜕𝜓
𝜕𝑧

(𝜀, 𝜃, 𝑧) · 𝑧̇ ≥ 𝜑(𝜃,𝑧) ≥ 0. (2.46)

In other words, as long as the dissipation is non-negative, we obtain a
thermodynamically consistent material model regardless of the exact
form of both potentials.

The previous considerations focused on the continuous-time setting. To
use a GSM in a discrete-time context, for instance, as a constitutive law
in a finite element simulation, a time discretization needs to be supplied
first. Owing to its absolute stability and ease of implementation, the
implicit Euler method is the tool of choice. Thus, discretizing Biot’s
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2.5 Generalized standard materials

equation (2.44) in time with the implicit Euler method gives rise to the
condensed free energy potential Ψ : Sym2(𝑑)× R>0 ×𝒵 → R,

Ψ(𝜀𝑛+1, 𝜃𝑛+1, 𝑧𝑛) = inf
𝑧𝑛+1∈𝒵

(︂
𝜓
(︀
𝜀𝑛+1, 𝜃𝑛+1, 𝑧𝑛+1)︀

+ △𝑡 𝜑
(︂
𝜃𝑛+1,

𝑧𝑛+1 − 𝑧𝑛

△𝑡

)︂)︂
, (2.47)

where △𝑡 = 𝑡𝑛+1 − 𝑡𝑛 denotes the current time increment and the
superscript 𝑛 refers to the 𝑛-th time step at time 𝑡𝑛. This process is
commonly referred to as the condensation of the internal variables, hence
the name “condensed potential”, see also Lahellec and Suquet (2007a;b).
Indeed, the condensed free energy potential (2.47) solely depends on the
strain 𝜀𝑛+1 ∈ Sym2(𝑑) and temperature 𝜃𝑛+1 ∈ R>0 of the current time
step 𝑛+ 1 and the internal variables 𝑧𝑛 ∈ 𝒵 of the last converged time
step 𝑛.

For a fixed temperature 𝜃𝑛+1, the stress

𝜎𝑛+1 = 𝜕Ψ
𝜕𝜀

(︀
𝜀𝑛+1, 𝜃𝑛+1, 𝑧𝑛

)︀
(2.48)

is given by a nonlinear elastic law as it only depends on the strain
increment 𝜀𝑛+1. The internal variables 𝑧𝑛 of the last converged time step
are considered fixed. Indeed, the internal variables of the current time
step 𝑧𝑛+1 are determined in a post-processing step.
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Chapter 3

On the micromechanics of deep
material networks1

3.1 Introduction

In this chapter, we investigate deep material networks from the view-
point of classical small-strain micromechanics, where we restrict to
materials without pores or defects. In the original formulation presented
by Liu et al. (2019a) and Liu and Wu (2019), one- and two-phase deep
material networks are trained on linear elastic data and afterwards
applied to nonlinear and inelastic problems with astonishing accuracy.
We investigate this phenomenon from a theoretical viewpoint. More
precisely, we wish to understand in which sense linear elastic homog-
enization determines the homogenization of inelastic problems on the
same microstructure.

It is well-known from elementary mathematics that a continuously
differentiable function 𝑓 on Euclidean space is well-approximated at
a point 𝑥0 by its linear approximation 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥− 𝑥0). Thus,
we may similarly hope that the homogenization of linear problems
approximates the nonlinear homogenization as well, at least in a local

1 This chapter is based on Section 2 and 5 of the publication “On the micromechanics of
deep material networks” (Gajek et al., 2020). The introduction has been shortened to
avoid redundancy with Chapter 1. The notation has been harmonized.
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3 On the micromechanics of deep material networks

sense. However, turning the latter idea into mathematical statements is
not so straightforward, for a variety of reasons:

1. What is actually the function to approximate? One problem is that
inelastic problems may feature internal variables, which are not
accounted for in the linear homogenization.

2. What is the analogue of the Taylor approximation in our context?

3. When linearizing, the Taylor argument above suggests looking at
the homogenization of linear elasticity with eigenstrains, but Liu
et al. (2019a) and Liu and Wu (2019) only consider linear elastic
homogenization. Is there a difference?

This chapter approaches these questions as follows. As our basic objects,
we consider what we call microstructure functions. These take as input
a number of generalized standard materials, see Section 2.5, one for each
phase, and return as output another GSM. We show that periodic homog-
enization naturally gives rise to a homogenization function, answering
Question 1, see Section 3.2. Motivated by the homogenization of linear
viscoelasticity, which we recall in Appendix A.1, Section 3.3 is devoted
to showing that the affine-linear homogenization function determines
the inelastic homogenization function to first order in the strain rate.
The key technical idea is to regard the generalized standard material as
a dynamical system which may be approximated by a Volterra series.
The latter procedure eliminates the internal variables from the picture.
The terms of degree 0 and 1 in the strain rate entering the Volterra series
precisely correspond to linear viscoelastic material behavior. In this
sense, a linear viscoelastic material may approximate a general standard
material in the same way a general nonlinear function is approximated
by its linear approximation, addressing Question 2.

Then, we shall turn our attention to Question 3. We show that, for
a general 𝑁 -phase microstructure, the affine-linear homogenization
function is determined by linear elastic homogenization, as long as the
phase-wise averaged localization tensors are tracked, see Section 3.4.
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3.2 Homogenization functions for periodic homogenization

Here, micromechanics comes into play in the form of the celebrated
Mandel-Levin formula. Last but not least, in Section 3.5, we answer
Question 3 by showing that for two-phase materials it suffices to track
the effective stiffness only, i.e., it is not necessary to account for the
individual strain localization functions. This is interesting, as Liu et al.
(2019a) and Liu and Wu (2019) restrict to two-phase materials only. For
more than two phases, it appears imperative to track the average stresses
per phase, and not only the effective stress.

3.2 Homogenization functions for periodic
homogenization

We consider small-strain generalized standard materials as our basic
material model to which we apply homogenization. In contrast to
Section 2.5, we restrict to the isothermal setting for now and denote
with 𝒢𝒮ℳ the set of all generalized standard materials.

To summarize ideas, we consider a small-strain isothermal GSM in
𝑑 ∈ {2, 3} spatial dimensions to be the quadruple 𝒢 = (𝒵, 𝜓, 𝜑, 𝑧0) ∈
𝒢𝒮ℳ consisting of

1. a (Banach) vector space 𝒵 of internal variables,

2. a free energy density 𝜓 : Sym2(𝑑)×𝒵 → R, which we assume to be
continuously differentiable w.r.t. all its arguments,

3. an extended-real-valued dissipation potential 𝜑 : 𝒵 → R ∪ {+∞},
which we assume to be proper, convex, lower semicontinuous and
to satisfy 𝜑(0) = 0 as well as 0 ∈ 𝜕𝜑(0), where 𝜕𝜑 denotes the
subdifferential of 𝜑,

4. an element 𝑧0 ∈ 𝒵 serving as initial condition for the dynamics.

For a prescribed strain path 𝜀 : [0, 𝑇 ] → Sym2(𝑑) with 𝜀(0) = 0 and
𝑇 ∈ (0,∞], the Cauchy stress 𝜎 : [0, 𝑇 ] → Sym2(𝑑) associated to the
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3 On the micromechanics of deep material networks

GSM (𝒵, 𝜓, 𝜑, 𝑧0) is given by the potential relation

𝜎 = 𝜕𝜓

𝜕𝜀
(𝜀, 𝑧), (3.1)

where the internal variables 𝑧 : [0, 𝑇 ]→ 𝒵 solve the initial value problem
described by Biot’s (generalized) equation

−𝜕𝜓
𝜕𝑧

(𝜀, 𝑧) ∈ 𝜕𝜑(𝑧̇) (3.2)

with initial condition 𝑧(0) = 𝑧0.

It might be possible to choose two different GSMs which are indistin-
guishable from a mechanical point of view. More precisely, we consider
two GSMs 𝒢1 ∈ 𝒢𝒮ℳ and 𝒢2 ∈ 𝒢𝒮ℳ equivalent if, for any strain path,
the resulting stress paths 𝜎1 and 𝜎2 are identical.

Suppose an 𝑁 -phase periodic microstructure is given, i.e., a rectangular
unit cell 𝑌 ⊆ V𝑑 and 𝑁 (measurable) characteristic functions {𝜒𝑖}𝑁𝑖=1
whose associated sets are mutually disjoint and cover all of 𝑌 , i.e.,

𝜒𝑖𝜒𝑗 = 0 (𝑖 ̸= 𝑗) and
𝑁∑︁
𝑖=1

𝜒𝑖 = 1 (3.3)

hold almost everywhere. It is well-known that GSMs are closed under
homogenization. More precicely, if all 𝑁 phases of a microstructure
are generalized standard materials, then the effective material law is a
GSM as well, see for instance Michel and Suquet (2003). Thus, periodic
homogenization gives rise to the nonlinear homogenization function

ℳ𝑌 : 𝒢𝒮ℳ𝑁 → 𝒢𝒮ℳ,

((𝒵1, 𝜓1, 𝜑1, 𝑧0,1), . . . , (𝒵𝑁 , 𝜓𝑁 , 𝜑𝑁 , 𝑧0,𝑁 )) ↦→ (𝒵, 𝜓, 𝜑, (0, 𝑧̄0)),
(3.4)

where
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3.2 Homogenization functions for periodic homogenization

1. 𝒵 is the set of tuples (𝑢, 𝑧) for the periodic displacement fluctuation
𝑢 : 𝑌 → V𝑑 with anti-periodic normal derivative and mapping
𝑧 : 𝑌 → 𝒵1⊕𝒵2⊕ . . .⊕𝒵𝑁 , which inherits the vector space structure
from the codomain,

2. 𝜓(𝜀̄,𝑢, 𝑧) =
⟨∑︀𝑁

𝑖=1 𝜒𝑖𝜓𝑖(𝜀̄ +∇s𝑢, 𝑧𝑖)
⟩
𝑌

, where 𝜀̄ denotes the macro
strain, ∇s denotes the symmetrized spatial gradient and 𝑧𝑖 : 𝑌 → 𝒵𝑖
is the 𝑖-th part of 𝑧 : 𝑌 → 𝒵1 ⊕𝒵2 ⊕ . . .⊕𝒵𝑁 ,

3. 𝜑(𝑢̇, 𝑧̇) =
⟨∑︀𝑁

𝑖=1 𝜒𝑖𝜑𝑖(𝑧̇𝑖)
⟩
𝑌

, where 𝑧̇𝑖 : 𝑌 → 𝒵𝑖 is the 𝑖-th part of
𝑧̇ : 𝑌 → 𝒵1 ⊕𝒵2 ⊕ . . .⊕𝒵𝑁 and

4. 𝑧̄0 =
∑︀𝑁
𝑖=1 𝜒𝑖𝑧0,𝑖.

Here, ⟨ ⟩𝑌 = 1
|𝑌 |
∫︀
𝑌

d𝑥 denotes taking the mean value of the quantity
in brackets. The effective stress 𝜎̄, is defined via

𝜎̄(𝜀̄,𝑢, 𝑧) =
⟨

𝑁∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝜀

(𝜀̄ +∇s𝑢, 𝑧𝑖)
⟩
𝑌

. (3.5)

The displacement fluctuation 𝑢 satisfies the static balance of linear
momentum on the microscopic scale

div
[︃
𝑁∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝜀

(𝜀̄ +∇s𝑢, 𝑧𝑖)
]︃

= 0, (3.6)

which is, as 𝜕𝜑/𝜕𝑢̇ vanishes, equivalent to Biot’s equation for the dis-
placement fluctuation 𝑢.
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3 On the micromechanics of deep material networks

Several comments are in order:

1. The definition associates a homogenization function ℳ𝑌 to every
periodic microstructure 𝑌 . Although we cannot compare two periodic
microstructures 𝑌1 and 𝑌2 directly, for instance because of mismatch-
ing size, it is possible to compare their associated homogenization
functions ℳ𝑌1 and ℳ𝑌2 . We say that 𝑌1 and 𝑌2 are equivalent if,
for any 𝑁 -tuple of GSMs (𝒢1,𝒢2, . . . ,𝒢𝑁 ) the homogenized GSMs
ℳ𝑌1(𝒢1,𝒢2, . . . ,𝒢𝑁 ) and ℳ𝑌2(𝒢1,𝒢2, . . . ,𝒢𝑁 ) are equivalent. We
call such an equivalence class 𝒴 a microstructure class, and each
representative 𝑌 ∈ 𝒴 is called a representative volume element.

2. The definition of homogenization functions extend to stochastic ho-
mogenization in a straightforward way. Thus, we may treat stochastic
microstructures and periodic unit cells in the same framework. How-
ever, for the sake of exposition, we restrict to the periodic setting.

3. Suppose a periodic microstructure 𝑌 is given. The purpose of ho-
mogenization theory is to findℳ𝑌 . For practical reasons, only an
approximation ofℳ𝑌 can be provided. To each of these approxima-
tions, an error is associated, which has to be balanced with the effort of
obtaining the approximation. For instance, analytical approximations
are typically cheap to evaluate, but are limited in terms of accuracy.
On the other hand, full-field approaches can be very accurate, but
may require considerable computational effort, in particular in a
concurrent multiscale framework. For deep material networks,ℳ𝑌

is approximated byℳ𝑌 ′ by choosing 𝑌 ′ as a hierarchical laminate,
see Chapter 4.

4. In engineering practice, microstructures with micro-oriented phases
are also of interest, i.e., in addition to the cell 𝑌 and the characteristic
functions {𝜒𝑖}𝑁𝑖=1, a rotation field 𝑅 : 𝑌 → SO(𝑑) is given, where
SO(𝑑) denotes the special orthogonal group acting on V𝑑. Further-
more, to each GSM (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ, an action by rotation on the
internal variables 𝜌 : SO(𝑑) → Aut(𝒵) should be provided, where
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3.2 Homogenization functions for periodic homogenization

Aut(𝒵) denotes the set of linear automorphisms of 𝒵 . In this context,
a homogenization function can be associated to (𝑌, {𝜒𝑖}𝑁𝑖=1,𝑅), acting
on all GSMs with an SO(𝑑)-representation in a straightforward way.
We shall not focus on this case, but highlight two possible applications:
crystallographic texture in polycrystals (Kuhn et al., 2020; 2022) and
composites with anisotropic fibers, e.g., carbon fibers, both of which
are considered by Liu and Wu (2019).

5. Although every periodic 𝑁 -phase microstructure gives rise to a ho-
mogenization function, not every functionℳ𝑌 : 𝒢𝒮ℳ𝑁 → 𝒢𝒮ℳ is
induced by an 𝑁 -phase microstructure. For instance, Voigt averaging
gives rise to a homogenization function, but cannot – except for de-
generated cases – be represented by a specific microstructure in finite
dimensions. Still, it might be worth mentioning that the framework
of homogenization functions permits treating both micromechanical
bounding techniques and mathematical homogenization methods
within the same theory.

It is an interesting problem to determine which homogenization
functions are induced by a microstructure. There are some obvious
constraints, for instance

ℳ𝑌 (𝒢, . . . ,𝒢) = 𝒢 (3.7)

should hold for any fixed 𝒢 ∈ 𝒢𝒮ℳ. Also, a number of inequality
constraints should hold, for instance those induced by Voigt averag-
ing, or on the subset of monotonic GSMs. Notice, however, that all
these (equality and inequality) constraints are preserved by convex
combinations - and it might be hard to combine two unit cells! For
the problem at hand, we shall not be concerned with the question
of realizability, but focus on a constructive approach for realizing
homogenization functions.

6. Hierarchical homogenization gives rise to a product structure on
homogenization functions. More precisely, suppose an 𝑁 -phase
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microstructure 𝑌 is given, together with 𝑁 microstructures 𝑌𝑖, each
with𝑀𝑖 phases. Then, if the 𝑖-th phase of 𝑌 is a material homogenized
from 𝑌𝑖, the resulting (𝑀1 + 𝑀2 + . . . + 𝑀𝑁 )-phase microstructure
has the homogenization function

(𝒢1, . . . ,𝒢∑︀𝑀𝑖
) ↦→ ℳ𝑌 (ℳ𝑌1(ℋ1),ℳ𝑌2(ℋ2), . . . ,ℳ𝑌𝑁

(ℋ𝑁 )) (3.8)

with

ℋ1 = (𝒢1, . . . ,𝒢𝑀1), ℋ2 = (𝒢𝑀1+1, . . . ,𝒢𝑀1+𝑀2), . . . . (3.9)

Furthermore, any embedding 𝜄 : 𝒢𝒮ℳ𝑀 → 𝒢𝒮ℳ𝑁 converts an 𝑁 -
phase homogenization functionℳ to an 𝑀 -phase homogenization
function via

ℳ∘ 𝜄 : 𝒢𝒮ℳ𝑀 → 𝒢𝒮ℳ, (𝒢1, . . . ,𝒢𝑀 ) ↦→ ℳ (𝜄(𝒢1, . . . ,𝒢𝑀 )) .
(3.10)

These two ideas can be combined. Suppose, for instance, that three
two-phase microstructure functionsℳ𝑌 ,ℳ𝑌1 andℳ𝑌2 are given.
These can be combined to a new two-phase microstructure function
via

(𝒢1,𝒢2) ↦→ ℳ𝑌 (ℳ𝑌1(𝒢1,𝒢2),ℳ𝑌2(𝒢1,𝒢2)) . (3.11)

A hierarchical version of this construction is fundamental for con-
structing deep material networks, see Chapter 4.

50



3.2 Homogenization functions for periodic homogenization

Although the equivalence of two homogenization functions ℳ𝑌1

and ℳ𝑌2 for two microstructures 𝑌1 and 𝑌2 is easy to write down,
checking the validity of the statement is not so straightforward. Indeed,
it needs to be checked for any 𝑁 -tuple of GSMs, any strain path
𝜀 : [0, 𝑇 ]→ Sym2(𝑑), and on any time interval [0, 𝑇 ]. Thus, we consider
the restriction of homogenization functions to affine-linear elastic
materials, which we consider as linear elastic materials with residual
strains. More precisely, we say a GSM (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ is affine-linear
elastic if 𝒵 = {0} (“the” trivial vector space), 𝜑 ≡ 0, 𝑧0 = 0 and

𝜓(𝜀) = 1
2(𝜀− 𝜀in) : C [𝜀− 𝜀in] (3.12)

in terms of a positive definite stiffness tensor C ∈ Sym+
4 (𝑑) and a residual

strain 𝜀in ∈ Sym2(𝑑). We denote the set of all affine-linear elastic GSMs
by 𝒜ℒ ⊂ 𝒢𝒮ℳ. By linearity, for any periodic microstructure 𝑌 , the
homogenization functionℳ𝑌 restricts to a mappingℳ𝒜ℒ

𝑌 : 𝒜ℒ𝑁 → 𝒜ℒ.
Checking ℳ𝒜ℒ

𝑌1
= ℳ𝒜ℒ

𝑌2
for two microstructures 𝑌1 and 𝑌2 is much

simpler, because 𝒜ℒ𝑁 is a cone in finite dimensions and no internal
variables need to be taken care of. Furthermore, no time-dependent
strain paths need to be considered.

Clearly,ℳ𝑌1 =ℳ𝑌2 impliesℳ𝒜ℒ
𝑌1

=ℳ𝒜ℒ
𝑌2

. The converse may not hold,
in general. However, we shall show that ℳ𝒜ℒ

𝑌1
= ℳ𝒜ℒ

𝑌2
implies that

ℳ𝑌1 ≈ℳ𝑌2 in a suitable sense if the arc length of the strain path is not
too large, i.e., ∫︁ 𝑇

0
‖𝜀̇(𝑡)‖ d𝑡≪ 1 (3.13)

holds. This is precisely the type of local approximation result replacing
the Taylor approximation which we discussed in the beginning of this
chapter.
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3 On the micromechanics of deep material networks

3.3 Homogenization of generalized standard
materials in terms of Volterra series

This section is devoted to showing that the affine-linear elastic homoge-
nization functionℳ𝒜ℒ

𝑌 determines the nonlinear homogenization func-
tionℳ𝑌 to first order in the strain rate. Our treatment is motivated by
the special case of linear viscoelasticity, which is completely determined
byℳ𝒜ℒ

𝑌 . Homogenizing linear viscoelasticity is a classic in the literature,
and typically based on Laplace transform techniques, see, e.g., Hashin
(1970). For the sake of completeness, a streamlined presentation is
included in Appendix A.1.

There are a couple of things to be learned from Appendix A.1:

1. No intrinsic meaning is associated to internal variables, manifesting
in the equivalence relation inherent to generalized standard materials.
The first step in understanding viscoelasticity consists of eliminating
the internal variables from the representation, see Relation (A.6). The
latter is realized by regarding linear viscoelasticity as a (linear and
time-invariant) dynamical system. Here, the strain rate 𝜀̇ serves as
the system’s input, and the current stress 𝜎 is regarded as the output
of the dynamical system.

2. Our approach differs from the standard literature by avoiding Laplace
and Fourier transform techniques. Fourier transforms only work for
strain inputs defined on the entire time line, but require finite energy,
i.e., ∫︁ ∞

−∞
‖𝜀̇(𝑡)‖2 d𝑡 <∞ (3.14)

needs to hold. However, this rules out simple inputs of interest, for
instance periodic loadings. In contrast, the Laplace transform can treat
such signals. However, the Laplace transform does not – in contrast
to the Fourier transform – give rise to an isomorphism of reasonable
Banach spaces, rendering all arguments on the homogenization more
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3.3 Homogenization of generalized standard materials in terms of Volterra series

or less formal. Our presentation, however, can be made fully rigorous
and extends to some nonlinear problems as well.

3. Interestingly, the intraphase heterogeneity for a general linear vis-
coelastic material subjected to arbitrary loadings appears to play no
role. However, this is only partly true. Due to the linearity, the
strain fields on the microstructure are realized as superpositions of
strain fields resulting from linear elastic homogenization, but with
general elastic material laws per phase. Put differently, the intraphase
heterogeneity generated by arbitrary elastic behavior of the phases is
“rich” enough to cover the intraphase heterogeneity of a phase-wise
linear viscoelastic medium.

To generalize the approach beyond linear viscoelasticity, we shall seek
a class of dynamical system representations of material laws similar to
Relation (A.6)

𝜎(𝑡) = 𝜎0(𝑡) +
∫︁ 𝑡

0
G(𝑡− 𝜏)[𝜀̇(𝜏)] d𝜏 (3.15)

of linear viscoelasticity in hereditary integral form. Motivated by results
from dynamical systems theory, see Rugh (1981), we shall consider
materials whose response to a strain-rate loading 𝜀̇ is governed by a
Volterra (1887) series

𝜎(𝑡) = 𝜎0(𝑡) +
∞∑︁
𝑘=1

∫︁ 𝑡

0

∫︁ 𝜏1

0
· · ·
∫︁ 𝜏𝑘−1

0
G𝑘(𝑡− 𝜏1, 𝜏1 − 𝜏2, . . . , 𝜏𝑘−1 − 𝜏𝑘)

[𝜀̇(𝜏𝑘), 𝜀̇(𝜏𝑘−1), . . . , 𝜀̇(𝜏1)]
d𝜏𝑘 d𝜏𝑘−1 · · · d𝜏1 (3.16)

with kernel functions G𝑘, or can, at least, be approximated with sufficient
accuracy by such a series.

Before discussing which materials may be well-approximated by series
of the form (3.16), we shall first discuss its use in the current context.
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3 On the micromechanics of deep material networks

Assume, for the moment, that we have identified a class of materials
which may be well-approximated by Volterra series, and which is closed
under homogenization. Then, for a fixed 𝑁 -phase microstructure, we
may approximate the material model of each phase by a corresponding
Volterra series. Also, we approximate the effective behavior of the
microstructure by a Volterra series. Retaining only the term with 𝑘 = 1
of the Volterra series expansion, we precisely obtain linear viscoelastic
materials (3.15). Clearly, if the arc length∫︁ 𝑇

0
‖𝜀̇(𝑡)‖ d𝑡≪ 1 (3.17)

of the considered time interval is small, the Volterra series response is
dominated by the first-order term, i.e., the viscoelastic behavior. How-
ever, upon homogenization, the first-order approximations of the ma-
terials of each phase determines the first-order approximation of the
effective material law. In this sense, the linear viscoelastic homogeniza-
tion function approximates a general homogenization functionℳ𝑌 . As,
in turn, the affine-linear elastic homogenization ℳ𝒜ℒ

𝑌 function deter-
mines the linear viscoelastic homogenization function, it approximates
the general homogenization functionℳ𝑌 , as well.

Thus, it remains to discuss the circumstances when a material model
may be approximated by a Volterra series of the form (3.16). There are
rather general results on approximating the input/output operator of
continuous dynamical systems by a series of Volterra type. However,
these results are based on indirect functional-analytic arguments, which
is why we delay discussing them until the end of this section. To
provide some insight, we shall discuss a case where the generalized
standard material is represented by a Volterra series (3.16) exactly, at
least for short time, and the procedure for obtaining the representation
is constructive. Essentially, both the free energy and the dissipation
potential have to be analytic functions of their arguments, i.e., admit
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3.3 Homogenization of generalized standard materials in terms of Volterra series

a multi-dimensional power-series expansion, see Assumptions 1 to 3
below. These assumptions are, of course, very restrictive, and do not
cover many practical cases of interest.

We first represent generalized standard materials as strain-rate con-
trolled dynamical systems. Let (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ be a GSM with a
continuously differentiable dissipation potential 𝜑. For prescribed strain
𝜀 : [0, 𝑇 ]→ Sym2(𝑑), we seek internal variables 𝑧 : [0, 𝑇 ] → 𝒵 and the
stress 𝜎 : [0, 𝑇 ]→ Sym2(𝑑), s.t. Biot’s equation (3.2)

𝜕𝜓

𝜕𝑧
(𝜀, 𝑧) + 𝜕𝜑

𝜕𝑧̇
(𝑧̇) = 0 (3.18)

for which the initial condition 𝑧(0) = 𝑧0 is satisfied and

𝜎 = 𝜕𝜓

𝜕𝜀
(𝜀, 𝑧) (3.19)

holds. Equivalently, Biot’s equation can be rewritten in terms of the force
potential (Halphen and Nguyen, 1975)

𝜑* : 𝒵* → R, 𝛽 ↦→ 𝜑*(𝛽) = sup
𝑧̇∈𝒵

𝑧̇ · 𝛽 − 𝜑(𝑧̇) (3.20)

in the form

𝑧̇ = 𝜕𝜑*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (𝜀, 𝑧)

. (3.21)

Under appropriate hypotheses, the latter system can be equivalently
rewritten as a nonlinear dynamical system (Isidori, 1995)

𝜉̇ = 𝑓(𝜉) + 𝑔(𝜉) : 𝜀̇,

𝜎 = 𝑃 𝜉,
(3.22)

for the initial condition 𝜉(0) = 𝜉0, where 𝜉 : [0, 𝑇 ] → 𝒳 takes values
in some vector space 𝒳 . The important observations for the dynamical
system formulation (3.22) in its form are:
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3 On the micromechanics of deep material networks

1. The stress 𝜎 serves as a (vectorial) output variable,

2. the strain rate 𝜀̇ may be interpreted as the control variable,

3. 𝜉 encodes the black-box dynamics and may be regarded as the state,

4. 𝑃 : 𝒳 → Sym2(𝑑) is linear,

5. the control variable 𝜀̇ enters linearly into Equation (3.22).

To prove Representation (3.22), we assume:

1. The free energy is twice continuously differentiable and the force
potential is (once) continuously differentiable.

2. For fixed internal variable 𝑧, the stress-strain relationship 𝜀 ↦→
𝜕𝜓
𝜕𝜀 (𝜀, 𝑧) is invertible, i.e.,

𝜀 =
[︂
𝜕𝜓

𝜕𝜀
(·, 𝑧)

]︂−1
(𝜎) = ℰ(𝜎, 𝑧) (3.23)

holds.

3. 𝜀(𝑡) = 0 for 𝑡 ≤ 0.

For Assumption 2, it is sufficient that the stress-strain relationship 𝜀 ↦→
𝜕𝜓
𝜕𝜀 (𝜀, 𝑧) is, for any fixed 𝑧 ∈ 𝒵 , strictly monotone, i.e., for fixed 𝑧,[︂

𝜕𝜓

𝜕𝜀
(𝜀1, 𝑧)− 𝜕𝜓

𝜕𝜀
(𝜀2, 𝑧)

]︂
: (𝜀1 − 𝜀2) > 0 (3.24)

holds for all 𝜀1, 𝜀2 ∈ Sym2(𝑑) with 𝜀1 ̸= 𝜀2. Indeed, by the Browder-
Minty theorem, see Theorem 10.49 in Renardy and Rogers (2004), strictly
monotone operators (under appropriate continuity hypotheses) are
invertible. The latter condition encompasses all GSM where the internal
variables are split into an inelastic strain 𝜀in and a hardening-related
variable 𝜀in, s.t. the free energy that takes the form

𝜓(𝜀, 𝜀in, 𝜀in) = 1
2(𝜀− 𝜀in) : C [𝜀− 𝜀in] + 1

2𝜀in : K [𝜀in] +𝐻(𝜀in) (3.25)
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3.3 Homogenization of generalized standard materials in terms of Volterra series

in terms of a non-degenerated stiffness tensor C, a kinematic hardening
tensor K and an isotropic hardening potential 𝐻 . In the following, only
Assumption 2 is needed.

So, let us write down the dynamical system (3.22) explicitly. Differentiat-
ing the stress-strain relationship

𝜎 = 𝜕𝜓

𝜕𝜀
(𝜀, 𝑧) (3.26)

yields

𝜎̇ = 𝜕2𝜓

𝜕𝜀𝜕𝑧
(𝜀, 𝑧) · 𝑧̇ + 𝜕2𝜓

𝜕𝜀2 (𝜀, 𝑧) : 𝜀̇. (3.27)

Accounting for Biot’s equation (3.21) leads to the coupled system

𝜎̇ = 𝜕2𝜓

𝜕𝜀𝜕𝑧
(𝜀, 𝑧) · 𝜕𝜑

*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (𝜀, 𝑧)

+ 𝜕2𝜓

𝜕𝜀2 (𝜀, 𝑧) : 𝜀̇,

𝑧̇ = 𝜕𝜑*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (𝜀, 𝑧)

.
(3.28)

Inserting the inverted stress-strain relationship (3.23) yields, in appro-
priate vector notation,

[︃
𝜎̇

𝑧̇

]︃
=

⎡⎢⎢⎢⎣
𝜕2𝜓

𝜕𝜀𝜕𝑧
(ℰ(𝜎, 𝑧), 𝑧) · 𝜕𝜑

*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (ℰ(𝜎, 𝑧), 𝑧)

𝜕𝜑*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (ℰ(𝜎, 𝑧), 𝑧)

⎤⎥⎥⎥⎦
+

⎡⎣ 𝜕2𝜓

𝜕𝜀2 (ℰ(𝜎, 𝑧), 𝑧)
0

⎤⎦ : 𝜀̇. (3.29)
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Thus, we have shown the claim by defining 𝜉 = [𝜎, 𝑧] ∈ 𝒳 = Sym2(𝑑)⊕
𝒵 and

𝑓(𝜉) =

⎡⎢⎢⎢⎣
𝜕2𝜓

𝜕𝜀𝜕𝑧
(ℰ(𝜎, 𝑧), 𝑧) · 𝜕𝜑

*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (ℰ(𝜎, 𝑧), 𝑧)

𝜕𝜑*

𝜕𝛽

⃒⃒⃒⃒
𝛽 = −𝜕𝜓𝜕𝑧 (ℰ(𝜎, 𝑧), 𝑧)

⎤⎥⎥⎥⎦ ,

𝑔(𝜉) =

⎡⎣ 𝜕2𝜓

𝜕𝜀2 (ℰ(𝜎, 𝑧), 𝑧)
0

⎤⎦ ,
𝜎 = 𝑃 𝜉 (𝑃 is the projector onto the first element),

(3.30)

obtaining the desired form (3.22) with initial condition

𝜉(0) =
[︂
𝜕𝜓

𝜕𝜀
(0, 𝑧0), 𝑧0

]︂
. (3.31)

Last but not least, let us remark that if 𝜓 and 𝜑* are analytic, so are the
functions 𝑓 and 𝑔.

Thus, under Observations 1 to 5, the generalized standard material
(𝒵, 𝜓, 𝜑, 𝑧0) can be equivalently rewritten as the (abstract) dynamical
system (3.22)

𝜉̇ = 𝑓(𝜉) + 𝑔(𝜉) : 𝜀̇,

𝜎 = 𝑃 𝜉,
(3.32)

with the initial condition 𝜉(0) = 𝜉0. In fact, any dynamical system
of the form (3.32) with analytic coefficients admits a representation
by a Volterra series (3.16), at least for short time. The derivation is
standard in control-theory literature, see Rugh (1981), and is based
on Carleman bilinearization (1932). Indeed, Carleman observed that,
for analytic coefficents 𝑓 and 𝑔, the dynamical system (3.32) may be
equivalently rewritten as a bilinear dynamical system, i.e., a system
linear in the state and the input 𝜀̇, if a new state variable is defined,
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3.3 Homogenization of generalized standard materials in terms of Volterra series

encompassing all possible monomials, i.e., homogenenous polynomials,
in the components of 𝜉. For such a bilinear dynamical system, the
Volterra series approximation is obtained by the method of successive
integration, see Rugh (1981). For the convenience of the reader, and
as Rugh restricts to systems with single input and single output, the
procedure is outlined in Appendix A.2.

As already stated, the assumptions on the analyticity of the free energy
and the dissipation potential exclude a variety of material models of
interest. For instance in the context of quasi-static (associated) elastoplas-
ticity, the force potential is extended-valued, and attains the values 0 and
+∞, exclusively. Nevertheless, Sandberg (1982a;b; 1983) established that
a wide range of causal time-invariant nonlinear dynamical systems,
satisfying more general conditions, can be expressed in terms of a
Volterra series expansion with 𝜎̇0 ≡ 0. Still, we presume that dynamical
systems associated to such GSMs cannot, in general, be represented by a
Volterra series (3.16) exactly. However, one might seek an approximation
by a Volterra series. There are quite general results on approximating
time-invariant input/output operators of dynamical systems in terms
of a Volterra series. For instance, Boyd and Chua (1985) showed that
any causal, time-invariant nonlinear operator 𝒩 on 𝐶(R), the Banach
space of continuous functions on the real line, with fading memory, may
be approximated, in the weak operator topology and on equi-bounded
sets, by a Volterra series ̃︀𝒩 with 𝜎̇0 ≡ 0, see Theorem 1 in Boyd and
Chua (1985). Here, the fading-memory concept deserves some attention.
Informally speaking, it asserts that, “if two input signals which are close
in the recent past, but not necessarily close in the remote past, yield
present outputs which are close”, see p. 1152 in Boyd and Chua (1985).
Mathematically speaking, fading memory is a continuity assumption of
the nonlinear operator in question w.r.t. a weighted maximum norm, see
Boyd and Chua (1985) for details. Also, causal time-invariant nonlinear
operators which are merely continuous on 𝐶(R) may be approximated
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by a Volterra series on compact subsets and for short time, see Rugh
(1981).

General standard materials give rise to causal nonlinear operators on
𝐶(R; Sym2(𝑑)), mapping a history of strain rates to a history of stresses,
under technical conditions, see, for instance, Mielke (2006). Whether
they are fading-memory or are merely continuous has to be decided
on a case-to-case basis. Still, the concepts appear general enough to
encompass GSM of interest. Indeed, the assumption that small changes
in the strain-rate history lead to small changes in the resulting stress
seems physically plausible, at least if fracture models are excluded. Also,
the fading-memory concept is related to purely viscous material models.

Of course, the Volterra series expansion results are stated for single-
input-single-output systems. However, the approximation arguments
stated above carry over to multiple-input-multiple-output systems, at
least if the number of inputs and outputs is finite. To conclude this part,
let us remark that the practical usefulness of the Volterra series form
(3.16) of material models appears limited. The latter has mainly been
introduced for theoretical reasons.

3.4 Linear elastic localization determines
affine-linear elastic homogenization

Recall the affine-linear elastic homogenization function

ℳ𝒜ℒ
𝑌 : 𝒜ℒ𝑁 → 𝒜ℒ (3.33)

of an 𝑁 -phase microstructure 𝑌 with phases {𝜒𝑖}𝑁𝑖=1. By definition, any
affine-linear elastic GSM (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒜ℒ is determined by the phase-
wise constant stiffness tensor C and the phase-wise constant inelastic
strain 𝜀in. Thus, by abusing notation, we may also regard ℳ𝒜ℒ

𝑌 as a
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function

ℳ𝒜ℒ
𝑌 : ((C1, 𝜀in,1), (C2, 𝜀in,2), . . . , (C𝑁 , 𝜀in,𝑁 )) ↦→ (C̄, 𝜀̄in). (3.34)

Thus, in three spatial dimensions, 𝑑 = 3, the input is (21 + 6)𝑁 -
dimensional. However, we shall show that it is in fact sufficient
to consider homogenization of linear elasticity, as long as the strain
concentration tensors per phase are recorded. More precisely, we denote
by

𝒜𝑌 : Sym+
4 (𝑑)𝑁 → 𝐿(Sym2(𝑑))𝑁 (3.35)

the phase-wise average strain localization function associated to an
𝑁 -phase microstructure 𝑌 , where Sym+

4 (𝑑) denotes the convex cone of
stiffness tensors and 𝐿(Sym2(𝑑)) denotes the set of linear operators on
Sym2(𝑑), defined via

𝒜𝑌 (C1,C2, . . . ,C𝑁 ) = (⟨𝜒1A⟩𝑌 , ⟨𝜒2A⟩𝑌 , . . . , ⟨𝜒𝑁A⟩𝑌 ) , (3.36)

where A : 𝑌 → Sym2(𝑑)⊗Sym2(𝑑) is the linear elastic strain localization
tensor associated to the stiffness tensor C : 𝑌 → Sym+

4 (𝑑) with C =∑︀𝑁
𝑖=1 𝜒𝑖C𝑖. In contrast to the affine-linear elastic homogenization func-

tion (3.34), only 21𝑁 scalar input arguments are required for evaluating
the linear elastic localization function (3.36) in three spatial dimensions.

The key observation for this section is that the data encoded in the
affine-linear elastic homogenization function (3.34) and the linear elas-
tic localization function (3.36) is identical, which is evident from the
Mandel-Levin formula (Mandel, 1965; Levin, 1967). More precisely,
let (C1,C2, . . . ,C𝑁 ) ∈ Sym+

4 (𝑑)𝑁 be given, together with 𝑁 residual
strains (𝜀in,1, . . . , 𝜀in,𝑁 ) ∈ Sym2(𝑑). Then, denoting by C̄ the effective
stiffness, 𝜀̄in the effective residual strain and by A the linear elastic strain
localization tensor associated to C =

∑︀𝑁
𝑖=1 𝜒𝑖C𝑖, we get

C̄ = ⟨C : A⟩𝑌 and 𝜀̄in = C̄−1 : ⟨𝜀in : C : A⟩𝑌 (3.37)
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for 𝜀in =
∑︀𝑁
𝑖=1 𝜒𝑖𝜀in,𝑖 . Since C and 𝜀in are phase-wise constant, we can

also write the former as

C̄ =
𝑁∑︁
𝑖=1

C𝑖 : ⟨𝜒𝑖A⟩𝑌 and 𝜀̄in = C̄−1 :
𝑁∑︁
𝑖=1

𝜀in,𝑖 : C𝑖 : ⟨𝜒𝑖A⟩𝑌 . (3.38)

The latter equations directly establishes the equivalence ofℳ𝒜ℒ
𝑌 and

𝒜𝑌 .

3.5 Linear elastic homogenization determines
elastic localization for two-phase materials

In the previous Section 3.4, we have seen that the affine-linear elastic
homogenization functionℳ𝒜ℒ

𝑌 is determined by the linear elastic local-
ization function 𝒜𝑌 . The purpose of this section is to show that in the
special case of two-phase materials, the affine-linear elastic homogeniza-
tion functionℳ𝒜ℒ

𝑌 is determined by the elastic homogenization function
ℳℒ

𝑌 . Thus, it is not necessary to track the phase-wise averaged stresses,
but only the stresses averaged over the entire microstructure.

The statement is proved by observing that for almost all stiffness tensors,
the phase-wise averaged stresses can be computed from the effective
stiffness, provided the volume fractions are known. The statement is
extended to all possible stiffness tensors by a continuity argument. To
proceed, consider the strain localization function (3.36)

𝒜𝑌 (C1,C2) = (⟨𝜒1A⟩𝑌 , ⟨𝜒2A⟩𝑌 ) (3.39)

of a two-phase medium. Denote by

ℳℒ
𝑌 : Sym+

4 (𝑑)× Sym+
4 (𝑑)→ Sym+

4 (𝑑), (C1,C2) ↦→ C̄, (3.40)
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the corresponding linear elastic homogenization function. The claim
is equivalent to showing that, for two-phase materials with phase-
wise constant properties, this linear elastic homogenization function
determines the strain localization function.

Let two stiffness tensors C1 and C2 be given. Then, by the definition of
the effective stiffness tensor, we obtain

C̄ = C1 : ⟨𝜒1A⟩𝑌 + C2 : ⟨𝜒2A⟩𝑌 . (3.41)

Thus, localization determines homogenization, so that the converse
statement shall be our concern. So, suppose the difference of the stiffness
tensors (C1 − C2) is non-singular. Then, the linear system

C̄ = C1 : ⟨𝜒1A⟩𝑌 + C2 : ⟨𝜒2A⟩𝑌 ,
Is = ⟨𝜒1A⟩𝑌 + ⟨𝜒2A⟩𝑌 ,

(3.42)

can be solved explicitly, see Hill (1963),

⟨𝜒1A⟩𝑌 = (C1−C2)−1(C̄−C2) and ⟨𝜒2A⟩𝑌 = (C2−C1)−1(C̄−C1).
(3.43)

If (C1−C2) is singular, we conclude by continuity of𝒜𝑌 . More precisely,
𝒜𝑌 is an analytic function on Sym+

4 (𝑑)2. In particular, it is continuous
and finite-valued. The condition that (C1 − C2) is singular determines
an at most 𝑑-dimensional subset of Sym+

4 (𝑑)2. However, Sym+
4 (𝑑)2 is

𝑑(𝑑+ 1)-dimensional. Thus, 𝒜𝑌 is determined on an 𝑑-codimensional
set in 𝑑(𝑑+ 1)-dimensional space. We conclude by continuity of𝒜𝑌 . Put
differently, the Formula (3.43) has a removable singularity – if (C1 − C2)
is singular, so is (C̄− C2).
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3 On the micromechanics of deep material networks

3.6 Conclusion

For two-phase microstructures and isotropic conducting phases with
thermal conductivities 𝜅1 and 𝜅2, series expansions of the effective
thermal conductivity like

𝜅̄(𝜅1, 𝜅2) = 𝜅1 + 𝜅2
2

∞∑︁
𝑘=0

𝐴𝑘𝑥
𝑘 with 𝑥 = 𝜅1 − 𝜅2

𝜅1 + 𝜅2
(3.44)

in terms of a sequence {𝐴𝑘}∞
𝑘=0 of symmetric second-order tensor are

well-known, see Milton (2002) or Torquato (2005). The advantage of
series expansions like (3.44) is their ability to separate the influence of
the physical parameters (via 𝑥) and the influence of the geometrical
arrangement of the phases (via 𝐴𝑘) on the effective property in question.
In particular, {𝐴𝑘}∞

𝑘=0 characterizes the underlying microstructure from
the viewpoint of (isotropic) heat conduction completely. Extended to
elasticity, expansions of the type (3.44) become less useful, because the
power series becomes multi-dimensional, and the number of scalar
expansion coefficients becomes prohibitive quickly. In this chapter, we
have provided a framework for extending Equation (3.44) to generalized
standard material inputs by introducing homogenization functions,
which generalize the sequences {𝐴𝑘}∞

𝑘=0.

To understand to which degree linear (in)elastic homogenization de-
termines the general homogenization function, we have advocated a
reinterpretation of generalized standard materials as dynamical systems,
utilizing the rich theory of dynamical systems (Rugh, 1981) to show
that the affine-linear elastic homogenization function determines the
nonlinear homogenization function to first order in the strain rate. It is
of great interest to characterize explicitly which generalized standard
material may be approximated by Volterra series (and in which sense,
i.e., in which norm and on which time-scale), providing impetus for
future work.
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3.6 Conclusion

Combining the individual statements of this entire chapter, we have
provided the mathematical underpinnings of the approach of Liu et al.
(2019a) and Liu and Wu (2019): For two-phase materials, linear elastic
homogenization determines nonlinear homogenization to first order in
the strain rate. In particular, approximating the linear elastic homoge-
nization function is sufficient to characterize the nonlinear behavior to
first order, as well. In addition to understanding the previous approach
more thoroughly, we have learned that for materials with more than two
constituents, linear elastic localization needs to be learned instead of
linear elastic homogenization.
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Chapter 4

The framework of direct deep
material networks1

4.1 Introduction

The goal of micromechanical theories may be stated as follows. Suppose
a microstructure 𝑌 is given. For a given class of constitutive laws, we
wish to identify an approximation to the nonlinear homogenization
functionℳ𝑌 , s.t.

1. the approximation is close to the original function and

2. the approximation is reasonably fast to evaluate.

