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Preface

This volume contains the Proceedings of the 3rd Stochastic Transport in Upper
Ocean Dynamics Annual Workshop held on 26–29 September 2022. The workshop
is part of the project “Stochastic Transport in Upper Ocean Dynamics” (STUOD)
supported by an European Research Council Synergy Grant. The four principal
investigators of the projects, Prof. Dan Crisan (ICL), Prof. Bertrand Chapron
(IFREMER) Prof. Darryl Holm (ICL) and Prof. Etienne Memin (INRIA), were
delighted to organize the annual workshop: the event was largest to date with an
impressive range of inspiring talks, engaging theoretical and applied sessions, as
well as networking opportunities.

The STUOD project is supported by an ERC Synergy Grant, led by three world-
class institutions: Imperial College London (ICL), National Institute for Research
in Digital Science and Technology (INRIA) and the French Research Institute for
Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities
for assessing variability and uncertainty in upper ocean dynamics and provide
decision makers a means of quantifying the effects of local patterns of sea level
rise, heat uptake, carbon storage and change of oxygen content and pH in the
ocean. The project will make use of multimodal data and will enhance the scientific
understanding of marine debris transport, tracking of oil spills and accumulation of
plastic in the sea.

As in the previous years, the 3rd STUOD Annual Workshop 2022 focused on a
range of fundamental topical areas, including:

1. Observations at high resolution of upper ocean properties such as temperature,
salinity, topography, wind, waves and velocity

2. Large-scale numerical simulations
3. Data-based stochastic equations for upper ocean dynamics that quantify simula-

tion errors
4. Stochastic data assimilation to reduce uncertainty

Each chapter in the present volume illustrates one or several of these topical
areas. Many chapters offer new mathematical frameworks that are intended to
enhance future research in the STUOD project. The workshop was held in the

v



vi Preface

hybrid mode and brought together participants from countries such as: UK, France,
USA, Italy, Germany, Saudi Arabia, the Netherlands and Switzerland. It was well
attended by early-career academics, post-graduate students, senior members of the
community and other invited guests.

The scientific program of the four-day conference was divided into five sessions
covering Data Assimilation, Physics Models, Data, Numerics for Ocean Models,
and Theoretical Analysis of SPDEs. Several members of the STUOD External
Advisory Board, Prof Sebastian Reich (University of Potsdam), Prof Baylor Fox-
Kemper (Brown University), Prof Rosemary Morrow (Laboratoire d’Études en
Géophysique et Océanographie Spatiales), Prof Laurent Debreu (INRIA) and
Prof Arnaud Debussche Ecole Normale Supérieure de Rennes, gave invited talks.
The programme also included individual presentations by the STUOD principal
investigators and post-doctoral researchers and snapshot presentations by invited
speakers such as Dr Ali Mashayekhi (Imperial College London) and Dr Hamza
Ruzayqat (King Abdullah University of Science and Technology). The workshop
also provided opportunities for investigators at an early stage of their career to
have discussions with established scientists, fostering potential future research
collaborations, networking as well as inclusion and training of the next generation
of researchers.

Some of the in-person participants attending the event
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The following is a brief description of the 15 contributions included in the
proceedings:

The submitted manuscripts include the chapter by Adrien Bella, Noé Lahaye,
and Gilles Tissot entitled “Internal Tides Energy Transfers and Interactions with the
Mesoscale Circulation in Two Contrasted Areas of the North Atlantic”. The chapter
investigates the energy budget of the internal tide and its life cycle with a high-
resolution numerical simulation and a vertical normal mode decomposition. Two
areas of interest are considered: the Azores Islands over the mid-Atlantic ridge and
the Gulf Stream offshore the North of the US East coast shelf break. Low mode (1
and 2) internal tides are found to propagate from 100 km (mode 2) to 1000 km (mode
1) away from their generation sites. Waves lose a significant portion of their energy
as they propagate through the Gulf Stream, in contrast to the Azores domain. In the
Gulf Stream domain, the mesoscale circulation is responsible for energy transfers
from low to high mode internal tides, while the topographic scattering is dominant
in the Azores area. This transfer of energy toward high modes favours energy
dissipation. The mesoscale is significant in the energy budget of modes higher than
mode 1 for both domains, and for all baroclinic modes in the Gulf Stream area. The
internal tide is found to extract or lose energy toward the mesoscale circulation, but
this accounts for less than 14% of the energy scattered from low internal tide modes
to higher ones once summed over all contributions of the modal energy budget.

The contribution of Paolo Cifani, Sagy Ephrati and Milo Viviani entitled “Sparse-
Stochastic Model Reduction for 2D Euler Equations” introduces a reduction
technique for ideal fluids.

The 2D Euler equations are a simple but rich set of non-linear PDEs that
describe the evolution of an ideal inviscid fluid, for which one dimension is
negligible. Solving numerically these equations can be extremely demanding.
Several techniques to obtain fast and accurate simulations have been developed
during the last decades. In this chapter, the authors present a novel approach which
combines recent developments in the stochastic model reduction and conservative
semi-discretization of the Euler equations. In particular, starting from the Zeitlin
model on the 2-sphere, they derive reduced dynamics for large scales and we close
the equations either deterministically or with a suitable stochastic term. Numerical
experiments show that, after an initial turbulent regime, the influence of small scales
to large scales is negligible, even though a non-zero transfer of energy among
different modes is present.

Franco Flandoli, Silvia Morlacchi, and Andrea Papini present in their work,
“Effect of Transport Noise on Kelvin–Helmholtz Instability”, a numerical inves-
tigation of the dissipation properties of very small-scale transport noise. As a test
problem, the authors consider the Kelvin–Helmholtz instability and compare the
inviscid case, the viscous one, both without noise, and the inviscid case perturbed
by transport noise. They observe a partial similarity with the viscous case, namely a
delay of instability.

The chapter by Daniel Goodair and Dan Crisan, entitled “On the 3D Navier-
Stokes Equations with Stochastic Lie Transport”, investigates the existence and
uniqueness of maximal solutions to the 3D SALT Navier-Stokes Equation in
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velocity and vorticity form, on the torus and the bounded domain, respectively.
The work partners an earlier paper of the authors as an application of the abstract
framework presented there. They demonstrate the efficacy of the earlier work in
showing well-posedness for both the velocity and vorticity form of the equation, as
well as obtaining the first analytically strong existence result for a fluid equation
perturbed by Lie transport noise on a bounded domain.

Darryl Holm, Ruiao Hu, and Oliver Street in their paper entitled “On the
Interactions Between Mean Flows and Inertial Gravity Waves” derive a generalized
Lagrangian mean (GLM) theory as a phase-averaged Eulerian Hamilton variational
principle expressed as a composition of two smooth invertible maps. Following
an earlier work of Holm, they consider 3D inertial gravity waves (IGWs) in the
Euler-Boussinesq fluid approximation. The authors provide both deterministic and
stochastic closure models for GLM IGWs at leading order in 3D complex vector
WKB wave asymptotics. The chapter brings the earlier results of Holm at leading
order into an easily assimilable short form and proposes a stochastic generalization
of the wave mean flow interaction (WMFI) equations for IGWs.

The contribution of Quentin Jamet, Etienne Mémin, Franck Dumas, Long Li,
and Pierre Garreau entitled “Toward a Stochastic Parameterization for Oceanic
Deep Convection” investigates parametrizations for ocean convections. Current
climate models are known to systematically overestimate the rate of deep-water
formation at high latitudes in response to too deep and too frequent deep convection
events. The authors propose in this study to investigate a misrepresentation of deep
convection in Hydrostatic Primitive Equation (HPE) ocean and climate models
due to the lack of constraints on vertical dynamics. They discuss the potential
of the Location Uncertainty (LU) stochastic representation of geophysical flow
dynamics to help in the process of re-introducing some degree of non-hydrostatic
physics in HPE models through a pressure correction method. The authors then
test these ideas with idealized Large Eddy Simulations (LES) of buoyancy-driven
free convection with the CROCO modelling platform. Preliminary results at LES
resolution exhibit a solution obtained with our Quasi-nonhydrostatic (Q-NH) model
that tends toward the reference non-hydrostatic (NH) model. As compared to a pure
hydrostatic setting, our Q-NH solution exhibits vertical convective plumes with a
larger horizontal structure, a better spatial organization, and a reduced intensity
of their associated vertical velocities. The simulated Mixed Layer Depth (MLD)
deepening rate is however too slow in our Q-NH experiment as compared to
the reference NH, a behaviour that opposes to that of hydrostatic experiments of
producing too fast MLD deepening rate. These preliminary results are encouraging,
and support future efforts in the direction of enriching coarse resolution, hydrostatic
ocean, and climate models with a stochastic representation of non-hydrostatic
physics.

The contribution of Alexander Lobbe, Dan Crisan, Darryl Holm, Etienne
Mémin, Oana Lang, and Bertrand Chapron, entitled “Comparison of Stochastic
Parametrization Schemes Using Data Assimilation on Triad Models”, investigates
stochastic parametrization schemes. In recent years, stochastic parametrizations
have been ubiquitous in modelling uncertainty in fluid dynamics models. One source
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of model uncertainty comes from the coarse-graining of the fine-scale data and is
in common usage in computational simulations at coarser scales. In this chapter,
the authors look at two such stochastic parametrizations: the Stochastic Advection
by Lie Transport (SALT) parametrization and the Location Uncertainty (LU)
parametrization. Whilst both parametrizations are available for full-scale models,
the authors study their reduced order versions obtained by projecting them on a
complex vector Fourier mode triad of eigenfunctions of the curl. Remarkably, these
two parametrizations lead to the same reduced order model, termed the helicity-
preserving stochastic triad (HST). This reduced order model is then compared with
an alternative model which preserves the energy of the system, and which is termed
the energy preserving stochastic triad (EST). These low-dimensional models are
ideal benchmark models for testing new Data Assimilation algorithms: they are easy
to implement, exhibit diverse behaviours depending on the choice of the coefficients,
and come with natural physical properties such as the conservation of energy and
helicity.

Erwin Luesink and Bernard Geurts consider in the chapter “An Explicit Method
to Determine Casimirs in 2D Geophysical Flows” a new method to construct
Casimirs for geophysical flows.

Conserved quantities in geophysical flows play an important role in the charac-
terization of geophysical dynamics and aid the development of structure-preserving
numerical methods. A significant family of conserved quantities is formed by
the Casimirs: These are integral conservation laws that are in the kernel of the
underlying Poisson bracket. The Casimirs hence determine the geometric structure
of the geophysical fluid equations among which the enstrophy is well known. Often
Casimirs are proposed on heuristic grounds and later verified to be part of the kernel
of the Poisson bracket. In this work, the authors explicitly construct Casimirs by
rewriting the Poisson bracket in vorticity-divergence coordinates thereby providing
explicit construction of Casimirs for 2D geophysical flow dynamics.

The work of Igor Maingonnat, Gilles Tissot, and Noé Lahaye is entitled
“Correlated Structures in a Balanced Motion Interacting with an Internal Wave”
and investigates the correlations between a balanced motion and the incoherent part
of a wave in an idealized configuration.

Characterizing the loss of coherence of an internal tide propagating through
mesoscale turbulence has been a major challenge in oceanography, particularly due
to its implications for the interpretation of satellite data. The authors introduce a new
modal decomposition technique, named broad-band proper orthogonal decomposi-
tion (BBPOD), which consists in performing a proper orthogonal decomposition
(POD) on complex demodulated variables. After connecting BBPOD to the standard
SPOD, they show that BBPOD, coupled with the extended POD technique, enables
them to associate the principal components of the incoherent field to the slow flow
structures responsible for this loss of coherence through triadic interactions with the
incident wave.

The chapter by Étienne Mémin, Long Li, Noé Lahaye, Gilles Tissot, and Bertrand
Chapron, entitled “Linear Wave Solutions of a Stochastic Shallow Water Model”
investigates the wave solutions of a stochastic rotating shallow water model. The
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approximate model covered in the chapter provides an interesting simple description
of the interplay between waves and random forcing ensuing either from the wind or
coming as the feedback of the ocean on the atmosphere and leading in a very fast
way to the selection of some wavelength. This interwoven, yet simple, mechanism
explains the emergence of typical wavelength associated with near-inertial waves.
Ensemble-mean waves that are not in phase with the random forcing are damped
at an exponential rate, whose magnitude depends on the random forcing variance.
Geostrophic adjustment is also interpreted as a statistical homogenization process
in which, in order to conserve potential vorticity, the small-scale component tends
to align to the velocity fields to form a statistically homogeneous random field.

The contribution of Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile
Gaultier, and Ronan Fablet entitled “Analysis of Sea Surface Temperature variability
Using Machine Learning” analyses sea surface temperature (SST). SST is a
critical factor in the global climate system and plays a key role in many marine
processes. Understanding the variability of SST is therefore important for a range of
applications, including weather and climate prediction, ocean circulation modelling,
and marine resource management. In this study, the authors use machine learning
techniques to analyse SST anomaly (SSTA) data from the Mediterranean Sea over
a period of 33 years. The objective is to best explain the temporal variability of the
SSTA extremes. These extremes are revealed to be well explained through a non-
linear interaction between multi-scale processes. The results contribute to better
unveil factors influencing SSTA extremes, and the development of more accurate
prediction models.

The contribution of Sebastian Reich entitled “Data Assimilation: A Dynamic
Homotopy-Based Coupling Approach” covers a new approach for data assimilation
based on homotopy. Homotopy approaches to Bayesian inference have found
widespread use especially if the Kullback–Leibler divergence between the prior
and the posterior distribution is large. The author extends one of these homotopy
approach to include an underlying stochastic diffusion process. The underlying
mathematical problem is closely related to the Schrödinger bridge problem for given
marginal distributions. He shows that the proposed homotopy approach provides
a computationally tractable approximation to the underlying bridge problem. In
particular, the implementation builds upon the widely used ensemble Kalman filter
methodology and extends it to Schrödinger bridge problems within the context of
sequential data assimilation.

Valentin Resseguier, Yicun Zhen, and Bertrand Chapron show in their work
entitled “Constrained Random Diffeomorphisms for Data Assimilation” that both
the Stochastic Advection by Lie Transport (SALT) and the Location Uncertainty
(LU) equations can be recovered using a prescribed definition of a random diffeo-
morphism used to perturb the physical space. However, unlike the SALT and LU
settings, they propose a perturbation scheme does not directly rely on a particular
physics. Hence, the random mapping is more flexible and can be applied to any
PDE.

The work of Gilles Tissot, Étienne Mémin, and Quentin Jamet entitled “Stochas-
tic Compressible Navier-Stokes Equations Under Location Uncertainty” provides
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a stochastic version under location uncertainty of the compressible Navier-Stokes
equations. To that end, some clarifications of the stochastic Reynolds transport
theorem are given when stochastic source terms are present in the right-hand
side. The authors apply this conservation theorem to density, momentum, and total
energy in order to obtain a transport equation of the primitive variables, i.e. density,
velocity, and temperature. They show that performing low Mach and Boussinesq
approximations to this more general set of equations allows to recover the known
incompressible stochastic Navier-Stokes equations and the stochastic Boussinesq
equations, respectively. Finally, they provide some research directions for using this
general set of equations in the perspective of relaxing the Boussinesq and hydrostatic
assumptions for ocean modelling.

Francesco Tucciarone, Étienne Mémin, and Long Li present in their work entitled
“Data-Driven Stochastic Primitive Equations with Dynamic Modes Decomposition”
an implementation of a stochastic version of the primitive equations into the
NEMO community ocean model to assess the capability of the so-called Location
Uncertainty framework in representing the small scales of the ocean flows. The
work is important as planetary flows are characterized by interaction of phenomena
in a huge range of scales, and it is unaffordable today to resolve numerically the
complete ocean dynamics.

Finally, the STUOD Organizing Committee would like to acknowledge the
financial and in-kind support received from several sources: the European Research
Council (ERC) under the European Union’s Horizon 2020 Research and Innovation
Programme (ERC, Grant Agreement No 856408)—for providing funds to cover the
travel expenses of the invited speakers, catering costs, and administrative support;
Imperial College London—for offering the conference venue.

Plouzané, France Bertrand Chapron
London, UK Dan Crisan
London, UK Darryl Holm
Rennes, France Etienne Mémin
London, UK Anna Radomska
May 2023
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Internal Tides Energy Transfers
and Interactions with the Mesoscale
Circulation in Two Contrasted Areas
of the North Atlantic

Adrien Bella, Noé Lahaye, and Gilles Tissot

Abstract The energy budget of the internal tide and its life cycle is investigated
with a high resolution numerical simulation and a vertical normal mode decomposi-
tion. Two areas of interest are considered: the Azores Islands over the mid Atlantic
ridge and the Gulf Stream offshore the North of the US East coast shelf break.
Low mode (1 and 2) internal tides are found to propagate from 100 km (mode 2)
to 1000 km (mode 1) away from their generation sites. Waves loose a significant
portion of their energy as they propagate through the Gulf Stream, in contrast to the
Azores domain. In the Gulf Stream domain, the mesoscale circulation is responsible
for energy transfers from low to high modes internal tides, while the topographic
scattering is dominant in the Azores area. This transfer of energy toward high modes
favours energy dissipation. The mesoscale is significant in the energy budget of
modes higher than mode 1 for both domains, and for all baroclinic modes in the
Gulf Stream area. The internal tide is found to extract or loose energy toward the
mesoscale circulation, but this accounts for less than 14%, of the energy scattered
from low internal tide modes to higher ones once summed over all contributions of
the modal energy budget.

Keywords Internal tide · Mesoscale flow · Energy budget · Vertical modal
decomposition · High resolution numerical simulation

1 Introduction

Internal tides are a category of oceanic internal inertia-gravity waves that are
generated when the astronomical tide interacts with topographic features such as
shelf breaks, ridges or seamounts. They are encountered in many areas in the ocean
[Zaron et al. 2022, Zhao et al. 2016, among others] and are of crucial importance for
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the mixing of deep water and the closure of the Meridional Overturning circulation
[Munk and Wunsch 1998]. The role of mesoscale currents for the energy pathway
starting from the barotropic tide input and leading to this mixing is not yet fully
understood. As a different thread of motivation, internal tides exhibit the same
spatial scale as (sub-)mesoscale features, which renders challenging the estimation
of the geostrophic velocities and the disentanglement of the two types of motions
from satellite altimetry [Ponte and Klein 2015]. This problem is exacerbated by the
ability of the new SWOTmission to obtain a resolution of 20 km to 30 km, compared
to the approximately 100 km of current altimeter products [Ballarotta et al. 2019]. It
is therefore needed to better understand the dynamics of the internal tide if we hope
to disentangle it from the geostrophic field via data assimilation for instance.

Since a decade or so [e.g. Arbic et al. 2010], global and regional realistic
simulations have reached a sufficient resolution to be able to represent both internal
tides and mesoscale features, opening the way to studying their interactions.
Most studies focusing on these interactions use the vertical modal decomposition
framework [Gill 1982], which allows to get a clear separation of the barotropic
and baroclinic tides as well as alleviating the computational cost associated with
processing 3D simulation outputs.

The importance of the mesoscale circulation and buoyancy field have been shown
by Kelly and Lermusiaux [2016] in a realistic configuration over the Gulf Stream
area for the energy budget of the first baroclinic mode (denoted mode 1). They
quantified the energy transfers between the mode 1 and the mesoscale circulation
as well as its relative importance compared to topographic effects, showing that
the mesoscale explains first order interactions pattern visible on the mode 1 energy
flux divergence. Similarly, Pan et al. [2021] have analysed the energy budget of the
mode 1 in a realistic setup including the mesoscale circulation and heterogeneous
buoyancy field in the Gulf Stream area and the Mallau Island, leading to the same
conclusion concerning the importance of mesoscale—internal tides interactions.
Both studies have also considered realistic simulations with baroclinic currents,
and have used a modal decomposition approach to define their energy budget. The
deviation of internal tide energy flux have been analysed by Duda et al. [2018],
indicating a refracting behaviour of a Gulf Stream like current on beams of internal
tides energy fluxes. Dunphy and Lamb [2014] have shown in an idealised setup that
the interactions of the first baroclinic internal tide mode with the barotropic eddy and
the first baroclinic eddy mode lead to a modification of the energy flux propagation
and a scattering of energy toward higher modes, respectively.

In the present paper, our focus will be on the energy budget yielded by a modal
analysis and we will in particular extend the work of other studies to the 10 first
baroclinic modes, as well as studying the couplings between modes.

The contribution of the mesoscale flow and buoyancy field will be taken into
account and the relative importance of the coupling between modes as well as
their spatial pattern will be quantified in an area where topographic features are
prominent, and another area with a strong mesoscale circulation.

The document is organised as follows: Sect. 2 will explain the theoretical
framework with the modal decomposition and the governing dynamical equations.
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Section 3 will detail the dataset used and computational techniques. Section 4 will
present results. Section 5 closes this article with a conclusion.

2 Governing Equations and Energy Budget

To investigate the modal internal tide energy budget, we rely on linearized equations
of motions projected on vertical normal modes. The derivation follows previous
studies (e.g. Kelly and Lermusiaux [2016]) and is only briefly depicted here. It starts
from the hydrostatic primitive equations under the Boussinesq approximation with
a free surface [e.g. Vallis 2017]:

.∂tuh + u · ∇uh + f �ez ∧ uh = −∇hp − ∇Πtide, . (1a)

∂zp − b = 0, . (1b)

∂tb + u · ∇b = 0, . (1c)

∇ · u = 0, (1d)

where .u is the velocity, b the buoyancy, p the reduced pressure (divided by .ρ0, the
reference density), and the index h denotes horizontal component of a 3D vector.
Other variable names follow standard notations. Here, the forcing and dissipation
terms have been omitted on purpose, except for the tidal potential term .Πtide.

Next, the flow is decomposed into a low-frequency mesoscale flow and a high-
frequency component that includes the internal tide: i.e., for the velocity, we split
.u = U + ũ. We will further decompose the low frequency part of the buoyancy
into a long-time mean and a slowly variable part: .B = B̄ + B ′ (.· denotes long
time average), and introduce the Brunt-Väisälä frequency: .N2 = ∂zB and .N̄2 =
∂zB̄ . Subtracting the low frequency equations (1) to the initial system and further
assuming that nonlinearities amongst the high-frequency flow are negligible, one
obtains the following linear system of equations:

.∂t ũ + U · ∇ũ + ũ · ∇U + f �ez ∧ ũ = −∇p̃ − ∇Πtide, . (2a)

∂zp̃ − b̃ = 0, . (2b)

∂t b̃ + U · ∇b̃ + ũh · ∇h(B̄ + B ′) + w̃(N̄2 + N ′2) = 0, . (2c)

∇ · ũ = 0. (2d)

Note that, since the above system of equations is linear in the high-frequency
variables, and assuming that most of the mesoscale variability has a timescale longer
or equal to the cutoff period used in the internal tides complex demodulation (3
days), band-pass filtering of these equations leaves the system unchanged. Hence,
in our study, we will focus on the semi diurnal (including M2 and S2 frequencies)
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internal tide with a period centred on 12.2 h, relying on the above set of equations
where the high-frequency variables describe this frequency band. These equations
are completed by the usual linearized boundary conditions at the mean surface .η

and the bottom at .z = −H :

.p̃(η) = gη̃, . (3)

w̃(η) = ∂t (η̃) + Uh(η) · ∇h(η̃), . (4)

w̃ = −ũh(−H) · ∇H. (5)

We thus have the internal tide part of the primitives equations that are now ready
to be projected on a set of verticals modes. The latter are given locally by the
standard Sturm-Liouville problem for internal waves in a rotating stratified ocean
[e.g. Gill 1982, Vallis 2017], assuming a flat ocean, a horizontally-homogeneous
stratification profile and no background flow:

.

(
Φ

′
n

N̄2

)′

+ Φn

c2n
= 0, with Φ

′
n = 0 at z = −H, and gΦ

′
n + N̄2Φn = 0 at z = η,

(6)
where prime denotes vertical derivative. The obtained set of vertical modes .Φn is
complemented by another set of vertical functions which obey:

.ϕ
′
n = Φn, Φn

′ = − N̄2

c2n
ϕn, (7)

and these modes follow the orthogonality conditions:

.

∫ η

−H

ΦmΦn dz =
∫ η

−H

N̄2

c2n
ϕmϕn dz + g

c2n
, ϕm(η)ϕn(η) = Hδmn. (8)

Physical fields can then be expanded over these bases through:

.[uh, p] =
∑
n

[un, pn]Φn, . (9)

[w, b] =
∑
n

[wn, N̄
2bn]ϕn, (10)

and the modal projection coefficients are obtained as follows:

.[un, pn] = 〈[uh, p], Φn〉 , . (11)

wn = 1

c2n

(〈
ϕn,wN̄2

〉
+ g

H
w(η)ϕn(η)

)
, . (12)
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bn = 1

c2n

(
〈ϕn, b〉 + g

H

b(η)

N̄2(η)
ϕn(η)

)
, (13)

with the inner product defined as such: .〈f, g〉 = 1
H

∫ η

−H
f (z)g(z) dz. Note that the

two bases have a parametric dependency on the horizontal coordinates because of
the varying topography .H(x, y) and stratification profile .N̄2(z; x, y). In this paper,
we are going to consider the modes 0 to 10, with the mode 0 being the barotropic
tide, and all others being the baroclinic internal tide.

The dynamical equations are then obtained by projecting the tidal momentum
equations and continuity on a mode .Φm, and buoyancy equations on the mode .ϕm,
using the relations exposed above plus integration by part and Leibniz formula,
and substituting the buoyancy modal amplitude by the pressure anomaly (after
projection of the hydrostatic balance on .ϕm) [Kelly and Lermusiaux 2016, Kelly
2016, Pan et al. 2021]. Omitting the .̃· notation from now on, one obtains—after a
tedious but straightforward derivation:

.∂tum + ∇hpm + f �ez ∧ um = −
∑
n

Umn · ∇un −
∑
n

unU
Φ
mn

−
∑
n

un · U∇
mn −

∑
n

wnU
z
mn

−
∑
n

pnTmn − 1

H
∇Πtide(ϕm(η) − ϕm(−H)), .

(14a)

∂tpm − c2mwm = − g

H
ϕm(η)Uh(η) · ∇η −

∑
n

U
p
mn · ∇pn

−
∑
n

pn

〈
ϕm,Uh · ∇

(
N̄2

c2n
ϕn

)〉

+
∑
n

un · (Bmn − B̄mn) +
∑
n

wn

〈
ϕm, ϕnN

2
〉
, .

(14b)

∇h · (Hum) + Hwm = H
∑
n

unTmn, (14c)

with:

.Tmn = 〈Φm,∇hΦn〉 , Umn = 〈Φm,UhΦn〉 , UΦ
mn = 〈Φm,Uh · ∇hΦn〉 ,

U∇
mn = 〈Φm,Φn∇Uh〉 , Uz

mn = 〈Φm, ϕn∂zUh〉 , U
p
mn =

〈
ϕm,Utot

N̄2

c2n
ϕn

〉
,

Bmn = 〈ϕm,Φn∇B〉 , B̄mn = 〈
ϕm,Φn∇hB̄

〉
.
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We then take the scalar product of the projected momentum equation (14a)
with .un, multiply the pressure equation (14b) with .pm and substitute .wn using the
continuity equation (14c) to obtain the energy budget of the internal tide mode m in
presence of a slowly varying mesoscale circulation and buoyancy field:

.

temporal variation of energy︷ ︸︸ ︷
∂

∂t

(
u2

m

2
+ p2

m

2c2m

)
+

divergence of energy flux︷ ︸︸ ︷
1

H
∇h · (Humpm) =

−
∑
n

[ advection by the background flow︷ ︸︸ ︷
um · (Umn · ∇un) − um · unU

Φ
mn + pm

c2m
U

p
mn · ∇pn

−
Background flow shear︷ ︸︸ ︷

un · U∇
mn · um + um · Uz

mnwn

+
horizontal gradient of background buoyancy︷ ︸︸ ︷

pm

Hc2m
un · (B̄mn + Bmn) +

slowly variable stratification︷ ︸︸ ︷
pm

c2m
wn

〈
ϕm,N2ϕn

〉

+
Topography and mean stratification: Cmn︷ ︸︸ ︷

pmun · Tnm − pnum · Tmn

]
+ Rm (15)

with

.Rm =
advection of ssh by the background flow︷ ︸︸ ︷

− pm

Hc2m
gϕm(η)Uh(η) · ∇η̃

−
∑
n

advection of mean stratification by the background flow︷ ︸︸ ︷
pm

c2m

∑
n

pn

〈
ϕm,Uh · ∇h

(
N̄2

c2n
ϕn

)〉

−
Tidal potential work︷ ︸︸ ︷

um · ∇Πtide(ϕm(η) − ϕm(−H)) . (16)

By anticipation of the results in Fig. 3 in Sect. 4.2, the term .Rm gathers all
contributions that are not of primary importance (and will not be discussed in this
paper).

This equation describes the different energy exchanges (coupling) between
modes as well as energy sources and sinks. Most coupling terms can be represented
with coupling matrices –noted .Kmn here—that will be shown below in Sect. 4.2
(Fig. 2). Generally, this coupling matrix contains an anti-symmetric part, describing
net exchanges of energy between modes, and a symmetric part, with the diagonal
included, that describes gain/loss of energy for the internal tide.
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The first three terms in the right-hand side (RHS) arise from the presence of
a mesoscale flow, while the next two ones include contributions from associated
buoyancy perturbations as well as seasonal variations. The term labelled as slowly
variable stratification arises during the derivation of the CSW buoyancy equa-
tion (14) because of our choice to construct the modal bases by using a stationary
profile of stratification in the problem (6). In case of a definition of the vertical
modal bases with the instantaneous stratification profile, this term would vanish.
Indeed, for a linear propagation of an internal wave without topography, mesoscale
and dissipation, the vertical modes diagonalise the operator, thus decouples the
components from each other. By time-averaging the stratification profile, the
associated vertical mode basis becomes inadequate to perform this decoupling. The
slowly variable stratification term then arises, taking into account in the energy
equation coupling between modes associated with this linear propagation. This term
can be interpreted as energy exchanges between modes during a linear propagation
of an internal wave without topography, mesoscale and dissipation. Since vertical
modes are eigenfunctions of this associated idealised operator, we associate the
variable stratification term to the inadequacy of the basis to represent internal
wave dynamics (through the time-averaged stratification profile). We do not expect,
however, that using a basis defined with a slowly time-varying stratification would
change significantly the magnitude of the dominant interaction terms discussed
in this paper (see e.g. Sect. 4.2), and in particular the mesoscale and topographic
contributions.

Finally, .Cmn = −Cnm is the topographic scattering, which includes the
generation of baroclinic tide from the barotropic tide (.Cm0). Note that this term
has no symmetric part—it can only redistribute energy amongst the vertical modes.

Once averaged in time over a sufficiently long period (typically, one month), the
time-variation of the energy vanishes and the above modal energy equation reduces
to the following, simplified form:

.∇hFm = −
∑
n

Kmn + Rm, (17)

where .Fm denotes the modal energy flux, .Kmn gathers the energy transfers, sources
and sinks that are not negligible and .Rm gathers all the neglected terms. These
include a contribution from the free surface and the tidal potential, which would both
vanish under a rigid-lid assumption for the baroclinic modes—in agreement with the
fact that we find they have negligible magnitude in our diagnostics (cf. Sect. 4). The
remaining term in .Rm involves horizontal variations of the modes and associated
background stratification, which is small since a year average is used.
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3 Data and Method

3.1 eNATL60 Simulation

The high-resolution realistic simulation of the North Atlantic Ocean eNATL60
[Brodeau et al. 2020] is used to diagnose the energy budget of the internal tide
following Eq. (15). It uses the Nucleus for European Modelling of the Ocean
(NEMO) model, which solves the primitive equations under the Boussinesq and
hydrostatic approximations with an Arakawa C grid and z-coordinate with partial
step [Madec and the NEMO team 2008]. The eNATL60 run includes astronomical
tidal forcing with the M2, S2, N2, O1 and K1 frequencies. In addition, surface
forcing from the 3-hourly ERA-interim (ECMWF) reanalysis is used, which enables
the simulation to develop a realistic mesoscale field. The horizontal resolution of
the simulation is 1/60.◦ (about 1.5 km in the mid latitudes) and features 300 vertical
levels with a thickness starting from less than 1m at the top of the ocean to 100m
at the bottom. We processed the hourly outputs of the horizontal velocity .u, sea
level, temperature and salinity fields from which we computed the pressure and
stratification.

We will use the 2009 October month over two subdomains representative of
different dynamical regimes of the ocean. The first one is centred over the Azores
Islands and the North Mid-Atlantic Ridge. The second one is located offshore
the North of the US East coast and includes a portion of the Gulf Stream. The
Azores domain is characterised by the predominance of topographic features such
as the mid Atlantic ridge exhibiting low amplitudes topographic variation over
100 km, and a group of seamount with strong slope and a typical scale of 10 km.
Comparatively to the Gulf Stream area, the mesoscale flow is weak. The Gulf
Stream domain is marked by a strong mesoscale activity and a large continental
slope leading to a flat abyssal plain with a few surrounding seamounts (see Fig. 1
discussed below).

3.2 Filtering and Computing Methods

In order to obtain the vertical normal modes bases, the mean stratification .N̄2 is
computed from the time average of temperature and salinity using the nonlinear
equation of state from TEOS-10. The Sturm-Liouville problem (6) is then discre-
tised and solved on the staggered vertical grid in each horizontal cell, giving the two
modal bases on the T grid, at the centre (in the horizontal) of each cell. From there,
the modal amplitude .un, .vn and .pn are obtained by projecting the corresponding
fields .u and p, following (11)–(13). Since the horizontal grid is staggered, the
horizontal velocity is located at the edge of each cell. We thus interpolate the
base .Φn before projecting the velocities. Unfortunately, this step induces a loss
of orthogonality for the newly interpolated basis. The coefficients determined
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Fig. 1 One-month average of the horizontal energy flux divergence for mode 1 (left column) and
mode 3 (right column), for the Azores domain (top) and the Gulf Stream domain (bottom). A
positive value indicates a gain of energy for the mode. Black arrows show the square root of the
corresponding modal horizontal energy flux. A spatial Gaussian filter with a half modal wavelength
kernel has been applied on these fields in order to remove the local alternate of positive and
negative values and make the plot cleaner. Green streamlines indicate, qualitatively, the mesoscale
horizontal currents at 52m depth, and isobaths at 1000, 2000, and 3000m are superimposed in
grey contours

by innerproduct between the horizontal velocity fields and the interpolated basis
are corrected a posteriori by inverting the cross-correlation matrix between the
interpolated basis and the local basis issued from the Sturm-Liouville problem (6) on
the .u, v-grid. This allows us to obtain the projection coefficients .un and .vn defined
on the .u, v-points. Vertical velocity is then computed using the continuity equation
formulated with the discrete scheme employed in the NEMO code [Madec and the
NEMO team 2008].

The next step consists in separating the mesoscale contribution from the semi
diurnal internal tide. The latter is extracted by means of a complex demodulation
at a central semi-diurnal frequency .ω = 1.415×10−4rad s-1 and a low-pass
cutoff cutting period of 3 days. The mesoscale flow is directly low-pass filtered
with the same cutting period. The mesoscale slowly-variable buoyancy fields is
computed from the daily-averaged temperature and salinity, and the corresponding
stratification is then estimated from this buoyancy field and a mean sound speed
profile [using standard formula, see e.g. Vallis 2017].

Since our modal decomposition is inaccurate in areas of shallow water, a mask
is applied to remove all locations shallower than 300m in the Azores domain, and
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250m in the Gulf Stream domain. The mask is slightly shallower in the Gulf Stream
domain in order to retain the topographic generation occurring at the shelf break.

Since high modes are expected to propagate over shorter distances from their
generation site compared to low modes, we usually group the modes 4–10 together,
and interpret them as part of dissipative processes in the energy budget. Finally,
all terms of Eq. (15) display small scale patterns, particularly pronounced when the
mesoscale and internal tides interact. These patterns are not of particular physical
significance for the diagnostics discussed in this paper. Therefore, we apply a
Gaussian spatial filter before displaying any term in (15), with a kernel width equal
to 25 grid points (a little less than 40 km). This procedure is only applied for map
plotting.

4 Results

The energy budget of internal tides in both domains are examined in this section,
first by considering the geographical distribution of their generation, propagation
and sinks, and secondly by quantifying the spatially integrated and temporally
averaged energy budget.

4.1 Life Cycle of the Internal Tide

Both the Azores Islands and Gulf Stream domains are sites of powerful internal
tides generation, exposed to contrasted background conditions. The divergence
of the energy flux averaged in time over one month (for the period of October
2009) is shown in Fig. 1, along with the mesoscale currents at 52m depth and the
topography. In the Azores area, mode 1 energy flux originates from the seamounts
and propagates far away (at least 1000 km), indicating a moderate energy loss during
the propagation (Fig. 1, top left panel). Modes 2 (not shown) and 3 propagate over
shorter distances. All dominant sources and sinks are located around the topography
(visible in Fig. 1). For the third mode, we find a local loss of energy just next to the
generation at the seamount, of the same order of magnitude but smaller value. This
property holds for higher modes as well (not shown). In the Gulf Stream domain,
in contrast, the input of energy for mode 1 is located at the shelf break, producing
a strong offshore beam. This beam manifests strong energy loss as it propagates as
can be seen in the negative patch displayed in the mode 1 energy flux divergence,
Fig. 1, bottom left panel. A first hot spot of sinks for the mode 1 is directly next to the
shelf-break, another being at the encounter with the strong north-eastward current.
This beam is also refracted by the Gulf Stream, a behaviour previously reported in
Duda et al. [2018]. As we will show in the next section (cf. Figs. 2 and 3), this
loss of energy is mainly caused by the advection terms in Eq. (15) and is largely
converted in mode 2 energy. Mode 3 (Fig. 1, bottom right panel) displays a more
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complex repartition of sources and sinks, with an overall gain of energy at and near
the shelfbreak and an overall loss of energy further away from the land, where it
encounters the current. The sources and sinks of energy from modes 1 and 3 are
therefore much less localised around the prominent topographic feature than in the
Azores domain, and clearly exhibit strong interactions with the mesoscale currents.

4.2 Importance of the Different Contributions in the Energy
Transfers

We now focus on quantifying the causes of the multiple interactions of the internal
tide with its surrounding which results in the pattern in the energy flux divergence
previously described (Fig. 1).

4.2.1 Detailed View of Coupling Terms

To this aim, the modal energy budget (15) is integrated over the two domains
considered, averaged over the October month and the different contributions are
displayed under their matrix form in Fig. 3. The matrix are decomposed into their
anti-symmetric part (upper triangle) denoting a transfer of energy from mode to
mode, referred afterwards as scattering, and symmetric part (diagonal plus lower
triangle) showing sources or sinks for the internal tide. We have only plotted terms
of (15) that are of first order for at least one mode in one domain.

Amongst these terms, the topographic contribution is at least one order of
magnitude higher than all others for the barotropic mode in both domains and for
the first baroclinic mode in the Azores domain. However, for the Gulf Stream area,
the advection coupling becomes of similar magnitude for the first mode and exceed
the topographic scattering for modes 2 and 3. In the Azores domain, this is non
negligible for modes 2 and 3 but never exceeds the topographic contribution. In
this region, the second largest contribution is given by the variable stratification
coupling for the baroclinic modes. In The Gulf Stream area, the mesoscale vertical
shear production and the horizontal buoyancy gradient loss are also of first order.
However, as already found in Kelly and Lermusiaux [2016], these two terms seem
to compensate each other leaving a near zero energy gain for mode 1. The same
phenomenon approximately occurs for higher modes, cf. Fig. 2: the lower triangles
of buoyancy and shear matrix cancel out.

These dominant processes are dominated by their anti-symmetric part. The
topographic contribution is purely anti-symmetric by construction, while the sum
of the symmetric part for a given mode for the advection coupling is always smaller
than 10% of the sum of the anti-symmetric part when this term is significant
in regard to the topographic scattering. This quantity never exceeds 20% for the
variable stratification coupling in the Azores domain. For the Gulf Stream domain
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Fig. 2 Matrices .Knm

summarising the mean energy
transfer integrated over the
whole subdomains between a
mode n (row) and a mode m

(column). The upper-right
triangle is the anti-symmetric
part, and the lower-left
triangle (diagonal included)
the symmetric part. The sign
convention follows Eq. (15):
a positive value indicates a
gain of energy for the
reference—“receiving”—
mode m from n mode and
conversely. Modes 4 to 10 are
grouped together. From top to
bottom are the coupling
caused by the topography, the
internal tide advection by the
background flow, the terms
implying the horizontal and
vertical shear of the
background flow and the term
implying the gradient of the
buoyancy field (both variable
and annual mean). Notice the
different range of values in
the colorbar for the
topographic coupling terms
compared to the other ones

however, it is close to one for the first baroclinic mode, indicating that symmetric
and antisymmetric parts have comparable magnitudes. The background flow shear
and buoyancy gradient couplings have a dominant symmetric part, but these two
terms are cancelling each others. Last, if we sum all the contributions of the modal
energy budget (15), the symmetric transfer of energy is found to be worth less or
equal to 14% for modes 1 , 3 in both domains and 2 in the Azores one. Therefore,
the interaction between the mesoscale circulation and the internal tides mainly
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contribute to a scattering of modes equivalent to the one produced by the topography
without exchanges between the internal tides and the mesoscale circulation and
buoyancy field.