Clearly, these two objectives are opposing each other. Liu et al. (2019a)
and Liu and Wu (2019) introduced deep material networks as a hierarchy
of nested laminates to approximate the nonlinear homogenization func-
tionℳ𝑌 . They main idea behind DMNs can be summarized as follows:
The DMN is trained to approximate the affine-linear elastic homogeniza-
tion functionℳ𝒜ℒ

𝑌 using machine learning techniques. Subsequently,
the identified model is applied to nonlinear and inelastic problems
with good accuracy. In addition, the DMN’s nonlinear homogenization
function is reasonably fast to evaluate.

1 This chapter is based on Section 3, 4 and 5 of the publication “On the micromechanics of
deep material networks” (Gajek et al., 2020). The introduction has been shortened to
avoid redundancy with Chapter 1. The notation has been harmonized.
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4 The framework of direct deep material networks

In Section 4.2, we introduce direct DMNs2, which feature a reduced
number of degrees of freedom compared to the original formulation
of Liu et al. (2019a) and Liu and Wu (2019) by omitting rotations and
utilizing laminate building blocks with arbitrary direction of lamination.
In Section 4.2.2, we present how such building blocks may be efficiently
evaluated for the 𝑁 -phase homogenization of linear elasticity with
eigenstrains. Furthermore, we introduce a novel solution technique
for nonlinear DMNs with arbitrary tree topologies and multi-phase
laminates in Section 4.2.3.

We establish that (direct) DMNs inherit thermodynamic consistency and
stress-strain monotonicity from their phases by interpreting them as
hierarchical microstructures. The former properties contrast with less
sophisticated applications of neural networks to approximate the stress-
strain response of a microstructure, where thermodynamic consistency
and preservation of monotonicity is not guaranteed, in general.

In Section 4.3, we elaborate essential implementation details followed
by Section 4.4, where we apply direct DMNs to microstructures of
industrial complexity: A short glass fiber reinforced polyamide (FRP)
and a metal matrix composite (MMC). We evaluate offline training and
online evaluation separately and show that direct DMNs are capable of
predicting the stress-strain response of the FRP and MMC to engineering
accuracy, respectively.

2 Originally, Gajek et al. (2020) introduced their formulation as “rotation-free” DMNs.
However, to keep the nomenclature consistent with later publications (Gajek et al.,
2021a;b; 2022; Meyer et al., 2023), the term “rotation-free” was changed to “direct”
throughout this chapter.
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4.2 Considering deep material networks with a variable direction of lamination

4.2 Considering deep material networks with
a variable direction of lamination

4.2.1 Direct DMNs with 𝑁 phases

Suppose we wish to approximate the homogenization function

ℳ𝑌 : 𝒢𝒮ℳ𝑁 → 𝒢𝒮ℳ (4.1)

of an 𝑁 -phase microstructure. Deep material networks take as starting
point the homogenization function

ℬ : 𝒢𝒮ℳ𝑁 → 𝒢𝒮ℳ (4.2)

associated to an𝑁 -phase laminate microstructure, see Figure 4.1. The lat-
ter homogenization function will not serve as an accurate approximation
of the former homogenization function unless the original microstructure
is a laminate.

. . .c1c1 c2c2 cN−1cN−1 cNcN

Figure 4.1: 𝑁 -phase laminate microstructure with volume fractions 𝑐1, 𝑐2, . . . , 𝑐𝑁 .

We noticed in Section 3.2 that it is possible to concatenate homogeniza-
tion functions. Motivated by the deep learning paradigm (Aizenberg
et al., 2013), this observation led Liu et al. (2019a) to introduce deep
material networks. They defined deep material networks as a hierarchy
of nested laminates where both the input and output of each laminate
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4 The framework of direct deep material networks

are furnished by rotation matrices. For the chapter at hand, we follow an
alternative path replacing the rotation steps by laminates with a variable
direction of lamination.

We define a direct deep material network

𝒟ℳ𝒩𝑌 : 𝒢𝒮ℳ𝑁 → 𝒢𝒮ℳ (4.3)

as a perfect, ordered3 𝑁 -ary tree of depth 𝐾, where an 𝑁 -phase laminate
(4.2) is assigned to each node of the tree, see Figure 4.2 for an illustration.
We may refer to the DMN as “direct”, because we, in contrast to Liu et al.
(2019a) and Liu and Wu (2019), do not furnish the phases of the laminates
with rotation matrices, see Comment 6. For the sake of exposition, we
will use the terms “direct DMN” and “DMN” as synonyms and refer
explicitly to the formulation of Liu et al. (2019a) and Liu and Wu (2019) if
necessary. Recall that a full 𝑁 -ary tree is a tree where each node, except
for the leaves, has precisely 𝑁 child nodes. A perfect tree is a full tree in
which all leaf nodes are at the same level. Thus, such a tree of depth 𝐾
involves

1 +𝑁 +𝑁2 + . . .+𝑁𝐾−1 = 𝑁𝐾 − 1
𝑁 − 1 (4.4)

nodes, each of which we assign to an 𝑁 -phase laminate. We denote the
laminate or building block of the 𝑖-th node on the 𝑘-th level of the tree
by ℬ𝑖𝑘.

An 𝑁 -phase direct DMN of depth 𝐾 has 𝑁𝐾 inputs. We assign the
leaves of the bottom level the inputs

(𝒢1
𝐾+1,𝒢2

𝐾+1, . . . ,𝒢𝑁
𝐾 −1

𝐾+1 ,𝒢𝑁𝐾

𝐾+1) = (𝒢1, . . . ,𝒢𝑁 , . . . ,𝒢1, . . . ,𝒢𝑁 ), (4.5)

i.e., the 𝑁 given materials (𝒢1, . . . ,𝒢𝑁 ) ∈ 𝒢𝒮ℳ𝑁 are repeated 𝑁𝐾−1

times in a cyclic fashion. For prescribed inputs (𝒢1
𝐾+1, . . . ,𝒢𝑁

𝐾

𝐾+1), the

3 By ordered we mean that the children of each node are ordered.
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4.2 Considering deep material networks with a variable direction of lamination

direct DMN is evaluated to 𝒢1
1 , where we recursively define

𝒢𝑖𝑘 = ℬ𝑖𝑘(𝒢𝑁(𝑖−1)+1
𝑘+1 ,𝒢𝑁(𝑖−1)+2

𝑘+1 , . . . ,𝒢𝑁𝑖𝑘+1) (4.6)

with 𝑘 = 1, . . . ,𝐾 and 𝑖 = 1, . . . , 𝑁𝑘−1. The process of recursively
evaluating ℬ𝑖𝑘 by traversing the tree from the 𝐾-th to the first level is
illustrated in Figure 4.2. The effective material behavior of the DMN is
then given by 𝒢 = 𝒢1

1 .
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Figure 4.2: A three-phase DMN described by a ternary tree of depth three (the input level
is not counted)

Several comments are in order:

1. Geometrically, a DMN of depth 𝐾 and 𝑁 phases consists of a hier-
archical laminate with 𝐾 scales 𝐿1 ≫ 𝐿2 ≫ . . . ≫ 𝐿𝐾 . Each scale
corresponds to a level of the tree.

2. Any DMN preserves thermodynamic consistency of the material
models for trivial reasons. For our material models at hand, the
thermodynamic consistency of the generalized standard materials is
encoded by the convexity of the potentials involved. It is well-known,
see for instance Suquet (1985), that periodic homogenization pre-
serves thermodynamic consistency of GSMs. As the building blocks
of the DMN are laminates, which are, in particular, microstructures,
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4 The framework of direct deep material networks

each block preserves thermodynamic consistency. As a result, the
entire DMN also preserves thermodynamic consistency of the input
material models.

3. DMNs preserve monotonicity of material models, strengthening the
purely qualitative previous remark. More precisely, suppose that, af-
ter a time discretization, the eigenvalues of the material tangents of all
materials are contained in the interval [𝐶−, 𝐶+] for 𝐶− ≥ 0. Then, the
eigenvalues of the material tangent of the effective material produced
by the DMN are also contained in this interval. The latter statement
is true for periodic homogenization of any real microstructure. As
laminates are microstructures, the statement continues to hold for
DMNs as well. For the convenience of the reader, we included the
definition of monotonicity and a stream-lined derivation of the former
result in Appendix B.

It is well known that every microstructure inherently meets the
Voigt/Reuss upper and lower bounds on the effective stiffness and
the Taylor/Sachs upper and lower bounds on the effective potential,
e.g., see Section 5.1 in Suquet (1997) for a derivation. This statement
continues to hold for DMNs, as can be directly seen by applying
Suquet’s arguments in a hierarchical fashion.

4. In principle, any other 𝑁 -phase microstructure may be used as the
building block of a corresponding deep material network. Then,
preservation of thermodynamic consistency and bounds on the mate-
rial tangent would be preserved as well. However, two difficulties
may arise. On the one hand, fast evaluation of the homogenization
function is mandatory. On the other hand, the structure needs to be
sufficiently anisotropic to be of use. To elaborate, suppose the build-
ing block would have isotropic geometric statistics. Then, if the input
materials were isotropic, also the effective material would be isotropic.
If the microstructure to be approximated features anisotropic geomet-
ric characteristics, an isotropic building block will fail to produce a

72



4.2 Considering deep material networks with a variable direction of lamination

useful approximation. However, morphological anisotropy is only a
sufficient condition for approximability. Understanding the approxi-
mation capabilities of DMNs with laminate building blocks is beyond
the scope of this chapter.

5. Each building block ℬ𝑖𝑘 of the DMN is an 𝑁 -phase laminate mi-
crostructure. Each such laminate is characterized by the direction
of lamination 𝑛𝑖𝑘 ∈ S𝑑−1, the unit sphere in 𝑑 dimensions, and 𝑁

non-negative volume fractions 𝑐𝑖𝑘,1, . . . , 𝑐
𝑖
𝑘,𝑁 which sum to unity, i.e.,

𝑁∑︁
𝑛=1

𝑐𝑖𝑘,𝑛 = 1. (4.7)

6. Liu et al. (2019a) and Liu and Wu (2019) use micro-oriented 𝑁 -phase
laminates, i.e., a fixed direction of lamination with rotated inputs
and output, as their building blocks. However, in this chapter, we
focus on undirected materials such that our choice is sufficient. For
an extension of the direct DMN framework to treat micro-oriented
materials, see Chapter 6.

Concerning the degrees of freedom, notice that a direct DMN of 𝑁
phases and depth 𝐾 may be parameterized by one lamination direc-
tion 𝑛𝑖𝑘 ∈ S𝑑−1 and volume fractions 𝑐𝑖𝑘,1, . . . , 𝑐

𝑖
𝑘,𝑁 for every laminate.

In total, a three-dimensional (𝑑 = 3) DMN of depth 𝐾 involving 𝑁

phases is characterized by 𝑁𝐾−1
𝑁−1 (𝑁 + 1) degrees of freedom , i.e., 𝑁

𝐾 −1
𝑁−1

lamination directions and 𝑁𝐾 − 1 volume fractions (if also considering
Relation (4.7)).

Instead of prescribing independent volume fractions to every laminate,
Liu et al. (2019a) and Liu and Wu (2019) proposed to assign a weight
𝑤𝑖𝐾+1 to every input, 𝑁𝐾 inputs in total, of the DMN. The weights on
level 𝑘 are computed as the sum of weights of the respective laminates
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4 The framework of direct deep material networks

when traversing the tree from the leaves to the root, i.e.,

𝑤𝑖𝑘 =
𝑁∑︁
𝑗=1

𝑤
𝑁(𝑖−1)+𝑗
𝑘+1 = 𝑤

𝑁(𝑖−1)+1
𝑘+1 + 𝑤

𝑁(𝑖−1)+2
𝑘+1 + . . .+ 𝑤𝑁𝑖𝑘+1 (4.8)

holds. This weight propagation process is illustrated in Figure 4.3. Thus,
the prescribed 𝑁𝐾 input weights uniquely determine the weights on
all levels of the deep material network. In particular, the weights 𝑤𝑖𝐾+1,
𝑖 = 1, . . . , 𝑁𝐾 , are non-negative and sum to unity. Geometrically, they
weight the influence of the 𝑖-th input material on the effective response
of the DMN.
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Figure 4.3: Weight propagation in a three-phase DMN of depth two

Notice the distinction between weights and volume fractions. The
volume fractions of each laminate are computed from the propagated
weights by normalization, i.e., the volume fractions 𝑐𝑖𝑘,1, . . . , 𝑐

𝑖
𝑘,𝑁 of the

ℬ𝑖𝑘 laminate are computed as

𝑐𝑖𝑘,1 =
𝑤
𝑁(𝑖−1)+1
𝑘+1∑︀𝑁

𝑗=1 𝑤
𝑁(𝑖−1)+𝑗
𝑘+1

, . . . 𝑐𝑖𝑘,𝑁 =
𝑤𝑁𝑖𝑘+1∑︀𝑁

𝑗=1 𝑤
𝑁(𝑖−1)+𝑗
𝑘+1

. (4.9)

Working with weights instead of volume fractions preserves the number
of degrees of freedom of 𝑁𝐾−1

𝑁−1 (𝑁 + 1), i.e., 𝑁
𝐾 −1
𝑁−1 unit normals and

𝑁𝐾 − 1 independent weights, for a three-dimensional DMN.
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4.2 Considering deep material networks with a variable direction of lamination

4.2.2 Fast evaluation of the affine-linear homogenization
function

𝑁 -phase deep material networks are defined as trees of 𝑁 -phase lami-
nates, see Section 4.2. Thus, to evaluate the affine-linear elastic homoge-
nization function of the DMN

𝒟ℳ𝒩𝒜ℒ
𝑌 : ((C1, 𝜀in,1), (C2, 𝜀in,2), . . . , (C𝑁 , 𝜀in,𝑁 )) ↦→ (C̄, 𝜀̄in) (4.10)

it is necessary to repeatedly evaluate the affine-linear elastic homoge-
nization function of a single laminate

ℬ𝒜ℒ : ((C1, 𝜀in,1), (C2, 𝜀in,2), . . . , (C𝑁 , 𝜀in,𝑁 )) ↦→ (C̄, 𝜀̄in). (4.11)

Traversing the tree from the leaves to the root by recursively evaluating
ℬ𝒜ℒ, see Figure 4.2, yields the effective stiffness C̄ and residual strain
𝜀̄in. To arrive at a formula to efficiently evaluate ℬ𝒜ℒ, we use that any
affine-linear elastic material can be represented in terms of a stiffness
tensor C and a residual strain 𝜀in in the affine form[︃

𝜎

1

]︃
=
[︃

C −C : 𝜀in

0 1

]︃[︃
𝜀

1

]︃
. (4.12)

Choosing this particular form permits computing the effective stiffness C̄
and the residual strain 𝜀̄in simultaneously, as explained in the following.

Suppose a laminate with lamination direction 𝑛 ∈ S𝑑−1 is given. Follow-
ing Section 9.5 in Milton (2002), the effective affine-linear elastic material
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4 The framework of direct deep material networks

behavior is given by the implicit formula

⎛⎝L + 𝜆0

[︃
C̄− 𝜆0Is −C̄ : 𝜀̄in

0 1− 𝜆0

]︃−1
⎞⎠−1

=

⟨⎛⎝L + 𝜆0

[︃
C− 𝜆0Is −C : 𝜀in

0 1− 𝜆0

]︃−1
⎞⎠−1⟩

, (4.13)

where Is : Sym2(𝑑) → Sym2(𝑑) denotes the identity on Sym2(𝑑) and
L

refers to the projection operator acting on (𝜀, 𝜔) ∈ Sym2(𝑑)⊕ R via the
formula

L(𝜀, 𝜔) = [(𝜀𝑛)⊗ 𝑛 + 𝑛⊗ (𝜀𝑛)− (𝑛 · 𝜀𝑛) 𝑛⊗ 𝑛, 𝜔]. (4.14)

By abusing notation, the latter may be written as a matrix in the form of

L =
[︃ L

𝑛 0
0 1

]︃
(4.15)

where
L

𝑛 is the Mandel representation of the fourth-order tensor in
Cartesian coordinates

(L𝑛)𝑖𝑗𝑙𝑚 = 1
2(𝑛𝑖𝛿𝑗𝑙𝑛𝑚+𝑛𝑗𝛿𝑖𝑙𝑛𝑚+𝑛𝑖𝛿𝑗𝑚𝑛𝑙+𝑛𝑗𝛿𝑖𝑚𝑛𝑙)−𝑛𝑖𝑛𝑗𝑛𝑙𝑛𝑚 (4.16)

and 𝛿 denotes the Kronecker symbol. By ⟨ ⟩, we denote averaging on
the 𝑁 -phase laminate, and 𝜆0 is a parameter with the dimension of a
Young’s modulus which needs to be chosen sufficiently large for all the
inversions involved in Formula (4.13) to make sense. It can be shown
that it suffices for 𝜆0 to exceed the largest eigenvalue of all stiffness
matrices involved, in Mandel’s notation. This statement follows from
the purely elastic case, see Kabel et al. (2015), as the augmented stiffness
matrix in Formula (4.12), regarded as a 2 × 2 matrix with blocks of
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4.2 Considering deep material networks with a variable direction of lamination

different sizes, is upper triangular. An upper bound on the eigenvalues,
in turn, can be easily obtained by evaluating the Frobenius norm of the
input stiffness tensors, also in Mandel’s notation.

Formula (4.13) has several advantages:

1. It treats normals of arbitrary direction,

2. any number of phases is supported,

3. the Formula (4.13) is already in matrix form, supporting a simple
implementation which also supports automatic differentation, see
Section 4.3.2, and

4. the linear elastic case is covered, by setting 𝜀in = 0.

4.2.3 Flexible evaluation of the nonlinear
homogenization function

In the previous section, we have seen how to efficiently evaluate the
(affine-)linear homogenization function of a direct DMN by exploiting,
on the one hand, explicit formulae for the effective affine-linear elastic
response of an𝑁 -phase laminate and, on the other hand, the hierarchical
nature of the deep material network. Notice that the approach we
followed for the linear case can also be carried out for the nonlinear case:
Provided a time discretization and a strain increment were supplied,
we could compute the effective stress of an 𝑁 -phase laminate, and
“propagate” this effective stress to the next higher level. Unfortunately,
due to the iterative nature of the solution process involved, for each
level a tolerance needs to be supplied which determines how accurate
the residual equations are solved. Unless this tolerance depends on
the level, the algorithms will not converge, in general. Unfortunately,
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4 The framework of direct deep material networks

we noticed that for a certain depth of the deep material network, the
solution process becomes unstable4.

Thus, it appears imperative to consider the problem of computing the
effective stress of a DMN as a single, global problem. Liu et al. (2019a)
noticed that such an approach may be carried out by exploiting the
specific form of the deep material network. As the DMN is given by
an ordered tree of (nonlinear) laminates, the algorithmic tangent of the
full DMN can be computed by linearly homogenizing the algorithmic
tangents of the individual laminates using linear elastic homogenization,
see (4.13), in a hierarchical way.

We tested the approach of Liu et al. (2019a) and Liu and Wu (2019), and it
worked well. However, we strived for higher flexibility of the implemen-
tation. To be more precise, the hierarchical evaluation of the algorithmic
tangent via evaluating the affine-linear homogenization funcion (4.13) is
quite natural for “modern” codes supporting the recursive evaluation
inherent to deep learning. However, most finite element codes for solid
mechanics supporting user-provided material subroutines grant their
users only a restricted flexibility concerning the implementation.

From hierarchical laminates to a flattened representation

With these considerations in mind, we came up with an alternative
way of solving the global nonlinear DMN system associated to given
nonlinear material laws. More precisely, we separate the material non-
linearity and the topography (topology, normals and volume fractions)
of the DMN into separate matrices to be elaborated subsequently. This
is accomplished by showing that the “deep” material network may be
flattened to a “shallow” network, which has a form very similar to a
conventional laminate with a lot of phases.

4 More precisely, we decreased the tolerance by an order of magnitude for each level, and
for more than 7 levels, we encountered problems.
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4.2 Considering deep material networks with a variable direction of lamination

To keep notation as simple as possible, we discuss a two-phase DMN,
i.e.,

𝒟ℳ𝒩𝑌 : 𝒢𝒮ℳ× 𝒢𝒮ℳ→ 𝒢𝒮ℳ. (4.17)

The nonlinear material behavior of the two phases, 𝑖 = 1, 2, is given by
two isothermal GSMs (𝒵1, 𝜓1, 𝜑1, 𝑧0,1) ∈ 𝒢𝒮ℳ and (𝒵2, 𝜓2, 𝜑2, 𝑧0,2) ∈
𝒢𝒮ℳ, including the free-energy densities 𝜓𝑖 : Sym2(𝑑) × 𝒵𝑖 → R, the
dissipation potentials 𝜑𝑖 : 𝒵𝑖 → R ∪ {+∞} and the initial conditions
𝑧0,𝑖 ∈ 𝒵𝑖. Due to time discretization and freezing of the internal
variables, each GSM reduces to a nonlinear elastic material

𝜎𝑖 = 𝜕Ψ𝑖

𝜕𝜀
(𝜀𝑖, 𝑧𝑛𝑖 ) , (4.18)

which is given in terms of the condensed free energy potential Ψ𝑖 :
Sym2(𝑑) × 𝒵 → R and only depends on the strain 𝜀𝑖 and the internal
variables 𝑧𝑛𝑖 of the last (converged) time step, see Section 2.5 for more
information.

We start by examining a two-phase DMN of depth one, i.e., a simple
two-phase rank-one laminate, with volume fractions 𝑐1

1,1, 𝑐
1
1,2 ∈ R≥0

and lamination direction 𝑛1
1 ∈ S𝑑−1, see Figure 4.4a. Let 𝜀1 ∈ Sym2(𝑑)

and 𝜀2 ∈ Sym2(𝑑) denote the phase-wise constant strains of the rank-
one laminate. Then, the kinematic compatibility condition (Glüge and
Kalisch, 2014)

J𝜀K = 𝜀2 − 𝜀1 = 𝑁1
1𝑢1

1 (4.19)

is expressed in terms of the symmetrization operator

𝑁 𝑖
𝑘 : V𝑑 → Sym2(𝑑), 𝑁 𝑖

𝑘𝑢 = 1
2
(︀
𝑢⊗ 𝑛𝑖𝑘 + 𝑛𝑖𝑘 ⊗ 𝑢

)︀
(4.20)

and the (unknown) displacement jump vector 𝑢1
1 ∈ V𝑑. Thus, for a pre-

scribed effective strain increment 𝜀̄ ∈ Sym2(𝑑) and using Relation (4.19),
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4 The framework of direct deep material networks

we obtain for the phase strains the following relations

𝜀1 = 𝜀̄ + 𝑐1
1,2𝑁1

1𝑢1
1 and 𝜀2 = 𝜀̄− 𝑐1

1,1𝑁1
1𝑢1

1. (4.21)

The problem to be solved may be written as

Ψ̄ = 𝑐1
1,1Ψ1(𝜀̄ + 𝑐1

1,2𝑁1
1𝑢1

1, 𝑧
𝑛
1 ) + 𝑐1

1,2Ψ2(𝜀̄− 𝑐1
1,1𝑁1

1𝑢1
1, 𝑧

𝑛
2 ) −→ min

𝑢1
1

,

(4.22)
which states that the effective incremental potential Ψ̄ is to be minimized
w.r.t. the phase-wise affine strain fields, see Kabel et al. (2017). Critical
points of the optimization problem (4.22) are given by solving the linear
system

(︀
𝑁1

1
)︀T 𝜕Ψ1

𝜕𝜀
(𝜀̄+𝑐1

1,2𝑁1
1𝑢1

1, 𝑧
𝑛
1 ) =

(︀
𝑁1

1
)︀T 𝜕Ψ2

𝜕𝜀
(𝜀̄−𝑐1

1,1𝑁1
1𝑢1

1, 𝑧
𝑛
2 ) (4.23)

for the unknown displacement jump vector 𝑢1
1. Indeed, the former

equation represents the balance of linear momentum (2.23) of the rank-
two laminate, i.e., the stress vector is continuous on the (singular) surface
separating both phases of the laminate, see also Section 2.3 for more
information.

n1
1

c11,1 c11,2

Ψ1(ε1, z
n
1 ) Ψ2(ε2, z

n
2 )

(a)

n1
2 n2

2

c12,1 c12,2 c22,1 c22,2

n1
1

c11,1 c11,2

Ψ1(ε1, z
n
1 ) Ψ2(ε2, z

n
2 ) Ψ1(ε3, z

n
3 ) Ψ2(ε4, z

n
4 )

(b)

Figure 4.4: Schematic illustration of a two-phase direct DMN of depth one (a) and depth
two (b)
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4.2 Considering deep material networks with a variable direction of lamination

After this preliminary step, suppose a DMN of depth two is given. We
assign to both laminates on level 2 the condensed free energies Ψ1 and
Ψ2 in alternating order, see Figure 4.4b, i.e., we consider the problem

𝑐1
1,1Ψ1

2(𝜀̄ + 𝑐1
1,2𝑁1

1𝑢1
1, 𝑧

𝑛
1 , 𝑧

𝑛
2 ) + 𝑐1

1,2Ψ2
2(𝜀̄− 𝑐1

1,1𝑁1
1𝑢1

1, 𝑧
𝑛
3 , 𝑧

𝑛
4 ) −→ min

𝑢1
1

,

(4.24)
where

Ψ1
2(𝜀̃, 𝑧𝑛1 , 𝑧𝑛2 ) = min

𝑢1
2

𝑐1
2,1Ψ1(𝜀̃ + 𝑐1

2,2𝑁1
2𝑢1

2, 𝑧
𝑛
1 )

+ 𝑐1
2,2Ψ2(𝜀̃− 𝑐1

2,1𝑁1
2𝑢1

2, 𝑧
𝑛
2 ) (4.25)

and

Ψ2
2(𝜀̃, 𝑧𝑛3 , 𝑧𝑛4 ) = min

𝑢2
2

𝑐2
2,1Ψ1(𝜀̃ + 𝑐2

2,2𝑁2
2𝑢2

2, 𝑧
𝑛
3 )

+ 𝑐2
2,2Ψ2(𝜀̃− 𝑐2

2,1𝑁2
2𝑢2

2, 𝑧
𝑛
4 ). (4.26)

These three minimization problems may be combined into the single
problem

Ψ̄ = 𝑐1
1,1𝑐

1
2,1Ψ1(𝜀̄ + 𝑐1

1,2𝑁1
1𝑢1

1 + 𝑐1
2,2𝑁1

2𝑢1
2, 𝑧

𝑛
1 )

+𝑐1
1,1𝑐

1
2,2Ψ2(𝜀̄ + 𝑐1

1,2𝑁1
1𝑢1

1 − 𝑐1
2,1𝑁1

2𝑢1
2, 𝑧

𝑛
2 )

+𝑐1
1,2𝑐

2
2,1Ψ1(𝜀̄− 𝑐1

1,1𝑁1
1𝑢1

1 + 𝑐2
2,2𝑁2

2𝑢2
2, 𝑧

𝑛
3 )

+𝑐1
1,2𝑐

2
2,2Ψ2(𝜀̄− 𝑐1

1,1𝑁1
1𝑢1

1 − 𝑐2
2,1𝑁2

2𝑢2
2, 𝑧

𝑛
4 ) −→ min

𝑢1
1,𝑢

1
2,𝑢

2
2

(4.27)

where 𝑧𝑛1 , 𝑧
𝑛
3 ∈ 𝒵1 and 𝑧𝑛2 , 𝑧

𝑛
4 ∈ 𝒵2 denote the vectors of internal

variables. Note that every node at the input level of the DMN has its
own vector of internal variables. For Representation (4.27), the similarity
to a four-phase laminate becomes apparent. The respective volume
fractions enter the effective energy Ψ̄, and the strain for each phase may
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4 The framework of direct deep material networks

be computed from the prescribed average strain 𝜀̄ and a fluctuation term,
which depends linearly on the displacement jumps 𝑢𝑖𝑘.

In analogy to Formula (4.27), we may write down a flattened representa-
tion for a two-phase DMN of depth 𝐾. To this end, we virtually plug
in the 𝐾-th level into the (𝐾 − 1)-th level, which is in return inserted
into the (𝐾 − 2)-th level and so on. A schematic of this process is shown
in Figure 4.5a for a DMN of depth three. Furthermore, in Figure 4.5b,
the resulting one-dimensional representation of the DMN is shown,
involving the lamination directions 𝑛𝑖𝑘, and the displacement jump
vectors 𝑢𝑖𝑘. In terms of data handling, for a 2𝐾 -phase laminate, we insert
all normals into a “long” vector 𝑛⃗ ∈ (S𝑑−1)2𝐾−1 with the ordering

𝑛⃗ = [𝑛1
𝐾 ,𝑛

2
𝐾 , . . .𝑛

2𝐾−1

𝐾 ,𝑛1
𝐾−1,𝑛

2
𝐾−1, . . . ,𝑛

2𝐾−2

𝐾−1 , . . . ,𝑛
1
2,𝑛

2
2,𝑛

1
1],
(4.28)

i.e., we insert the normals of the 𝐾-th level in their corresponding
order, and add the normals for decreasing level index. Furthermore, we
introduce the displacement jump vector 𝑢⃗ ∈ (V𝑑)2𝐾−1, which inherits its
ordering from 𝑛⃗, the vector of strains 𝜀⃗ = [𝜀1, 𝜀2, . . . , 𝜀2𝐾 ] ∈ Sym2(𝑑)2𝐾

and the vector of internal variables of the last converged time step

𝑧⃗ 𝑛 = [𝑧𝑛1 , 𝑧𝑛2 , 𝑧𝑛3 , . . . ,𝑧𝑛2𝐾 ] ∈ 𝒵 = (𝒵1 ⊕𝒵2)⊕2𝐾−1

. (4.29)

For the averaged condensed free energies of the flattened laminate

Ψ̄ : Sym2(𝑑)2𝐾×𝒵 → R, Ψ̄(⃗𝜀, 𝑧⃗ 𝑛) =
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1Ψ𝑖(𝜀𝑖, 𝑧𝑛𝑖 ) (4.30)

we seek a displacement jump vector 𝑢⃗, s.t.

Ψ̄(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛)→ min
𝑢⃗

(4.31)
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Figure 4.5: Schematic illustration of the transition from a two-phase direct DMN of depth
three (a) to a degenerated eight-phase laminate (b)

where the shorthand notation

⃗̄𝜀 = [𝜀̄, 𝜀̄, . . . , 𝜀̄]⏟  ⏞  
2𝐾 times

∈ Sym2(𝑑)2𝐾

(4.32)

is used, and 𝐷 : (V𝑑)2𝐾 −1 → Sym2(𝑑)2𝐾

denotes the linear operator
expressing the strain fluctuation in terms of the displacement jumps.
Here, for a positive integer 𝑖, the notation

Ψ𝑖 =
{︃

Ψ1 𝑖 odd,
Ψ2 𝑖 even,

(4.33)

encodes that Ψ𝑖 alternates between the two given condensed free ener-
gies Ψ1 and Ψ2. The Euler-Lagrange equation of Problem (4.31) reads

𝜕Ψ̄
𝜕𝑢⃗

(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛) = 0 with
𝜕Ψ̄
𝜕𝑢⃗

(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛) = 𝐷T 𝜕Ψ̄
𝜕𝜀⃗

(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛).
(4.34)

By introducing the vector of phase stresses

𝜎⃗ = [𝜎1, . . . ,𝜎2𝐾 ] ∈ Sym2(𝑑)2𝐾

with 𝜎𝑖 = 𝜕Ψ𝑖

𝜕𝜀
(𝜀𝑖, 𝑧𝑛𝑖 ) (4.35)
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4 The framework of direct deep material networks

and defining the weight operator 𝑊 : Sym2(𝑑)2𝐾 → Sym2(𝑑)2𝐾

,

𝑊 (𝜎⃗) = [𝑤1
𝐾+1𝜎1, 𝑤

2
𝐾+1𝜎2, . . . , 𝑤

2𝐾

𝐾+1𝜎2𝐾 ], (4.36)

which associates the weights 𝑤⃗ to the corresponding stresses 𝜎⃗, the
Euler-Lagrange equation (4.34) may be reformulated as

𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛) = 0, (4.37)

which more clearly expresses its form as a balance of linear momentum
on the flattened laminate, see also Section 2.3. The gradient operator
𝐷 may be thought of as an operator of symmetrized-gradient type,
and 𝐷T𝑊 encodes the corresponding (negative) divergence operator.
Indeed, DMNs might be interpreted as an abstract finite element dis-
cretization of an𝑁 -phase microstructure (Dey et al., 2022b). For instance,
compare Equation (4.37) to the discretized balance of linear momentum
in Zeman et al. (2017) or Ladecký et al. (2022).

The effective stress of the DMN is computed by averaging, i.e.,

𝜎̄ =
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1𝜎𝑖(𝜀𝑖, 𝑧𝑛𝑖 ). (4.38)

The particular form of the “gradient” operator 𝐷 is better explained in
terms of an example. For the two-phase DMN of depth three shown in
Figure 4.5b, it takes the form

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝑐1
3,2𝑁1

3 0 0 0 −𝑐1
2,2𝑁1

2 0 −𝑐1
1,2𝑁1

1
𝑐1

3,1𝑁1
3 0 0 0 −𝑐1

2,2𝑁1
2 0 −𝑐1

1,2𝑁1
1

0 −𝑐2
3,2𝑁2

3 0 0 𝑐1
2,1𝑁1

2 0 −𝑐1
1,2𝑁1

1
0 𝑐2

3,1𝑁2
3 0 0 𝑐1

2,1𝑁1
2 0 −𝑐1

1,2𝑁1
1

0 0 −𝑐3
3,2𝑁3

3 0 0 −𝑐2
2,2𝑁2

2 𝑐1
1,1𝑁1

1
0 0 𝑐3

3,1𝑁3
3 0 0 −𝑐2

2,2𝑁2
2 𝑐1

1,1𝑁1
1

0 0 0 −𝑐4
3,2𝑁4

3 0 𝑐2
2,1𝑁2

2 𝑐1
1,1𝑁1

1
0 0 0 𝑐4

3,1𝑁4
3 0 𝑐2

2,1𝑁2
2 𝑐1

1,1𝑁1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.39)
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4.2 Considering deep material networks with a variable direction of lamination

Solving the balance of linear momentum using Newton’s method

For a fixed macro-strain increment 𝜀̄ and internal variables 𝑧⃗ 𝑛, we
wish to solve the balance of linear momentum (4.37) for the unknown
displacement jumps 𝑢⃗. To find a solution of

𝐹 (𝑢⃗) = 0 with 𝐹 (𝑢⃗) = 𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛), (4.40)

a first-order Taylor approximation

𝐹 (𝑢⃗ +△𝑢⃗) ≈ 𝐹 (𝑢⃗) +
[︂
𝜕𝐹

𝜕𝑢⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛)

]︂
△𝑢⃗

= 𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛) +
[︂
𝐷T𝑊

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝑧⃗ 𝑛)𝐷

]︂
△𝑢⃗

(4.41)
leads to Newton’s method. For an initial guess 𝑢⃗0 ∈ (V𝑑)𝑁−1, the
displacement jump vector 𝑢⃗ is iteratively updated 𝑢⃗𝑗+1 = 𝑢⃗𝑗 + 𝛽𝑗△𝑢⃗𝑗 ,

where the increment△𝑢⃗𝑗 ∈
(︀
V𝑑
)︀2𝐾−1 solves the linear system[︂

𝐷T𝑊
𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗𝑗 , 𝑧⃗

𝑛)𝐷
]︂
△𝑢⃗𝑗 = −𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗𝑗 , 𝑧⃗

𝑛), (4.42)

and 𝛽𝑗 ∈ (0, 1] stands for the step size. The derivative 𝜕𝜎⃗/𝜕𝜀⃗ comprises
the algorithmic tangents of the DMN’s input materials and might be
represented as a 6× 6-block diagonal matrix, i.e.,

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀, 𝑧⃗ 𝑛) = block-diag

(︂
𝜕2Ψ1
𝜕𝜀𝜕𝜀

(𝜀1, 𝑧
𝑛
1 ), . . . , 𝜕

2Ψ2𝐾

𝜕𝜀𝜕𝜀
(𝜀2𝐾 , 𝑧𝑛2𝐾 )

)︂
.

(4.43)
In particular, 𝑊 and 𝜕𝜎⃗/𝜕𝜀⃗ commute.

Using the square root of the weight operator 𝑊 , which might be repre-
sented as a diagonal matrix, we may rewrite the 𝑢⃗-tangent on the left
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hand side of Equation (4.42) in the form

𝐷T𝑊
𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗𝑗 , 𝑧⃗

𝑛)𝐷 = 𝐷T𝑊
1
2
𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗𝑗 , 𝑧⃗

𝑛)𝑊 1
2 𝐷 (4.44)

to emphasize that this operator inherits the symmetry and definiteness
properties of the material tangents

𝜕2Ψ1
𝜕𝜀𝜕𝜀

(𝜀1, 𝑧
𝑛
1 ), . . . , 𝜕

2Ψ2𝐾

𝜕𝜀𝜕𝜀
(𝜀2𝐾 , 𝑧𝑛2𝐾 ). (4.45)

Of interest here is the form of the 𝑢⃗-tangent: It arises as the product
of matrices which depend solely on the DMN (i.e., on the normals and
the volume fractions comprised in 𝐷 and 𝑊 ) and of the materials’
algorithmic tangents 𝜕𝜎⃗/𝜕𝜀⃗. In particular, when implementing the
nonlinear DMN, the matrices 𝐷 and 𝐷T𝑊 can be precomputed once
and for all, and modularity w.r.t. the material behavior is ensured. It
is advisable to exploit the aforementioned sparsity pattern of 𝑊 and
𝜕𝜎⃗/𝜕𝜀⃗ to efficiently compute the 𝑢⃗-tangent, see Section 5.3 and 7.3.3.

Several synoptic remarks are in order:

1. For the sake of exposition, we have restricted to two-phase DMNs.
Extending our approach to more than two phases is straightforward
(but not in terms of notation).

2. The primary variables that are solved for are the displacement jumps
gathered in 𝑢⃗. Since an 𝑁 -phase DMN of depth 𝐾 comprises 𝑁𝐾−1

𝑁−1
laminates, 𝑑𝑁

𝐾−1
𝑁−1 displacement jump components are updated in

every Newton step. Upon convergence, the internal variables are
updated and the effective stress is computed.

3. Choosing the last converged displacement jumps, which are carried
over from the last converged time step, as an initial guess for 𝑢⃗0 ∈
(V𝑑)

𝑁𝐾 −1
𝑁−1 improves time to solution of Newton’s method at the

expense of an increased memory consumption.
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4. An 𝑁 -phase DMN of depth 𝐾 possesses 𝑁𝐾−1 laminates at the
bottom level. We are able to associate each one of these nodes 𝑁
stress inputs – one for every input material. Assuming 𝑍1, . . . , 𝑍𝑁

denote the number of internal variables of the phases 1 to 𝑁 , we
conclude that a 𝑁 -phase DMN of depth 𝐾 possesses

𝑁∑︁
𝑖=1

𝑍𝑖𝑁
𝐾−1 (4.46)

internal variables that are updated upon convergence of Newton’s
method. In addition, 3𝑁𝐾 −1

𝑁−1 displacement jump components have to
be stored as well for a three dimensional DMN.

4.3 Implementation

4.3.1 Material sampling

For simplicity of exposition, we restrict to two-phase materials for
the implementation and the subsequent numerical investigations. In
particular, it suffices to investigate the linear elastic homogenization
function as explained in Section 3.5.

We follow Liu and Wu (2019) and sample orthotropic stiffness matrices
whose axes of orthotropy are normal to the faces of the rectangular
microstructure instead of stiffness tensors of general anisotropy. This
reduces the dimensions of the problem in 3D from 21 to 9. Recall that
any orthotropic stiffness tensor C, i.e., orthotropic w.r.t. the Cartesian
coordinate axes 𝑒1, 𝑒2 and 𝑒3, may be written in Mandel’s notation in
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4 The framework of direct deep material networks

the form

C =∧

⎡⎢⎢⎢⎣
𝑄𝐸𝑄T 0 0 0

0 2𝐺23 0 0
0 0 2𝐺13 0
0 0 0 2𝐺12

⎤⎥⎥⎥⎦ , (4.47)

where 𝐺𝑖𝑗 ∈ R>0 are positive, 𝐸 = diag (𝐸1, 𝐸2, 𝐸3) ∈ R3×3
>0 is positive

definite, and 𝑄 ∈ SO(3) is a special orthogonal matrix, i.e., satisfies
𝑄T𝑄 = 𝐼 and det (𝑄) = +1. Notice that {𝐸𝑖}3

𝑖=1 entering Relation (4.47)
only correspond to the axial Young’s moduli of C if 𝑄 ≡ 𝐼 . Using
Representation (4.47), the set of orthotropic stiffness tensors may be
parameterized via

(𝐸1, 𝐸2, 𝐸3, 𝐺23, 𝐺13, 𝐺12,𝑄) ∈ R6
>0 × SO(3), (4.48)

where the first 6 moduli have the dimension of a Young’s modulus, and
𝑄 has dimension 1. As the latter set is unbounded, we restrict to the
subset of elements (𝐸1, 𝐸2, 𝐸3, 𝐺23, 𝐺13, 𝐺12,𝑄) with

𝐸𝑖 = 10𝑒𝑖GPa, 𝐺𝑖𝑗 = 𝛾𝑖𝑗
√︀
𝐸𝑖𝐸𝑗 ,

𝑄 : V3 → V3, 𝑥 ↦→ cos(𝜃)𝑥 + sin(𝜃)𝑣 × 𝑥 + (1− cos(𝜃))(𝑣 · 𝑥)𝑣
and 𝑣 =∧ [sin(𝜓) cos(𝜙), sin(𝜓) sin(𝜙), cos(𝜓)],

(4.49)

where 𝑒𝑖 ∈ [−2, 2], 𝛾𝑖𝑗 ∈
[︀ 1

4 ,
1
2
]︀
, 𝜃 − sin(𝜃) ∈ [0, 𝜋], cos(𝜓) ∈ [−1, 1] and

𝜙 ∈ [0, 2𝜋], see Miles (1965).

To study the linear elastic homogenization function of two-phase materi-
als, we need to select two input stiffness tensors C1 and C2, which we
choose as orthotropic in the mentioned form (4.47) and the parameters
are chosen as above, except that we force 𝑒1

3 = −𝑒1
2 − 𝑒1

1, i.e., we force
the product 3

√︀
𝐸1

1𝐸
1
2𝐸

1
3 to equal 1 GPa to remove redundancy due to

rescaling (C1,C2) ↦→ (𝜆C1, 𝜆C2) for 𝜆 > 0. Thus, the 17 degrees of
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freedom are

(𝑒1
1, 𝑒

1
2, 𝑒

2
1, 𝑒

2
2, 𝑒

2
3, 𝛾

1
23, 𝛾

1
13, 𝛾

1
12, 𝛾

2
23, 𝛾

2
13, 𝛾

2
12, 𝜓

1, 𝜙1, 𝜃1, 𝜓2, 𝜙2, 𝜃2) (4.50)

with the domains specified above.

We generate a number 𝑁s of input stiffness tensor pairs {(C𝑠1,C𝑠2)}𝑁s
𝑠=1.

To sample the input space evenly, we rely upon Latin hypercube sam-
pling (McKay et al., 1979). More precisely, the parameters (4.50) are
determined by Latin hypercube sampling, and the stiffness tensors
(4.47) are constructed by evaluating Relations (4.49). The corresponding
effective stiffness tensors

{︀
C̄𝑠
}︀𝑁s

𝑠=1 are computed by direct numerical
simulation (DNS) of the effective elastic behavior of the unit cell in
question with the help of FFT-based micromechanics (Moulinec and
Suquet, 1994; 1998), using the FFTW library Frigo and Johnson (2005),
the conjugate gradient solver (Zeman et al., 2010; Brisard and Dormieux,
2010) and the staggered grid discretization (Schneider et al., 2016). The
triples

{︀
(C̄𝑠,C𝑠1,C𝑠2)

}︀𝑁s

𝑠=1 serve as training data henceforth.

4.3.2 Offline training5

A two-phase direct DMN of depth 𝐾 is parameterized by 2𝐾 − 1 lam-
ination directions and 2𝐾 weights, which we collect in the vectors
𝑛⃗ ∈ (S𝑑−1)2𝐾 −1 and 𝑤⃗ ∈ R2𝐾

≥0 with

𝑛⃗ = [𝑛1
𝐾 ,𝑛

2
𝐾 , . . .𝑛

2𝐾−1

𝐾 ,𝑛1
𝐾−1,𝑛

2
𝐾−1, . . . ,𝑛

2𝐾−2

𝐾−1 , . . . ,𝑛
1
2,𝑛

2
2,𝑛

1
1]
(4.51)

and
𝑤⃗ = [𝑤1, . . . , 𝑤2𝐾 ] . (4.52)

5 This section is based on Gajek et al. (2020, Section 4.4), Gajek et al. (2021a, Section 3.1)
and Gajek et al. (2022, Section 3.2) and summarizes the essential details concerning the
offline training of direct deep material networks.
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4 The framework of direct deep material networks

In the offline training, we seek to identify these free parameters based
on the sampled linear elastic training data

{︀
(C̄𝑠,C𝑠1,C𝑠2)

}︀𝑁s

𝑠=1. We formu-
lated the offline training as the constrained regression problem

𝐽(𝑛⃗, 𝑤⃗)→ min
𝑛⃗,𝑤⃗

s.t. 𝑤𝑖𝐾+1 ≥ 0 and
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 = 1. (4.53)

We measure the goodness of fit with the cost function

𝐽(𝑛⃗, 𝑤⃗) = 1
𝑁s

𝑞

⎯⎸⎸⎷ 𝑁s∑︁
𝑖=1

(︂ ||C̄𝑠 −𝒟ℳ𝒩ℒ
𝑌 (C𝑠1,C𝑠2, 𝑛⃗, 𝑤⃗)||𝑝
||C̄𝑠||𝑝

)︂𝑞
, (4.54)

where 𝑝, 𝑞 ≥ 1, 𝒟ℳ𝒩ℒ
𝑌 denotes the linear elastic homogenization func-

tion of the direct DMN, and the Frobenius-𝑝-norm on stiffness tensors is
defined via the ℓ𝑝-norm of the components in Mandel’s notation. As we
are considering two-phase DMNs, by Section 3.5, we only fit the linear
elastic homogenization function 𝒟ℳ𝒩ℒ

𝑌 of the DMN. The exponent 𝑝
weights the deviation of effective and predicted stiffness on the relative
error, whereas the parameter 𝑞 weights the relative error with respect
to the loss function 𝐽 . Liu and Wu (2019) used 𝑝 = 2 and 𝑞 = 1, but we
allow for greater flexibility.