As a last comment, Fig. 2 shows that topographic scattering is the only process
that significantly transfers energy between non-neighbouring modes. For the other
dominant processes, the energy transfer toward non-neighbouring modes is one
order of magnitude lower than the one toward a neighbouring mode, except for
the variable stratification coupling in the Gulf Stream area. For the mesoscale
contributions, this implies that only the third mode is able to transfer energy toward
what we consider as part of dissipative processes.

4.2.2 Modal Energy Budget

We are now looking at a more aggregated view of (15) thanks to Fig. 3 which
shows the modal energy budget of mode 1, 2 and 3 for both domains. Here we
have separated the energy transfers with the following decomposition:

.Topographic Scattering : Cnm = pmun · Tnm − pnum · Tmn

.Advection of the internal tide : Anm = um · (Umn · ∇un) − um · unU
Φ
mn + pm

c2m
U

p
mn ·

∇pn

.Shear of background flow : ∇Unm = un · U∇
mn · um + um · Uz

mnwn

.Horizontal gradient of buoyancy field : ∇Bnm = pm

Hc2m
un · (B̄mn + Bmn)

.Surface contribution and advection of the mean stratification profile : Snm =
− pm

Hc2m
gϕm(η)Uh(η) · ∇η̃ − pm

c2m

∑
n pn

〈
ϕm,Uh · ∇h

(
N̄2

c2n
ϕn

)〉
.Variable stratification : Nnm = pm

c2m
wn

〈
ϕm,N2ϕn

〉
We also have separated the symmetric part (*) of the antisymmetric one, and have

furthermore divided the latter into an energy exchange coming from lower modes,
and an energy exchange going from higher modes (**). The flux coming from lower
modes is again divided into an energy transfer coming from the barotropic mode
(****), and transfers coming from the baroclinic ones (***). A positive value means
a transfer of energy toward the mode of interest.

If we consider i the index of the mode of interest and .Anm the energy transfer
matrix already separated into symmetric and antisymmetric part as in Fig. 2, then
we have :

.**** = A0i

.*** = ∑i−1
n=1 Ani

.** = −∑4
n=i+1 Ain

.* = ∑i
n=0 Ain − ∑4

n=i+1 Ani

Comparing the integrated value of the energy divergence flux, the Gulf-Stream
domain is overall less energetic than the Azores domain: mode 1 has a divergence
around 4 time larger in the last domain than in the first and modes 2 and 3 are also
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Fig. 3 Mean modal budget for modes 1 (top), 2 (middle row) and 3 (bottom) for the Azores
domain (left) and the Gulf Stream (right) domains, as described by Eq. (15). The divergence of
the modal flux is plotted in red, while others contributions are separated into the symmetric part
(green) and the anti-symmetric part where interaction with lower modes and with higher modes
(orange) are separated. The anti-symmetric part coming from low modes is furthermore separated
into fluxes coming from the barotropic mode (blue) and fluxes coming from the baroclinic modes
(fuchsia). A positive value means a gain of energy for the mode. Processes taken into account are
Topo : .Cnm , Adv : .Anm, shear : .∇Unm, ssh + Ns : .Snm, Buo : .∇Bnm , Strat : .Nnm

more energetic in the Azores area. In the results displayed in Fig. 3, the mode 1
in the Gulf-Stream domain is the only one to have an overall negative energy flux
divergence.

The barotropic mode has an importance in the energy budget of mode 1 to 3 only
through the topographic scattering, and is dominant in the energy budget of mode
1 for both areas. However, it becomes less important for modes 2 and 3, with a
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contribution to the topographic scattering toward mode 3 inferior to the one caused
by modes 1 and 2, but still significant.

Among the first order energy transfers exposed in all panels of Fig. 3, none
transfers energy from small scale to large scale. Mesoscale and topographic
couplings therefore create a forward energy cascade.

Last, Fig. 3 enables identifying the terms of the modal energy budget (15) that
are of negligible importance. The advection of ssh and stationary stratification are
negligible, which justifies gathering these terms in Eq. (15) in a small residual term.
Similarly, the astronomical tidal potential (not included in Fig. 3) only projects
weakly on the baroclinic modes. The mean of temporal variations of potential and
kinetic energy are also small: one month is enough to flatten the two weeks periodic
variation introduced by the spring neap cycle.

5 Conclusion

The semidiurnal internal tide energy budget was characterised based on a vertical
mode decomposition, allowing a detailed investigation of the energy transfers
amongst different vertical scales—and associated horizontal scales—of the internal
tide field. We showed that the Azores area, a region of weak mesoscale activity and
strong topographic features, is essentially dominated by the topographic induced
energy transfer from low to higher modes. While this effect is dominant for low
modes, variable stratification and—to a lesser extent—advection of the internal
tide by the mesoscale flow become of similar importance for high modes (equal
or larger than 2). Some questions remain concerning the precise role of the variable
stratification, in relation with the definition of the modal basis expansion and how
this definition would change the energy exchanges between modes. In the Gulf
Stream area, the importance of the advection of the internal tide by the background
flow is comparable to the topographic scattering, and even greater for modes 2 and
higher. The variable stratification term is less important. However, the net impact
of the mesoscale circulation on the energetic of internal tide is mainly limited to a
scattering of energy from the low to high-order modes. In comparison, exchange of
energy between the internal tide and the mesoscale fields are negligible: the energy
exchanged by modes 1 to 3 with the background is always less than 14% of the total
energy transfer for the respective mode.

The type of modal analysis conducted in the present paper on a high resolution
primitive equation simulation is able to give some insights on the energetic impact of
mesoscale circulation and its associated buoyancy field on the internal tide and the
transfer of energy from the astronomical tide toward dissipation. This work could be
extended by investigating the deep water mixing caused by these interactions. We
have in particular overlooked for now the internal tide dissipation, but it is worth
investigating in the near future.

Finally, the temporal variability of mesoscale—internal tides interactions will
also be studied in the near future.
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Sparse-Stochastic Model Reduction
for 2D Euler Equations

Paolo Cifani, Sagy Ephrati, and Milo Viviani

Abstract The 2D Euler equations are a simple but rich set of non-linear PDEs
that describe the evolution of an ideal inviscid fluid, for which one dimension is
negligible. Solving these equations numerically can be extremely demanding. Sev-
eral techniques to obtain fast and accurate simulations have been developed during
the last decades. In this paper, we present a novel approach that combines recent
developments in stochastic model reduction and conservative semi-discretization of
the Euler equations. In particular, starting from the Zeitlin model on the 2-sphere,
we derive reduced dynamics for large scales and we close the equations either
deterministically or with a suitable stochastic term. Numerical experiments show
that, after an initial turbulent regime, the influence of small scales to large scales
is negligible, even though a non-zero transfer of energy among different modes is
present.

1 Introduction

The 2D Euler equations are a fundamental model for ideal fluids [10]. During
the last two centuries, these equations have stimulated an intense activity both
in terms of mathematics and physics (see for example the seminal works of
Helmholtz and Arnol’d [14, 2]). In computational science and numerical analysis,
retaining at a discrete level the rich non trivial structure of these equations is still
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a challenging problem [1, 19]. One main computational issue is the “curse of
dimensionality”. Indeed, turbulent phenomena vary in different spatial and time
scales and the distribution of energy over a vast range of scales of motion makes
it computationally infeasible to fully resolve the flow in a numerical simulation.
A well-established technique to mitigate large computational costs is large-eddy
simulation (LES), where a spatial filter is applied to the governing equations after
which only the large scales of motion are resolved [13, 21]. The filter may be
defined explicitly, as a smoothing function where the filter width determines the
level of detail left in the filtered solution and is chosen by the user, or implicitly,
by coarsening the discretization operator. Either approach requires a closure model
to represent the effect of the filtered scales on the unfiltered resolved scales. In
this paper, we apply an explicit spectral cut-off filter to the 2D Euler equations,
where the cut-off frequency is based on observed intrinsic scale separation. This
filter leads to a discrete problem formulation in which matrix sparsity can be
exploited to reduce computational costs. At the same time, this formulation still
allows for an explicit representation of the effects of small scales on large scales.
The equations are closed by a deterministic or stochastic model term, based on
high-resolution measurements. Here, we choose to model small-scale flow features
using a stochastic term mimicking high-resolution numerical data. Subsequently,
we analyze the model performance by means of energy fluxes between the scales
of motion. The proposed stochastic closures and assessment of energy fluxes in the
high-resolution data can serve as a point of departure for further development of
stochastic closure models.

A peculiar aspect of 2D ideal fluids is the presence of infinitely many conserva-
tion laws. In particular, as firstly described by Kraichnain [18], the conservation of
energy and enstrophy (the .L2 norm of the curl of the velocity field) implies a double
cascade phenomenon: the energy tends to move from small scales to large scales,
whereas the enstrophy tends to follow the opposite direction. Hence, in terms of
the curl of velocity, or vorticity, it is possible to clearly separate two regimes: one
slowly evolving at large scales and one fast at small scales. This was shown to hold
numerically in [20] for the Euler–Zeitlin model on the sphere. Theoretically, the
study of non-deterministic fluid models for different regimes have gained interest in
the SPDE community [12]. The equations studied in [12] and the results proved
therein, show a precise connection between different space-time regimes with a
reduced model for large scales. Indeed, it is shown that a suitable model for large
scales is given by the so-called Stochastic Advection by Lie Transport (SALT)
equations [15], in which a transport noise term models the infinitesimal action of the
small scales on the large ones. Several numerical tests have shown the usefulness of
the SALT equations as a powerful tool for model reduction [6, 9].

However, defining precisely what large and small scales are is still an open
problem. In this paper, we present a criterion for defining large scales in terms
of truncation of the Fourier expansion. We point out that other choices and
interpretations of large and small scales are possible (see for example [20]). Let
us first introduce the governing equations for the vorticity field .ω, defined on the
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2-sphere .S
2 embedded in .R

3:

.
ω̇ = {ψ,ω}
�ψ = ω.

(1)

The Poisson bracket is defined as

.{ψ,ω} := ∇ψ · ∇⊥ω

and the Laplacian is the Laplace–Beltrami operator on .S
2. As mention above,

equations (1) have infinitely many first integrals: energy .H(ω) = 1
2

∫
S2

ψω,
Casimirs .Cn(ω) = ∫

S2
ωn, for .n ≥ 1, and angular momentum. Understanding the

role played by these invariants is still an open problem, especially for the long-time
evolution of the fluid [7].

In order to gain numerical insight on this question, V. Zeitlin proposed a spatial
discretization of (1), which retains many of the first integrals above [22, 23]. The
Euler–Zeitlin equations are defined as follows:

.
Ẇ = [P,W ]
�NP = W.

(2)

Here W is a .N × N skew-Hermitian matrix with zero trace, that is, an element
of the Lie algebra .su(N). The bracket .[P,W ] is the usual matrix commutator and
the discrete Laplacian .�N is defined such that its spectrum is a truncation of the
spectrum of .� [17]. As mentioned above, the Euler–Zeitlin equations possess the
following integral of motions: energy .H(W) = 1

2Tr(PW), Casimirs .Cn(W) =
Tr(Wn), for .n = 2, . . . , N , and angular momentum. The core of the Zeitlin model
is how the original vorticity .ω and the discrete one W are linked. Indeed, the
representation theory of .SU(2) provides a deep connection between the discrete
Laplacian .�N and a particular basis .{Tlm} of .su(N), for .l = 1, . . . , N − 1 and
.m = −l, . . . , m [17, 4]:

• each .Tlm is an eigenvector of .�N , with eigenvalue .−l(l + 1),
• for each .N ≥ 1, there exists a linear map .pN : C∞(S2) → su(N), defined

via the (real) spherical harmonics basis .{Ylm} as .pN(Ylm) = Tlm, if and only if
.l ≤ N − 1,

• .‖pN {ψ,ω} − N3/2[pNψ, pNω]‖ → 0, for .N → ∞, where the norm is the
operator norm.

The classical way to determine large and small scales is to choose a wave number
.l as a threshold for the large scales (see for example [3, 6]). In this work, we propose
the following criterion to set the threshold .l. Consider a time scale in which the
fluid’s energy spectrum profile has reached a stationary state. Then, typically (that
is, out of equilibrium) the spectrum exhibits a double slope, which determines a
kink at a certain wave number .l. Then, we define the large-scales .W as the filtered
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vorticity with modes up to .l, obtaining a banded matrix. We propose three possible
ways, both deterministic and stochastic, of closing the equations for .W , by choosing
different interactions with the small scales. Finally, we provide numerical tests to
assess the different models introduced.

2 Sparse-Stochastic Model Reduction

The Euler–Zeitlin equations (2) allow to study some typical features of the 2D fluids
in the matrix language. In this section, we propose a way to reduce the complexity
of the Eq. (2), by defining from W a sparse matrix .W which retains the relevant
large-scale information. Then, we show different ways of closing the equations for
.W , by adding a suitable stochastic term.

In the Zeitlin model, the basis element .Tlm of .su(N) has non-zero entries only
in the lower and upper .±m diagonal. If we look at the anti-diagonals, instead, we
are looking at the components determining the value of the vorticity field at certain
latitude bandwidth on .S

2, as shown in Fig. 1.
The large scales are typically chosen to be the modes such that l is smaller than

a threshold level .l. In the Euler–Zeitlin model, this corresponds to considering the
banded matrices limited in the diagonals .±l ≤ l and then removing the components
corresponding to .l > l. The Poisson equation which defines the stream matrix P

preserves this sparsity structure, since the basis elements .Tlm, the eigenvectors of
the Laplacian, are themselves sparse. However, the Lie bracket does not restrict to
this space. Indeed at each time-step we have to project the vector field into the right
space.

Usually, we do not have any chance to guess the contribution of the small scales
to the evolution of the large ones. However, we expect that after an initial turbulent
transition, the fluid exhibits two clearly separated spatial scales. The hint for such
a scenario is due to several numerical simulations of the Euler–Zeitlin equations
[3, 20]. Eventually, the energy profile reaches a fixed configuration with two slopes.
The first part of the spectrum represents the distribution of energy at large scales,
whereas the second part the distribution of energy at small scales. Typically, the
separation between large and small scales occurs at a wave number .l ≈ √

N .

Fig. 1 Structure of the discrete vorticity W in the Zeitlin model
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Fig. 2 Filtering of large-scale and definition of random small scale vorticity .W̃ , via the indepen-
dent Brownian motions .βlm

For wave numbers larger than .l the energy spectrum has the characteristic slope
of .l−1, which is the one of white noise, see Fig. 3. The universal nature of the
small scales suggests a model reduction in terms of large-scale evolution combined
with a stochastic term contribution. In Fig. 2, we show the procedure to get the two
new fields .W and .W̃ . To define .W , we introduce the orthogonal projection .π onto
the modes .l ≤ l. The small-scale field .W̃ is defined as the linear combination of
the basis elements .Tlm, for .l > l with coefficients .βlm as independent Brownian
motions, with mean and variance obtained from the high-resolution DNS. This
choice of coefficients ensures that the random field yields the same mean energy
spectrum at the small scales as measured from the DNS. Additionally, applying
the Kolmogorov–Smirnov and Anderson–Darling tests for normality to the high-
resolution data suggests that the distribution of the basis coefficients for .Tlm, for
.l > l̄, is Gaussian.

Hence, we define .W := πW and .W̃ := ∑N−1
l=l+1

∑l
m=−l β

lmTlm. With these
new fields, we essentially have three possible choices. The first one consists of a
deterministic closure simply via the projection of the vector field onto the large
scales:

.
Ẇ = π [P ,W ]
�NP = W,

(3)
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which we refer to as the no-model closure. The second model is the large scale
enstrophy-preserving stochastic closure, which is up to the projection .π a type of
SALT equation (see [15]):

.
dW = π [P ,W ]dt + ∑N−1

l=l+1

∑l
m=−l

1
−l(l+1)π [Tlm,W ] ◦ dβlm

�NP = W.
(4)

We recall that the symbol .◦ denotes the Stratonovich integral and indeed we find
that the large scale enstrophy is conserved, via

.d
1

2
Tr(W

2
) = Tr(WdW) = Tr(Wπ [P ,W ])dt

+
N−1∑
l=l+1

l∑
m=−l

1

−l(l + 1)
Tr(Wπ [Tlm,W ]) ◦ dβlm = 0,

being .πW = W and .[W,W ] = 0. Notice that the other large-scale Casimirs are not

preserved, since in general .πW
k �= (πW)k , for .k > 1.

Finally, the third model is a large-scale energy-preserving stochastic closure (see
[11] for its analysis and [16, 8] for more recent applications). We note that [16]
introduces this stochastic closure as Stochastic Forcing by Lie Transport (SFLT) and
provides its general definition. Here, we refer to this closure as energy-preserving
noise (EPN) and adopt the following definition:

.
dW = π [P ,W ]dt + ∑N−1

l=l+1

∑l
m=−l π [P , Tlm] ◦ dβlm

�NP = W.
(5)

The proof of conservation of the large scale energy for (5) is identical to the one
of large scale enstrophy conservation by noticing that .π commutes with .�N . The
benefit of the stochastic models (4) and (5) compared to the no-model closure is
that the stochastic models provide an explicit representation of the small-scale flow
features and, doing so, aim to truthfully affect the evolution of the large scales of
motion. No such representation is included in the no-model closure. In the next
section, we perform a numerical test for the three different models (3), (4), (5),
comparing them with the high-resolution DNS.

3 Numerical Simulations

In this section, we carry out a numerical experiment to study the performance of the
models proposed in the previous section. The numerical experiment is conducted as
follows. We set the high-resolution level at .N = 128. Then we generate a random
initial condition and we run a high-resolution DNS. We stop the simulation once
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Fig. 3 Initial vorticity obtained via high-resolution DNS. Top left, the field W , top right, the
filtered field .W , bottom left, .W − W , bottom right, the energy spectrum of W . Note the change of
slope in the energy profile at .l ≈ √

N

a stationary energy profile is reached (see Fig. 3). The solution at this point in
time defines the initial condition of the reference solution and the ensuing model
simulations.

From the DNS we select the large-scale threshold as wave number .l ≈ √
N , at

which the kink in the energy spectrum appears. In our numerical simulation the kink
is found to be at .l = 14.

Remark 1 The kink in the energy spectrum must depend on the truncation level
N . Indeed, it was shown that the tail of the energy distribution at small scales for
conservative schemes, like the Euler–Zeitlin one, has a characteristic slope of .k−1.
This would imply unbounded energy for .N → ∞, which contradicts the fact that
we only consider vorticities with bounded energy. Therefore, the kink wave number
between the two slopes in the energy profile must increase with N . Numerically, we
have observed that it grows like .

√
N .

Then, we define our large-scale field as .W := πW , where .π denotes the
orthogonal projection onto the modes for .l ≤ l. The projection consists of two
steps: first we extract the components up to .l and then we generate the field .W .
The cost of calculating each component is .O(N) and since we need to repeat this

operation .l
2 − 1 ≈ N times, the total cost of extracting the components is .O(N2).

Clearly, to construct the field .W we have to perform .O(N2) operations. Hence, the
total computational cost of the projection .π is .O(N2). Hence, given two matrices
.A,B ∈ su(N), the cost of evaluating .π [πA, πB] is given by the evaluation of
.π plus the cost of multiplying .πA and .πB. Since we are interest only in the .±l
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diagonals we need to perform .O(Nl) vector-vector multiplications of the cost .O(l),

which implies a total cost of .O(Nl
2
) ≈ O(N2). The same cost .O(N2) holds for the

stochastic term, since we can actually consider only .m = −l, . . . , l. We also define
.W̃ , as explained in the previous section. Finally, we define the reference solution
as the high-resolution numerical simulation using the initial condition previously
defined. The large-scale field obtained by projecting this initial condition serves as a
starting point for the simulations where the small scales are modeled as described in
Eqs. (3), (4), (5). All simulations are run for 250 time units from the initial condition.
In our numerical simulations, the time integration is done via the Heun-type scheme
adapted for the SDEs, with time-step .h = 0.25. In the following, we perform
an ensemble of realizations for the stochastic closures. Each ensemble consists of
25 realizations, which is sufficient to show the qualitative difference between the
proposed models.

We notice from Figs. 4 and 5 that the no-model solution and the mean SALT
solution perform well compared to the reference solution, in terms of qualitative
vorticity evolution as well as the kinetic energy spectrum. On the contrary, the
energy-preserving scheme loses accuracy and a cascade of energy to lower wave
numbers occurs. We attribute the observed difference between SALT and EPN to
two causes. Firstly, the orders of magnitude of the stochastic terms entering the
equations differ between the methods. The stochastic forcing types are parametriza-
tions of components of the effect of small scales on large scales, respectively given
by .π [P̃ ,W ] and .π [P , W̃ ]. Figure 6 shows these quantities for a high-resolution
snapshot, which illustrates that the term parametrized by the EPN is significantly
larger than the term that SALT parametrizes. Therefore, it is reasonable to expect
that the proposed use of EPN leads to more substantial deviations from the no-model

Fig. 4 Evolution of the large scales over 250 time units, via the different models proposed and the
high-resolution simulation. No model corresponds to (3), SALT to (4) and EPN to (5). The shown
results using SALT and EPN are the mean of an ensemble each consisting of 25 independent
realizations
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Fig. 5 Energy spectra at .t = 250 using SALT (left) and EPN (right), both computed from an
ensemble of 25 independent realizations and compared to the reference and no-model energy
spectra. Note that the standard deviation of the ensemble obtained using SALT is too small to
discern in this figure

Fig. 6 Components of the evolution of the reference vorticity projected onto the large scales,
generated from the reference vorticity field at .t = 250. Note that the ranges of the color bars vary
per field, which highlights the difference in magnitudes between the fields

simulation than the use of SALT. In fact, the proposed use of SALT only leads
to very small changes compared to the no-model setting. Secondly, in the energy-
preserving scheme, no energy can leave the large scales. Hence, if the transfer of
energy between different modes is non-zero, the conservation of the large-scale
energy prevents the energy to flow from large scales to small scales, causing an
extra accumulation of energy .l ≈ l.
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In order to check this thesis, we compute the energy transfer among different
modes in the high-resolution DNS. Let us consider the energy at a level l:

.E(l) = 1

2

l∑
m=−l

ω2
lm

l(l + 1)
.

Then, the energy variation in time is given by

.
dE(l)

dt
=

l∑
m=−l

ωlm[P,W ]lm
l(l + 1)

.

Let .F(l) := | dE(l)
dt

| be the absolute value of the energy transfer due to the
nonlinearity of the vector field .[P,W ]. In Fig. 7, we plot the energy transfer
contributions of the four possible couplings of large and small scales. We notice
that the transfer of energy between large and small scales is non-zero. In particular,
the main driver of the energy for the components of .W is the vector field .[P ,W ],
whereas for small scales it is .[P , W̃ ].

The plots in Fig. 7 show that the term .[P , W̃ ] becomes more and more relevant
in the energy flux at large scales, while approaching the threshold level .l̄. Therefore,
one might expect the stochastic model (5), which takes into account this term too,
to be more accurate than (3) or (4). However, form Figs. 4 and 5 this does not seem
the case. Indeed, the way we model the term .[P , W̃ ] in (5) prevents the energy from
flowing from large scales to small scales. However, also in (3) there is no energy
flow from large scales to small scales. Therefore, we suggest that at large scales
the term .[P , W̃ ] is responsible for redistributing the energy from lower to higher
frequencies and in absence of a dissipation mechanism the rearranging of energy
diverges from the correct spectrum.

The fact that (3) and (4) perform equally well is quite surprising and indicates that
the small scales do not affect the large scales much when a stationary energy profile

Fig. 7 Energy transfer among different modes computed from a snapshot of the high-resolution
simulation. Left, energy transfer among modes at large scales, right, at small scales
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is reached. However, for much longer times than those we have run, it is possible
that the effect of small scales on large scales become more relevant and (4) becomes
more accurate than (3) in terms of large-scale dynamics. Further investigations on
this aspect are ongoing research and will be presented in future work.

4 Conclusions and Outlook

In this paper, we have presented a possible strategy to reduce the complexity of the
Euler–Zeitlin model, while performing long-time simulations. Numerical evidence
shows that the Euler–Zeitlin equations exhibit a clear separation of scales such that
the large-scale dynamics are quite robust to different couplings with small scales,
either deterministic or stochastic. Interestingly, the energy-preserving scheme we
have defined shows that the energy at large scales cannot be exactly conserved. This
means that large and small scales are never completely decoupled, even when the
energy spectrum profile reaches a stationary regime. This indicates that for very
long times a non-zero transfer of energy among different scales is present.

The Zeitlin model has been criticized for unrealistic conservation of enstrophy
and other Casimirs at a finite level of truncation N . Our result shows that this issue
can be understood such that the Euler–Zeitlin equations are quite robust and precise
in describing large scales, which means for wave numbers .l ≈ √

N . On the other
hand, the remaining modes are themselves a model for the small scales, which
correctly mimic the energy flux among different modes.

In conclusion, we have shown that the Zeitlin model can be a useful tool for
simulating long-time large-scale dynamics. In future work, we aim to perform more
systematic simulations using the parallelized code developed in [5] and available
on https://github.com/cifanip/GLIFS. Additionally, further analysis of energy and
enstrophy transfers between the scales of motion may serve to derive tailored data-
driven stochastic closure models for the Euler-Zeitlin equations.
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Effect of Transport Noise
on Kelvin–Helmholtz Instability

Franco Flandoli, Silvia Morlacchi, and Andrea Papini

Abstract The effect of transport noise on a 2D fluid may depend on the space-
scale of the noise. We investigate numerically the dissipation properties of very
small-scale transport noise. As a test problem we consider the Kelvin-Helmholtz
instability and we compare the inviscid case, the viscous one, both without noise,
and the inviscid case perturbed by transport noise. We observe a partial similarity
with the viscous case, namely a delay of the instability.

1 Introduction

Stochastic transport is a new fundamental perspective on fluid dynamics, see e.g.
[29, 39, 13, 8] and [22]. A transport type noise in a fluid dynamic model may be
seen, loosely speaking, as a simplified description of small-medium space-scales of
motion. In the numerical simulations (see for instance [8]) we may observe the way
it perturbs large scale motion; in general, this perturbation destabilizes large scales
producing smaller eddies.

This has been observed for homogeneous noise where small scale perturbations
with possibly local backscattering of energy are observed. While there are cases in
which transport noise has been shown also to trigger secondary circulation at large
scales for inhomogeneous noises [3].

In this note we want to explore how transport noise may affect large scales, some-
what opposite to the one mentioned above. The key difference is the assumption
that it is very-small-space-scale. The noise used below is made of very small, low
intensity, vortex structures. In such a case it may happen that the transport noise acts
as a dissipation, an additional viscosity.

It corresponds to Joseph Boussinesq intuition [6] that “turbulent small scales
may be dissipative on the mean flow”. The physical intuition, beyond the specific

F. Flandoli (�) · S. Morlacchi · A. Papini
Scuola Normale Superiore, Pisa, Italy
e-mail: franco.flandoli@sns.it; silvia.morlacchi@sns.it; andrea.papini@sns.it

© The Author(s) 2024
B. Chapron et al. (eds.), Stochastic Transport in Upper Ocean Dynamics II,
Mathematics of Planet Earth 11, https://doi.org/10.1007/978-3-031-40094-0_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40094-0protect T1	extunderscore 3&domain=pdf

 885
56845 a 885 56845 a
 
mailto:franco.flandoli@sns.it
mailto:franco.flandoli@sns.it
mailto:franco.flandoli@sns.it

 9723 56845 a 9723 56845 a
 
mailto:silvia.morlacchi@sns.it
mailto:silvia.morlacchi@sns.it
mailto:silvia.morlacchi@sns.it

 19084 56845 a 19084
56845 a
 
mailto:andrea.papini@sns.it
mailto:andrea.papini@sns.it
mailto:andrea.papini@sns.it
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3
https://doi.org/10.1007/978-3-031-40094-0_3


30 F. Flandoli et al.

mathematical derivation, is that fluid particles move so erratically to produce effects
similar to the molecular motion. In a sense, it is like a macroscopic version of the
molecular dynamics: as macroscopic kinetic energy transfers to molecular kinetic
energy (heat), reducing the macroscopic motion, similarly large-scale kinetic energy
moves to small scale turbulence and reduce the intensity of the mean flow. There
have been many attempts to prove the validity of this picture, see for instance [5, 16,
21, 32, 30, 44], but a final conclusion is not clear, also because the empirical validity
is sometimes moderate [32, 41]; in particular, the inverse cascade in 2D seems to
break the viscosity effect due to small-scale turbulence [14].

However, this idea is certainly very useful for numerical simulations of fluid
dynamics model, being the basis of the LES method [5], and, in case of vorticity
equations, the vortex blob method [11].

Theoretically, this kind of turbulent-small-scale transport noise has been investi-
gated in rigorous works. This line of research was initiated in [23] and developed in
several works, see e.g [16, 19] and many others (see [22]).

However, its stabilizing power has not been tested numerically yet. Here we
observe its action on one of the strongest and most common instabilities: the
Kelvin-Helmholtz one. This is an instability that occurs when a velocity difference
across the interface between two fluids is present, producing macroscopic vortex-
like structures. For a description of Kelvin-Helmholtz instability see [31] or [36],
Chapter 6, and our description below; as a typical instability of shear flows, see
also [14].

We compare the inviscid case, the viscous one, both without transport noise, and
the inviscid case perturbed by transport noise. The results are described in Sect. 4
. Since we approximate the fluid dynamic equations by vortex methods, which fits
quite well and in a unified way with the three cases analyzed here (inviscid, viscous
and stochastic transport), we describe some preliminaries on this topic in Sects. 2
and 3.

2 Model Formulation

We consider the two-dimensional flow of an incompressible fluid on a 2D domain,
either the full plane or .T

2, the 2D torus with periodic boundary conditions.
As usual, the equations for the motion of the fluid are the conservation of mass

and linear momentum, see e.g. [2], expressed through the Navier-Stokes equations
in the null-divergence formulation. The main interest for our numerical simulations
is the equation for the evolution of vorticity .ω(t, x), which can be derived from the
Navier-Stokes equations:

.∂tω + u · ∇ω = ν �ω . (1)

Here .ν is the kinematic viscosity, and u is the velocity of the fluid solving the NS-
equation. In the 2D case, we can express .ω := ∇ × u as the curl of the velocity
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field, a vector normal to the flow plane. We denote .x = (x1, x2) to be any point in
the domain.

2.1 Point Vortex Method for Inviscid Flows

In order to state the problem we investigate numerically, we first recall several
well-known facts; for a general introduction, see e.g. [36, 37, 43]. For the sake of
simplicity, we focus on an inviscid fluid; the vorticity equation (1) reduces to,

.∂tω + u · ∇ω = 0, (2)

From the null-divergence hypothesis, if u has zero average we can define a stream
function associated to the fluid .ψ(t, x), see [2], such that the velocity u is given by
.u = −∇⊥ψ . We obtain the stream function by solving the Poisson equation

.�ψ = −ω. (3)

To compute the solution, we need to express the Green’s function and the convolu-
tion with the variations of constants methods, which for flows in the full plane .R

2

reads as

.ψ(t, x) =
∫

G(x − y) ω(t, y) dy := G ∗ ω, (4)

where G is the Green’s function, the fundamental solution of the Laplace equation.
The explicit form of G in the full plane .R

2 is

.G(x, y) = 1

2π
log(| x − y |). (5)

Using (4) we obtain the velocity field

.u(t, x) =
∫

K(x − y) ω(t, y) dy := K ∗ ω, (6)

where K is given by

.K(x) = ∇⊥G(x). (7)

Equations (6) and (7) for the velocity are known as the Biot-Savart law, and K is the
Biot-Savart Kernel. Note that we must correct this velocity for flows over bounded
or periodic boundaries domains to satisfy the boundary condition (See Sect. 4.1, for
details). Therefore, we have to change the Green’s function according to the Poisson
equation.
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Consider now a fluid particle X.t , moving in the velocity field; from (2), the path
of the particle is

.
d

dt
Xt = u(t,Xt )

ω(t,Xt ) = ω0(X0).

Therefore, considering the fluid as distinct “fluid particles” of constant vorticity,
these abstract objects’ motion determines the scalar field’s evolution. This is the
premise of the point vortex method to compute (2), (see [36, 37] and [43] for details).

To this end, consider N point vortices, idealizing a 2D inviscid fluid and occu-
pying positions .X1

t , ..., X
N
t , with intensities (circulations) .�1, ..., �N respectively.

They move accordingly to the following set of ordinary differential equations
derived from the previous computations (8):

.
dXi

t

dt
=

∑
j �=i

�jK
(
Xi

t , X
j
t

)
(8)

where the vector-valued kernel .K (x, y) is the Biot-Savart kernel, equal to .
1
2π

(x−y)⊥
|x−y|2

in full space, suitably modified on a torus or in a bounded domain (see Sect. 4.1).
We refer to [15] for well-posedness of the ODE system for almost all initial
configurations (including the case when the system is perturbed by additive noise).
One can prove that the empirical measure

.ω (t, ·) :=
N∑

i=1

�iδXi
t

is a weak solution of 2D Euler equations in vorticity form (suitably interpreted
for distributional fields as in [42]), see [24] and [26, 27] for a discussion of well-
posedness in this context):

.

∂tω + u · ∇ω = 0

u (t, x) =
∫

K (x, y) ω (t, y) dy

ω|t=0 = ω0

(9)

with .ω0 := ∑N
i=1 �jδXi

0
. Here .ω is the (scalar) vorticity, u is the (vector) velocity.

Moreover, consider the empirical measure parametrized by N and rescaled by
.1/N :

.ωN (t, ·) =
N∑

i=1

�i

N
δXi

t
.
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In [36] a convergence result to Euler equations was proved under some restrictions
(specifically, in that case .Xi

t solves a vortex dynamics with mollified Biot-Savart
Kernel, with vanishing mollification as .N → ∞, with rates of converge of the
parameters a bit far from optimal). The best result in the literature of convergence
to Euler equations was then [42], see also other references therein.

Notice that the velocity field associated to the distributional vorticity .ωN (t, ·) is

.uN (t, x) := 1

N

N∑
i=1

K
(
x,Xi

t

)
.

This is a well defined vector field, of class .L
p
loc for every .p < 2 but not for .p = 2.

2.2 Point Vortex Method for Viscous Flows

To investigate viscous flows, following [10, 33, 38], we modifying the previous
scheme by adding independent 2D Brownian motions .W 1

t , ...,WN
t to the equations

of point vortices

.dXi
t =

∑
j �=i

�jK
(
Xi

t , X
j
t

)
dt + √

2νdWi
t . (10)

Then, the empirical measure .ωN (t, ·) converges weakly, in probability, to the unique
solution of the 2D Navier-Stokes equations in vorticity form

.

∂tω + u · ∇ω = ν�ω

u (t, x) =
∫

K (x, y) ω (t, y) dy

ω|t=0 = ω0

(11)

We refer to [7] for convergence to 2dNS on the full plane, and to [33, 38, 25] for
results in the case of domains with boundary.

3 Point Vortex Method with Environmental Noise

As mentioned above in the Introduction, several works, e.g. [29, 39, 13, 28, 9, 8]
and [22], indicated an interest in the following stochastic modification of the Euler
equations
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.dω + u · ∇ωdt =
∑
k∈K

σk · ∇ω ◦ dBk
t (12)

where .σk = σk (x) are given vector fields, that we assume divergence-free, .
(
Bk

t

)
k∈K

are independent 1D Brownian motions and the stochastic operation .◦ stands for the
Stratonovich integral. Due to this, formally, vorticity is conserved (it is transported
randomly by the field .u dt + ∑

k∈K σk ◦ dBk
t ).

This model bears similarities with the viscous flows, and the objective of this paper
is to show differences and similarities of the elliptic operator obtained from such a
transport-advection noise.

3.1 Transport Noise and Deterministic Scaling Limit

The point vortex dynamics associated to the model (12) is then given by the
following expression:

.dXi
t = 1

N

∑
j �=i

K
(
Xi

t , X
j
t

)
dt +

∑
k∈K

σk

(
Xi

t

)
◦ dBk

t . (13)

Notice that this is a model of common noise (also called environmental noise): the
BM’s .Bk

t are the same for all particles, in contrast to the model (11) where each
particle .Xi

t was affected by an independent BM .Wi
t . See [18] for an example of

theoretical results on this model. For models similar to this one, it has been proved
(see e.g. [12]) that the empirical measure converges to the solution of the SPDE (12).
At the same time, following [23] and subsequent works, if the noise is parameterized
in such a way to become more and more small scale, the SPDE (12) converges to the
deterministic equation with additional viscosity (see Sect. 3.2 for details on possible
noise selection)

.∂tω + u · ∇ω = ν�ω. (14)

Inspired by [20], we consider a sort of mixed scaling limit: we take the point
vortex dynamics with common noise (13), which for given fields .σk would converge
to the SPDE (12), and we choose more and more small scale coefficients .σk in order
to be close to the deterministic equation (14).

The scheme just described has two parallel interpretations. If we look at the point
vortex dynamics just as a numerical method of discretization of Euler equation,
the transport noise in the point vortex dynamics (13) is just like the transport
noise in the Euler vorticity dynamics (12). Therefore the scaling limit when the
coefficients .σk more concentrated is a numerical realization of the theoretical scaling
limit investigated in [16], from the stochastic Euler equation to the deterministic
Navier-Stokes equation and, as such, it is a form of proof of the validity of
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Boussinesq hypothesis that small scale turbulence enhances the viscosity. That is
the first interpretation. The second one is more related to particle systems and
noise. Consider the particle system (13), having common noise and compare it
with the more classical particle system with independent noise acting on each
particle (Sect. 2.2 above). In the scaling limit of .σk described above, the common
noise becomes more and more spatially de-correlated, close to independent noise at
each space position, and thus it acts almost independently on each particle. Since
point vortices with independent noise converge to the Navier-Stokes equations, it
is natural to expect that also with common noise but very concentrated .σk the
empirical measure of the particle system is close to the solution of the Navier-
Stokes equations. This viewpoint has been investigated theoretically in [20], while
the subject of linking the turbulence stresses to the mean flow, which is in synthesis
the Boussinesq idea, was explored in appendix A and B of [40] and theoretically in
[17], providing a link to eddy viscosity and an environmental small scale noise.

3.2 A Digression on the Theoretical Selection of the Noise

In this section, in the same spirit as [20, 22, 40], we explore some property of the
environmental noise that we use in a simplified way in our numerical simulations.
Following the works on modeling of passive scalars [34], when considering the
scaling limit of (13) to .ω(x) solution of the viscous Euler equation (14), we consider
a model of noise in the fluid which is delta-correlated in time, namely a white noise
with a precise space dependence.

.W (t, x) dt =
∑
k∈K

σ k (x) dBk
t (15)

where .(σ k (x))k is a family of smooth divergence free vector fields on the 2D domain
of the equation, and .Bk

t are independent one-dimensional Brownian motions; K is,
usually, a finite index set, but with suitable assumption we could consider also the
case of countable family of smooth fields.
In this case, the term .W (t, x) · ∇ω (x) obtained in the convergence result of the
point vortex empirical measure, must be interpreted as a Stratonovich integral

.

∑
k∈K

σ k (x) · ∇ω (x) ◦ dBk
t . (16)

Assume that the solution is sufficiently smooth so that the Stratonovich integral
makes sense, then this is given by an Itô-Stratonovich corrector plus an Itô integral;
precisely, is given by:
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. − 1

2

∑
k∈K

σ k (x) · ∇ (σ k (x) · ∇ω (x, v)) dt + dM (t, x)

where .M (t, x) is a (local) martingale. Follows that the Itô-Stratonovich corrector
takes the form of an elliptic operator:

. − 1

2
div (C (x, x) ∇ω (x)) dt

where .C (x, y) is the space-covariance function of the noise

.C (x, y) =
∑
k∈K

σ k (x) ⊗ σ k (y) .

As an example, we take the noise [34], which is relevant to our numerical
investigation in the choice of the divergence-free field in the point vortex model.
For simplicity, assume the domain to be .R

2, but modifications on .T
2 are possible,

see for example [16, 20].
Its covariance function is space-homogeneous, i.e. .C (x, y) = C (x − y), with

the form

.C (z) = νk
ζ
0

∫
k0≤

∣∣k∣∣<k1

1

|k|d+ζ
eik·z

(
I − k ⊗ k

|k|2
)

dk.

The famous Kolmogorov 41 case follows if we take .ζ = 4/3. Taking .k1 = +∞,
then .C (0) = Kσ 2 where the constant K is given by

.K =
∫
1≤∣∣k∣∣<∞

1

|k|d+ζ

(
I − k ⊗ k

|k|2
)

dk.

We consider small-scale turbulent velocity fields depending on a scaling parameter
and taking the scaling limit in (12), as in [20, 23]. In the case of [34] we have

.k0 = kN
0 → ∞

The result .C (0) = Kν is independent of N , so that the Itô-Stratonovich corrector
becomes equal to

.ν�ω (x) ,

and simultaneously, we may have that the Itô term goes to zero, hence recover-
ing (14).

Let us sketch the argument (see [16] for details) which explains why the Itô term
may go to zero, in spite of the convergence to a finite non-zero limit of the Itô-
Stratonovich corrector. Let .φ be a smooth test function. One has
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.E

⎡
⎣(∑

k∈K

∫ T

0
〈σk · ∇ωt , φ〉L2 dBk

t

)2
⎤
⎦ = E

[∑
k∈K

∫ T

0
〈σk · ∇ωt , φ〉2

L2 dt

]

by the isometry formula of Itô integrals,

. = E

[∑
k∈K

∫ T

0
〈ωt , σk · ∇φ〉2

L2 dt

]

since .div σk = 0,

. = E

[∫ T

0

∫ ∫ ∑
k∈K

σk (x) · ∇φ (x) σk (y) · ∇φ (y) ω (t, x) ω (t, y) dxdydt

]

= E

[∫ T

0

∫ ∫
∇φ (y)T · C (x, y) · ∇φ (x) ω (t, x) ω (t, y) dxdydt

]

= E

∫ T

0
〈Cθt , θt 〉L2 dt

where is the linear operator on vector fields with kernel .C (x, y) and .θt (x) =
∇φ (x) ω (t, x),

. ≤ ‖C‖L2→L2 E

∫ T

0
‖θt‖2L2 dt.

Now, one can prove uniform bounds on .E
∫ T

0 ‖θt‖2L2 dt with respect to the scaling
of the noise and one can choose a noise such that .‖C‖L2→L2 goes to zero. Notice
that in the Itô-Stratonovich corrector only the diagonal .C (x, x) counts, while the
smallness of .‖C‖L2→L2 is related to the smallness of .C (x, y) when .x �= y.

4 Numerical Results

4.1 Setting: Kelvin–Helmholtz Instability

In this section, we investigate classical results on the shear flow model in the setting
of point vortices, analyzing the Kelvin–Helmholtz instability and the possibility of
delaying the structure formation. In this way, we can both test the goodness of our
point vortex models and, at the same time, set a benchmark for which we will show
delayed instability. In order to test the point vortex model in the classical cases (8)
and (10), we choose the particular fluid configuration of a shear flow because of its
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fundamental property: developing instability without viscosity and delaying it when
viscosity is present [36].

We work on the torus .T
2 equal to the set .[−1, 1]2 / ∼ with coordinates .x =

(x1, x2) and identified boundaries at .x1, x2 = ±1; all fields are periodic in the .x1
and .x2-direction. We take an initial velocity .u0 of the form

.u0 (x1, x2) =
(
u01 (x2) , 0

)

and corresponding vorticity .ω0 = ∂x2u
0
1 (x2). We choose, in particular, the function

.u01 (x2) =
⎧⎨
⎩

−1 if x2 ≤ −δ
x2
δ

if −δ ≤ x2 ≤ δ

1 if δ ≤ x2

(17)

where we fix .δ = 0.02 in our numerical simulations.
To compute the vorticity measure of our point vortices, we use vortex blobs,

obtained by spreading the circulation of a point vortex over a chosen small area, the
vortex core (see e.g. [43]). In this formulation, the vorticity field is approximated by

.ωN
ε (x, t) =

∑
i

�i φε(x − Xi
t ), (18)

where the mollifier .φε (in our numerical simulations a Gaussian kernel with width
dependent on the subscript .ε, the characteristic size of the vortex core) describes the
vorticity distribution in the vortex core. Following standard numerical techniques
(see e.g. [4, 1]), the core size .ε of the vortices has to be much larger than the average
spacing d between the vortices; the core size is usually taken to be .ε = dq , with
.q << 1.

In (18), the vorticity distribution at any time depends on the point vortices .Xi
t

through the vortex blobs. In our numerical simulations, we take .N ∼ 104 point
vortices; following a mean-field approach, the initial circulation for every given
point vortex is derived from .u01 and is equal to .�i

0 = 1
2δN . We solved the point vortex

model (8) using a 2nd order Runge Kutta scheme coupled with a Heun techniques
for the noise, for a second-order time discrete approximation; the time step for our
simulations was selected to be .�t ∼ 10−3 to ensure a trade-off between the stability
of our method and the generation of vortex-like structures in the shear flow model.

In the usual way, we also recall that in our numerical framework, the kernel
K in (13) corresponds to the Biot-Savart kernel. We have that .K = ∇⊥G =
(∂2G,−∂1G), where G is the Green function on .T

2. In the whole plane we have
the simple expression .GR2 = 1

2π log |x|; while for our domain we know that

.G(x) = 1

2π
log |x| + s(x), ∀x ∈ T

2 \ {0}, (19)
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and .s(x) is a smooth function on .T
2. Thus, K is divergence-free, smooth away from

the origin, and symmetrical; moreover, it holds the following behaviour:

.|K(x)| ∼ 1/|x|, as |x| → 0,

which we extensively use to approximate our kernel with .KR2(x − y) = 1
2π

(x−y)⊥
|x−y|2 ,

throughout the numerical simulations. Without ambiguity, from here on, we con-
sider the horizontal and vertical axes as our reference frame, naming them the x-axis
and y-axis, as usual.

4.1.1 The Role of Intrinsic Instability

We know that, at least formally, the vector field .u = u0 is a solution of Euler
equation (14) with .ν = 0. This system is unstable: small perturbations rapidly
develop vortex blobs. As such, we consider the system of point vortices .(Xi

t )i with
initial vorticity, derived from (17), and expressed as

.ω0(x1, x2) := 1

N

∑
i

1

2δ
δXi

0
(x1, x2), (20)

where the circulation for each point is equal to .
1

2δN and the initial positions of the
vortices .Xi

0 ∀i = 1, ..., N are uniformly distributed on the strip .[−1, 1] × [−δ, δ].
The randomly generated initial condition represents small perturbations in the
system and is responsible for the different pattern formation.

The measure .ωN
t := 1

N

∑
i δXi

t
converges, in distribution, to the scalar vorticity

field solution of the Euler equation (14); analogously with the continuous case, we
see in Fig. 1a, c the development of instability in the form of macroscopic vortex-
like structure on the boundary of the two fluid layers.

Note that the number of such macroscopic vortex-like structures and their
position is entirely dependent on the initial condition: small perturbations on
the randomly generated point vortices can produce entirely different macroscopic
vortex-like structures, hence the instability of the two laminar fluids’ profile.

4.1.2 The Role of Viscosity and Stability Restoration

The exact solution of the Navier-Stokes equation (14), with .ν > 0 and initial
condition .u0, is given by

.u (t, x1, x2) = (u1 (t, x2) , 0) ,

where .u1 (t, x2) solves the heat equation,
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.∂tu1 = ν∂2x2u1 (21)

u1 (0, x2) = u01 (x2) .

Due to the spreading of the profile .u01, the solution becomes more stable; namely,
the development of macroscopic vortex-like structures is delayed. In our numerical
simulations, we reproduce this phenomenon by perturbing the system (8) through
independent Brownian motions .Bi

t , i = 1, ..., N , with variance linked to the
viscosity parameter: .V ar(Bi

t ) ∼ √
ν. This system converges to the exact solution

when .N → ∞; however, in our numerical study we are dealing with a finite system.
For this reason, the profile of the strip remains quite stable for short times, with just a
spread along the y-axes.We report in Fig. 2a, b a single configuration at two different

Fig. 1 .ν = 0. (a): initial
configuration, approximating
a shear flow fluid dynamics;
(b): iteration .t = 50,
formation of macroscopic
vortex structures; (c):
iteration .t = 100, perfectly
developed macroscopic
vortex structures
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timesteps, .t = 50 and .t = 100; we take .
√

ν = 0.095 to better focus on the stability
restoration. Our results are in agreement with the theory: from a comparison with
Fig. 1b, c, we see that when .ν > 0, the profile is much more stable and diffused
than in the deterministic case, and macroscopic vortex-like structures appear only at
large times.

4.2 Numerical Results on Environmental Noise

4.2.1 Selection of Divergence Free Field

Starting with the same initial condition (17), we consider .N + M point vortices,
each of which we associate with a position in .T

2 in the following way:

.X1
t , ..., X

N
t , Y 1, ..., YM.

Here, the vortices .Y i, i = 1, ...,M do not move, and when their interactions with
point vortices became not negligible, they represent the feedback of small-scale
turbulence acting on the fluid itself on large scales.

The new simulated vortex dynamics for .Xi
t in .T

2 as in (13), reads

Fig. 2 ν > 0. (a): iteration
t = 50, preservation of strip
profile; (b): iteration t = 100,
first development of the strip
profile’s instability, formation
of large rotating structures

x

y

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.15.00.05.0−0.1−

(a)

x

y

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.15.00.05.0−0.1−

(b)



42 F. Flandoli et al.

.dXi
t = 1

N

∑
i′ �=i

�i′K
(
Xi

t − Xi′
t

)
dt +

∑
j

σj (X
i
t ) ◦ dW

j
t

with periodic boundary conditions, where .W
j
t are Brownian motions, all indepen-

dent and uni-dimensional, and they are acting simultaneously on all the particles .i =
1, ..., N . The environmental noise follows the Stratonovich integral prescription,
automatically implemented in Heun’s method [35].

We choose the divergence-free vector fields .σj as

.σj (X
i
t ) := a

N,M
j K

(
Xi

t − Y j
)

, j = 1, ...,M

following the theoretical analysis performed in [22, 20]. Here, the intensities .a
N,M
j

are linked to the scaling limit process, which produces a viscosity term on the
large scales, and K , the Biot-Savart kernel, simulates the action of such small
vortices. The idea behind such a selection is that we want to exploit the same
features of the vortex model, with the formation of small-scale vortex structures
generating feedback on the entire configuration. In the limit, the dynamics of such
small structures, modulated through a Brownian motion, rebound on large scales,
perturbing their motion with their dissipative properties and delaying the formation
of the instability.

4.2.2 Positions and Intensities of Fixed Vortices

In order to connect with previous studies [20], we choose the positions of the fixed
vortices .Y j and their intensity .a

N,M
j according to the convergence of the scaling

limit (4.2.1). More precisely, at each timestep, we generate .Y j , j = 1, ...,M ,
uniformly distributed point vortices; their position on the y-axis is apriori selected
in the interval .[−δFX, δFX]. In this setup, the vortices .Y j are generated in a strip of
variable height .2δFX; this strip contains the moving vortices .Xi

t , and it is taken to be
of the same height of our boundary fluid layers, or one order of magnitude greater.
This choice emphasizes that our proposed “small-scale” structures should act on
all points of the fluid in all directions: the average contribution of the .Y j on the
.Xi

t along every direction should mimic a Brownian motion. We explored different
setups of positions and intensity; we selected meaningful realizations, as reported
in Table 1.

Table 1 Parameters of the
discussed realizations

M .δFX m a

200000 0.1 0.0014 0.0005

132000 0.07 0.0014 0.0005

1000 0.07 0.0017 0.005
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We choose the intensity of the “small-scale” perturbations following heuristic
considerations. We consider the mean inter-particle distance between two fixed
point vortices, .< r >:= √

1/m, where .m := M/A is the particle density and A

is the total area occupied by the M vortices.
Then, we focus on a single moving vortex, .Xi

t ; we compute the magnitude of its
velocity when .Xi

t is at a distance .d =< r > /2 from the nearest fixed vortex, i.e., its
position is halfway between two fixed vortices. As a result, we obtain the following
estimate for the velocity of .Xi

t :

.

∑
j

a
N,M
j

1

4π

|Xi
t − Y j |⊥

‖Xi
t − Y j‖2 ∼ 1

4π

∑
j

a
N,M
j

d
∼ aN

4π

∑
j

1

d
.

where we suppose that the coefficients depend on the configuration .(Xi
t )i , and are

equal for each .j = 1, ...,M . What is left is to estimate the number of fixed vortices
such that the interaction with .Xi

t is not negligible: let us call this number K , giving

us .∼ KaN

4πd
.

Thus, using the theory from the scaling limit of environmental transport noise
(see e.g. [22, 20, 23]) and the construction of Sect. 3.2 for point vortices with
transport noise, we assume that

.ν ∼ 1

2

(
KaN

4πd

)2

.

This leads us to the estimate for the intensity of the fixed vortices

.aN ∼ 2
√
2π

√
A√
M

√
ν

K

It remains to estimate K , the number of the nearest fixed vortices: consider a ball
centered in .Xi

t with radius d, so that the area is .Anear = πd2. We recall that m is
the density of the fixed vortices, then the nearest vortices are:

.m × Anear = M

A
Anear = π

4
.

Taking into account only the nearest vortices, we are underestimating the actual
contribution of all the vortices. In particular, we should compute such contribution
by considering a radius dependent on the effective range of the image of the Biot-
Savart kernel. In fact, being .K ∼ �i

|x|2 , contribution for distant particle is negligible.
For this reason, we empirically selected a wider radius .αd, with .α ∼ 3. Concluding
we get our estimates for the intensity
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.aN ∼ 8
√
2

3

√
ν

√
A√
N

.

4.2.3 Effect of Small Scale Common Noise

As recalled in the previous paragraph’s heuristics, the procedure of the scaling limit
is preserved when both N and M are large, and the intensity .a

N,M
j is small. For this

reason, we do not search for the same exact solution of the Navier-Stokes equation
(14), .ν > 0, with initial condition .u0, as per the case of the independent noise.
However, since the regime tends, in the limit, to the same solution, we expect a
diffusive effect on the strip of the point vortex. More precisely, we expect to see a
delay in the formation of macroscopic structures and a more dispersed displacement
of such small vortex blobs that, on average, should maintain the strip configuration
for a longer time.

In the first of our simulations, we generate at each time step .M ∼ 2 · 105 fixed
vortices, with intensity .a

N,M
j ∼ 5 · 10−4 which follows from the heuristics. The

fixed vortices are uniformly distributed in a strip .[−1, 1] × [−0.1, 0.1], containing
the initial point vortices configuration. This particular setup captures the feedback
effect of small scales on large vorticity structures, as the contribution of all the
low-intensity perturbations on the dynamics of the point vortices averages in every
direction. In the proposed numerical simulation, we show that the transport noise
model reproduces the desired instability delay, even if it is slightly less effective
than in the independent noise case; we illustrate a snapshot of a configuration for
time .t = 50 and .t = 100 in Fig. 3a, b.

By comparison with Figs. 1b and 2a, we see that the initial strip configuration is
preserved for a longer time than in the deterministic case and rotation of the fluid
is milder, but the profile is less stable than in the viscous regime. If we focus on
the deterministic case, we see blob-like structures formation already at .t = 50; in
contrast, in the transport noise regime, those structures are less visible and appear
more prominently only at the end of our simulation (.t = 100). This delay of the
instability is evident in the realizations in Fig. 3b, compared with Figs. 1c and 2b:
we notice a more diffused and homogeneous profile and a delayed formation of
rotational structures due to the noise spreading the particles along the y-axis. A
difference with the viscous case is that the compression in the x-axis is stronger than
in the case of the independent noise, resulting in a more prominent stretch, which
could resemble more the deterministic formations, placing the transport noise as a
midpoint between the two regimes.

In the second of our simulations, the strip of fixed points .Y j is generated in the
same region as the point vortices at each timestep; we selected .M ∼ 1.32 · 105, the
fixed vortices are uniformly distributed in .[−1, 1] × [−δ − ε, δ + ε], with .ε = 0.03,
and their intensity is derived from the heuristics .a

N,M
j ∼ 5 · 10−4. The results are

shown in Fig. 4: diffusion on the y-axis is present for short times, and preservation
of the strip profile is guaranteed. However, the drawback of such a configuration



Effect of Transport Noise on Kelvin–Helmholtz Instability 45

Fig. 3 Environmental noise.
(a): iteration .t = 50, diffusive
behaviour of strip profile; (b):
iteration .t = 100, degradation
of profile, formation of
macroscopic structures due to
the stretch
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Fig. 4 Environmental noise
case, iteration .t = 50,
diffusion of the strip is
present for a short time with
preserved configuration
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is that analysis can be performed only for a short time: boundary effects of the
fixed vortex strip can deteriorate the configuration, making the results unrealistic. In
future works, we expect to overcome this obstacle by proposing a new method, now
in the study, to generate small vortices only in regions activated by the shear flow’s
movement.

We performed a final simulation, in which we take the density of fixed vortices to
be smaller than the density of the point vortices. In particular, the strip of fixed points
.Y j is generated in the same region as the point vortices at each timestep; we selected
.M ∼ 103, the fixed vortices are uniformly distributed in .[−1, 1] × [−δ − ε, δ + ε],
with .ε = 0.05, and their intensity derived from the heuristics .a

N,M
j ∼ 5 · 10−3.

While the diffusive behaviour is lost, as shown in Fig. 5, the strip is already broken at
time .t = 50, showing rotating structures. The fixed vortices’ low density and higher
intensity seem to produce new formations and medium-scale structures, showing
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Fig. 5 Environmental noise
case, iteration .t = 50, low
density ratio between fixed
vortices and point vortices
showing emergence of
medium-scale structures
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a completely different behaviour than the deterministic and viscose counterparts.
For this reason, we need to investigate further the link between the ratio of vortices
densities and the formation of new independent medium structures.

4.3 Diagnostics

In this section, we perform statistic analysis on the three configurations proposed
in this study to highlight the differences and the reconstructed stability, or the
emergence of new structures, in the Kelvin-Helmholtz instability problem.

As a first step, we compute the vorticity .ωε obtained through the same mollifi-
cation as in Majda [4], through the vortex blob method applied to each of the point
vortices .Xi

t . We report our results for the vorticity computed in the deterministic
case at .t = 100 in Fig. 6a. We see that the vorticity measure concentration near the
fluid’s boundary layer is located in the newly developed macroscopic structures.
Moreover, a displacement from the initial configuration where the laminar fluid
started its evolution is present.

In contrast, the vortex blob solution with viscosity .ν > 0 retains its structure for
longer times than in the inviscid case. The instability delay is graphically evident
both from the configuration reported in Fig. 2a and the vorticity intensity reported
in Fig. 6b: the vorticity measure concentration at time .t = 100 is similar to the one
of the initial strip but with a more diffused profile on the horizontal line.

From configuration Fig. 3b, finally, in Fig. 6c, we show the vorticity in the
environmental noise regime at .t = 100. In contrast with the inviscid case, we see no
development of macroscopic structures in the profile. However, even though a more
diffused profile, with lower density overall, is present, the stability of the strip profile
is lost at larger times compared to Figs. 6b and 2b. This instability at larger times
suggests that different behavior, dependent on the density of fixed vortex .Y j and
selection of transport noise fields .σj , could arise in applying this kind of small-scale
approximation. For this reason, we focus our analysis on small-time behaviour.

Concerning the formation of large rotating structures, we see that the particles
spread in the horizontal direction when a forcing term, either an independent or
transport noise, acts on the fluid, in contrast to the solution of the Euler equation
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Fig. 6 Vorticity .ωε at .t = 100 in the case (a) inviscid, (b) viscous and (c) transport noise, showing
macroscopic structures formation or delay of instability
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Fig. 7 Histograms of x-positions and empirical density at .t = 100 in the case (a) inviscid, (b)
viscous and (c) transport noise, showing formation of macroscopic structures

with .ν = 0. In particular, we focus on the empirical density obtained from the x-
axis in the three configurations at .t = 100, Fig. 7. The deterministic case of Fig. 7a
shows a complete formation of separate blobs with peaks in the exact locations of
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the macroscopic structures, as in Fig. 1c. On the contrary, in the viscous Fig. 7b and
transport noise case of Fig. 7c, the distribution of the vortices is more uniform, and
it delays the instability of the fluid layers.

Following theoretical results, we know that with our initial condition .ω0, the
velocity .ut solves (21) when .ν > 0. This is crucial to understanding our system’s
short-time behaviour and the preservation of the initial configuration. This result
states that the empirical density obtained from the y-position, when viscosity is
present, maintains a Gaussian profile through time. In particular, in the case of .ν =
0, the viscosity follows a classic Euler equation. As such, the y-position profile is
far from a Gaussian: it behaves like a multi-modal distribution, concentrated in the
proximity of the center of the large structures. This result is supported both by the
profile of the particle system and by Figs. 8a, and 9a; the qq-plot shows a distinct
behaviour for small quantiles. The Kolmogorv-Smirnov test estimates a D-statistic
of .0.031, with a p-value less than .10−9 confirming the rejection of the Gaussianity
hypothesis.

Vice versa, when viscosity is present, i.e. .ν > 0, as in the case of independent
Brownian motions, the noise’s diffusive behaviour allows the profile’s restoration
in the y-direction: the strip configuration is preserved for a longer time. From the
profile of the point vortex system and Figs. 8b, and 9b, we see that the empirical
density approximates well the one of a Gaussian kernel. Moreover, the qq-plot
suggests a perfect match with a normal distribution, suggesting the preservation of
the strip through time, trading it with more spread on the y-axis. Finally, performing
a Kolmogorv-Smirnov test, we see, in fact, a D-statistic of .0.005 and a p-value
greater than .0.9 suggesting to accept the normality hypothesis. This behaviour is
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Fig. 8 Histograms of y-positions and empirical density at .t = 50 in the case (a) inviscid, (b)
viscous and (c) transport noise, showing different density profiles
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Fig. 9 qq-plot of the empirical density in the y-positions, at .t = 50 in the case (a) inviscid, (b)
viscous and (c) transport noise

preserved throughout the simulation, degrading only at longer times when a few
large formations start to rise, as in Fig. 2b.

In the transport noise case, we know that we recover the same viscous Euler
equation solved in the independent Brownian motion case by applying a particular
scaling limit procedure. To this end, we expected that the more stable profile shown
in Fig. 3a presents the same diffusion on the density of the y-position as the case of
the independent noise. This is the case as reported in Figs. 8c, and 9c: the behaviour
at a short times, .t = 50, in which the profile still approximates a Gaussian kernel.
We perform a qq-plot and a Kolmogorov-Smirnov test on the y-position; we obtain a
D-statistic of .0.011, and a p-value of .0.312; those results suggest the profile stability
and the validity of our hypothesis.

However, later on (.t = 100), even though the quantity obtained from the KS
test is still preserved as in the viscous case, with a D-statistics of .0.008 and a p-
value of .0.48, the profile degrades as shown in Fig. 3b. Those results show that the
strip configuration is not preserved for longer times due to transport noise stretching
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acting on the point vortices. This can be seen in the tail of the distribution in Fig. 9c,
compared to the viscous case in Fig. 9b, which shows at .t = 50 already a different
behaviour. This suggests that the environmental noise’s effect is not only related to
the diffusivity of the strip, but is also responsible for the stretching and formation of
different structures.

5 Concluding Remarks

In the present work, we have produced numerical simulations of 2D incompressible
fluids, also perturbed by transport noise, using the point vortex method. We focused
on the special case of shear flow formation that produced a Kelvin-Helmholtz
instability, in order to test the dissipativity properties of small-space-scale transport
noise. We confronted the intrinsic instability generated in the deterministic case with
the possible recovery of the stability through injected noise in the system in the form
of transport noise. We showed that, for short times, with a degree less intense than
the viscous case, we can maintain the stability of the strip at the expense of a more
small-scale irregularity and diffusion of the profile.
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On the 3D Navier-Stokes Equations with
Stochastic Lie Transport

Daniel Goodair and Dan Crisan

Abstract We prove the existence and uniqueness of maximal solutions to the 3D
SALT (Stochastic Advection by Lie Transport) Navier-Stokes Equation in velocity
and vorticity form, on the torus and the bounded domain respectively. In particular
we demonstrate the efficacy of Goodair et al. (Existence and Uniqueness of Maximal
Solutions to SPDEs with Applications to Viscous Fluid Equations, 2023. Stochastics
and Partial Differential Equations: Analysis and Computations, pp.1-64) in showing
the well-posedness for both the velocity and vorticity form of the equation, as well as
obtaining the first analytically strong existence result for a fluid equation perturbed
by Lie transport noise on a bounded domain.

1 Introduction

The theoretical analysis of Stochastic Navier-Stokes Equations dates back to the
work of Bensoussan and Temam [4] in 1973, where the problem of existence
of solutions is addressed in the presence of a random forcing term. The well-
posedness question for additive and multiplicative noise has since seen significant
developments, for example through the works [1, 7, 24, 29, 39, 42, 43] and
references therein. The interest in this problem has expanded into analytical
properties of these solutions, particularly along the lines of ergodicity, which can
be seen in [17, 18, 22, 26, 27, 34]. In the present work our concern is the Navier-
Stokes Equations with Stochastic Lie Transport, derived through the principle of
Stochastic Advection by Lie Transport (SALT) introduced in [35]. We consider the
equation

.ut − u0 +
∫ t

0
Lus us ds − ν

∫ t

0
�us ds +

∫ t

0
Bus ◦ dWs + ∇ρt = 0 (1)
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where u represents the fluid velocity, .ρ the pressure,1 .W is a Cylindrical Brownian
Motion, .L represents the nonlinear term and B is a first order differential operator
(the SALT Operator) formally addressed in Sect. 2.3. Intrinsic to this stochastic
methodology is that B is defined relative to a collection of functions .(ξi) which
physically represent spatial correlations. These .(ξi) can be determined at coarse-
grain resolutions from finely resolved numerical simulations, and mathematically
are derived as eigenvectors of a velocity-velocity correlation matrix (see [10, 11,
12]). We pose the equation (1) in 3 dimensions and impose the divergence free
constraint on u. We shall consider the problem both over the torus .T

3 and a smooth
bounded domain .O ⊂ R

3. In the case of the torus we supplement the equation
with the zero-average condition (as is classical), whilst for the bounded domain we
impose the boundary condition

.u · n = 0, w = 0 (2)

where n represents the outwards unit normal at the boundary, and w the fluid
vorticity. These are the so called Lions boundary conditions, considered in [38] and
shown to be a particular case of the Navier boundary conditions in [36] (note that
this is done in 2D, whilst a treatment of the Navier boundary conditions in 3D can be
found in [28]). The significance of such a boundary condition is well documented
in that work by Kelliher, and can be seen in other works such as [28] where the
boundary layer is explicitly addressed. The precise mathematical interpretation of
these conditions, and the operators of (1), are explicated in Sect. 2.2. A complete
derivation of this equation can be found in [45].

This work continues the theoretical development of fluid models perturbed by a
transport type noise, the significance of which was posed as early as 1992 in the
paper [6]. The area has garnered substantial attention in more recent years with the
seminal works [35, 41], in which the authors establish a new class of stochastic
equations driven by transport type noise which serve as fluid dynamics models by
adding uncertainty in the transport of fluid parcels to reflect the unresolved scales.
This paper partners that of [32] where we showed the existence and uniqueness
of maximal solutions to Stochastic Partial Differential Equations satisfying an
abstract framework, built to cope with a general transport type noise as we see in
(1). The importance of such equations in modelling, numerical schemes and data
assimilation is reviewed there, along with the theoretical developments of these
equations: let us briefly mention some interesting results [3, 5, 21, 23]. We only
draw particular attention here to the Navier-Stokes Equations, and results on a
bounded domain. The Navier-Stokes Equations have been studied with transport
type noise, for example in the works [14, 19, 25, 43], though typically solutions are
analytically weak and where strong solutions are considered major concessions in
the noise are made. In these cases a cancellation property is evident in the noise

1 The pressure term is a semimartingale, and an explicit form for the SALT Euler Equation is given
in [45] Subsection 3.3.
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term, so the resulting energy balance is formally the same as for the deterministic
equation without noise. These difficulties have been addressed on the torus, in the
likes of the papers [13, 37] and those further addressed in [32], but extending a
control of this noise term to a bounded domain remains open. Furthermore, whilst
the presence of viscosity does improve the solution theory, it invites additional
challenges in controlling the noise. Energy methods require non-standard Sobolev
inner products to conduct the required integration by parts for the viscous term in the
bounded domain, so we must provide novel estimates on the transport type noise in
these inner products. The problem of analytically strong solutions to fluid equations
perturbed by a transport type noise in the bounded domain has been considered in
[8], though the authors assume that the gradient dependency is of a small enough
size to be directly controlled and that the noise terms are traceless under Leray
Projection; such assumptions are designed to circumvent the technical difficulties
of a first order noise operator on a bounded domain, and is a luxury that the SALT
equations do not have.

The goal of this paper is to apply the abstract framework established in [32],
providing a rigorous justification of the results first announced in [31] and extending
them to the vorticity form of Eq. (1) on a bounded domain. The purpose of this is
twofold:

1. To demonstrate the efficacy of the criteria from [32]. This is most pertinent in our
treatment of the velocity form on the torus; whilst the well-posedness results that
we present are new, one would expect them to hold. This belief is compounded by
the well-posedness results for both viscous and inviscid fluid equations perturbed
by Lie transport noise on the torus [2, 13, 15, 16, 37] for which the Navier-
Stokes equations do not present any intrinsic additional difficulty, though still
contributing a necessary piece to the somewhat sparse literature. We hope to
convey that verifying the assumptions of [32] is now the simplest and most
efficient way to prove the well-posedness of this equation and, by extension,
associated stochastic viscous fluid equations.

2. To obtain the well-posedness of the equation in the presence of a boundary, which
does present intrinsic additional difficulty beyond the existing results.

In the interests of brevity we provide a shorter manuscript here, though greater
detail can be found in the former arXiv version [33]. In Sect. 2 we establish
the stochastic and functional framework necessary to understand (1), along with
fundamental properties of the operators involved. In Sect. 3 we make precise how
equation (1) fits into the framework of [32], as a problem posed on the torus .T

3.
In Sect. 4 we consider the vorticity form of equation (1) as a problem posed on a
bounded domain of .R

3. We again justify the assumptions in [32] to prove existence
and uniqueness of maximal solutions to this equation. Additional details for the
proofs are given in Sect. 5, along with the results of the partnering paper [32].
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2 Preliminaries

2.1 Elementary Notation

In the following .O can represent both the 3-dimensional torus .T
3 and a smooth

bounded domain .O ⊂ R
3. We consider Banach Spaces as measure spaces equipped

with the Borel .σ -algebra, and use .λ to represent the Lebesgue Measure. Let .(X , μ)

denote a general measure space, .(Y, ‖·‖Y ) and .(Z, ‖·‖Z ) be Banach Spaces, and
.(U , 〈·, ·〉U ), .(H, 〈·, ·〉H) be general Hilbert spaces. .O is equipped with Euclidean
norm.

• .Lp(X ;Y) is the class of measurable p-integrable functions from .X into .Y , .1 ≤
p < ∞, which is a Banach space with norm

.‖φ‖p

Lp(X ;Y)
:=

∫
X

‖φ(x)‖p

Yμ(dx).

In particular .L2(X ;Y) is a Hilbert Space when .Y itself is Hilbert, with the
standard inner product

.〈φ,ψ〉L2(X ;Y) =
∫
X

〈φ(x), ψ(x)〉Yμ(dx).

In the case .X = O and .Y = R
3 note that

.‖φ‖2
L2(O;R3)

=
3∑

l=1

‖φl‖2
L2(O;R)

, φ =
(
φ1, . . . , φ3

)
, φl : O → R.

We denote .‖·‖Lp(O;R3) by .‖·‖Lp and .‖·‖L2(O;R3) by .‖·‖.
• .L∞(X ;Y) is the class of measurable functions from .X into .Y which are

essentially bounded, which is a Banach Space when equipped with the norm

.‖φ‖L∞(X ;Y) := inf{C ≥ 0 : ‖φ(x)‖Y ≤ C for μ-a.e. x ∈ X }.

• .L∞(O;R3) is the class of measurable functions from .O into .R
3 such that .φl ∈

L∞(O;R) for .l = 1, . . . , N , which is a Banach Space when equipped with the
norm

.‖φ‖L∞ := sup
l≤N

‖φl‖L∞(O;R).

• .C(X ;Y) is the space of continuous functions from .X into .Y .
• .Cm(O;R) is the space of .m ∈ N times continuously differentiable functions from

.O to .R, that is .φ ∈ Cm(O;R) if and only if for every N dimensional multi index
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.α = α1, . . . , αN with .|α| ≤ m, .Dαφ ∈ C(O;R) where .Dα is the corresponding
classical derivative operator .∂

α1
x1 . . . ∂

αN
xN

.
• .C∞(O;R) is the intersection over all .m ∈ N of the spaces .Cm(O;R).
• .Cm

0 (O;R) for .m ∈ N or .m = ∞ is the subspace of .Cm(O;R) of functions which
have compact support.

• .Cm(O;R3), Cm
0 (O;R3) for .m ∈ N or .m = ∞ is the space of

functions from .O,O to .R
3 whose N component mappings each belong to

.Cm(O;R), Cm
0 (O;R).

• .Wm,p(O;R) for .1 ≤ p < ∞ is the sub-class of .Lp(O,R) which has all weak
derivatives up to order .m ∈ N also of class .Lp(O,R). This is a Banach space
with norm

.‖φ‖p

Wm,p(O,R)
:=

∑
|α|≤m

‖Dαφ‖p

Lp(O;R)

where .Dα is the corresponding weak derivative operator. In the case .p = 2 the
space .Wm,2(O,R) is Hilbert with inner product

.〈φ,ψ〉Wm,2(O;R) :=
∑

|α|≤m

〈Dαφ,Dαψ〉L2(O;R).

• .Wm,∞(O;R) for .m ∈ N is the sub-class of .L∞(O,R) which has all weak
derivatives up to order .m ∈ N also of class .L∞(O,R). This is a Banach space
with norm

.‖φ‖Wm,∞(O,R) := sup
|α|≤m

‖Dαφ‖L∞(O;R3).

• .Wm,p(O;R3) for .1 ≤ p < ∞ is the sub-class of .Lp(O,R3) which has all weak
derivatives up to order .m ∈ N also of class .Lp(O,R3). This is a Banach space
with norm

.‖φ‖p
Wm,p :=

3∑
l=1

‖φl‖p

Wm,p(O;R)
.

In the case .p = 2 the space .Wm,2(O,R3) is Hilbertian with inner product

.〈φ,ψ〉Wm,2 :=
3∑

l=1

〈φl, ψl〉Wm,2(O;R).

• .Wm,∞(O;R3) is the sub-class of .L∞(O,R3) which has all weak derivatives up
to order .m ∈ N also of class .L∞(O,R3). This is a Banach space with norm
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.‖φ‖Wm,∞(O,R3) := sup
l≤N

‖φl‖Wm,∞(O;R).

• .L̇2(T3;R3) is the subset of .L2(T3;R3) of functions .φ such that

.

∫
T3

φ dλ = 0.

• .Ẇm,2(T3;R3) is simply the intersection .Wm,2(T3;R3) ∩ L̇2(T3;R3).
• .W

m,p

0 (O;R),W
m,p

0 (O;R3) for .m ∈ N and .1 ≤ p ≤ ∞ is the closure of
.C∞
0 (O;R), C∞

0 (O;R3) in .Wm,p(O;R),Wm,p(O;R3).
• .L (Y;Z) is the space of bounded linear operators from .Y to .Z . This is a Banach

Space when equipped with the norm

.‖F‖L (Y;Z) = sup
‖y‖Y=1

‖Fy‖Z

and is simply the dual space .Y∗ when .Z = R, with operator norm .‖·‖Y∗ .
• .L 2(U;H) is the space of Hilbert-Schmidt operators from .U to .H, defined as the

elements .F ∈ L (U;H) such that for some basis .(ei) of .U ,

.

∞∑
i=1

‖Fei‖2H < ∞.

This is a Hilbert space with inner product

.〈F,G〉L 2(U;H) =
∞∑
i=1

〈Fei,Gei〉H

which is independent of the choice of basis.

We will consider a partial ordering on the .3−dimensional multi-indices by .α ≤ β

if and only if for all .l = 1, 2, 3 we have that .αl ≤ βl . We extend this to notation .<

by .α < β if and only if .α ≤ β and for some .l = 1, 2, 3, .αl < βl .
We also now introduce some less familiar spaces in slightly greater detail. We

recall notation that .O represents a smooth bounded domain in .R
3 which we now

fix, .T3 is the .3−dimensional torus, and .O freely denotes both .T
3 and .O .

Definition 2.1 We define .C∞
0,σ (O;R3) as the subset of .C∞

0 (O;R3) of func-

tions which are divergence-free. .L2
σ (O;R3) is defined as the completion of

.C∞
0,σ (O;R3) in .L2(O;R3), whilst we introduce .W 1,2

σ (O;R3) as the intersection of

.W
1,2
0 (O;R3) with .L2

σ (O;R3) and .W 2,2
σ (O;R3) as the intersection of .W 2,2(O;R3)

with .W 1,2
σ (O;R3).

Recall that any function .f ∈ L2(T3;R3) admits the representation
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.f (x) =
∑
k∈Z3

fke
ik·x (3)

whereby each .fk ∈ C
3 is such that .fk = f−k and the infinite sum is defined as a

limit in .L2(T3;R3), see e.g. [44] Subsection 1.5 for details.

Definition 2.2 We define .L2
σ (T3;R3) as the subset of .L̇2(T3;R3) of functions f

whereby for all .k ∈ Z3, .k ·fk = 0 with .fk as in (3). For general .m ∈ N we introduce
.Wm,2

σ (T3;R3) as the intersection of .Wm,2(T3;R3) respectively with .L2
σ (T3;R3).

Note that .W 1,2
σ (T3;R3) is precisely the subspace of .W 1,2(T3;R3) consisting

of zero-average divergence free functions. Similarly .W 1,2
σ (O;R3) is precisely

the subspace of .W
1,2
0 (O;R3) consisting of divergence free functions. Moreover,

.W 1,2
σ (O;R3) is the completion of .C∞

0,σ (O;R3) in .W 1,2(O;R3). The general space

.W 1,2
σ (O;R3) thus incorporates the divergence-free and zero-average/zero-trace

condition.
As for the stochastic set up, let .(
,F , (Ft ),P) be a fixed filtered probability

space satisfying the usual conditions of completeness and right continuity. We
take .W to be a cylindrical Brownian Motion over some Hilbert Space .U with
orthonormal basis .(ei). Recall ([30], Subsection 1.4) that .W admits the repre-
sentation .Wt = ∑∞

i=1 eiW
i
t as a limit in .L2(
;U′) whereby the .(Wi) are a

collection of i.i.d. standard real valued Brownian Motions and .U′ is an enlargement
of the Hilbert Space .U such that the embedding .J : U → U′ is Hilbert-
Schmidt and .W is a .JJ ∗−cylindrical Brownian Motion over .U′. Given a process
.F : [0, T ] × 
 → L 2(U;H ) progressively measurable and such that .F ∈
L2

(

 × [0, T ];L 2(U;H )

)
, for any .0 ≤ t ≤ T we define the stochastic integral

.

∫ t

0
FsdWs :=

∞∑
i=1

∫ t

0
Fs(ei)dWi

s

where the infinite sum is taken in .L2(
;H ). We can extend this notion to processes
F which are such that .F(ω) ∈ L2

([0, T ];L 2(U;H )
)
for .P − a.e. .ω via the

traditional localisation procedure. In this case the stochastic integral is a local
martingale in .H .2

2 A complete, direct construction of this integral, a treatment of its properties and the fundamentals
of stochastic calculus in infinite dimensions can be found in [30] Section 1.
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2.2 Functional Framework

We now recap the classical functional framework for the study of the deterministic
Navier-Stokes Equation. Firstly we briefly comment on the pressure term .∇ρ, which
will not play any role in our analysis. .ρ does not come with an evolution equation
and is simply chosen to ensure the incompressibility (divergence-free) condition;
moreover we will ignore this term via a suitable projection (in Sect. 3 we even
consider a different form of the equation) and treat the projected equation, with
the understanding to append a pressure to it later. This procedure is well discussed
in [44] Sect. 5 and [40], and an explicit form for the pressure for the SALT Euler
Equation is given in [45] Subsection 3.3.