For implementation, we follow Liu and Wu (2019) and encode the mixing
constraint on the weights

2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 = 1 (4.55)

by adding the quadratic penalty term

𝜆p

⎛⎝ 2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 − 1

⎞⎠2

(4.56)
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to the objective 𝐽 (4.54), where 𝜆p ≫ 1 denotes the penalty parameter.
To ensure that the non-negativity constraint on the weights

𝑤𝑖𝐾+1 ≥ 0 (4.57)

holds, we express the vector of constrained weights 𝑤⃗ in terms of the
vector of unconstrained weights 𝑣⃗ = [𝑣1, . . . , 𝑣2𝐾 ] ∈ R2𝐾

by projecting
each element of 𝑣⃗ onto the positive real number line, i.e., 𝑤⃗ = ⟨𝑣⃗⟩+ with

⟨ ⟩+ : R2𝐾 → R2𝐾

≥0, 𝑣⃗ ↦→ [max(0, 𝑣1), . . . ,max(0, 𝑣2𝐾 )] (4.58)

holds. Thus, by abusing notation, we write for the cost function

𝐽(𝑛⃗, 𝑤⃗) = 1
𝑁s

𝑞

⎯⎸⎸⎷ 𝑁s∑︁
𝑖=1

(︂‖𝒟ℳ𝒩ℒ
𝑌 (C𝑠1,C𝑠2, 𝑛⃗, 𝑤⃗)− C̄𝑠‖𝑝

‖C̄𝑠‖𝑝

)︂𝑞

+ 𝜆p

⎛⎝ 2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 − 1

⎞⎠2

(4.59)

and obtain the unconstrained regression problem

𝐽(𝑛⃗, ⟨𝑣⃗⟩+) −→ min
𝑛⃗,𝑣⃗

, (4.60)

which we implement in PyTorch (Paszke et al., 2017) to exploit the
framework’s automatic differentiation capabilities. The deep material
network is trained by means of minimizing the cost function (4.59) with
respect to the unknown fitting parameters collected in 𝑛⃗ and 𝑣⃗. The
initial weights 𝑣⃗0 are sampled from a uniform distribution, on [0, 1], and
subsequently rescaled to sum to unity. The initial orientations 𝑛⃗0 of
the laminates are sampled uniformly on the unit sphere in analogy to
Section 4.3.1.
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4 The framework of direct deep material networks

The training of DMNs follows the general fashion of training deep neural
networks. First, for every sample 𝑠, the pair of input stiffnesses (C𝑠1,C𝑠2)
are assigned to the 2𝐾−1 laminates of the 𝐾-th layer. The stiffnesses
are homogenized in a pairwise fashion by evaluating Equation (4.13)
2𝐾−1 times which then serves as the input for the next layer, recursively,
until the root of the binary tree is reached, yielding the DMN’s predicted
stiffness C̄DMN

𝑠 = 𝒟ℳ𝒩ℒ
𝑌 (C𝑠1,C𝑠2, 𝑛⃗, ⟨𝑣⃗⟩+), see Section 4.2. Repeating this

procedure for every sample, we evaluate the loss function 𝐽 , determine
the gradients 𝜕𝐽/𝜕𝑛⃗ and 𝜕𝐽/𝜕𝑣⃗ by means of automatic differentiation
and, subsequently, update the fitting parameters6

𝑛⃗𝑗+1 = 𝑛⃗𝑗 − 𝛽𝑛⃗
𝜕𝐽

𝜕𝑛⃗
(𝑛⃗𝑗 , ⟨𝑣⃗𝑗⟩+) , 𝑣⃗𝑗+1 = 𝑣⃗𝑗 − 𝛽𝑣⃗

𝜕𝐽

𝜕𝑣⃗
(𝑛⃗𝑗 , ⟨𝑣⃗𝑗⟩+) (4.61)

and
𝑤⃗𝑗+1 = ⟨𝑣⃗𝑗+1⟩+, (4.62)

where 𝛽𝑛⃗, 𝛽𝑣⃗ ∈ R≥0 denote the learning rates. This cycle is repeated for
a predefined number of epochs. Upon convergence, the unknown fitting
parameters of the DMN, i.e., 𝑛⃗ and 𝑤⃗, are given.

4.3.3 Online evaluation

We implement the Newton’s method described in Section 4.2.3 as a
user-specified subroutine in our FFT solver which is evaluated on a
single voxel microstructure. The algorithm, which computes the effective
stress 𝜎̄𝑛+1 for a given time step 𝑛+ 1 and macro strain increment 𝜀̄𝑛+1,
is summarized in Algorithm 1.

6 For implementation, it is more practical to parameterize the directions of lamination via
spherical coordinates and to update the angles in each gradient step. This ensures that
the directions of lamination have unit norm. However, to keep the notation clear, we
represent the update of the lamination directions as shown.

92



4.3 Implementation

It turned out that very small, almost vanishing weights, which may
occur during training, lead to the linear system (4.42), Algorithm 1
line 19, being ill-posed. To mitigate the problem, we regularize the
linear system by inserting 1 on the diagonal of the 𝑢⃗-tangent at places
associated to vanishing weights and inserting zero at the respective
places on the right hand side. We select a direct solver for solving the
linear system (4.42). To ensure that the Newton’s method is globally
convergent, we employ backtracking with the backtracking factor 𝛾 ∈
(0, 1] to enforce a decreasing residual. Also, we choose the (converged)
displacement jump vector 𝑢⃗𝑛 of the last time step as an initial guess for
𝑢⃗𝑛+1 to improve convergence.

Note, that we employ BFGS-CG (Wicht et al., 2020c) for the FFT solver
and, therefore, do not need to compute the algorithmic tangent. Com-
putation of the algorithmic tangent of the DMN is, however, straightfor-
ward and can be derived from Equation (4.34) easily, see Section 5.3.2
and Section 7.3.3 for more information.
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4 The framework of direct deep material networks

Algorithm 1 Pseudo-code for the online phase
Fixed parameters: tol, maxit, maxbacktrack, 𝛾
Input: 𝜀̄𝑛+1, 𝑧⃗ 𝑛, 𝑢⃗𝑛

Output: 𝜎̄𝑛+1, 𝑧⃗ 𝑛+1, 𝑢⃗𝑛+1

1: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛 ◁ Assigning old displacement jumps with 𝑢⃗ 0 ← 0.
2: res← 1015, 𝛽 ← 1.0
3: for 𝑖← 0 to maxit− 1 do
4: resold ← res
5: for 𝑗 ← 0 to maxbacktrack− 1 do
6: 𝜀⃗𝑛+1 ← ⃗̄𝜀𝑛+1 + 𝐷𝑢⃗𝑛+1

7: Evaluate material laws 𝜎⃗(⃗𝜀𝑛+1, 𝑧⃗ 𝑛) ◁ 𝑧⃗ 𝑛 is not updated

8: res← ||𝐷
T𝑊 𝜎⃗(⃗𝜀𝑛+1, 𝑧⃗ 𝑛)||

2𝐾 − 1
9: if res < resold then ◁ Evaluates to true for 𝑖 = 0

10: break
11: end if
12: 𝛽old ← 𝛽

13: 𝛽 ← 𝛾𝛽

14: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛+1 + (𝛽 − 𝛽old)△𝑢⃗𝑛+1

15: end for
16: if res < tol then
17: break
18: end if

19: Solve
[︂
𝐷T𝑊

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀𝑛+1, 𝑧⃗ 𝑛)𝐷

]︂
△𝑢⃗𝑛+1 = −𝐷T𝑊 𝜎⃗(⃗𝜀𝑛+1, 𝑧⃗ 𝑛)

20: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛+1 +△𝑢⃗𝑛+1

21: end for
22: Compute effective stress 𝜎̄𝑛+1 ←∑︀2𝐾

𝑖=1 𝑤
𝑖
𝐾+1𝜎𝑖(𝜀𝑛+1

𝑖 , 𝑧𝑛𝑖 )
23: Call 𝜎⃗(𝜀𝑛+1, 𝑧𝑛) and update 𝑧⃗ 𝑛 to 𝑧⃗ 𝑛+1
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4.4 Numerical results

4.4.1 Materials and microstructures

We consider a polyamide microstructure reinforced by 𝑐f = 25.09 vol%
short cylindrical fibers with a length of 𝐿f = 200 µm and a diameter of
𝐷f = 10 µm, dispersed in a cubic volume element with an edge length of
𝐿 = 256 µm. The fiber orientation is described by a transversely isotropic
second-order fiber orientation tensor

𝐴2 =

⎡⎢⎣ 0.8 0 0
0 0.1 0
0 0 0.1

⎤⎥⎦ 𝑒𝑖 ⊗ 𝑒𝑗 , (4.63)

i.e., about 80 % of the fibers point in 𝑒1-direction. The periodic mi-
crostructure was generated by the sequential addition and migration
algorithm (Schneider, 2017) with a minimum distance of 2 µm between
the fibers. The resulting microstructure is shown in Figure 4.6a, con-
taining 268 individual fibers. For the material sampling phase using
linear elastic materials, a discretization of the microstructure by 1283

voxels is chosen. For the online evaluation stage involving inelasticity,
a discretization by 2563 voxels is used. For the online evaluation, the
glass fibers are modeled as linear elastic, whereas the polyamide matrix
is governed by 𝐽2-elasto-plasticity, see Chapter 3 in Simo and Hughes
(1998), with exponential-linear hardening

𝜎Y = 𝜎0 + 𝑘∞𝜀p + (𝜎∞ − 𝜎0)
(︂

1− exp
(︂
− 𝑘0 − 𝑘∞
𝜎∞ − 𝜎0

𝜀p

)︂)︂
. (4.64)

The material parameters used for the inelastic simulations are summa-
rized in Table 4.1, see Doghri et al. (2011).
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(a) Short glass fiber reinforced polyamide (b) Metal matrix composite

Figure 4.6: Investigated microstructure realizations

Matrix 𝐸 = 2.1 GPa 𝜈 = 0.3
𝜎0 = 29.0 MPa 𝜎∞ = 61.7 MPa
𝑘0 = 10.6 GPa 𝑘∞ = 139.0 MPa

Fibers 𝐸 = 72 GPa 𝜈 = 0.22

Table 4.1: Material parameters for the short glass fiber reinforced polyamide (Doghri et al.,
2011)

As our second example, a metal matrix composite (MMC), i.e., an alu-
minum alloy reinforced by 𝑐p = 30 vol% ceramic particles, is investigated.
The microstructure featuring 50 identically shaped spherical inclusions
was generated by the mechanical contraction method of Williams and
Philipse (2003), see Figure 4.6b. The cubic unit cell has an edge length of
210 µm, and is discretized by 1283 voxels for the material sampling, and
by 2563 voxels for the online evaluation. The material parameters used
for the inelastic computations are taken from Segurado et al. (2002),
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see also Michel and Suquet (2003; 2004). The ceramic particles are
assumed to be linear elastic, whereas the aluminum matrix is modeled
by 𝐽2-elasto-plasticity, see Chapter 3 in Simo and Hughes (1998), with
power law hardening

𝜎Y = 𝜎0 + 𝑘 𝜀𝑚p . (4.65)

The material parameters used are summarized in Table 4.2.

Matrix 𝐸 = 75.0 GPa 𝜈 = 0.3
𝜎Y = 75.0 MPa 𝑘 = 416.0 MPa
𝑚= 0.3895

Inclusions 𝐸 = 400.0 GPa 𝜈 = 0.2

Table 4.2: Material parameters for the metal matrix composite (Segurado et al., 2002)

4.4.2 A short glass fiber reinforced polyamide

Offline training

We sample 𝑁s = 800 pairs of stiffness tensors {(C𝑠1,C𝑠2)}𝑁s
𝑠=1 as described

in Section 4.3.1, with material contrasts ranging up to 10 000 for the
fiber reinforced polymer. Liu and Wu (2019) reported that deep material
networks are robust with respect to overfitting. To investigate overfitting
for direct DMNs, we split the pre-computed data into a training and
a validation set comprising 700 and 100 samples, respectively. For
network training, we rely upon the AMSGrad method of Reddi et al.
(2018), together with a learning rate modulation with warm restarts, as
suggested by Loshchilov and Hutter (2017),

𝛽 : N→ R≥0, 𝑚 ↦→ 𝛽min + 1
2 (𝛽max − 𝛽min)

(︁
1 + cos

(︁
𝜋
𝑚

𝑀

)︁)︁
, (4.66)
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applied to both learning rates 𝛽𝑛⃗ and 𝛽𝑣⃗ , where 𝑚 designates the epoch.
The maximum and minimum learning rates were set to 𝛽min = 0 and
𝛽max = 10−4, respectively, and 𝑀 = 4 000 was selected. The penalty
parameter entering the objective function (4.54) was set to 𝜆p = 103,
and the exponents were chosen as 𝑝 = 1 and 𝑞 = 10. Thus, roughly
speaking, we enforce the maximum of the component-wise mean error
to be minimal.

First, we investigate the influence of different depths on the approxima-
tion quality of the DMN for the offline training. To quantify the accuracy
of trained DMNs, we define, for a sample 𝑠, the error

𝛿𝑠 = ‖𝒟ℳ𝒩
ℒ
𝑌 (C𝑠1,C𝑠2, 𝑛⃗, 𝑤⃗)− C̄𝑠‖1

‖C̄𝑠‖1
. (4.67)

With ‖ ·‖1 we designate the Frobenius-1-norm defined via the ℓ1-norm of
the stiffness components in Mandel’s notation. Additionally, we define
over all samples the maximum and mean error indicators via

𝛿max = max
𝑠

(𝛿𝑠) and 𝛿mean = 1
𝑁s

𝑁s∑︁
𝑠=1

𝛿𝑠. (4.68)

We trained deep material networks with depths 𝐾 = 4, 5, 6, 7, 8 for
36 000 epochs. To investigate the reproducibility of the results, we
investigated two distinct DMNs with depth 8, which we denote by
81 and 82. Loss 𝐽 and mean training error 𝛿mean vs. epoch are shown
in Figure 4.7a and Figure 4.7b. For the sake of exposition, only DMNs
with an even depth are depicted. For the first 1 000 epochs, the loss
decreases rapidly and monotonically. For higher epoch count, the
learning rate modulation causes a non-monotonic convergence behavior,
which eventually leads to a decreased total loss. We see that the loss
after training improves for an increasing depth. Furthermore, for the
two considered networks with 𝐾 = 8, the converged loss values are

98



4.4 Numerical results

comparable. The observations made for the loss translate almost directly
to the mean training and validation errors, see Figure 4.7b. Furthermore,
we observe that mean training and validation errors decrease equally
during training, indicating that no pronounced overfitting occurs.

K = 4 K = 6 K = 81 K = 82
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Figure 4.7: Loss and mean training and validation errors during training for the short glass
fiber reinforced polyamide

The values of the loss and the mean as well as the maximum errors for
the training and validation sets are listed in Table 4.3. In addition, the
predicted volume fraction of the fibers

𝑐f =
2𝐾−1∑︁
𝑖=1

𝑤2𝑖−1
𝐾+1, (4.69)

computed by summing over all odd weights were included. Both the
loss and the mean and maximum training and validation errors decrease
for increasing depth. Still, the maximum validation error consistently
exceeds the maximum training error, although both are, in general, very
close. For quantification, we take a look at the distribution of errors 𝛿𝑠
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4 The framework of direct deep material networks

on the training and validation set, respectively, for the 𝐾 = 81 network,
see Figure 4.8. The maximum error on the validation set is significantly
larger, and dominated by a single sample. Neglecting the outliers, we
see that the the distributions of errors in the training and validation sets
are comparable.
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Figure 4.8: Error distribution for 𝐾 = 81 after 36 000 epochs

A DMN of depth 4 leads to mean training and validation errors of 8.04 %
and 8.67 %, respectively, which we consider unsuitable for correctly
reproducing the effective response of the microstructure. Considering
the networks 𝐾 = 81 and 𝐾 = 82, the mean errors significantly reduce
to 1.02 % and 1.01 % for the training set and to 1.26 % and 1.29 % for the
validation set. A distinct reduction of the maximum errors can also be
observed, see Table 4.3.

The predicted volume fractions are very close to the volume fraction of
the microstructure. Note that the relative error of the volume fractions
does not decrease monotonically with increasing depth since the DMN
with depth 5 has a relative error of 1.39 %. Nevertheless, for the networks
with more than depth 6, the error does not exceed 0.32 %. This is
expected as the effective stiffness is dominated by the volume fraction
to first order, see for instance Section 20.2.2 in Torquato (2005).
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𝐽 𝛿train
mean 𝛿train

max 𝛿valid
mean 𝛿valid

max 𝑐f

𝐾 = 4 1.39 · 10−1 8.04 % 20.39 % 8.67 % 38.83 % 0.2499 (−0.40 %)
𝐾 = 5 6.15 · 10−2 3.66 % 9.09 % 3.91 % 15.50 % 0.2544 (+1.39 %)
𝐾 = 6 3.70 · 10−2 2.34 % 5.16 % 2.68 % 9.19 % 0.2501 (−0.32 %)
𝐾 = 7 2.13 · 10−2 1.49 % 2.90 % 1.60 % 5.19 % 0.2505 (−0.16 %)
𝐾 = 81 1.34 · 10−2 1.02 % 1.87 % 1.26 % 4.76 % 0.2506 (−0.12 %)
𝐾 = 82 1.32 · 10−2 1.01 % 1.80 % 1.29 % 5.07 % 0.2508 (−0.04 %)

Table 4.3: Training results for the short glass fiber reinforced polyamide

Online evaluation – uniaxial loadings

With these trained networks at hand, we turn our attention to the online
prediction using the 𝐽2-elasto-plastic matrix material model as described
in Section 4.4.1. The composite is subjected to uniaxial strain loadings

𝜀̄ = 𝜀

2 (𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) ,

(𝑖, 𝑗) ∈ ℐ = {(1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2)} .
(4.70)

We use an FFT-based computational micromechanics (Moulinec and
Suquet, 1994; 1998) code, written in Python with Cython (Behnel et al.,
2011) extensions. For computing the full-field solutions, we use the
Eyre-Milton (1999) scheme. The DMN is evaluated on a single voxel
microstructure with the help of the BFGS-CG (Wicht et al., 2020c) solver
to avoid computing the algorithmic tangents. We examining all three
normal and shear strain components separately. In the respective strain
direction, a complete hysteresis is simulated with a strain amplitude of
𝜀 = 2.5 % in 80 equidistant load steps.

First, we investigate the influence of different depths on the approx-
imation quality of the DMN for the online evaluation. In Figure 4.9,
the stress-time curves for all six load cases are shown. The full-field
solutions serve as the reference. For simplicity of exposition, only the
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4 The framework of direct deep material networks

DMNs of even depth are depicted. Recall that 𝐾 = 81 and 𝐾 = 82

denote the results of the two distinctly trained 8-level DMNs.

To get a more accurate quantitative comparison of the results, Figure 4.9
also includes the relative errors in the stress components

𝜂𝑖𝑗(𝑡) =
⃒⃒
𝜎̄DMN
𝑖𝑗 (𝑡)− 𝜎̄FFT

𝑖𝑗 (𝑡)
⃒⃒

max
𝜏∈𝒯

⃒⃒
𝜎̄FFT
𝑖𝑗 (𝜏)

⃒⃒ (4.71)

with respect to the maximum absolute effective stress, reached during the
entire simulation time-windows 𝒯 = [0 s, 4 s], of the full-field solution.
Furthermore, for all six loadcases, we collected the maximum relative
errors

𝜂max
𝑖𝑗 = max

𝑡∈𝒯
(𝜂𝑖𝑗(𝑡)), (4.72)

evaluated for all time steps, in Table 4.4.

Comparing full-field solutions to the DMN predictions, we see even
the DMN with depth 4 predicts the material behavior qualitatively. At
depth 8, the curves are difficult to distinguish. The maximum relative
error decreases with increasing depth with the exception of the DMNs
with depth six and seven. For instance, the DMN with 𝐾 = 4 exhibits a
maximum approximation error of 12.61 % whereas the DMN predictions
for 𝐾 = 81 and 𝐾 = 82 deviate from the full-field solution by 6.38 % and
5.27 %, respectively. Notice that the maximum errors for both 8-level
networks are dominated by uniaxial extension in the 𝑒1-direction. This
may be a result of the morphological anisotropy of the FRP combined
with strong plastification in the matrix. Notice that the maximum
errors differ for both 8-level networks. For 𝜂max

12 , both maximum errors
differ by a factor of more than two. In the offline training phase, both
networks with depth 𝐾 = 8 showed comparable results. However,
larger deviations manifest in the online phase, suggesting possible
improvements in the offline training phase. Note that the maximum
deviations occur for different stress components, shown in Table 4.4 with
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gray-colored cells. Also, the error for a fixed load case is not monotonic
in the depth. For instance, the 𝜂max

11 -error for 𝐾 = 7 is greater than for
𝐾 = 6, 𝐾 = 81 or 𝐾 = 82.

max rel. error 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7 𝐾 = 81 𝐾 = 82

𝜂max
11 10.05 % 8.54 % 3.51 % 7.82 % 6.38 % 5.27 %
𝜂max

22 3.73 % 4.78 % 3.82 % 2.69 % 2.33 % 1.66 %
𝜂max

33 4.89 % 6.14 % 1.47 % 2.57 % 2.27 % 1.42 %
𝜂max

23 12.61 % 7.11 % 3.38 % 4.77 % 2.42 % 2.96 %
𝜂max

13 10.57 % 4.37 % 3.15 % 6.13 % 2.55 % 2.25 %
𝜂max

12 12.45 % 6.87 % 6.21 % 3.04 % 1.87 % 4.16 %

max(𝑖,𝑗)∈ℐ(𝜂max
𝑖𝑗 ) 12.61 % 8.54 % 6.21 % 7.82 % 6.38 % 5.27 %

Table 4.4: Relative errors for the short glass fiber reinforced polyamide and uniaxial
loadings
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(a) Uniaxial extension in 𝑒1-direction
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(b) Uniaxial extension in 𝑒2-direction
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(c) Uniaxial extension in 𝑒3-direction
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(d) Pure shear in the 𝑒2-𝑒3-plane
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(e) Pure shear in the 𝑒1-𝑒3-plane
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(f) Pure shear in the 𝑒1-𝑒2-plane

Figure 4.9: Stress vs. time curves for the short glass fiber reinforced polyamide and uniaxial
loadings
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Online evaluation – biaxial loadings

The previously investigated load cases cover non-monotonic, radial
loadings. We furthermore investigate the DMN’s response to a biaxial
loading. The composite is subjected to a biaxial strain loading

𝜀̄ = 𝜀1 𝑒1 ⊗ 𝑒1 + 𝜀2 𝑒2 ⊗ 𝑒2 (4.73)

with principal loading directions aligned to the 𝑒1- and 𝑒2-axes. We
investigate two scenarios with different loading sequences, see Table 4.5.
In analogy to the previous section, the simulations are carried out
with strain amplitudes of 1.77 % in the respective load direction and
discretized by 80 equidistant load steps.

𝑡 = 1 s 𝑡 = 2 s 𝑡 = 3 s 𝑡 = 4 s

Loading sequence 1
𝜀1 1.77 % 1.77 % 1.77 % 0 %
𝜀2 0 % 1.77 % 0 % 0 %

Loading sequence 2
𝜀1 0 % 1.77 % 0 % 0 %
𝜀2 1.77 % 1.77 % 1.77 % 0 %

Table 4.5: Investigated biaxial loading sequences

In Figure 4.10a and 4.10b, the stress-times curve for loading sequence
1 and 2 are shown. The 𝜎̄11 and 𝜎̄22 components of the effective stress
response is shown, accompanied by the corresponding relative errors
𝜂11 and 𝜂22. As before, the full-field solution serves as the reference.

Examining Figure 4.10a and 4.10b, we observe a pronounced anisotropy
of the material’s yield behavior. Furthermore, the findings for the
uniaxial loadings concerning the error carry over to the case under
consideration. The DMN of depth four only qualitatively predicts the
material behavior, whereas, for 𝐾 = 81 and 𝐾 = 82, full-field solution
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4 The framework of direct deep material networks

and DMN predictions are almost indistinguishable. As before, the
relative errors are of the same order of magnitude and generally fall with
increasing depth. Furthermore, the differences between 𝐾 = 81 and
𝐾 = 82 should be pointed out. Examining Figure 4.10a and 4.10b shows
that the relative errors for 𝐾 = 81 generally exceed those for 𝐾 = 82.
Nevertheless, for 𝐾 = 8, the relative errors are consistently below 5 %
for both loading sequences and stress components.
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(a) Loading sequence 1
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(b) Loading sequence 2

Figure 4.10: Stress vs. time curves for the short glass fiber reinforced polyamide and biaxial
loadings
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Online evaluation – comparison of higher statistical moments

We have seen that the DMN is able to predict the effective stress response
of the composite subjected to uniaxial and biaxial loadings reasonably
well. In the following, we investigate the DMN’s ability to predict higher
statistical moments, i.e., we investigate the DMN’s ability to predict the
phase-wise average stresses and their standard deviations. As load case,
we chose a uniaxial extensions in 𝑒1-direction, i.e., the principal fiber
direction.

Computing the phase average and standard deviation of the full-field
results is standard. For the DMNs, we compute the phase average of
the matrix stress 𝜎m by summing over all even, weighted stresses and,
analogously, we compute the phase average of the stress in the fibers 𝜎f

by summing over all odd, weighted stresses, i.e.,

𝜎m =
2𝐾−1∑︁
𝑖=1

𝑤2𝑖
𝐾+1
𝑐m

𝜎2𝑖 and 𝜎f =
2𝐾−1∑︁
𝑖=1

𝑤2𝑖−1
𝐾+1
𝑐f

𝜎2𝑖−1 (4.74)

with the volume fractions

𝑐m =
2𝐾−1∑︁
𝑖=1

𝑤2𝑖
𝐾+1 and 𝑐f =

2𝐾−1∑︁
𝑖=1

𝑤2𝑖−1
𝐾+1. (4.75)

Analogously, the standard deviations are computed as

Std(𝜎m) =

⎯⎸⎸⎷2𝐾−1∑︁
𝑖=1

𝑤2𝑖
𝐾+1
𝑐m

(𝜎2𝑖 − 𝜎m)2 (4.76)

and

Std(𝜎f) =

⎯⎸⎸⎷2𝐾−1∑︁
𝑖=1

𝑤2𝑖−1
𝐾+1
𝑐f

(𝜎2𝑖−1 − 𝜎f)2
. (4.77)
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4 The framework of direct deep material networks

Figure 4.11 comprises the 11-component of the phase-wise average stress
in the matrix and fibers and the phase-wise standard deviations.
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(a) Phase-wise average of the axial stress in the matrix (left) and in the fibers (right)
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(b) Phase-wise standard deviation of the axial stress in the matrix (left) and the fibers
(right)

Figure 4.11: Phase-wise average (a) and standard deviation (b) of the axial stress in the
matrix and fibers

Figure 4.11a shows clearly that the fibers carry the majority of the
load. Indeed, the average values of the axial stress in the fibers 𝜎f,11

exceed those of the matrix 𝜎m,11 by more than one order of magnitude.
Comparing DMN and FFT, we see that the DMN is able to predict
the phase-wise average stresses reasonably well. The occuring relative
errors are on the same order of magnitude as in Figure 4.9a. Turning
our attention to the standard deviation of the stresses, we observe
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more pronounced differences between DMN predictions and the full-
field simulation. Even though the agreement between DMN and FFT
improves for increasing depth, there are still clear deviations observable
for 𝐾 = 81 and 𝐾 = 82. The arising relative errors are more than
twice as large compared to the phase-average of the stresses. Although
the relative errors are quite large, similarities can be observed in the
qualitative trends of DMN predictions and full-field solution regarding
the standard deviation.

4.4.3 A metal matrix composite

Offline training

Also for the metal matrix composite, 𝑁s = 800 pairs of stiffness ten-
sors {(C𝑠1,C𝑠2)}𝑁s

𝑠=1 were sampled as described in Section 4.3.1 and the
corresponding effective stiffnesses

{︀
C̄𝑠
}︀𝑁s

𝑠=1 were computed. As per Sec-
tion 4.4.2, the pre-computed data is split into a training and a validation
set comprising 700 and 100 samples, respectively.

Turning our attention to the offline training, the history of the loss and the
mean training and validation errors are shown in Figure 4.12, whereas
the values of the loss as well as the mean and maximum errors for
the training and validation set at the end of the training are listed in
Table 4.6.

The trends that could be observed for the previous example in Sec-
tion 4.4.2 are also apparent for the case at hand. The converged loss,
the mean and the maximum errors decrease monotonically with an
increasing depth. The relative errors of the predicted volume fractions
are below 1 % for 𝐾 > 4.
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Figure 4.12: Loss and mean training and validation errors during training for the metal
matrix composite

𝐽 𝛿train
mean 𝛿train

max 𝛿valid
mean 𝛿valid

max 𝑐p

𝐾 = 4 1.00 · 10−1 6.22 % 15.27 % 6.24 % 21.85 % 0.2885 (−3.83 %)
𝐾 = 5 4.25 · 10−2 2.37 % 6.41 % 2.54 % 7.26 % 0.2978 (−0.73 %)
𝐾 = 6 1.92 · 10−2 1.21 % 2.73 % 1.30 % 4.96 % 0.2992 (−0.27 %)
𝐾 = 7 1.10 · 10−2 0.75 % 1.45 % 0.78 % 3.26 % 0.2996 (−0.13 %)
𝐾 = 8 6.48 · 10−3 0.47 % 0.86 % 0.55 % 1.65 % 0.2999 (−0.03 %)

Table 4.6: Training results for the metal matrix composite

Figure 4.13 shows the distribution of the errors on the training and
validation set. Also for the MMC, the maximum error of the validation
set is dominated by a single sample, even though the mean errors
are close, and the error distributions for both sets are comparable, if
neglecting the outliers. The distributions of the approximation error is
similar to the FRP case. In line with mathematical intuition, this error
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distribution is mainly determined by the loss function and the sampling
of the training data , and not by the microstructure under consideration.
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Figure 4.13: Error distribution for 𝐾 = 8 after 36 000 epochs

Online evaluation – uniaxial loadings

The metal matrix composite is subjected to uniaxial strain loadings (4.70)
for all three normal and shear strain components separately. In the
respective strain direction, a complete hysteresis is simulated with an
amplitude of 𝜀 = 1.0 % strain, distributed over 80 equidistant load steps.

In Figure 4.14, the effective stress vs. time curves for full-field simulations
are compared to the DMN predictions for even depths. For all six load
cases, strong differences are visible for 𝐾 = 4. Only for higher 𝐾, a
qualitative agreement between full-field solution and DMN prediction
may be observed. Still, for 𝐾 ≥ 6, only inspecting the stress vs. time
curves, the DMN predictions agree reasonably well with the full-field
simulations. This difference in required depth might be caused by the
power-law plastification employed for the MMC elasto-plastic model,
which in turn induces significant local plastification in the metal matrix.
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(a) Uniaxial extension in 𝑒1-direction
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(b) Uniaxial extension in 𝑒2-direction
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(c) Uniaxial extension in 𝑒3-direction
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(d) Pure shear in the 𝑒2-𝑒3-plane
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(e) Pure shear in the 𝑒1-𝑒3-plane
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(f) Pure shear in the 𝑒1-𝑒2-plane

Figure 4.14: Stress vs. time curves for the metal matrix composite and uniaxial loadings

112



4.4 Numerical results

To quantify our observations, we inspect Table 4.7, where the maximum
relative errors of the individual stress components are listed. The
maximum error decreases for increasing depth. However, the overall
error is much larger than for the FRP example. This is surprising, as one
might expect the more complex morphological anisotropy of the fiber
reinforced composite to manifest. Quite the opposite appears to hold:
The degree of nonlinearity and strength of localization appears to be
the dominating factor for good approximation quality. For 𝜂max

22 , 𝜂max
33

and 𝜂max
12 , the relative errors of the individual stress error components

decrease monotonically with increasing depth. However, for 𝜂max
11 , 𝜂max

23
and 𝜂max

13 this is not the case as it was observed for the FRP.

max rel. error 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7 𝐾 = 8
𝜂max

11 12.64 % 13.84 % 5.82 % 2.58 % 3.72 %
𝜂max

22 20.72 % 14.62 % 7.49 % 5.94 % 3.24 %
𝜂max

33 25.19 % 14.99 % 7.25 % 5.76 % 2.36 %
𝜂max

23 19.34 % 15.64 % 15.67 % 5.75 % 6.04 %
𝜂max

13 37.89 % 24.62 % 5.16 % 9.31 % 5.02 %
𝜂max

12 50.39 % 18.87 % 12.97 % 6.36 % 5.85 %
max(𝑖,𝑗)∈ℐ(𝜂max

𝑖𝑗 ) 50.39 % 24.62 % 15.67 % 9.31 % 6.04 %

Table 4.7: Relative errors for the metal matrix composite and uniaxial loadings

Online evaluation – biaxial loadings

Next, we investigate the DMN’s response to a biaxial strain load-
ing (4.73). We investigate two loading scenarios in analogy to the FRP,
see Table 4.5. The simulations are carried out with strain amplitudes
of 0.71 % in the respective loading directions and divided into 80
equidistant load steps.

Figure 4.15a and 4.15b show 𝜎11, 𝜎22, 𝜂11 and 𝜂22 for loading sequence
1 and 2, respectively. As before, the full-field solution serves as the

113



4 The framework of direct deep material networks

reference for the DMNs. Comparing the stress components of the
full-field computations in Figure 4.15a and 4.15b reveals an almost
isotropic stress response of the composite. For both loading sequences,
strong deviations are visible for 𝐾 = 4. Notice that the DMN with
depth 𝐾 = 4 predicts an anisotropic material behaviour, see 𝜎̄11 and
𝜎̄22 in Figure 4.15a and 4.15b. Only for 𝐾 ≥ 6, a sufficient agreement
between full-field solution and DMN prediction emerges. For 𝐾 = 8,
the relative error is well below 5 % for both loading sequences and stress
components.
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Figure 4.15: Stress vs. time curves for the metal matrix composite and biaxial loadings
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4.5 Conclusion

In this chapter, we introduced direct deep material networks which,
in contrast to the original formulation of Liu et al. (2019a) and Liu
and Wu (2019), omit intermittent rotations and utilize the flexibility
of laminate building blocks with arbitrary direction of lamination to
reduce the number of fitting parameters of the approach. In Section 4.2.2,
we specified helpful formulae, in particular in view of their usefulness
in codes supporting automatic differentiation, for the implementation
of 𝒟ℳ𝒩𝒜ℒ

𝑌 for the case of 𝑁 phases. Furthermore, in Section 4.2.3,
we specified a versatile evaluation of the nonlinear homogenization
function 𝒟ℳ𝒩𝑌 of deep material networks greatly simplifying the
implementation. For this, we introduced a “flattening” of the DMN
tree to arrive at a formulation general enough to encompass arbitrary
trees of laminates.

Turning our attention to the building blocks of the (direct) DMNs, we
established, in conjunction with Chapter 3, that any microstructure
inherits thermodynamic consistency and stress-strain monotonicity from
its phases. It is remarkable that the former statements are not restricted
to laminates, the building blocks of DMNs, but continue to hold for any
microstructure. On the other hand, apparently not every microstructure
is suitable as a building block for DMNs. Suppose, for instance, a
microstructure with an isotropic effective material behavior for isotropic
input materials is given. In particular, with such a microstructure as
building block, anisotropic effective material laws cannot be approxi-
mated. Thus, the inherent anisotropy of laminates is a key feature for
their use as a building block for DMNs.

As a next step, we will investigate numerical strategies to enable me-
chanical simulations on a component scale with varying microstructure
characteristics in Chapter 5 and Chapter 6. Furthermore, we will extend
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4 The framework of direct deep material networks

the range of applicability by considering thermomechanical coupling in
a two-scale component simulation in Chapter 7.
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Chapter 5

The FE-DMN method for the
analysis of short fiber reinforced
plastic components1

5.1 Introduction

Injection molded short fiber reinforced components are frequently used
for industrial applications as they combine favorable mechanical proper-
ties, free formability and short cycle times. As a result of the injection
molding process, the fiber orientation, and to some degree the fiber
volume fraction, may vary continuously within the component. Charac-
terizing all possible orientation states for such materials is an arduous
and expensive task, both experimentally and by simulative means.

To illustrate the complexity to be handled routinely, Figure 5.1a shows a
quadcopter frame arm made of short fiber reinforced polyamide with a
local fiber orientation determined by an injection molding simulation.
The color scale encodes the local fiber orientation tensor: Magenta
corresponds to a unidirectional, cyan to an isotropic and yellow to a
planar isotropic fiber orientation state. We observe that, for the majority

1 This chapter is based on the publication “An FE-DMN method for the multiscale analysis
of short fiber reinforced plastic components” (Gajek et al., 2021a). The introduction has
been shortened to avoid redundancy with Chapter 1. The notation has been harmonized.
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

of the quadcopter arm, the fibers are almost aligned. Moreover, we
encounter isotropic and planar isotropic fiber orientations in areas where
weld lines have formed. As weld lines correspond to weak spots in
the structure, it is critical to account for such regions accurately in
mechanical simulations.

Injection points

Injection point

Weld line

(a) Injection molded quadcopter arm (b) Quadcopter frame (GrabCAD, 2022)

Figure 5.1: Injection molded quadcopter arm (a) with local fiber orientation: Magenta, cyan
and yellow correspond to unidirectional, isotropic and planar isotropic fiber orientation
states. Quadcopter frame used as benchmark geometry (b) for the component scale
simulation.

In this chapter, we investigate a multiscale methodology for direct
DMNs, which covers all possible variations of the second-order fiber
orientation tensors and permits concurrent multiscale simulations with
DMNs at the Gauss point level. Similar to the FE2, FE-FFT and the FE2R

methods, we call the ensuing method the FE-DMN method.

As point of departure, we consider direct DMNs as introduced in Chap-
ter 4 and restrict to microstructures without micro-orientations, i.e.,
microstructures comprising isotropic phases. To account for a spatially
varying fiber orientation, see Section 5.2, we augment direct DMNs by
the fiber orientation interpolation concept introduced by Köbler et al.
(2018). To this end, we assume that the local fiber volume fractions of
the individual laminates in the hierarchy are independent of the local
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5.1 Introduction

fiber orientation. Therefore, it suffices to fix the fiber volume fractions
and to interpolate the lamination directions only. In contrast to Liu et al.
(2020), we do not consider a transfer learning strategy, i.e., to interpolate
already identified models, but propose an a priori interpolation strategy.
More precisely, we investigate direct DMNs which explicitly depend on
the fiber orientation, and identify the optimal model parameters jointly.

For this purpose, we utilize high-fidelity microstructures of fiber rein-
forced composites (Schneider, 2017), which permit us to routinely cover
the possible fiber orientations at industrial filler fraction and fiber aspect
ratio. For the sake of simplicity, we assume that both fiber volume
fraction and fiber length are fixed for all generated microstructures. We
sample the linear elastic training data from up to 31 microstructure
realizations. We also improve upon the sampling strategy of Liu et al.
(2019a) and Liu and Wu (2019) for the constituents’ stiffness tensors
used in the offline training. We show by example that it is sufficient to
cover those stiffnesses which arise as possible material tangents on the
microscopic scale.

For component scale simulations of industrial problems, it is necessary
to optimize the user-defined material models based upon the identified
DMNs, see Section 5.3. We take special care to ensure that the inter-
polated DMN generalizes accurately to the inelastic regime. To this
end, 78 additional microstructure realizations are generated, exclusively
for the inelastic validations. We compute the stress response of each
of the 109 generated microstructure representations by an FFT-based
computational homogenization (Moulinec and Suquet, 1994; 1998) code
and compare the former to the predicted stress response of the interpo-
lated direct DMN. The validation results show that with a maximum
error of 5.5 %, the DMN is capable of predicting the effective stress of all
investigated 109 discrete fiber orientation states sufficiently. We refer to
Section 5.4 for details.
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

To show that our approach is applicable to state of the art engineering
computations, we consider the entire process chain of a quadcopter
frame, see Figure 5.1b and Section 5.5. We conduct an injection molding
simulation where we assume the fiber volume fraction to be homoge-
neous throughout the part, map the spatially varying fiber orientations
upon a finite element mesh and conduct a two-scale simulation using the
identified DMN surrogate model. We implement the DMN as an implicit
user-material (UMAT) subroutine in ABAQUS only relying upon the
provided software interfaces. In contrast, Liu et al. (2020) employed
DMNs in an explicit finite element analysis. The quadcopter consists of
four arms made of injection molded short fiber reinforced polyamide,
two base plates which are made of aluminum and four legs which are
made of pure polyamide. The simulation model of the quadcopter
consist of more than two million elements resulting in almost ten million
degrees of freedom. In more than 1.9 million elements, a deep material
network is integrated implicitly at every Gauss point, accounting for the
local microstructure information in the simulation.

Last but not least, we discuss the computational costs accompanied by
our approach in Section 5.6, and demonstrate that the educated guess of
the potential computational power of DMNs made in the conclusion of
Liu et al. (2020) was too pessimistic.

5.2 Two-phase direct DMNs for a variable
fiber orientation

5.2.1 Two-phase direct DMNs

We seek to extend direct DMNs to short fiber reinforced composite
microstructures parameterized by the second-order fiber orientation
tensor. For this, we briefly recall the basic idea of direct DMNs. We
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5.2 Two-phase direct DMNs for a variable fiber orientation

restrict to the special case of two phases and focus only on details
relevant for this chapter and refer to Chapter 4 for more information.

Any two-phase periodic microstructure 𝑌 ⊆ V𝑑 in 𝑑 spatial dimensions
gives rise to the (nonlinear) homogenization function

ℳ𝑌 : 𝒢𝒮ℳ× 𝒢𝒮ℳ→ 𝒢𝒮ℳ, (𝒢1,𝒢2) ↦→ 𝒢, (5.1)

which maps two input GSMs to the effective GSM that emerges by
solving the cell problem of first order homogenization, see Chapter 3 for
more details. In general, evaluating homogenization functions requires
significant computational resources. Only for special microstructures,
the evaluation can be performed with minimal effort. An example
for such a microstructure is given by a two-phase laminate, uniquely
characterized by a direction of lamination 𝑛 ∈ S𝑑−1 and the volume
fractions 𝑐1 ∈ R≥0 and 𝑐2 ∈ R≥0 of the two phases for which 𝑐1 + 𝑐2 = 1
holds.

A two-phase direct DMN is defined as a hierarchy of such two-phase
laminates, see Figure 5.2. By combining laminates in a hierarchical
manner, the resulting homogenization function

𝒟ℳ𝒩𝑌 : 𝒢𝒮ℳ× 𝒢𝒮ℳ→ 𝒢𝒮ℳ (5.2)

may be rather complex and, by a judicious choice of the involved
laminates, may be used as an approximation of the homogenization
function (5.1) corresponding to the original microstructure 𝑌 , which is
significantly less demanding to evaluate.

On a more formal level, a direct DMN is a perfect, ordered, rooted binary
tree of depth 𝐾, where a two-phase laminate ℬ𝑖𝑘 is assigned to each node
of the tree. We reserve the letter 𝑘 for labeling the depth of a node,
whereas the horizontal index is consistently indexed by the letter 𝑖. Our
layer count only comprises the laminate layers, and the input is counted
separately. Thus, the direct DMN comprises 2𝐾−1 laminate nodes. Each
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

node features a direction of lamination 𝑛𝑖𝑘 and the two volume fractions
𝑐𝑖𝑘,1 and 𝑐𝑖𝑘,2. For a two-phase DMN of depth 𝐾, the homogenization
function 𝒟ℳ𝒩𝑌

𝒢 = 𝒟ℳ𝒩𝑌 (𝒢1,𝒢2) (5.3)

is defined recursively by traversing the binary tree from the leaves, at
level 𝐾, to the root

𝒢 = 𝒢1
1 with 𝒢𝑖𝑘 = ℬ𝑖𝑘(𝒢2𝑖−1

𝑘+1 ,𝒢2𝑖
𝑘+1), 𝑘 = 1, . . . ,𝐾, 𝑖 = 1, . . . , 2𝑘−1.

(5.4)
Input materials are assigned in an alternating fashion, i.e.,

𝒢𝑖𝐾+1 =
{︃
𝒢1, 𝑖 odd,
𝒢2, 𝑖 even,

(5.5)

holds. We refer to Figure 5.2 for a schematic.
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Figure 5.2: Schematic illustration of a two-phase direct DMN of depth four (the input level
is not counted)

The laminates’ volume fractions are parameterized by assigning pairs
of weights 𝑤2𝑖−1

𝐾+1 and 𝑤2𝑖
𝐾+1 to each laminate ℬ𝑖𝐾 on the 𝐾-th level, see
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5.2 Two-phase direct DMNs for a variable fiber orientation

Section 4.2 for an explanation. These weights should be non-negative
and sum to unity. Then, by traversing the binary tree from the leaves
to the root, the weights on the 𝑘-th level are computed by the sum of
weights of the respective laminates on the previous level, i.e.,

𝑤𝑖𝑘 = 𝑤2𝑖−1
𝑘+1 + 𝑤2𝑖

𝑘+1 (5.6)

holds. The volume fractions 𝑐𝑖𝑘,1 and 𝑐𝑖𝑘,2 of each laminate block ℬ𝑖𝑘 are
then computed by normalization

𝑐𝑖𝑘,1 =
𝑤2𝑖−1
𝑘+1

𝑤2𝑖−1
𝑘+1 + 𝑤2𝑖

𝑘+1
and 𝑐𝑖𝑘,2 = 1− 𝑐𝑖𝑘,1. (5.7)

For fixed tree topology, a direct DMN is uniquely determined by the
directions of lamination, which we collect in the form of a large vector

𝑛⃗ = [𝑛1
𝐾 , . . . ,𝑛

2𝐾−1

𝐾 ,𝑛1
𝐾−1, . . . ,𝑛

2𝐾−2

𝐾−1 , . . . ,𝑛
1
1] ∈

(︀
S𝑑
)︀2𝐾−1

, (5.8)

and the weights of the input layer

𝑤⃗ = [𝑤1
𝐾+1, . . . , 𝑤

2𝐾

𝐾+1] ∈ R2𝐾

≥0. (5.9)

The free parameters 𝑛⃗ and 𝑤⃗ are identified based on linear elastic
precomputations during the offline training. Once the free parameters
are identified, the DMN may be applied to nonlinear and inelastic
materials during the online evaluation.

5.2.2 Fiber orientation triangle

Suppose a fiber orientation state is given in terms of a fiber orientation
distribution (FOD) function 𝜌 : S2 → R≥0, which specifies the probability
to find fibers in direction 𝑑 ∈ S2. Advani and Tucker (1987) introduced
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

the volume-weighted second-order fiber orientation tensor

𝐴2 =
∫︁

S2
𝜌(𝑑) 𝑑⊗ 𝑑 d𝐴(𝑑) (5.10)

as a compact measure for the current fiber orientation state. Despite its
limited information content, its compact form makes it the typical quan-
tity of interest for commercial injection molding simulations (Kennedy,
2013). Higher-order moments of the FOD are then estimated by closure
approximations, see Montgomery-Smith et al. (2011).

The tensor 𝐴2 is symmetric and positive definite with unit trace. Conse-
quently, only five independent parameters are involved. In terms of an
eigenvalue decomposition

𝐴2 =∧ 𝑄

⎡⎢⎣ 𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤⎥⎦𝑄T, (5.11)

where the matrix 𝑄 ∈ SO(3) is orthogonal and the eigenvalues 𝜆1 ≥
𝜆2 ≥ 𝜆3 are sorted in a descending order, the fiber orientation tensor 𝐴2

may be parameterized by the tuple (𝜆1, 𝜆2) ∈ Λ with

Λ =
{︂

(𝜆1, 𝜆2) ∈ R2
⃒⃒⃒⃒

1
3 ≤ 𝜆1 ≤ 1, 1− 𝜆1

2 ≤ 𝜆2 ≤ min (𝜆1, 1− 𝜆1)
}︂
.

(5.12)
Thus, up to an orthogonal transformation, every tensor 𝐴2 corresponds
to a point (𝜆1, 𝜆2) in the triangle Λ, see Figure 5.3. In this chapter, we
follow Köbler et al. (2018) and use the CMY coloring scheme for encoding
different fiber orientations as shown in Figure 5.3.

The manufacturing process induces local variations of the fiber orienta-
tion of short fiber reinforced plastic components. Thus, for component-
scale simulations, these variations need to be accounted for by the
material models. If the fiber orientation state is described in terms of the
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5.2 Two-phase direct DMNs for a variable fiber orientation

second-order fiber orientation tensor 𝐴2, a family of effective material
models, one for each such tensor 𝐴2, needs to be supplemented.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
λ1

0.0

0.1

0.2

0.3

0.4

0.5

λ2

(a) Fiber orientation reference triangle (b) 𝜆1 = 1.0, 𝜆2 = 0.0

(c) 𝜆1 = 0.33, 𝜆2 = 0.33 (d) 𝜆1 = 0.495, 𝜆2 = 0.495

Figure 5.3: Fiber orientation reference triangle (a) illustrating the admissible range of the
two largest eigenvalues of the second order fiber orientation tensor 𝐴2. The three extreme
cases, i.e., (b) unidirectional, (c) isotropic and (d) planar isotropic fiber orientation are
shown.

By general covariance considerations, two fiber orientation states which
differ only by an orthogonal transformation should give rise to effective
material responses which differ only by this orthogonal transformation.
Consequently, if the considered fiber orientation states are parameterized
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by the second-order fiber orientation tensor, the essentially different fiber
orientation states will be parameterized by the points inside the fiber
orientation triangle (5.12).

Thus, the material models to be identified are parameterized by a two-
dimensional continuum. Furthermore, a certain continuity of the effec-
tive response of the material model, considered as a function of the fiber
orientation tensor, is expected. Indeed, changing the fiber orientation
only slightly is expected to change the effective mechanical response
only slightly as well, at least for non-critical loading. Unfortunately, the
typical multiscale approach based on representative volume elements
is unable to leverage this continuity. Although the effective material
response depends continuously on the fiber orientation tensor, the
representative volume element does not. Indeed, due to the stochastic
nature of such fiber-filled volume elements, infinitely many different
representative volume elements may be used to give rise to the same
effective response.

In particular, this reasoning has the following implication. Suppose that
we furnish each point (𝜆1, 𝜆2) ∈ Λ in the fiber orientation triangle (5.12)
with a corresponding representative volume element 𝑌𝜆1𝜆2 . Even if all
these elements have the same size, the function (𝜆1, 𝜆2) ↦→ 𝑌𝜆1𝜆2 will not
be continuous in any useful way.

As an alternative, Köbler et al. (2018) proposed a fiber orientation inter-
polation procedure on the level of effective stresses. This idea avoids
the difficulty of interpolating internal variables which live in different
locations for different microstructures. However, this approach comes
at a price: The number of stress evaluations is tripled by this approach.
Indeed, for any fiber orientation state, the stress response associated to
the three corners of the interpolating triangle needs to be evaluated.
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5.2 Two-phase direct DMNs for a variable fiber orientation

5.2.3 Fiber orientation interpolation

Due to their specific structure, direct DMNs may overcome the diffi-
culties mentioned at the end of the previous section. Indeed, for fixed
tree topology, the internal variables of the individual phases live on
identical locations, also for different DMNs. In any case, the internal
variables are tied to the materials on the lowest level of the tree, see
Figure 5.2. Of course, if DMNs are identified independently for each point
in the fiber orientation triangle (5.12), the parameters of the DMN need
not depend continuously on the fiber orientation tensor 𝐴2. Still, it
appears reasonable to identify the DMN’s parameters jointly over all
fiber orientations in the fiber orientation triangle.

More precisely, we consider DMNs which are parameterized by points
(𝜆1, 𝜆2) inside the fiber orientation triangle Λ. As observed by Liu et al.
(2019a), Liu and Wu (2019) and Gajek et al. (2020), the DMN’s weights 𝑤⃗
after training are directly linked to the constituent volume fractions of the
underlying microstructure. The former does not come as a surprise, since
the effective elastic behavior is determined by the volume fraction to first
order, see Chapter 14 in Milton (1986) or Section 20.2.2 in Torquato (2005),
and the DMN is fitted on linear elastic data alone. Since, for generating
the training data, we assume a constant volume fraction, independent
of the fiber orientation, we seek weights 𝑤⃗ which are independent of the
fiber orientation.

In order to interpolate the lamination directions 𝑛⃗ on the fiber orientation
triangle in 𝑑 = 3 spatial dimensions, we parameterize each normal 𝑛𝑖𝑘
by spherical coordinates

𝑛𝑖𝑘 =

⎡⎢⎣ sin
(︀
𝛼𝑖𝑘
)︀

cos
(︀
𝛽𝑖𝑘
)︀

sin
(︀
𝛼𝑖𝑘
)︀

sin
(︀
𝛽𝑖𝑘
)︀

cos
(︀
𝛼𝑖𝑘
)︀

⎤⎥⎦ 𝑒𝑖 (5.13)
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with angles 𝛼𝑖𝑘 ∈ [0, 𝜋] and 𝛽𝑖𝑘 ∈ [0, 2𝜋]. Then, we interpolate the angles
𝛼𝑖𝑘 and 𝛽𝑖𝑘 on the fiber orientation triangle (5.12) by a global (finite
element) shape function. Please note the difference to Köbler et al. (2018),
who rely upon linear interpolation on a subtriangulation of the fiber
orientation triangle.

Particularly compact expressions for the shape functions are obtained
by transforming the point (𝜆1, 𝜆2) ∈ Λ to barycentric coordinates
(𝜙1, 𝜙2, 𝜙3) ∈ R3 via 𝑔 : Λ → R3, (𝜆1, 𝜆2) ↦→ (𝜙1, 𝜙2, 𝜙3) by solving the
linear system (Vince, 2017)⎡⎢⎣ 1 1/3 1/2

0 1/3 1/2
1 1 1

⎤⎥⎦
⎡⎢⎣ 𝜙1

𝜙2

𝜙3

⎤⎥⎦ =

⎡⎢⎣ 𝜆1

𝜆2

1

⎤⎥⎦ . (5.14)

We collect the parameters of the polynomial shape functions, which are
parameterized via 𝜙1, 𝜙2 and 𝜙3, in the vector

𝜑⃗(𝜙1, 𝜙2, 𝜙3) = [𝜑1(𝜙1, 𝜙2, 𝜙3), . . . , 𝜑𝑀 (𝜙1, 𝜙2, 𝜙3)] , (5.15)

where 𝑀 denotes the number of shape functions. Then, the interpolated
angles may be expressed as

𝛼𝑖𝑘(𝜆1, 𝜆2) = 𝑝 𝑖 T
𝑘 𝜑⃗(𝑔(𝜆1, 𝜆2)) and 𝛽𝑖𝑘(𝜆1, 𝜆2) = 𝑞⃗ 𝑖 T

𝑘 𝜑⃗(𝑔(𝜆1, 𝜆2))
(5.16)

in terms of the parameter vectors 𝑝 = [𝑝1, . . . , 𝑝𝑀 ] ∈ R𝑀 and 𝑞⃗ =
[𝑞1, . . . , 𝑞𝑀 ] ∈ R𝑀 . We investigate linear, trilinear and quadratic shape
functions, see Table 5.1.

To sum up, extending DMNs to account for a varying fiber orientation
increases the number of unknown parameters. Instead of identifying,
per laminate, the angles 𝛼𝑖𝑘 and 𝛽𝑖𝑘, the parameter vectors 𝑝 𝑖𝑘 and 𝑞⃗ 𝑖𝑘 are
sought, in addition to the unknown weights 𝑤⃗.
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Linear 𝑀 = 3 𝜑1 = 𝜙1 𝜑2 = 𝜙2 𝜑3 = 𝜙3

Trilinear 𝑀 = 4 𝜑1 = 𝜙1 − 9𝜙1𝜙2𝜙3 𝜑2 = 𝜙2 − 9𝜙1𝜙2𝜙3 𝜑3 = 𝜙3 − 9𝜙1𝜙2𝜙3
𝜑4 = 27𝜙1𝜙2𝜙3

Quadratic 𝑀 = 6 𝜑1 = 𝜙1 (2𝜙1 − 1) 𝜑2 = 𝜙2 (2𝜙2 − 1) 𝜑3 = 𝜙3 (2𝜙3 − 1)
𝜑4 = 4𝜙1𝜙2 𝜑5 = 4𝜙1𝜙3 𝜑6 = 4𝜙2𝜙3

Table 5.1: Shape functions used for the orientation interpolation

5.3 Implementation

5.3.1 Offline training

We sample 𝑁s quadruples of input stiffnesses and fiber orientations
(C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2), where 𝑠 denotes the sample index, generate the re-
spective microstructures and compute the effective stiffnesses C̄𝑠.
We denote the generated training data by a sequence of quintuples{︀(︀

C̄𝑠,C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2
)︀}︀𝑁s

𝑠=1. The actual sampling process will be discussed
in Section 5.4.4. For the moment, we assume the training data to be
given and fixed.

In the offline training, we seek to identify the free parameters of the
DMN based on the sampled training data, namely the weights 𝑤⃗ and
the vectors {𝑝 𝑖𝑘} and {𝑞⃗ 𝑖𝑘 } used for interpolating the angles (5.16), which

we collect in the vectors 𝑝 ∈
(︀
R𝑀

)︀2𝐾 −1,

𝑝 =
[︁
𝑝 1
𝐾 , 𝑝

2
𝐾 , . . . 𝑝

2𝐾−1

𝐾 , 𝑝 1
𝐾−1, 𝑝

2
𝐾−1, . . . , 𝑝

2𝐾−2

𝐾−1 , . . . , 𝑝 1
2 , 𝑝

2
2 , 𝑝

1
1

]︁
(5.17)

and 𝑞⃗ ∈
(︀
R𝑀

)︀2𝐾−1,

𝑞⃗ =
[︁
𝑞⃗ 1
𝐾 , 𝑞⃗

2
𝐾 , . . . 𝑞⃗

2𝐾−1

𝐾 , 𝑞⃗ 1
𝐾−1, 𝑞⃗

2
𝐾−1, . . . , 𝑞⃗

2𝐾−2

𝐾−1 , . . . , 𝑞⃗ 1
2 , 𝑞⃗

2
2 , 𝑞⃗

1
1

]︁
. (5.18)

More precisely, we choose a reversed breadth-first ordering for 𝑝 and 𝑞⃗,
i.e., we insert the parameters of laminates on level 𝐾 first and add the
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

parameters of laminates for decreasing level index in their corresponding
order.

For a start, we represent the DMN’s linear elastic homogenization
function in the form

C̄ = 𝒟ℳ𝒩ℒ
Λ (C1,C2, 𝜆1, 𝜆2, 𝑝, 𝑞⃗, 𝑤⃗) , (5.19)

which maps the input stiffnesses C1 and C2, the fiber orientation param-
eters 𝜆1 and 𝜆2 and the unknown fitting parameters 𝑝, 𝑞⃗ and 𝑤⃗ to the
DMN’s effective stiffness. Then, the offline training is given by solving
the unconstrained optimization problem

𝐽 (𝑝, 𝑞⃗, ⟨𝑣⃗⟩+) −→ min
𝑝,𝑞,𝑣⃗

(5.20)

involving the objective function

𝐽 (𝑝, 𝑞⃗, 𝑤⃗) = 1
𝑁s

𝑞

⎯⎸⎸⎷ 𝑁s∑︁
𝑠=1

(︃⃦⃦
𝒟ℳ𝒩ℒ

Λ (C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2, 𝑝, 𝑞⃗, 𝑤⃗)− C̄𝑠
⃦⃦
𝑝⃦⃦

C̄𝑠
⃦⃦
𝑝

)︃𝑞

+ 𝜆p

⎛⎝ 2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 − 1

⎞⎠2

. (5.21)

The quadratic penalty term encodes the mixing constraint on the weights.
Furthermore, the non-negativity constraint on the weights 𝑤𝑖𝐾+1 ≥ 0 is
enforced by expressing the vector of weights 𝑤⃗ = ⟨𝑣⃗⟩+ in terms of the
vector of unconstrained weights 𝑣⃗ ∈ R2𝐾

, where ⟨ ⟩+ : R2𝐾 → R2𝐾

≥0
defines the Macaulay bracket, i.e., the ReLu activation functions applied
to the components of 𝑣⃗, see also Section 4.3.2 for more information.

In Chapter 4, we have learned that the specific binary tree structure of
the DMN can be exploited to evaluate 𝒟ℳ𝒩ℒ

Λ efficiently. Indeed, com-
puting the effective stiffness of a two-phase DMN reduces to recursively
computing a sequence of effective stiffnesses of two-phase laminates,
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5.3 Implementation

see Figure 5.4 for a schematic. As per Section 4.2.2, the linear elastic
homogenization function of a single laminate

C𝑖𝑘 = ℬ𝑖𝑘(C2𝑖−1
𝑘+1 ,C

2𝑖
𝑘+1) (5.22)

may be determined by solving the implicit equation(︁L
𝑛𝑖

𝑘
+ 𝜆0

[︀
C𝑖𝑘 − 𝜆0Is

]︀−1)︁−1
= 𝑐𝑖𝑘,1

(︁L
𝑛𝑖

𝑘
+ 𝜆0

[︀
C2𝑖−1
𝑘+1 − 𝜆0Is

]︀−1)︁−1

+ 𝑐𝑖𝑘,2

(︁L
𝑛𝑖

𝑘
+ 𝜆0

[︀
C2𝑖
𝑘+1 − 𝜆0Is

]︀−1)︁−1

(5.23)

for the effective stiffness C𝑖𝑘.
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Figure 5.4: Schematic illustration of the stiffness propagation in a two-phase direct DMN
of depth four

The offline training is implemented in PyTorch (Paszke et al., 2017),
see Gajek et al. (2020) or Section 4.3.2, making use of the framework’s
automatic differentiation capabilities to solve the regression problem
(5.20) by means of accelerated stochastic gradient descent methods using
mini batches of predefined size. An epoch 𝑗 consists of evaluating
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

(5.19) for all samples of the respective mini batch, evaluating the loss
function (5.21), computing the gradients 𝜕𝐽/𝜕𝑝, 𝜕𝐽/𝜕𝑞⃗ and 𝜕𝐽/𝜕𝑣⃗ by
means of automatic differentiation and updating the fitting parameters

𝑝𝑗+1 = 𝑝𝑗 − 𝛽𝑝
𝜕𝐽

𝜕𝑝
(𝑝𝑗 , 𝑞⃗𝑗 , ⟨𝑣⃗𝑗⟩+) , 𝑞⃗𝑗+1 = 𝑞⃗𝑗 − 𝛽𝑞

𝜕𝐽

𝜕𝑞⃗
(𝑝𝑗 , 𝑞⃗𝑗 , ⟨𝑣⃗𝑗⟩+) ,

𝑣⃗𝑗+1 = 𝑣⃗𝑗 − 𝛽𝑣⃗
𝜕𝐽

𝜕𝑣⃗
(𝑝𝑗 , 𝑞⃗𝑗 , ⟨𝑣⃗𝑗⟩+) and 𝑤⃗𝑗+1 = ⟨𝑣⃗𝑗+1⟩+.

(5.24)
Typically, during the offline training, a portion of weights 𝑤𝑖𝐾+1 becomes
equal to zero and remains zero due to the vanishing gradient. Liu and
Wu (2019) removed such sub-trees from the binary tree by deleting nodes
and merging the respective subtrees. In this chapter, we compress the
binary tree in order to speed-up the training, and eventually, the online
evaluation. Figure 5.5 shows a schematic of how to remove laminates
from the binary tree. The former illustrates a weighted tree with edge
weights corresponding to the propagated weights 𝑤𝑖𝑘. Remember that
the volume fractions of the individual laminates are computed from
these weights by normalization.
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(a) Perfect binary tree
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(b) Binary tree with removed laminates

Figure 5.5: Binary tree compression to speed up offline training and online evaluation.
Laminates corresponding to zero weights are removed from the binary tree.
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During training, superfluous laminates are removed from the binary
tree to minimize the number of computed laminate homogenization
steps (5.22). The former happens dynamically during every forward
pass. For the example in Figure 5.5, only four out of seven laminate
homogenization functions are computed in a forward pass, resulting in
a speed-up of about 43 % compared to a perfect binary tree.

5.3.2 Online evaluation

We seek to employ DMNs to speed up a two-scale simulation, i.e., for
every Newton iteration and at every Gauss point of a finite element
model, a direct DMN needs to be integrated implicitly. At the same
time, we want to account for arbitrary eigenvalues 𝜆1 and 𝜆2 of the fiber
orientation tensor at every Gauss point of the macroscopic simulation.

We restrict to the two-potential framework of small-strain isothermal
GSMs as summarized in Section 3.2. More precisely, we consider the
quadruple (𝒵 , 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ comprising a (Banach) vector space 𝒵
of internal variables, a free energy density 𝜓 : Sym2(𝑑) × 𝒵 → R, a
dissipation potential 𝜑 : 𝒵 → R ∪ {+∞} and an initial condition 𝑧0 ∈ 𝒵 .

Suppose that the two isothermal GSMs 𝒢1 = (𝒵1, 𝜓1, 𝜑1, 𝑧0,1) and 𝒢2 =
(𝒵2, 𝜓2, 𝜑2, 𝑧0,2) are given. A time discretization of both phases 𝑖 ∈ {1, 2}
by the implicit Euler method gives rise to the condensed free energy
potential Ψ𝑖 : Sym2(𝑑)×𝒵𝑖 → R, see Section 2.5 for more information
and a detailed derivation. With the condensed free energy potential Ψ𝑖

at hand, the Cauchy stress is given by the potential relation

𝜎𝑖 = 𝜕Ψ𝑖

𝜕𝜀
(𝜀𝑖, 𝑧𝑛𝑖 ) . (5.25)

which only depends on the input strain 𝜀𝑖 and the internal variables 𝑧𝑛𝑖
of the last (converged) time step.

We consider the displacement jump vector 𝑢⃗ ∈ (V𝑑)2𝐾 −1, which features
the same ordering that we used for the vectors 𝑝 and 𝑞⃗, and the vector
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

of phase strains 𝜀⃗ = [𝜀1, 𝜀2, . . . , 𝜀2𝐾 ] ∈ Sym2(𝑑)2𝐾

. By introducing the
symmetrized gradient operator2 𝐷𝜆1𝜆2 : (V𝑑)2𝐾−1 → Sym2(𝑑)2𝐾

, we
express the phase strains

𝜀⃗ = ⃗̄𝜀 + 𝐷𝜆1𝜆2𝑢⃗ (5.26)

w.r.t. the macro strain increment 𝜀̄ ∈ Sym2(𝑑) and the unknown dis-
placement jumps 𝑢⃗. Here, the shorthand notation ⃗̄𝜀 = [𝜀̄, 𝜀̄, . . . , 𝜀̄] ∈
Sym2(𝑑)2𝐾

is used. Indeed, for this chapter, the gradient operator, which
encodes the DMN’s topology and lamination directions, depends on the
fiber orientation parameters 𝜆1 and 𝜆2. Since we defined the lamination
directions 𝑛𝑖𝑘(𝜆1, 𝜆2) to depend on the parameters 𝜆1 and 𝜆2 explicitly,
the gradient operator depends on the fiber orientation, as well. We
account for this situation in our notation by writing 𝐷𝜆1𝜆2 . For the
application at hand, i.e., integrating a DMN at every Gauss point during
a two-scale simulation, the fiber orientation parameters 𝜆1 and 𝜆2 are
held fixed. Indeed, we assume that the microstructure does not evolve
under the applied load.

Let us define the vector of internal variables of the last converged

time step 𝑧⃗ 𝑛 =
[︀
𝑧𝑛1 , 𝑧

𝑛
2 , 𝑧

𝑛
3 , . . . ,𝑧

𝑛
2𝐾

]︀
∈ 𝒵 = (𝒵1 ⊕𝒵2)⊕2𝐾−1

and let
Ψ̄ : Sym2(𝑑)2𝐾× 𝒵 → R be the averaged condensed free energy of the
flattened laminate

Ψ̄(⃗𝜀, 𝑧⃗ 𝑛) =
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1Ψ𝑖(𝜀𝑖, 𝑧𝑛𝑖 ) where Ψ𝑖 =
{︃

Ψ1, 𝑖 odd,
Ψ2, 𝑖 even,

(5.27)

2 See Section 4.2.3 for a detailed derivation of the special structure of the symmetrized
gradient operator 𝐷𝜆1𝜆2 .
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alternates between the two given condensed free energies Ψ1 and Ψ2.
Then, we wish to solve the Euler-Lagrange equation of the DMN

𝐷T
𝜆1𝜆2𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢⃗, 𝑧⃗ 𝑛) = 0 (5.28)

for the unknown displacement jumps 𝑢⃗, where

𝜎⃗ = [𝜎1, . . . ,𝜎2𝐾 ] ∈ Sym2(𝑑)2𝐾

with 𝜎𝑖 = 𝜕Ψ𝑖

𝜕𝜀
(𝜀𝑖, 𝑧𝑛𝑖 ) (5.29)

is the vector of phase stresses. The weight operator 𝑊 : Sym2(𝑑)2𝐾 →
Sym2(𝑑)2𝐾

associates the weights 𝑤⃗ to the corresponding stresses 𝜎⃗. In
matrix notation, 𝑊 is given by a diagonal matrix with the weights 𝑤𝑖𝐾+1
on the diagonal.

We solve the Euler-Lagrange equation (5.28) by Newton’s method. For
an initial guess 𝑢⃗0 ∈ (V𝑑)2𝐾−1, the displacement jump vector 𝑢⃗ is it-
eratively updated 𝑢⃗𝑗+1 = 𝑢⃗𝑗 + 𝛽𝑗△𝑢⃗𝑗 , where the increment △𝑢⃗𝑗 ∈(︀
V𝑑
)︀2𝐾 −1 solves the linear system

[︂
𝐷T
𝜆1𝜆2𝑊

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢𝑗 , 𝑧⃗

𝑛)𝐷𝜆1𝜆2

]︂
△𝑢⃗𝑗 =

−𝐷T
𝜆1𝜆2𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢𝑗 , 𝑧⃗

𝑛). (5.30)

A step size 𝛽𝑗 ∈ (0, 1] less than unity may arise by backtracking. The
Jacobian 𝜕𝜎⃗/𝜕𝜀⃗ is a block-diagonal matrix containing the algorithmic
tangents of the DMN’s input materials, i.e.,

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀, 𝑧⃗ 𝑛) = block-diag

(︂
𝜕2Ψ1
𝜕𝜀𝜕𝜀

(𝜀1, 𝑧
𝑛
1 ), . . . , 𝜕

2Ψ2𝐾

𝜕𝜀𝜕𝜀
(𝜀2𝐾 , 𝑧𝑛2𝐾 )

)︂
.

(5.31)
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Upon convergence, the phase strains 𝜀⃗ = ⃗̄𝜀 + 𝐷𝜆1𝜆2𝑢⃗ and, subsequently,
the effective stress

𝜎̄ =
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1𝜎𝑖(𝜀𝑖, 𝑧𝑛𝑖 ) (5.32)

are computed by averaging. Alternatively, the expression

𝜎̄ = [Is, . . . , Is]T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢⃗, 𝑧⃗ 𝑛) (5.33)

may be used for computing the volume average of the phase stresses,
where 𝑊 denotes the weight operator and [Is, . . . , Is] ∈ Sym4(𝑑)2𝐾

,
Is : Sym2(𝑑)→ Sym2(𝑑) stands for a vector of the identity operators on
Sym2(𝑑).

The algorithmic tangent of the DMN admits the representation

C̄algo = 𝜕𝜎̄

𝜕𝜀̄
= [Is, . . . , Is]T𝑊

[︂
𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢⃗, 𝑧⃗ 𝑛)

+𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢⃗, 𝑧⃗ 𝑛)𝐷𝜆1𝜆2

𝜕𝑢⃗

𝜕𝜀̄

]︂
. (5.34)

The expression 𝜕𝜎⃗/𝜕𝜀̄ encodes the vector of algorithmic tangents of the
phase materials

𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀, 𝑧⃗ 𝑛) =

[︂
𝜕2Ψ1
𝜕𝜀𝜕𝜀

(𝜀1, 𝑧
𝑛
1 ), . . . , 𝜕

2Ψ2𝐾

𝜕𝜀𝜕𝜀
(𝜀2𝐾 , 𝑧𝑛2𝐾 )

]︂
. (5.35)

To evaluate (5.34), the partial derivatives of the strain jumps with respect
to the macrostrain 𝜕𝑢⃗/𝜕𝜀̄ need to be determined first. To this end,
differentiating the Euler-Lagrange equation (5.28) with respect to the
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macrostrain 𝜀̄ yields the linear system

[︂
𝐷T
𝜆1𝜆2𝑊

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢𝑗 , 𝑧⃗

𝑛)𝐷𝜆1𝜆2

]︂
𝜕𝑢⃗

𝜕𝜀̄
=

−𝐷T
𝜆1𝜆2𝑊

𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀̄ + 𝐷𝜆1𝜆2𝑢⃗, 𝑧⃗ 𝑛), (5.36)

which is solved for 𝜕𝑢⃗/𝜕𝜀̄. By comparing Equation (5.36) to Equa-
tion (5.30), we observe that both problems share the same linear op-
erator, but with different right hand sides. When using a direct solver,
e.g., a Cholesky decomposition, it is recommended to reuse the matrix
decomposition for reasons of numerical efficiency.

To reduce the number of degrees of freedom and, thus, to speed up
the solution process, we exploit that some weights become zero during
training as explained in the previous section. We learned that in the
offline training, we can dynamically build a binary tree with simplified
topology but identical effective behavior. This is also true for the online
evaluation of the DMN. The DMN’s topology is encoded by the gradi-
ent operator 𝐷𝜆1𝜆2 . Deleting laminate blocks from the binary tree is
equivalent to deleting the associated rows and columns of 𝐷𝜆1𝜆2 .

To illustrate this concept, consider the following example. For a two-
phase DMN of depth three as depicted in Figure 5.5a, the symmetrized
gradient operator 𝐷𝜆1𝜆2 takes the following (unreduced) form

𝐷𝜆1𝜆2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑐1
3,2𝑁1

3 0 0 0 −𝑐1
2,2𝑁1

2 0 −𝑐1
1,2𝑁1

1
𝑐1

3,1𝑁1
3 0 0 0 −𝑐1

2,2𝑁1
2 0 −𝑐1

1,2𝑁1
1

0 −𝑐2
3,2𝑁2

3 0 0 𝑐1
2,1𝑁1

2 0 −𝑐1
1,2𝑁1

1
0 𝑐2

3,1𝑁2
3 0 0 𝑐1

2,1𝑁1
2 0 −𝑐1

1,2𝑁1
1

0 0 −𝑐3
3,2𝑁3

3 0 0 −𝑐2
2,2𝑁2

2 𝑐1
1,1𝑁1

1
0 0 𝑐3

3,1𝑁3
3 0 0 −𝑐2

2,2𝑁2
2 𝑐1

1,1𝑁1
1

0 0 0 −𝑐4
3,2𝑁4

3 0 𝑐2
2,1𝑁2

2 𝑐1
1,1𝑁1

1
0 0 0 𝑐4

3,1𝑁4
3 0 𝑐2

2,1𝑁2
2 𝑐1

1,1𝑁1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.37)
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with the symmetrization operators w.r.t. the lamination direction

𝑁 𝑖
𝑘𝑢 = 1

2
(︀
𝑢⊗ 𝑛𝑖𝑘(𝜆1, 𝜆2) + 𝑛𝑖𝑘(𝜆1, 𝜆2)⊗ 𝑢

)︀
(5.38)

as building blocks3. In comparison, for the example shown in Figure 5.5b,
we obtain the (reduced) gradient operator

𝐷𝜆1𝜆2 =

⎡⎢⎢⎣
0 0 −𝑐1

2,2𝑁1
2 −𝑐1

1,2𝑁1
1

−𝑐2
3,2𝑁2

3 0 𝑐1
2,1𝑁1

2 −𝑐1
1,2𝑁1

1
𝑐2

3,1𝑁2
3 0 𝑐1

2,1𝑁1
2 −𝑐1

1,2𝑁1
1

0 −𝑐3
3,2𝑁3

3 0 𝑐1
1,1𝑁1

1
0 𝑐3

3,1𝑁3
3 0 𝑐1

1,1𝑁1
1

⎤⎥⎥⎦ (5.39)

by deleting the second, seventh and eight row and the first, fourth and
sixth column. Indeed, the corresponding strains in 𝜀⃗, stresses in 𝜎⃗,
weights in 𝑊 and algorithmic tangents in 𝜕𝜎⃗/𝜕𝜀⃗ and 𝜕𝜎⃗/𝜕𝜀̄ need to be
removed as well.

5.4 Identifying the DMN surrogate model

5.4.1 Short glass fiber reinforced polyamide

We focus on a short glass fiber reinforced polyamide. We consider E-glass
fibers with a length of 𝐿f = 200 µm and a diameter of 𝐷f = 10 µm. The
fiber volume fraction is set to 𝑐f = 16 vol% corresponding to a fiber mass
fraction of approximately 30 wt%. As per Section 4.4.1, the E-glass fibers
are isotropic, linear elastic and the matrix is assumed to be governed by
𝐽2-elastoplasticity with an exponential-linear hardening

𝜎Y = 𝜎0 + 𝑘∞𝜀p + (𝜎∞ − 𝜎0)
(︂

1− exp
(︂
− 𝑘0 − 𝑘∞
𝜎∞ − 𝜎0

𝜀p

)︂)︂
. (5.40)

3 Note that 𝑁 𝑖
𝑘 depends on the fiber orientation parameters (𝜆1, 𝜆2) ∈ Λ. However, for

reasons of clarity, we refrain from writing 𝑁 𝑖
𝑘(𝜆1, 𝜆2).
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5.4 Identifying the DMN surrogate model

The mechanical properties used in the simulation are summarized in
Table 4.1.

We rely upon the sequential addition and migration (SAM) method
of Schneider (2017) for generating periodic volume elements with pre-
scribed volume fraction and second-order fiber orientation tensor. The
fiber length 𝐿f, fiber diameter 𝐷f, fiber volume fraction 𝑐f and the
axis aligned fiber orientation tensor 𝐴2, i.e., 𝜆1 and 𝜆2, serve as input
parameters for the SAM method. Please note that we only consider
fiber orientation states with 𝜆3 ≥ 0.01, as purely planar fiber orientation
states cannot be generated at high filler content essentially for geometric
reasons, see Schneider (2017) for a discussion.

5.4.2 Necessary resolution and size of the RVE

For a start, we study the resolution necessary to obtain accurate effec-
tive properties in the purely elastic case, see also Gusev (1997); Kanit
et al. (2003). For this purpose, we consider cubic microstructures with
an edge length of 𝐿 = 384 µm, i.e., roughly twice the fiber length
of 𝐿f = 200 µm. We compute the effective stiffness with the help
of an FFT-based computational micromechanics code (Moulinec and
Suquet, 1994; 1998) as described in Schneider (2019a), using the staggered
grid discretization (Schneider et al., 2016) and the conjugate gradient
solver (Zeman et al., 2010; Brisard and Dormieux, 2010).

We consider the extreme orientations individually, i.e., unidirectional,
isotropic and planar isotropic fiber orientation as shown in Figure 5.3,
and vary the resolution from 1.7 to 13.3 voxels per fiber diameter in
equidistant steps. This corresponds to volume element discretizations
with 643 to 5123 voxels. We measure the error relative to the effective
stiffness C̄ and choose a resolution of 20 voxels per fiber diameter, i.e.,
a discretized by 7683 voxels, as the reference. Figure 5.6a shows the
relative error of the effective stiffness computed by the Frobenius norm
of the corresponding Voigt matrices. For the crudest resolution, i.e.,
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

five voxels per fiber diameter, the relative error is well below 2 % for all
three considered fiber orientations. Notice that the relative error for the
volume elements with planar isotropic fiber orientation is consistently
larger than the error for the unidirectional and isotropic orientations.
As expected, the relative error decreases with increasing resolution. At
a resolution of 6.7 voxels per fiber diameter, the relative errors of the
unidirectional and isotropic fiber orientation fall below 1 %. For 8.3
voxels per fiber diameter, the relative error of the planar isotropic fiber
orientation is below 1 % as well. We consider a resolution of 6.7 voxels
per fiber diameter as sufficient, i.e., relative errors below 1 % for isotropic
and unidirectional fiber orientation and an error slightly above 1 % for
the planar isotropic case. We fix this resolution and focus on finding the
size of a representative volume element.
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Figure 5.6: Relative error of the effective stiffness C̄ for different resolutions (a) and
different volume element sizes (b). We consider the three extreme cases of unidirectional,
isotropic and planar isotropic fiber orientation. The reference stiffnesses are obtained for a
resolution of 20 voxels per fiber diameter (a) and a volume element with edge length of
7.68 fiber lengths (b).
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5.4 Identifying the DMN surrogate model

For a resolution of 6.7 voxels per fiber diameter, we investigate volume
elements with edge lengths 𝐿 ranging from 1.44 up to 3.84 fiber lengths
corresponding to volume element discretizations with 1923 up to 5123

voxels. To obtain our reference, we generated a volume element with
edge lengths of 7.68 fiber lengths discretized with 10243 voxels. As for
studying the necessary resolution, we again consider the relative error
in the effective stiffness as our error measure. From Figure 5.6b, we
learn that for volume elements with edge lengths of 1.9 fiber length
and above, the relative error is well below 0.5 % and does not further
decrease significantly for increasing volume element size. For this reason,
we consider volume elements with an edge length of 𝐿 = 384 µm as
sufficient. To sum up, we finally choose a resolution of 6.7 voxel per
fiber length, i.e., a voxel size of 1.5 µm and a discretization with 2563

voxels, for this chapter.

5.4.3 Discretization of the fiber orientation triangle

To generate the linear elastic training data, we seek to sample from
the space of input stiffnesses and fiber orientations uniformly. Apart
from sampling input stiffnesses (C1,C2) ∈ Sym+

4 (𝑑) × Sym+
4 (𝑑), it is

possible to sample the orientations (𝜆1, 𝜆2) ∈ Λ as well, e.g., via a low-
discrepancy sequence such as the Sobol (1967) sequence or via Latin
hypercube sampling (McKay et al., 1979). Due to the high dimension
of the space Sym+

4 (𝑑) × Sym+
4 (𝑑), we follow the former approach for

generating tuples of input stiffnesses. In contrast, the considered fiber
orientations are parameterized by a two-dimensional space Λ. For its
discretization, we follow geometric considerations.

We discretize the fiber orientation triangle Λ by partitioning it into four
self-similar triangles, which may be subsequently partitioned, as well.
We select the three points on the vertices of each triangle plus the centers
of the triangles as sampling points (𝜆𝑠1, 𝜆𝑠2), where 𝑠 denotes the sample
index. We start with the full orientation triangle shown in Figure 5.7a.
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5 The FE-DMN method for the analysis of short fiber reinforced plastic components

The four sampling points, illustrated by four hollow circles, are located at
the three corners and the center of the orientation triangle. After the first
splitting, the orientation triangle comprises four triangles and ten points,
see Figure 5.7b. After dividing the triangles one more time, we arrive at
31 sampling points. For each of these points in fiber orientation space,
we generate a single volume element using the SAM method (Schneider,
2017) with edge lengths 𝐿 = 384 µm and a discretization with 2563

voxels, see Section 5.4.2.
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Figure 5.7: The investigated fiber orientation discretizations: (a) four, (b) ten and (c) 31
sampling points
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5.4 Identifying the DMN surrogate model

We consider the discretizations shown in Figure 5.7, i.e., we discretize
the orientation triangle with four, ten and 31 sampling points, which
we call D4, D10 and D31, respectively. Choosing the sampling points in
a hierarchical manner permits us to re-use already generated volume
elements for the next finer discretization. For instance, going from D10 to
D31 only requires generating 21 new volume elements. This restriction
is not imposed by the SAM algorithm since generating volume elements
with the given resolution and edge length is just a matter of milliseconds
to seconds. In Section 5.4.6, we generate 78 additional volume elements
to validate the DMN outside of its training regime and to check if the
DMN generalizes sufficiently on the orientation triangle. To this end,
we compare the DMNs predicted effective stress to the effective stress
obtained by full-field simulations for twelve independent strain paths
for every generated volume element and orientation state within the
orientation discretization. Obtaining the full-field solutions is computa-
tionally expensive. Therefore, being able to reuse the full-field solutions
from coarser discretizations for validating the finer discretizations comes
in handy to keep the validation effort manageable.

5.4.4 Material sampling

There is some freedom in the selection of appropriate sampling strategies
for the training data. For instance, Liu et al. (2019a), Liu and Wu (2019)
and Gajek et al. (2020), sampled (axis aligned) orthotropic stiffnesses.
We seek to decrease the number of degrees of freedom further, from 17
to 8, by taking into account that the glass fibers are linear elastic and
the polyamide matrix is governed by 𝐽2-elastoplasticity. For that reason,
we assume that the samples C1, corresponding to the glass fibers, are
isotropic, i.e., the equation

C1 = 3𝐾1 P1 + 2𝐺1 P2 (5.41)
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holds with the projection operators P1 : Sym2(𝑑) → Sym2(𝑑) and
P2 : Sym2(𝑑) → Sym2(𝑑) on the spherical and deviatoric subspaces
of Sym2(𝑑), which read

(P1)𝑚𝑛𝑜𝑝 = 1
3𝛿𝑚𝑛𝛿𝑜𝑝 and (P2)𝑚𝑛𝑜𝑝 = 1

2(𝛿𝑚𝑜𝛿𝑝𝑛+𝛿𝑚𝑝𝛿𝑜𝑛)− 1
3𝛿𝑚𝑛𝛿𝑜𝑝

(5.42)
in Cartesian coordinates. Secondly, we assume that the samples cor-
responding to the polyamide matrix are isotropic minus a rank-one
perturbation, i.e.,

C2 = 3𝐾2 P1 + 2𝐺2
(︀
P2 − 𝑎𝑁 ′ ⊗𝑁 ′)︀ . (5.43)

Here, the tensor 𝑁 ′ ∈ 𝒩 is normalized and deviatoric, i.e.,

𝒩 = {𝑁 ∈ Sym2(𝑑) | tr (𝑁) = 0, ‖𝑁 ‖F = 1} . (5.44)

The structure of the second stiffness C2 encompasses the possible algo-
rithmic tangents of 𝐽2-elastoplasticity, see Chapter 3 in Simo and Hughes
(1998).

The set of all considered positive definite stiffness tuples (C1,C2) may
be parameterized via(︀

𝐾1, 𝐺1,𝐾2, 𝐺2, 𝑎,𝑁
′)︀ ∈ R4

>0 × [0, 1)×𝒩 , (5.45)

where 𝐾𝑖 and 𝐺𝑖 have the dimensions of a Young’s modulus and 𝑎 and
𝑁 ′ are dimensionless. Since the latter set is unbounded, we restrict to
the subset of elements

(︀
𝐾1, 𝐺1,𝐾2, 𝐺2, 𝑎,𝑁

′)︀with

𝐾1 = 1 GPa, 𝐺1 = 10𝑔1GPa, 𝐾2 = 10𝑘2GPa, 𝐺2 = 10𝑔2GPa
(5.46)

and exponents 𝑔1, 𝑘2, 𝑔2 ∈ [−3, 3]. By fixing the compression modu-
lus 𝐾1, we removed the redundancy due to homothetic rescaling via
(C1,C2) ↦→ (𝜆C1, 𝜆C2) for 𝜆 > 0. For parameterizing 𝑁 ′, we make
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5.4 Identifying the DMN surrogate model

use of an eigenvalue decomposition 𝑁 ′ = 𝑄𝑁𝑄T with an orthogonal
𝑄 ∈ SO(3) and a diagonal 𝑁 ∈ 𝒩 matrix. We parameterize 𝑁 by
spherical coordinates

𝑁 =

⎡⎢⎣ sin (𝛼) cos (𝛽) 0 0
0 sin (𝛼) sin (𝛽) 0
0 0 cos (𝛼)

⎤⎥⎦ 𝑒𝑖 ⊗ 𝑒𝑗 (5.47)

ensuring the condition ‖𝑁 ‖F = 1 to hold. To account for the vanishing
trace, tr (𝑁) = 0, we eliminate the angle 𝛼 in Equation (5.47) and arrive
at the parameterization

𝑁 = 1√︁
cos(𝛽) sin(𝛽)+1

2 cos(𝛽) sin(𝛽)+1

⎡⎢⎢⎣
−

√
2 cos (𝛽)

2 cos (𝛽)+2 sin (𝛽) 0 0
0 −

√
2 sin (𝛽)

2 cos (𝛽)+2 sin (𝛽) 0
0 0 1√

2

⎤⎥⎥⎦𝑒𝑖 ⊗ 𝑒𝑗

(5.48)
in terms of a single remaining angle 𝛽 ∈ [0, 2𝜋]. As in Section 4.3.1, the
special orthogonal group is parameterized via an axis-angle representa-
tion

𝑄 : V3 → V3, 𝑥 ↦→ cos (𝜃) 𝑥+sin (𝜃) 𝑣×𝑥+(1−cos (𝜃))(𝑣 ·𝑥)𝑣, (5.49)

for the axis 𝑣 =∧ [sin (𝜓) cos (𝜙) , sin (𝜓) sin (𝜙) , cos (𝜓)], and where the
conditions 𝜃 − sin (𝜃) ∈ [0, 𝜋], cos(𝜓) ∈ [−1, 1] and 𝜙 ∈ [0, 2𝜋] hold, see
Miles (1965).