The mapping .L is defined for sufficiently regular functions .f, g : O → R
3

by .Lf g := ∑3
j=1 f j ∂jg. Here and throughout the text we make no notational

distinction between differential operators acting on a vector valued function or a
scalar valued one; that is, we understand .∂jg by its component mappings .(∂lg)l :=
∂jg

l . We now give some clarification as to ‘sufficiently regular’, by stating basic
properties of this mapping. For any .m ≥ 1, the mapping .L : Wm+1,2(O;R3) →
Wm,2(O;R3) defined by .f �→ Lf f is continuous. Additionally there exists a
constant c such that for any .f, g ∈ Wk,2(O;R3) for .k ∈ N as appropriate, we
have the bounds:

.‖Lf g‖ + ‖Lgf ‖ ≤ c‖g‖W 1,2‖f ‖W 2,2; . (4)

‖Lgf ‖W 1,2 ≤ c‖g‖W 1,2‖f ‖W 3,2; . (5)

‖Lgf ‖W 1,2 ≤ c‖g‖W 2,2‖f ‖W 2,2 . (6)

We introduce the Leray Projector .P as the orthogonal projection in .L2(O;R3)

onto .L2
σ (O;R3). It is well known (see e.g. [47] Remark 1.6.) that for any .m ∈ N,

.P is continuous as a mapping .P : Wm,2(O;R3) → Wm,2(O;R3). In fact,
the complement space of .L2

σ (O;R3) can be characterised (this is the so called
Helmholtz-Weyl decomposition), a result that we state explicitly as we will need
to exploit the precise structure in future arguments.

Lemma 2.3 Define the space

.L2,⊥
σ (O;R3) := {ψ ∈ L2(O;R3) : ψ = ∇g for some g ∈ W 1,2(O;R)}.

Then indeed .L2,⊥
σ (O;R3) is orthogonal to .L2

σ (O;R3) in .L2(O;R3), i.e. for any
.φ ∈ L2

σ (O;R3) and .ψ ∈ L2,⊥
σ (O;R3) we have that

.〈φ,ψ〉 = 0.

Moreover, every .f ∈ L2(O;R3) has the unique decomposition

.f = φ + ψ (7)
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for some .φ ∈ L2
σ (O;R3), .ψ ∈ L2,⊥

σ (O;R3) and every .f ∈ L2(T3;R3) has the
unique decomposition

.f = φ + ψ + c (8)

where .φ ∈ L2
σ (T3;R3), .ψ ∈ L2,⊥

σ (T3;R3) and c is a constant function: that is,
there exists .k ∈ R

3 such that each component mapping .cj is identically equal to .kj ,
.j = 1, 2, 3.

Proof See [47] Theorems 1.4, 1.5 and [44] Theorem 2.6 . ��
Corollary 2.3.1 Every .f ∈ L2(O;R3) admits the representation

.f = Pf + ∇g (9)

for some .g ∈ W 1,2(O;R). Similarly every .f ∈ L2(T3;R3) admits the representa-
tion

.f = Pf + ∇g + c (10)

for some .g ∈ W 1,2(T3;R) and constant function c.

Proof It is an immediate property of the orthogonal projection that .Pf is the unique
element .φ ∈ L2

σ (O;R3) of (7) and (8). ��
Through .P we define the Stokes Operator .A : W 2,2(O;R3) → L2

σ (O;R3) by
.A := −P�. Once more we understand the Laplacian as an operator on vector
valued functions through the component mappings, .(�f )l := �f l . From the
continuity of .P we have immediately that for .m ∈ {0} ∪ N, .A : Wm+2,2(O;R3) →
Wm,2(O;R3) is continuous. We remark that .� leaves the complement space
.L2,⊥

σ (O;R3) invariant, so .AP is equal to A on .W 2,2(O;R3). Moreover (see [44]
Theorem 2.24) there exists a collection of functions .(ak), .ak ∈ W 1,2

σ (O;R3) ∩
C∞(O;R3) such that the .(ak) are eigenfunctions of A, are an orthonormal basis
in .L2

σ (O;R3) and an orthogonal basis in .W 1,2
σ (O;R3). The eigenvalues .(λk) are

strictly positive and approach infinity as .k → ∞. Therefore every .f ∈ L2
σ (O;R3)

admits the representation

.f =
∞∑

k=1

fkak (11)

where .fk = 〈f, ak〉, as a limit in .L2(O;R3).

Definition 2.4 For .m ∈ N we introduce the spaces .D(Am/2) as the subspaces of
.L2

σ (O;R3) consisting of functions f such that
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.

∞∑
k=1

λm
k f 2

k < ∞

for .fk as in (11). Then .Am/2 : D(Am/2) → L2
σ (O;R3) is defined by

.Am/2 : f �→
∞∑

k=1

λ
m/2
k fkak.

We present some fundamental properties regarding these spaces, which are justified
in [9] Proposition 4.12, [44] Exercises 2.12, 2.13 and the discussion in Subsection
2.3.

1. .D(Am/2) ⊂ Wm,2(O;R3) ∩ W 1,2
σ (O;R3) and the bilinear form

.〈f, g〉m := 〈Am/2f,Am/2g〉

is an inner product on .D(Am/2);
2. For m even the induced norm .‖·‖2m = 〈·, ·〉m is equivalent to the .Wm,2(O;R3)

norm, and for m odd there is a constant c such that

.‖·‖Wm,2 ≤ c‖·‖m;

3. .D(A) = W 2,2
σ (O;R3) and .D(A1/2) = W 1,2

σ (O;R3)with the additional property
that .‖·‖1 is equivalent to .‖·‖W 1,2 on this space.

It can be directly shown that for any .p, q ∈ N with .p ≤ q, .p + q = 2m and
.f ∈ D(Am/2), .g ∈ D(Aq/2) we have that

.〈f, g〉m = 〈Ap/2f,Aq/2g〉. (12)

From here we can also see that the collection of functions .(ak) form an orthogonal
basis of .W 1,2

σ (O;R3) equipped with the .〈·, ·〉1 inner product. In addition to using
these spaces defined by powers of the Stokes Operator, we also use the basis to
consider finite dimensional approximations of these spaces.

Definition 2.5 We define .Pn as the orthogonal projection onto .span{a1, . . . , an} in
.L2(O;R3). That is .Pn is given by

.Pn : f �→
n∑

k=1

〈f, ak〉ak

for .f ∈ L2(O;R3).

The restriction of .Pn to .D(Am/2) is self-adjoint for the .〈·, ·〉m inner product, and
there exists a constant c independent of n such that for all .f ∈ D(Am/2),
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.‖Pnf ‖Wm,2 ≤ c‖f ‖Wm,2 , (13)

see [44] Lemma 4.1 for details. Similar ideas justify that for all .f ∈ W 1,2
σ (O;R3),

.g ∈ W 2,2
σ (O;R3),

.‖(I − Pn)f ‖2 ≤ 1

λn

‖f ‖21, ‖(I − Pn)g‖21 ≤ 1

λn

‖g‖22

where I represents the identity operator in the relevant spaces. To conclude this
subsection we discuss briefly bounds related to the nonlinear term, which will be
used in our analysis. For every .φ ∈ W 1,2

σ (O;R3) and .f, g ∈ W 1,2(O;R3), we have
that

.〈Lφf, g〉 = −〈f,Lφg〉. (14)

〈Lφf, f 〉 = 0. (15)

2.3 The SALT Operator

Having established the relevant function spaces and some fundamental properties of
the operators involved in the deterministic Navier-Stokes Equation, we now address
the operator B appearing in the Stratonovich integral of (1). As in [30] Subsection
2.2, the operator B is defined by its action on the basis vectors .(ei) of .U. We shall
show in Sect. 3.3 that B does indeed satisfy Assumption 2.2.2 of [30] for the spaces
to .V,H,U,X to be defined. With the notation of [30], each .Bi is defined relative to
the correlations .ξi for sufficiently regular f by the mapping

.Bi : f �→ Lξi
f + Tξi

f

where .L is as before, and .T is a new operator that we introduce defined by

.Tgf :=
3∑

j=1

f j∇gj .

We shall assume throughout that each .ξi belongs to the space .W 1,2
σ (O;R3). If for

some fixed .m ∈ N we have .ξi ∈ Wm+2,∞(O;R3) then for all .k = 0, . . . , m + 1,

.‖Tξi
f ‖2

Wk,2 ≤ c‖ξi‖2Wk+1,∞‖f ‖2
Wk,2 . (16)

‖Lξi
f ‖2

Wk,2 ≤ c‖ξi‖2Wk,∞‖f ‖2
Wk+1,2 . (17)

‖Bif ‖2
Wk,2 ≤ c‖ξi‖2Wk+1,∞‖f ‖2

Wk+1,2 . (18)
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Moreover .Tξi
is a bounded linear operator on .L2(O;R3) so has adjoint .T ∗

ξi

satisfying the same boundedness. In conjunction with property (14), .Lξi
is a densely

defined operator in .L2(O;R3) with domain of definition .W 1,2(O;R3), and has
adjoint .L∗

ξi
in this space given by .−Lξi

with same dense domain of definition.
Likewise then .B∗

i is the densely defined adjoint .−Lξi
+ T ∗

ξi
. Our techniques centre

around energy estimates, where the key idea as to how we preserve these estimates
in the case of a transport type noise owes to the following proposition.

Proposition 2.6 There exists a constant c such that for each i and for all .f ∈
Wk+2,2(O;R3) with .k = 0, . . . , m, we have the bounds

.〈B2
i f, f 〉Wk,2 + ‖Bif ‖2

Wk,2 ≤ c‖ξi‖2Wk+2,∞‖f ‖2
Wk,2 , . (19)

〈Bif, f 〉2
Wk,2 ≤ c‖ξi‖2Wk+1,∞‖f ‖4

Wk,2 . (20)

Proof See Sect. 5.1. ��
Another valuable result is given now, which will be necessary in showing

comparable estimates to Proposition 2.6 in the .〈·, ·〉k inner product for appropriate
k.

Lemma 2.7 We have that

.Bi : L2,⊥
σ (O;R3) ∩ W 1,2(O;R3) → L2,⊥

σ (O;R3)

and moreover that .PBi = PBiP on .W 1,2(O;R3).

Proof See Sect. 5.1. ��
We note that this result holds true only in the presence of the additional .Tξi

term
in the operator, highlighting the significance of considering a noise which is not
purely transport. The Leray Projector does pose difficulties in the presence of a
boundary though, which we state here.

Remark 2 The Leray Projector does not preserve the space .W
1,2
0 (O;R3), and so

we cannot say that .PBi : W 2,2
σ (O;R3) → W 1,2

σ (O;R3). The issues arising from
this operator not satisfying the zero-trace property are fundamentally why we only
treat the Torus for the velocity form in Sect. 3.

3 The Velocity Equation on the Torus

In this section we restrict ourselves to the Torus .T
3, leaving a treatment of the

bounded domain to Sect. 4. We also now fix our assumptions on the .(ξi), assuming
that each .ξi ∈ W 1,2

σ (T3;R3) ∩ W 3,∞(T3;R3) and they collectively satisfy
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.

∞∑
i=1

‖ξi‖2W 3,∞ < ∞. (21)

3.1 Definitions and Results

Here we state the key definitions and results of this section. To facilitate our analysis
we work with an equation projected by the Leray Projector as discussed at the start
of Sect. 2.2. Thus we consider the new equation

.ut − u0 +
∫ t

0
PLus us ds + ν

∫ t

0
Aus ds +

∫ t

0
PBus ◦ dWs = 0 (22)

obtained at a heuristic level by projecting all terms of (1). Having not defined
solutions of (1) we cannot be too formal here, but the idea is that we require solutions
in .L2

σ (O;R3) with initial condition also in this space so they are invariant under .P ,
and .P is a bounded linear operator so can be taken through the integrals (see [30]
Corollary 1.6.12.1 for this result in Itô integration, understanding the Stratonovich
integral as the sum of an Itô and a Bochner integral).

Theorem 3.1 For any given .F0−measurable .u0 : 
 → W 2,2
σ (T3;R3) there exists

a pair .(u, τ ) such that: .τ is a .P − a.s. positive stopping time and u is a process
whereby for .P − a.e. .ω, .u·(ω) ∈ C

([0, T ];W 2,2
σ (T3;R3)

)
and .u·(ω)1·≤τ(ω) ∈

L2
([0, T ];W 3,2

σ (T3;R3)
)
for all .T > 0 with .u·1·≤τ progressively measurable in

.W 3,2
σ (T3;R3), and moreover satisfying the identity

.ut = u0 −
∫ t∧τ

0
PLus us ds − ν

∫ t∧τ

0
Aus ds −

∫ t∧τ

0
PBus ◦ dWs

.P − a.s. in .L2
σ (T3;R3) for all .t ≥ 0.

Theorem 3.1 will be proved as a consequence of the following proposition.

Proposition 3.2 Suppose that .(u, τ ) are such that: .τ is a .P−a.s. positive stopping
time and u is a process whereby for .P − a.e. .ω, .u·(ω) ∈ C

([0, T ];W 2,2
σ (T3;R3)

)
and .u·(ω)1·≤τ(ω) ∈ L2

([0, T ];W 3,2
σ (T3;R3)

)
for all .T > 0 with .u·1·≤τ

progressively measurable in .W 3,2
σ (T3;R3), and moreover satisfying the identity

.ut = u0 −
∫ t∧τ

0
PLus us ds − ν

∫ t∧τ

0
Aus ds

+ 1

2

∫ t∧τ

0

∞∑
i=1

PB2
i usds −

∫ t∧τ

0
PBusdWs
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.P − a.s. in .W 1,2
σ (O;R3) for all .t ≥ 0. Then the pair .(u, τ ) satisfies the identity

.ut = u0 −
∫ t∧τ

0
PLus us ds − ν

∫ t∧τ

0
Aus ds −

∫ t∧τ

0
PBus ◦ dWs

.P − a.s. in .L2
σ (O;R3) for all .t ≥ 0.

Proposition 3.2 motivates studying the converted equation

.ut = u0 −
∫ t

0
PLus us ds − ν

∫ t

0
Aus ds + 1

2

∫ t

0

∞∑
i=1

PB2
i usds −

∫ t

0
PBusdWs .

(23)

Once we convert to the Itô Form though, starting with an initial condition in
.W 2,2

σ (T3;R3) is not optimal in the sense that, at least according to the deterministic
theory, we should be able to construct a solution (satisfying the identity in
.L2

σ (T3;R3) as is natural) for only a .W 1,2
σ (T3;R3) initial condition. To this end

we give the following definitions and the main result of this section. Definition 3.3
is stated for an arbitrary .F0−measurable .u0 : 
 → W 1,2

σ (T3;R3).

Definition 3.3 A pair .(u, τ ) where .τ is a .P − a.s. positive stopping time and
u is a process such that for .P − a.e. .ω, .u·(ω) ∈ C

([0, T ];W 1,2
σ (T3;R3)

)
and

.u·(ω)1·≤τ(ω) ∈ L2
([0, T ];W 2,2

σ (T3;R3)
)
for all .T > 0 with .u·1·≤τ progressively

measurable in .W 2,2
σ (T3;R3), is said to be a local strong solution of the equation

(23) if the identity

.ut = u0 −
∫ t∧τ

0
PLus us ds − ν

∫ t∧τ

0
Aus ds

+ 1

2

∫ t∧τ

0

∞∑
i=1

PB2
i usds −

∫ t∧τ

0
PBusdWs (24)

holds .P − a.s. in .L2
σ (T3;R3) for all .t ≥ 0.

Remark 3 If .(u, τ ) is a local strong solution of the equation (23), then .u· = u·∧τ .
The time integrals in (24) are well defined as Bochner integrals in .L2

σ (T3;R3), and
the Itô integral in .W 1,2

σ (T3;R3). These integrals are shown to be well defined in the
abstract case in [30] Definition 2.2.3.

Definition 3.4 A pair .(u,�) such that there exists a sequence of stopping times .(θj )

which are .P − a.s. monotone increasing and convergent to .�, whereby .(u·∧θj
, θj )

is a local strong solution of the equation (23) for each j , is said to be a maximal
strong solution of the equation (23) if for any other pair .(v, �) with this property
then .� ≤ � .P − a.s. implies .� = � .P − a.s..

Definition 3.5 A maximal strong solution .(u,�) of the equation (23) is said to be
pathwise unique if for any other such solution .(v, �), then .� = � .P − a.s. and for
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all .t ∈ [0,�),

.P ({ω ∈ 
 : ut (ω) = vt (ω)}) = 1.

Theorem 3.6 For any given .F0−measurable .u0 : 
 → W 1,2
σ (T3;R3), there exists

a pathwise unique maximal strong solution .(u,�) of the equation (23). Moreover
at .P − a.e. .ω for which .�(ω) < ∞, we have that

. sup
r∈[0,�(ω))

‖ur(ω)‖21 +
∫ �(ω)

0
‖ur(ω)‖22dr = ∞. (25)

3.2 Operator Bounds

In this subsection we state some intermediary results regarding control on the
operators involved. In the following and throughout this section c will represent
a generic constant changing from line to line, .c(ε) will be a generic constant
dependent on a fixed .ε, f and g will be arbitrary elements of .W 3,2

σ (T3;R3) and
.fn ∈ span{a1, · · · , an}. The proofs of these lemmas can be found in Sect. 5.1.

Lemma 3.7 For any .ε > 0, we have that

.
∣∣〈PnPLfnfn, fn〉2

∣∣ ≤ c(ε)‖fn‖42 + ε‖fn‖23; . (26)

〈PnPB2
i fn, fn〉1 + 〈PnPBifn,PnPBifn〉1 ≤ c(ε)‖ξi‖2W 3,∞‖fn‖21

+ ε‖ξi‖2W 3,∞‖fn‖22; . (27)

〈PnPB2
i fn, fn〉2 + 〈PnPBifn,PnPBifn〉2 ≤ c(ε)‖ξi‖2W 3,∞‖fn‖22

+ ε‖ξi‖2W 3,∞‖fn‖23. (28)

Remark 4 The algebra property of .Wk,2(T3;R3) when .k = 2 is fundamental in
proving (26); a result of the form

.
∣∣〈PnPLfnfn, fn〉1

∣∣ ≤ c(ε)‖fn‖41 + ε‖fn‖22
is unavailable to us given that the algebra property does not hold for .k = 1. This is
revisited in Remark 5.

Lemma 3.8 For any .ε > 0, we have that

.
∣∣〈PLf f − PLgg, f − g〉1

∣∣ ≤ c(ε)
(
‖g‖41 + ‖f ‖22

)
‖f − g‖21 + ε‖f − g‖22.
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Lemma 3.9 For any .ε > 0, we have that

.
∣∣〈PLf f − PLgg, f − g〉∣∣ ≤ c(ε)‖f ‖22‖f − g‖2 + ε‖f − g‖21.

3.3 Proof of Proposition 3.2

We prove this result through the abstract procedure used in [30] Subsections 2.2 and
2.3, the result of which is stated in Sect. 5.2. Towards this goal we define the quartet
of spaces

.V := W 3,2
σ (T3;R3), H := W 2,2

σ (T3;R3),

U := W 1,2
σ (T3;R3), X := L2

σ (T3;R3).

We equip .L2
σ (T3;R3) with the usual .〈·, ·〉 inner product, but then equip

.W 1,2
σ (T3;R3) and .W 2,2

σ (T3;R3) with the .〈·, ·〉1 and .〈·, ·〉2 inner products
respectively. In fact we also have that .D(A3/2) = W 3,2

σ (T3;R3) and that the
.〈·, ·〉3 inner product is equivalent to the usual .〈·, ·〉W 3,2 one on this space (see [44]
Theorem 2.27), so we endow .W 3,2

σ (T3;R3) with .〈·, ·〉3. Our SPDE (22) takes the
form of (68) for the operators

.Q := − (PL + νA) , G := −PB

where we rewrite .(−PBi)
2 as .PB2

i firstly from the linearity of .PBi to deal with the
minus and secondly using the property that .PBi = PBiP . It is worth appreciating
here that we chose to project the equation and then convert it into Itô Form,
but we may equally have chosen to convert the unprojected Stratonovich Form
and then project the resulting Itô Equation. Without addressing the conversion
of the unprojected equation in complete detail, we would directly arrive at (23)
taking this approach. Indeed before projection our correction term would be of
the form .

∑∞
i=1 B2

i plus a function in .L2,⊥
σ (T3,R3) as defined in Lemma 2.7.

Under projection this is .P
∑∞

i=1 B2
i which is just .

∑∞
i=1 PB2

i from the linearity and
continuity. Therefore the property .PBi = PBiP from Lemma 2.7 establishes the
consistency between these approaches.

To prove the result we check the Assumptions 5.3 and 5.4. Starting with 5.3,
we first of all have that .νA is continuous from .W 3,2

σ (T3;R3) into .W 1,2
σ (T3;R3),

therefore it is measurable and as a linear operator too satisfies the boundedness. As
for .PL, measurability is satisfied in the same way and for the boundedness we have
that

.‖PLf f ‖1 ≤ c‖PLf f ‖W 1,2 ≤ c‖Lf f ‖W 1,2 ≤ c‖f ‖W 1,2‖f ‖W 3,2 ≤ c‖f ‖1‖f ‖3
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for any .f ∈ W 3,2
σ (T3;R3)where c is a generic constant, critically applying (5). This

verifies Assumption 5.3 so we move on to Assumption 5.4, which is immediate from
(18) and the linearity of .PB to show continuity in all relevant spaces.

3.4 Proofs of Theorems 3.1 and 3.6.

We use the abstract results of [32] stated in Sects. 5.3 and 5.4. Defini-
tions 3.3, 3.4, 3.5 and Theorem 3.6 are precisely Definitions 5.19, 5.20, 5.21 and
Theorem 5.22 for the equation (23) with respect to the spaces .V,H,U,X as defined
in Sect. 3.3. Indeed we would also prove Theorem 3.1 through Proposition 3.2 by
showing the existence of a local solution with the regularity of Definition 5.12.
Therefore we prove both Theorem 3.1 and 3.6 by showing that the assumptions of
Sects. 5.3 and 5.4, are satisfied. We work with the operators

.A := − (PL + νA) + 1

2

∞∑
i=1

PB2
i , G := −PB

which were addressed to be measurable mappings into the required spaces in
Sect. 3.3. We now prove Theorem 3.1 by justifying the assumptions of Sect. 5.3.

Proof of Theorem 3.1 First note that the density of the spaces is immediately
inherited from the density of the usual Sobolev Spaces and the equivalence of the
norms. The bilinear form satisfying (70) is chosen to be

.〈f, g〉U×V := 〈A1/2f,A3/2g〉

which reduces to the .〈·, ·〉2 inner product from (12). The remainder of the proof is
in treating the numbered assumptions.

Assumption 5.6: We use the system .(ak) of eigenfunctions of the Stokes Operator.
Assumption 5.7: Once more (74) follows from the discussion in Sect. 3.3. For (75)

we treat the different operators in .A individually, starting from the nonlinear
term:

.‖PLf f − PLgg‖1 = ‖PLf (f − g) + PLf −gg‖1
≤ ‖PLf (f − g)‖1 + ‖PLf −gg‖1
≤ c‖Lf (f − g)‖W 1,2 + c‖Lf −gg‖W 1,2

≤ c‖f ‖W 1,2‖f − g‖W 3,2 + c‖f − g‖W 1,2‖g‖W 3,2

≤ c
(‖f ‖W 1,2 + ‖g‖W 3,2

) ‖f − g‖W 3,2
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≤ c (‖f ‖1 + ‖g‖3) ‖f − g‖3

having applied (5). From the linearity of .νA and .
1
2

∑∞
i=1 PB2

i then the corre-
sponding result follows immediately from (74) and this subsequently justifies
(75). Additionally (76) follows immediately from the already justified Assump-
tion 5.4.

Assumption 5.8: (26) and (28) will be our basis of showing (77). The task is to
control

.2

〈
Pn

(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
fn, fn

〉
2

+
∞∑
i=1

‖PnPBifn‖22

which we rewrite as

. − 2〈PnPLfnfn, fn〉2 − 2ν〈PnAfn, fn〉2

+
∞∑
i=1

(
〈PnPB2

i fn, fn〉2 + ‖PnPBifn‖22
)

. (29)

Recalling the assumption (21) and (26), (28), we have that for any .ε > 0,

.(29) ≤ −2ν〈PnAfn, fn〉2 + c(ε)‖fn‖42 + ε‖fn‖23

+
∞∑
i=1

(
c(ε)‖ξi‖2W 3,∞‖fn‖22 + ε‖ξi‖2W 3,∞‖fn‖23

)

= −2ν〈Afn, fn〉2 +
[
c(ε)‖fn‖42 + c(ε)

∞∑
i=1

‖ξi‖2W 3,∞‖fn‖22
]

+ ε

[
1 +

∞∑
i=1

‖ξi‖2W 3,∞

]
‖fn‖23

≤ −2ν〈A1/2Afn,A
3/2fn〉2 + c(ε)

[
1 + ‖fn‖22

]
‖fn‖22

+ ε

[
1 +

∞∑
i=1

‖ξi‖2W 3,∞

]
‖fn‖23

= −2ν‖fn‖23 + c(ε)
[
1 + ‖fn‖22

]
‖fn‖22 + ε

[
1 +

∞∑
i=1

‖ξi‖2W 3,∞

]
‖fn‖23

where we have embedded the .
∑∞

i=1‖ξi‖2W 3,∞ into the constant .c(ε). Therefore
by choosing
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.ε := ν

1 + ∑∞
i=1‖ξi‖2W 3,∞

then (77) is satisfied for .κ := ν. Moving on to (78), we are interested in the term

.

∞∑
i=1

〈PnPBifn, fn〉22.

Observe that

.〈PnPBifn, fn〉22 = 〈PBifn, fn〉22
= 〈P[�,Bi]fn + PBi�fn,Afn〉2

≤ 2〈P[�,Bi]fn,Afn〉2 + 2〈PBi�fn,Afn〉2

= 2〈[�,Bi]fn,Afn〉2 + 2〈BiAfn,Afn〉2.

The first of these terms is dealt with through a simple Cauchy-Schwarz, as

.〈[�,Bi]fn,Afn〉2 ≤ ‖[�,Bi]fn‖2‖Afn‖2 ≤ c‖ξi‖2W 3,∞‖fn‖42
using Proposition 5.2, and the second comes directly from (20) as

.〈BiAfn,Afn〉2 ≤ c‖ξi‖2W 1,∞‖Afn‖4 ≤ c‖ξi‖2W 3,∞‖fn‖42.

Summing up the two terms and over all i gives that

.

∞∑
i=1

〈PnPBifn, fn〉22 ≤
(

c

∞∑
i=1

‖ξi‖2W 3,∞

)
‖fn‖42

which justifies (78) and Assumption 5.8.
Assumption 5.9: For (79) we must bound the term

.2

〈(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
f −

(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
g, f − g

〉
1

+
∞∑
i=1

‖PBif − PBig‖21

which we simply rewrite as

. − 2〈PLf f − PLgg, f − g〉1 − 2ν〈A(f − g), f − g〉1



72 D. Goodair and D. Crisan

+
∞∑
i=1

(
〈PB2

i (f − g), f − g〉1 + ‖PBi(f − g)‖21
)

and inspect the distinct items individually. Firstly from Lemma 3.8 we have that
for any .ε > 0,

. − 2〈PLf f − PLgg, f − g〉1 ≤ c(ε)
(
‖g‖41 + ‖f ‖22

)
‖f − g‖21 + ε‖f − g‖22.

(30)

Similarly to the justification of Assumption 5.8 we also see that

. − 2ν〈A(f − g), f − g〉1 = −2ν‖f − g‖22. (31)

Shifting focus to the final term, note that in (27) we in fact showed that

.〈PB2
i fn, fn〉1 + 〈PBifn,PBifn〉1 ≤ c(ε)‖ξi‖2W 3,∞‖fn‖21 + ε‖ξi‖2W 3,∞‖fn‖22

and scanning the proof we see that all arguments hold for arbitrary .fn ∈
W 3,2

σ (T3;R3) so we can deduce directly the bound

.〈PB2
i (f − g), f − g〉1 + ‖PBi(f − g)‖21 ≤ c(ε)‖ξi‖2W 3,∞‖f − g‖21

+ ε‖ξi‖2W 3,∞‖f − g‖22. (32)

Summing over (30), (31) and all i in (32), we deduce a bound by

. − 2ν‖f − g‖22 + c(ε)

[
‖g‖41 + ‖f ‖22 +

∞∑
i=1

‖ξi‖2W 3,∞

]
‖f − g‖21

+ ε

[
1 +

∞∑
i=1

‖ξi‖2W 3,∞

]
‖f − g‖22

so again a choice of

.ε := ν

1 + ∑∞
i=1‖ξi‖2W 3,∞

(33)

ensures (79) is satisfied for .κ := ν. Moving on to (80), we are interested in the
term

.

∞∑
i=1

〈PBi(f − g), f − g〉21, (34)

noting that
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.〈PBi(f − g), f − g〉21 = 〈APBi(f − g), f − g〉2

≤ N

3∑
k=1

〈∂kBi(f − g), ∂k(f − g)〉2.

We have

.∂kBi(f − g) = B∂kξi
(f − g) + Bi∂k(f − g)

so

.〈∂kBi(f − g), ∂k(f − g)〉2 ≤ 2〈B∂kξi
(f − g), ∂k(f − g)〉2

+ 2〈Bi∂k(f − g), ∂k(f − g)〉2.

Now from (18),

.〈B∂kξi
(f − g), ∂k(f − g)〉2 ≤ ‖B∂kξi

(f − g)‖2‖∂k(f − g)‖2

≤ c‖ξi‖2W 3,∞‖f − g‖41
and from (15),

.〈Bi∂k(f − g), ∂k(f − g)〉2 = 〈Tξi
∂k(f − g), ∂k(f − g)〉2

≤ c‖ξi‖2W 3,∞‖f − g‖41.

By summing both terms, over all .k = 1, . . . , N and .i ∈ N, we have shown that

.

∞∑
i=1

〈PBi(f − g), f − g〉21 ≤
(

c

∞∑
i=1

‖ξi‖2W 3,∞

)
‖f − g‖41 (35)

demonstrating (80) and hence Assumption 5.9.
Assumption 5.10: For (81) we must bound the term

.2

〈(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
f, f

〉
1

+
∞∑
i=1

‖PBif ‖21

which we simply rewrite as

. − 2〈PLf f, f 〉1 − 2ν〈Af, f 〉1 +
∞∑
i=1

(
〈PB2

i f, f 〉1 + ‖PBif ‖21
)

. (36)
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The nonlinear term can be controlled precisely as seen in Lemma 3.8 to deduce
that for any .ε > 0,

.
∣∣〈PLf f, f 〉1

∣∣ ≤ c(ε)‖f ‖61 + ε‖f ‖22.

Meanwhile across (31) and (32) we have that

. − 2ν〈Af, f 〉1 +
∞∑
i=1

(
〈PB2

i f, f 〉1 + ‖PBif ‖21
)

≤ −2ν‖f ‖22 + c(ε)

[
3∑

i=1

‖ξi‖2W 3,∞

]
‖f ‖21

+ ε

[ ∞∑
i=1

‖ξi‖2W 3,∞

]
‖f ‖22

so with the familiar choice of .ε (33) we see that

.(36) ≤ c
(
1 + ‖f ‖61

)
− ν‖f ‖22

which is more than sufficient to show (81). (82) follows immediately from (35),
concluding the justification.

Assumption 5.11: For any .η ∈ W 2,2
σ (T3;R3) we must bound the term

.

〈(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
f −

(
−PL − νA + 1

2

∞∑
i=1

PB2
i

)
g, η

〉
1

which we simply rewrite as

. − 2〈PLf f − PLgg, η〉1 − 2ν〈A(f − g), η〉1 +
∞∑
i=1

〈PB2
i (f − g), η〉1

and further by

. − 2〈PLf f − PLgg,Aη〉 − 2ν〈A(f − g),Aη〉 +
∞∑
i=1

〈PB2
i (f − g),Aη〉.

Through Cauchy-Schwarz this is controlled by

.‖η‖2
(
2‖PLf f − PLgg‖ + 2ν‖A(f − g)‖ +

∞∑
i=1

‖PB2
i (f − g)‖

)
.
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so our problem is reduced to bounding the bracketed terms. The linear terms are
trivial when recalling (18), and for the nonlinear term we revert back to (4) to see
that

.‖PLf f − PLgg‖ ≤ ‖Lf −gf ‖ + ‖Lg(f − g)‖ ≤ c (‖f ‖2 + ‖g‖1) ‖f − g‖2
comfortably justifying the assumption.

��
Proof of Theorem 3.1 The new space X will again be .L2

σ (T3;R3) as laid out in
Sect. 3.3. We choose the bilinear form .〈·, ·〉X×H to be given by

.〈f, g〉X×H := 〈f,Ag〉 (37)

noting that the property (86) follows from (12). Noting also that the system .(ak)

is an orthogonal basis of .W 1,2
σ (T3;R3), and that the operators were shown to be

measurable into the relevant spaces in Sect. 3.3, we are in the setting of Sect. 5.4.
We now proceed to justify the assumptions required to apply Theorem 5.22.

Assumption 5.16: This follows identically to Assumption 5.7, referring again to
Sect. 3.3 and (4).

Assumption 5.17: Continuing to consider the distinct terms, we have that

. − 2ν〈A(f − g), f − g〉 = −2ν‖f − g‖21
and

.〈PB2
i (f − g), f − g〉 + ‖PBi(f − g)‖2

≤ 〈B2
i (f − g), f − g〉 + ‖Bi(f − g)‖2 ≤ c‖ξi‖2W 2,∞‖f − g‖2.

from (19). With these components in place, the proof of (89) then follows
identically to that of (79). (90) is a direct consequence of (20), concluding the
justification.

Assumption 5.18: This stronger Assumption was in fact already verified in the
address of Assumption 5.10.

��

4 The Vorticity Equation on a Bounded Main

In order to address the well-posedness problem of the SALT Navier-Stokes Equa-
tions on bounded domains, we now pose it in vorticity form. The analysis conducted
in Sect. 3.4 was done with reference to the properties derived across Sects. 2.2
and 2.3, applicable to the bounded domain as well as the torus. The issue in studying
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the velocity form is that our operators do not map into the correct spaces in order
to use these properties: in particular, the Leray Projector does not preserve the zero
trace property and so the operators do not map into the necessary .Wk,2

σ (O;R3)

spaces (see Remark 2). The motivation behind the vorticity form is to circumvent
the necessity of Leray Projection.

Our attentions shall be decidedly on the bounded domain .O , though the results
for the vorticity form carry over seamlessly to the torus .T

3. For this section we
impose new constraints on the .ξi , which are such that for each .i ∈ N, .ξi ∈
W 1,2

σ (O;R3) ∩ W
2,2
0 (O;R3) ∩ W 3,∞(O;R3) and they collectively satisfy

.

∞∑
i=1

‖ξi‖2W 3,∞ < ∞. (38)

4.1 Deriving the Equation

The vorticity form of the equation is derived through taking the curl of the velocity
form, where the curl operator is defined for .f ∈ W 1,2(O;R3) by

.curlf :=
⎛
⎝∂2f

3 − ∂3f
2

∂3f
1 − ∂1f

3

∂1f
2 − ∂2f

1

⎞
⎠ .

We introduce the Lie Bracket operator .L defined on sufficiently regular functions
.f, g : O → R

3 by

.Lf g := Lf g − Lgf. (39)

In [44] Subsection 12.1 it is shown that, with notation .φ := curlf ,

.curl
(
Lf f

) = Lf φ

where it is also observed that the curl of elements of .W 1,2(O;R3) ∩ L2,⊥
σ (O;R3)

is null. It is clear that the Laplacian commutes with the curl operation, and we now
consider how the curl operation interacts with the stochastic term.

Lemma 4.1 We have that

.curl(Bif ) = Lξi
φ (40)

where once more .φ := curlf.

Proof We shall show only that the identity (40) holds in its first component, with
the others following similarly. To this end we calculate the first component of the
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left hand side of (40):

.[curl(Bif )]1 = ∂2[Bif ]3 − ∂3[Bif ]2

= ∂2

⎛
⎝ 3∑

j=1

ξ
j
i ∂jf

3 + f j ∂3ξ
j
i

⎞
⎠ − ∂3

⎛
⎝ 3∑

j=1

ξ
j
i ∂j f

2 + f j ∂2ξ
j
i

⎞
⎠

=
3∑

j=1

(
∂2ξ

j
i ∂j f

3 + ξ
j
i ∂2∂jf

3 + ∂2f
j∂3ξ

j
i + f j ∂2∂3ξ

j
i

)

−
3∑

j=1

(
∂3ξ

j
i ∂j f

2 + ξ
j
i ∂3∂jf

2 + ∂3f
j∂2ξ

j
i + f j ∂3∂2ξ

j
i

)

=
3∑

j=1

(
∂2ξ

j
i ∂j f

3 + ξ
j
i ∂2∂jf

3 + ∂2f
j∂3ξ

j
i − ∂3ξ

j
i ∂jf

2

−ξ
j
i ∂3∂jf

2 − ∂3f
j ∂2ξ

j
i

)

=
3∑

j=1

ξ
j
i ∂j (∂2f

3 − ∂3f
2) +

3∑
j=1

(
∂2ξ

j
i ∂j f

3 + ∂2f
j ∂3ξ

j
i

−∂3ξ
j
i ∂j f

2 − ∂3f
j ∂2ξ

j
i

)

= [Lξi
φ]1 +

3∑
j=1

(
∂2ξ

j
i ∂j f

3 + ∂2f
j ∂3ξ

j
i − ∂3ξ

j
i ∂jf

2 − ∂3f
j ∂2ξ

j
i

)
.

Therefore it remains to show that

.

3∑
j=1

(
∂2ξ

j
i ∂j f

3 + ∂2f
j ∂3ξ

j
i − ∂3ξ

j
i ∂j f

2 − ∂3f
j ∂2ξ

j
i

)
= −[Lφξi]1. (41)

We expand the sum in (41) to

.

(
∂2ξ

1
i ∂1f

3 + ∂2f
1∂3ξ

1
i − ∂3ξ

1
i ∂1f

2 − ∂3f
1∂2ξ

1
i

)
+

(
∂2ξ

2
i ∂2f

3 + ∂2f
2∂3ξ

2
i − ∂3ξ

2
i ∂2f

2 − ∂3f
2∂2ξ

2
i

)
+

(
∂2ξ

3
i ∂3f

3 + ∂2f
3∂3ξ

3
i − ∂3ξ

3
i ∂3f

2 − ∂3f
3∂2ξ

3
i

)
achieving some immediate cancellation in the second two brackets to
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.

(
∂2ξ

1
i ∂1f

3 + ∂2f
1∂3ξ

1
i − ∂3ξ

1
i ∂1f

2 − ∂3f
1∂2ξ

1
i

)
+

(
∂2ξ

2
i ∂2f

3 − ∂3f
2∂2ξ

2
i

)
+

(
∂2f

3∂3ξ
3
i − ∂3ξ

3
i ∂3f

2
)

.

We now simply rewrite the above by combining like terms, into

.∂2ξ
1
i (∂1f

3 − ∂3f
1) + ∂3ξ

1
i (∂2f

1 − ∂1f
2) + (∂2ξ

2
i + ∂3ξ

3
i )(∂2f

3 − ∂3f
2)

or more succinctly as

. − ∂2ξ
1
i φ2 − ∂3ξ

1
i φ3 + (∂2ξ

2
i + ∂3ξ

3
i )φ1

to which we add and subtract .∂1ξ1i φ1 to arrive at

. −
3∑

j=1

φj∂j ξ
1
i +

3∑
j=1

(
∂j ξ

j
i

)
φ1.

The first term is precisely .−[Lφξi]1 as we wished to show, appreciating that the
second term is zero given the divergence free condition on .ξi . ��

From this point forwards we adopt the notation of .Li := Lξi
. Writing the

Stratonovich integral of (1) in its component form over the basis vectors of .U, and
introducing the notation .w := curlu, at a heuristic level we can take the curl of (1)
to obtain

.wt − w0 +
∫ t

0
Lus ws ds − ν

∫ t

0
�ws ds +

∞∑
i=1

∫ t

0
Liw ◦ dWi

s = 0. (42)

Having already rigorously demonstrated the Itô conversion of the velocity form
(22) we shall make the conversion without explicit reference to the conditions of
Sect. 5.2, though this can be precisely shown in the same way. At least again then at
the heuristic level, the Itô form is

.wt = w0 −
∫ t

0
Lus ws ds +ν

∫ t

0
�ws ds + 1

2

∫ t

0

∞∑
i=1

L 2
i wsds −

∞∑
i=1

∫ t

0
Liw dWi

s

which can again be projected3 to the equation

3 Although the pressure term is eliminated, we still consider the Leray Projection to ensure that all
terms belong to .L2

σ (O;R3).
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.wt = w0 −
∫ t

0
PLus ws ds − ν

∫ t

0
Aws ds

+ 1

2

∫ t

0

∞∑
i=1

PL 2
i wsds −

∞∑
i=1

∫ t

0
PLiw dWi

s . (43)

Having motivated this section by an avoidance of the Leray Projection this may
seem counter intuitive, however we shall shortly show that the projection is not felt
in the noise (where it becomes problematic in velocity form); that is to say that for
sufficiently regular w, .PLiw = Liw. The goal is to deduce the existence of a
unique maximal solution of (43), a task which requires some clarification. Having
reached (43) from the velocity form, we now look to solve the equation for vorticity
which demands a representation of the velocity u in terms of the vorticity w. For
this we quote Theorem 1 of [20] (or in fact, a slightly relaxed version).