To sum up, we consider the following eight degrees of freedom

(𝑎, 𝑔1, 𝑘2, 𝑔2, 𝛽, 𝜃, 𝜓, 𝜙) (5.50)

with their respective domains specified above. To sample the input space
evenly, we sample the parameters (5.50) by the Sobol (1967) sequence
and subsequently construct the stiffness tensors (C1,C2).
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5.4.5 Offline training

For the offline training, we generate 𝑁s pairs of stiffnesses {(C𝑠1,C𝑠2)}𝑁s
𝑠=1

by the protocol described in Section 5.4.4. Then, for every sample 𝑠, we
assign each stiffness tuple (C𝑠1,C𝑠2) to one of the previously generated
volume elements with orientation (𝜆𝑠1, 𝜆𝑠2) in a cyclic fashion, i.e., we set
(𝜆𝑠1, 𝜆𝑠2) ↦→ (𝜆𝑓(𝑠)

1 , 𝜆
𝑓(𝑠)
2 ), where 𝑓 : N→ N,

𝑠 ↦→ (𝑠− 1) mod |D|+ 1 with D ∈ {D4, D10, D31} (5.51)

cycles through the indices of the samples in D4, D10 and D31, respec-
tively. For instance, for the orientation discretization D4, we assign(︀
C1

1,C1
2
)︀

to the volume element with fiber orientation
(︀
𝜆1

1, 𝜆
1
2
)︀
,
(︀
C2

1,C2
2
)︀

to the volume element with
(︀
𝜆2

1, 𝜆
2
2
)︀

and
(︀
C5

1,C5
2
)︀

to the volume element
with

(︀
𝜆1

1, 𝜆
1
2
)︀

and so forth. For every quadruple (C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2), we
compute the associated effective stiffness C̄𝑠 with the help of an FFT-
based computational micromechanics code (Moulinec and Suquet, 1994;
1998) as explained in Section 5.4.2.

The generated data
{︀(︀

C̄𝑠,C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2
)︀}︀𝑁s

𝑖=1 serves as training data for
identifying the DMN. The number of samples depends on the dis-
cretization of the orientation triangle and is summarized in Table 5.2.
For D4, we generate 800 samples in total which corresponds to 200
samples per volume element. To keep the sampling and training effort
manageable, we reduce the number of generated samples to 100 and 50
per microstructure when increasing the number of discrete orientations
to ten and 31, respectively. For D4, D10 and D31, we randomly split the
pre-computed samples into a training and validation set, comprising
90 % and 10 % of the samples. We train the deep material network on
mini-batches with a batch size of 𝑁𝑏 = 32 samples. More precisely, we
draw the batches randomly from the training set and drop the last batch,
should the remaining batch size be smaller than 32.
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D4 D10 D31

Total 800 1 000 1 550
Per microstructure 200 100 50
Training set 720 900 1 395
Validation set 80 100 155

Table 5.2: Number of generated samples and training and validation set sizes

We only consider direct DMNs with eight layers. In Chapter 4, we have
seen that eight layers are necessary to achieve a sufficient approximation
quality, in particular for inelastic computations. We train for 3 000 epochs
and rely upon the AMSGrad method (Kingma and Ba, 2015; Reddi
et al., 2018) combined with the warm restart technique suggested by
Loshchilov and Hutter (2017), i.e., we make use of a modulation of the
learning rate between a minimum learning rate 𝛽min and a maximum
learning rate 𝛽max,

𝛽 : N→ R≥0, 𝑚 ↦→ 𝛾𝑚
(︂
𝛽min + 1

2 (𝛽max − 𝛽min)
(︁

1 + cos
(︁
𝜋
𝑚

𝑀

)︁)︁)︂
,

(5.52)
where 2𝑀 corresponds to the period and𝑀 = 50 is chosen. Additionally,
we decay the learning rate at a geometric rate with 𝛾 = 0.999.

Since gradient descent is sensitive w.r.t. the proper choice of the step size,
we determine the learning rates 𝛽𝑝, 𝛽𝑞 and 𝛽𝑣⃗ by a learning rate sweep
as introduced by Smith and Topin (2018). The resulting learning rates
are almost identical for all three parameter groups, and, therefore, we set
𝛽𝑝 = 𝛽𝑞 = 𝛽𝑣⃗ = 𝛽 with a maximum learning rate of 𝛽max = 1.5·10−2. The
minimum learning rate is chosen to be an order of magnitude smaller
than the maximum learning rate, i.e., 𝛽min = 1.5 · 10−3. We sample the
initial weights 𝑣⃗0 from a uniform distribution on [0, 1] and rescale the
weights to sum to unity. The entries of the parameter vectors 𝑝0 and 𝑞⃗0

are sampled from a uniform distribution on [0, 2𝜋]. We set the penalty
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parameter of the objective function (5.21) to 𝜆p = 103 and choose the
exponents to 𝑝 = 1 and 𝑞 = 10.

We assess the accuracy of the fit by the sample-wise error

𝛿𝑠 =
⃦⃦
𝒟ℳ𝒩ℒ

Λ (C𝑠1,C𝑠2, 𝜆𝑠1, 𝜆𝑠2, 𝑝, 𝑞⃗, 𝑤⃗)− C̄𝑠
⃦⃦

1⃦⃦
C̄𝑠
⃦⃦

1
, (5.53)

where ‖ · ‖1 refers to the Frobenius-1 norm defined by the ℓ1-norm of
the stiffness components in Mandel’s notation. Additionally, we use the
maximum and mean errors of all samples

𝛿max = max
𝑠

(𝛿𝑠) and 𝛿mean = 1
𝑁s

𝑁s∑︁
𝑠=1

𝛿𝑠, (5.54)

where 𝑁s denotes the number of elements in the training or validation
set, depending on the considered scenario.
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Figure 5.8: Loss (a) and mean training and validation errors (b) during training for D31

In Figure 5.8, the training progress for the D31 orientation discretization
and the investigated linear, trilinear and quadratic orientation inter-
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polations is shown. In the first 500 epochs, the effect of the learning
rate modulation becomes apparent. The loss and mean error fluctuate
noticeably. In the last 500 epochs, the decay of the learning rate ensures
convergence of the parameters. Conforming to intuition, increasing the
degrees of freedom, i.e., choosing a trilinear or quadratic orientation
interpolation over a linear orientation interpolation, decreases the loss at
convergence. This trend carries over to the mean training errors as well.
For the validation error, however, the linear orientation interpolation
provides the best mean validation error. Such phenomena are not
uncommon for training deep neural networks, where increasing the
degrees of freedom not necessarily yields better generalization and
validation results as we will see in Section 5.4.6. As training progresses,
no increasing validation errors can be observed for the linear, trilinear
and quadratic orientation interpolations. Thus, no significant model
over-fitting w.r.t. the linear elastic training data is observed during
training.

In Table 5.3, the training results for the investigated orientation discretiza-
tions and interpolations are summarized. Additionally, the number of
non-zero weights 𝑤𝑖𝐾+1 at the end of training are listed. In general, we
observe the following trends: Mean and maximum training errors will
decrease if a trilinear or quadratic orientation interpolation is chosen in-
stead of a linear interpolation. The same observation holds for the mean
validation error with the exception of D31 and the linear orientation
interpolation. The maximum validation error, on the other hand, does
not necessarily decrease by introducing additional fitting parameters.
Furthermore, the maximum validation error shows significant fluctu-
ations. Indeed, for D4 and the linear interpolation, it reaches almost
12 %. Since the maximum validation error is dominated by a single
sample, see Figure 4.8 or Figure 4.13 in Section 4.4, we consider the mean
validation error to be a more appropriate indicator of the quality of the
training results. If we go from D4 to D10 and D31, the loss as well as
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the training and validation errors will increase, in general. Indeed, the
DMN has to predict the effective behavior of significantly more volume
elements with different fiber orientations and this result does not come
unexpected.

𝐽 𝛿train
mean 𝛿train

max 𝛿valid
mean 𝛿valid

max active weights

D4

Linear 7.378 · 10−3 0.462 % 1.236 % 0.669 % 7.088 % 71 %
Trilinear 6.456 · 10−3 0.413 % 1.016 % 0.572 % 3.960 % 73 %
Quadratic 6.736 · 10−3 0.431 % 1.054 % 0.563 % 2.948 % 71 %

D10

Linear 1.026 · 10−2 0.638 % 1.610 % 0.982 % 11.982 % 70 %
Trilinear 9.109 · 10−3 0.587 % 1.266 % 0.698 % 4.933 % 70 %
Quadratic 8.156 · 10−3 0.541 % 1.127 % 0.665 % 2.969 % 68 %

D31

Linear 1.296 · 10−2 0.730 % 2.173 % 0.783 % 3.935 % 67 %
Trilinear 1.175 · 10−2 0.700 % 1.928 % 0.879 % 6.018 % 65 %
Quadratic 9.757 · 10−3 0.620 % 1.361 % 0.841 % 7.051 % 68 %

Table 5.3: Training results of the interpolated direct DMNs for the investigated orientation
interpolations and orientation discretizations

5.4.6 Online evaluation

We implement Newton’s method, as described in Section 5.3.2, as a
user-material subroutine in ABAQUS. In terms of implementation, the
major difference compared to Chapter 4 is that, for this chapter, the
gradient operator depends on the fiber orientation parameters 𝜆1 and 𝜆2,
see Section 5.3.2. This does not infer any additional challenges, since the
microstructure characteristics do not change during computation. Both
parameters 𝜆1 and 𝜆2 are fixed during the online evaluation, and after
assembling 𝐷𝜆1𝜆2 , the effective stress 𝜎̄ and algorithmic tangent C̄algo are
computed by Newton’s method in the proposed manner. For a summary
of the main steps of the algorithm, i.e., computing phase strains and
stresses, updating the displacement jumps, updating internal variables
and computing the DMN’s effective stress, we refer to Algorithm 1 in
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Chapter 4 where the pseudo-code for the implementation of the online
evaluation can be found.

Our goal in Section 5.5 is to employ deep material networks in a two-
scale simulation using ABAQUS. For this purpose, we seek to speed
up the inelastic computations as much as possible. As a first step, the
elimination procedure described in Section 5.3 proves effective. The
deleting is performed in an upstream pre-processing step after the offline
training to avoid unnecessary computational overhead. Secondly, we
exploit the sparsity pattern of all involved linear operators, i.e., the
sparsity pattern of the gradient operator 𝐷𝜆1𝜆2 and the Jacobian 𝜕𝜎⃗/𝜕𝜀⃗,
containing the algorithmic tangents of the phases. To this end, we rely
upon the Eigen3 library (Guennebaud et al., 2010) for all linear algebra
operations and use sparse matrices whenever possible. For Newton’s
method, we use the following convergence criterion⃦⃦⃦

𝐷T
𝜆1𝜆2𝑊 𝜎⃗(⃗𝜀̄𝑛+1 + 𝐷𝜆1𝜆2𝑢⃗𝑛+1, 𝑧⃗ 𝑛)

⃦⃦⃦
F

(2𝐾 − 1)
⃦⃦

𝜎̄ 𝑛+1 ⃦⃦
F

≤ tol, (5.55)

where we set the tolerance tol to 10−12 and ‖ · ‖F refers to the Frobenius
norm defined by the ℓ2-norm of the involved matrices in Mandel’s
notation. We solve the linear system by means of a sparse Cholesky
decomposition.

Before employing the DMN in a two-scale simulation, we turn our
attention to validating the identified surrogate model. To investigate
whether direct DMNs are capable of accurately predicting the effective
stress outside of the training regime, additional orientations (𝜆1, 𝜆2) ∈ Λ
are sampled and the respective volume elements are generated. We
use D4 as our point of departure and subdivide the orientation triangle
three more times yielding 105 additional orientations (𝜆1, 𝜆2). For D10

and D31, we subdivide the orientation triangle two and one more times,
giving rise to 99 and 78 additional points (𝜆1, 𝜆2), respectively.
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Training points (offline training) Additional validation points (online evaluation)
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(a) Discretization D4
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(b) Discretization D10
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(c) Discretization D31

Figure 5.9: Investigated fiber orientation discretizations comprising volume elements used
in offline training and additionally generated volume elements for the online validation:
(a) four training and 105 validation, (b) ten training and 99 validation and (c) 31 training
and 78 validation points

In Figure 5.9, for all three discretizations, the sampled orientations
(𝜆1, 𝜆2) used for obtaining the training data (hollow circles) and exclu-
sively used for the inelastic validations (black filled circles) are shown.
For every additional point (𝜆1, 𝜆2), we generated a volume element
using the SAM method (Schneider, 2017). We keep using the volume
elements already generated for offline training such that we have 109
generated volume elements in total for D4, D10 and D31.
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5.4 Identifying the DMN surrogate model

Using the material parameters of the short fiber reinforced polyamide
given in Section 5.4.1, we investigate six independent uniaxial strain
loadings

𝜀̄ = 𝜀

2 (𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) ,

(𝑖, 𝑗) ∈ ℐ1 = {(1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2)} .
(5.56)

For every uniaxial strain loading direction in the index set ℐ1, a full
hysteresis with a strain amplitude of 𝜀 = 2.5 % over a time of 𝑇 = 4 s is
computed in 80 equidistant load steps to account for load reversal. To
consider more complex loading conditions, we investigate six indepen-
dent biaxial strain loadings

𝜀̄ = 𝜀1 𝑒𝑖 ⊗ 𝑒𝑖 + 𝜀2 𝑒𝑗 ⊗ 𝑒𝑗 ,

(𝑖, 𝑗) ∈ ℐ2 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}
(5.57)

over a time of 𝑇 = 2 s and computed in 40 equidistant load steps. For
every biaxial loading direction in the index set ℐ2, a strain loading of
𝜀1 = 1.77 % is applied while the strain in the second direction is held
constant 𝜀2 = 0 %. After the load in the first direction is applied, a
strain loading of 𝜀2 = 1.77 % is applied in the second direction as
well. Both for the uniaxial and biaxial simulations, mixed boundary
conditions (Kabel et al., 2016), i.e., stress free loading perpendicular to
the loading direction, are used. As reference, we compute the volume
elements’ effective stress 𝜎̄FFT by means of an FFT-based computational
micromechanics (Moulinec and Suquet, 1994; 1998) code and use an
Eyre-Milton solver (Eyre and Milton, 1999; Schneider et al., 2019). To
evaluate the approximation error in a quantitative way, we introduce
the following error measures. For a fixed fiber orientation (𝜆1, 𝜆2), we
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define the relative error in the stress component (𝑖, 𝑗) as

𝜂𝑖𝑗,𝜆1𝜆2(𝑡) =

⃒⃒⃒
𝜎̄DMN
𝑖𝑗,𝜆1𝜆2

(𝑡)− 𝜎̄FFT
𝑖𝑗,𝜆1𝜆2

(𝑡)
⃒⃒⃒

max
𝜏∈𝒯

⃒⃒⃒
𝜎̄FFT
𝑖𝑗,𝜆1𝜆2

(𝜏)
⃒⃒⃒ , (5.58)

where 𝒯 = [0, 𝑇 ] denotes the considered time interval. Furthermore, the
mean and the maximum errors are defined by

𝜂mean
𝜆1𝜆2 = max

𝑖,𝑗∈{1,2,3}
1
𝑇

∫︁ 𝑇

0
𝜂𝑖𝑗,𝜆1𝜆2(𝑡) d𝑡 (5.59)

and
𝜂max
𝜆1𝜆2 = max

𝑖,𝑗∈{1,2,3}
max
𝑡∈𝒯

𝜂𝑖𝑗,𝜆1𝜆2(𝑡), (5.60)

respectively.

For each of the sampled 109 fiber orientation states, we compute the
previously mentioned twelve independent loading paths and evaluate
these error measures. The resulting mean and maximum errors for all
orientations are shown in Figure 5.10, for D31 and the linear orientation
interpolation. Comparing Figure 5.10a and 5.10b, we observe that the
mean error fluctuates less on the orientation triangle than the maximum
error, in particular in the vicinity of the isotropic fiber orientation state.
The maximum relative error attains its maximum value of around 5.5 %
for the unidirectional fiber orientation state. The mean error, on the
other hand, fluctuates less and attains its maximum also for the unidi-
rectional case. Still, with a maximum error of 5.5 %, the DMN is capable
of predicting the effective stress for all investigated 109 discrete fiber
orientation states with sufficient accuracy.
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Training: 31 points Validation: 78 points

(a) Distribution of mean error 𝜂mean
𝜆1𝜆2

(b) Distribution of maximum error 𝜂max
𝜆1𝜆2

Figure 5.10: Distribution of mean (a) and maximum (b) error on the orientation triangle
for D31 and the linear orientation interpolation

Figure 5.11 gives an impression of how the mean and maximum errors
shown in Figure 5.10 translate into actual stress-time curves. For the
three extreme cases and a uniaxial extension in the 𝑒1-direction, the
11-component of the effective stress predicted by the DMN and com-
puted by an FFT-solver is shown in Figure 5.11a. For isotropic and
planar isotropic fiber orientations, the DMN’s effective stress 𝜎̄DMN

11 and
the full-field solution 𝜎̄FFT

11 are almost indistinguishable. Even for the
unidirectional fiber orientation, which exhibits the previously mentioned
maximum error of 5.5 %, 𝜎̄DMN

11 and 𝜎̄FFT
11 show a good agreement. In

Figure 5.11b, the stress components for a biaxial extension in the 𝑒1- and
the 𝑒2-direction are illustrated. As noted previously, we observe the
largest relative error for the unidirectional fiber orientation, whereas
the predictions of DMN and FFT for isotropic and planar isotropic fiber
orientations are almost indistinguishable.
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(b) Biaxial extension in 𝑒1- and 𝑒2-direction

Figure 5.11: Comparing the effective stresses predicted by the DMN and computed by an
FFT-based micromechanics solver for a uniaxial (a) and a biaxial (b) extension for the three
extreme fiber orientation states

Figure 5.12 summarizes the minimum, mean and maximum of the
individual error measures w.r.t. the fiber orientation (𝜆1, 𝜆2) for D4,
D10, D31 and linear, trilinear and quadratic orientation interpolations.
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Figure 5.12: Minimum, mean and maximum errors for the three considered orientation
interpolations

Figure 5.12, which compares 11 772 computed DMN load paths with
1 308 full-field simulations, permits us to draw the following conclu-
sions: For fixed type of orientation interpolation, a finer orientation
discretization reduces the mean and maximum errors. The dependence
of the mean and maximum error on the polynomial degree is more
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complicated. Compared to the linear orientation interpolation, both
the mean and the maximum error increase significantly for the trilinear
and the quadratic interpolations. The former holds true for D4, D10

and D31. Similar to the offline training, the loss and training errors
decrease for higher order interpolations. Only the validation errors
shows a slight increase. This suggests an overfitting with respect to the
orientation interpolation, so that the linear approaches to the orientation
interpolation is recommended, in the end.

5.5 A computational example

After validating that the DMN is able to provide sufficiently accurate
results, we turn our attention to a component of industrial complexity.
We choose a quadcopter frame, see Figure 5.1b, whose CAD geome-
try is publicly available (GrabCAD, 2022). We assume that the arms
of the quadcopter are manufactured by injection molding. To obtain
realistic fiber orientation data, we conducted a mold filling simulation
for a single quadcopter arm and utilize the generated data for all four
identical quadcopter arms. We use the publicly available software
InjectionMoldingFoam (Ospald, 2014), which is based upon the two-
phase, incompressible flow solver of OpenFOAM (Weller et al., 1998).
We choose identical settings and material parameters as Köbler et al.
(2018), i.e., we assume a homogeneous fiber volume fraction and select
the following Carreau-WLF equation (Kennedy, 2013)

𝜇(𝜃, 𝛾̇) = 𝜇0
𝑒−𝐴2(𝜃−𝜃ref)

(1 + (𝐴0𝛾̇)2)
1−𝐴1

2
. (5.61)

Here, 𝜃 denotes the absolute temperature and 𝛾̇ refers to the norm of the
strain-rate tensor. The parameters for the injection molding simulation
are summarized in Table 5.4 and originally stem from Bhat et al. (2014).
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Mass density: 1410 kg/m3

Injection temperature: 548.15 K
Mold temperature: 313.15 K
Heat capacity at constant pressure: 2400 J/(K kg)
Thermal conductivity: 0.25 W/(m K)
Initial fiber orientation distribution: Isotropic
Fiber aspect ratio: 20
Folger-Tucker interaction coefficient: 0.01
Particle number: 0
Glass transition temperature 𝜃ref: 503.15 K
𝐴0: 0.1 s
𝐴1: 0.65
𝐴2: 0.021 1/K
Reference shear viscosity 𝜇0: 100 Pa s

Table 5.4: Parameters used for the injection molding simulation (Bhat et al., 2014)

The results of the injection molding simulation are shown in Figure 5.13,
both for a top and a side view, and at three distinct instances of time,
corresponding to a volume coverage of 50 %, 75 % and 100 %, respec-
tively. The computed fiber orientations are represented by the color
scale shown in Figure 5.3. We observe that, at the flow fronts, planar
and isotropic fiber orientations dominate. For the rest of the drone arm,
fiber orientations close to the unidirectional case are prevalent. Fig-
ure 5.13d illustrates the principal fiber orientations, i.e., the eigenvector
corresponding to the largest eigenvalue of 𝐴2, after the mold is filled.
As a result of the location of the injection points, pronounced weld lines
formed on the left of the center of the drone arm, see Figure 5.13c.

159



5 The FE-DMN method for the analysis of short fiber reinforced plastic components

Injection point
Injection points

(a) Volume coverage of 50 %

Injection point
Injection points

(b) Volume coverage of 75 %

Injection point
Injection points

(c) Volume coverage of 100 %

Injection point
Injection points

(d) Principal fiber orientation

Figure 5.13: Injection molding simulation results for 50 % (a), 75 % (b) and 100 % (c)
volume coverage and principal fiber orientations (d) after filling
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With the material behavior reported in Section 5.4.1, we perform a
structural two-scale simulation on a single drone arm using ABAQUS.
We mesh the drone arm by quadratic tetrahedron elements and inves-
tigate five different mesh densities ranging from 63 580 up to 1 005 862
elements in order to analyze convergence, wall-clock time and memory
consumption, see Table 5.8. The computed fiber orientation tensors
serve as the input for the simulation, i.e., the eigenvectors of 𝐴2 are
mapped onto the ABAQUS mesh and determine the material orientation.
The eigenvalues 𝜆1 and 𝜆2 are provided to the DMN subroutine via
pre-defined fields. We apply a loading of 𝐹 = 80 N on the motor mount
via a surface force and fix the left side of the drone arm, see Figure 5.14.
The loading is applied in ten equidistantly spaced time increments.

Figure 5.14 shows the results for the finest discretization of about one
million tetrahedron elements. In the top Figure 5.14a, the von Mises
stress distribution for the last time increment and for an assumed homo-
geneous and isotropic fiber orientation (𝜆1, 𝜆2) ≡ (0.33, 0.33) is shown.
The bottom Figure 5.14b shows the computed stress for the mapped
anisotropic, inhomogeneous fiber orientation. Running on two AMD
EPYC 7642, both simulations took about 165 min to complete on 96
threads and required 133 GB of DRAM.

For the mapped anisotropic fiber orientation, stress fluctuations, es-
pecially in the vicinity of weld lines are clearly visible. In contrast,
stress and strain concentrations at weld lines cannot be predicted for a
homogeneous fiber orientation. Accounting for the entire process chain
appears imperative in order to exploit the full lightweight potential
of injection molded fiber reinforced components, as becomes evident
when comparing the predicted total deflections. Indeed, for the assumed
isotropic fiber orientation, the macro simulation predicts a deflection
of 6.13 mm. A deflection of 3.99 mm is predicted for the anisotropic
fiber distribution. Thus, the isotropic variant underestimates the actual
stiffness of the component by a factor of two.
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von Mises stress σ̄vm in MPa
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(a) Homogeneous isotropic fiber orientation

F

(b) Mapped anisotropic fiber orientation

Figure 5.14: Side and top view of the simulated drone arm for a homogeneous, isotropic
fiber orientation (a) and the mapped anisotropic fiber orientation (b) from the injection
molding simulation

To demonstrate the capabilities of the introduced multiscale method,
we investigate the entire drone frame in a mechanical simulation, see
Figure 5.15. The four drone arms are manufactured from injection
molded, short fiber reinforced polyamide with mapped anisotropic
fiber orientation. An interpolated direct DMN is integrated at every
Gauss point. Both the upper and lower plates, which the drone arms
are attached to, are made of aluminum. For this material, we use a
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𝐽2-elastoplasticity model (Simo and Hughes, 1998) with power law
hardening

𝜎Y = 𝜎0 + 𝑘 𝜀𝑚p . (5.62)

The material parameters, i.e., Young’s modulus 𝐸, Poisson’s ratio 𝜈 and
hardening parameters 𝜎0, 𝑘 and 𝑚 are taken from Segurado et al. (2002)
and summarized in Table 4.2.

von Mises stress σ̄vm in MPa

0 10 20 30 40 50 60 70 80 90 100

F

F

F

F

Figure 5.15: Simulated quadcopter drone frame

We assume the drone legs to be made of pure polyamide. For the latter,
we assign a linear elastic material behavior, see Table 4.1. The simulation
model consists of about two million elements with almost ten million
degrees of freedom, see Table 5.9. The drone arms are loaded as shown
in Figure 5.15 with a force of 𝐹 = 80 N. The loading is applied in
ten equidistantly spaced load steps. The simulation took about 4.5 h
wall-clock time, running on 96 threads in parallel.
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5.6 Computational cost

Last but not least, we discuss the computational cost of deep material
networks accounting for the offline training and online evaluation sep-
arately. All computations were performed on a workstation equipped
with two AMD EPYC 7642 with 48 physical cores each, enabled SMT
and 1024 GB of DRAM.

The material sampling was performed in parallel, i.e., we computed six
load steps in parallel using 16 threads for each individual simulation. All
direct DMNs were trained in parallel on 4 threads each. The wall-clock
times of the material sampling and the offline training are summarized
in Table 5.5 and Table 5.6.

D4 D10 D31

21.48 h 27.02 h 42.43 h
(800 samples) (1 000 samples) (1 550 samples)

Table 5.5: Wall-clock times for sampling the linear elastic training data

Apparently, the sampling and offline training effort increases linearly
with the number of samples. Incidentally, the number of fitting parame-
ters, which varies depending on the type of the orientation interpolation,
has no significant influence on the runtime of the offline training.

Turning our attention to the online evaluation, we focus on the computa-
tional costs of the DMN evaluated at a single Gauss point. Integrating an
interpolated direct DMN at a single Gauss point for a prescribed macro
strain increment takes about 2 ms on a single thread, see Table 5.7. This
is about 120 000 times faster than conducting a full-field simulation
on a microstructure discretized by 2563 voxels using an FFT-based
computational micromechanics solver, also running on a single thread.
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We exclusively considered DMNs with eight layers. For applications
which permit using DMNs with a smaller number of layers, even higher
speed-up factors may be reached.

Wall-clock time #FP

D4 D10 D31

Linear 2.43 h 3.18 h 4.60 h 1 020
Trilinear 2.58 h 3.30 h 4.60 h 1 275
Quadratic 2.50 h 3.18 h 4.62 h 1 785

Table 5.6: Wall-clock times and number of fitting parameters (#FP) for training the
interpolated direct DMNs

FFT (1 thread) DMN (1 thread)

Wall-clock time 242.69 s 2.03 ms
Speed-up − 119 552

#DOF 6× 2563 513

Table 5.7: Wall-clock time, speed-up (compared to an FFT-base computational microme-
chanics solver) and degrees of freedom (#DOF) for a single time step of the inelastic micro
simulation

Next, we focus on the component scale simulation of the quadcopter
arm. The wall-clock times of all five examined discretizations ranging
from 63 580 up to 1 005 862 quadratic tetrahedron elements and, com-
puted on 96 threads, are summarized in Table 5.8. We observe that the
DRAM footprint is roughly proportional to the number of elements.
The wall-clock times, however, increase super-linearly. We attribute
this effect to the complexity of the direct solver used by ABAQUS.
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Apparently, the applicability of the method is more restricted by the
memory requirements, and the computational effort plays a minor
role. The required DRAM depends on the number of internal variables
to be stored. For a DMN of eight layers, linear elastic fibers and an
elastoplastic matrix, 128 × (1 + 5) = 768 floating-point numbers need
to be stored for every Gauss point. To improve the convergence of
Newton’s method, the displacement jumps of the last converged time
step are stored as well, i.e., 768 + 255× 3 = 1 533 scalars need to be kept
in memory. Since we rely upon the thinned binary tree as introduced
in Section 5.3.2, 1 533 serves as an upper bound. For the application
at hand, the actual number of internal variables of the DMN surrogate
model is 1 297. ABAQUS requires no more than two Newton iterations
per load step, indicating a robust quadratic convergence independent of
the mesh size. The slight increase from 1.8 to 2.0 Newton iterations per
load step is minimal, and may be a result of the increased plastification
of the material in the vicinity of finely resolved geometric features of the
component.

ABAQUS (96 threads)

Elements 63 580 121 416 247 444 488 689 1 005 862
#DOF 308 987 572 688 1 134 597 2 194 091 4 418 695

Wall-clock time 9 min 15 min 32 min 63 min 165 min
Memory consumption 9 GB 15 GB 33 GB 62 GB 133 GB
Total Newton iterations 18 18 19 20 20

Table 5.8: Wall-clock time, memory consumption and total Newton iterations of the single
drone arm for different mesh sizes

To analyze the drone arm, using less than one million elements for
the discretization would be sufficient. Rather, by choosing such a
fine discretization, we demonstrate that DMN-accelerated two-scale
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simulations easily scale to components with high complexity. The
hardware requirements implicated by Table 5.8 can be provided by
any state-of-the-art workstation.

Computing all ten load steps on 96 threads for the entire quadcopter
frame took 22 Newton iterations, 267 min and required 252 GB or DRAM,
see Table 5.9. This corresponds to over two million elements and about
ten million degrees of freedom.

Part Materials Discretization

Arms DMN 4× 488 689 Quad. tetrahedron
Bottom plate Aluminum 39 422 Quad. hexahedron
Top plate Aluminum 19 028 Quad. hexahedron
Legs Polyamide 4× 20 054 Quad. tetrahedron

Total - 2 093 422 -

#DOF 9 378 683
Wall-clock time 267 min
Memory consumption 252 GB
Total Newton iterations 22

Table 5.9: Wall-clock time, memory consumption and total Newton iterations for the
simulation of the entire quadcopter frame

5.7 Conclusion

We investigated the capabilities of direct DMNs to provide a digital
twin for short fiber reinforced plastic microstructures, which can be
used in concurrent multiscale simulations. To realize the full lightweight
potential of short fiber reinforced components, it is imperative to account
for the locally varying fiber orientation in mechanical simulations on
component scale.
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Building upon the work of Köbler et al. (2018), we proposed a robust
and computationally efficient approach to utilize direct DMNs for vari-
able fiber orientations. Instead of identifying multiple deep material
networks and interpolating the effective stress, we interpolated the
DMN’s microstructure characteristics on the fiber orientation triangle.
Assuming that the local fiber volume fractions of the individual lami-
nates in the hierarchy are independent of the local fiber orientation, it
suffices to fix the fiber volume fraction and to interpolate the lamination
directions only. This procedure gives rise to a single DMN surrogate
model covering all fiber orientations. Presumably, the scheme easily
extends to incorporating local variations in the fiber volume fraction by
interpolating the DMN’s volume fractions as well, see Chapter 6. By
sampling the training data from up to 31 microstructure realizations
with different fiber orientation, we fitted the DMN to multiple fiber
orientations simultaneously. Subsequently, we showed that the DMN
generalizes to the entire fiber orientation triangle with small error, also
for the inelastic regime.

To evaluate the ensuing performance of our approach, we simulated the
entire process chain of a quadcopter frame starting from an injection
molding simulation. We mapped the computed fiber orientations upon
a finite element mesh of the complete quadcopter frame and conducted
a DMN-accelerated two-scale simulation of the full component. Our
results indicate that direct DMNs enable two-scale simulations of struc-
tures with industrial complexity with moderate hardware requirements.
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Chapter 6

Estimating process-induced
uncertainties in sheet molding
compound composites1

6.1 Introduction

Sheet molding compound (SMC) is a discontinuous fiber reinforced
polymer material that is available in the form of sheets which are pre-
impregnated with a thermoset resin. The manufacturing process leads
to a random planar orientation distribution of bundled fibers in the
prepreg sheets. These sheets are cut and stacked to form an initial
charge that is subsequently molded to a part in a compression molding
process. The resulting SMC parts have superior mechanical properties
in comparison to injection molded parts due to their higher fiber length,
while maintaining the ability to fill complex geometries. However,
the manufacturing process leads to a spatially varying fiber volume
fraction and a spatially varying and anisotropic fiber orientation, which

1 This chapter is based on the publication “A probabilistic virtual process chain to quantify
process-induced uncertainties in Sheet Molding Compounds” (Meyer et al., 2023). The
focus is placed on the extension of the direct DMN framework to consider micro-oriented
materials with spatially varying microstructure characteristics. For this purpose, only
the relevant parts were taken from the aforementioned publication. For more detailed
information on the process chain and the statistical evaluations, please refer to the
original manuscript. The notation has been harmonized.

169



6 Estimating process-induced uncertainties in sheet molding compound composites

both strongly influence the mechanical performance of the resulting
part (Schemmann et al., 2015; 2018). To fully exploit the lightweight-
potential of such materials, it is imperative to capture both of these
effects in a mechanical simulation of SMC components.

In this chapter, we use the framework of direct DMNs for accelerating
two-scale simulations of SMC components. For this, we augment the
framework by a fiber orientation and fiber volume fraction interpolation
scheme. In contrast to Chapter 5, this approach allows for accurately
resolving the spatially varying fiber volume fraction as well as the
spatially varying fiber orientation in a component scale simulation.
We focus on planar fiber orientation distributions, as the out-of-plane
component in planar SMC components is typically rather small (Schöttl
et al., 2021). This assumptions allows to parameterize the orientation
state by a single variable. Thus, in combination with the fiber volume
fraction, the surrogate model may be interpolated on a 2D continuum,
which significantly simplifies the sampling, training and validation of
the model.

To demonstrate the efficiency of our approach, we develop a virtual
process chain in the spirit of Görthofer et al. (2019), acting as a digital
twin for SMC specimens from compounding to mechanical testing in a
testing rig. We vary the initial stack configuration in terms of the overall
fiber volume fraction while keeping the overall fiber orientation, the
material parameters and the boundary conditions constant. For each
variation, we compute multiple realizations of SMC components and
analyze these by means of DMN-accelerated two-scale simulations to
capture process-induced uncertainties in the mechanical performance of
the specimens.
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6.2 Two-phase direct DMNs for a variable
fiber volume fraction and fiber orientation

6.2.1 Two-phase micro-oriented direct DMNs

As introduced in Chapter 4, direct DMNs are restricted to microstruc-
tures without micro-oriented phases, i.e., considering anisotropic SMC
bundles as second phase beside the isotropic unsaturated polyester
polyurethane hybrid (UPPH) matrix, see Bücheler (2018) for information
on the material system, is not possible. Thus, we augment the direct
DMN framework with an additional rotation layer at the bottom of
the binary tree, enabling the treatment of micro-oriented problems, see
Figure 6.1 for an illustration and see also Comment 4 in Chapter 3 for an
explanation.
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ε⃗
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Figure 6.1: Schematic illustration of a micro-oriented direct DMN with two phases and a
depth of three

We consider a micro-oriented direct DMN of two phases in three spatial
dimensions and of depth 𝐾 to consist of the following parts:
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6 Estimating process-induced uncertainties in sheet molding compound composites

1. A vector 𝑛⃗ = [𝑛1
𝐾 ,𝑛

2
𝐾 , . . . ,𝑛

2
1,𝑛

2
2,𝑛

1
1] ∈ (S𝑑−1)2𝐾−1, comprising the

lamination directions of all laminate building blocks and inserted in
a reversed breadth-first ordering.

2. A vector of non-negative weights 𝑤⃗ = [𝑤1
𝐾+1, . . . , 𝑤

2𝐾

𝐾+1] ∈ R2𝐾

≥0 ,
summing to unity.

3. A vector of rotations 𝑅⃗ = [𝑅1, . . . ,𝑅2𝐾 ] ∈ SO(𝑑)2𝐾

, specifying the
material orientation.

The vector of lamination directions 𝑛⃗, the vector of weights 𝑤⃗ and the
vector of rotation matrices 𝑅⃗ uniquely determine the micro-oriented
direct DMN and serve as the fitting parameters of the surrogate model.

6.2.2 Interpolating the fitting parameters

The parameters 𝑝⃗ = [𝑛⃗, 𝑤⃗, 𝑅⃗] only depend on the geometric compo-
sition of the underlying microstructure the model is fitted on and are
independent of the constituents. However, for many material classes
including SMC, the geometric composition of the microstructure fluc-
tuates significantly on the macroscopic scale, an effect usually induced
by the manufacturing process of the composite. As a consequence, a
plethora of parameter vectors 𝑝⃗, typically one for every Gauss point of
the macroscopic simulation, needs to be identified in order to employ
the DMN surrogate model in a two-scale simulation. As a remedy, the
interpolation of the parameters 𝑝⃗ has been proposed in Chapter 5. For
interpolating the fitting parameters, we assume that 𝑛⃗, 𝑤⃗ and 𝑅⃗ depend
continuously on the relevant microstructure characteristics such that
only a single parameter identification process is necessary.

For SMC, the relevant microstructure characteristics are given by the
fiber volume fraction and the second-order fiber orientation tensor. In
principle, the fiber volume fraction 𝑐f ∈ [0, 1] ranges between zero and
one. Typically, the maximum fiber content is capped well below one,
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6.2 Two-phase direct DMNs for a variable fiber volume fraction and fiber orientation

mainly due to geometric reasons, e.g., the maximum packing density of
cylinders acts as an upper bound.

By general covariance considerations, two fiber orientation states which
differ only by an orthogonal transformation should give rise to effective
material responses which differ only by this orthogonal transforma-
tion, see Section 5.2.2. Consequently, restricting to planar fiber orienta-
tion states, we may parameterize essentially different fiber orientation
states by the following second-order fiber orientation tensor 𝐴2 ∈
Sym2(3) (Advani and Tucker, 1987)

𝐴2 =

⎡⎢⎣ 𝜆1 0 0
0 1− 𝜆1 0
0 0 0

⎤⎥⎦ 𝑒𝑖 ⊗ 𝑒𝑗 , (6.1)

which only depends on a single parameter 𝜆1 ∈ [0.5, 1]. For instance,
for 𝜆1 = 0.5, we recover a planar orientation state, whereas for 𝜆1 = 1 a
unidirectional state is observed.

To obtain a surrogate model admissible for any pair of fiber volume
fraction and orientations (𝑐f, 𝜆1) ∈ 𝒞Λ = [0, 1] × [0.5, 1], we define the
interpolated parameter vector 𝑝⃗(𝑐f, 𝜆1) = [𝑛⃗(𝜆1), 𝑤⃗(𝑐f), 𝑅⃗(𝜆1)]. Here,
we assume that the directions of lamination 𝑛⃗(𝜆1) and the material
orientation 𝑅⃗(𝜆1) depend linearly on the fiber orientation parameter
𝜆1 and are independent of the fiber volume fraction 𝑐f. We refer to
Section 5.2.3 for a suitable parametrization. Furthermore, we assume
that the weights 𝑤⃗(𝑐f) are given by an (affine) linear function of the fiber
volume fraction 𝑐f and expressed in terms of the unconstrained weights
𝑣⃗ ∈ R2𝐾

to ensure non-negativity, i.e.,

𝑤2𝑖
𝐾+1(𝑐f) = 𝑐f ⟨𝑣2𝑖⟩+ and 𝑤2𝑖−1

𝐾+1(𝑐f) = (1− 𝑐f) ⟨𝑣2𝑖−1⟩+ (6.2)
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hold, together with the consistency conditions

2𝐾−1∑︁
𝑖=1
⟨𝑣2𝑖⟩+ = 1 and

2𝐾−1∑︁
𝑖=1
⟨𝑣2𝑖−1⟩+ = 1, (6.3)

which ensure that
2𝐾−1∑︁
𝑖=1

𝑤𝑖𝐾+1 = 1 (6.4)

holds for any fiber volume fraction 𝑐f.

6.2.3 Efficient evaluation of the nonlinear
homogenization function

For the efficient evaluation of the nonlinear homogenization function

𝒟ℳ𝒩𝒞Λ : 𝒢𝒮ℳ× 𝒢𝒮ℳ→ 𝒢𝒮ℳ, (𝒢1,𝒢2) ↦→ 𝒢 (6.5)

of a micro-oriented direct DMN of depth 𝐾, we assume that the param-
eter vector 𝑝⃗ is given as the result of a suitable interpolation scheme
(𝑐f, 𝜆1) ↦→ 𝑝⃗(𝑐f, 𝜆1) = [𝑛⃗(𝜆1), 𝑤⃗(𝑐f), 𝑅⃗(𝜆1)] and fixed.

First, we introduce the averaging operator 𝐵 : Sym2(𝑑)2𝐾 → Sym2(𝑑), a
2𝐾-fold copy of the identity on Sym2(𝑑) and the symmetrized gradient
operator 𝐷𝑐f𝜆1 : (V𝑑)2𝐾−1 → Sym2(𝑑)2𝐾

, which depends on the fiber
volume fraction 𝑐f and the fiber orientation 𝜆1 and which encodes the
DMN’s topology into a single linear mapping, see Section 4.2.3. The
vector of compatible strains 𝜀⃗ = [𝜀1, . . . , 𝜀2𝐾 ] ∈ Sym2(𝑑)2𝐾

admits the
representation

𝜀⃗ = 𝐵T𝜀̄ + 𝐷𝑐f𝜆1𝑢⃗, (6.6)

where 𝜀̄ ∈ Sym2(𝑑) designates the macrostrain (increment) and 𝑢⃗ ∈
(V𝑑)2𝐾−1 stands for the vector of (unknown) displacement jumps.
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6.2 Two-phase direct DMNs for a variable fiber volume fraction and fiber orientation

We consider the two isothermal GSMs 𝒢1 and 𝒢2 as phases. We assign
to each phase 𝑖 = 1, . . . , 2𝐾 the isothermal GSM 𝒢𝑖, which alternates
between 𝒢1 and 𝒢2, i.e.,

𝒢𝑖 =
{︃
𝒢1 = (𝒵1, 𝜓1, 𝜑1, 𝑧0,1), 𝑖 odd,
𝒢2 = (𝒵2, 𝜓2, 𝜑2, 𝑧0,2), 𝑖 even.

(6.7)

By a time discretization with the implicit Euler method and conden-
sation of the internal variables, see Section 2.5, we obtain the vector
of incremental algorithmic potentials Ψ⃗ = [Ψ1, . . . ,Ψ2𝐾 ], alternating
between the incremental potentials of both phases. After condensation,
the microscopic vector of stresses is defined via

𝜎⃗ (⃗𝜀, 𝑧⃗ 𝑛) = 𝑅⃗
−1
⋆
𝜕Ψ⃗
𝜕𝜀⃗

(𝑅 ⋆ 𝜀⃗, 𝑧⃗ 𝑛), (6.8)

with
𝜕Ψ⃗
𝜕𝜀⃗

(·, 𝑧⃗ 𝑛) =
[︂
𝜕Ψ1
𝜕𝜀⃗

(·, 𝑧𝑛1 ) , . . . , 𝜕Ψ2𝐾

𝜕𝜀⃗
(·, 𝑧𝑛2𝐾 )

]︂
, (6.9)

where 𝑧⃗ 𝑛 = [𝑧1, . . . ,𝑧
2𝐾 ] ∈ 𝒵 = (𝒵1 ⊕ 𝒵2)⊕2𝐾−1

denotes the vec-
tor of internal variables of the last converged time step, the operator
𝑅⃗ ⋆ : Sym2(𝑑)2𝐾 → Sym2(𝑑)2𝐾

encodes the forward rotation of the
phase strains

𝜀⃗ ↦→ 𝑅⃗ ⋆ 𝜀⃗ = [𝑅T
1 𝜀1𝑅1, . . . ,𝑅

T
2𝐾 𝜀2𝐾 𝑅2𝐾 ] (6.10)

and 𝑅⃗
−1
⋆ : Sym2(𝑑)2𝐾 → Sym2(𝑑)2𝐾

denotes the corresponding back-
ward rotation of the phase stresses

𝜎⃗ ↦→ 𝑅⃗
−1
⋆ 𝜎⃗ = [𝑅1𝜎1𝑅T

1 , . . . ,𝑅2𝐾 𝜎2𝐾 𝑅T
2𝐾 ], (6.11)

both expressed in terms of the vector of rotations 𝑅⃗.
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6 Estimating process-induced uncertainties in sheet molding compound composites

For a prescribed macrostrain increment 𝜀̄, we seek the vector of displace-
ment jumps 𝑢⃗, which solves the balance of linear momentum

𝐷T
𝑐f𝜆1𝑊 𝑅⃗

−1
⋆
𝜕Ψ⃗
𝜕𝜀⃗

(𝑅⃗ ⋆ (𝐵T𝜀̄ + 𝐷𝑐f𝜆1𝑢⃗), 𝑧⃗ 𝑛) = 0, (6.12)

where 𝑊 : Sym2(𝑑)2𝐾 → Sym2(𝑑)2𝐾

designates the weight operator,
which might be represented as a diagonal matrix comprising the weights
𝑤⃗ on the diagonal. In a subsequent step, the effective stress 𝜎̄ is com-
puted by averaging the phase stresses via

𝜎̄ = 𝐵𝑊 𝑅⃗
−1
⋆ 𝜎⃗(𝑅⃗ ⋆ (𝐵T𝜀̄ + 𝐷𝑐f𝜆1𝑢⃗), 𝑧⃗ 𝑛). (6.13)

For a detailed summary of the implementation as a user-defined sub-
routine including the derivation of the algorithmic tangent, we refer to
Chapter 5 for the purely mechanical and Chapter 7 for the thermome-
chanical case. Please note that the mere difference in implementation
between this section and the aforementioned chapters is the additional
rotation layer which rotates the computed stresses and strains (and
algorithmic tangents) of the materials.