Theorem 4.2 There exists a mapping .K : O × O → R
3 such that for every .φ ∈

W 1,2
σ (O;R3) ∩ Wk,p(O;R3) where .k ∈ N∪ {0}, .1 < p < ∞, the function .BSKφ :

O → R
3 defined .λ − a.e. by

.(BSKφ)(x) =
∫
O

K(x, y)φ(y)dy (44)

is such that:

1. .BSKφ ∈ L2
σ (O;R3) ∩ Wk+1,p(O;R3);

2. .curl(BSKφ) = φ;
3. There exists a constant C independent of .φ (but dependent on .k, p) such that

.‖BSKφ‖Wk+1,p ≤ C‖φ‖Wk,p .

It should immediately be noted that such a K is not claimed to be unique, and
in [20] is explicitly shown to be non-unique, however it does allow us to identify
a velocity from a given vorticity satisfying the divergence-free and boundary
conditions (2). From this point forwards we fix a specific K from the class of
admissable integral kernels postulated in Theorem 4.2. We thus understand the
nonlinear term as a mapping

.φ �→ LBSKφφ.

This mapping shall at times be simply denoted by .LBSK
. The Eq. (43) is thus closed

in w.
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4.2 Definitions and Results

We now state and prove the existence, uniqueness and maximality results for (43).
We recall that to solve the velocity form (23) we used the extended criterion of
Theorem 5.22, requiring the space .V := W 3,2

σ (T3;R3) to prove Theorem 3.6.
This arose naturally in first showing Theorem 3.1, where we considered solutions
explicitly in terms of the original Stratonovich form. For (43), however, solutions
can be obtained for the natural choice of .w0 ∈ W 1,2

σ (O;R3) with an application
only of Theorem 5.15 in Sect. 5.3 (see Remark 5). We note that such a choice is
natural as the identity is satisfied in .L2(O;R3). Thus we do not take the detour of
considering a fourth Hilbert Space to rigorously define solutions of the Stratonovich
form (42), although this can be done similarly. Notions of local strong solution,
maximal strong solution and pathwise uniqueness can then be defined identically to
Definitions 3.3, 3.4 and 3.5 for the new identity (43). The result is then the following.

Theorem 4.3 For any given .F0− measurable .w0 : 
 → W 1,2
σ (O;R3), there exists

a unique maximal strong solution .(w,�) of the equation (43). Moreover at .P−a.e.

.ω for which .�(ω) < ∞, we have that

. sup
r∈[0,�(ω))

‖wr(ω)‖21 +
∫ �(ω)

0
‖wr(ω)‖22dr = ∞.

4.3 Operator Bounds

Just as in Sect. 3.2, we state some intermediary results regarding the operators
involved. In the following and throughout this section c will represent a generic
constant changing from line to line, .c(ε) will be a generic constant dependent
on a fixed .ε, .φ and .ψ will be arbitrary elements of .W 2,2

σ (O;R3) and .φn ∈
span{a1, · · · , an}. The mapping .Li satisfies the same boundedness as (18), and also
the following.

Lemma 4.4 There exists a constant c such that for each i and for all .f ∈
Wk+2,2(O;R3) with .k = 0, 1, we have the bounds

.〈L 2
i f, f 〉Wk,2 + ‖Lif ‖2

Wk,2 ≤ c‖ξi‖2Wk+2,∞‖f ‖2
Wk,2 , . (45)

〈Lif, f 〉2
Wk,2 ≤ c‖ξi‖2Wk+1,∞‖f ‖4

Wk,2 , . (46)

‖[�,Li]f ‖2 ≤ c‖ξi‖2W 3,∞‖f ‖2
W 2,2 (47)

where .[�,Li] is the commutator

.[�,Li] := �Li − Li�.
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Proof See Sect. 5.1. ��
Lemma 4.5 For any .ε > 0 we have the bound

.〈PnPL 2
i φn, φn〉1 + 〈PnPLiφn,PnPLiφn〉1

≤ c(ε)‖ξi‖2W 3,∞‖φn‖21 + ε‖ξi‖2W 3,∞‖φn‖22.

Proof This now follows precisely as for (27). ��
Lemma 4.6 For any .ε > 0 we have the bound

.
∣∣〈PnPLBSKφnφn, φn〉1

∣∣ ≤ c(ε)‖φn‖41 + ε‖φn‖22.

Proof See Sect. 5.1. ��
Remark 5 Recalling Remark 4, the nonlinear term in velocity form fails this
estimate. It is satisfied in the vorticity form due to the additional regularity that
.fn has compared to .φn. This difference is what enables us to apply Theorem 5.15
directly in the case .H := W 1,2

σ for the vorticity form, whereas for the velocity form
the appropriate estimate is only satisfied for .H := W 2,2

σ (see Assumption 5.8) hence
the need for Theorem 5.22 in velocity form.

In the following g is defined by

.g(x) =
∫
O

K(x, y)ψ(y)dy

as in Theorem 4.2. The subsequent lemma is in analogy with Lemma 3.9.

Lemma 4.7 For any .ε > 0, we have that

.
∣∣〈PLBSKφφ − PLBSKψψ, φ − ψ〉∣∣ ≤ c(ε)

[
‖φ‖21 + ‖ψ‖21

]
‖φ−ψ‖2+ε‖φ−ψ‖21

Proof See Sect. 5.1. ��

4.4 Proof of Theorem 4.3

As discussed we apply Theorem 5.15, which we do for the spaces

.V := W 2,2
σ (O;R3), H := W 1,2

σ (O;R3), U := L2
σ (O;R3).

Proof of Theorem 4.3 The density relations are clear as .C∞
0,σ (O;R3) ⊂

W 2,2
σ (O;R3) is dense in both .W 1,2

σ (O;R3) and .L2
σ (O;R3). The bilinear form

(70) is simply again (37). Now we shift attentions to checking that the operators
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are measurable into the correct spaces. We note that .LBSK
has improved regularity

properties over .L given item 3 of Theorem 4.2, so retains the continuity with
measurability following. There is no change to the Stokes Operator from Sect. 3. As
for .PLi , we in fact first show that .Li ∈ C

(
W 2,2

σ (O;R3);W 1,2
σ (O;R3)

)
(and hence

is invariant under .P4). This consists of three parts: showing that it is continuous as
a mapping into .W 1,2(O;R3), showing the divergence free property and then the
zero trace property. In fact with the appropriate regularity, it follows identically to
(18) that we again have

.‖Liφ‖2
Wk,2 ≤ c‖ξi‖2Wk+1,∞‖φ‖2

Wk+1,2 (48)

which addresses the continuity. The fact that .Liφ is divergence free comes
immediately from the relation .Liφ = curl (Bi[BSKφ]) and the well established fact
the divergence of a curl is zero. For the zero trace property it is sufficient to show the
existence of a sequence of compactly supported .ηn ∈ W 1,2(O;R3) which converge
to .Liφ in .W 1,2(O;R3). By definition of the property that .ξi ∈ W

2,2
0 (OR

3) there
is a sequence .(γn), .γn ∈ C∞

0 (O;R3) such that .γn → ξi in .W 2,2(OR
3). Evidently

.ηn := Lγnφ is again compactly supported, and observe that

.‖Lγnφ − Liφ‖W 1,2 = ‖Lγn−ξi
φ‖W 1,2 ≤ c‖γn − ξi‖W 2,2‖φ‖W 2,2

from (6), which converges to zero as required to justify the zero trace property. The
fact that .PL 2

i ∈ C
(
W 2,2

σ (O;R3);L2
σ (O;R3)

)
again follows from the linearity,

(48) and continuity of .P . We now proceed to justify the numbered assumptions of
Sect. 5.3.

Assumption 5.6: We use the system .(ak) of eigenfunctions of the Stokes Operator.
Assumption 5.7: Items (74), (75) follow identically to the justification of (87),

(88) for (23) given the increased regularity of .L over .L and the corresponding
boundedness of the noise term (48). With the linearity of .Li then (76) follows
trivially from (48).

Assumption 5.8: (77) now follows from Lemmas 4.5 and 4.6 in the same manner
as for the velocity equation. (78) is shown exactly as (82) was for the velocity
equation, using that the .Pn are orthogonal projections in .W 1,2

σ (O;R3).
Assumption 5.9: The justification now comes together exactly as in the proof for

Assumption 5.17 in the velocity case, noting again that (19) holds for .Li as well,
and using Lemma 4.7.

Assumption 5.10: There is very little to demonstrate here, as the linear terms follow
from Assumption 5.9 so we just briefly address the nonlinear term. Through the
same process as in Lemma 4.7, we have that

4 As .PLi is equal to .Li on .W 2,2
σ (O;R3), then .(PLi )

2 is equal to .PL 2
i on this space too, justifying

the consistency between taking the Leray Projector and then converting from Stratonovich to Itô
and vice versa as seen for (23).



On the 3D Navier-Stokes Equations with Stochastic Lie Transport 83

.
∣∣〈PLf φ, φ〉∣∣ ≤ ∣∣〈Lf φ, φ〉 + 〈Lφf, φ〉∣∣

≤ c [‖f ‖2‖φ‖1 + ‖φ‖1‖f ‖2] ‖φ‖
≤ c‖φ‖‖φ‖21

where the rest simply follows as in Assumption 5.9.
Assumption 5.11: We consider the different operators in turn, starting with the

nonlinear term and using that

.
∣∣〈PLf φ − PLgψ, η〉∣∣ = ∣∣〈Lf φ − Lφf − Lgψ + Lψg, η〉∣∣

= ∣∣〈Lf −gφ+Lg(φ − ψ)−Lφ−ψf − Lψ(f − g), η〉∣∣
where exactly as in Lemma 4.7 we have that

.‖Lf −gφ + Lg(φ − ψ) − Lφ−ψf − Lψ(f − g)‖ ≤ c [‖φ‖1 + ‖ψ‖1] ‖φ − ψ‖1
so in particular

.
∣∣〈PLf φ − PLgψ, η〉∣∣ ≤ ‖η‖ (c [‖φ‖1 + ‖ψ‖1] ‖φ − ψ‖1) . (49)

For the Stokes Operator we simply apply Proposition (12) to see that

.|〈Aφ − Aψ, η〉| = |〈A(φ − ψ), η〉| = 〈φ − ψ, η〉1 ≤ ‖φ − ψ‖1‖η‖1 (50)

and for the .L 2
i term we use the adjoint characterisation to observe that

.|〈L 2
i φ − L 2

i ψ, η〉| = |〈L 2
i (φ − ψ), η〉| = |〈Li (φ − ψ),B∗

i η〉|
≤ c‖ξi‖2W 1,∞‖φ − ψ‖1‖η‖1. (51)

Combining (49), (50) and (51) gives the result.
��

5 Appendices

5.1 Proofs from Sects. 2.3, 3.2, and 4.3

We begin with the proofs from Sect. 2.3.

Proof of Proposition 2.6 We begin with showing (19), tasked to control

.〈B2
i f, f 〉Wk,2 + ‖Bif ‖2

Wk,2 (52)
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and do so with each derivative in the sum for the inner product: that is, we are
looking at

.〈DαB2
i f,Dαf 〉 + 〈DαBif,DαBif 〉 (53)

where we simplify the derivatives by writing

.DαBξi
f =

∑
α′≤α

B
Dα−α′

ξi
Dα′

f

=
∑
α′<α

B
Dα−α′

ξi
Dα′

f + Bξi
Dαf. (54)

Plugging this result in, we also see that

.DαB2
ξi
f = DαBξi

(
Bξi

f
)

=
∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f + Bξi

DαBξi
f

which will use in our analysis of (53), reducing the expression to

.

〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f + Bξi

DαBξi
f,Dαf

〉
+ 〈DαBξi

f,DαBξi
f 〉

which we further break up in terms of the adjoint .B∗
ξi
:

.

〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f,Dαf

〉
+〈DαBξi

f, B∗
ξi
Dαf 〉+〈DαBξi

f,DαBξi
f 〉 (55)

requiring that .Dαf ∈ W 1,2(O;R3), which is satisfied by the assumption .f ∈
Wk+2,2(O;R3). By summing the second and third inner products and using (54),
this becomes

.

〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f,Dαf

〉
+

〈
DαBξi

f, B∗
ξi
Dαf +

∑
α′<α

B
Dα−α′

ξi
Dα′

f +Bξi
Dαf

〉

which we look to simplify by combining .B∗
ξi
and .Bξi

, noting that

.B∗
i + Bi = L∗

ξi
+ T ∗

i + Lξi
+ Ti = T ∗

i + Ti .

Indeed we arrive at the expression

.

〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f,Dαf

〉
+

〈
DαBξi

f,
(
Tξi

+ T ∗
ξi

)
Dαf +

∑
α′<α

B
Dα−α′

ξi
Dα′

f
〉
.
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As we are looking to achieve control with respect to the .Wk,2(O;R3) norm of f ,
then it is the terms with differential operators of order greater than k that concern
us. Of course this was the motivating factor behind combining .Bξi

and its adjoint,
nullifying the additional derivative coming from .Lξi

. There are more higher order
terms to go though, and the strategy will be to write these in terms of commutators
with a differential operator of controllable order. This will involve considering
different aspects of our sum in tandem, which will be helped with (54) reducing
our expression again to

.

〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

Bξi
f,Dαf

〉
+

〈 ∑
β<α

BDα−βξi
Dβf + Bξi

Dαf,
(
Tξi

+ T ∗
ξi

)
Dαf

+
∑
α′<α

B
Dα−α′

ξi
Dα′

f
〉
.

Ultimately the terms in the summand are split up into

.〈Bξi
Dαf,

(
Tξi

+ T ∗
ξi

)
Dαf 〉 . (56)

+
〈 ∑

β<α

BDα−βξi
Dβf,

(
Tξi

+ T ∗
ξi

)
Dαf +

∑
α′<α

B
Dα−α′

ξi
Dα′

f
〉
. (57)

+
∑
α′<α

(
〈B

Dα−α′
ξi
Dα′

Bξi
f,Dαf 〉 + 〈Bξi

Dαf, B
Dα−α′

ξi
Dα′

f 〉
)

(58)

with the intention of controlling each one individually. Firstly for a treatment of
(56),

.(56) = 〈(Lξi
+ Tξi

)Dαf, (T ∗
ξi

+ Tξi
)Dαf 〉

= 〈Lξi
Dαf, T ∗

ξi
Dαf 〉 + 〈Lξi

Dαf, Tξi
Dαf 〉

+ 〈Tξi
Dαf, T ∗

ξi
Dαf 〉 + 〈Tξi

Dαf, Tξi
Dαf 〉

=
(
〈Tξi

Lξi
Dαf,Dαf 〉 + 〈Lξi

Dαf, Tξi
Dαf 〉

)
+

(
〈T 2

ξi
Dαf,Dαf 〉 + 〈Tξi

Dαf, Tξi
Dαf 〉

)
.

We now bound the brackets in terms of .‖Dαf ‖2 separately, starting with the latter
one as

.〈T 2
ξi

Dαf,Dαf 〉 ≤ ‖T 2
ξi

Dαf ‖‖Dαf ‖ ≤ c‖ξi‖W 1,∞‖Tξi
Dαf ‖‖Dαf ‖

≤ c‖ξi‖2W 1,∞‖Dαf ‖2

and similarly
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.〈Tξi
Dαf, Tξi

Dαf 〉 ≤ ‖Tξi
Dαf ‖‖Tξi

Dαf ‖ ≤ c‖ξi‖2W 1,∞‖Dαf ‖2.

Now for the first bracket, we add and subtract a term to have an expression through
the commutator of the operators:

.〈Tξi
Lξi

Dαf,Dαf 〉 + 〈Lξi
Dαf, Tξi

Dαf 〉
=〈(Tξi

Lξi
− Lξi

Tξi
)Dαf,Dαf 〉 + 〈Lξi

Tξi
Dαf,Dαf 〉 + 〈Lξi

Dαf, Tξi
Dαf 〉

=〈(Tξi
Lξi

− Lξi
Tξi

)Dαf,Dαf 〉 + 〈Tξi
Dαf,L∗

ξi
Dαf 〉 + 〈Lξi

Dαf, Tξi
Dαf 〉

=〈(Tξi
Lξi

− Lξi
Tξi

)Dαf,Dαf 〉.

The commutator term is given explicitly through

.Tξi
Lξi

Dαf = Tξi

( 3∑
j=1

ξ
j
i ∂jD

αf
)

=
3∑

k=1

( 3∑
j=1

ξ
j
i ∂jD

αf
)k∇ξk

i

=
3∑

k=1

3∑
j=1

ξ
j
i ∂jD

αf k∇ξk
i

and

.Lξi
Tξi

Dαf = Lξi

( 3∑
k=1

Dαf k∇ξk
i

)

=
3∑

j=1

ξ
j
i ∂j

( 3∑
k=1

Dαf k∇ξk
i

)

=
3∑

j=1

3∑
k=1

ξ
j
i ∂j

(
Dαf k∇ξk

i

)

=
3∑

j=1

3∑
k=1

(
ξ

j
i ∂jD

αf k∇ξk
i + ξ

j
i Dαf k∂j∇ξk

i

)

such that

.(Tξi
Lξi

− Lξi
Tξi

)Dαf = −
3∑

j=1

3∑
k=1

ξ
j
i Dαf k∂j∇ξk

i .
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Therefore

.‖(Tξi
Lξi

− Lξi
Tξi

)Dαf ‖ ≤ c

3∑
j=1

3∑
k=1

‖ξj
i Dαf k∂j∇ξk

i ‖

≤ c

3∑
j=1

3∑
k=1

3∑
l=1

‖ξj
i Dαf k∂j ∂lξ

k
i ‖L2(O;R)

≤ c

3∑
j=1

3∑
k=1

3∑
l=1

‖ξj
i ∂j ∂lξ

k
i ‖L∞(O;R)‖Dαf k‖L2(O;R)

≤ c‖ξi‖2W 2,∞

3∑
j=1

3∑
k=1

3∑
l=1

‖Dαf k‖L2(O;R)

≤ c‖ξi‖2W 2,∞‖Dαf ‖

and

.〈(Tξi
Lξi

− Lξi
Tξi

)Dαf,Dαf 〉 ≤ ‖(Tξi
Lξi

− Lξi
Tξi

)Dαf ‖‖Dαf ‖
≤ c‖ξi‖2W 2,∞‖Dαf ‖2.

Combining these inequalities we determine the bound

.(56) ≤ c‖ξi‖2W 2,∞‖Dαf ‖2.

As for (57) we look to use Cauchy-Schwarz and bound each item in the inner
product. Indeed straight from (18) in the .L2(O;R3) setting, by simply replacing
.ξi with .Dα−βξi , we have that

.‖BDα−βξi
Dβf ‖2 ≤ c‖Dα−βξi‖2W 1,∞‖Dβf ‖2

W 1,2 ≤ c‖ξi‖2Wk+1,∞‖f ‖2
Wk,2 .

Moreover,

.

∣∣∣∣
∣∣∣∣ ∑
β<α

BDα−βξi
Dβf

∣∣∣∣
∣∣∣∣
2

≤ c
∑
β<α

‖BDα−βξi
Dβf ‖2 ≤ c‖ξi‖2Wk+1,∞‖f ‖2

Wk,2 .

In addition to this,

.‖(Tξi
+ T ∗

ξi

)
Dαf ‖ ≤ ‖Tξi

Dαf ‖ + ‖T ∗
ξi

Dαf ‖ ≤ c‖ξi‖Wk+1,∞‖Dαf ‖

using the equivalence in operator norm of the adjoint. Together this amounts to
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.(57) ≤
∣∣∣∣
∣∣∣∣ ∑
β<α

BDα−βξi
Dβf

∣∣∣∣
∣∣∣∣ ·

∣∣∣∣
∣∣∣∣(Tξi

+ T ∗
ξi

)
Dαf +

∑
α′<α

B
Dα−α′

ξi
Dα′

f

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣ ∑
β<α

BDα−βξi
Dβf

∣∣∣∣
∣∣∣∣
(

‖(Tξi
+ T ∗

ξi

)
Dαf ‖ +

∣∣∣∣
∣∣∣∣ ∑
α′<α

B
Dα−α′

ξi
Dα′

f

∣∣∣∣
∣∣∣∣
)

≤ c‖ξi‖Wk+1,∞‖f ‖Wk,2

(
c‖ξi‖Wk+1,∞‖Dαf ‖ + c‖ξi‖Wk+1,∞‖f ‖Wk,2

)
≤ c‖ξi‖2Wk+1,∞‖f ‖2

Wk,2 .

Let’s now turn our attentions to (58), which for each .α′ in the sum we rewrite as

.〈Dαf,B
Dα−α′

ξi
Dα′

Bξi
f + B∗

ξi
B

Dα−α′
ξi
Dα′

f 〉 (59)

and employing (54) again we see this becomes

.

〈
Dαf,B

Dα−α′
ξi

( ∑
β<α′

B
Dα′−βξi

Dβf + Bξi
Dα′

f

)
+ B∗

ξi
B

Dα−α′
ξi
Dα′

f
〉

=
〈
Dαf,

∑
β<α′

B
Dα−α′

ξi
B

Dα′−βξi
Dβf

〉

+ 〈Dαf,B
Dα−α′

ξi
Bξi

Dα′
f + B∗

ξi
B

Dα−α′
ξi
Dα′

f 〉.

We have split up these terms to make our approach clearer, as the two right hand
sides of the inner products will be considered separately. For the first inner product,
two applications of (18) give that

.‖B
Dα−α′

ξi
B

Dα′−βξi
Dβf ‖2 ≤ c‖Dα−α′

ξi‖2W 1,∞‖B
Dα′−βξi

Dβf ‖2
W 1,2

≤ c‖Dα−α′
ξi‖2W 1,∞

(
c‖Dα′−βξi‖2W 2,∞‖Dβf ‖2

W 2,2

)
≤ c‖ξi‖4Wk+1,∞‖f ‖2

Wk,2

Moreover,

.

∣∣∣∣
∣∣∣∣ ∑
β<α′

B
Dα−α′

ξi
B

Dα′−βξi
Dβf

∣∣∣∣
∣∣∣∣
2

≤ c‖B
Dα−α′

ξi
B

Dα′−βξi
Dβf ‖2

≤ c‖ξi‖4Wk+1,∞‖f ‖2
Wk,2 .

As for the second inner product, we rewrite the right side as

.B
Dα−α′

ξi

(
(Lξi

+ Tξi
)Dα′

f
) + (L∗

ξi
+ T ∗

ξi
)B

Dα−α′
ξi
Dα′

f
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and further

.
(
B

Dα−α′
ξi
Lξi

−Lξi
B

Dα−α′
ξi

)
Dα′

f +B
Dα−α′

ξi
Tξi

Dα′
f +T ∗

ξi
B

Dα−α′
ξi
Dα′

f. (60)

Starting with the latter two terms,

.‖B
Dα−α′

ξi
Tξi

Dα′
f ‖2 ≤ c‖Dα−α′

ξi‖2W 1,∞‖Tξi
Dα′

f ‖2
W 1,2

≤ c‖Dα−α′
ξi‖2W 1,∞

(
c‖ξi‖2W 2,∞‖Dα′

f ‖2
W 1,2

)
≤ c‖ξi‖4Wk+1,∞‖f ‖2

Wk,2

and likewise

.‖T ∗
ξi

B
Dα−α′

ξi
Dα′

f ‖2 ≤ c‖ξi‖2W 1,∞‖B
Dα−α′

ξi
Dα′

f ‖2

≤ c‖ξi‖2W 1,∞
(
c‖Dα−α′

ξi‖2W 1,∞‖Dα′
f ‖2

W 1,2

)
≤ c‖ξi‖4Wk+1,∞‖f ‖2

Wk,2 .

Now we show explicitly that the commutator in

.
(
B

Dα−α′
ξi
Lξi

− Lξi
B

Dα−α′
ξi

)
Dα′

f (61)

from (60) is of first order (so of .kth order when composed with .Dα′
), through the

expressions

.B
Dα−α′

ξi
Lξi

Dα′
f =

3∑
j=1

(
Dα−α′

ξ
j
i ∂j

( 3∑
k=1

ξk
i ∂kD

α′
f

)

+
( 3∑

k=1

ξk
i ∂kD

α′
f

)j∇Dα−α′
ξ

j
i

)

=
3∑

j=1

3∑
k=1

(
Dα−α′

ξ
j
i ∂j ξ

k
i ∂kD

α′
f

+ Dα−α′
ξ

j
i ξ k

i ∂j ∂kD
α′

f + ξk
i ∂kD

α′
f j∇Dα−α′

ξ
j
i

)

and

.Lξi
B

Dα−α′
ξi
Dα′

f =
3∑

k=1

ξk
i ∂k

( 3∑
j=1

Dα−α′
ξ

j
i ∂jD

α′
f + Dα′

f j∇Dα−α′
ξ

j
i

)
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=
3∑

j=1

3∑
k=1

(
ξk
i ∂kD

α−α′
ξ

j
i ∂jD

α′
f + ξk

i Dα−α′
ξ

j
i ∂k∂jD

α′
f

+ ξk
i ∂kD

α′
f j∇Dα−α′

ξ
j
i + ξk

i Dα′
f j ∂k∇Dα−α′

ξ
j
i

)

such that

.(61) =
3∑

j=1

3∑
k=1

(
Dα−α′

ξ
j
i ∂j ξ

k
i ∂kD

α′
f − ξk

i ∂kD
α−α′

ξ
j
i ∂jD

α′
f

− ξk
i Dα′

f j∂k∇Dα−α′
ξ

j
i

)

and in particular

.‖(61)‖2 ≤ c

3∑
j=1

3∑
k=1

(
‖Dα−α′

ξ
j
i ∂j ξ

k
i ∂kD

α′
f ‖2 + ‖ξk

i ∂kD
α−α′

ξ
j
i ∂jD

α′
f ‖2

+ ‖ξk
i Dα′

f j∂k∇Dα−α′
ξ

j
i ‖2

)

= c

3∑
j=1

3∑
k=1

3∑
l=1

(
‖Dα−α′

ξ
j
i ∂j ξ

k
i ∂kD

α′
f l‖2

L2(O;R)

+ ‖ξk
i ∂kD

α−α′
ξ

j
i ∂jD

α′
f l‖2

L2(O;R)
+ ‖ξk

i Dα′
f j ∂k∂lD

α−α′
ξ

j
i ‖2

L2(O;R)

)

≤ c‖ξi‖4Wk+2,∞

3∑
j=1

3∑
k=1

3∑
l=1

(
‖∂kD

α′
f l‖2

L2(O;R)

+ ‖∂jD
α′

f l‖2
L2(O;R)

+ ‖Dα′
f l‖2

L2(O;R)

)

≤ c‖ξi‖4Wk+2,∞

( 3∑
j=1

‖f ‖2
Wk,2 +

3∑
k=1

‖f ‖2
Wk,2 +

3∑
j=1

3∑
k=1

‖Dα′
f ‖2

)

≤ c‖ξi‖4Wk+2,∞‖f ‖2
Wk,2 .

Finally now we can piece these four inequalities together to produce a bound on
(59):
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.|(59)| ≤ ‖Dαf ‖
∣∣∣∣
∣∣∣∣ ∑
β<α′

B
Dα−α′

ξi
B

Dα′−βξi
Dβf + (60)

∣∣∣∣
∣∣∣∣

≤ ‖Dαf ‖
(∣∣∣∣

∣∣∣∣ ∑
β<α′

B
Dα−α′

ξi
B

Dα′−βξi
Dβf

∣∣∣∣
∣∣∣∣ + ‖B

Dα−α′
ξi
Tξi

Dα′
f ‖

+ ‖T ∗
ξi

B
Dα−α′

ξi
Dα′

f ‖ + ‖(61)‖
)

≤ c‖Dαf ‖
(

‖ξi‖2Wk+1,∞‖f ‖Wk,2 + ‖ξi‖2Wk+1,∞‖f ‖Wk,2

+ ‖ξi‖2Wk+1,∞‖f ‖Wk,2 + ‖ξi‖2Wk+2,∞‖f ‖Wk,2

)

≤ c‖Dαf ‖
(
‖ξi‖2Wk+2,∞‖f ‖Wk,2

)
≤ c‖ξi‖2Wk+2,∞‖f ‖2

Wk,2

and subsequently of (58):

.(58) =
∑
α′<α

(59) ≤ c
∑
α′<α

‖ξi‖2Wk+2,∞‖f ‖2
Wk,2 ≤ c‖ξi‖2Wk+2,∞‖f ‖2

Wk,2 .

We can now conclude the proof of (19) by observing that

.(52) =
∑
|α|≤k

(53)

=
∑
|α|≤k

(56) + (57) + (58)

≤ c
∑
|α|≤k

(
‖ξi‖2W 2,∞‖Dαf ‖2 + ‖ξi‖2Wk+1,∞‖f ‖2

Wk,2 + ‖ξi‖2Wk+2,∞‖f ‖2
Wk,2

)

≤ c
∑
|α|≤k

‖ξi‖2Wk+2,∞‖f ‖2
Wk,2

= c‖ξi‖2Wk+2,∞‖f ‖2
Wk,2 .

As for (20), using (54) once more, we see that for each .α in the sum for the inner
product,

.|〈DαBif,Dαf 〉| =
∣∣∣〈 ∑

α′<α

B
Dα−α′

ξi
Dα′

f + Bξi
Dαf,Dαf

〉∣∣∣
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=
∣∣∣〈 ∑

α′<α

B
Dα−α′

ξi
Dα′

f,Dαf
〉
+ 〈Bξi

Dαf,Dαf 〉
∣∣∣

≤
∣∣∣〈 ∑

α′<α

B
Dα−α′

ξi
Dα′

f,Dαf
〉∣∣∣ + |〈Tξi

Dαf,Dαf 〉|

using the cancellation from (15) to dispose of the order .k + 1 term. In our treatment
of (57) in (19), we showed the bound

.

∣∣∣∣
∣∣∣∣ ∑
β<α

BDα−βξi
Dβf

∣∣∣∣
∣∣∣∣ ≤ c‖ξi‖Wk+1,∞‖f ‖Wk,2

and therefore

.

∣∣∣〈 ∑
α′<α

B
Dα−α′

ξi
Dα′

f,Dαf
〉∣∣∣ ≤ c‖ξi‖Wk+1,∞‖f ‖Wk,2‖Dαf ‖

≤ c‖ξi‖Wk+1,∞‖f ‖2
Wk,2

whilst a simple bound on the second term yields the result. ��
Proof of Lemma 2.7 For .∇g ∈ L2,⊥

σ (O;R3) ∩ W 1,2(O;R3),

.Bi(∇g) = Lξi
(∇g) + Tξi

(∇g)

=
3∑

j=1

ξ
j
i ∂j (∇g) +

3∑
j=1

∂jg∇ξ
j
i

=
3∑

j=1

ξ
j
i (∇∂jg) +

3∑
j=1

(∇ξ
j
i )∂j g

= ∇
3∑

j=1

ξ
j
i ∂j g

∈ L2,⊥
σ (O;R3)

using in the last line the assumption that .∇g ∈ W 1,2(O;R3) and that .ξi ∈
W 1,∞(O;R3). We now make a distinction between the settings of .T

3 and .O . For
the bounded domain .O , we take any .f ∈ W 1,2(O;R3) and use the representation
(9) to see that

.PBif = PBi (Pf + ∇g) = PBiPf + P(Bi∇g) = PBiPf
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as required, using again the .W 1,2(O;R3) regularity of both components of the
decomposition (9). In the case of the Torus we must address the constant term in
the decomposition (10), appreciating that

.Bic = Tξi
c =

3∑
j=1

cj∇ξ
j
i = ∇

3∑
j=1

cj ξ
j
i ∈ L2,⊥

σ (T3;R3)

so the result follows in the same manner. ��
We now state two results used in proving the Lemmas of Sects. 3.2 and 4.3. The

first is derived from the Gagliardo-Nirenberg Inequality, whilst the second is proved
below.

Proposition 5.1 There exists a constant c such that for any .f ∈ W 1,2
σ (T3;R3) and

.g ∈ W 2,2
σ (T3;R3),

.‖Lf g‖ ≤ c‖f ‖1‖g‖1/21 ‖g‖1/22 . (62)

Meanwhile for .f ∈ W 1,2
σ (O;R3) and .g ∈ W 2,2

σ (O;R3) we have that

.‖Lf g‖ ≤ c‖f ‖1
(
‖g‖1/21 ‖g‖1/22 + ‖g‖1

)
. (63)

Proposition 5.2 There exists a constant c such that for every .f ∈ W 3,2(O;R3),

.‖[�,Bi]f ‖2 ≤ c‖ξi‖2W 3,∞‖f ‖2
W 2,2

where .[�,Bi] is the commutator

.[�,Bi] := �Bi − Bi�.

Proof We fix any such f and first show that

.[�,Bi]f =
3∑

k=1

3∑
j=1

(
∂2k ξ

j
i ∂j f + 2∂kξ

j
i ∂k∂jf + 2∂kf

j ∂k∇ξ
j
i + f j ∂2k ∇ξ

j
i

)
.

(64)
Indeed

.�Bif =
3∑

k=1

∂2k

⎛
⎝ 3∑

j=1

(
ξ

j
i ∂j f + f j∇ξ

j
i

)⎞
⎠

=
3∑

k=1

∂k

⎛
⎝ 3∑

j=1

(
∂kξ

j
i ∂j f + ξ

j
i ∂k∂jf + ∂kf

j∇ξ
j
i + f j∂k∇ξ

j
i

)⎞
⎠
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=
3∑

k=1

3∑
j=1

(
∂2k ξ

j
i ∂j f + 2∂kξ

j
i ∂k∂jf + ξ

j
i ∂2k ∂jf + ∂2k f j∇ξ

j
i

+2∂kf
j ∂k∇ξ

j
i + f j∂2k ∇ξ

j
i

)
and

.Bi�f =
3∑

j=1

⎛
⎝ξ

j
i ∂j

(
3∑

k=1

∂2k f

)
+

(
3∑

k=1

∂2k f

)j

∇ξ
j
i

⎞
⎠

=
3∑

k=1

3∑
j=1

(
ξ

j
i ∂2k ∂jf + ∂2k f j∇ξ

j
i

)

therefore

.[�,Bi]f = �Bif − Bi�f

=
3∑

k=1

3∑
j=1

(
∂2k ξ

j
i ∂jf + 2∂kξ

j
i ∂k∂jf + 2∂kf

j ∂k∇ξ
j
i + f j ∂2k ∇ξ

j
i

)

justifying (64). The result then follows with direct calculation:

. ‖[�,Bi]f ‖2=
∥∥∥∥∥∥

3∑
k=1

3∑
j=1

(
∂2k ξ

j
i ∂jf +2∂kξ

j
i ∂k∂jf +2∂kf

j ∂k∇ξ
j
i +f j∂2k ∇ξ

j
i

)∥∥∥∥∥∥
2

≤ c

3∑
k=1

3∑
j=1

∥∥∥∂2k ξ
j
i ∂jf + 2∂kξ

j
i ∂k∂jf + 2∂kf

j ∂k∇ξ
j
i + f j∂2k ∇ξ

j
i

∥∥∥2

= c

3∑
k=1

3∑
j=1

3∑
l=1

∥∥∥∂2k ξ
j
i ∂j f

l + 2∂kξ
j
i ∂k∂jf

l + 2∂kf
j ∂k∂lξ

j
i

+f j ∂2k ∂lξ
j
i

∥∥∥2
L2(O;R)

≤ c

3∑
k=1

3∑
j=1

3∑
l=1

(
‖∂2k ξ

j
i ∂j f

l‖2
L2(O;R)

+ ‖2∂kξ
j
i ∂k∂jf

l‖2
L2(O;R)

+ ‖2∂kf
j ∂k∂lξ

j
i ‖2

L2(O;R)
+ ‖f j∂2k ∂lξ

j
i ‖2

L2(O;R)

)
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≤ c‖ξi‖2W 3,∞

3∑
k=1

3∑
j=1

3∑
l=1

(
‖∂jf

l‖2
L2(O;R)

+ ‖∂k∂jf
l‖2

L2(O;R)

+ ‖∂kf
j‖2

L2(O;R)
+ ‖f j‖2

L2(O;R)

)
≤ c‖ξi‖2W 3,∞‖f ‖2

W 2,2 .

��
We now prove Lemma 3.7 through the properties (26), (27) and (28) indepen-

dently.

Proof of (26) We use the established result that for .k = 2 then the Sobolev Space
.Wk,2(O;R) is an algebra (a result first presented in [46]), to deduce that

.‖Lfnfn‖W 2,2 =
∥∥∥∥∥∥

3∑
j=1

f
j
n ∂jfn

∥∥∥∥∥∥
W 2,2

≤ c‖fn‖2‖fn‖3.

From here we simply use that .Pn is self-adjoint and Young’s Inequality to see that

.
∣∣〈PnPLfnfn, fn〉2

∣∣ = ∣∣〈PLfnfn, fn〉2
∣∣ ≤ c(ε)‖fn‖42 + ε‖fn‖23.

��
Proof of (27) As the .Pn are self-adjoint we can readily justify the inequality

.〈PnPB2
i fn, fn〉1 + 〈PnPBifn,PnPBifn〉1 ≤ 〈PB2

i fn, fn〉1 + 〈PBifn,PBifn〉1
and moreover from (12) that this is just

.〈PB2
i fn, Afn〉 + 〈PBifn,APBifn〉.

We rewrite this as

.〈(PBi)
2fn,Afn〉 + 〈PBifn,ABifn〉

and further as

.〈PBifn, B
∗
i Afn〉 − 〈PBifn,�Bifn〉 (65)

for the adjoint .B∗
i = Lξi

+ T ∗
ξi
. We look to commute the Laplacian and .Bi , using

Proposition 5.2 and subsequently the cancellation of the derivative in .Bi when
considered with the adjoint. Indeed,
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. − 〈PBifn,�Bifn〉 = −〈PBifn, ([�,Bi] + Bi�)fn〉
= −〈PBifn, [�,Bi]fn〉 − 〈PBifn,PBi�fn〉
= −〈PBifn, [�,Bi]fn〉 + 〈PBifn,PBiAfn〉
= −〈PBifn, [�,Bi]fn〉 + 〈PBifn, BiAfn〉.

Thus (65) becomes

.〈PBifn, B
∗
i Afn〉 − 〈PBifn, [�,Bi]fn〉 + 〈PBifn, BiAfn〉

or simply

.〈PBifn, (Tξi
+ T ∗

ξi
)Afn − [�,Bi]fn〉 (66)

which we look to bound through Cauchy-Schwarz and the results of (18) and
Proposition 5.2 to see that

.(66) ≤ ‖PBifn‖
(
‖(Tξi

+ T ∗
ξi

)Afn‖ + ‖[�,Bi]fn‖
)

≤ c‖ξi‖W 1,∞‖fn‖W 1,2

(‖ξi‖W 1,∞‖Afn‖ + ‖ξi‖W 3,∞‖fn‖W 2,2

)
≤ c‖ξi‖W 1,∞‖fn‖1

(‖ξi‖W 1,∞‖fn‖2 + ‖ξi‖W 3,∞‖fn‖2
)

≤ c(ε)‖ξi‖2W 3,∞‖fn‖21 + ε‖ξi‖2W 3,∞‖fn‖22
as required. ��
Proof of (28) As with (27) we can immediately say that

.〈PnPB2
i fn, fn〉2 + 〈PnPBifn,PnPBifn〉2

≤ 〈PB2
i fn, fn〉2 + 〈PBifn,PBifn〉2 (67)

which we again manipulate to give

.(67) = 〈APB2
i fn, Afn〉 + 〈APBifn,APBifn〉

= −〈P�B2
i fn, Afn〉 − 〈ABifn,P�Bifn〉

= −〈P[�,Bi]Bifn + PBi�Bifn,Afn〉 − 〈ABifn,P[�,Bi]fn + PBi�fn〉
= −〈P[�,Bi]Bifn,Afn〉 + 〈PBiABifn,Afn〉 − 〈ABifn,P[�,Bi]fn〉

+ 〈ABifn,PBiAfn〉
= 〈BiABifn,Afn〉 + 〈ABifn, BiAfn〉 − 〈P[�,Bi]Bifn,Afn〉

− 〈ABifn,P[�,Bi]fn〉
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= 〈ABifn, (Bi + B∗
i )Afn〉 − 〈P[�,Bi]Bifn,Afn〉 − 〈ABifn,P[�,Bi]fn〉

= 〈ABifn, (Tξi
+ T ∗

ξi
)Afn〉 − 〈P[�,Bi]Bifn,Afn〉 − 〈ABifn,P[�,Bi]fn〉.

We shall treat each term individually using Cauchy-Schwarz, Young’s Inequality
and Proposition 5.2 in the same manner as the proof of (27):

.〈ABifn, (Tξi
+ T ∗

ξi
)Afn〉 ≤ ‖ABifn‖‖(Tξi

+ T ∗
ξi

)Afn‖
≤ c(ε)‖ξi‖2W 3,∞‖fn‖22 + ε

3
‖ξi‖2W 3,∞‖fn‖23

as well as

. − 〈P[�,Bi]Bifn,Afn〉 ≤ ‖P[�,Bi]Bifn‖‖Afn‖
≤ c‖[�,Bi]Bifn‖‖fn‖2
≤ c‖ξi‖W 3,∞‖Bifn‖W 2,2‖fn‖2
≤ c‖ξi‖2W 3,∞‖fn‖W 3,2‖fn‖2
≤ c(ε)‖ξi‖2W 3,∞‖fn‖22 + ε

3
‖ξi‖2W 3,∞‖fn‖23

and finally

. − 〈ABifn,P[�,Bi]fn〉 ≤ ‖ABifn‖‖P[�,Bi]fn‖
≤ c‖Bifn‖W 2,2‖[�,Bi]fn‖
≤ c‖ξi‖2W 3,∞‖fn‖W 3,2‖fn‖W 2,2

≤ c(ε)‖ξi‖2W 3,∞‖fn‖22 + ε

3
‖ξi‖2W 3,∞‖fn‖23

Summing these up completes the proof. ��
Proof of Lemma 3.8 Observe that

.〈PLf f − PLgg, f − g〉1 = 〈PLf f − Lgg,A(f − g)〉
= 〈Lf −gf + Lg(f − g),A(f − g)〉

and so it is sufficient to control the terms

.
∣∣〈Lf −gf,A(f − g)〉∣∣ ≤ ‖Lf −gf ‖‖A(f − g)‖

≤ c(ε)‖f ‖22‖f − g‖21 + ε

2
‖f − g‖22

and
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.
∣∣〈Lg(f − g),A(f − g)〉∣∣ ≤ ‖Lg(f − g)‖‖A(f − g)‖

≤ c‖g‖1‖f − g‖1/21 ‖f − g‖1/22 ‖f − g‖2
≤ c(ε)‖g‖41‖f − g‖21 + ε

2
‖f − g‖22

using (62) and Young’s Inequality with conjugate exponents 4 and .4/3. ��
Proof of Lemma 3.9 As in Lemma 3.8, we use the inequality

.
∣∣〈PLf f − PLgg, f − g〉∣∣ ≤ ∣∣〈Lf −gf, f − g〉∣∣ + ∣∣〈Lg(f − g), f − g〉∣∣ .

For the first term, appealing to (4), observe that

.
∣∣〈Lf −gf, f − g〉∣∣ ≤ ‖Lf −gf ‖‖f − g‖ ≤ c(ε)‖f ‖22‖f − g‖2 + ε‖f − g‖21.

The second term is null due to (15), which concludes the proof. ��
Proof of Lemma 4.4 We consider the proofs individually.

Assumption (45): We look to use the same approach as the one for (19), and given
the similar structure of .Li to .Bi we provide only a sketch of the proof addressing
the key properties. The essential component of the proof is in removing the
derivative dependency coming from the transport type operator. Inspecting the
proof of (19), there are three key properties that should be shown.

1. .L ∗
i + Li is of zeroth order.

2. Defining .Qi by .Qi : f �→ Lf ξi , then the commutator .[Qi ,Lξi
] is of zeroth

order.
3. For .|α| ≤ 1, the commutator .[LDαξi

,Lξi
] is of first order.

We note that property 3 can be shown for arbitrary .α if we assume sufficient
regularity for .ξi , as we did in Proposition 2.6. Property 1 is clear from the same
structure .L ∗

i = −Lξi
+ Q∗

i where .Qi ,Q∗
i are of zeroth order. We calculate the

commutator in 2 explicitly, acting on .f ∈ W 1,2(O;R3):

.QiLξi
f =

3∑
k=1

(
Lξi

f
)k

∂kξi =
3∑

k=1

⎛
⎝ 3∑

j=1

ξ
j
i ∂jf

⎞
⎠

k

∂kξi

=
3∑

k=1

3∑
j=1

ξ
j
i ∂jf

k∂kξi

and



On the 3D Navier-Stokes Equations with Stochastic Lie Transport 99

.Lξi
Qif =

3∑
j=1

ξ
j
i ∂j (Qif ) =

3∑
j=1

ξ
j
i ∂j

(
3∑

k=1

f k∂kξi

)

=
3∑

j=1

3∑
k=1

ξ
j
i

(
∂jf

k∂kξi + f k∂j ∂kξi

)

hence

.[Qi ,Lξi
] = −

3∑
j=1

3∑
k=1

ξ
j
i f k∂j ∂kξi

which is of zeroth order. As for 3, the term which needs to be addressed is the one
.[LDαξi

,Lξi
] which was already attended to in the original proof, so the result is

concluded here.

Assumption (46): Comparing to the proof of (20), this is a consequence of the
property (15) once more and the same boundedness of (18).

Assumption (47): Once more the critical term is .[�,Lξi
] which was addressed in

the proof of Proposition 5.2.
��

Proof of Lemma 4.6 Note that

.
∣∣〈PnPLBSKφnφn, φn〉1

∣∣= ∣∣〈PnPLBSKφnφn,Aφn〉
∣∣≤c(ε)‖LBSKφnφn‖2 + ε‖φn‖22

and

.‖LBSKφnφn‖2 ≤ 2
(
‖LBSKφnφn‖2 + ‖LφnBSKφn‖2

)
so we look to control these two terms. Indeed,

.‖LBSKφnφn‖2 ≤ c

3∑
j=1

3∑
k=1

‖BSKφ
j
n‖2L∞(O;R)‖∂jφ

k
n‖2

L2(O;R)

≤ c

3∑
j=1

3∑
k=1

‖BSKφ
j
n‖2

W 2,2(O;R)
‖∂jφ

k
n‖2

L2(O;R)

≤ c‖BSKφn‖2W 2,2‖φn‖2W 1,2

≤ c‖φn‖4W 1,2

≤ c‖φn‖41
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using the Sobolev Embedding of .W 2,2(O;R) ↪−→ L∞(O;R) and item (3) of
Theorem 4.2. Likewise observe that

.‖LφnBSKφn‖2 ≤ c

3∑
j=1

3∑
k=1

‖φj
n‖2

L4(O;R)
‖∂jBSKφk

n‖2
L4(O;R)

≤ c

3∑
j=1

3∑
k=1

‖φj
n‖2

W 1,2(O;R)
‖∂jBSKφk

n‖2
W 1,2(O;R)

≤ c‖φn‖2W 1,2‖BSKφn‖2W 2,2

≤ c‖φn‖4W 1,2

≤ c‖φn‖41.

Summing these terms completes the proof. ��
Proof of Lemma 4.7 We write out the left hand side in full:

.
∣∣〈PLBSKφφ − PLBSKψψ, φ − ψ〉∣∣

= ∣∣〈LBSKφφ − LφBSKφ − LBSKψψ + LψBSKψ, φ − ψ〉∣∣
= ∣∣〈LBSKφ−BSKψφ + LBSKψ(φ − ψ) − Lφ−ψBSKφ

−Lψ(BSKφ − BSKψ), φ − ψ〉∣∣
from which we shall split up the terms and control them individually. Firstly,

.
∣∣〈LBSKφ−BSKψφ, φ − ψ〉∣∣ ≤ ‖LBSKφ−BSKψφ‖‖φ − ψ‖

≤ c‖BSK(φ − ψ)‖2‖φ‖1‖φ − ψ‖
≤ c‖φ − ψ‖1‖φ‖1‖φ − ψ‖
≤ c(ε)‖φ‖21‖φ − ψ‖2 + ε

3
‖φ − ψ‖21

using (4) and that .[BSKφ − BSKψ](x) = ∫
O K(x, y)[φ − ψ](y)dy is the solution

specified by .BSK(φ − ψ) in Theorem 4.2 for .φ − ψ . Even more directly we have
that

.〈LBSKψ(φ − ψ), φ − ψ〉 = 0

owing to (15), and for the final two terms the bounds

.
∣∣〈Lφ−ψBSKφ, φ − ψ〉∣∣ ≤ c‖φ − ψ‖1‖BSKφ‖2‖φ − ψ‖
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≤ c(ε)‖φ‖21‖φ − ψ‖2 + ε

3
‖φ − ψ‖21

and

.
∣∣〈Lψ(BSKφ − BSKψ), φ − ψ〉∣∣ ≤ c‖ψ‖1‖BSKφ − BSKψ‖2‖φ − ψ‖

≤ c(ε)‖ψ‖21‖φ − ψ‖2 + ε

3
‖φ − ψ‖21.

Summing these terms concludes the proof. ��

5.2 A Conversion from Stratonovich to Itô

This theory is taken from [30] Subsections 2.2 and 2.3, and is provided here for
simplicity to apply in Sect. 3.3. We work with a quartet of embedded Hilbert Spaces

.V ↪→ H ↪→ U ↪→ X

where the embedding is assumed as a continuous linear injection. We start from an
SPDE

.� t = �0 +
∫ t

0
Q�sds +

∫ t

0
G�s ◦ dWs . (68)

where the mappings .Q, .G satisfy the following conditions, with the general operator
.K̃ : H → R defined by

.K̃(φ) := c
(
1 + ‖φ‖p

U + ‖φ‖q
H

)
for any constants .c, p, q independent of .φ.

Assumption 5.3 .Q : V → U is measurable and for any .φ ∈ V ,

.‖Qφ‖U ≤ K̃(φ)[1 + ‖φ‖2V ].

Assumption 5.4 .G is understood as a measurable mapping

.G : V → L 2(U;H), G : H → L 2(U;U), G : U → L 2(U;X)

defined over .U by its action on the basis vectors

.G(·, ei) := Gi (·).
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In addition each .Gi is linear and there exists constants .ci such that for all .φ ∈ V ,
.ψ ∈ H , .η ∈ U :

.‖Giφ‖H ≤ ci‖φ‖V , ‖Giψ‖U ≤ ci‖ψ‖H , ‖Giη‖X ≤ ci‖η‖U ,

∞∑
i=1

c2i < ∞.

In this setting, we have the following result ([30] Theorem 2.3.1 and Corollary
2.3.1.1).

Theorem 5.5 Suppose that .(�, τ ) are such that: .τ is a .P − a.s. positive stopping
time and .� is a process whereby for .P − a.e. .ω, .� ·(ω) ∈ C ([0, T ];H) and
.� ·(ω)1·≤τ(ω) ∈ L2 ([0, T ];V ) for all .T > 0 with .� ·1·≤τ progressively measurable
in V , and moreover satisfy the identity

.� t = �0 +
∫ t∧τ

0

(
Q + 1

2

∞∑
i=1

G2
i

)
�sds +

∫ t∧τ

0
G�sdWs

.P − a.s. in U for all .t ≥ 0. Then the pair .(�, τ ) satisfies the identity

.� t = �0 +
∫ t∧τ

0
Q�sds +

∫ t∧τ

0
G�s ◦ dWs

.P − a.s. in X for all .t ≥ 0.

The mapping .
1
2

∑∞
i=1 G2

i is understood as a pointwise limit, which is justified in
[30] Subsection 2.3.

Remark 6 Practically, Theorem 5.5 provides an Itô equation from a Stratonovich
one in the sense that solving this Itô equation is sufficient to satisfy the identity
in Stratonovich form. To discuss an equivalence between the equations we would
need to formally define a solution of the Stratonovich equation, which we do not do
here. To make sense of the Stratonovich integral one would have to impose that the
solution is a local semimartingale in U , in which case the two notions are genuinely
equivalent.

5.3 Abstract Solution Criterion I

The result is given in the context of an Itô SPDE

.� t = �0 +
∫ t

0
A(s,�s)ds +

∫ t

0
G(s,�s)dWs . (69)

We state the assumptions for a triplet of embedded Hilbert Spaces
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.V ↪→ H ↪→ U

and ask that there is a continuous bilinear form .〈·, ·〉U×V : U × V → R such that
for .φ ∈ H and .ψ ∈ V ,

.〈φ,ψ〉U×V = 〈φ,ψ〉H . (70)

The mappings .A,G are such that for any .T > 0, .A : [0, T ] × V → U,G :
[0, T ] × V → L 2(U;H) are measurable. We assume that V is dense in H which
is dense in U .

Assumption 5.6 There exists a system .(an) of elements of V such that, defining the
spaces .Vn := span {a1, . . . , an} and .Pn as the orthogonal projection to .Vn in U ,
then:

1. There exists some constant c independent of n such that for all .φ ∈ H ,

.‖Pnφ‖2H ≤ c‖φ‖2H . (71)

2. There exists a real valued sequence .(μn) with .μn → ∞ such that for any .φ ∈ H ,

.‖(I − Pn)φ‖U ≤ 1

μn

‖φ‖H (72)

where I represents the identity operator in U .

These conditions are of course supplemented by a series of assumptions on the
mappings. We shall use general notation .ct to represent a function .c· : [0,∞) → R

bounded on .[0, T ] for any .T > 0, evaluated at the time t . Moreover we define
functions K , .K̃ relative to some non-negative constants .p, p̃, q, q̃. We use a generic
notation to define the functions .K : U → R, .K : U × U → R, .K̃ : H → R and
.K̃ : H × H → R by

.K(φ) := 1 + ‖φ‖p
U , K(φ,ψ) := 1 + ‖φ‖p

U + ‖ψ‖q
U ,

K̃(φ) := K(φ) + ‖φ‖p̃
H , K̃(φ,ψ) := K(φ,ψ) + ‖φ‖p̃

H + ‖ψ‖q̃
H

Distinct use of the function K will depend on different constants but in no
meaningful way in our applications, hence no explicit reference to them shall be
made. In the case of .K̃ , when .p̃, q̃ = 2 then we shall denote the general .K̃ by .K̃2.
In this case no further assumptions are made on the .p, q. That is, .K̃2 has the general
representation

.K̃2(φ,ψ) = K(φ,ψ) + ‖φ‖2H + ‖ψ‖2H (73)

and similarly as a function of one variable.
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We state the subsequent assumptions for arbitrary elements .φ,ψ ∈ V , .φn ∈ Vn,
.η ∈ H and .t ∈ [0,∞), and a fixed .κ > 0. Understanding .G as a mapping.G :
[0,∞) × V × U → H , we introduce the notation .Gi (·, ·) := G(·, ·, ei).

Assumption 5.7

.‖A(t,φ)‖2U +
∞∑
i=1

‖Gi (t,φ)‖2H ≤ ctK(φ)
[
1 + ‖φ‖2V

]
, . (74)

‖A(t,φ) − A(t,ψ)‖2U ≤ ct

[
K(φ,ψ) + ‖φ‖2V + ‖ψ‖2V

]
‖φ − ψ‖2V , .

(75)

∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2U ≤ ctK(φ,ψ)‖φ − ψ‖2H . (76)

Assumption 5.8

.2〈PnA(t,φn),φn〉H +
∞∑
i=1

‖PnGi (t,φ
n)‖2H ≤ ct K̃2(φ

n)
[
1 + ‖φn‖2H

]
− κ‖φn‖2V , .

(77)

∞∑
i=1

〈PnGi (t,φ
n),φn〉2H ≤ ct K̃2(φ

n)
[
1 + ‖φn‖4H

]
. (78)

Assumption 5.9

.2〈A(t,φ) − A(t,ψ),φ − ψ〉U +
∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2U

≤ ct K̃2(φ,ψ)‖φ − ψ‖2U − κ‖φ − ψ‖2H , .

(79)

∞∑
i=1

〈Gi (t,φ) − Gi (t,ψ),φ − ψ〉2U ≤ ct K̃2(φ,ψ)‖φ − ψ‖4U . (80)

Assumption 5.10

.2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ctK(φ)
[
1 + ‖φ‖2H

]
, . (81)

∞∑
i=1

〈Gi (t,φ),φ〉2U ≤ ctK(φ)
[
1 + ‖φ‖4H

]
. (82)
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Assumption 5.11

.〈A(t, φ) − A(t, ψ), η〉U ≤ ct (1 + ‖η‖H ) [K(φ,ψ) + ‖φ‖V + ‖ψ‖V ] ‖φ − ψ‖H .

(83)

With these assumptions in place we state the relevant definitions and results,
first announced in [31] and proven in [32]. Definition 5.12 is stated for an .F0−
measurable .�0 : 
 → H .

Definition 5.12 A pair .(�, τ ) where .τ is a .P − a.s. positive stopping time and .�

is a process such that for .P − a.e. .ω, .� ·(ω) ∈ C ([0, T ];H) and .� ·(ω)1·≤τ(ω) ∈
L2 ([0, T ];V ) for all .T > 0 with .� ·1·≤τ progressively measurable in V , is said to
be an H -valued local strong solution of the Eq. (69) if the identity

.� t = �0 +
∫ t∧τ

0
A(s,�s)ds +

∫ t∧τ

0
G(s,�s)dWs (84)

holds .P − a.s. in U for all .t ≥ 0.

Definition 5.13 A pair .(�,�) such that there exists a sequence of stopping times
.(θj ) which are .P − a.s. monotone increasing and convergent to .�, whereby
.(� ·∧θj

, θj ) is a .V −valued local strong solution of the Eq. (69) for each j , is said to
be an .H−valued maximal strong solution of the Eq. (69) if for any other pair .(�, �)

with this property then .� ≤ � .P − a.s. implies .� = � .P − a.s..

Definition 5.14 An .H−valued maximal strong solution .(�,�) of the equation
(69) is said to be unique if for any other such solution .(�, �), then .� = � .P − a.s.

and for all .t ∈ [0,�),

.P ({ω ∈ 
 : � t (ω) = �t (ω)}) = 1.

We now state the main theorem in this setting.

Theorem 5.15 Suppose that Assumptions 5.6–5.11 are satisfied in this framework.
Then for any given .F0− measurable .�0 : 
 → H , there exists a unique .H−valued
maximal strong solution .(�,�) of the equation (69). Moreover at .P − a.e. .ω for
which .�(ω) < ∞, we have that

. sup
r∈[0,�(ω))

‖�r (ω)‖2H +
∫ �(ω)

0
‖�r (ω)‖2V dr = ∞. (85)

Proof See [32] Theorem 3.15. ��
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5.4 Abstract Solution Criterion II

We extend the framework of Sect. 5.3, introducing now another Hilbert Space X

which is such that .U ↪−→ X. We ask that there is a continuous bilinear form
.〈·, ·〉X×H : X × H → R such that for .φ ∈ U and .ψ ∈ H ,

.〈φ,ψ〉X×H = 〈φ,ψ〉U . (86)

Moreover it is now necessary that the system .(an) from Assumption 5.6 forms
an orthogonal basis of U . We state the remaining assumptions now for arbitrary
elements .φ,ψ ∈ H and .t ∈ [0,∞), and continue to use the .c,K, K̃, κ notation of
Assumption Set 1. We now further assume that for any .T > 0, .A : [0, T ]×H → X

and .G : [0, T ] × H → L 2(U;U) are measurable.

Assumption 5.16

.‖A(t,φ)‖2X +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ctK(φ)
[
1 + ‖φ‖2H

]
, . (87)

‖A(t,φ) − A(t,ψ)‖X ≤ ct [K(φ,ψ) + ‖φ‖H + ‖ψ‖H ] ‖φ − ψ‖H

(88)

Assumption 5.17

.2〈A(t,φ) − A(t,ψ),φ − ψ〉X

+
∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2X ≤ ct K̃2(φ,ψ)‖φ − ψ‖2X, . (89)

∞∑
i=1

〈Gi (t,φ) − Gi (t,ψ),φ − ψ〉2X ≤ ct K̃2(φ,ψ)‖φ − ψ‖4X (90)

Assumption 5.18 For every .φ ∈ V , it holds that

.2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ctK(φ) − κ‖φ‖2H , . (91)

∞∑
i=1

〈Gi (t,φ),φ〉2U ≤ ctK(φ). (92)

Remark 7 Note that Assumption 5.18 is stronger than Assumption 5.10, as we are
bounding the same terms but we are not afforded a control in the H norm of .φ

in addition to its U norm. Thus in applying Theorem 5.22 it is sufficient to only
demonstrate Assumption 5.18.
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Analagously to Susbection 5.3, we state the relevant definitions and the resulting
theorem in this context (again proved in [32]). Definition 5.19 is stated for an .F0−
measurable .�0 : 
 → U .

Definition 5.19 A pair .(�, τ ) where .τ is a .P − a.s. positive stopping time and .�

is a process such that for .P − a.e. .ω, .� ·(ω) ∈ C ([0, T ];U) and .� ·(ω)1·≤τ(ω) ∈
L2 ([0, T ];H) for all .T > 0 with .� ·1·≤τ progressively measurable in H , is said to
be a U -valued local strong solution of the Eq. (69) if the identity

.� t = �0 +
∫ t∧τ

0
A(s,�s)ds +

∫ t∧τ

0
G(s,�s)dWs (93)

holds .P − a.s. in X for all .t ≥ 0.

Definition 5.20 A pair .(�,�) such that there exists a sequence of stopping times
.(θj ) which are .P − a.s. monotone increasing and convergent to .�, whereby
.(� ·∧θj

, θj ) is a .U−valued local strong solution of the Eq. (69) for each j , is said to
be an .H−valued maximal strong solution of the Eq. (69) if for any other pair .(�, �)

with this property then .� ≤ � .P − a.s. implies .� = � .P − a.s..

Definition 5.21 A .U−valued maximal strong solution .(�,�) of the Eq. (69) is
said to be unique if for any other such solution .(�, �), then .� = � .P− a.s. and for
all .t ∈ [0,�),

.P ({ω ∈ 
 : � t (ω) = �t (ω)}) = 1.

Theorem 5.22 Suppose that Assumptions 5.6–5.11 and 5.16–5.18 are satisfied in
this framework. Then for any given .F0− measurable .�0 : 
 → U , there exists
a unique .U−valued maximal strong solution .(�,�) of the Eq. (69). Moreover at
.P − a.e. .ω for which .�(ω) < ∞, we have that

. sup
r∈[0,�(ω))

‖�r (ω)‖2U +
∫ �(ω)

0
‖�r (ω)‖2H dr = ∞. (94)

Proof See [32] Theorem 4.9. ��
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On the Interactions Between Mean Flows
and Inertial Gravity Waves in the WKB
Approximation

Darryl D. Holm, Ruiao Hu, and Oliver D. Street

Abstract We derive a Wentzel–Kramers–Brillouin (WKB) closure of the gen-
eralised Lagrangian mean (GLM) theory by using a phase-averaged Hamilton
variational principle for the Euler–Boussinesq (EB) equations. Following Gjaja and
Holm 1996, we consider 3D inertial gravity waves (IGWs) in the EB approximation.
The GLM closure for WKB IGWs expresses EB wave mean flow interaction
(WMFI) as WKB wave motion boosted into the reference frame of the EB equations
for the Lagrangian mean transport velocity. We provide both deterministic and
stochastic closure models for GLM IGWs at leading order in 3D complex vector
WKB wave asymptotics. This paper brings the Gjaja and Holm 1996 paper at
leading order in wave amplitude asymptotics into an easily understood short form
and proposes a stochastic generalisation of the WMFI equations for IGWs.

1 Introduction

Inertial gravity waves (IGWs), also known as internal waves, comprise a classical
form of wave disturbances in fluid motions under gravity that propagate in three-
dimensional stratified, rotating, incompressible fluid and involve nonlinear dynam-
ics among inertia, buoyancy, pressure gradients and Coriolis forces [23, 17, 24].

Satellite Images and Field Data Satellite Synthetic Aperture Radar (SAR) is a
powerful sensor for ocean remote sensing, because of its continuous capabilities
and high spatial resolution. The spatial resolution of the state-of-the-art satellite
SAR images reaches 20—30 m, and the swath width reaches 100–.450 km. Figure 1
shows a typical representation of the range of SAR field data and Fig. 2 shows a
typical SAR image of IGWs on the ocean surface.
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Fig. 1 The distribution of observed IGW packets and bathymetry in the South China Sea courtesy
of [25]. Bold lines represent crest lines of leading waves in IGW packets interpreted from SAR
images. The rectangular box on the right of this figure outlines the IGW generation source region.
Looking closely near the center of this figure, one sees the crescent shape of the Dongsha atoll
whose diameter is 25 km. Details of SAR images of waves near Dongsha atoll are shown in Fig. 2

Fig. 2 A satellite image
showing the strong surface
signatures of IGWs in the
South China Sea near
Dongsha atoll. Notice also the
pronounced roughness of the
surface due to surface gravity
waves through which the
IGW surface signatures
propagate. For discussion of
other observations, see, e.g.,
[16]

Theoretical Basis of the Present Work The paper [5] derived a hierarchy of
approximate models of wave mean-flow interaction (WMFI) for IGWs by using
asymptotic expansions and phase averages. Two different derivations of the same
WMFI IGW equations were given. The first derivation was based on Fourier
projections of the Euler–Boussinesq equations for a stratified rotating inviscid
incompressible fluid. The second derivation was based on Hamilton’s principle for
these equations. Two small dimensionless parameters were used in the asymptotic
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expansions. One small parameter was the ratio of time scales between internal waves
at most wavenumbers and the mesoscale mean flow of the fluid. This “adiabatic
ratio” is small and is comparable to the corresponding ratio of space scales for the
class of initial conditions that support internal waves. The other small parameter
used in the asymptotic expansions was the ratio of the amplitude of the internal
wave to its wavelength. An application of Noether’s theorem to the phase-averaged
Hamilton’s principle showed that the resulting equations conserve the wave action,
convect a potential vorticity and can, depending on the order of approximation,
convect wave angular momentum. Legendre transforming from the phase-averaged
Hamilton’s principle to the Hamiltonian formulation brought the WMFI theory into
the Lie-Poisson framework in which formal and nonlinear stability analysis methods
are available [15]. The Hamiltonian framework also revealed an analogy between
the two-fluid model of the interaction of waves and mean flow with the interaction
of the superfluid and normal fluid components of liquid .He4 without vortices.
The relations to similar results for the Charney-Drazin non-acceleration theorem,
Whitham averaging, WKB stability theory, Craik-Leibovich theory of Langmuir
circulations as well as the generalised Lagrangian-mean (GLM) fluid equations for
prescribed wave displacements were also discussed in [5].

Goal of the Present Work Our goal here is to derive 3D IGW equations in the
class of wave mean flow interaction (WMFI) derived in [5] as a mutual interaction
of the mean fluid flow and the slowly varying envelope of fluctuation dynamics that
is consistent with IGWs in the full 3D Euler–Boussinesq fluid flow. Physically, we
take nonhydrostatic pressure effects on the wave dispersion relation into account
and derive consistent nonlinear feedback effects of the internal of waves on the
generation of fluid circulation based on a dynamic version of the well-known Craik-
Leibovich theory of Langmuir circulation [3]. Mathematically, we introduce the
two WMFI degrees of freedom by factorising the full 3D Euler–Boussinesq flow
map into the composition of two smooth invertible maps in Hamilton’s principle for
Eulerian fluid dynamics [14].

The present work derives 3D equations for wave mean flow interaction (WMFI)
as WKB wave motion boosted into the reference frame of the fluid equations for the
Lagrangian mean transport velocity. The final equations derived here are consistent
with traditional approaches such as Craik-Leibovih (CL) theory [3] except that the
Stokes drift velocity in the CL formulation has its own dynamics in the present
formulation. The present formulation can also be considered as a WKB closure
for the GLM approach [1], similar also to the oscillation centre ponderomotive
closure in magnetohydrodynamics [18, 19]. Namely, the present formulation uses
a combination of asymptotic expansion and phase resonance to close the GLM
equations derived by the composition-of-maps approach and obtaining explicit
formulas for the wave polarisation parameters and dispersion relation for the
Doppler-shifted frequency.

Finally, the present work also formulates stochastic equations of motion for 3D
WMFI dynamics, permitting a statistical representation of the uncertainty present in
observational data of geophysical flows.
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2 Deterministic 3D Euler–Boussinesq (EB) Internal Gravity
Waves

2.1 Lagrangian Formulation of the WMFI Equations at
Leading Order

GLM Theory The Generalised Lagrangian Mean (GLM) theory of wave mean
flow interaction (WMFI) is derived in Andrews and McIntyre [1] by taking the time
mean .( · ) at a fixed position .x of the Eulerian fluid velocity, .U(x, t), shifted to a
rapidly fluctuating position, .xξ := x + αξ(x, t) with constant scale factor .α � 1
and zero Eulerian mean .ξ(x, t) = 0. The Lagrangian mean velocity .uL(x, t) at
Eulerian position .x is then defined via the following calculation,

.U(xξ , t) := U(x + αξ(x, t), t) = uL(x, t) + α
d

dt
ξ(x, t)

where U(x + αξ(x, t)) =: uL(x, t) , (2.1)

with

.
d

dt
ξ(x, t) = ∂tξ + (uL · ∇)ξ =: u� , u� = 0 and uL = uL . (2.2)

Consequently, the Kelvin circulation integral for GLM in a rotating frame with
constant Coriolis parameter .2� may be derived; see, e.g., [1, 5, 6, 7, 9, 10] and
the appendix for details,

.

IGLM(uL) =
∮

c(uL)

(
u(xξ , t) + � × xξ

) · dxξ

=
∮

c(uL)

(
uL(x, t) + � × x

) · dx

+ α2(� × ξ(x, t) + u�(x, t)
) · dξ(x, t) .

(2.3)

The Lagrangian transport velocity for GLM in (2.3) is indeed .uL. However, the
Eulerian momentum per unit mass in the integrand of the GLM circulation integral
in (2.3) acquires an order .O(α2) shift due to the mean effects of the quadratic
nonlinearity in the last fluctuating displacement terms in (2.3).

Choice of GLM Closure Gjaja and Holm [5] studied the dynamics of 3D IGWs
by closing the GLM theory for the case that the fluctuation displacement αξ(x, t)

in (2.1) is given by a single-frequency travelling wave �(a(εx, εt)eiφ(εx,εt)/ε) with
slowly varying complex vector amplitude a(εx, t) and slowly varying, but rapid
phase φ(εx, εt)/ε, with ε � 1; so that the time averaged Lagrangian mean of the
displacement field αξ(x, t) would be negligible.
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We choose to represent the fluctuation displacement field ξ(x, t) in the following
form

.ξ(x, t) = a(εx, εt)eiφ(εx,εt)/ε + a∗(εx, εt)e−iφ(εx,εt)/ε , (2.4)

and the total pressure decomposes into

.p(X, t)=p0(X, t)+
∑
j≥1

αj
(
bj (εX, εt)eijφ(εX,εt)/ε + b∗

j (εX, εt)e−ijφ(εX,εt)/ε
)

.

(2.5)

Here the adiabatic parameter ε is defined as the ratio between space and time
scales of the wave oscillations and mean flow respectively. Thus, quantities that
are functions of x and t , for example ξ(x, t), have fast dependence on x and
t . Likewise, quantities which are functions of εx and εt , for example a(εx, εt),
have slow dependence of the space and time coordinates. Thus, in the fluctuation
displacement ξ in (2.4), the fast phase dynamics is represented by exp iφ(εx, εt)/ε

which is slowly modulated by the complex vector amplitude a(εx, εt).
We will apply the GLM closure in Eqs. (2.4) and (2.5) to the 3D Euler–

Boussinesq equations, which can be derived from Hamilton’s principle with the
following reduced Lagrangian

.0 = δ

∫ t1

t0

∫
M

D

(
1

2
|U|2 + U · � × X − g	Z

)
+ p(1 − D) d3X dt , (2.6)

where Dd3X = d3x0 ∈ Den(R3) is the fluid density, 	 ∈ F(R3) is the fluid
buoyancy, and M is the spatial domain. Substitution of (2.1), (2.4) and (2.5) into the
Euler-Boussinesq Lagrangian in (2.6) followed by asymptotic expansion in α � 1
and ε � 1 at order O(α2) neglecting corrections at orders O(α2ε) and O(α4) and
phase averaging (i.e., keeping coefficients of resonant phase factors only) produces
the following wave mean flow interaction (WMFI) closure for Hamilton’s principle
in Eulerian fluid variables, which splits into the sum of the average mean-flow action
L̄MF and the average wave action L̄W , given by [5] and derived in the appendix as,
cf. Eq. (A.8),

.

0 = δ(SMF + SW) = δ

∫ t1

t0

(L̄MF + α2L̄W ) dt

= δ

∫ t1

t0

∫
M

D

[
1

2
|uL|2 + uL · � × x − ρgz + α2ω̃2|a|2 + 2iα2ω̃� · (a × a∗)

−α2i
(
bk · a∗−b∗k · a

)−α2a∗
i aj

∂2p0

∂xi∂xj

]
+(1 − D)p0 + O(α2ε) d3x dt .

(2.7)
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The averaged fluid quantities uL(εx, εt), D(εx, εt) and ρ(εx, εt) are defined to
have slow dependence on x and t in the averaging procedure. To see the construction
of slow dependence from Lagrangian labels, see section (2.1) of Gjaja and Holm
[5]. In the averaged wave Lagrangian L̄W , the wave vector and wave frequency are
defined in terms of the wave phase φ(εx, εt), as

.k(εx, εt) := ∇εxφ(εx, εt) and ω(εx, εt) := − ∂

∂εt
φ(εx, εt) . (2.8)

The Doppler-shifted oscillation frequency, ω̃, due to the coupling to the mean flow
uL is defined through the advective time derivative d

dεt
:= ∂

∂εt
+ uL · ∇εx and the

wave phase as

.ω̃ := − d

dεt
φ = −

(
∂

∂εt
φ + uL · ∇εxφ

)
= ω − uL · k . (2.9)

Upon introducing the Doppler-shifted oscillation ω̃ into L̄W in (2.7) and pairing
its definition in (2.9) with a Lagrange multiplier, N , one arrives at the following
variational principle

.

0 = δ(SMF + SW) = δ

∫ t1

t0

(L̄MF + α2L̄W ) dt

= δ

∫ t1

t0

∫
M

D

[
1

2
|uL|2 + uL · � × x − ρgz + α2ω̃2|a|2 + 2iα2ω̃� · (a × a∗)

− α2i
(
bk · a∗ − b∗k · a

)− α2a∗
i aj

∂2p0

∂xi∂xj

]
+ (1 − D)p0 d3x

+ α2
〈
N , − ∂

∂εt
φ − uL · ∇εxφ − ω̃

〉
+ O(α2ε) dt .

(2.10)

Since, it may not be immediately clear how to take variations of the action (2.7).
The inclusion of the Lagrange multiplier, N , imposes the relationship among the
Doppler-shifted frequency ω̃, the Lagrangian mean velocity uL, and the phase φ,
thereby facilitating the variations. Namely, the forms of the constrained variations
of the velocity field uL and its advected quantities, D and ρ, are shown in (2.14).
All other variables have arbitrary variations. The Euler-Poincaré theorem can then
be applied to the variational derivatives with respect to uL, D, and ρ, to obtain
an equation for the total momentum of the system, and stationarity of the action
with respect to the remaining variables implies a collection of equations for the
remaining dynamics. This procedure results in a closed system of equations for
both waves and mean flow, and describes their mutual interaction. For Hamilton’s
principle of least action to apply to an asymptotically expanded action, we make use
of the following definition to formalise the idea of Hamilton’s principle to a given
order, in the situation where the action is expanded asymptotically.
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Definition 2.1 (Variational Derivatives in an Asymptotically Expanded Action)
When making an asymptotic expansion in Hamilton’s principle, the Lagrangian
in terms of any new variables, �(uL,D, ρ) for example, becomes an infinite sum.
Variational derivatives are then defined under the integral up to some order, i.e.

.

0 = δS = δ

∫
�(uL,D, ρ) dt

=:
∫ 〈

δ�α2

δuL
, δuL

〉
+
〈
δ�α2

δD
, δD

〉
+
〈
δ�α2

δρ
, δρ

〉
+ O(α2ε) ,

(2.11)

where the truncated Lagrangian, �α2 , is defined as the part of the Lagrangian which
corresponds to these variations

.�(u,D, ρ) = �α2(u,D, ρ) + H.O.T . .

Note that we have declined to use the ‘big O’ notation in the above equation, since
�α2 is defined to include all terms of order less than α2ε as well as any higher order
terms which produce lower order terms after integrating by parts to take variational
derivatives.

Hamilton’s action principle (2.10) yields the following variations up to order
O(α2)

.

0 = δ

∫ t1

t2

(
L̄MF + α2L̄W

)
dt

=
∫ t2

t1

〈
δuL , DuL+D� × x − α2N∇εxφ

〉
+ 〈δρ , −Dgz〉 +

〈
δb , −α2ik · a∗〉

+
〈
δb∗ , α2ik · a

〉
+
〈
δa , α2

(
Dω̃2a∗ + 2iω̃a∗ × � + ib∗k − (a∗ · ∇)∇p0

)〉
+
〈
δa∗ , α2

(
Dω̃2a + 2iω̃a × � − ibk − (a · ∇)∇p0

)〉
+
〈
δω̃ , 2α2D

(
ω̃|a|2 + i� · (a × a∗)

)− α2N
〉
+ 〈δD , � 〉

+
〈
δN , − ∂

∂εt
φ − uL · ∇εxφ − ω̃

〉

+
〈
δφ ,

∂

∂εt
N + divεx(uLN) + idivεx(Dba∗ − Db∗a)

〉
dt

+ 〈δp0 , 1 − D〉 + O(α2ε) .

(2.12)
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where we have

.

� : = δ
(
L̄MF + α2L̄W

)
/δD

= 1

2
|uL|2 − ρgz + uL · � × x − p0

+ α2
(

ω̃2|a|2 + 2iω̃� · (a × a∗) − i(bk · a∗ − b∗k · a) − a∗
i aj

∂2p0

∂xi∂xj

)
.

(2.13)

The constrained variations in (2.12) take the Euler-Poincaré form [14]

.δuL = ∂

∂εt
v+uL · ∇εxv−v · ∇εxuL , δρ =−v · ∇εxρ , δD = −divεx(vD) ,

(2.14)

where the ε appears in the derivatives of the constrained variations due to their slow
dependence on space and time. Note that when isolating the arbitrary variations,
v, through integration by parts, ∇εx does not generate higher order terms when
operating on � . From the constrained variations, one has that ρ and D are advected
by the flow which then satisfies the following advection equations

.
∂

∂εt
D + divεx(uLD) = 0 ,

∂

∂εt
ρ + uL · ∇εxρ = 0 . (2.15)

The total momentum of the mean and fluctuating parts of the flow is defined through
the variational derivative w.r.t to uL, which is given by

.M := DuL + D� × x − α2N∇εxφ , (2.16)

which through the Euler-Poincaré theorem [14], satisfies the Euler-Poincaré equa-
tion

.

∂

∂εt

(
M
D

)
− uL × curlεx

(
M
D

)
+ ∇εx

(
1

2
|uL|2 + p0

)
+ 1

ε
gρẑ

+ α2∇εx

(
−ω

N

D
+ ω̃2|a|2 + aia

∗
j

∂2p0

∂xi∂xj

)
= 0 ,

(2.17)

where ẑ := ∇xz. Stationarity of the sum of actions SMF + α2SW in (2.10) under
variations with respect to the fluid variables (uL,D, ρ) has produced the equations
for the mean flow, with order O(α2) wave forcing which arises from the dependence
of α2L̄W on the fluid variables D and ρ. We note from the variation in p0 that
incompressibility of the Lagrangian mean velocity holds only within the asymptotic
regime, and does not hold in an exact form. Indeed,
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.D=1 − α2ε2 ∂2

∂εxi∂εxj

(
Da∗

i aj

)=1 + O(α2ε2) 
⇒ divεx(uL) = O(α2ε) .

(2.18)

Conservation of Wave Action Density Keeping only resonant combinations in the
Lagrangian L̄W in (2.29) has eliminated any explicit dependence on the phase, φ.
Hence, a symmetry of the Lagrangian under constant phase shift, φ → φ + φ0, has
arisen. Consequently, one expects that Noether’s theorem will yield a conservation
law for the conjugate momentum N under variations in φ of the average wave
Lagrangian, L̄W . The arbitrary variation δω̃ in (2.12) reveals the definition of N

as

.N := δL̄W

δω̃
= 2D

(
ω̃|a|2 + i� · a × a∗) , (2.19)

and the arbitrary variation δφ in (2.12) produces the following wave action
conservation law,

.
∂N

∂εt
+ divεx

(
N
(
uL + vG

))=0 , where vG := iD

N
(a∗b − ab∗)= 2D

N

(ab∗) .

(2.20)

Thus, the wave action N is transported in an Eulerian frame by the sum of the
Lagrangian mean velocity uL and the group velocity of the waves, vG, defined above
in (2.20). The evolution equation of φ in (2.9) can be written in terms of N as follows

.
∂

∂εt
φ + uL · ∇εxφ = 1

2D|a|2
(
N − 2Di� · a × a∗) , (2.21)

thus removing the explicit dependence on ω̃. The Eqs. (2.20) and (2.21) are in fact
canonical Hamilton’s equations boosted to the reference frame of the mean flow uL

which is discussed in Sect. 2.2.