6.3 Identifying the DMN surrogate model

6.3.1 Modeling damage in sheet molding compound
composites

A variety of experimental investigations (Meraghni et al., 1996; Ben
Cheikh Larbi et al., 2006; Trauth et al., 2017; Schöttl et al., 2020) show
that matrix and bundle damage are the dominant damage mechanisms
in SMC composites. For modeling damage in the UPPH matrix and
the fiber bundles, we rely upon the anisotropic and non-localizing
damage model of Görthofer et al. (2022b). The model is formulated as
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an isothermal GSM, see Section 2.5, comprising the free energy density
𝜓 : Sym2(𝑑)×𝒵 → R,

𝜓(𝜀, 𝑧) = 1
2𝜀 · S−1 [𝜀] +

𝑀∑︁
𝑖=1

𝐻𝑖

𝑚𝑖 + 1𝑞
𝑚𝑖+1
𝑖 , (6.14)

which consists of an elastic part and a part related to damage and where
𝑀 denotes the number of different damage cases. The internal variables
of the model are given by 𝑧 = [S, 𝑞1, . . . , 𝑞𝑀 ] ∈ 𝒵 = Sym+

4 (𝑑) ⊕ R𝑀 ,
i.e., the model operates on the positive definite compliance tensors
S ∈ Sym+

4 (𝑑) as the primary damage variable and a set of variables
𝑞𝑖 ∈ R, 𝑖 = 1, . . . ,𝑀 , describing the shape and size of the damage
surfaces. The hardening parameters 𝐻𝑖 ∈ R>0 and exponents 𝑚𝑖 ∈ R>0

control the growth of damage.

We introduce the force potential 𝜑* : Sym2(𝑑) × R𝑀 → R ∪ {+∞} in
terms of 𝑀 convex damage-activation functions

𝑔𝑖(𝜎, 𝑞𝑖) = ‖B𝑖 [𝜎] ‖2 − 𝜎2
0,𝑖 −𝐻2

𝑖 𝑞
𝑚𝑖
𝑖 (6.15)

that bound the elastic regime in analogy to associated elasto-plastic
models. We formulate the force potential 𝜑*, the continuous dual of the
dissipation potential 𝜑, in its simplified version

𝜑*(𝜎, 𝑞1, . . . , , 𝑞𝑀 ) =

⎧⎨⎩0, 𝑔𝑖(𝜎, 𝑞𝑖) ≤ 0, ∀ 𝑖 = 1, . . . ,𝑀,

+∞, else.
(6.16)

For damage to evolve, the stress state has to exceed a damage-activation
threshold 𝜎0,𝑖 ∈ R>0 in combination with a part accounting for the
onset of damage. Case-specific stresses are extracted via dedicated
extraction tensors B𝑖 that can be tailored to the application at hand.
Using Biot’s dual equation (Borwein and Lewis, 2006), we obtain the
damaged stiffness C for any state of damage captured by the associated
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damage variables

C = S−1 with S = S0 + 2
𝑀∑︁
𝑖=1

𝑞𝑖
𝐻𝑖

B2
𝑖 , (6.17)

where S0 is the initial compliance. The model is thermodynamically
consistent and satisfies Wulfinghoff’s damage growth criterion (Wulf-
inghoff et al., 2017). Furthermore, it can be applied to any hardening-
type damage material. An efficient predictor-corrector framework in
analogy to problem settings in elasto-plasticity allows for an efficient
computation. For a detailed overview on the model, the reader is referred
to Görthofer et al. (2022b).

For the UPPH matrix, we restrict to an isotropic damage evolution as
suggested by Görthofer et al. (2022a), i.e., we choose the corresponding
extraction tensor as

BM = 1
3𝐼 ⊗ 𝐼. (6.18)

For the fiber bundles, we capture damage as a result of normal stresses
perpendicular to the bundle direction and shear stresses in bundle direc-
tion (Görthofer et al., 2022b;a). We implement the associated extraction
tensors as

BB,N =
√

2
2 (𝑒⊗2

2 + 𝑒⊗2

3 )⊗2
+
√

2
4 (𝑒⊗2

2 − 𝑒⊗2

3 )⊗2
+ 1

2(𝑒2 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒2)⊗2

(6.19)
and

BB,S = (𝑒1 ⊗S 𝑒2)⊗2
+ (𝑒1 ⊗S 𝑒3)⊗2

. (6.20)

The linear elastic material parameters of the UPPH matrix were charac-
terized by Trauth (2020, Section 6.3.1). Relying on 𝜇CT scans (Schöttl
et al., 2020; 2021), we assume the volume fraction of fibers within a
bundle to be 70 % and obtain the bundle properties via homogenization.
The linear elastic material properties of matrix and bundles both given
in engineering notation are reported in Table 6.1.
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Matrix 𝐸 = 3.5 GPa 𝜈 = 0.385

Bundles 𝐸L = 51.5 GPa 𝜈TT = 0.402 𝐺TT = 6.6 GPa
𝐸T = 18.7 GPa 𝜈LT = 0.260 𝐺LT = 6.8 GPa

Table 6.1: Elastic properties of matrix and bundles

Based on experimental data reported by Trauth (2020), the parameters
describing the damage onset and evolution in matrix and bundles
are identified using a Bayesian optimization approach using Gaussian
regression as presented in Görthofer et al. (2022a). The results are listed
in Table 6.2

Matrix B1 = BM 𝜎0,1 = 36.9 MPa 𝐻1 = 213.9 MPa 𝑚1 = 1.0

Bundles B2 = BB,N 𝜎0,2 = 46.0 MPa 𝐻2 = 529.0 MPa 𝑚2 = 1.0
B3 = BB,S 𝜎0,3 = 44.1 MPa 𝐻3 = 283.9 MPa 𝑚3 = 1.0

Table 6.2: Damage parameters of matrix and bundles

6.3.2 Offline training and model validation

The space of admissible fiber volume fractions and fiber orientations
is given by the continuum 𝒞Λ. Before sampling the training data, we
seek a suitable discretization of 𝒞Λ. For discretization, we choose for
the fiber volume fraction 𝑐f ∈ [0.15, 0.35] and for the fiber orientations
𝜆1 ∈ [0.5, 0.8], see Meyer et al. (2023) for a discussion on how these
bounds were obtained. The admissible space of fiber volume fractions
and fiber orientations is discretized as shown in Figure 6.2.

The white dots in Figure 6.2 represent 41 tuples
{︀(︀
𝑐𝑠f , 𝜆

𝑠
1
)︀}︀41
𝑠=1 of the

discretized space. We generate an artificial SMC microstructure for any
of those tuples by the algorithm of Görthofer et al. (2020). In the next
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Figure 6.2: Discretization of the space of admissible fiber volume fractions and fiber
orientations

step, we sample 𝑁s = 1 230 pairs of stiffnesses (C𝑠1, C𝑠2), as explained in
Section 4.3.1, assign each stiffness tuple to one of the generated SMC
microstructures in a cyclic fashion

(𝑐𝑠f , 𝜆𝑠1) ↦→ (𝑐(𝑠−1) mod 41+1
f , 𝜆

(𝑠−1) mod 41+1
1 ) (6.21)

and compute the associated effective stiffness C̄𝑠 by means of an FFT-
based computational micromechanics code, using the conjugate gradient
solver (Zeman et al., 2010; Brisard and Dormieux, 2010) and the stag-
gered grid discretization (Schneider et al., 2016).

We choose a DMN of 𝐾 = 8 layers as such a depth is typically nec-
essary to obtain accurate results, see Chapter 4 and 5. For parame-
ter identification, we randomly split the pre-computed training data{︀

(C𝑠1,C𝑠2, C̄𝑠, 𝑐𝑠f , 𝜆𝑠1)
}︀𝑁s

𝑠=1 into a training and validation set comprising
80% and 20% of the samples, respectively. The DMN is trained based on
the loss function

𝐽(𝑝⃗) =
𝑁s∑︁
𝑠=1

𝐽𝑠(𝑝⃗) + 𝐽p(𝑝⃗)→ min
𝑝⃗
, (6.22)

180



6.3 Identifying the DMN surrogate model

where the first part

𝐽𝑠(𝑝⃗) = 1
𝑁s

‖𝒟ℳ𝒩ℒ
𝒞Λ(C𝑠1,C𝑠2, 𝑝⃗(𝑐𝑠f , 𝜆𝑠1))− C̄𝑠‖1

‖C̄𝑠‖1
(6.23)

measures the proximity of the pre-computed effective stiffness C̄𝑠 to
the DMN’s effective stiffness C̄𝑠DMN = 𝒟ℳ𝒩ℒ

𝒞Λ(C𝑠1,C𝑠2, 𝑝⃗(𝑐𝑠f , 𝜆𝑠1)). The
penalty term

𝐽p(𝑝⃗) = 𝜆p

⎛⎝2𝐾−1∑︁
𝑖=1
⟨𝑣2𝑖⟩+ − 1

⎞⎠2

+ 𝜆p

⎛⎝2𝐾−1∑︁
𝑖=1
⟨𝑣2𝑖−1⟩+ − 1

⎞⎠2

(6.24)

with the penalty parameter 𝜆p = 1 000 serves as a regularizer and
enforces that the weights sum to unity and the DMN is consistent w.r.t.
the given volume fraction 𝑐f, i.e., the equations

2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 = 1,
2𝐾−1∑︁
𝑖=1

𝑤2𝑖
𝐾+1 = 𝑐f and

2𝐾−1∑︁
𝑖=1

𝑤2𝑖−1
𝐾+1 = 1− 𝑐f (6.25)

hold.

To assess the accuracy of the fit, we define the sample-wise mean training
𝛿train

mean and validation 𝛿valid
mean errors via

𝛿mean = 1
𝑁s

𝑁s∑︁
𝑠=1

‖𝒟ℳ𝒩ℒ
𝒞Λ(C𝑠1,C𝑠2, 𝑝⃗(𝑐𝑠f , 𝜆𝑠1))− C̄𝑠‖1

‖C̄𝑠‖1
, (6.26)

where 𝑁s denotes the number of elements in the training and validation
sets, respectively. To significantly reduce the number of training epochs
and to improve the results in the nonlinear regime, we employ an early-
stopping technique as proposed by Dey et al. (2022b). For this purpose,
we use the identified material parameters of the UPPH matrix and the
bundles summarized in Section 6.3.1 and simulate three unidirectional
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6 Estimating process-induced uncertainties in sheet molding compound composites

strain loadings in direction 𝑑 ∈ S𝑑,

𝜀̄ = 𝜀 𝑑⊗ 𝑑 for 𝑑 =∧ [cos(𝛼), sin(𝛼), 0] and 𝛼 ∈ {0°, 45°, 90°},
(6.27)

using mixed boundary conditions (Kabel et al., 2016) with a macrostrain
amplitude of 𝜀 = 4 %, applied in 40 equidistant load steps, for each
of the 41 generated SMC microstructures. For obtaining the full-field
reference solutions, we use an FFT-based computational micromechan-
ics (Moulinec and Suquet, 1994; 1998) code and an inexact Newton-
CG (Kabel et al., 2014) solver. We consider this generated nonlinear data
as the basis for the employed early-stopping technique. To quantify the
deviation, we compute the nonlinear mean and maximum validation
errors via

𝜂mean = max
𝑠∈{1,...,𝑁s}

1
𝑇

∫︁ 𝑇

0
𝜂𝑠(𝑡) d𝑡 (6.28)

and

𝜂max = max
𝑠∈{1,...,𝑁s}

max
𝑡∈[0,𝑇 ]

𝜂𝑠(𝑡) with 𝜂𝑠(𝑡) = ‖𝜎̄
DMN
𝑠 (𝑡)− 𝜎̄FFT

𝑠 (𝑡)‖1

max
𝜏∈[0,𝑇 ]

‖𝜎̄FFT
𝑠 (𝜏)‖1

(6.29)
and track them every five epochs. In Figure 6.3 the training progress is
shown.

The stepwise reduction of the loss observed in Figure 6.3a results from
the used learning rate modulation which reduces the learning rate by
a factor of two for every 100 epochs starting from an initial learning
rate of 𝛽ini = 1.5 · 10−2. A closer look at the elastic training 𝛿train

mean and
validation 𝛿valid

mean errors in Figure 6.3b shows that there is no significant
model overfitting w.r.t. the linear elastic training data. However, the
maximum validation error 𝜂valid

max takes its minimum of 4.32 % at 190
epochs and increases thereafter. The early-stopping approach stops
the training after another 300 epochs as the nonlinear errors have not
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6.3 Identifying the DMN surrogate model

improved for the subsequent 60 steps. The best model (at 190 epochs) is
then stored.
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Figure 6.3: Loss (a) and model performance (b) during training

To ensure that the interpolated DMN generalizes well for all fiber volume
fractions and fiber orientations (𝑐f, 𝜆1) ∈ [0.15, 0.35] × [0.5, 0.8], we
evaluate the DMN on an additional test set, i.e., microstructures the
model has not seen before. To be more precise, for each black point
in Figure 6.2, i.e., 104 microstructures in total, we generate an artificial
SMC microstructure, perform three virtual uniaxial extension tests each
(compare Equation (6.27)), and compute the corresponding nonlinear
mean and maximum test errors (6.28). The results are summarized
in Table 6.3. The nonlinear errors evaluated on the test set are only
slightly increased compared to the training set. The maximum nonlinear
test error as well as the nonlinear validation error are well below 5 %,
i.e., in the range of engineering requirements, for all considered fiber
volume fractions and fiber orientations. Further information on the
model validation can be found in Appendix C.
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6 Estimating process-induced uncertainties in sheet molding compound composites

𝛿train
mean 𝛿valid

mean 𝜂valid
mean 𝜂valid

max 𝜂test
mean 𝜂test

max

1.35 % 1.60 % 1.90 % 4.32 % 2.20 % 4.71 %

Table 6.3: Model performance after training

6.4 A virtual process chain for sheet molding
compound composites

After demonstrating that the interpolated DMN generalized well, we
use the identified model to quantify uncertainties induced by the man-
ufacturing process of sheet molding compound composites. For this,
we simulate the process chain of several SMC specimen, starting from
compression molding of plates up to mechanical simulations of speci-
men cut from those plates. For more details on the process chain, the
assumptions made, technical details such as microstructure generation,
finding necessary resolution and size of the RVEs, material parameters
and mapping, we refer to Meyer et al. (2023).

For simplicity, we restrict to the sample geometry B2, see Figure 6.4
and Trauth (2020); Meyer et al. (2023), and simulate the compression
molding of eight SMC plates using a direct bundle simulation approach
as proposed by Meyer (2021). For four of these plates, we chose an
overall fiber volume fraction of 22.5 % and the other four plates feature
an overall fiber volume fraction of 26 %. We chose this setup, because the
overall fiber volume fraction in a SMC prepreg is typically not constant
and varies spatially and temporally. These fluctuations often depend on
external factors which cannot be easily controlled. For simplicity, the
initial overall bundle orientation is chosen to be planar isotropic. After
compression molding, the fiber volume fraction and the fiber orientation
are computed via averaging and mapped onto 32 ABAQUS models
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6.4 A virtual process chain for sheet molding compound composites

of the tensile test specimens, four for each plate. Figure 6.4 shows
several realizations of sample geometry B2 generated in the described
way. Indeed, the mold filling simulation predicts highly fluctuating
fiber volume fractions and fiber orientations even for identical initial
properties.

Fiber volume fraction cf

20% 22% 24% 26% 28% 30% 32%

(a) Mapped fiber volume fraction

Fiber orientation λ1

0.5 0.52 0.54 0.56 0.58 0.6

(b) Mapped fiber orientation

Figure 6.4: Fiber volume fraction (a) and fiber orientation (b) fields for different realizations
obtained at identical specimen positions and with identical overall properties for the
compression molding simulation

For the structural simulations, a unidirectional elongation of 3 mm is
applied via the two reference points RP1 and RP2, which are coupled to
the specimen arms, see Figure 6.5. In every Gauss point, a micro-oriented
direct DMN is integrated implicitly to incorporate the fluctuating mi-
crostructure information into the simulation. For the strain measurement,
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6 Estimating process-induced uncertainties in sheet molding compound composites

we follow the experimental setup as described in Trauth (2020) and
record the strain via averaging over the shown gauge section with
dimensions 70 mm × 10 mm. The stress is computed by tracking the
reaction force at RP2 which is averaged over the cross section of the
specimen.

Axial strain ε̄11

0% 0.4% 0.8% 1.2% 1.6% 2% 2.4% 2.8%

RP1 RP2

Figure 6.5: Distribution of the strain 𝜀11 component as a result of the applied load in
conjunction with the gauge used for averaging the strain

In Figure 6.6, we see the comparison of experimental data, as reported
by Trauth (2020), with the simulation results. The experimental data
was obtained from compression molded SMC specimens of identical
geometry, extracted at identical positions and subjected to identical
loadings. In Figure 6.6a, the stress-strain curves of 15 tensile tests,
their mean and the 95 % confidence interval are illustrated. The stress-
strain curves of the 32 simulated tensile tests, their mean and the 95 %
confidence interval can be found in Figure 6.6b. In Figure 6.6c, the mean
values and 95 % confidence intervals of experiments and simulations are
shown. We observe that despite the simple test setup – only the initial
overall volume fraction was varied in two steps and the initial overall
bundle orientation was assumed to be isotropic – the simulations agree
excellently with the experimental results. The former holds true both for
the mean as well as the 95 % confidence interval.

To sum up, we have shown that by considering the compression molding
process and thus capturing its influence on part performance, the ex-
perimentally observed scatter in mechanical properties can be captured
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6.4 A virtual process chain for sheet molding compound composites

by simulative means. By accounting for the spatially varying fiber
volume fraction and fiber orientation in a component scale simulation,
the uncertainties in the mechanical behavior of SMC components can be
accurately predicted. For a more detailed breakdown of different factors
influencing uncertainty and a statistical evaluation, we refer to Meyer
et al. (2023).
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(a) Experiments
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(b) Simulations
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Figure 6.6: Comparison of experimental results with simulations
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6 Estimating process-induced uncertainties in sheet molding compound composites

6.5 Conclusion

In this chapter, we extended the direct DMN framework to problems
with micro-oriented phases. Furthermore, we proposed an interpolation
technique to account for a spatially varying fiber volume fraction and
fiber orientation in mechanical simulations of SMC components.

Building upon the previous chapter, we extended the fiber orientation
interpolation scheme by an additional fiber volume fraction interpo-
lation. This procedure gives rise to a single surrogate model which
allows for incorporating fluctuating microstructure characteristics into
a components scale simulation. We sampled the training data from
41 SMC microstructure realizations. By generating 104 additional mi-
crostructures the model had not seen during training, we ensured that
the interpolated micro-oriented direct DMN generalized well for all
admissible fiber volume fractions and fiber orientations.

To demonstrate the efficiency of the proposed approach, we simulated
the entire process chain of SMC specimens starting from multiple com-
pression molding simulations up to mechanical testings in a virtual
testing rig. The ensuing fiber volume fraction and fiber orientation fields
were mapped onto ABAQUS meshes of SMC specimens which were
subjected to a virtual tensile test. Comparing experimental data and
simulation results, we showed that process-induced uncertainties in the
mechanical properties of SMC components can be accurately predicted.
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Chapter 7

Fully coupled two-scale
simulations of thermomechanical
composites1

7.1 Introduction

We extend the framework of direct DMNs, which were introduced in
Chapter 4, to composites with full thermomechanical coupling, effec-
tively enabling thermomechanical two-scale simulations of industrial
problems. As point of departure, we recapitulate the results of Chatzige-
orgiou et al. (2016) in Section 7.2, who introduced a framework for the
first-order asymptotic homogenization of thermomechanical composites.
Subsequently, we extend direct DMNs to thermomechanical composites
in Section 7.3 by incorporating the coupling of microscopic mechanical
deformation onto the macroscopic temperature and vice versa into our
approach. For this purpose, we exploit the homogeneity of the absolute
temperature on the microscopic scale to arrive at an efficient solution
scheme for solving the balance of linear momentum of a direct DMN.
To accelerate a component-scale simulation of industrial complexity, we

1 This chapter is based on the publication “An FE-DMN method for the multiscale
analysis of thermomechanical composites” (Gajek et al., 2022). The introduction has
been shortened to avoid redundancy with Chapter 1. The notation has been harmonized.
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7 Fully coupled two-scale simulations of thermomechanical composites

discuss the efficient implementation of our approach as a user-material
subroutine (UMAT) only relying on the provided interfaces.

To demonstrate the capabilities of the proposed approach, we consider
a short fiber reinforced polyamide featuring a pronounced thermome-
chanical coupling. In Section 7.4, we elaborate on the material model
and the training and validation of the DMN surrogate model. We show
that the direct DMN is able to predict the effective stress, the effective
dissipation as well as the deformation-induced temperature change of
the composite with sufficient accuracy for all investigated loadings.

Later on in Section 7.5, we demonstrate the power of our approach
by conducting a fully coupled thermomechanical two-scale simulation
of an asymmetric notched specimen subjected to cyclic loading also
considering heat conduction and convection on the macroscopic scale.

7.2 First-order asymptotic homogenization of
thermomechanical composites

Chatzigeorgiou et al. (2016) introduced a framework for the (first-order)
asymptotic homogenization of thermomechanical composites at small
strains. More precisely, they considered quasi-static, non-isothermal
generalized standard materials and derived governing equations for the
microscopic and macroscopic scale.

In 𝑑 ∈ {2, 3} spatial dimensions, we consider a small-strain, quasi-static,
non-isothermal GSM to be the quadruple (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ, which
consists of a Banach vector space 𝒵 of internal variables, a Helmholtz
free energy density 𝜓 : Sym2(𝑑)×R>0×𝒵 → R, an extended-real-valued
dissipation potential 𝜑 : R>0 ×𝒵 → R ∪ {+∞} and an element 𝑧0 ∈ 𝒵
serving as initial condition for the dynamics. We refer to Section 2.5 for
a more thorough introduction to the non-isothermal GSM framework.
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7.2 First-order asymptotic homogenization of thermomechanical composites

We consider a macroscopic body Ω ⊆ V𝑑 with macroscopic point 𝑥̄ ∈ Ω.
To every macroscopic point 𝑥̄, we associate a (rectangular) two-phase
periodic microstructure 𝑌 ⊆ V𝑑.

The microscopic cell problem

The periodic microstructure 𝑌 comprises as phases the two non-
isothermal GSMs (𝒵1, 𝜓1, 𝜑1, 𝑧0,1) and (𝒵2, 𝜓2, 𝜑2, 𝑧0,2) with measurable
characteristic functions 𝜒1/2 : 𝑌 → {0, 1} whose associated sets are
mutually disjoint and cover all of 𝑌 , i.e., the conditions

𝜒1𝜒2 = 0 and 𝜒1 + 𝜒2 = 1 (7.1)

hold almost everywhere. Then, on the microscopic scale, the so-called
thermomechanical cell problem of first-order homogenization, i.e., the
(quasi-static) microscopic balance of linear momentum, reads

div𝑥

[︃ 2∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝜀

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖)

]︃
= 0, (7.2)

where div𝑥 and∇s
𝑥 refer to the divergence and the symmetrized gradient

operator w.r.t. the microscopic point 𝑥 ∈ 𝑌 , respectively. Furthermore,
𝜀̄ : Ω×[0, 𝑇 ]→ Sym2(𝑑) denotes the macrostrain, 𝑢 : Ω×𝑌 ×[0, 𝑇 ]→ V𝑑

symbolizes the periodic displacement fluctuation with anti-periodic
normal derivative and 𝑧1/2 : Ω× 𝑌 × [0, 𝑇 ]→ 𝒵1/2 stands for the fields
of internal variables.

In particular, provided the force term varies only slowly on the macro-
scopic scale, Chatzigeorgiou et al. (2016) deduced that the balance
of linear momentum on the microscopic scale, the thermomechani-
cal cell problem, only depends on the macroscopic temperature, i.e.,
temperature fluctuations on the microscopic scale constitute only a
lower-order contribution to the effective stress. In other words, the
absolute temperature is a macroscopic quantity and thus there is no
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7 Fully coupled two-scale simulations of thermomechanical composites

temperature fluctuation on the microscopic scale. Most importantly,
there is no need to solve for the temperature on the microscopic scale.
Thus, the macroscopic absolute temperature 𝜃 : Ω× [0, 𝑇 ]→ R>0 as well
as the macrostrain 𝜀̄ enter Equation (7.2) as inputs and constitute the
one-way coupling between the macroscopic and the microscopic scale.

The macroscopic balance of linear momentum and the macroscopic
heat equation

On the macroscopic scale, two governing equations emerge. First, the
quasi-static balance of linear momentum, governing the evolution of the
macrostrain 𝜀̄, reads

div𝑥̄

⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝜀

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖)

⟩
𝑌

+ 𝑏 = 0, (7.3)

where ⟨ ⟩𝑌 denotes the volume average over 𝑌

⟨ ⟩𝑌 = 1
|𝑌 |

∫︁
𝑌

d𝑉. (7.4)

Furthermore, 𝑏 : Ω × [0, 𝑇 ] → V𝑑 denotes the vector of volume forces
and div𝑥̄ designates the divergence operator w.r.t. the macroscopic point
𝑥̄ ∈ Ω. Secondly, the macroscopic heat equation reads

𝑐𝜀
˙̄𝜃 = ℎ̄− div𝑥̄(𝑞̄) + 𝑃 , (7.5)

which governs the evolution of the macroscopic absolute temperature
𝜃. Here, ℎ̄ : Ω × [0, 𝑇 ] → R denotes the macroscopic heat source and
𝑞̄ : Ω× [0, 𝑇 ]→ V𝑑 stands for the macroscopic heat flux2. The effective

2 Strictly speaking, to compute the effective heat flux 𝑞 requires solving the cell problem
of heat conduction. However, if we restrict to linear heat conduction and assume
temperature-independent microscopic thermal conductivities, it suffices to work with
the effective thermal conductivity instead, see Section 7.5.
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heat capacity at constant strain 𝑐𝜀 is given explicitly by

𝑐𝜀 = −𝜃
⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕2𝜓

𝜕𝜃2 (𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖)

⟩
𝑌

. (7.6)

To keep the notation reasonable, we introduced the thermomechanical
coupling term

𝑃 =𝜃
⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕2𝜓𝑖
𝜕𝜃𝜕𝜀

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖) : ( ˙̄𝜀 +∇s

𝑥 𝑢̇)
⟩
𝑌

+𝜃
⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕2𝜓𝑖
𝜕𝜃𝜕𝑧

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖) · 𝑧̇𝑖

⟩
𝑌

−
⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝑧

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖) · 𝑧̇𝑖

⟩
𝑌

(7.7)

as an additional source term of the macroscopic heat equation (7.5). The
former constitutes the back-coupling between the microscopic scale and
the evolution of the macroscopic temperature. Indeed, the coupling term
𝑃 may be decomposed further. The first two terms are linked to changes
in entropy, whereas the last summand is commonly referred to as the
(mechanical) dissipation

𝒟̄ = −
⟨ 2∑︁
𝑖=1

𝜒𝑖
𝜕𝜓𝑖
𝜕𝑧

(𝜀̄ +∇s
𝑥 𝑢, 𝜃,𝑧𝑖) · 𝑧̇𝑖

⟩
𝑌

. (7.8)

The dissipation measures the dissipated energy of the composite due to
the evolution of the internal variables, e.g., the dissipated energy due to
plastic flow, and is the primary cause for the self-heating of the material
due to irreversible processes.

Typically, in a concurrent two-scale setting, the macroscopic balance
of linear momentum (7.3) and the macroscopic heat equation (7.5) are
solved on the macroscopic scale while, in every Gauss point of the
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macroscopic model, the thermomechanical cell problem (7.2) is solved as
well. Here, the above-mentioned two-way thermomechanical coupling
prevails. On the one hand, the macrostrain 𝜀̄ and the macroscopic
absolute temperature 𝜃 influence the mechanical behavior on the mi-
croscopic scale. On the other hand, the evolution of the macroscopic
absolute temperature is driven by the coupling term 𝑃 , which comprises
deformation induced changes of entropy and dissipated energy on the
microscopic scale.

In this chapter, we consider speeding up such a thermomechanical
two-scale simulation by means of direct DMNs. In this context, a DMN
might be regarded as a surrogate for the underlying microstructure
for which the thermomechanical cell problem (7.2) can be solved ef-
ficiently. However, to use a DMN to speed up such a fully coupled
thermomechanical two-scale simulation, the aforementioned two-way
thermomechanical coupling needs to be taken into account.

7.3 Direct DMNs for thermomechanical
composites

7.3.1 Two-phase direct DMNs

We consider two-phase direct DMNs as introduced in Section 4.2, i.e.,
we consider a perfect, ordered, rooted binary tree of depth 𝐾, where
each node of the binary tree is given by a two-phase laminate ℬ𝑖𝑘 with
unknown direction of lamination 𝑛𝑖𝑘 and unknown volume fractions 𝑐𝑖𝑘,1
and 𝑐𝑖𝑘,2. We denote the depth of a node by the letter 𝑘 = 1, . . . ,𝐾 and
consistently index the horizontal position by the letter 𝑖 = 1, . . . , 2𝑘−1.
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The DMN’s free parameters are given by the directions of lamination,
which we collect in the form of a large vector

𝑛⃗ = [𝑛1
𝐾 , . . . ,𝑛

2𝐾−1

𝐾 ,𝑛1
𝐾−1, . . . ,𝑛

2𝐾−2

𝐾−1 , . . . ,𝑛
1
1] ∈

(︀
S𝑑
)︀2𝐾 −1

, (7.9)

following a reversed breadth-first ordering, and the volume fractions
of all laminates 𝑐𝑖𝑘,1 and 𝑐𝑖𝑘,2. For reasons of numerical stability, the
volume fractions are expressed in terms of the (input) weights 𝑤𝑖𝐾+1,
see Section 4.2 for an explanation. These weights are assigned to the
laminates at the bottom layer and are required to be non-negative and
sum to unity, i.e., the conditions

𝑤𝑖𝐾+1 ≥ 0 and
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 = 1 (7.10)

hold. We collect the input weights 𝑤𝑖𝐾+1 into the vector

𝑤⃗ = [𝑤1
𝐾+1, . . . , 𝑤

2𝐾

𝐾+1] ∈ R2𝐾

≥0. (7.11)

The network topology of a two-phase direct DMN of depth𝐾 is uniquely
determined by the vector 𝑛⃗, containing 2𝐾 −1 independent directions of
lamination, and the vector 𝑤⃗ of weights comprising 2𝐾 scalar parameters,
for which 2𝐾 − 1 parameters are independent.

The process of identifying these free parameters is called the offline
training. For isothermal problems DMNs are identified based on linear
elastic data alone. However, we wish to predict the effective stress
response of the composite for non-isothermal constituents. For this, we
assume that the linear elastic training still suffices. Thus, Section 7.3.2
briefly recapitulates the basic idea of training direct DMNs.

After model identification, during the online evaluation, the free param-
eters 𝑛⃗ and 𝑤⃗ are fixed. Then, the DMN acts as a high-fidelity surrogate
model for inelastic computations on the microscopic scale involving
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non-isothermal constituents. For this, we elaborate in Section 7.3.3
on how to incorporate the homogeneity of the absolute temperature
into the framework and how to consider the back-coupling from the
microscopic onto the macroscopic scale to treat multiscale problem with
thermomechanical coupling.

7.3.2 Offline training

We represented the training data by a sequence of triples of stiffnesses{︀(︀
C̄𝑠,C𝑠1,C𝑠2

)︀}︀𝑁s

𝑠=1 where 𝑠 enumerates the sample index and 𝑁s the
number of samples. For now, we treat the training data as given and
refer to Section 7.4.2 for more information on the sampling of the training
data.

The direct DMN is trained by solving the regression problem

𝐽(𝑛⃗, ⟨𝑣⃗⟩+) −→ min
𝑛⃗,𝑣⃗

, (7.12)

involving the loss function

𝐽 (𝑛⃗, 𝑤⃗) = 1
𝑁s

𝑞

⎯⎸⎸⎷ 𝑁s∑︁
𝑠=1

(︃⃦⃦
C̄𝑠 −𝒟ℳ𝒩ℒ

𝑌 (C𝑠1,C𝑠2, 𝑛⃗, 𝑤⃗)
⃦⃦
𝑝⃦⃦

C̄𝑠
⃦⃦
𝑝

)︃𝑞

+ 𝜆p

⎛⎝ 2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1 − 1

⎞⎠2

. (7.13)

We solve the regression problem (7.12) by means of accelerated stochastic
gradient descent using mini batches. More precisely, for every training
epoch 𝑗, the loss function (7.13) is evaluated for all stiffness samples
in a batch. Then, the gradients 𝜕𝐽/𝜕𝑛⃗, 𝜕𝐽/𝜕𝑣⃗ are computed by means
of automatic differentiation. Subsequently, the fitting parameters are
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updated by

𝑛⃗𝑗+1 = 𝑛⃗𝑗 − 𝛽𝑛⃗
𝜕𝐽

𝜕𝑛⃗
(𝑛⃗𝑗 , ⟨𝑣⃗𝑗⟩+) , 𝑣⃗𝑗+1 = 𝑣⃗𝑗 − 𝛽𝑣⃗

𝜕𝐽

𝜕𝑣⃗
(𝑛⃗𝑗 , ⟨𝑣⃗𝑗⟩+) (7.14)

and
𝑤⃗𝑗+1 = ⟨𝑣⃗𝑗+1⟩+. (7.15)

This procedure is repeated for all batches in the training set and for
a pre-defined number of epochs. To speed up the training, we use
the in Section 5.3.1 introduced procedure to compress the binary tree
dynamically. Upon convergence of the algorithm, the unknown fitting
parameters of the DMN, i.e., 𝑛⃗ and 𝑤⃗, are given and fixed.

7.3.3 Online evaluation

For fixed fitting parameters 𝑛⃗ and 𝑤⃗, the goal of the online evaluation
is to efficiently integrate a direct DMN implicitly at a single Gauss
point of a macroscopic FE simulation. Indeed, direct DMNs are de-
fined as a hierarchy of nested laminates. For this reason, they inherit
thermodynamic consistency and stress-strain monotonicity from their
phases, see Section 4.2 for a discussion. Thus, extending direct DMNs to
non-isothermal problems does not infer any challenges from the point
of view of thermodynamics. The governing equation, i.e., the DMN’s
balance of linear momentum, emerges naturally by incorporating the
homogeneity of the absolute temperature into the framework. Further-
more, considering the back-coupling from the microscopic onto the
macroscopic scale is straightforward as well. Both will be explained in
the following.

We consider a two-phase DMN of depth 𝐾 comprising two non-
isothermal GSMs 𝒢1 = (𝒵1, 𝜓1, 𝜑1, 𝑧0,1) and 𝒢2 = (𝒵2, 𝜓2, 𝜑2, 𝑧0,2)
as phases. We consider the former as a single laminate with a complex
kinematics, comprising 2𝐾 independent phases in total, see Section 4.2.3
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for a schematic. We index these phases by the letter 𝑖 = 1, . . . , 2𝐾

and assign to each phase the non-isothermal GSM 𝒢𝑖 which alternates
between 𝒢1 and 𝒢2, i.e.,

𝒢𝑖 =
{︃
𝒢1 = (𝒵1, 𝜓1, 𝜑1, 𝑧0,1), 𝑖 odd,
𝒢2 = (𝒵2, 𝜓2, 𝜑2, 𝑧0,2), 𝑖 even.

(7.16)

For each phase 𝑖 = 1, . . . , 2𝐾 , discretizing Biot’s equation (2.44) in
time with an implicit Euler method gives rise to the condensed free
energy potential Ψ𝑖 : Sym2(𝑑)× R>0 ×𝒵𝑖 → R, see Equation (2.47) in
Section 2.5, which only depends on the strain increment 𝜀𝑖 ∈ Sym2(𝑑)
and absolute temperature increment 𝜃𝑖 ∈ R>0 and the internal variables
𝑧𝑛𝑖 ∈ 𝒵𝑖 of the last converged time step. After condensation and for a
fixed temperature, the stress of phase 𝑖 is given by the potential relation

𝜎𝑖 = 𝜕Ψ𝑖

𝜕𝜀
(𝜀𝑖, 𝜃𝑖, 𝑧𝑛𝑖 ) . (7.17)

In Section 4.2.3, we have seen that the DMN’s kinematics admits the
representation

𝜀⃗ = ⃗̄𝜀 + 𝐷𝑢⃗, (7.18)

with the vector of macrostrains ⃗̄𝜀 = [𝜀̄, . . . , 𝜀̄] ∈ Sym2(𝑑)2𝐾

, the vector of
strains 𝜀⃗ = [𝜀1, . . . , 𝜀2𝐾 ] ∈ Sym2(𝑑)2𝐾

, the vector of displacement jumps
𝑢⃗ ∈ (V𝑑)2𝐾−1 and the symmetrized gradient operator 𝐷 : (V𝑑)2𝐾 −1 →
Sym2(𝑑)2𝐾

.

From Section 7.2 follows that the homogeneity of the absolute tempera-
ture on the microscopic scale implies that only the macroscopic absolute
temperature 𝜃 needs to be considered, i.e., 𝜃𝑖 ≡ 𝜃 holds for all phases
𝑖 = 1, . . . , 2𝐾 . Thus, the macroscopic absolute temperature 𝜃 and the
macrostrain 𝜀̄ act as inputs to the DMN. Both are provided by the macro-
scopic finite element simulation for every Gauss point and for every
increment of the global (Newton) solver. As outputs, the effective stress
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𝜎̄, the thermomechanical coupling term 𝑃 and algorithmic tangents,
i.e., the partial derivatives of the effective stress and thermomechanical
coupling term w.r.t. the effective strain and macroscopic temperature,
need to be returned.

We start with deriving the governing equation of a thermomechanically
coupled direct DMN. Let Ψ̄ : Sym2(𝑑)2𝐾× 𝒵 → R denote the averaged
condensed free energy of the DMN

Ψ̄(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) =
2𝐾∑︁
𝑖=1

𝑤𝑖𝐾+1Ψ𝑖(𝜀𝑖, 𝜃,𝑧𝑛𝑖 ) (7.19)

where 𝑧⃗ 𝑛 =
[︀
𝑧𝑛1 , . . . ,𝑧

𝑛
2𝐾

]︀
∈ 𝒵 = (𝒵1 ⊕𝒵2)⊕2𝐾−1

denotes the vector of
internal variables of the last time step. Critical points of the optimization
problem

Ψ̄(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛) −→ min
𝑢⃗

(7.20)

encode the DMN’s (microscopic) balance of linear momentum

𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛) = 0. (7.21)

Here, 𝜎⃗ = [𝜎1, . . . ,𝜎2𝐾 ] ∈ Sym2(𝑑)2𝐾

represents the vector of phase
stresses for which Relation (7.17) holds. Furthermore, the weight op-
erator 𝑊 : Sym2(𝑑)2𝐾 → Sym2(𝑑)2𝐾

associates the weights 𝑤⃗ to the
corresponding phase stresses 𝜎⃗. The former might be represented as a
diagonal matrix with the weights 𝑤⃗ on the diagonal. Indeed, 𝐷T𝑊 :
Sym2(𝑑)2𝐾 → (V𝑑)2𝐾 −1 may be regarded as a divergence-type operator,
such that the similarity of Relation (7.21) to the thermomechanical cell
problem in general form (7.2) is immediately revealed.

For solving the DMN’s balance of linear momentum (7.21) for the
unknown displacement jumps 𝑢⃗, we rely upon Newton’s method.
Let 𝑗 denote the 𝑗-th Newton increment. Then, for an initial guess
𝑢⃗0 ∈ (V𝑑)2𝐾 −1, the unknown displacement jump vector is iteratively
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updated,
𝑢⃗𝑗+1 = 𝑢⃗𝑗 + 𝛽𝑗△𝑢⃗𝑗 , (7.22)

for which the increment△𝑢⃗𝑗 ∈
(︀
V𝑑
)︀2𝐾−1 solves the linear system[︂

𝐷T𝑊
𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢𝑗 , 𝜃, 𝑧⃗

𝑛)𝐷
]︂
△𝑢⃗𝑗 = −𝐷T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢𝑗 , 𝜃, 𝑧⃗

𝑛).

(7.23)
To ensure convergence, a step size 𝛽𝑗 ∈ (0, 1] less than unity may arise
from backtracking with the backtracking factor 𝛾 ∈ (0, 1]. The Jacobian
𝜕𝜎⃗/𝜕𝜀⃗ may be represented by a block-diagonal matrix comprising the
(stress-strain related) algorithmic tangents of the phase materials 𝜕𝜎𝑖/𝜕𝜀,
i.e.,

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) = block-diag

(︂
𝜕𝜎1
𝜕𝜀

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝜎2𝐾

𝜕𝜀
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

)︂
(7.24)

holds. Upon convergence, the DMN’s effective stress 𝜎̄ is computed via
averaging the phase stresses

𝜎̄ = [Is, . . . , Is]T𝑊 𝜎⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛), (7.25)

where [Is, . . . , Is] ∈ Sym4(𝑑)2𝐾

stand for a vector of the identity operators
on Sym2(𝑑).

In Section 7.2, we learned that the evolution of the macroscopic tem-
perature 𝜃 is coupled to the microscopic scale by the thermomechanical
coupling term 𝑃 . For computing 𝑃 efficiently, we introduce the phase-
wise coupling term

𝑃𝑖(𝜀𝑖, 𝜃,𝑧𝑛𝑖 ) = 𝜃
𝜕2Ψ𝑖

𝜕𝜃𝜕𝜀
(𝜀𝑖, 𝜃,𝑧𝑛𝑖 ) : 𝜀𝑖 − 𝜀𝑛𝑖

△𝑡

+
[︂
𝜃
𝜕2Ψ𝑖

𝜕𝜃𝜕𝑧
(𝜀𝑖, 𝜃,𝑧𝑛𝑖 )− 𝜕Ψ𝑖

𝜕𝑧
(𝜀𝑖, 𝜃,𝑧𝑛𝑖 )

]︂
· 𝑧𝑖 − 𝑧𝑛𝑖
△𝑡

(7.26)
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for every phase 𝑖 = 1, . . . , 2𝐾 , individually. With the vector of coupling
terms 𝑃 = [𝑃1, . . . , 𝑃2𝐾 ] ∈ R2𝐾

, the vector of ones [1, . . . , 1] ∈ R2𝐾

and
the weight operator 𝑊̂ : R2𝐾 → R2𝐾

, which associates the weights 𝑤⃗ to
the corresponding values in 𝑃 , we compute 𝑃 by averaging, i.e.,

𝑃 = [1, . . . , 1]T𝑊̂𝑃 (⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛) (7.27)

holds.

To employ a direct DMN in a two-scale simulation, four algorithmic
tangents need to be computed and provided to the macroscopic solver.
We start with the algorithmic tangents related to the effective stress.
Derivation of the effective stress 𝜎̄ (7.25) w.r.t. the effective strain 𝜀̄

and the absolute temperature 𝜃 gives rise to the DMN’s (stress-related)
algorithmic tangents

C̄algo
𝜀 = 𝜕𝜎̄

𝜕𝜀̄
= [Is, . . . , Is]T𝑊

[︂
𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)

+ 𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷𝜕𝑢⃗

𝜕𝜀̄

]︂
(7.28)

and

𝐶̄
algo
𝜃 = 𝜕𝜎̄

𝜕𝜃
= [Is, . . . , Is]T𝑊

[︂
𝜕𝜎⃗

𝜕𝜃
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)

+ 𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷𝜕𝑢⃗

𝜕𝜃

]︂
. (7.29)

To get compact expressions, we introduced the vectors of algorithmic
tangents

𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) =

[︂
𝜕𝜎1
𝜕𝜀

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝜎2𝐾

𝜕𝜀
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

]︂
(7.30)
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and

𝜕𝜎⃗

𝜕𝜃
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) =

[︂
𝜕𝜎1
𝜕𝜃

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝜎2𝐾

𝜕𝜃
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

]︂
(7.31)

which arise by inserting 𝜕𝜎𝑖/𝜕𝜀 and 𝜕𝜎𝑖/𝜕𝜃 into column vectors. To
evaluate Expressions (7.28) and (7.29), the partial derivatives of the
displacement jump vector 𝑢⃗ with respect to the macrostrain 𝜀̄ and
the absolute temperature 𝜃 need to be computed first. To this end,
differentiating the balance of linear momentum (7.21) with respect to the
macrostrain 𝜀̄ and the absolute temperature 𝜃 yields the linear systems[︂

𝐷T𝑊
𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷

]︂
𝜕𝑢⃗

𝜕𝜀̄
= −𝐷T𝑊

𝜕𝜎⃗

𝜕𝜀̄
(⃗𝜀̄+𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛) (7.32)

and[︂
𝐷T𝑊

𝜕𝜎⃗

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷

]︂
𝜕𝑢⃗

𝜕𝜃
= −𝐷T𝑊

𝜕𝜎⃗

𝜕𝜃
(⃗𝜀̄+𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛) (7.33)

which need to be solved for 𝜕𝑢⃗/𝜕𝜀̄ and 𝜕𝑢⃗/𝜕𝜃. By comparing Equa-
tions (7.32) and (7.33) to (7.23), we observe that all three problems share
the same linear operator, i.e., only the right hand sides differ. Using a
direct solver, e.g., a Cholesky decomposition, the matrix decomposition
can be reused to minimize the computational overhead.

Derivation of the effective coupling term 𝑃 (7.27) w.r.t. the macrostrain
𝜀̄ and absolute temperature 𝜃 gives rise to the DMN’s (power-related)
algorithmic tangents

𝐾̄
algo
𝜀 = 𝜕𝑃

𝜕𝜀̄
= [1, . . . , 1]T𝑊̂

[︃
𝜕𝑃

𝜕𝜀̄
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)

+ 𝜕𝑃

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷𝜕𝑢⃗

𝜕𝜀̄

]︃
(7.34)
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and

𝐾̄
algo
𝜃

= 𝜕𝑃

𝜕𝜃
= [1, . . . , 1]T𝑊̂

[︃
𝜕𝑃

𝜕𝜃
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)

+ 𝜕𝑃

𝜕𝜀⃗
(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛)𝐷𝜕𝑢⃗

𝜕𝜃

]︃
. (7.35)

As before, 𝜕𝑃/𝜕𝜀⃗ denotes the block-diagonal matrix of phase-wise
algorithmic tangents

𝜕𝑃

𝜕𝜀⃗
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) = block-diag

(︂
𝜕𝑃1
𝜕𝜀

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝑃2𝐾

𝜕𝜀
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

)︂
.

(7.36)
Furthermore, for brevity, the vectors of the (power-related) algorithmic
tangents

𝜕𝑃

𝜕𝜀̄
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) =

[︂
𝜕𝑃1
𝜕𝜀

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝑃2𝐾

𝜕𝜀
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

]︂
(7.37)

and

𝜕𝑃

𝜕𝜃
(⃗𝜀, 𝜃, 𝑧⃗ 𝑛) =

[︂
𝜕𝑃1
𝜕𝜃

(𝜀1, 𝜃,𝑧
𝑛
1 ), . . . , 𝜕𝑃2𝐾

𝜕𝜃
(𝜀2𝐾 , 𝜃,𝑧𝑛2𝐾 )

]︂
(7.38)

were introduced. Indeed, to efficiently compute Relations (7.34) and
(7.35), the already computed partial derivatives 𝜕𝑢⃗/𝜕𝜀̄ and 𝜕𝑢⃗/𝜕𝜃 are
reused.

Later on in Section 7.4.5, we take a closer look at the effective dissipation
𝒟̄ to assess the self-heating of the DMN under cyclic and non-cyclic
loading. For this reason, we compute the phase-wise dissipation by

𝒟𝑖(𝜀𝑖, 𝜃,𝑧𝑛𝑖 ) = −𝜕Ψ𝑖

𝜕𝑧
(𝜀𝑖, 𝜃,𝑧𝑛𝑖 ) · 𝑧𝑖 − 𝑧𝑛𝑖

△𝑡 (7.39)
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with
𝒟⃗ = [𝒟1, . . . ,𝒟2𝐾 ] ∈ R2𝐾

. (7.40)

Then, the effective dissipation is computed by averaging

𝒟̄ = [1, . . . , 1]T𝑊̂ 𝒟⃗(⃗𝜀̄ + 𝐷𝑢⃗, 𝜃, 𝑧⃗ 𝑛). (7.41)

The pseudo-code summarizing the relevant steps of the algorithm can be
found in Algorithm 2. Please note that the effective stress 𝜎̄, the effective
thermomechanical coupling term 𝑃 , the effective dissipation 𝒟̄ and the
algorithmic tangents C̄algo

𝜀 , 𝐶̄
algo
𝜃 , 𝐾̄

algo
𝜀 and 𝐾̄algo

𝜃
are computed after the

convergence of Newton’s method for reasons of numerical efficiency.
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Algorithm 2 Pseudo-code for the online evaluation
Fixed parameters: tol, maxit, maxbacktrack, 𝛾
Input: 𝜀̄𝑛+1, 𝜃𝑛+1, 𝑧⃗ 𝑛, 𝑢⃗𝑛

Output: 𝜎̄𝑛+1, 𝑃𝑛+1, C̄algo
𝜀 , 𝐶̄

algo
𝜃 , 𝐾̄

algo
𝜀 , 𝐾̄algo

𝜃
, 𝑧⃗ 𝑛+1, 𝑢⃗𝑛+1

1: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛 ◁ Reuse old displacement jumps with 𝑢⃗ 0 ← 0.
2: res← RESIDUAL(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1, 𝑧⃗ 𝑛) ◁ Compute residual
3: for 𝑖 = 1 to maxit do
4:

[︁
𝐷T𝑊 𝜕𝜎⃗

𝜕𝜀⃗ 𝐷
]︁
△𝑢⃗𝑛+1 = −𝐷T𝑊 𝜎⃗ ◁ Solve linear system

5: res← BACKTRACKING(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1,△𝑢⃗𝑛+1, 𝑧⃗ 𝑛, res)
6: if res < tol then
7: break ◁ Break if residual is smaller than tolerance
8: end if
9: end for

10: Update state variables 𝑧⃗ 𝑛 to 𝑧⃗ 𝑛+1 and compute 𝜎̄𝑛+1, 𝑃𝑛+1, 𝒟̄𝑛+1,
C̄algo
𝜀 , 𝐶̄

algo
𝜃 , 𝐾̄

algo
𝜀 , 𝐾̄algo

𝜃

11:

12: function RESIDUAL(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1, 𝑧⃗ 𝑛)
13: 𝜀⃗𝑛+1 ← ⃗̄𝜀𝑛+1 + 𝐷𝑢⃗𝑛+1 ◁ Compute phase strains
14: for 𝑖 = 1 to 2𝐾 do
15: 𝜎𝑛+1

𝑖 ← 𝜕Ψ𝑖

𝜕𝜀

(︀
𝜀𝑛+1
𝑖 , 𝜃𝑛+1, 𝑧𝑛𝑖

)︀
◁ Evaluate material laws

16: end for
17: res← ‖𝐷T𝑊 𝜎⃗𝑛+1 ‖F

(2𝐾−1)‖ 𝜎̄ 𝑛+1 ‖F
with 𝜎̄𝑛+1 ←∑︀2𝐾

𝑖=1 𝑤
𝑖
𝐾+1𝜎𝑛+1

𝑖

18: return res
19: end function
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20: function BACKTRACKING(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1,△𝑢⃗𝑛+1, 𝑧⃗ 𝑛, resold)
21: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛+1 +△𝑢⃗𝑛+1 ◁ Update displacement jumps
22: res← RESIDUAL(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1, 𝑧⃗ 𝑛) ◁ Update residual
23: for 𝑖← 0 to maxbacktrack− 1 do
24: if res < resold then
25: break ◁ Break if residual decreases
26: end if
27: 𝑢⃗𝑛+1 ← 𝑢⃗𝑛+1 − 𝛾𝑖(1− 𝛾)△𝑢⃗𝑛+1 ◁ Backtracking
28: res← RESIDUAL(𝜀̄𝑛+1, 𝜃𝑛+1, 𝑢⃗𝑛+1, 𝑧⃗ 𝑛)
29: end for
30: return res
31: end function

7.4 Identifying the DMN surrogate model

7.4.1 Short fiber reinforced polyamide

In general, thermoplastic polymers feature a pronounced thermome-
chanical coupling. For this reason, we study a short fiber reinforced
polyamide 6.6 (PA66) as our benchmark composite. As reinforcement,
we consider E-glass fibers with a (uniform) fiber length of 𝐿f = 200 µm
and a fiber diameter of 𝐷f = 10 µm. We choose a fiber volume fraction
of 𝑐f = 16 vol%, which corresponds to a fiber mass fraction of approx-
imately 30 wt%. The fiber orientation is described by a transversely
isotropic fiber orientation tensor of second-order (Advani and Tucker,
1987) which reads

𝐴2 =

⎡⎢⎣ 0.8 0 0
0 0.1 0
0 0 0.1

⎤⎥⎦ 𝑒𝑖 ⊗ 𝑒𝑗 , (7.42)
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i.e., 80 % of the fibers point in the 𝑒1 direction, whereas 20 % of the fibers
are uniformly distributed in the 𝑒2-𝑒3 plane. Figure 7.1 illustrates an
example of such a microstructure comprising 577 fibers.

Figure 7.1: Artificial microstructure comprising 577 straight cylindrical fibers

E-glass fibers

We model the E-glass fibers as isotropic linear thermoelastic. We rely
upon the commonly used additive splitting of the (volume-specific)
Helmholtz free energy density

𝜓(𝜀, 𝜃) = 𝜓mech(𝜀, 𝜃) + 𝜓heat(𝜃) (7.43)

into two parts. The first part 𝜓mech(𝜀, 𝜃) represents the storage of mechan-
ical energy whereas the second part 𝜓heat(𝜃) represent the heat-storage
alone. We assume the heat capacity at constant strain to be independent
of the deformation 𝜀. Thus, the mechanical part of the Helmholtz free
energy 𝜓mech(𝜀, 𝜃) may at most be linear in the temperature and

𝑐𝜀(𝜃) = −𝜃𝜕
2𝜓heat

𝜕𝜃2 (𝜃) (7.44)
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holds. For a constant heat capacity at constant strain 𝑐𝜀(𝜃) = 𝑐𝜀,0, the
heat storage part of the Helmholtz free energy reads

𝜓heat(𝜃) = 𝑐𝜀,0

[︂
(𝜃 − 𝜃0)− 𝜃 ln

(︂
𝜃

𝜃0

)︂]︂
, (7.45)

where 𝜃0 stands for the reference temperature. The mechanical part of
the Helmholtz free energy is given by the following quadratic form

𝜓mech(𝜀, 𝜃) = 1
2𝜀 : C [𝜀]− 𝜀 : C[𝛼(𝜃 − 𝜃0)] (7.46)

such that the stress response of the material computes to

𝜎 = C [𝜀−𝛼(𝜃 − 𝜃0)] . (7.47)

Both the stiffness C and the coefficient of thermal expansion 𝛼 are
assumed to be isotropic, i.e., the following relations

C = 3𝐾P1 + 2𝐺P2 and 𝛼 = 𝛼0𝐼 (7.48)

hold with the projection operators P1 : Sym2(𝑑) → Sym2(𝑑) and
P2 : Sym2(𝑑) → Sym2(𝑑) on the spherical and deviatoric subspaces
of Sym2(𝑑), and 𝐼 : V𝑑 → V𝑑 denotes the identity on V𝑑. The bulk
modulus 𝐾 ∈ R>0 and the shear modulus 𝐺 ∈ R>0 may be expressed
in terms of the Young’s modulus 𝐸 ∈ R>0 and the Poisson’s ratio
𝜈 ∈ (−1, 0.5), i.e.,

𝐾 = 𝐸

3(1− 2𝜈) and 𝐺 = 𝐸

2(1 + 𝜈) . (7.49)

As the material is purely elastic, the dissipation potential vanishes
identically 𝜑(𝜃) ≡ 0 and 𝒵 = {0} holds. Thus, the thermomechanical
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coupling term

𝑃 (𝜀, 𝜃) = 𝜃
𝜕2𝜓

𝜕𝜃𝜕𝜀
(𝜀, 𝜃) : 𝜀̇

= −𝜃 𝜀̇ : C [𝛼]
(7.50)

is solely dependent on the strain rate 𝜀̇ due to a vanishing dissipation,
i.e., 𝒟 ≡ 0 holds. In fact, a non-vanishing strain rate causes self-
cooling under hydrostatic extension and self-heating under hydrostatic
compression. This effect is commonly referred to as Gough-Joule effect,
see, e.g., Section 96 in Truesdell and Noll (2004). The material parameters
for the E-glass fibers are taken from Tikarrouchine et al. (2019) and are
summarized in Table 7.1.

Young’s modulus 𝐸 = 72.0 GPa
Poisson’s ratio 𝜈 = 0.26

Heat capacity 𝑐𝜀,0 = 2.1 · 106 J/(m3K)
Thermal expansion 𝛼0 = 9 · 10−6 1/K
Thermal conductivity 𝜅0 = 0.93 W/(mK)

Table 7.1: Material parameters of the E-glass fibers (Tikarrouchine et al., 2019)

Polyamide 6.6 matrix

For modeling the material behavior of the PA66 matrix, we adapt the
model proposed by Krairi et al. (2019), which was specifically derived
for thermoplastic polymers under non-isothermal conditions. The model
couples linear viscoelasticity, viscoplasticity and thermal effects such as
thermal softening and dissipative self-heating. More precisely, the linear
viscoelastic part of the model is given by a generalized Maxwell model
comprising 𝑁M Maxwell elements, and the viscoplastic part is governed
by 𝐽2-viscoplasticity. We refer to Krairi et al. (2019) for all underlying
modeling assumptions and the experimental calibration of the model.
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7 Fully coupled two-scale simulations of thermomechanical composites

For the PA66 matrix, we prescribe the following heat-storage related free
Helmholtz energy density

𝜓heat(𝜃) = 𝑐𝜀,0

[︂
(𝜃 − 𝜃0)− 𝜃 ln

(︂
𝜃

𝜃0

)︂]︂
. (7.51)

Furthermore, the mechanical part of the Helmholtz free energy density
reads

𝜓mech(𝜀, 𝜃, 𝑧) = 1
2(𝜀− 𝜀vp) : C∞[𝜀− 𝜀vp]− (𝜀− 𝜀vp) : C∞[𝛼(𝜃 − 𝜃0)]

+ 1
2

𝑁M∑︁
𝑖=1

(𝜀− 𝜀vp − 𝜀v,𝑖) : C𝑖[𝜀− 𝜀vp − 𝜀v,𝑖]

−
𝑁M∑︁
𝑖=1

(𝜀− 𝜀vp − 𝜀v,𝑖) : C𝑖[𝛼(𝜃 − 𝜃0)]

+
∫︁ 𝜀vp

0
𝐻(𝜃, 𝜀vp) d𝜀vp.

(7.52)

For readability, we collected the state variables, i.e., the accumulated
viscoplastic strain 𝜀vp, the viscoplastic strain 𝜀vp and the viscoelastic
strains {𝜀v,𝑖}𝑁𝑖=1 into the state vector 𝑧 = [𝜀vp, 𝜀vp, 𝜀v,1, . . . , 𝜀v,𝑁 ] ∈ 𝒵 =
R≥0 ⊕Dev2(𝑑)⊕ Sym2(𝑑)𝑁M .

With the Helmholtz free energy density (7.52) at hand, the material’s
stress response computes to

𝜎 = C∞[𝜀− 𝜀vp−𝛼(𝜃− 𝜃0)] +
𝑁M∑︁
𝑖=1

C𝑖[𝜀− 𝜀vp− 𝜀v,𝑖−𝛼(𝜃− 𝜃0)]. (7.53)

For a fixed viscoplastic strain 𝜀vp, we assume the material to be linear
and isotropic, both in its long-term elastic and its purely viscoelastic
response and to feature an isotropic thermal expansion. More precisely,
the stiffness governing infinitely slow processes C∞, the stiffness C𝑖
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7.4 Identifying the DMN surrogate model

associated to the 𝑖-th dashpot and the coefficient of thermal expansion 𝛼

admit the representations

C∞ = 3𝐾∞P1 + 2𝐺∞P2, C𝑖 = 3𝐾𝑖P1 + 2𝐺𝑖P2 and 𝛼 = 𝛼0𝐼.

(7.54)
The bulk 𝐾∞, 𝐾𝑖 ∈ R>0 and shear moduli 𝐺∞, 𝐺𝑖 ∈ R>0 are expressed
in terms of the Young’s moduli 𝐸∞, 𝐸𝑖 ∈ R>0 and the Poisson’s ratio
𝜈 ∈ (−1, 0.5), i.e., the following relations

𝐾∞ = 𝐸∞
3(1− 2𝜈) , 𝐾𝑖 = 𝐸𝑖

3(1− 2𝜈) ,

𝐺∞ = 𝐸∞
2(1 + 𝜈) and 𝐺𝑖 = 𝐸𝑖

2(1 + 𝜈)

(7.55)

hold. Indeed, for the model at hand, the bulk and shear moduli 𝐾𝑖 and
𝐺𝑖 are coupled due to an assumed constant Poisson’s ratio 𝜈, see Krairi
et al. (2019). Such an assumption is not unusual if only experimental
data from uniaxial experiments are available.

Concerning the thermo-viscoelastic behavior, we assume the PA66 to be
thermorheologically simple, i.e., the viscosity tensor V𝑖 associated to the
𝑖-th dashpot of the generalized Maxwell model should have the form

V𝑖 = 𝑎𝜃(𝜃) (3𝐾𝑖 𝜏K,𝑖 P1 + 2𝐺𝑖𝜏G,𝑖 P2) , (7.56)

where 𝑎𝜃 : R>0 → R>0 denotes a temperature-dependent shift function.
For the 𝑖-th dashpot, the volumetric and deviatoric relaxation times

𝜏K,𝑖 = 𝜏𝑖𝐸𝑖
𝐾𝑖

and 𝜏G,𝑖 = 𝜏𝑖𝐸𝑖
𝐺𝑖

(7.57)

are expressed in terms of the Young’s modulus 𝐸𝑖, the bulk and shear
moduli 𝐾𝑖 and 𝐺𝑖 and the relaxation time 𝜏𝑖. The fluidity tensor F𝑖 is
given by the pseudoinverse of the viscosity tensor F𝑖 = V†

𝑖 , giving rise
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to the evolution equation for the viscous strain

𝜀̇v,𝑖 = F𝑖 [𝜎v,𝑖] , (7.58)

where 𝜎v,𝑖 denotes the (viscous) partial stress

𝜎v,𝑖 = C𝑖[𝜀− 𝜀vp − 𝜀v,𝑖 −𝛼(𝜃 − 𝜃0)] (7.59)

of the 𝑖-th dashpot. As we consider temperatures above the glass
transition, the temperature-dependent shift function is assumed to obey
the Williams-Landel-Ferry (WLF) (Williams and Ferry, 1955) equation

log10(𝑎𝜃(𝜃)) = − 𝐶1(𝜃 − 𝜃ref)
𝐶2 + (𝜃 − 𝜃ref)

. (7.60)

To capture thermal softening of the material, the yield stress

𝜎Y : R>0 → R>0, 𝜃 ↦→ Γ(𝜃, 𝛽1)𝜎Y,0, (7.61)

and the power-law hardening

𝐻 : R>0 × R≥0 → R≥0, (𝜃, 𝜀vp) ↦→ Γ(𝜃, 𝛽1) 𝑘 𝜀𝑛vp, (7.62)

feature an explicit temperature-dependence. The temperature-degradation
function

Γ : R>0 × R≥0 → R>0, (𝜃, 𝛽) ↦→ 𝑒−𝛽(𝜃−𝜃ref), (7.63)

takes the temperature and the material parameter 𝛽1 ∈ R≥0 as input
and degrades both the yield stress and the isotropic hardening w.r.t.
the temperature. As for classical 𝐽2-viscoplasticity, the evolution of the
plastic strain

𝜀̇vp =
√︂

3
2 𝜀̇vp

𝜎′

‖𝜎′‖ (7.64)
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is driven by the deviatoric part of the stress tensor 𝜎′. The accumulated
viscoplastic strain rate 𝜀̇vp is given by the following evolution equation

𝜀̇vp = 𝜎Y(𝜃)
𝜇(𝜃)

⟨√︁ 3
2‖𝜎′‖ − 𝜎Y(𝜃)−𝐻(𝜃, 𝜀vp)

𝜎Y(𝜃)

⟩𝑚
+

, (7.65)

see Krairi et al. (2019), where the reference viscosity

𝜇 : R>0 → R>0, 𝜃 ↦→ Γ(𝜃, 𝛽2)𝜇0, (7.66)

involves a temperature-dependence as well.

In addition to the Helmholtz free energy, the material’s (extended-
valued) dissipation potential takes the following form

𝜑(𝜃, 𝑧̇) =
{︃

𝜎Y(𝜃) 𝜀̇vp +
∑︀𝑁M
𝑖=1 𝜎v,𝑖 : 𝜀̇v,𝑖, 𝜀̇vp =

√︁
2
3‖𝜀̇vp‖,

+∞, otherwise.
(7.67)

For the material at hand, the thermomechanical coupling term 𝑃 com-
putes to

𝑃 (𝜀, 𝜃, 𝑧) = 𝜃
𝜕2𝜓

𝜕𝜃𝜕𝜀
(𝜀, 𝜃, 𝑧) : 𝜀̇ + 𝜃

𝜕2𝜓

𝜕𝜃𝜕𝑧
(𝜀, 𝜃, 𝑧) · 𝑧̇ − 𝜕𝜓

𝜕𝑧
(𝜀, 𝜃, 𝑧) · 𝑧̇

= −𝜃 (𝜀̇− 𝜀̇vp) : C∞ [𝛼]− 𝜃
𝑁M∑︁
𝑖=1

(𝜀̇− 𝜀̇vp − 𝜀̇v,𝑖) : C𝑖 [𝛼]

+ 𝜃
𝜕𝐻

𝜕𝜃
(𝜃, 𝜀vp) 𝜀̇vp + 𝜎Y(𝜃) 𝜀̇vp +

𝑁M∑︁
𝑖=1

𝜎v,𝑖 : 𝜀̇v,𝑖,

(7.68)

which is composed of three independent parts. The first two terms
are responsible for the Joule-Gough effect. The third term is related to
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thermal softening and the last two terms, i.e., the dissipation

𝒟(𝜀, 𝜃, 𝑧) = 𝜎Y(𝜃) 𝜀̇vp +
𝑁M∑︁
𝑖=1

𝜎v,𝑖 : 𝜀̇v,𝑖, (7.69)

comprises the dissipated energy due to viscoplastic and viscoelastic flow.
The latter is responsible for self-heating of the material due to viscoelastic
or viscoplastic deformations. The full set of material parameters for
the PA66, involving 𝑁M = 12 Maxwell elements, are summarized in
Table 7.2.
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Young’s modulus 𝐸∞ = 1.5 GPa
Poisson’s ratio 𝜈 = 0.42

Viscoelastic parameters 𝐸1 = 265 MPa log10(𝜏1/s) =−4.22
𝐸2 = 262 MPa log10(𝜏2/s) =−3.42
𝐸3 = 248 MPa log10(𝜏3/s) =−2.63
𝐸4 = 231 MPa log10(𝜏4/s) =−1.84
𝐸5 = 211 MPa log10(𝜏5/s) =−1.05
𝐸6 = 190 MPa log10(𝜏6/s) =−0.26
𝐸7 = 170 MPa log10(𝜏7/s) = 0.53
𝐸8 = 92 MPa log10(𝜏8/s) = 1.32
𝐸9 = 78 MPa log10(𝜏9/s) = 2.12
𝐸10 = 65 MPa log10(𝜏10/s) = 2.91
𝐸11 = 54 MPa log10(𝜏11/s) = 3.70
𝐸12 = 48 MPa log10(𝜏12/s) = 4.49

WLF parameters 𝐶1 = 26.21
𝐶2 = 446.31 K

Isotropic hardening 𝜎Y,0 = 15.5 MPa
𝑘 = 103 MPa
𝑛 = 0.32

Viscoplastic parameters 𝜇0 = 74 MPa s
𝑚 = 2

Thermal softening 𝛽1 = 0.011 1/K
𝛽2 = 0.07 1/K
𝜃ref = 298.15 K

Heat capacity 𝑐𝜀,0 = 1.9 · 106 J/(m3K)
Thermal expansion 𝛼0 = 70 · 10−6 1/K
Thermal conductivity 𝜅0 = 0.27 W/(mK)

Table 7.2: Material parameters of the PA66 (Krairi et al., 2019)
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7.4.2 Material sampling

We start with the sampling of 𝑁s = 1 000 tuples of input stiffnesses
{(C𝑠1,C𝑠2)}𝑁s

𝑠=1 in the way as proposed in Section 5.4.4. We turn our
attention to the computation of the associated effective stiffnesses. For
this purpose, a representative volume element (RVE) with a suitable
resolution and size needs to be generated first. To this end, we take a
closer look at the sampled input stiffnesses. More precisely, we consider
the distribution of the material contrast 𝜁 which is defined, for the sample
𝑠, as

𝜁𝑠 = max
(︃
𝐶𝑠1,+
𝐶𝑠2,−

,
𝐶𝑠2,+
𝐶𝑠1,−

)︃
. (7.70)

Here, 𝐶𝑠1/2,+ and 𝐶𝑠1/2,− denote the largest and smallest eigenvalues
of stiffnesses C𝑠1 and C𝑠2, respectively. Figure 7.2a illustrates the sorted
material contrast vs. the 1 000 samples.
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(a) Sorted material contrast vs. samples
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(b) Distribution of material contrast

Figure 7.2: Distribution of the material contrast in the sample set

We observe that the material contrast starts at around two and goes
up to around 23 000. To get a better understanding of how the material
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contrast is distributed on the sample set, Figure 7.2b shows the respective
histogram with 50 evenly log-spaced bins. We observe that the median of
the distribution is well below a material contrast of 100 and that only 3 %
of the samples exceed a material contrast of 1 000. With these findings at
hand, we consider finding a suitable resolution and size of the volume
element.

7.4.3 Necessary resolution and size of the RVE

Finding a suitable resolution and RVE size is necessary to obtain accurate
effective properties. However, performing a resolution and RVE size
study for any tuple of input stiffnesses (C𝑠1,C𝑠2) is computationally
expensive. The former is especially relevant for samples with a high
material contrast, i.e., greater than 1 000, which only occur with a small
frequency in the sample set. For this reason, we conduct a resolution and
RVE size study for selected samples alone. To be more precise, we choose
samples from the sampling set {(C𝑠1,C𝑠2)}𝑁s

𝑠=1 corresponding to the 70th,
80th, 90th and 95th percentile i.e., samples with a material contrast of
𝜁 = 160, 𝜁 = 274, 𝜁 = 470 and 𝜁 = 764, respectively, see Figure 7.2a for
an illustration and color coding.

For a start, we consider generated cubic microstructures with a variable
resolution and with a fixed edge length of 𝐿 = 384 µm, i.e., roughly twice
the fiber length of 𝐿f = 200 µm. We vary the resolution from 3.3 to 13.3
voxels per fiber diameter in equidistant steps. The former corresponds
to volume element discretizations with 1283 to 5123 voxels. We choose
a resolution of 20 voxels per fiber diameter, i.e., discretized by 7683

voxels, as reference. For generating the volume elements, we rely upon
the sequential addition and migration (SAM) (Schneider, 2017) method,
using the exact closure approximation (Montgomery-Smith et al., 2011).
The effective stiffnesses are computed with the help of an FFT-based
computational micromechanics code (Moulinec and Suquet, 1994; 1998)
using the conjugate gradient solver (Zeman et al., 2010; Brisard and
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7 Fully coupled two-scale simulations of thermomechanical composites

Dormieux, 2010) and the staggered grid discretization (Schneider et al.,
2016).

Figure 7.3a shows the relative error of the effective stiffness computed
by the Frobenius norm of the corresponding Voigt matrices. For the
crudest resolution of 3.33 voxels per fiber diameter, the relative error
exceeds 10 %. Increasing the resolution decreases the relative error for
the four considered material contrasts. At a resolution of ten voxels per
fiber diameter, the relative error of the sample corresponding to the 95th
percentile falls below 3 %. For the samples corresponding to the 90th,
80th/70th percentile, the relative error is below 2 % and 1 %, respectively.
As material contrasts of 𝜁 = 764 and above only occur with frequency of
less than 5 %, we consider the resolution of 10 voxels per fiber diameter
as sufficient. We fix this resolution and focus on finding a suitable size
of the RVE.
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Figure 7.3: Study to determine necessary resolution and size of the RVE. Shown is the
relative error of the computed effective stiffness vs. the resolution and volume element
size.
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We investigate volume elements with edge length 𝐿 ranging from 0.96
up to 3.84 fiber lengths. The former corresponds to volume element
discretizations with 1923 up to 7683 voxels. To obtain the reference,
we generate a volume element with edge length of 5.76 fiber lengths
and discretized by 1 1523 voxels. As before, we consider the relative
error in the effective stiffness as error measure. For all considered edge
lengths, the relative error is well below 1 %, see Figure 7.3b. Indeed,
even the smallest volume element, i.e., an edge length smaller than the
fiber length, the relative error is below 0.5 %. Increasing the volume
element edge length from 0.96 to 3.84 further decreased the error.

We consider a volume element length of 1.92 fiber lengths, i.e., a edge
lengths of 𝐿 = 384 µm, as sufficient to keep the computational costs for
the sampling of the training data reasonable. With the optimal resolution
and RVE size at hand, i.e., a resolution of 10 voxels per fiber diameter
and a volume element discretization with 3843 voxels, we compute the
effective stiffnesses of all generated 𝑁s = 1 000 stiffness samples and
turn our attention to the training of the DMN.

7.4.4 Offline training

The offline training is implemented in PyTorch (Paszke et al., 2017), see
Chapter 4 for more details. From Chapter 4 and 5, we know that at
least eight layers are necessary to achieve a sufficient approximation
quality for inelastic computations. For this reason, we restrict to a two-
phase DMN with 𝐾 = 8 layers. We randomly split the training data{︀(︀

C̄𝑠,C𝑠1,C𝑠2
)︀}︀𝑁s

𝑠=1 into a training and a validation set, comprising 90 %
and 10 % samples, respectively. The DMN is trained with mini batches
with a batch size of 𝑁b = 32 samples, which are drawn randomly from
the training set. Batches with less than 32 samples are discarded. Prior
to the offline training, we sample the initial directions of lamination 𝑛⃗0

from a uniform distribution on the unit sphere and the initial weights
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7 Fully coupled two-scale simulations of thermomechanical composites

𝑣⃗0 are sampled from a uniform distribution on [0, 1] and subsequently
rescaled to sum to unity.

As per Chapter 5, we rely on the AMSGrad method (Kingma and Ba,
2015; Reddi et al., 2018). To aid finding a suitable minimizer for 𝐽 (7.13),
we employ the warm restart technique as suggested by Loshchilov and
Hutter (2017). The warm restarts are realized by a harmonic learning rate
modulation (5.52) of the learning rates 𝛽𝑛⃗ and 𝛽𝑣⃗ in combination with
a geometric decay to enforce convergence. We determine appropriate
learning rates 𝛽𝑛⃗ and 𝛽𝑣⃗ by a learning rate sweep as proposed by Smith
and Topin (2018). The former yields almost identical maximum learning
rates, i.e., 𝛽𝑛⃗,max = 𝛽𝑣⃗,max = 1.5 · 10−2. The minimum learning rates
are set to 𝛽𝑛⃗,min = 𝛽𝑣⃗,min = 1.5 · 10−3. We choose 𝑀 = 50 as well as
𝛾 = 0.999 for the learning rate modulation (5.52) and set 𝑝 = 1, 𝑞 = 10
and 𝜆p = 103 for the loss function (7.13). We measure the accuracy of
the fit by the mean error 𝛿mean and the maximum error 𝛿max as defined
in Equations (4.68).
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Figure 7.4: Loss (a) and mean training and validation errors (b) for the 3000 training
epochs
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In Figure 7.4, the training progress in terms of the loss 𝐽 and the mean
error 𝛿mean is illustrated. Overall, the effect of the learning rate mod-
ulation becomes apparent. The loss as well as the mean training and
validation errors fluctuate heavily, especially for the first 500 epochs.
The fluctuation decreases due to the learning rate decay such that in
the last 500 epochs, convergence is ensured. During the training, no
significant model over-fitting can be observed as the validation error
does not increase noticeably during training.

7.4.5 Online validation

We start with validating the identified DMN surrogate model for the
inelastic regime. To this end, we compare the DMN’s predicted effective
stress 𝜎̄, the associated effective dissipation 𝒟̄ as well as the change
of the absolute temperature △𝜃 = 𝜃 − 𝜃0 to a high-fidelity full-field
solution on the microscopic scale. To compute the reference solution,
we use the implicit staggered solution scheme of Wicht et al. (2020b), an
inexact Newton-CG (Kabel et al., 2014) solver and the discretization by
trigonometric polynomials as introduced by Moulinec and Suquet (1994;
1998).

First, to obtain accurate inelastic results, a suitable resolution and size
of the RVE needs to be determined first. In Section 7.4.3, we learned
that the RVE size has a minor influence on the effective elastic response
of the composite. For this reason, we fix the volume element’s edge
length of 𝐿 = 384 µm and only vary the RVE’s resolutions from 5 to 10
voxels per fiber diameter in equidistant steps. The former corresponds to
volume element discretizations with 1923 to 3843 voxels, respectively. As
loading, we consider a uniaxial extension in the principal fiber direction

𝜀̄ = 𝜀 𝑒1⊗ 𝑒1 (7.71)
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and use mixed boundary conditions (Kabel et al., 2016), i.e., stress free
loading perpendicular to the loading direction. The strain loading is
applied in 40 equidistant load steps with a strain rate of ˙̄𝜀 = 5 · 10−4 1/s.
The reference temperature is set to 𝜃0 = 293.15 K. For simplicity, we
assume adiabatic conditions as we consider a single macroscopic point
without any additional macroscopic heat sources.

In Figure 7.5, the computed effective stress 𝜎̄, the change of the absolute
temperature △𝜃 and the effective dissipation 𝒟̄ are shown for all four
considered resolutions. For a macrostrain of 𝜀 = 1.0 % and below, the
Joule-Gough effect, i.e., an almost linear temperature decrease due to
hydrostatic extension, becomes apparent. This regime is captured well,
even for the coarsest resolution. At around 𝜀 = 1.0 % macrostrain, the
matrix starts to deform plastically. Due to an increasing dissipation,
self-heating of the composite occurs and the four solutions start to
deviate noticeably. Thus, to accurately capture self-heating effects, a
resolution of at least 8.33 fibers per fiber diameter is necessary. Such
a resolution suffices to accurately compute the effective stress and the
effective dissipation as well. For this reason, we consider a resolution of
8.33 voxels per fiber diameter, i.e., a volume element discretization with
3203 voxels, as sufficient for the inelastic computations.

With the identified resolution at hand, we turn back to the validation
of the DMN surrogate model. For this purpose, we implemented the
procedure introduced in Section 7.3.3 as an implicit user-material subrou-
tine. A computationally efficient implementation of the UMAT is critical.
For this reason, we use the binary tree compression as introduced in
Section 5.3.2 and exploit the sparsity pattern of the gradient operator 𝐷

and the Jacobians 𝜕𝜎⃗/𝜕𝜀⃗ and 𝜕𝑃/𝜕𝜀⃗. For this reason, we rely upon the
Eigen3 library (Guennebaud et al., 2010) for all linear algebra operations.
We set the tolerance for the convergence criterion (5.55) to tol = 10−12

and solve the linear system with the help of a sparse Cholesky decompo-
sition. The former allows for reusing the decomposition for computing
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Figure 7.5: Effective stress, temperature change and effective dissipation for the four
considered resolutions and a uniaxial extension in the 𝑒1-direction with a strain rate of
˙̄𝜀 = 5 · 10−4 1/s

Strain-controlled monotonic and non-monotonic virtual
experiments

We first consider strain-controlled virtual experiments. Using the mate-
rial parameters summarized in Section 7.4.1, we investigate six mono-
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tonic uniaxial strain loadings

𝜀̄ = 𝜀

2 (𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) (7.72)

with

(𝑖, 𝑗) ∈ ℐ1 = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} . (7.73)

For every uniaxial strain loading direction in the index set ℐ1, a mono-
tonic strain loading amplitude of 𝜀 = 4.0 % is applied in 40 equidistant
load steps. To capture the rate dependence of the polyamide matrix, we
investigate four individual strain rates which are logarithmically spaced
from ˙̄𝜀 = 5 · 10−4 1/s to ˙̄𝜀 = 5 · 10−1 1/s.

To evaluate the approximation errors of the direct DMN in a quantitative
way, we introduce the following error measures. For a load in direction
(𝑖, 𝑗), we define the relative error in the effective stress component 𝜎̄𝑖𝑗 ,
the change in absolute temperature△𝜃 and the effective dissipation 𝒟̄
as

𝜂𝜎̄𝑖𝑗(𝑡) =
⃒⃒
𝜎̄ DMN
𝑖𝑗 (𝑡)− 𝜎̄ FFT

𝑖𝑗 (𝑡)
⃒⃒

max
𝜏∈𝒯

⃒⃒
𝜎̄ FFT
𝑖𝑗 (𝜏)

⃒⃒ , 𝜂△𝜃
𝑖𝑗 (𝑡) =

⃒⃒
△𝜃 DMN(𝑡)−△𝜃 FFT(𝑡)

⃒⃒
max
𝜏∈𝒯

⃒⃒
△𝜃 FFT(𝜏)

⃒⃒ ,

𝜂𝒟̄
𝑖𝑗(𝑡) =

⃒⃒
𝒟̄ DMN(𝑡)− 𝒟̄ FFT(𝑡)

⃒⃒
max
𝜏∈𝒯

⃒⃒
𝒟̄ FFT(𝜏)

⃒⃒ ,

(7.74)
where 𝒯 = [0, 𝑇 ] denotes the considered time interval of the simulation.
Furthermore, the mean and the maximum errors are defined by

𝜂mean = max
𝑖,𝑗∈{1,2,3}

1
𝑇

∫︁ 𝑇

0
𝜂𝑖𝑗 (𝑡) d𝑡 and 𝜂max = max

𝑖,𝑗∈{1,2,3}
max
𝑡∈𝒯

𝜂𝑖𝑗 (𝑡).

(7.75)

In Figure 7.6, the results for the monotonic loading in the principal fiber
direction, i.e., (𝑖, 𝑗) ≡ (1, 1), are shown. We observe that, up to the
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7.4 Identifying the DMN surrogate model

maximum load of 𝜀 = 4.0 %, the effective stress predicted by the DMN
and the full-field solution are almost indistinguishable. The relative
stress error for all four considered strain rates is well below 2.0 %. The
same holds for the temperature change△𝜃 and the effective dissipation
𝒟̄ for a strain loadings of up to 2.0 %.

FFT DMN ˙̄ε = 5 · 10−4 1/s ˙̄ε = 5 · 10−3 1/s ˙̄ε = 5 · 10−2 1/s ˙̄ε = 5 · 10−1 1/s
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Figure 7.6: Strain-controlled monotonic loading: Uniaxial extension in principal fiber
direction

Only from 2.0 % macroscopic strain and above, deviations in the effective
dissipation, and, thus, also the temperature change, become noticeable.
The former is a result of the power-law hardening of the polyamide
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matrix. Indeed, due to the power-law hardening, local clusters of
significant plastic deformation form in the microstructure.

Figure 7.7 visualizes this effect by showing the evolution of the accumu-
lated viscoplastic strain 𝜀vp, for the strain rate ˙̄𝜀 = 5 · 10−4 1/s, on a slice
in the 𝑒1-𝑒2-plane of the 3D microstructure.

Accumulated viscoplastic strain εvp

0% 5% 10% 15% 20% 25% 30%

(a) 𝜀 = 1.0 % (b) 𝜀 = 2.0 %

(c) 𝜀 = 3.0 % (d) 𝜀 = 4.0 %

Figure 7.7: Accumulated viscoplastic strain 𝜀vp for a 4.0 % uniaxial extension in principal
fiber direction with a strain rate of ˙̄𝜀 = 5 · 10−4 1/s
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Figure 7.7 illustrates that for the chosen loading, clusters with more
than 30 % accumulated viscoplastic strain form in the vicinity of fiber
ends. This strong plastification leads to a pronounced energy dissipation,
which is slightly underestimated by the DMN, see Figure 7.6. For this
reason, the DMN underestimates the self-heating of the composite as it
does not fully capture such localization phenomena.

To account for more complex loading conditions, i.e., load reversal
or biaxial loadings, we investigate six independent non-monotonic
loadings and six independent biaxial loadings in Appendix D.1 and
D.2. The relative errors in the effective stress, the temperature change
and the effective dissipation for all four considered strain rates and all
considered load cases are summarized in Table 7.3.

𝜂𝜎̄mean / 𝜂𝜎̄max 𝜂△𝜃
mean / 𝜂△𝜃

max 𝜂𝒟̄
mean / 𝜂𝒟̄

max

6 monotonic loadings 1.35 % / 3.17 % 1.11 % / 4.23 % 2.33 % / 4.57 %
6 non-monotonic loadings 0.77 % / 1.42 % 0.56 % / 1.23 % 0.98 % / 4.68 %
6 biaxial loadings 1.00 % / 2.02 % 1.10 % / 1.82 % 1.24 % / 3.63 %

Table 7.3: Mean and maximum relative errors for the investigated strain-controlled uniaxial
and biaxial virtual experiments

Stress-controlled cyclic loading

In the previous section, we investigated the identified DMN surrogate
model for monotonic and non-monotonic, uniaxial and biaxial loadings.
Indeed, for such loadings, self-heating effects played a minor role. How-
ever, polymers, in general, show a significant self-heating under cyclic
loading, see, e.g., Benaarbia et al. (2015). For this reason, we conclude
this section with the validation of the DMN surrogate model for cyclic
loading and conduct stress-controlled virtual experiments

𝜎̄(𝑡) = 𝜎̄(𝑡)
2 (𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) (7.76)
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with

𝜎̄(𝑡) = 𝜎̄ ampl sin
(︂

2𝜋 𝑡

𝑇c

)︂
and (𝑖, 𝑗) ∈ ℐ4 = {(1, 1), (2, 2)} . (7.77)

More precisely, for both loading directions in the index set ℐ4, we
apply a uniaxial, sinusoidal stress load. Here, 𝜎̄ ampl denotes the stress
amplitude and 𝑇c represent the period of the harmonic loading. As
self-heating effects depend on the loading amplitude, we consider four
linearly spaced stress amplitudes, ranging from 𝜎̄ ampl = 20 MPa to
𝜎̄ ampl = 80 MPa. We simulate 100 cycles, where every cycle is discretized
with 20 equidistant load steps, i.e., 2 000 load steps in total. The stress
load is applied with a frequency of 𝑓 = 10 Hz, i.e., the period is 𝑇c = 0.1 s,
and adiabatic conditions are assumed due to the short simulation time
of 10 s. Please note that we consider small stress amplitudes up to
𝜎̄ ampl = 80 MPa resulting in strain amplitudes well below 2.5 %. For
this load, resolutions of the volume element smaller than 8.33 voxels per
fiber diameter are admissible, see Figure 7.5. For this purpose, we use a
volume element resolved with 2563 voxels, corresponding to 6.67 voxels
per diameter, to keep computational costs reasonable.

In Figure 7.8, the results for the cyclic loading perpendicular to the
principal fiber direction, i.e., (𝑖, 𝑗) ≡ (2, 2), are shown. The strain
amplitude 𝜀 ampl

22 , which is computed by

𝜀
ampl
22 (𝑛) = 1

2

(︂
max
𝑡∈𝒯c(𝑛)

(𝜀̄(𝑡) · 𝑒2 ⊗ 𝑒2)− min
𝑡∈𝒯c(𝑛)

(𝜀̄(𝑡) · 𝑒2 ⊗ 𝑒2)
)︂

(7.78)

with
𝒯c(𝑛) = [(𝑛− 1)𝑇c, 𝑛𝑇c] (7.79)

for a cycle 𝑛, is shown vs. the cycles for all four considered amplitudes.
We observe that for stress amplitudes of 𝜎̄ ampl = 60 MPa and above, the
composite exhibits viscoplastic flow, resulting in a decrease of the strain
amplitude in the first few cycles due to hardening. Subsequently, for
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the two largest amplitudes, the strain amplitude increases again due
to self-heating induced thermal softening of the composite. Beside the
strain amplitude, the temperature change and the dissipated energy
are illustrated as well in Figure 7.8. Here, for cycle 𝑛, △𝜃 cycle denotes
the mean temperature change and 𝒟̄ cycle expresses the total dissipated
energy, i.e.,

△𝜃 cycle(𝑛) = 1
𝑇c

∫︁
𝒯c(𝑛)

△𝜃(𝑡) d𝑡 and 𝒟̄ cycle(𝑛) =
∫︁

𝒯c(𝑛)
𝒟̄(𝑡) d𝑡

(7.80)
hold.
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Figure 7.8: Stress-controlled cyclic loading: Uniaxial extension perpendicular to the
principal fiber direction
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We observe an almost linear self-heating of the composite for all con-
sidered amplitudes. In the first few cycles, the total dissipated energy
is dominated by viscoplastic flow which decreases for an increasing
number of cycles due to hardening. Furthermore, we observe a notice-
able temperature-dependence of the dissipated energy, i.e., a noticeable
oscillation of the dissipation starting at around 10 cycles. Both effects are
particularly visible for the two highest amplitudes. The former can be
attributed to the Maxwell elements which are, due to the employed WLF
shift function, activated and deactivated depending on the temperature.
With an increasing number of cycles, the dissipated energy increases
again as the material starts to soften resulting in higher strain amplitudes
and thus a higher dissipation.