Remark 2.1 (Boundary Conditions for Integrations by Parts) In taking varia-
tions of wave properties, we are not considering a free upper boundary. Instead, we
have set

.(n̂ · δa∗)a · ∂p

∂x
= 0 and δφ n̂ · N

(
uL + vG

) = 0 , (2.22)

on the boundary, when integrating by parts. This means that the displacement of the
wave amplitude and the flux of wave action density are both taken to be tangential
to the boundary.

Combining the evolution equation of wave action density N (2.20) and wave
phase φ (2.9), one has the evolution equation of the internal wave momentum
p/D := α2N∇εxφ/D.
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.
∂

∂εt

p
D

− uL × (∇εx × p
D

)+ ∇εx
(

uL · p
D

)
= −α2

D

(
N∇ ω̃ + k divεx

(
NvG

))
.

(2.23)

The Euler-Poincaré equations for the total momentum (2.17) and wave momentum
(2.23) may be assembled into the Euler-Poincaré equation for the mean flow
momentum, m = DuL + D� × x. Dividing this through by the advected mass
density, D, gives the following equation for uL

.

∂

∂εt
uL − uL × curlεx

(
uL + � × x

)
+ ∇εx

(
1

2
|uL|2 + p0

)
+ 1

ε
gρẑ

= −α2∇εx

(
−ω̃

N

D
+ ω̃2|a|2 + aia

∗
j

∂2p0

∂xi∂xj

)

− α2

D

(
N∇εx ω̃ + k divεx

(
NvG

))
.

(2.24)

Remark 2.2 (Hydrostatic and Geostrophic Balances) As explained in section
2 of Gjaja and Holm [5], at leading order O(1/ε) the motion equation (2.24)
establishes hydrostatic and geostrophic balances, namely

.2� × uL(εx, εt) + gρ(x, εt )̂z + ∂p0(x, εt)

∂x
= 0 . (2.25)

In order to provide the restoring force for internal waves, the advected relative
density (or, buoyancy) ρ

(
lA(x, t)

)
must have one derivative of order O(1) with

respect to the vertical coordinate z. In order to contribute to the wave component
of the pressure gradient at order O(α2) in the motion equation (2.24), the mean
pressure p0 must have two derivatives of order O(1) with respect to the vertical
coordinate z.

Remark 2.3 (Kelvin’s Circulation Theorem for WMFI) The two Euler-Poincaré
equations for the total momentum M and mean flow momentum m readily implies
their respective Kelvin-circulation theorems. Namely, for the mean flow momentum
m, (2.24) implies the following

.

d

dεt

∮
c(uL)

(
uL + � × x

) · dx +
∮

c(uL)

1

ε
ρgẑ · dx

= −α2
∮

c(uL)

D−1
(
N∇εxω̃ + k divεx

(
NvG

)) · dx ,

(2.26)

in which one notes that the internal wave terms contribute to the creation of
circulation of the mean flow at order O(α2). For the total momentum M, Eq. (2.17)
implies that
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.
d

dεt

∮
c(uL)

(
uL + � × x − α2D−1Nk

) · dx +
∮

c(uL)

1

ε
ρgẑ · dx = 0 . (2.27)

Thus, just as for the introduction of Stokes drift velocity into the integrand of
Kelvin’s circulation theorem in Craik-Leibovich theory [3], one may regard the
additional non-inertial force of the internal waves on the mean flow circulation
as arising from a shift in the momentum per unit mass in the Kelvin circulation
integrand, performed to include the internal wave degree of freedom.

Legendre Transforming Wave Lagrangian L̄W Into Canonical Phase Space
Variables By using the definitions of N and ω̃, one can compute the Legendre
transform of L̄W to obtain the following WMFI Hamiltonian H̄W ,

.

H̄W := 〈N , ω̃〉 − L̄W =
∫
M

D
(
ω̃2|a|2 + i

(
bk · a∗ − b∗k · a

)

+a∗
i aj

∂2p0

∂xi∂xj

)
d3x

=
∫
M

1

4D|a|2
(
N − 2iD� · a × a∗)2 + iD

(
bk · a∗ − b∗k · a

)

+ Da∗
i aj

∂2p0

∂xi∂xj

d3x ,

(2.28)

where we have dropped the dependence on higher order terms O(α2ε, α4) in the
asymptotic expansion. Inserting the expression (2.28) for H̄W into (2.10) yields the
phase space expression of L̄W as

.

L̄W =
∫
M

−N

(
∂φ

∂εt
+ uL · ∇εxφ

)
− 1

4D|a|2
(
N − 2iD� · a × a∗)2

− iD
(
ba∗ − b∗a

) · ∇φ − Da∗
i aj

∂2p0

∂xi∂xj

+ O(α2ε) d3x .

(2.29)

Remark 2.4 (Physical Interpretation of GLM WMFI) The variations of the
WKB mean wave Lagrangian L̄W in the variables N and φ recover canonical
Hamiltonian WKB wave equations (2.20) and (2.21) for N and φ. These canonical
equations have been boosted into the reference frame of the Lagrangian mean
transport velocity uL. Moreover, the Lagrangian mean transport velocity uL satisfies
the Euler-Boussinesq equations on the left-hand side of Eq. (2.26). Thus, the phase
space expression of the wave Lagrangian L̄W provides the physical interpretation
of the WKB mean wave motion in GLM. Namely, GLM expresses WMFI as WKB
wave motion boosted into the reference frame of the Euler-Boussinesq equations
satisfied by the Lagrangian mean transport velocity, uL, and its corresponding
pressure, p0, and density, ρ. The dependence of the wave Lagrangian α2L̄W on
the fluid variables D and ρ implies from its variation in p0 that incompressibility
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of the Lagrangian mean transport velocity, uL, no longer holds exactly. Indeed,
Eq. (2.18) shows that the divergence of uL is of order O(α2ε), which would need to
be considered when going beyond the order of asymptotics O(α2) considered here.

Remark 2.5 (Potential Vorticity (PV) Advection Theorem for WMFI) Rewrit-
ing the indicated operations in the Kelvin circulation theorem for WMFI after
applying the Stokes thereom gives us

.(∂t + Lε
uL)d

(
D−1M · dx

)+ 1

ε
gdρ ∧ dz = 0 , (2.30)

where Lε denotes the Lie-derivative taken w.r.t to the rescaled basis εx. Since D

and ρ are advected, i.e. they satisfies the advection equations (2.15), one finds

.
(
∂t +Lε

uL

) (
d
(
D−1M · dx

) ∧ dρ
)

=(∂t +Lε
uL)
(
D−1∇εxρ · curlεx

(
D−1M)D d3x

) = 0 . (2.31)

Consequently, one finds the following total advective conservation law for WMFI
potential vorticity PV,

.
∂

∂εt
q+uL · ∇εxq =0 where q :=D−1∇εxρ · curlεx

(
uL + � × x + α2D−1Nk

)
.

(2.32)

Solving for Wave Polarisation Parameters/Lagrange Multipliers p, b, b∗, a and
a∗ The quantities p and b in (2.10) are Lagrange multipliers which impose the
incompressibility constraints for volume preservation D = 1 and transversality of
the wave vectors k · a = 0, respectively. The complex vector wave amplitudes a
and a∗ are also Lagrange multipliers whose variations impose a linear relationship
among most of the wave variables. In particular, stationarity of wave action SW

under variations of wave polarisation parameters b and a∗ gives, respectively,

.k · a = 0 and ω̃2a − 2iω̃� × a − (a · ∇)
∂p0

∂x
= ibk , (2.33)

from which b follows easily from the first constraint, upon taking the dot product of
k with the second constraint,

.|k|2ib = −2iω̂(� × a) · k − k · (a · ∇)∇p0 = −kl
(

2iω̃
̂lj + (p0)lj

)
aj ,

(2.34)

where 
̂ij = −εijk

k and the complex vector amplitude a is found from the 3 × 3

Hermitian matrix inversion,
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.

⎡
⎣ ω̃2 − (p0)11 iω̃2
̂12 − (p0)12 iω̃2
̂13 − (p0)13

iω̃2
̂12 − (p0)12 ω̃2 − (p0)22 iω̃2
̂23 − (p0)23

iω̃2
̂13 − (p0)13 iω̃2
̂23 − (p0)23 ω̃2 − (p0)33

⎤
⎦P⊥

⎡
⎣a1

a2

a3

⎤
⎦ = ib

⎡
⎣k1

k2

k3

⎤
⎦ ,

(2.35)

in which the 3 × 3 matrix P⊥ given by

.P⊥ij :=
(
δij − kikj

|k|2
)

projects out the component along k of the complex vector amplitude a ∈ C
3.

An Index Operator Form of the Polarisation Constraints The wave polarisation
constraints in (2.33) and (2.35) may be rewritten in index form as

.aiki = 0 and Dija
j = ibki with Dij = ω̃2δij + iω̃2
̂ij − ∂2p0

∂xj ∂xi

so a∗iDij a
j = 0 . (2.36)

The index operator form in (2.36) of the polarisation relations for (a, b) in (2.33)
suggests a more compact representation of the wave Lagrangian, L̄W , as we discuss
next.

Representing the Wave Polarisation Parameters a and b as a Complex Four-
Vector Field After an integration by parts using the boundary conditions in (2.22),
the Eulerian action principle in (2.10) may be expressed equivalently as

.

0 = δ(SMF + α2SW) = δ

∫ t1

t0

(L̄MF + α2L̄W ) dt

:= δ

∫ t1

t0

∫
M

(
D

2

∣∣uL
∣∣2 + DuL · � × x − gDρz − p(D − 1)

+ α2DFμ∗
DμνF

ν + O(α2ε, α4)

)
d3x dt ,

(2.37)

where, for notational convenience, the fields a and b comprise a complex “four-
vector field”,

.Fμ = (a, b)T ,

with μ = 1, 2, 3, 4, and the Hermitian dispersion tensor Dμν = D∗
νμ is given by

.Dij = ω̃2δij + iω̃2
̂ij − ∂2p0

∂xi∂xj
, D4j = ikj = −Dj4 , D44 = 0 .
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It is clear from the decomposition of the WMFI action in (2.37) that stationarity of
SW with respect to variations of the fields F = (a, b)T yields linear relations among
the wave parameters (a, b) that recover the polarisation relations in (2.33)

.DμνF
ν = 0 . (2.38)

Equation (2.38) recovers the linear constraints in (2.33) on the polarization eigendi-
rections of the field Fμ up to an overall complex constant that can be set at the initial
time.

Doppler-Shifted Dispersion Relation The solvability condition det(Dμν) = 0 for
(2.38) now produces the dispersion relation for the Doppler-shifted frequency of
internal gravitational waves (IGW),

.ω̃2 := (ω − uL · k)2 = (− ∂

∂εt
φ − uL · ∇εxφ

)2
= (2� · k)2

|k|2 +
(
δij − kikj

|k|2
) ∂2p0

∂xi∂xj
, (2.39)

which is independent of the magnitude |k| of the wave vector k, except for the
Doppler shift due to the fluid motion. Formula (2.39) updates the phase φ of the
wave at each time step. The complex vector amplitude a is then found from inversion
of the 3 × 3 Hermitian matrix in (2.35).The remaining wave quantity b is then
determined from (2.34) at a given time step.

Remark 2.6 Under conditions of hydrostatic balance and equilibrium stratification,
when uL = 0 and the pressure Hessian pij has only the p33 component, Eq. (2.39)
reduces to the well-known dispersion relation for linear internal waves [23]. For
non-equilibrium flows, though, Eq. (2.39) shows the sensitivity of the propagation
of internal waves to the pressure Hessian.

2.2 Hamiltonian Structure for the WMFI Equations at
Leading Order

Thus far, we have considered a Legendre transform within the wave Lagrangian (see
Eq. (2.28)). It remains to perform the same calculation for the mean flow to see the
full Hamiltonian structure of the model. We define the momentum of the entire flow
by

.M := DuL + D� × x − α2N∇εxφ =: m − p

with m := DuL + D� × x , and p := α2N∇εxφ . (2.40)
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In the above definition, the momenta .m and .p are the mean and wave parts of the
momentum respectively and the total momentum, .M, is the variational derivative of
the constrained Lagrangian (2.10) with respect to the Lagrangian mean velocity. We
perform both the wave and mean flow Legendre transforms concurrently as

.

h =
〈
M , uL

〉
+ α2 〈N , ω〉 − L̄MF − α2L̄W

=
〈
DuL + D� × x , uL

〉
+ α2 〈N , ω̃〉 −L̄MF − α2L̄W .

(2.41)

The resulting WMFI Hamiltonian then follows as

.

h(M,D, ρ, p, N) =
∫ {

1

2D

∣∣M + p − D(� × x)
∣∣2

+ Dρgz + α2D

4|a|2
(

N

D
− 2i� · (a × a∗))2

+ iD

N

(
b p · a∗ − b∗ p · a

)

+ α2Da∗
i aj

∂2p0

∂xi∂xj

+ (D − 1)p0

}
d3x .

(2.42)

The variational derivatives of the constrained Hamiltonian (2.42) may be determined
from the coefficients in the following expression,

.

δh =
∫ {

− �δD + Dgz δρ + uL · δM − (1 − D)δp0

+ α2
[
ω̃ − iD

N

(
b k · a∗ − b∗ k · a

)]
δN

+
[
uL + vG

]
· δp + iα2D(δb k · a∗ − δb∗ k · a)

− α2
[
δa∗ ·

(
Dω̃2a + 2iDω̃(� × a)

−iDbk − D
(

a · ∂

∂x

)∂p0

∂x

)
+ c.c.

]}
+ O(α2ε) d3x ,

(2.43)

Remark 2.7 (Discussion)

• The quantity .� = −δh/δD = δ
(
L̄MF + α2L̄W

)
/δD is the Bernoulli function

given by Eq. (2.13) now expressed as a variational partial derivative holding fixed
the other variables in h arising in the Legendre transform.

• The Hamiltonian h in (2.42) is stationary for variations in the diagnostic variables
.(a, a∗, b, b∗, p0). The stationary variations in these variables written in (2.43)
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generate the constraints on the prognostic variables and the relations among
the diagnostic variables. The solvability condition for these relations among the
diagnostic variables determines the dispersion relation for the WKB IGWs.

• The N and .p equations can combine to yield

.∂εtk + ∇εxω = 0 .

This is the so-called ‘conservation of waves’ equation, which imposes equality
of cross derivatives of the phase function, .φ(εx, εt).

The above variational derivatives can be assembled into the following untan-
gled Lie-Poisson Hamiltonian form which separates the dynamics of the total
momentum .M in (2.40) and the advected fluid variables, D and .ρ, from the wave
momentum .p and wave action density N ,

.
∂

∂εt

⎡
⎢⎢⎢⎢⎢⎣

Mj

D

ρ

pj

N

⎤
⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

Mk∂εj + ∂εkMj D∂εj − ρ,εj 0 0
∂εkD 0 0 0 0
ρ,εk 0 0 0 0

0 0 0 pk∂εj + ∂εkpj N∂εj

0 0 0 ∂εkN 0

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

δh/δMk = uLk

δh/δD = −�

δh/δρ = D gz

δh/δpk = (
uL + vG

)k
δh/δN = α2ω̃

⎤
⎥⎥⎥⎥⎥⎦ . (2.44)

Here, we are using a shorthand notation for the derivatives, .∂εj = ∂/∂εxj for
example, and we have used the constraint that .k · vG = 0 in taking the variations in
b and .b∗.

Remark 2.8 The untangled Lie-Poisson Hamiltonian form in (2.44) of the ideal
wave mean flow system of equations derived in the previous section from the GLM
Hamilton’s principle represents a constrained Lie-Poisson Hamiltonian fluid system.
Its Lie-Poisson bracket is defined on the dual of the direct sum of two semidirect-
product Lie algebras

.XT OT �(FMF ⊕ DenMF ) ⊕ (XW�FW) .

Dual variables in .L2(R3) pairing are the following, whose definitions also explain
the geometric meanings of the standard calculus notation for the (MF) and (W)
variables.

• The total momentum 1-form density .M̃ = M · dx ⊗ d3x ∈ �1(R3) ⊗ Den(R3))

is dual to the vector fields .XT OT (R3).
• The density .D̃ = Dd3x ∈ DenMF (R3) is dual to scalar functions .FMF (R3).
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• The scalar function .ρ ∈ FMF (R3) is dual to densities .DenMF (R3).
• The wave momentum 1-form density .p̃ = p · dx ⊗ d3x ∈ �1(R3) ⊗ Den(R3))

is dual to the vector fields .XW(R3).
• The wave action density .Ñ = Nd3x is dual to scalar functions .FW(R3).

Remark 2.9 (Preservation of PV Casimirs) Notice that the Casimir functions for
the Hamiltonian structure of GLM WMFI in the upper left block diagonal of the
Lie-Poisson operator in Eq. (2.44) are in the same form as for the Euler-Boussinesq
fluid, except they have been modified to accommodate the wave momentum.
Consequently, no Casimir functions have been gained or lost in coupling the mean
flow to the fluctuations.

Canonical Structure of the Wave Dynamics
The wave dynamics above are written in their Lie-Poisson Hamiltonian structure.
Should we return to the canonical variables, N and .φ, then the standard canonical
structure emerges. Indeed, substituting .p = α2N∇φ into the Hamiltonian (2.42)
and taking variations gives1

.α2 ∂φ

∂εt
= − δh

δN
= −α2uL · ∇εxφ − α2ω̃ , . (2.45)

α2 ∂N

∂εt
= δh

δφ
= −α2 divεx(NuL) − α2i divεx

(
D(ba∗ − b∗a)

)
. (2.46)

Tangled Version of the Lie-Poisson Hamiltonian Structure By writing the
Hamiltonian in terms of the mean flow momentum, .m, rather than the total
momentum, .M, we recover the tangled version of the Lie-Poisson Hamiltonian form
of the equations. Above, as in [13], we have presented wave-current interaction in
its untangled form. In a previous work [12], the authors presented both the tangled
and untangled forms, and an analogous calculation is also possible for this model of
WMFI. Indeed, the Hamiltonian .h(M,D, ρ, p, N) in (2.42) becomes

.

h′(m,D, ρ, p, N) =
∫ {[

1

2D

∣∣m − D(� × x)
∣∣2

+ Dρgz + α2D

4|a|2
(

N

D
− 2i� · (a × a∗))2 ]

+ iD

N

(
b p · a∗ − b∗ p · a

)

+ α2Da∗
i aj

∂2p0

∂xi∂xj

+ (D − 1)p0

}
d3x .

(2.47)

1 The constant factor of .α2 appearing within the canonical structure has emerged due to the choice
of multiplying the constraints in Hamilton’s principle by the same constant.
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The variational derivatives are largely the same, with differences only in the
variation with respect to .p. The tangled form of the Hamiltonian equations in the
Hamiltonian .h(m,D, ρ, p, N) in (2.47) is

.
∂

∂εt

⎡
⎢⎢⎢⎢⎢⎣

mj

D

ρ

pj

N

⎤
⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

mk∂εj + ∂εkmj D∂εj − ρ,εj pk∂εj + ∂εkpj N∂εj

∂εkD 0 0 0 0
ρ,εk 0 0 0 0

pk∂εj + ∂εkpj 0 0 pk∂εj + ∂εkpj N∂εj

∂εkN 0 0 ∂εkN 0

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

δh′/δmk = uLk

δh′/δD = −�

δh′/δρ = D gz

δh′/δpk = vk
G

δh′/δN = α2ω̃

⎤
⎥⎥⎥⎥⎥⎦ . (2.48)

Instead of the direct sum in the untangled case in Remark 2.8, this tangled Lie-
Poisson bracket is defined on the dual of two nested semidirect-product Lie algebras

.
(
XMF�(FMF ⊕ DenMF )

)
� (XW�FW) .

Corresponding dual variables in .L2(R3) pairing are similar to those explained in
Remark 2.8.

3 Stochastic WMFI

Stochastic equations of motion may be used in fluid dynamics to model uncertainty,
and such equations may be derived through Hamilton’s principle [8]. Such stochas-
tic terms can be used to parametrise unresolved ‘subgridscale’ dynamics absent
in computational simulations, and as such are particularly relevant to geophysical
applications.

Motivated by the fact that, due to computational limitations, the mean flow may
only be solved for on a coarse grid when considering large scale geophysical flows,
we apply the method of stochastic advection by Lie transport [8] to the mean flow
map, .ḡt . This may be done as

.dḡt x0 = (uL ◦ ḡt )x0 dt +
∑

i

(ζ i ◦ ḡt )x0 ◦ dWi
t , (3.1)
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where .Wi
t are independent and identically distributed Brownian motions and .◦dWi

t

denotes Stratonovich integration.2 This is equivalent to

.dḡt ḡ
−1(xt ) = uL(xt ) dt +

∑
i

ζ i (xt ) ◦ dWi
t =: dxt ,

and we see that the Lagrangian mean velocity, .uL, has been stocastically perturbed.
By an application of the Kunita-Itô-Wentzell formula [4], we see that

.dXt = dgtg
−1
t Xt = dxt + α2(dξ t (xt ) + dxt · ∇ξ t (xt )

)
. (3.2)

Should we assume that the entire motion, corresponding to .Ut = ġt g
−1, also has a

stochastic part, corresponding to .ζ
ξ
i , then we have

.Ut dt +
∑

i

ζ
ξ
i ◦ dWi

t = dxt + α2(dξ t (xt ) + dxt · ∇ξ t (xt )
)
. (3.3)

The uniqueness of the Doob-Meyer decomposition then indicates that each .ζ
ξ
i

decomposes into a part corresponding to the mean flow, .ζ i , and a part corresponding
to the wave motion, which we call .σ i . . [21].

Remark 3.1 Following Street and Crisan, [21], by the compatibility of .ξ t with the
driving semimartingale, we have a representation .dξ = A0 dt +∑

i Ai ◦ dWi
t . The

uniqueness of the Doob-Meyer decomposition then gives .Ut = uL + α2
(
A0 + uL ·

∇εxξ t

)
and .σ i = ζ i + α2

(
Ai + ζ i · ∇εxξ i

)
.

WMFI is not limited to temporally averaged terms. The variability of WMFI must
also be considered. This consideration results inevitably in differential equations for
the slow components of the climate system, which include stochastic transport and
forcing terms. There are many ways of introducing stochasticity into the WMFI
system. Some guidance in this matter can be found, e.g., in [10].

In this section, we will consider two distinct framework of introducing stochas-
ticity into Hamiltonian fluid systems. The first option laid out here in this section
enables wave and fluid dynamics to possess different stochastically fluctuating com-
ponents in their transport and phase velocities, as follows, in which variations of the
deterministic Hamiltonian below are the as those in Eq. (2.43). The introduction of
the stochastic vector fields to the WMF evolution equations can be accomplished by
making the deterministic Hamiltonian to the WMFI a semimartingale in each degree
of freedom. The chosen augmentation of the Hamiltonian is based on coupling noise
by .L2 pairings of spatially varying noise ‘modes’ with the momentum maps dual to
the respective velocities for each degree of freedom, .m, .p, and N . The coupling is
done such that the variational derivatives with respect to the momentum variables

2 The notation .◦ may be used to denote both composition and Stratonovich integration.
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will add stochastic transport terms to each of the corresponding dual velocities, as
follows,

.

dh =
∫ {[

1

2D

∣∣m − D(� × x)
∣∣2 + Dρgz + α2D

4|a|2
(

N

D
− 2i� · (a × a∗))2 ]

+ iD

N

(
b p · a∗ − b∗ p · a

)+ α2Da∗
i aj

∂2p0

∂xi∂xj

}
d3x dεt

+
∫

(D − 1)dp0 d3x

+
∑

i

∫
m · ζ i (x) ◦ dWi

εt d3x +
∑

i

∫
p · σ i (x) ◦ dBi

εt d3x .

(3.4)

where .dWi
t and .dBi

t are chosen to be distinct Brownian motions and .ζ i (x) and
.σ i (x) in principle need to be determined from calibration of transport data of each
type, and leading eventually to uncertainty quantification. We have introduced a
stochastic component of the pressure, thus introducing the notation .dp0, following
the framework of semimartingale driven variational principles [21]. The influence
of the stochastic terms on the Lie-Poisson Hamiltonian dynamics can then be easily
revealed, as

.d

⎡
⎢⎢⎢⎢⎢⎣

mj

D

ρ

pj

N

⎤
⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

mk∂εj + ∂εkmj D∂εj − ρ,εj pk∂εj + ∂εkpj N∂εj

∂εkD 0 0 0 0
ρ,εk 0 0 0 0

pk∂εj + ∂εkpj 0 0 pk∂εj + ∂εkpj N∂εj

∂kN 0 0 ∂εkN 0

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

δdh/δmk = uLk dεt + ζ k
i (x) ◦ dWi

εt

δdh/δD = π dεt + dp0

δdh/δρ = Dgz dεt

δdh/δpk = vk
G dεt + σk

i (x) ◦ dBi
εt

δdh/δN = α2ω̃ dεt

⎤
⎥⎥⎥⎥⎥⎦ . (3.5)

where .π is given by

.π = −� − p0 ,

for .� as defined in Eq. (2.13). The Hamiltonian variables are as defined in the
deterministic case,

.m := D(uL + � × x) , p := α2Nk , vG := iD

N
(a∗b − ab∗) = 2D

N

(ab∗) .
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These variables have already appeared in the integrand of Kelvin’s circulation
theorem in (2.27). The stochastic version of the GLM Kelvin circulation theorem
for Euler–Boussinesq incompressible flow in Eq. (2.27) thus becomes

.d
∮

c(dxt )

D−1 M · dx = d
∮

c(dxt )

(
uL + � × x − D−1p

)
· dx

= −1

ε
g

∮
c(dxt )

ρ dz dεt , (3.6)

in which the material loop .c(dxt ) moves along stochastic Lagrangian trajectories
given by the characteristics of the following stochastic vector field

.dxt = uL(xt , t)dt +
N∑

a=1

ζ a(xt ) ◦ dWa
t . (3.7)

A Stochastic Canonical Structure in the Wave Dynamics
The canonical structure between the wave variables N and .φ, noted in equations
(2.45) and (2.46), now becomes stochastic. Indeed, substituting .M and .p =
α2N∇εxφ into the action and taking variations gives

.α2dφ = −δdh

δN
= −α2uL · ∇εxφ dεt − α2

∑
i

ζ i · ∇εxφ ◦ dWi
εt − α2ω̃ dεt

−α2
∑

i

∇εxφ · σ i ◦ dBi
εt , . (3.8)

α2dN = δdh

δφ
= −α2 divεx(NuL) dεt − α2

∑
i

divεx(Nζ i ) ◦ dWi
εt

− α2i divεx
(
D(ba∗ − b∗a)

)
dεt − α2

∑
i

divεx (Nσ i ) ◦ dBi
εt .

(3.9)

Such a stochastic generalisation of Hamilton’s canonical equations has been noted
and discussed for wave hydrodynamics previously [20] for the classical water wave
system.

An Alternative, Energy-Conserving Approach to the Incorporation of Stochas-
tic Noise
The second option of introducing stochasticity into the WMFI system is through the
modification of mean flow and wave momentum to include different stochastically
fluctuating components. The introduction of the stochastic momentum can be
accomplished by making the deterministic Lie-Poisson bracket of the WMFI system
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to include stochastic components. Following [11], the chosen modification is the
addition of “frozen” Lie-Poisson bracket multiplying semi-martingales. The fixed
(frozen) parameters in the frozen Lie-Poisson brackets are the spatially, possibly
temporal varying noise “modes” which are transformed by the deterministic trans-
port and phase velocities in the same way as the deterministic momentum. Let .λi

and .ψ i denote the stochastic fluctuations of the mean flow and wave momentum
respectively, the stochastic Lie-Poisson equation can be written as

.

d

⎡
⎢⎢⎢⎢⎢⎣

mj

D

ρ

pj

N

⎤
⎥⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

mk∂εj + ∂εkmj D∂εj − ρ,εj pk∂εj + ∂εkpj N∂εj

∂εkD 0 0 0 0
ρ,εk 0 0 0 0

pk∂εj + ∂εkpj 0 0 pk∂εj + ∂εkpj N∂εj

∂kN 0 0 ∂εkN 0

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

uLk dεt

−π dεt + dp0

D gz dεt

vk
G dεt

α2ω̃ dεt

⎤
⎥⎥⎥⎥⎥⎦

−
∑

i

⎡
⎢⎢⎢⎢⎢⎢⎣

(
λi

k∂εj + ∂εkλ
i
j

)
◦ dWi

εt 0 0
(
ψi

k∂εj + ∂εkψ
i
j

)
◦ dBi

εt 0

0 0 0 0 0
0 0 0 0 0(

ψi
k∂εj + ∂εkψ

i
j

)
◦ dBi

εt 0 0
(
ψi

k∂εj + ∂εkψ
i
j

)
◦ dBi

εt 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

uLk

−π dεt + dp0

Dgz

vk
G

α2ω̃

⎤
⎥⎥⎥⎥⎥⎦ .

(3.10)

Here, the stochastic component of the pressure .dp is added as before following
the semimartingale driven variational principle [21]. Similarly to the stochastic
vector fields .ζ i and .σ i , we need to determine .λi and .ψ i through calibration with
existing data for each type of momentum. The influence of the stochasticicty on
the circulation dynamics of the mean flow and wave momentum is clear from the
following modified Kelvin-circulation theorem
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.

d
∮

c(uL)

(
uL + � × x

) · dx +
∮

c(uL)

1

ε
ρgẑ

+ α2D−1
(
N∇εxω̃ + k divεx

(
NvG

)) · dx dεt

+
∑

i

∮
c(uL)

D−1
(

uL × ∂

∂εx
× λi − ∇εx

(
uL · λi

))
· dx ◦ dWi

εt

+
∑

i

∮
c(uL)

D−1
(

vG × ∂

∂εx
× ψ i − ∇εx

(
vG · ψ i

))
· dx ◦ dBi

εt = 0 ,

(3.11)

where the loop is moving with the deterministic velocity field. By construction,
the Eq. (3.10) preserves the deterministic energy path-wise as the Poisson struc-
ture remain anti-symmetric and the variational derivative of the Hamiltonian is
unchanged. However, the modification of the Poisson structure implies that the
standard EB fluid Casimirs are no longer conserved.

4 Conclusion

In this paper we have derived a closed system of equations for the interaction of
a GLM flow with the slowly varying envelope of a WKB field of internal gravity
waves (IGW) by incorporating the two approximate descriptions into Hamilton’s
principle. Building on the work of Gjaja and Holm [5], we have shown that this
approach boosts the canonical equations for the WKB IGW into the reference frame
of the Lagrangian mean transport velocity, .uL, satisfying the Euler-Boussinesq
equations on the left-hand side of Eq. (2.26). Thus, GLM expresses WMFI as WKB
wave motion boosted into the reference frame of the Euler-Boussinesq equations
satisfied by the Lagrangian mean transport velocity, .uL, and its corresponding
pressure, .p0, and density, .ρ. The dependence of the wave Lagrangian .α2L̄W on
the fluid variables .D and .ρ implies from its variation in .p0 that incompressibility
of the Lagrangian mean transport velocity .uL does continue to hold for the order
.O(α2) asymptotic expansion treated here.

We have further demonstrated how stochasticity in the fluid can permeate through
both the wave and mean flow dynamics, and that such terms can be included
through the variational structure. Moreover, this paper has identified the nested
semidirect-product Lie-Poisson structure possessed by the Hamiltonian formulation
of the GLM WMFI equations. The continued preservation of the fundamental Lie
algebraic structure for the Hamiltonian formulation of the stochastic GLM WMFI
system implies that its data calibration and uncertainty quantification can still
be treated systematically using the stochastic advection by Lie transport (SALT)
approach [8]. Future work will focus next on deriving a 2D vertical slice model
for these 3D GLM WMFI equations and developing data calibration methods for
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the 2D vertical slice model, in order to investigate the inclusion of mean internal
gravity wave effects on the responses of the stochastic Eady problem.
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Appendix: Asymptotic Expansion

This appendix fills in details of the derivations of the approximations discussed in
Sect. 2. Namely, the displacement of a fluid element from its mean trajectory is
represented by

.Xt = xt + αξ(xt , t) , (A.1)

and the associated velocity is given by

.Ut (Xt )=uL(xt , t)+α
(
∂tξ(xt , t)+uL · ∇xt ξ(xt , t)

)
=:uL(xt , t)+α

d

dt
ξ(xt , t) .

(A.2)

The fluctuating terms are assumed to have a WKB structure, lending the pressure an
associated slow/fast decomposition

.ξ(x, t)=a(εx, εt)eiφ(εx,εt)/ε +a∗(εx, εt)e−iφ(εx,εt)/ε , . (A.3)

p(X, t)=p0(X, t)+
∑
j≥1

αj
(
bj (εX, εt)eijφ(εX,εt)/ε +b∗

j (εX, εt)e−ijφ(εX,εt)/ε
)

.

(A.4)

Making these approximations within a fluid governed by the Euler-Boussinesq
equations may be performed by substituting them into Hamilton’s principle,
asymptotically expanding, and truncating to leave only the leading order terms. The
relevant variational principle in this case is as follows

.0 = δ

∫ t1

t0

∫
M

D

(
1

2
|U|2 + U · � × X − g	Z

)
+ p(1 − D) d3X dt .

(2.6 revisited)
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We first note that the volume form must be written in terms of the mean basis, as

.D(X)d3X = Dξ (x)d3X = Dξ (x)J d3x =: Dd3x , (A.5)

where

.J = det

(
δij + α

∂ξ i

∂xj

)
.

Similarly, .	 also transforms as

.	(X) = 	ξ (x) =: ρ .

Before calculating the terms featuring .U, note that

.

∂tξ(xt , t) + uL · ∇xt ξ(xt , t) = ε
∂a

∂εt
eiφ/ε + ai

∂φ

∂εt
eiφ/ε

+ ε
∂a∗

∂εt
e−iφ/ε − a∗i ∂φ

∂εt
e−iφ/ε

+ εeiφ/εuL · ∇εxa + iaeiφ/εuL · ∇εxφ

+ εe−iφ/εuL · ∇εxa∗ − ia∗e−iφ/εuL · ∇εxφ

= iaeiφ/ε

(
∂φ

∂εt
+ uL · ∇εxφ

)
+ ia∗e−iφ/ε

(
−i

∂φ

∂εt
− uL · ∇εxφ

)

+ εeiφ/ε

(
∂a

∂εt
+ uL · ∇εxa

)
+ εe−iφ/ε

(
∂a∗

∂εt
+ uL · ∇εxa∗

)

= −iω̃aeiφ/ε + iω̃a∗e−iφ/ε + O(ε) ,

(A.6)

where we define .ω̃ := − d
dεt

φ = − ∂
∂εt

φ + uL · ∇εxφ and .k := ∇εxφ as in (2.9)
and (2.8). The may now calculate the energy terms, beginning with kinetic energy,
making use of the above relation and taking the mean.3 Note that the following
relations are true within the Lagrangian, but are expressed here in isolation.

.
1

2
|U|2 = 1

2

∣∣uL + α
(
∂tξ(xt , t) + uL · ∇xt ξ(xt , t)

)∣∣2
= 1

2
|uL|2 + α2|∂tξ(xt , t) + uL · ∇xt ξ(xt , t)|2

= 1

2
|uL|2 + 2α2ω̃2a · a∗ + O(α2ε) .

3 In taking the mean within the action integral, we discard the terms multiplied by rapid oscillations
.exp(±iφ/ε) and .exp(±2iφ/ε). These non-resonant terms are assumed to oscillate to zero under
the time integral.
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The rotation term and potential energy are

.U · � × X =
(

uL + α
(
∂tξ(xt , t) + uL · ∇xt ξ(xt , t)

)
· � × (x + αξ(x, t))

= uL · � × x + uL · � × (αξ) + α(∂tξ + uL · ∇xt ξ) · � × x

+ α(∂tξ + uL · ∇xt ξ) · � × (αξ)

= uL · � × x + α2(∂tξ + uL · ∇xt ξ) · � × ξ

= uL · � × x + 2iα2ω̃� · (a × a∗) + O(α2ε) ,

g	Z = gρ(z + αξ3) = gρz .

Within the pressure term, we need to take care of expansion in both .pξ and .J . We
have

.(1 − Dξ )pξ d3X = (J − D)pξ d3x =
(
J pξ − Dpξ

)
d3x

Dealing with the terms separately, we have the expanded expression for .pξ

.

pξ (x) = p0(x, t) + α
∂p0

∂xi

ξi + α2

2

∂2p0

∂xi∂xj

ξiξj + O(α3)

+
∑
j≤1

αj

(
bj (εx, εt) + αε

∂bj

∂εxi

ξi + α2ε2

2

∂2bj

∂εxi∂εxk

ξiξk + O(α3)

)
·

exp

(
ij

ε

(
φ(εx, εt)+αε

∂φ

∂εxi

ξi + α2ε2

2

∂2φ

∂εxi∂εxk

ξiξk+O(α3)

))
+ c.c.

= p0 + α
∂p0

∂xi

ξi + α2

2

∂2p0

∂xi∂xj

ξiξj + O(α3)

+
∑
j≤1

αj

(
bj + αε

∂bj

∂εxi

ξi + O(α2)

)

× exp

(
ijφ

ε

)(
1 + ijα

∂φ

∂εxi

ξi + O(α2)

)
+ c.c

= p0 + α
∂p0

∂xi

ξi + α2

2

∂2p0

∂xi∂xj

ξiξj

+ exp

(
iφ

ε

)(
αb1 + α2ε

∂b1

∂εxi

ξi + b1iα
2 ∂φ

∂εxi

ξi

)

+ exp

(
2iφ

ε

)
α2b2 + c.c + O(α3) ,
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which gives the phase averaged expression

.pξ = p0 + α2

2

∂2p0

∂xi∂xj

(
aia

∗
j + a∗

i aj

)

+ α2
(

εa∗
i

∂b1

∂εxi

+ ib1a
∗
i

∂φ

∂εxi

+ εai

∂b∗
1

∂εxi

− ib∗
1ai

∂φ

∂εxi

)
+ O(α3) .

Note that

.J = det

(
δij + α

∂ξi

∂xj

)
= 1 + α

∂ξi

∂xi

+ α2 (2δij − 1
) ∂ξi

∂xj

∂ξj

∂xi

+ O(α3)

= 1 + α
∂ξi

∂xi

+ α2
(

∂ξ1

∂x1

∂ξ2

∂x2
+ ∂ξ3

∂x3

∂ξ1

∂x1
+ ∂ξ3

∂x3

∂ξ2

∂x2
− ∂ξ1

∂x2

∂ξ1

∂x2

− ∂ξ1

∂x3

∂ξ3

∂x1
− ∂ξ2

∂x3

∂ξ3

∂x2

)
+ O(α3)

= 1 + α

((
∂ai

∂xi

+ i

ε
ai

∂φ

∂xi

)
exp (iφ/ε) +

(
∂a∗

i

∂xi

− i

ε
a∗
i

∂φ

∂xi

)
exp (−iφ/ε)

)

+ α2 (2δij − 1
) (( ∂ai

∂xj

+ i

ε
ai

∂φ

xj

)
exp (iφ/ε) + c.c

)

×
((

∂aj

∂xi

+ i

ε
aj

∂φ

xi

)
exp (iφ/ε) + c.c

)
+ O(α3) .

Taking the phase average gives

.J = 1 + α2(2δij − 1)

((
∂ai

∂xj

+ i

ε
ai

∂φ

∂xj

)(
∂a∗

j

∂xi

− i

ε
a∗
j

∂φ

∂xi

)
+ c.c

)
+ O(α3)

= 1 + iα2 ∂φ

∂εx
· ∂

∂x
× (

a × a∗)+ O(α3) ,

where the last equality uses the fact that we are operating under a spatial integral
and integration by parts applies. Then, we have

.pξJ = p0 + α
∂p0

∂xi

ξi + α2

2

∂2p0

∂xi∂xj

ξiξj

+ exp

(
iφ

ε

)(
αb1 + α2ε

∂b1

∂εxi

ξi + b1iα
2 ∂φ

∂εxi

ξi

)

+ exp

(
2iφ

ε

)
α2b2 + c.c
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+ p0α
∂ξi

∂xi

+ α2 ∂ξi

∂xi

∂p0

∂xj

ξj + α2 exp

(
iφ

ε

)
b1

∂ξi

∂xi

+ p0α
2 (2δij − 1

) ∂ξi

∂xj

∂ξj

∂xi

+ c.c + O(α3) .

Applying phase averaging gives

.pξJ = p0 + α2

2

∂2p0

∂xi∂xj

(
aia

∗
j + a∗

i aj

)

+ α2
(

εa∗
i

∂b1

∂εxi

+ ib1a
∗
i

∂φ

∂εxi

+ εai

∂b∗
1

∂εxi

− ib∗
1ai

∂φ

∂εxi

)

+ α2
((

∂ai

∂xi

+ i
∂φ

∂εxi

ai

)(
a∗
j

∂p0

∂xj

+ b∗
1

)

+
(

∂a∗
i

∂xi

− i
∂φ

∂εxi

a∗
i

)(
aj

∂p0

∂xj

+ b1

))

+ p0iα
2 ∂φ

∂εx
· ∂

∂x
× (

a × a∗)+ O(α3) .