Comparing the DMN and the full-field solution, we observe an excellent
agreement. The strain amplitude, temperature change and dissipated
energy of the DMN compared to the full-field solution are almost in-
distinguishable. To quantify the approximation errors, we evaluate the
mean 𝜂mean and maximum 𝜂max error (7.75), for the strain amplitude
𝜀 ampl, the mean temperature change △𝜃 cycle and the total dissipation
𝒟̄ cycle, respectively. These results are summarized in Table 7.4 for the
cyclic loading parallel and perpendicular to the principal fiber direction.

𝜂𝜀
ampl

mean / 𝜂𝜀
ampl

max 𝜂△𝜃 cycle

mean / 𝜂△𝜃 cycle

max 𝜂𝒟̄ cycle

mean / 𝜂𝒟̄ cycle

max

0.37 % / 0.43 % 1.11 % / 2.32 % 2.17 % / 2.41 %

Table 7.4: Mean and maximum relative errors for the investigated cyclic uniaxial stress-
controlled virtual experiments

Summing up, we investigated monotonic, non-monotonic uniaxial, biax-
ial and cyclic loading scenarios to validate the identified DMN surrogate
model for thermomechanically coupled simulations on the microscopic
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scale. Indeed, the direct DMN is able to provide a digital twin for
the investigated short fiber reinforced plastic microstructure of thermo-
mechanically coupled constituents. The approximation errors for the
effective stress in the inelastic setting were well below 3.5 % for every
investigated loading condition. Even the effective dissipation and the
predicted temperature change only range up to 5 %, depending on the
considered scenario.

7.5 A computational example

With the identified DMN at hand, we turn our attention to conducting a
DMN-accelerated concurrent two-scale thermomechanical simulation.
More precisely, we study the macroscopic response of a non-symmetric
notched plate subjected to cyclic loading using the FE software ABAQUS.
The effective material response of the short fiber reinforced polyamide is
provided by the identified DMN surrogate model. The local orientation
of the material, i.e., the principal fiber direction, aligns with the loading
direction. The geometry of the structure is similar to Tikarrouchine et al.
(2019) and is illustrated in Figure 7.9.

σ̄(t)

Figure 7.9: Non-symmetric notched plate subjected to a cyclic loading (Tikarrouchine et al.,
2019)
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7 Fully coupled two-scale simulations of thermomechanical composites

The structure is clamped on the left hand side and is subjected to a cyclic
stress load

𝜎̄(𝑡) = 𝜎̄ ampl sin
(︂

2𝜋 𝑡

𝑇c

)︂
(7.81)

with 𝜎̄ ampl = 50 MPa on the right hand side of the plate. We simulate
3 000 cycles, and every cycle is discretized by 20 equidistant load steps,
i.e., 60 000 load steps in total. The stress load is applied with a frequency
of 𝑓 = 10 Hz, i.e., the period is 𝑇c = 0.1 s. Due to the long simulation
time of 200 s, the assumption of adiabatic conditions is not appropriate.
For this reason, we prescribe a convective boundary condition on the
free surfaces of the plate, i.e., the heat flux across the surface of the plate

𝑞s = −ℎt(𝜃s − 𝜃0) (7.82)

is a function of the heat transfer coefficient ℎt and the difference of the
surface temperature 𝜃s and the ambient temperature 𝜃0 = 293.15 MPa.
We assume a free convection. Thus, the heat transfer coefficient for air is
set to

ℎt = 10 W
m2K , (7.83)

see Kosky et al. (2013). To account for heat conduction on the macro-
scopic scale, we assume Fourier’s law

𝑞̄ = −𝜅̄ ∇̄𝑥 𝜃 (7.84)

to hold, where ∇̄𝑥 denotes the gradient operator w.r.t. the macroscopic
point 𝑥̄ ∈ Ω. We use the temperature-independent thermal conductivi-
ties of the glass fibers and the polyamide matrix from Table 7.1 and 7.2
and compute the effective thermal conductivity tensor 𝜅̄ by means of an
FFT-based computational homogenization code (Moulinec and Suquet,
1994; 1998; Dorn and Schneider, 2019). Indeed, the effective thermal
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conductivity is almost isotropic and reads

𝜅̄ =

⎡⎢⎣ 0.361 0 0
0 0.33 0
0 0 0.33

⎤⎥⎦ W
m K 𝑒𝑖 ⊗ 𝑒𝑗 . (7.85)

We neglect any additional macroscopic heat sources ℎ̄ ≡ 0.

The notched plate is discretized by 1 099 thermally coupled quadratic
hexahedron elements. In every Gauss point, a direct DMN is integrated
implicitly. For solving the global system, we rely on the direct Newton
solver in ABAQUS, which solves for the displacements and absolute
temperature simultaneously.

In Figure 7.10, the evolution of the mean temperature change △𝜃 cycle

is shown. For the first 250 cycles, a slight self-heating of the plate is
observed in the vicinity of the two notches where the viscoelastic and
viscoplastic deformation localizes. For an increasing number of cycles,
the inner part of the plate starts to heat up as well both due to energy
dissipation as well as heat conduction.

233



7 Fully coupled two-scale simulations of thermomechanical composites

△θ̄ cycle in K

0 5 10 15 20 25 30 35 40

E
D

C
B

A

(a) 50 cycles (b) 250 cycles

(c) 500 cycles (d) 1 000 cycles

(e) 2 000 cycles (f) 3 000 cycles

Figure 7.10: Evolution of the absolute temperature on the surface of the notched plate
subjected to a cyclic loading

In addition to the contour plots, Figure 7.11 shows the temporal evo-
lution of the strain amplitude 𝜀 ampl, mean temperature change△𝜃 cycle

and the dissipated energy 𝒟̄ cycle for five distinct points 𝐴 to 𝐸, see
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Figure 7.10a. Here, in the macroscopic setting, we compute the strain
amplitude 𝜀 ampl of cycle 𝑛 by

𝜀 ampl(𝑛) = 1
2

(︂
max
𝑡∈𝒯c(𝑛)

(𝜆max
𝜀 (𝑡))− min

𝑡∈𝒯c(𝑛)
(𝜆min
𝜀 (𝑡))

)︂
, (7.86)

where 𝜆min
𝜀 and 𝜆max

𝜀 denote the smallest and the largest eigenvalue of
the macroscopic strain tensor 𝜀̄.
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Figure 7.11: Evolution of the strain amplitude, the absolute temperature and the dissipated
energy vs. the number of cycles for the five locations shown in Figure 7.10a
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A closer look at the evolution of the strain amplitude shows that, as in
the microscopic setting, the hardening of the viscoplastic matrix results
in a decrease of the strain amplitude in the first few cycles for all five
investigated points. Afterwards, the strain amplitude increases again
until a steady-state is reached. The reason for the renewed increase
of the strain amplitude and subsequent saturation becomes clear by
inspecting the evolution of the absolute temperature. In the first few
cycles, the temperature increases rapidly in all considered points as a
result of the dissipated energy due to the viscoelastic and viscoplastic
flow. This increase is more pronounced in the vicinity of the two notches
and decreases towards the inner part of the plate. The temperature
increase results in the thermal softening of the material, and, in turn,
the strain amplitude increases. After about 1 000 cycles, the temperature
increase saturates and a steady-state is reached. This steady-state is the
result of two effects. One one hand, the dissipated energy in a cycle
decreases with increasing temperature due to thermal softening. On the
other hand, the heat conduction due to the free convection increases
with an increasing surface temperature.
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7.6 Computational cost

For all numerical computations, we used a workstation equipped with
two AMD EPYC 7642 with 48 physical cores each and 1024 GB of DRAM.
The material sampling was performed in parallel, i.e., six independent
load steps for computing the effective stiffnesses using 16 threads each.
The training of the direct DMN was carried out on four threads. The
wall-clock times of the sampling and the offline training are summarized
in Table 7.5. Indeed, sampling of the training data took 74 h whereas the
training finished in under 2 h. As we only considered direct DMNs with
a depth of 𝐾 = 8, 765 independent fitting parameters were determined
during the offline training.

Wall-clock time #Fitting parameters

Sampling 74 h −
Training 1.5 h 765

Table 7.5: Wall-clock times for sampling, training and number of fitting parameters

Turning our attention to the online evaluation, we focus on the computa-
tional costs of the direct DMN evaluated at a single Gauss point. Solving
the thermomechanical cell problem for a microstructure discretized by
3203 voxels for prescribed macrostrain and absolute temperature takes
about 2 737s on average on a single thread. In contrast, integrating a
direct DMN at a single Gauss point takes less than 6 ms. Thus, we
achieve a speed-up of about half a million times compared to solving
the cell problem by means of an FFT-based micromechanics solver. For
applications which admit using direct DMNs with less than eight layers,
speed-ups in the range of several millions may be possible.
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7 Fully coupled two-scale simulations of thermomechanical composites

FFT (1 thread) DMN (1 thread)

Wall-clock time 45.62 min 5.64 ms
Speed-up − 485 284

Table 7.6: Wall-clock times and speed-up (compared to an FFT-base computational
micromechanics solver) for a single time step of the inelastic micro simulation

Wall-clock time and memory consumption for the component-scale
simulation are reported in Table 7.7. Indeed, the macroscopic FE model
was discretized by 1 099 elements resulting in 9 706 degrees of freedom.
Computing all 60 000 time steps involved 161 240 total Newton iterations,
took about 117 h on 96 threads and required about 2 GB of DRAM.
Indeed, ABAQUS only required about 2.7 Newton iterations (on average)
per load increment, indicating a robust quadratic convergence.

ABAQUS (96 threads)

Elements 1 099
#DOF 9 706
Increments 60 000
Wall-clock time 117 h
Memory consumption 1.8 GB
Total Newton iterations 161 240

Table 7.7: Wall-clock time, memory consumption and total Newton iterations of the
concurrent two-scale simulation

7.7 Conclusion

In this chapter, we extended the framework of direct DMNs to fully
coupled thermomechanical two-scale simulations. More precisely, we
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incorporated the intrinsic two-way thermomechanical coupling between
the microscopic and macroscopic scale into the framework. Considering
the former is essential to accurately capture the mechanical response of
common engineering materials, e.g., short fiber reinforced thermoplas-
tics, in structural simulations.

For this purpose, we built upon the first-order homogenization frame-
work of thermomechanical composites established by Chatzigeorgiou
et al. (2016), who showed that there is no fluctuation of the absolute
temperature on the microscopic scale. For this reason, both the absolute
temperature and the macrostrain are regarded as inputs to the DMN’s
(microscopic) balance of linear momentum. This way, the one-way ther-
momechanical coupling from the macroscopic onto the microscopic scale
is accounted for. Furthermore, we incorporated the back-coupling from
the microscopic scale onto the evolution of the macroscopic temperature
into the framework. To this end, changes of entropy and dissipated
energy are computed and propagated to the macroscopic scale where
both combined, act as an additional source term to the macroscopic
heat equation. This way, the two-way thermomechanical coupling
was incorporated into the framework of direct DMNs. To accelerate
a thermomechanically coupled two-scale simulation, we explained how
our approach was implemented as an implicit user-material subroutine.

Choosing a short fiber reinforced polyamide 6.6 with industrial aspect ra-
tio and filler fraction, we demonstrated that the trained direct DMN was
able to predict, for a macroscopic point, the effective stress, the effective
dissipation and the ensuing temperature change of the composite with
high accuracy for a set of different strain rates and loading conditions.
Indeed, DMNs are trained on linear elastic data alone. Predicting the
dissipated energy at a macroscopic point, which in turn is intrinsically
associated to nonlinear effects on the underlying microstructure, e.g.,
plasticity, is a remarkable result.
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7 Fully coupled two-scale simulations of thermomechanical composites

To evaluate the performance of our approach in a concurrent two-scale
setting, we conducted a thermomechanically coupled simulation of an
asymmetric notched plate. The notched plate was subjected to a cyclic
stress load also considering heat conduction and convection. The ob-
served mechanical behavior of the notched plate, i.e., the saturating tem-
perature increase and the temperature-dependent mechanical behavior,
could only be reproduced in a macroscopic setting, since heat conduction
and convection had to be considered. This shows that only relying on
microscopic simulations for characterizing thermomechanically coupled
composites by simulative means does not suffice.
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Chapter 8

Summary and conclusion

Deep material networks, introduced by Liu et al. (2019a) and Liu and
Wu (2019), are a data-driven homogenization technique based on an
explicit microstructure model, i.e., hierarchical laminates. They serve
as high-fidelity surrogates for full-field simulations on microstructures
with inelastic constituents and thus can be used to accelerate concurrent
two-scale simulations, offering speed-ups of several orders of magnitude
compared to more conventional, full-field solution techniques.

In contrast to other machine learning approaches, which seek to ap-
proximate the effective properties of a microstructure and constituents,
DMNs may be thought of as a drop-in replacement for microstructures
alone. More precisely, DMNs seek to approximate the homogenization
function of a fixed microstructure. They are exclusively fitted on linear
elastic data by considering the effective stiffness of a microstructure
as a function of the input stiffness tensors of the constituents. For the
parameter identification, classical machine learning techniques are used,
i.e., automatic differentiation and stochastic gradient descent.

After the parameter identification, the fitting parameters of the DMN
are fixed and the surrogate model can be evaluated for an arbitrarily
nonlinear material behavior of the constituents, even at finite strains,
with impressive accuracy. The former contrasts with more classical
approaches, for which the model identification and evaluation are inter-
dependent.
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In this thesis, we investigated the framework of deep material networks
from the viewpoint of classical small-strain micromechanics. In the
following, an individual summary of each chapter is given:

In Chapter 3, we were interested in the basic concepts and microme-
chanical principles of deep material networks. For this, we introduced
the notion of homogenization functions. We argued that the effective
inelastic behavior of a microstructure with small-strain generalized
standard material constituents is determined, to first order in the strain
rate, by the homogenization of linear elasticity with eigenstrains. The
key tool to our analysis was a multiple-input-multiple-output (MIMO)
dynamical system associated to a small-strain generalized standard
material. Indeed, the former result is not restricted to deep material net-
works and holds true for any 𝑁 -phase microstructure. Furthermore, we
showed that for the special case of two phases, it is not necessary to track
the (phase-wise average) strain localization tensors – which are required
to homogenize elasticity with eigenstrains. In particular, for a two-phase
microstructure, we showed that it suffices to track the effective stiffness
alone. With these results, we provided the mathematical underpinnings
of the approach of Liu et al. (2019a) and Liu and Wu (2019). Furthermore,
we showed that for materials with more than two phases, linear elastic
localization needs to be learned instead of linear elastic homogenization,
i.e., eigenstrains need to be considered as well.

In Chapter 4, we introduced direct deep material networks, a novel
formulation which omits intermittent rotations and utilizes laminate
building blocks with variable directions of lamination. Following this
approach came with a reduced number of free parameters to be iden-
tified. By flattening the tree of laminates, we proposed a versatile and
robust solution strategy for nonlinear direct DMNs, which is general
enough to encompass arbitrary trees of laminates. Furthermore, we
showed that (direct) DMNs inherit thermodynamic consistency and
stress-strain monotonicity from their phases. The former constitutes a
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key feature both in terms of physics and numerical implementation, and
represents an additional reason for DMNs’ extraordinary approximation
capabilities.

We proposed a novel DMN-accelerated two-scale strategy for the analy-
sis of short fiber reinforced composites in Chapter 5. To account for a
spatially varying fiber orientation, we interpolated the fitting parameters
of the direct DMN on the fiber orientation triangle. With this, we
fitted a single DMN on the elastic response of up to 31 microstructure
realizations. We showed that the identified surrogate model generalizes
well for inelastic problems on the entire fiber orientation triangle. We
proved the efficiency of our approach by capturing the complete process
chain of an injection molded quadcopter frame and showed that the
approach allows for the multiscale analysis of industrial-scale problems
comprising millions of elements on commodity hardware alone.

In Chapter 6, we introduced micro-oriented direct DMNs to account for
microstructures with micro-oriented phases. In addition, we extended
the proposed interpolation technique by a volume fraction interpolation
to treat sheet molding compound composites. We used the identified
surrogate model to investigate process-induced fluctuations of the me-
chanical performance of SMC components within a virtual process chain.
We demonstrated that our approach is capable of quantifying uncertain-
ties in the macroscopic mechanical response of SMC components with
great accuracy.

In Chapter 7, we extended direct DMNs to accelerate multiscale simula-
tions of thermomechanical composites by incorporating the intrinsic
two-way thermomechanical coupling between the microscopic and
macroscopic scale into the framework. We showed that the identified
DMN is able to predict the effective stress, the effective dissipation and
the ensuing temperature change of the composite with high accuracy for
a set of different loading directions and strain rates. Indeed, predicting
the dissipated energy at a macroscopic point, which in turn is intrinsi-
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cally associated to nonlinear effects on the underlying microstructure, is a
remarkable result which can be attributed to the DMNs internal structure.
We demonstrated the performance of the approach by conducting a
two-scale simulation of a short fiber reinforced polyamide component
to assess self-heating effects under cyclic loading.

Summing up, we contributed to the framework of deep material net-
works by shedding further light on their micromechanical principles.
We analyzed the linear training and the extrapolation to nonlinear phase
materials. We proposed a novel formulation which is characterized by
a reduced number of degrees of freedom compared to the original for-
mulation, and which is applicable to microstructures with and without
micro-oriented phases. We presented a general, efficient and robust
solution technique that is general enough to encompass arbitrary trees
of 𝑁 -phase laminates. By interpolating the free parameters of direct
DMNs, we were able to treat composites for which the microstructure
characteristics fluctuate on the component scale. Manufacturing process-
induced fluctuating microstructure characteristics often constitute weak
spots in the structure and even might contribute to preliminary failure.
Thus, it is crucial to account for such effects in two-scale simulations
to reduce safety factors and to fully exploit the lightweight potential
of composite materials. We showed that interpolated direct DMNs are
a powerful piece of technology for accelerating concurrent two-scale
simulations, which allow for resolving such fluctuating microstructure
characteristics on the macroscopic scale with minimal computational
effort. Furthermore, accounting for thermodynamic coupling in such
two-scale simulations permits effects such as self-heating or thermal
softening to be considered with great accuracy. For instance, accounting
for thermal softening in the analysis of polymer-based composites such
as short-fiber reinforced thermoplastics is of utmost importance, since
the mechanical behavior of the thermoplastic matrix may change dras-
tically even for minor temperature changes. Especially in weak spots
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such as weld lines, a localizing deformation and deformation-induced
self-heating and thermal softening may lead to preliminary failure of the
overall component and must therefore be capture by simulative means.

Due to their extraordinary accuracy and the possibility of providing
speed-ups of five to six orders of magnitude, the FE-DMN method
enables large-scale concurrent two-scale simulations comprising millions
of elements. In this way, the FE-DMN method finally realizes the promise
of fully coupled two-scale simulations of large-scale industrial problems,
and promises to become a standard tool for engineering applications.

Despite the apparent success in practice and preliminary results dis-
cussed in Chapter 3, there is still a need for theoretical results which shed
light on the approximation capabilities and the limitations of DMNs,
possibly drawing from corresponding results for neural networks, see
Cybenko (1989) and Hornik (1991). Indeed, whether every fixed two-
phase microstructure and variable constituents has a microstructure twin
of a hierarchical laminate with identical effective properties, appears to
be unresolved, see Problem 4 in Milton (2020). Interestingly, there exist
counter examples for five-phase composites where the former is false,
see Milton (1986).
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Appendix to Chapter 3

A.1 Homogenization of linear viscoelasticity
(without transforms)

An isothermal GSM (𝒵, 𝜓, 𝜑, 𝑧0) ∈ 𝒢𝒮ℳ is called linear viscoelastic if 𝑊
is a Hilbert space and

𝜓(𝜀, 𝑧) = 1
2(𝜀− 𝑃 𝑧) : C[𝜀− 𝑃 𝑧] and 𝜑(𝑧̇) = 1

2𝑄(𝑧̇)[𝑧̇] (A.1)

hold, where C ∈ Sym+
4 (𝑑) is a stiffness tensor, 𝑃 : 𝑊 → Sym2(𝑑) is

a (surjective) bounded linear operator and 𝑄 : 𝑊 → 𝑊 ′ represents a
coercive, symmetric bilinear form. This formulation incorporates, for
instance, Maxwell models with an arbitrary (even infinite) number of
Maxwell elements. Also, homogenized viscoelastic models are covered.
We denote the set of all linear viscoelastic GSMs by ℒ𝒱 ⊂ 𝒢𝒮ℳ.

Before continuing, we derive an equivalent representation of the stress
function 𝜎 : [0, 𝑇 ]→ Sym2(𝑑) associated to a linear viscoelastic material
(𝒵, 𝜓, 𝜑, 𝑧0) ∈ ℒ𝒱 and an arbitrary strain path 𝜀 : [0, 𝑇 ]→ Sym2(𝑑). The
stress, see Equation (3.1), is computed from Hooke’s law

𝜎 = C[𝜀− 𝑃 𝑧], (A.2)
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whereas Biot’s equation (3.2) becomes

−𝑃 * : 𝜎 + 𝑄𝑧̇ = 0, i.e., 𝑧̇ = 𝑄−1𝑃 * : 𝜎 (A.3)

in terms of the adjoint 𝑃 * : Sym2(𝑑)→𝑊 ′ of 𝑃 . Inserting the latter into
Hooke’s law (A.2), differentiated in time, leads to the ODE

𝜎̇ = C[𝜀̇]− C : 𝑃 𝑄−1𝑃 * : 𝜎, 𝜎(0) = −C : 𝑃 𝑧0, (A.4)

which no longer contains the internal variables 𝑧 : [0, 𝑇 ]→ 𝒵 . Integrat-
ing the linear ODE (A.4) yields the explicit form

𝜎(𝑡) = 𝑒−C:𝑃 𝑄−1𝑃 *𝑡 : C : 𝑃 𝑧0 +
∫︁ 𝑡

0
𝑒−C:𝑃 𝑄−1𝑃 *(𝑡−𝜏) : C[𝜀̇(𝜏)] d𝜏,

(A.5)
which we write, for brevity, in the form

𝜎(𝑡) =
∫︁ 𝑡

0
G(𝑡− 𝜏)[𝜀̇(𝜏)− 𝜀in(𝜏)] d𝜏 (A.6)

with residual strain

𝜀in(𝜏) = −1
𝑡
G−1(𝑡− 𝜏) : 𝑒−C:𝑃 𝑄−1𝑃 *𝑡 : C : 𝑃 𝑧0 (A.7)

and relaxation function

G(𝑡− 𝜏) = 𝑒−C:𝑃 𝑄−1𝑃 *(𝑡−𝜏) : C. (A.8)

With this result in hand, it is not difficult to see that, for two 𝑁 -phase
microstructures 𝑌1 and 𝑌2 the equivalence of affine-linear elastic homog-
enization,ℳ𝒜ℒ

𝑌1
=ℳ𝒜ℒ

𝑌2
, implies the equivalence of linear viscoelastic

homogenization, i.e., the equivalence ofℳℒ𝒱
𝑌1

andℳℒ𝒱
𝑌2

. For that pur-
pose, fix a strain path 𝜀 : [0, 𝑇 ]→ Sym2(𝑑) as well as𝑁 linear viscoelastic
materials and represent them in hereditary integral form (A.6) with
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relaxation functions G𝑖 and residual strains 𝜀in,𝑖. We seek a solution
𝑢 : 𝑌 × [0, 𝑇 ]→ V𝑑 to the balance of linear momentum

div
[︃∫︁ 𝑡

0

𝑁∑︁
𝑖=1

𝜒𝑖G𝑖(𝑡− 𝜏)[𝜀̇(𝜏) +∇s𝑢̇(·, 𝜏)− 𝜀in,𝑖(𝜏)] d𝜏
]︃

= 0, (A.9)

s.t. the effective stress which is computed as

𝜎̄(𝑡) =
⟨∫︁ 𝑡

0

𝑁∑︁
𝑖=1

𝜒𝑖G𝑖(𝑡− 𝜏)[𝜀̇(𝜏) +∇s𝑢̇(·, 𝜏)− 𝜀in,𝑖(𝜏)] d𝜏
⟩
𝑌

. (A.10)

Let, for fixed 𝜏 ∈ [0, 𝑡], 𝑢𝜏 ∈ 𝐻1
#(𝑌 ; V𝑑) denote the (periodic) solution

of the affine-linear elastic problem

div
[︃
𝑁∑︁
𝑖=1

𝜒𝑖G𝑖(𝑡− 𝜏)[𝜀̇(𝜏) +∇s𝑢𝜏 − 𝜀in,𝑖(𝜏)]
]︃

= 0. (A.11)

Then, the solution of Equation (A.9) is given as

𝑢(𝑦, 𝑡) =
∫︁ 𝑡

0
𝑢𝜏 (𝑦) d𝜏. (A.12)

Thus, if we denote the𝑁 viscoelastic materials as 𝒢1, . . .𝒢𝑁 and, for fixed
𝜏 ∈ [0, 𝑡], the 𝑁 affine-linear elastic materials entering Equation (A.11)
by g𝜏1 , . . . g

𝜏
𝑁 , we get

𝜎̄(𝑡) =
∫︁ 𝑡

0
ℳ𝒜ℒ

𝑌 (g𝜏1 , . . . g𝜏𝑁 )[𝜀̇(𝜏)] d𝜏, (A.13)

where we write [·]-brackets for the stress evaluation of a affine-linear
elastic medium. Thus, the viscoelastic stress response is completely
determined by the affine-linear elastic homogenization function. As this
holds for all input viscoelastic materials 𝒢𝑖 ∈ ℒ𝒱 and all strain paths
𝜀 : [0, 𝑇 ]→ Sym2(𝑑), we see that, up to equivalence of GSMs, the linear
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viscoelastic homogenization functionℳℒ𝒱
𝑌 is completely determined by

the affine-linear elastic homogenization functionℳ𝒜ℒ
𝑌 .
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A.2 Carleman bilinearization and Volterra
series expansion for MIMO systems

In this section, we discuss a formal Volterra series expansion for nonlin-
ear dynamical systems of the form (3.22)

𝜉̇ = 𝑓(𝜉) + 𝑔(𝜉) : 𝜀̇

𝜎 = 𝑃 𝜉
(A.14)

for analytic functions 𝑓 and 𝑔 and with initial condition 𝜉(0) = 𝜉0 and
𝜀(𝑡) = 0 (𝑡 ≤ 0). This result is standard in the appropriate literature,
e.g., see Rugh (1981), in the context of single-input-single-output (SISO)
systems. However, in our context, we need both vector input and vector
output, referred to as a multiple-input-multiple-output (MIMO) system.
Our derivation based on Carleman bilinearization (1932) is standard and
does not add anything innovative. However, as the specific form of the
Volterra series expansion we need is not easily found in the literature,
e.g., Rugh (1981), we provide a streamlined presentation.
Before continuing, notice that we may alternatively consider systems

𝜉̇ = 𝑓(𝜉) + 𝑔(𝜉) : 𝜀̇

𝜎 = 𝑃 𝜉 − 𝜎0
(A.15)

with zero initial condition, but affine-linear output by transforming
𝜉 ↦→ 𝜉 − 𝜉0. Here, 𝜎0 is constant in time. As a first step, we apply
Carleman bilinearization to System (A.15), which states that, for analytic
𝑓 and 𝑔, System (A.15) is formally equivalent to the bilinear system

𝑠̇ = 𝐴𝑠 + 𝐷[𝑠, 𝜀̇] + 𝐵 : 𝜀̇

𝜎 = 𝐶𝑠− 𝜎0
(A.16)
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with initial condition 𝑠(0) = 0 for some vector-valued signal 𝑠 and
linear mappings 𝐴 and 𝐶 as well as a bilinear mapping 𝐷. Deriving
this result is straightforward by defining 𝑠 to collect all multivariate
monomials in 𝜉 and writing down the bilinear ODEs in an inductive
way, see Section 3.3 in Rugh (1981). As in Rugh (1981), we restrict
to an algebraic treatment, assuming formal power series. In practice,
similar conclusions can be drawn for merely continuous 𝑓 and 𝑔 by
approximating 𝑓 and 𝑔 by polynomials (following the Stone-Weierstrass
theorem (Stone, 1948)). In particular, the Carleman system (A.16) can be
realized as a finite-dimensional system. However, the latter approach
necessitates quantitative estimates which we believe may obfuscate the
main arguments. Thus, we work with formal power series, instead.

To derive the Volterra expansion of the solution 𝑠 of System (A.16), we
first note that the (formal) solution of System (A.16) for 𝜀̇ ≡ 0 and initial
condition 𝑠(0) = 𝑧 is given by 𝑠 = 𝑒𝐴𝑡𝑧. Variation of constants, i.e., the
ansatz 𝑠(𝑡) = 𝑒𝐴𝑡𝑧(𝑡), leads to the system

𝑧̇ = ̃︀𝐷[𝑧, 𝜀̇] + ̃︀𝐵 : 𝜀̇ (A.17)

with initial condition 𝑧(0) = 0 and

̃︀𝐷[𝑧, 𝜀̇] = 𝑒−𝐴𝑡𝐷[𝑒𝐴𝑡𝑧, 𝜀̇] and ̃︀𝐵 : 𝜀̇ = 𝑒−𝐴𝑡𝐵 : 𝜀̇. (A.18)

Integrating Relation (A.17) and taking into account the initial condition
𝑧(0) = 0 yields the equivalent integral formulation

𝑧(𝑡) =
∫︁ 𝑡

0
̃︀𝐷(𝜏)[𝑧(𝜏), 𝜀̇(𝜏)] + ̃︀𝐵(𝜏) : 𝜀̇(𝜏) d𝜏, (A.19)

which we rewrite, for notational brevity, in operator form

𝑧 = 𝐾 𝜀̇𝑧 + 𝐿𝜀̇ (A.20)
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with

(𝐾 𝜀̇𝑧) (𝑡) =
∫︁ 𝑡

0
̃︀𝐷(𝜏)[𝑧(𝜏), 𝜀̇(𝜏)] d𝜏 (A.21)

and

(𝐿𝜀̇) (𝑡) =
∫︁ 𝑡

0
̃︀𝐵(𝜏) : 𝜀̇(𝜏) d𝜏. (A.22)

The Neumann series associated to Relation (A.20) reads

𝑧 =
∞∑︁
𝑘=0

𝐾𝑘
𝜀̇𝐿𝜀̇, (A.23)

which takes the form

𝑠 =
∞∑︁
𝑘=0

𝑒𝐴𝑡𝐾𝑘
𝜀̇𝐿𝜀̇ (A.24)

for the original variable 𝑠 and the form

𝜎 =
∞∑︁
𝑘=0

𝐶𝑒𝐴𝑡𝐾𝑘
𝜀̇𝐿𝜀̇− 𝜎0 (A.25)

for the stress. Thus, with Relation (A.25), we have obtained an abstract
version of the Volterra series associated to an analytic GSM. Notice
that the 𝑘-th summand on the right hand side of Relation (A.25) is
(𝑘 + 1)-homogeneous in 𝜀̇. Furthermore, both the control variable 𝜀̇ and
the output 𝜎 are finite-dimensional, although the intermediate oper-
ations involve operators on infinite-dimensional spaces. The abstract
Representation (A.25) is convenient for derivation, but offers little insight
into the type of hereditary integrals involved. To gain further insight,
we write out the first three summands of Relation (A.25) explicitly

(︀
𝐶𝑒𝐴𝑡𝐿𝜀̇

)︀
(𝑡) =

∫︁ 𝑡

0
𝐶𝑒𝐴(𝑡−𝜏)𝐵 : 𝜀̇(𝜏) d𝜏, (A.26)
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(︀
𝐶𝑒𝐴𝑡𝐾 𝜀̇𝐿𝜀̇

)︀
(𝑡) =

∫︁ 𝑡

0

∫︁ 𝜏1

0
𝐶𝑒𝐴(𝑡−𝜏1)𝐷[︁
𝑒𝐴(𝜏1−𝜏2)𝐵 : 𝜀̇(𝜏2), 𝜀̇(𝜏1)

]︁
d𝜏2 d𝜏1 (A.27)

and

(︀
𝐶𝑒𝐴𝑡𝐾2

𝜀̇𝐿𝜀̇
)︀

(𝑡) =
∫︁ 𝑡

0

∫︁ 𝜏1

0

∫︁ 𝜏2

0
𝐶𝑒𝐴(𝑡−𝜏1)𝐷[︁

𝑒𝐴(𝜏1−𝜏2)𝐷
[︁
𝑒𝐴(𝜏2−𝜏3)𝐵 : 𝜀̇(𝜏3), 𝜀̇(𝜏2)

]︁
, 𝜀̇(𝜏1)

]︁
d𝜏3 d𝜏2 d𝜏1. (A.28)

Hence, we see that the abstract Volterra series (A.25) can also be explicitly
written in the form

𝜎(𝑡) + 𝜎0 =
∞∑︁
𝑘=1

∫︁ 𝑡

0

∫︁ 𝜏1

0
· · ·
∫︁ 𝜏𝑘−1

0
G𝑘(𝑡− 𝜏1, 𝜏1 − 𝜏2, . . . , 𝜏𝑘−1 − 𝜏𝑘)

[𝜀̇(𝜏𝑘), 𝜀̇(𝜏𝑘−1), . . . , 𝜀̇(𝜏1)]
d𝜏𝑘 d𝜏𝑘−1 · · · d𝜏1 (A.29)

in terms of kernel functions of relaxation type

G𝑘 : R𝑘 × Sym2(𝑑)𝑘 → Sym2(𝑑), (A.30)

which are multilinear in the 𝑘 strain rate inputs, i.e., we could also
interpret G𝑘 : R𝑘 × Sym2(𝑑)⊗𝑘 → Sym2(𝑑).

We have arrived at our desired Volterra series expansion (A.29) of our
initial dynamical system (A.15). Although our derivation was formal,
we briefly discuss the convergence of the Volterra expansion, which is
nothing but the Neumann series associated to Relation (A.20). Thus,
if we work in a Banach space setting, a sufficient condition for the
convergence of the expansion is that the operator norm of 𝐾 𝜀̇ needs
to be smaller than unity. This holds provided 𝐷̃ remains bounded (in
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operator norm) on bounded sets and the quantity∫︁ 𝑡

0
‖𝜀̇(𝜏)‖ d𝜏 (A.31)

is sufficiently small. We can achieve this either by prescribing 𝜀̇ and
restricting to a possibly small time interval, or by fixing the final time
and assuming smallness in strain rate. Notice the inequality

‖𝜀(𝑡)‖ ≤
∫︁ 𝑡

0
‖𝜀̇(𝜏)‖ d𝜏, (A.32)

which is consequence of the triangle inequality for integrals. Thus,
smallness of the integrated strain rate norm is stronger than a mere small
strain assumption as it, for instance, accounts for load reversal.
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Periodic homogenization preserves monotonicity and Lipschitz conti-
nuity of the algorithmic stress function. A precise statement of this fact
and a stream-lined derivation are collected in this section.

Let 𝑌 be a unit cell in V𝑑, and suppose that a locally integrable stress
function

𝜎 : Sym2(𝑑)× 𝑌 → Sym2(𝑑), (𝜀,𝑥) ↦→ 𝜎(𝜀,𝑥) (B.1)

is given, which may also correspond to the “algorithmic” stress of a
time-discretized GSM for frozen internal variables. We assume that
there are positive constants 𝐶− and 𝐶+, s.t. 𝜎 is 𝐶−-strongly monotonic

(𝜎(𝜀1,𝑥)− 𝜎(𝜀2,𝑥)) : (𝜀1 − 𝜀2) ≥ 𝐶−‖𝜀1 − 𝜀2‖2,

𝑥 ∈ 𝑌, 𝜀1, 𝜀2 ∈ Sym2(𝑑),
(B.2)

and 𝐶+-Lipschitz continuous

‖𝜎(𝜀1,𝑥)− 𝜎(𝜀2,𝑥))‖ ≤ 𝐶+‖𝜀1 − 𝜀2‖, 𝑥 ∈ 𝑌, 𝜀1, 𝜀2 ∈ Sym2(𝑑),
(B.3)

where ‖𝐴‖2 = tr
(︀
𝐴2)︀ denotes the Frobenius norm on Sym2(𝑑). For-

mula (B.2) quantifies how fast the stress grows with increased stress
difference. Formula (B.3) translates that the increase in stress grows at
most linearly. For small strain materials, this is typical – softening or
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hardening typically does not increase the stiffness, i.e., the initial linear
elastic behavior serves as an upper bound.

The effective stress, associated to the given stress function (B.1), is the
function

𝜎̄ : Sym2(𝑑)→ Sym2(𝑑), defined via 𝜎̄(𝜀̄) = ⟨𝜎(𝜀̄ +∇s𝑢, ·)⟩𝑌 ,
(B.4)

where 𝑢 : 𝑌 → V𝑑 is the displacement fluctuation satisfying the static
balance of linear momentum on the microscopic scale

div(𝜎(𝜀̄ +∇s𝑢, ·)) = 0 (B.5)

in the sense of distributions. Showing existence and uniqueness of
𝑢, up to the addition of a constant, is a direct consequence of the
Browder-Minty theorem, see Theorem 10.49 in Renardy and Rogers
(2004), provided Formulae (B.2) and (B.3) hold. We wish to show that
these two properties are inherited by the effective stress function (B.4).

Let us consider strong monotonicity (B.2) first. Fix 𝜀̄1, 𝜀̄2 ∈ Sym2(𝑑) and
denote by 𝑢𝑖, the displacement fluctuation solving Formula (B.5) for
𝜀̄ = 𝜀̄𝑖, 𝑖 = 1, 2. Setting 𝜀𝑖 = 𝜀̄𝑖 +∇s𝑢𝑖 in Formula (B.2) and taking the
volume average yields

⟨(𝜎(𝜀1, ·)− 𝜎(𝜀2, ·)) : (𝜀1 − 𝜀2)⟩𝑌 ≥ 𝐶−
⟨︀
‖𝜀1 − 𝜀2‖2⟩︀

𝑌
. (B.6)
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We manipulate the left hand side,

⟨(𝜎(𝜀1, ·)− 𝜎(𝜀2, ·)) : (𝜀1 − 𝜀2)⟩𝑌
= ⟨(𝜎(𝜀1, ·)− 𝜎(𝜀2, ·)) : (𝜀̄1 − 𝜀̄2)⟩𝑌
+ ⟨(𝜎(𝜀1, ·)− 𝜎(𝜀2, ·)) : ∇s(𝑢1 − 𝑢2)⟩𝑌
= ⟨(𝜎(𝜀1, ·)− 𝜎(𝜀2, ·)) : (𝜀̄1 − 𝜀̄2)⟩𝑌
= (⟨𝜎(𝜀1, ·)⟩𝑌 − ⟨𝜎(𝜀2, ·)⟩𝑌 ) : (𝜀̄1 − 𝜀̄2)
= (𝜎̄(𝜀̄1)− 𝜎̄(𝜀̄2)) : (𝜀̄1 − 𝜀̄2),

(B.7)

where we have used the balance of linear momentum (B.5) in the first
line. For the right hand side of Formula (B.6),⟨︀
‖𝜀1 − 𝜀2‖2⟩︀

𝑌
=
⟨︀
‖𝜀̄1 − 𝜀̄2‖2⟩︀

𝑌
+
⟨︀
‖∇s(𝑢1 − 𝑢2)‖2⟩︀

𝑌
≥ ‖𝜀̄1 − 𝜀̄2‖2

(B.8)
holds by the Helmholtz decomposition of elasticity, see Chapter 12 in
Milton (2002). Combining these two observations yields

(𝜎̄(𝜀̄1)− 𝜎̄(𝜀̄2)) : (𝜀̄1 − 𝜀̄2) ≥ 𝐶−‖𝜀̄1 − 𝜀̄2‖2, (B.9)

as claimed. The upper bound

‖𝜎̄(𝜀̄1)− 𝜎̄(𝜀̄2)‖ ≤ 𝐶+‖𝜀̄1 − 𝜀̄2‖ (B.10)

is proved by duality arguments. Indeed, the inverse of a 𝐶+-Lipschitz
continuous monotone operator is 1

𝐶+
-strongly monotonic. Thus, op-

erating in the dual framework (Wicht et al., 2020a) and mirroring the
arguments yields the claim.
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Figure C.1a and C.1b summarize the nonlinear mean and maximum
errors on the space of admissible fiber volume fractions and fiber orienta-
tions. Both errors are strongly correlated, i.e., large nonlinear mean errors
imply large nonlinear maximum errors and vice versa. Furthermore,
both errors fluctuate noticeably without indicating any distinguished
dependence on certain fiber volume fractions or fiber orientations. For all
considered microstructure realizations, even the ones the DMN was not
trained but only interpolated on, the DMN gives nonlinear maximum
errors well below 5 %.

Mean error ηmean

0% 0.5% 1% 1.5% 2% 2.5%

Validation: 41 points Test: 104 points

(a) Mean nonlinear validation and test
errors

Maximum error ηmax

0% 1% 2% 3% 4% 5%

Validation: 41 points Test: 104 points

(b) Maximum nonlinear validation and test
errors

Figure C.1: Distribution of mean and maximum nonlinear validation and test errors on
the space of admissible fiber volume fractions and fiber orientations

261



C Appendix to Chapter 6

Figure C.2 gives an impression on how the computed nonlinear errors
listed in Table 6.3 translate into actual stress-strain curves. Illustrated
are the effective stress 𝜎̄11 as well as the nonlinear error 𝜂 for a uniaxial
extension in the 𝑒1-direction computed in 40 equidistant time steps and a
macroscopic strain of 𝜀 = 4 %. The results for the planar fiber orientation
𝜆1 = 0.5 as well as for the more aligned cases of 𝜆1 = 0.65 and 𝜆1 = 0.80
are reported in Figure C.2. Furthermore, the fiber volume fractions are
varied from 𝑐f = 0.15 to 𝑐f = 0.35 in five equidistant steps.
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(a) 𝜆1 = 0.50
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(b) 𝜆1 = 0.65
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(c) 𝜆1 = 0.80

Figure C.2: Comparison of full-field solution and meta model for a variety of fiber
orientations and fiber volume fractions
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We observe that the effective stresses depend significantly on the fiber
volume fraction as well as the fiber orientation. For all considered cases,
the DMN gives an excellent prediction with nonlinear errors well below
4 %.
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D.1 Strain-controlled non-monotonic loading

To account for load reversal, we investigate six non-monotonic loadings

𝜀̄ = 𝜀

2 (𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) (D.1)

with

(𝑖, 𝑗) ∈ ℐ2 = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} . (D.2)

For every direction in the index set ℐ2, a full hysteresis with a strain
amplitude of 𝜀 = 2.0 % in 80 equidistant load steps is computed. Ad-
ditionally, we use mixed boundary conditions (Kabel et al., 2016) to
ensure a stress-free loading perpendicular to the loading direction. As
in Section 7.4.5, we investigate four individual strain rates to capture
the rate dependence of the composite. In Figure D.1.1, the results for
the non-monotonic loading in the principal fiber direction, i.e., (𝑖, 𝑗) ≡
(1, 1), are shown for all four considered strain rates. We observe that
for the full hysteresis, the DMN and the full-field solution are almost
indistinguishable in terms of the effective stress and temperature change.
The corresponding relative errors are around 1 % for all considered strain
rates. Only for the effective dissipation, we observe slight disagreements
between the DMN predictions and the full-field results. Still, these
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deviations are around 4 %, i.e., in the range of engineering requirements.
The relative errors w.r.t. to the effective stress, temperature change and
effective dissipation are summarized in Table 7.3 for all six considered
loading directions.

FFT DMN ˙̄ε = 5 · 10−4 1/s ˙̄ε = 5 · 10−3 1/s ˙̄ε = 5 · 10−2 1/s ˙̄ε = 5 · 10−1 1/s
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Figure D.1.1: Strain-controlled non-monotonic loading: Uniaxial extension in principal
fiber direction
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D.2 Strain-controlled biaxial loading

In addition to the monotonic and non-monotonic loadings, we investi-
gate six independent biaxial strain loadings

𝜀̄ = 𝜀1 𝑒𝑖 ⊗ 𝑒𝑖 + 𝜀2 𝑒𝑗 ⊗ 𝑒𝑗 (D.3)

with

(𝑖, 𝑗) ∈ ℐ3 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} . (D.4)

For every loading direction in the index set ℐ3, a strain loading of
𝜀1 = 2.0 % is applied while the strain in the second direction is held
constant 𝜀2 = 0 %. Afterwards, a strain load of 𝜀2 = 2.0 % is applied in
the second direction, as well. Meanwhile, the strain in the first direction
is held constant 𝜀1 = 2.0 %. The biaxial loadings are computed in 40
equidistant load steps, and mixed boundary conditions (Kabel et al.,
2016) are applied.

In Figure D.2.1, the results for the biaxial loading in the 𝑒1- and 𝑒2-
direction, i.e., (𝑖, 𝑗) ≡ (1, 2), are illustrated. As we consider a biaxial
loading, the effective stress components in both directions are shown
in addition to the temperature change and the effective dissipation.
Please note that the error measure 𝜂𝜎𝑚𝑛

𝑖𝑗 denotes the relative error of the
(𝑚,𝑛) stress component for a load in the (𝑖, 𝑗) direction. As before, the
DMN matches the full-field solutions remarkably well. Relative errors
lie below 2 % for the effective stress and temperature change and do
not exceed 3.5 % for the effective dissipation. The relative errors for all
considered load cases are summarized in Table 7.3.
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FFT DMN ˙̄ε = 5 · 10−4 1/s ˙̄ε = 5 · 10−3 1/s ˙̄ε = 5 · 10−2 1/s ˙̄ε = 5 · 10−1 1/s
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Figure D.2.1: Strain-controlled biaxial loading: Extension in principal fiber direction
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