We may assemble these statements into the following action integral, which may be
regarded as an approximation of (2.6).

.

S =
∫ t1

t0

∫
M

D

(
1

2
|uL|2 + α2ω̃2|a|2 − ρgz + uL · � × x + 2iα2ω̃� · (a × a∗)

)

+
(

α2

2

∂2p0

∂xi∂xj

(
aia

∗
j + a∗

i aj

)

+α2
(

εa∗
i

∂b1

∂εxi

+ ib1a
∗
i

∂φ

∂εxi

+ εai

∂b∗
1

∂εxi

− ib∗
1ai

∂φ

∂εxi

))
(1 − D)

+ α2
((

∂ai

∂xi

+ i
∂φ

∂εxi

ai

)(
a∗
j

∂p0

∂xj

+ b∗
1

)

+
(

∂a∗
i

∂xi

− i
∂φ

∂εxi

a∗
i

)(
aj

∂p0

∂xj

+ b1

))

+ p0(1 − D) + iα2p0
∂φ

∂εx
· ∂

∂x
× (

a × a∗) d3x dt .

(A.7)
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We now seek to simplify this integral. Firstly, we note that the following relation-
ships hold for the last four terms on the second row of Eq. (A.7)

.α2
(

ib1a
∗
i

∂φ

∂εxi

− ib∗
1ai

∂φ

∂εxi

)
(1 − D) + α2

(
i

∂φ

∂εxi

aib
∗
1 − i

∂φ

∂εxi

a∗
i b1

)

= −α2iD
(
b1k · a∗ − b∗

1k · a
)

,

and

.α2
∫
M

(
εa∗

i

∂b1

∂εxi

+ εai

∂b∗
1

∂εxi

)
(1 − D) + ∂ai

∂xi

b∗
1 + ∂a∗

i

∂xi

b1 d3x

= −α2ε

∫
M

D

(
a∗
i

∂b1

∂εxi

+ ai

∂b∗
1

∂εxi

)
d3x = O(α2ε) ,

after integration by parts. We have thus far involved several of the order .α2 terms on
the third line of (A.7). The remainder of these are handled as follows

.α2i

∫
M

∂φ

∂εxi

aia
∗
j

∂p0

∂xj

− ∂φ

∂εxi

a∗
i aj

∂p0

∂xj

d3x

= α2i

∫
M

−p0
∂

∂xj

(
∂φ

∂εxi

aia
∗
j

)
+ p0

∂

∂xj

(
∂φ

∂εxi

a∗
i aj

)
d3x

= i

∫
M

−α2p0
∂φ

∂εxi

∂

∂xj

(
aia

∗
j

)
+ α2p0

∂φ

∂εxi

∂

∂xj

(
a∗
i aj

)
d3x

= −
∫
M

iα2p0
∂φ

∂εx
·
(

a(∇ · a∗) − a∗(∇ · a) + (a∗ · ∇)a − (a · ∇)a∗) d3x

= −
∫
M

iα2p0
∂φ

∂εx
· ∂

∂x
× (

a × a∗) d3x ,

and

.

∫
M

α2ε

(
∂ai

∂εxi

a∗
j

∂p0

∂xj

+ ∂a∗
i

∂εxi

aj

∂p0

∂xj

)
d3x

=
∫
M

α2ε

(
∂ai

∂εxi

a∗
j

∂p0

∂xj

− a∗
i

∂

∂εxi

(
aj

∂p0

∂xj

))
d3x

= −
∫
M

α2a∗
i aj

∂2p0

∂xi∂xj

d3x = −
∫
M

α2

2

(
aia

∗
j + a∗

i aj

) ∂2p0

∂xi∂xj

d3x .
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Assembling this back into the action integral (A.7) finally yields the expression for
S in (2.7),

.

S =
∫ t1

t0

∫
M

D

[
1

2
|uL|2 + α2ω̃2|a|2 − ρgz + uL · � × x + 2iα2ω̃� · (a × a∗)

− α2i
(
bk · a∗ − b∗k · a

)− α2a∗
i aj

∂2p0

∂xi∂xj

]

+ (1 − D)p0 + O(α2ε) d3x dt .

(A.8)
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Toward a Stochastic Parameterization
for Oceanic Deep Convection

Quentin Jamet, Etienne Mémin, Franck Dumas, Long Li, and Pierre Garreau

Abstract Current climate models are known to systematically overestimate the rate
of deep water formation at high latitudes in response to too deep and too frequent
deep convection events. We propose in this study to investigate a misrepresentation
of deep convection in Hydrostatic Primitive Equation (HPE) ocean and climate
models due to the lack of constraints on vertical dynamics. We discuss the potential
of the Location Uncertainty (LU) stochastic representation of geophysical flow
dynamics to help in the process of re-introducing some degree of non-hydrostatic
physics in HPE models through a pressure correction method. We then test our ideas
with idealized Large Eddy Simulations (LES) of buoyancy driven free convection
with the CROCO modeling platform. Preliminary results at LES resolution exhibit
a solution obtained with our Quasi-nonhydrostatic (Q-NH) model that tends toward
the reference non-hydrostatic (NH) model. As compared to a pure hydrostatic
setting, our Q-NH solution exhibits vertical convective plumes with larger horizontal
structure, a better spatial organization and a reduced intensity of their associated
vertical velocities. The simulated Mixed Layer Depth (MLD) deepening rate is
however too slow in our Q-NH experiment as compared to the reference NH, a
behaviour that opposes to that of hydrostatic experiments of producing too fast MLD
deepening rate. These preliminary results are encouraging, and support future efforts
in the direction of enriching coarse resolution, hydrostatic ocean and climate models
with a stochastic representation of non-hydrostatic physics.
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1 Introduction

Deep ocean convection is a crucial mechanism for large scale ocean circulation and
climate. It controls the rate of deep ocean water masses formation, sequestrating
atmospheric properties such as heat and carbon in the abyssal ocean. In the North
Atlantic basin, deep ocean convection in the Labrador Sea and the Nordic Seas
is part of the large scale Atlantic Meridional Overturning Circulation (AMOC),
an oceanic metric with many climate implications (Zhang et al. 2019). Coarse
resolution (i.e. .Δx ∼ O(100) km) climate models are known to overestimate the
rate of deep water formation at high latitudes in response to too deep and too
frequent convective events (Heuzé 2017; 2021), a bias that is expected to worsen
with next generation climate models with ocean components at higher resolution
(Masson-Delmotte et al. 2021). Among other possibilities (e.g. preconditioning,
air-sea interactions), we explore in this paper the possible misrepresentation of
deep ocean convection in current climate models in response to their hydrostatic
formulation.

Ocean modulus of current climate models solve the Hydrostatic Primitive
Equations (HPE), a simplified version of the full Navier-Stokes equations (NS).
Geophysical fluids have specific characteristics that allow some approximations
from the general NS, leading to drastic simplifications in their numerical imple-
mentation which, in turn, allow us to model the global ocean at climate scales (i.e.
for several decades/centuries) with the currently available computational resources.
Among those approximations is the hydrostatic balance which arises from the
relatively thin thickness of the ocean (.H ∼ O(1) km) as compared to the horizontal
extension of its large scale dynamics (.L ∼ O(1000) km for gyres and .L ∼
O(10 − 100) km for ocean mesoscale eddies). The aspect ratio .δ = H

L is thus
orders of magnitude smaller than unity. Scaling the vertical velocity .W = δU ,
with U the typical horizontal velocity of the flow, leads to small contribution of
vertical acceleration as compared to horizontal components. For a regime satisfying
such a scaling, only vertical pressure gradients are able to balance gravitational
acceleration in the vertical component of the NS equations, and the system can be
simplified as:

. ∂tu + ∇ · (uu) − f v = − 1

ρ0
∂xp + Fu + Du, . (1a)

∂tv + ∇ · (uv) + f u = − 1

ρ0
∂yp + Fv + Dv, . (1b)

0 = − 1

ρ0
∂zp − b, (1c)

where .u = (u, v,w) is the three-dimensional velocity field, .f = 2Ωsin(θ) is the
traditional Coriolis pseudo-force, p is pressure, .b = ρ−ρ0

ρ0
g is the buoyancy defined

for Boussinesq fluids (i.e. when density .ρ is replaced by its constant value .ρ0,
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unless multiplied by gravity in which case it is expressed as density anomaly .
ρ−ρ0

ρ0
),

and .F and .D are forcing and dissipative processes, respectively. Equations (1a)–
(1c) are the HPE momentum equations used in current climate models. From a
numerical viewpoint, using HPE instead of general NS or other Non-Hydrostatic
(NH) sets of equation greatly simplifies the procedure as only (1a) and (1b) have
to be stepped forward in time for each discretized ocean layers, while (1c) is
used (diagnostically) to obtain the pressure field through vertical integration of
density variations subject to gravitational acceleration. In HPE models, convection
is part of the parameterized (i.e. unresolved) three-dimensional turbulence and
mixing processes which are encapsulated in .Du,v . Usually, these operators are
formulated with a down-gradient approach, where the vertical fluxes of a scalar
.θ are parameterized as .w′θ ′ = −Kθ∂zθ , with .θ the local, resolved field. Several
models can be used to estimate the dissipation coefficient .Kθ (e.g. TKE (Gaspar
et al. 1990), GLS (Umlauf and Burchard 2003), KPP (Large et al. 1994)), but in case
of convection, this coefficient is usually set to an unrealistically large value (0.1 to
10 m.

2s.−1) to quickly restore static instabilities associated with convective processes
and avoid model instabilities. More recently, Giordani et al. (2020) proposed an
oceanic application of the eddy-diffusivity mass-flux formulation initially derived
by the atmospheric community (e.g., Hourdin et al. 2006, Suselj et al. 2019),
which allows a better representation of vertical advective fluxes associated with
convection. The approximations leading to HPE are likely to be satisfied in most of
the ocean where vertical velocities are small and their spatial patterns are of small
scales. However, for the case of deep ocean convection where vertical velocities
can reach .W ∼ O(10 cm s−1) and over horizontal scales of .L ∼ O(1 km), such
approximations become questionable. In case such approximations turn out to be
violated, it becomes necessary to find ways of re-introducing some form of non-
hydrostasy within HPE.

Klingbeil and Burchard (2013) have proposed a direct implementation of full
non-hydrostatic effects into an HPE model through a pressure correction method.
Instead of solving the full three-dimentional velocity field equations

. ∂tu + ∇ · (uu) − f v + f̃ w = − 1

ρ0
∂xp + Fu + Du, . (2a)

∂tv + ∇ · (uv) + f u = − 1

ρ0
∂yp + Fv + Dv, . (2b)

∂tw + ∇ · (uw) − f̃ u = − 1

ρ0
∂zp − b + Fw + Dw, (2c)

where .f̃ = 2Ωcos(θ) is the non-traditional Coriolis pseudo-force (shown for
consistency but not considered in the following), and non-hydrostatic contributions
are shown in blue. To avoid the complexity of solving a three dimensional Poisson
equation to recover the non-hydrostatic pressure (as usually done in NH pressure
correction methods, e.g. Marshall et al. 1997) Klingbeil and Burchard (2013)
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proposed to account for non-hydrostatic pressure correction through a vertical
integration of a so-called non-hydrostatic buoyancy, i.e. following the strategy of
HPE models. This strategy offers a general implementation of NH physics in HPE,
but still suffers from numerical instabilities in the case of strongly non-hydrostatic
dynamics. For the case of deep ocean convection, it can be shown that further
simplifications can be made by only accounting for the horizontal viscosity acting
on the vertical velocities in the computation of the NH pressure correction (through
vertical integration ; Pierre Garreau, personal communication). As will be shown
later through the analysis of different idealized Large Eddy Simulations (LES),
HPE models tend to produce convective plumes near the grid size of the model,
leading to unstructured (on the horizontal) convective cells. From one grid point to
the next, vertical velocities could be of opposite sign leading to intense horizontal
gradients. Including a horizontal viscous operator on the HPE vertical velocities
(we recall here that in HPE vertical velocities are diagnosed from the horizontal
velocity field though continuity) leads to a broadening of the convective plumes
and a more realistic horizontal organization. In other words, when convective
plumes start to form, they ‘entrain’ the neighboring points thus communicating
horizontally their vertical momentum. Such a process can be seen as a simplified
entrainment/detrainment mechanism discussed by Giordani et al. (2020) for the case
of edddy-diffusivity mass-flux parameterization. In the present study, we consider
the approach of Klingbeil and Burchard (2013) as a starting point and discuss a
strategy to extend this idea in the context of a stochastic parameterization. The
results presented here are all obtained at LES resolution, such that a clear connection
with climate scale regimes is still lacking. However, these results provide a first step
toward the development of robust stochastic parameterization for climate models,
which will be the subject of dedicated studies.

The paper is organized as follow. In Sect. 2 we briefly recall the Location
Uncertainty (LU; Mémin 2014, Bauer et al. 2020, Resseguier et al. 2017) frame-
work used to represent the inertial and dissipative effects on vertical momentum
(underlined terms in (2c)) as a result of a strong noise regime or for application
to flow dynamics where the hydrostatic approximation becomes questionable.
Section 3 is dedicated to the numerical implementation of the stochastic, non-
hydrostatic pressure correction into the terrain-following Coastal and Regional
Ocean Community (CROCO), along with the description of the simulations we have
conducted. Preliminary results are described and discussed in Sect. 4. We summarize
our paper and provide some perspectives for further work in Sect. 5.

2 Stochastic Formulation of Direct Non-hydrostatic Pressure
Correction

Following Mémin (2014), the stochastic version of the horizontal momentum
equation (in vector notation) reads:
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.Dtuh + f k × (uhdt + σdBH
t ) = − 1

ρ0
∇H (pdt + dpσ

t ), (3)

with .uh = (u, v, 0), .Dt the stochastic transport operator defined as:

.Dtuh = dtuh + (u	dt + σdB t ) ·∇ uh − 1

2
∇ · (a∇uh)dt, (4)

with .u	 the incompressible (i.e. .∇ · σdB t = 0) modified advection defined as:

.u	 = u − 1

2
∇ · a (5)

where .u = (uh,w) is the three dimensional velocity field, .σdB t represents the
stochastic flow and .a its associated variance tensor. The term .

1
2∇ · a can be

interpreted as an equivalent of the Stokes drift for an inhomogeneous random fast
component .σdB t (Bauer et al. 2020).

The introduction of the stochastic pressure .dpσ
t in (3) requires some discussion.

This stochastic pressure is associated with the small scale velocity component
encoded through the noise. Following Resseguier et al. (2017), for smooth-in-time
momentum equation subject to a classical deterministic large scale momentum
equation, its (three dimensional) gradient can be expressed as:

. − 1

ρ0
∇dpσ

t = (σdB t ) ·∇ u + f × σdB t (6)

such that its interpretation (and scalling) should be related to the processes the
stochastic formulation aims at representing. In the context of large scale modelling
parameterization such as Tucciarone et al. (2023), the stochastic Primitive Equations
they derived is meant to represent the effects of meso (and potentially submeso)
scale eddies onto the large scale gyre circulation. The usual hydrostatic arguments
are thus used, such that the vertical gradient of the stochastic pressure is identically
zero (i.e. .∂zdpσ

t = 0) and its horizontal gradient is strictly balanced by the
stochastic Coriolis pseudo-force. Here, we are interested in relaxing the hydrostatic
approximation on the noise structure, but retaining it for the smooth-in-time,
resolved flow, and derive the stochastic equation for the vertical momentum. As a
first step in this direction, we will not include the contribution of the non-traditional
Coriolis pseudo-force. After some manipulations, we obtain the following equation
for the vertical momentum:

.(−1

2
∇ · a) · ∇wdt −1

2
∇ · (a∇w)dt + σdB t ·∇w = (− 1

ρ0
∂zp − b)dt − 1

ρ0
∂zdp

σ
t ,

(7)

Black terms in (7) are associated with hydrostatic physics and terms in blue are
the different stochastic contributions that emerge when applying non-hydrostatic
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thinkings on the stochastic noise. The left-hand side terms corresponds to the
vertical acceleration with a scaling such that the noise vertical acceleration is
strong compared to the large-scale vertical acceleration terms. Note that the two
underlined terms in (7) are Brownian terms emerging from the stochastic pressure
formulation (6) on the right-hand side and from the vertical velocity transport by
the noise on the left-hand side. The two other blue terms on the LHS are associated
with modified advection and dissipation (projected on the vertical velocity w) that
emerged through the three dimensional generalization of (4):

.Dtu = dtuh + u ·∇ uh + (−1

2
∇ · adt + σdB t ) ·∇ u − 1

2
∇ · (a∇u)dt, (8)

where the material derivative of vertical velocities associated with the resolved flow
(i.e. .dtw + u · ∇w) has been neglected.

The noise being given (and calibrated from data or a known relation), from (7), it
is thus possible to compute the various Brownian terms on the LHS, then to integrate
vertically the results to obtain a 3D map of the modified pressure field as a result of
the noise transport. Separating safely the martingale part (Brownian terms) from the
smooth-in-time components (“.dt” terms), we have

.dpσ
t (z) = dpσ

t |z=η + ρ0

∫ η

z

(σdB t ·∇w) dz′, (9)

for the martingale component, and

.p(z)dt = p|z=ηdt + ρ0g(η − z)dt

+ ρ0

∫ η

z

⎛
⎜⎜⎜⎝bdt −

(
(
1

2
∇ · a) · ∇wdt + 1

2
∇ · (a∇w)dt

)
︸ ︷︷ ︸

bNH

⎞
⎟⎟⎟⎠ dz′, (10)

for the smooth-in-time component. The three last terms on the RHS of (10) can be
compared to the deterministic non-hydrostatic pressure correction of Klingbeil and
Burchard (2013), although the material derivative ofw associated with resolved flow
is not included in our stochastic formulation. It can be noted that our formulation
involves a 3D diffusion of the vertical velocity ensuing from the noise action
as well as the contribution of the modified Ito-Stokes term arising from the
spatial inhomogeneity of the noise. Both (9) and (10) should be integrated with
appropriate boundary conditions at .η to incorporate fast and smooth-in-time surface
pressure contributions (such as surface waves or atmospheric pressure loading,
respectively), but such contributions can be neglected at first approximation without
loss of generality. Results of (9) and (10) can then be used to feedback onto the
horizontal momentum equation (3) solved by an hydrostatic model. Assuming a
strict separation of the martingale part and the smooth-in-time component, only (10)
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is assumed to feedback onto the resolved flow. The martingale components are
assumed to balance each other, thus not affecting the resolved flow. This assumption
can be interpreted as a Large Eddy Simulation (LES) -like approach, as discussed
by Bauer et al. (2020).

As a preliminary step, we will further simplify the structure of the variance tensor
.a in order to reduce the second and third terms on the RHS of (10) to a simple
Laplacian viscosity—induced here by the noise contribution. This simplification
is motivated in the following. In the LU framework, the strength of the noise is
measured by its (one-point co-) variance, such that

.a(x, t)
Δ= q̆(x, x, t), (11)

with .q̆(x, x, t) a matrix kernel defined as

.q̆(x, x, t)
Δ=

∫
Ω

σ̆ (x, x′, t)σ̆ (x, x′, t)T dx′, (12)

with .σ̆ (·, ·, t) a bounded matrix kernel defining the correlation deterministic integral
operator .σ t : L2(Ω) → L2(Ω)

.σ tf (x)
Δ=

∫
Ω

σ̆ (x, y, t)f (y)dy, ∀f ∈ (L2(Ω)). (13)

(See, e.g. Bauer et al. 2020, Mémin 2014, Resseguier et al. 2017, for further
details). Although the previous definition of the noise is general, it is possible,
through the Mercer’s theorem, to express the noise variance as a spectral decom-
position of the form:

.a(x, t) =
∑
n∈N

λn(t)φn(x, t)φT
n (x, t), (14)

where .φn(x, t) define an orthonormal eigenfunction basis of the correlation oper-
ator, .σ t , with .λn(t) their corresponding eigenvalues. For a stationary noise, this
reduces to a classical POD (or EOF) decomposition, in which the eigenfunctions
are the solution of the eigenvalue problem

.

∫
Ω

K(x, x′)φn(x
′)dx′ = λnφn(x) (15)

with .K the two-point correlation tensor.
The next step is to assume isotropy and homogeneity of the noise structure, in

which case the Fourier modes .φn = e2πik·x are a natural choice to satisfy (15),
which implies (Berkooz et al. 1993):

.K =
∑
n

λne
2πik·xe−2πik·x′

. (16)
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Under isotropic condition, the variance of the divergence-free noise is constant and
diagonal, such that the first term associated with .bNH in (10) is identically zero, and
the noise induced dissipation reduces to:

.
1

2
∇ · (a∇w) = νΔw, (17)

with .ν the isotropic, homogeneous noise induced momentum dissipation. Through
vertical integration of (17), we recover part of the non-hydrostatic pressure correc-
tion proposed by Klingbeil and Burchard (2013), which in the present case mimic
entrainement/detrainement of convective plumes leading to changes in their spatial
organization. This modified HPE will be termed Quasi-Nonhydrostatic (Q-NH),
by analogy with the Quasi-Hydrostatic (QH) of Marshall et al. (1997) where non-
traditional Coriolis terms are added into the HPE.

3 Numerical Implementation and Simulations

Our objective is to implement this stochastic, non-hydrostatic pressure correction
in the hydrostatic kernel of the Coastal and Regional Ocean Community model
(CROCO ; http://www.croco-ocean.org). CROCO is a new ocean model that builds
upon the structure of the ROMS-AGRIF primitive equation solver (Shchepetkin
and McWilliams 2005, Debreu et al. 2012). The non-hydrostatic, non-Boussinesq
(NQB ; Auclair et al. 2018) capabilities of CROCO will also be used to construct a
reference simulation for validation (see Table 1). We review in the following some
important steps for the implementation of the stochastic pressure correction within
CROCO, discuss their implications and how we treat the pressure correction within
the hydrostatic CROCO kernel.

3.1 Stochastic, Non-hydrostatic Pressure Correction

In its hydrostatic mode, CROCO computes .
p
ρ0
, from which horizontal gradients

directly feed the baroclinic horizontal momentum equation (i.e. (2a) and (2b)). Our
strategy is to include the NH pressure correction via a modified density/buoyancy
field, such that the pressure field becomes:

.
p(z)

ρ0
= p|z=η

ρ0
+

∫ η

z

(ρ − ρ0) − bNH

ρ0
g dz′, (18)

with .bNH collecting the different contributions of the vertical momentum equation
(.w_trends) contributing in the pressure correction, normalized by gravity:

http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
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.bNH = 1

g

∑
w_trends, (19)

where the horizontal dissipation of vertical velocity (e.g. Eq. (17)) is computed
along sigma coordinates. Our strategy is similar to Delorme et al. (2021), who
derived a Quasi-Hydrostatic version of CROCO by including the non-traditional
Coriolis effects through buoyancy correction.

Let us note that .bNH is abusively denoted through a buoyancy variable, however
it corresponds to corrections brought by the noise to the usual hydrostatic pressure.
Such a correction should not be interpreted as an actual modification of the
density/buoyancy field of the stratified ocean. Thus, the stochastic contribution is
not included in the specific treatment of baroclinic-barotropic mode coupling of
CROCO, which aims at accounting for the non-uniform density field for the prop-
agation of gravity waves (Gill 1982), ultimately reducing the usual mode-coupling
error associated with mode-splitting schemes (Shchepetkin and McWilliams 2005).
In other words, we do not expect this ‘non-hydrostatic buoyancy’ to affect gravity
wave’s propagation.

Finally, CROCO uses a third-order predictor-corrector (LF-AM3) time-stepping
scheme for tracers and baroclinic momentum. This scheme consists of a Leapfrog
(LF) predictor with 3rd-order Adams-Moulton (AM) interpolation. It also uses split-
explicit techniques to robustly couple the slow, baroclinic and the fast, barotropic
modes associated with the time evolving non-linear free surface. A complete
description of the several stages of CROCO time-stepping can be found in Section 5
of Shchepetkin and McWilliams (2005). This predictor-corrector, split-explicit
scheme implies some tendency terms of the baroclinic mode are computed twice
to step forward baroclinic momentum and tracer equations from time step t to time
step .t + Δt . The first computation is performed at the prediction stage, and the
second computation is performed at the correction stage. These tendencies include
pressure gradients. To avoid double counting the stochastic pressure correction and
for stability reasons, the modified non-hydrostatic buoyancy is computed only at the
correction stage.

3.2 Numerical Experiments

The numerical experiments we used to test our stochastic non-hydrostatic pressure
correction are oceanic deep convection events. The configuration is inspired by
free convection studies (e.g. Souza et al. 2020) where an horizontally uniform
surface cooling is applied to a constantly stratified, horizontally uniform ocean.
Although our interest is on deep ocean convection rather than mixed layer free
convection, we have adopted an horizontally uniform setting (as usually done in
free convection) instead of a horizontally structured system as proposed earlier
by, e.g. Marshall and Schott (1999), where surface cooling is confined within a
specified region (usually a disc). This setting allows the analysis of interacting
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Fig. 1 Illustration of the 3D
structure of the simulation
after three days of simulation
in a non-hydrostatic setting.
The color shading is
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convective plumes with non-convective environment. However, such configurations
are usually conducted at coarser resolution and oriented toward process studies
of the geostrophic organization of convective plumes. Here, our focus is on
parameterization and we wish to start with simplified settings in order to capture the
essence of deep convection dynamics; interactions with a prescribed background,
non-convective environment is left for further work.

From this horizontally uniform and vertically constant stratified initial condition,
the model is stepped forward in time on a 100.×100.×100 discretized grid points
with isotropic resolution of 10 meters, and exposed to a constant (in time and space)
cooling rate of .QT = −500 W m.

−2 heat flux (Fig. 1). This leads to a cooling of
upper ocean layers, which ultimately become unstable through static instabilities as
a result of a negative buoyancy frequency .(N2 = − g

ρ
∂zb) < 0, thus undergoing

convection. The current settings are run with no Coriolis forcing, i.e. .f = 0 s.−1;
inclusion of Coriolis effects will be the subject of further work. The model is
initialized with stochastic perturbations on ocean upper layers temperature decaying
with depth (following Souza et al. 2020) to trigger the formation of convective
plumes

.T (x, y, z)|t=0 = T (z) +
10∑

(m,n)=0

(
e2π(k·x+φn,m)

)
N (0, 1) ∗

√
σ 2 ∗ e40z/Nz (20)

with .T (z) = T |z=0 −αz, .T |z=0 = 3 K and .α is a constant defined as .α = 1.9e−6

g∗(αT /ρ0)

(.αT = 0.2048 K−1 is the thermal coefficient, .g = 9.81 m s−2 is gravity and .ρ0 =
1024 kg m−3 is reference density). The second term on the RHS of (20) is the
stochastic perturbation defined as the sum of plane waves with random phase .φm,n
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Table 1 Summary of the experiments and their numerical details. NBQ stands for the non-
hydrostatic, non-Boussinesq CROCO kernel of Auclair et al. (2018); NH, Hydro and Q-NH stand
for Non-Hydrostatic, Hydrostatic and Quasi-Nonhydrostatic; WENO5 and C4 for the 5-th order
and the 4th-order centred advection schemes; KPP for the K-Profil Parameterization of Large et al.
(1994)

Name Kernel Hz adv Vert. adv Closure (.Δx, .Δz) .Δt .νw

NH NBQ WENO5 WENO5 – (10, 10m) 2.5 s (implicit)

Hydro Hydro WENO5 C4 KPP (10, 10m) 2.5 s –

Q-NH Hydro WENO5 C4 KPP (10, 10m) 2.5 s .1 m2s−1

and of amplitude .N ∗ √
σ 2, where .N is a Gaussian white noise distribution and

.σ 2 = 10−8 K2 represents the variance of the stochastic perturbations. The random
phases are drawn from an uniform distribution over the range [0, 1].

This configuration has been integrated forward in time to produce several
numerical experiments in order to assess the performance of our implementation.
It includes a pure Non-Hydrostatic (NH), which make use of the non-hydrostatic
non-Boussinesq capabilities of CROCO (NBQ, Auclair et al. 2018), and a pure
hydrostatic (Hydro) reference experiments. We then compare the solution produced
by our Quasi-Nonhydrostatic (Q-NH) experiment, which includes the stochastic
pressure correction, with the solutions produced by Hydro and NH.

For both Q-NH and Hydro, the KPP (Large et al. 1994) closure scheme is used
to represent vertical sub-grid scale mixing. As stated in introduction, this scheme
mimics vertical fluxes through a dissipative down-gradient operator. In the case of
static instability associated with convective events, the dissipation coefficient is set
to .Kθ = 0.1 m2s−1 in CROCO. Sensitivity tests (not shown) using TKE (Gaspar
et al. 1990) closure scheme instead revealed that the choice of the closure scheme
has little effect on the solution produced by our Hydro experiment.

Horizontal dissipation of vertical velocity in Q-NH is set to .νw = 1 m2s−1,
which corresponds to high values of dissipation estimated through a Smagorinsky-
like approach .νSmago = α

2Δ2
xy

(
(∂xw)2 + (∂yw)2

)
, with .Δxy = 10 m the horizontal

resolution of our configuration, and .α = 0.2. Table 1 summarizes the different
experiments, along with some numerical details.

Finally, note that all three experiments are conducted at the same isotropic
resolution of 10m. Evaluating the performance of our Q-NHmodel for climate scale
regimes (i.e. with horizontal resolution much coarser than vertical resolution) will
be the subject of further work.

4 Results

We show on Fig. 2 snapshots of the vertical velocities as simulated by NH, Hydro
and Q-NH after 3 days of simulation. Obviously, the NH experiment produces
weaker and larger scale structures as compared to the two other experiments. It
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Fig. 2 Horizontal (top) and vertical (bottom) sections of vertical velocities for the Non-
Hydrostatic (NH, left), the Hydrostatic (Hydro, center) and the Quasi-Nonhydrostatic (Q-NH,
right) run. Snapshots are shown after 3 days of simulation with all other components (forcing,
dissipation, stratification, resolution) held constant

is noticeable, however, that the amplitude of w in Q-NH is reduced as compared
to Hydro, with larger scale structures of the convective plumes. In the Hydro
experiment, plumes are localized near the grid scale and exhibit almost an order of
magnitude larger vertical velocities as compared to the NH reference. The reduced
vertical velocities in Q-NH and broadening of the associate spatial scale of the
plumes can be interpreted as a result of the entrainment/detrainment mechanism,
which is here simply represented as a purely horizontal viscous stress on vertical
velocities.

Aside from vertical velocities, it is also instructive to analyse the consequence for
the temperature profile, an indication of the capability of convection in producing
deep water masses. Figure 3 shows the horizontally averaged temperature vertical
profile, along with the rate of the Mixed Layer Depth (MLD) deepening, for
the different experiments. A first remarkable result is the similarity between the
temperature profiles produced by all the experiments within the MLD (i.e. .z <

−300m). Additional tests (not shown) indeed reveal the very weak sensitivity to
numerical implementation (i.e. non-hydrosatic, hydrostatic with different vertical
mixing schemes), as well as the level of dissipation. The most noticeable differences
between the experiments appear at the base of the mixed layer. In particular, the
consequences of too strong vertical velocities in Hydro is to produce too deep water
masses with a too strong penetrative convection (i.e. the envelop at the base of
the mixed layer where water masses are warmer than their initial state). Although
vertical velocities in Q-NH remain significantly larger than those produced by NH,
the effects of horizontal viscous forces on the vertical velocities is to significantly
damp the penetration of convective plumes bellow the mixed layer, inducing a
strong reduction of water masses formation. The reduction of penetrative convection
induces significant biases in the deepening rate of the MLD (Fig. 3, right panel).
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Fig. 3 Horizontally averaged temperature profiles (left) and deepening rate of the mixed layer
depth (MLD, right) for the different runs at the end of the 3-day long simulations. Deepening
MLD rate are compared to the analytical estimates of Marshall and Schott (1999) and Souza et al.
(2020)

In Q-NH, MLD seats between the theoretical predictions of Marshall and Schott
(1999) and that of Souza et al. (2020), where the former do not consider penetrative
convection in their scaling while the latter do. That MLD is too shallow in Q-NH,
as compared to NH, is likely a consequence of too strong dissipation imposed to the
system. We note, however, that we have only considered the dissipative, rectification
contribution (i.e. smooth-in-time) of the stochastic transport as a result of the strict
separation assumption between martingale and smooth-in-time components. Further
work are required to evaluate how the Brownian part of the stochastic transport
impact the deepening of the MLD.

5 Conclusion and Perspectives

In this study, we detailed the first steps toward a full stochastic parameterization of
deep ocean convection along with their implementation in the general circulation
model CROCO. Our preliminary results, which consist of an approximation of the
horizontal noise structure as homogeneous and isotropic, led us to recover part of
the derivation provided by Klingbeil and Burchard (2013) in a deterministic case.
Our results are encouraging, and we are now in a position of extending the current
analysis to a fully consistent stochastic framework.

The first step in this direction will be to implement the stochastic pressure
noise contribution which comes in pair with the idealized Laplacian horizontal
viscosity action on vertical velocities in the context of an hydrostatic simulation of
deep ocean convection (i.e. Eq. (9)). Following previous work of Pierre Dérian and
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Etienne Mémin (’Hyper-viscosity’ noise for transport under location uncertainty),
we will consider a simplified expression of the stochastic transport of vertical
velocity to construct our stochastic pressure noise. This approach is meant to obtain
the stochastic transport associated with Laplacian or hyper-viscosity dissipation as
usually implemented in OGCM. With these considerations, it is possible to express
the stochastic transport of (9) as:

.σdB t ·∇ w =
∑

k

γkλkek(x) (21)

with .ek a basis, defined here as Daubechies wavelets, .γk denotes independent
normally distributed variables, and .λk are the wavelet coefficients defined as:

.λk =
〈√

2εdt |ν1/2∇w|; ek

〉
L2

, (22)

with .ε a scaling factor controlling the ratio of variance created by the noise
to energy dissipation. Accounting for the stochastic pressure would also require
considerations for the Brownian components of the stochastic transport in the
horizontal momentum advection. These steps are part of further works to achieve
a full, consistent implementation of LU transport in CROCO.
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Abstract In recent years, stochastic parametrizations have been ubiquitous in
modelling uncertainty in fluid dynamics models. One source of model uncertainty
comes from the coarse graining of the fine-scale data and is in common usage in
computational simulations at coarser scales. In this paper, we look at two such
stochastic parametrizations: the Stochastic Advection by Lie Transport (SALT)
parametrization introduced by Holm (Proc A 471(2176):20140963, 19, 2015) and
the Location Uncertainty (LU) parametrization introduced by Mémin (Geophys
Astrophys Fluid Dyn 108(2):119–146, 2014). Whilst both parametrizations are
available for full-scale models, we study their reduced order versions obtained
by projecting them on a complex vector Fourier mode triad of eigenfunctions
of the curl. Remarkably, these two parametrizations lead to the same reduced
order model, which we term the helicity-preserving stochastic triad (HST). This
reduced order model is then compared with an alternative model which preserves
the energy of the system, and which is termed the energy preserving stochastic
triad (EST). These low-dimensional models are ideal benchmark models for testing
new Data Assimilation algorithms: they are easy to implement, exhibit diverse
behaviours depending on the choice of the coefficients and come with natural
physical properties such as the conservation of energy and helicity.
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1 Introduction

The introduction of stochasticity in fluid dynamics has recently been the subject
of intense research effort. This approach involves using random processes to
model, for example, unresolved scales, or to take into account neglected physical
effects. A stochastic formulation for the fluid flow introduces a probabilistic basis
for modelling unresolved scales. This is different from the deterministic causal
modelling which is difficult to achieve in practice due, for instance, to unknown
initial conditions. In addition, some phenomena such as energy backscattering are
directly accessible as stochastic processes. Another usage of stochastic modelling
is to generate ensembles of realizations of the model. This facilitates the analysis
of model uncertainty quantification for different low-resolution computational
simulations and their usage to approximate the true state of the fluid, instead of
using a single high-resolution numerical simulation.

Some stochastic schemes have been proposed in the literature by considering
a variety of ad-hoc perturbations. However, a principled approach is desirable.
The formulation of stochastic dynamical systems based on physical principles
has recently been proposed in various settings. For a review and classification of
approaches to stochastic parameterisation based on physical principles, see [4]. The
present work treats two additional new approaches. The first one, called stochastic
advection by Lie transport (SALT) relies on the variational principle for fluid
dynamics [16]. The second one, called modelling under location uncertainty (LU) is
derived from Newton’s principle [23]. Both frameworks introduce stochasticity into
the Lagrangian specification of the flow field, rather than directly into the Eulerian
frame.

In the deterministic case, it is known that three-dimensional fluid flows may
trigger a cascade of dynamics across multiple length and time scales. This mul-
tiscale behavior poses considerable challenges in the computational simulation
using standard Navier-Stokes equations (see e.g. [7], [24], [5]). When modelling
turbulence numerically, specialised discretisation methods are needed to decompose
the underlying partial differential equations into a very large number of ordinary
differential equations. Alternative approaches have been introduced where the
Navier-Stokes dynamics in the Fourier space is mimicked using a finite number of
variables, say .u1, u2, . . . , uN . The Fourier space is divided into N shells, and each
shell .si comprises the set of wave vectors .s with magnitude .|s| ∈ (s02i , s02i+1).
Each .ui satisfies an ODE and it represents the magnitude of the velocity field
on a length scale of .s−1

i ([15], [7]). The quadratic nonlinearity in the Navier-
Stokes equations produces triads of interacting vector Fourier modes within each
shell. Shell models involving multiple triads have had considerable success in
modelling energy and helicity cascades, as well as modelling intermittency in
chaotic dynamical systems [6, 10, 9]. Simplified shell models with only a few triads
date back to the 1970s and have provided major insight into fluid modal interaction.
Even the dynamical system representation of Euler’s fluid equations on a single triad
has been quite insightful, see e.g. [28, 29].
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More recently, the problem of correctly parameterizing effects of small-scale
physical processes together with the need for probabilistic ensemble forecasting and
uncertainty quantification has led to modern stochastic approaches in the study of
turbulence using reduced order shell models. In this work we will explore reduced
order models for SALT and LU models obtained by projecting onto helical basis
functions [6, 28, 29]. These helical basis functions, defined as eigenfunctions of the
curl operator, enable one to construct reduced order stochastic models of fluid flow
with a simplified nonlinear interaction. As we will see, under projection onto the
basis of helical triad modes, both LU and SALT result in the same reduced order
model and this projected model conserves helicity, but it does not conserve energy.
Because of this coincidence in projecting the SALT and LU models onto the helical
basis, a second reduced order scheme with a strong energy conservation property
inspired by [17] and known as the energy preserving stochastic triad (EST) model
will be proposed for comparison.

While the EST model is not of transport type, it will provide comparison between
two different classes of stochastic dynamical systems. The two classes treated here
are (1) the helicity preserving stochastic triad (HST) (comprising both LU and
SALT on the helical basis) and (2) the energy preserving stochastic triad (EST)
of [17] projected onto the helical basis. The solution behaviour of the HST model
will be compared to that for the EST model for several data assimilation objectives
formulated on the helical triad modes. For classical deterministic models one obtains
a system of ordinary differential equations. However, for stochastic dynamics a set
of stochastic differential equations (SDEs) is obtained [8, 14, 25].

The goal of the data assimilation procedure in this context is twofold: firstly,
it is used to calibrate the uncertainty of the model (the amplitude of the noise).
Secondly, once the calibration is complete, the particle filtering methodology can
be used to reduce the uncertainty. We want the distribution of the fluctuations to
be properly approximated. In the absence of stochasticity, all particles would go
in the same direction and the initial spread would rapidly disappear because of the
hyperbolic character of the model. In the absence of a reasonable spread, the particle
filter methodology will eventually collapse. For this reason, we need to introduce
stochasticity into the system that correctly characterises the fluctuation dynamics. In
particular, we want to find the type of noise amplitude and the stochastic parameters
for which the distribution of the output samples is reasonably uniform.

Structure of the Paper In Sect. 2 we introduce the triad models for incompressible
flows modelled by the Euler equation in its deterministic and stochastic form. To
this end, we introduce the stochastic parametrisation paradigms. Building upon
these models for the 3D Euler equation, we then present reduced order triad models
derived from the original equations. The derivation follows the classical approach
for triad models from the literature, that has been successfully employed in the deter-
ministic case. Our full derivations, complete also for the stochastically parametrised
models, can be found in Appendix 2. The Data Assimilation experiments are carried
out in Sect. 3. We first briefly explain the standard particle filter methodology, and
then in Sect. 3.1 we present the findings of our numerical studies. In particular,
Sect. 3.1 presents the results of the main numerical studies in this work. These are:
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• The model realisations of the stochastic models which we propose in this work
are presented in Sect. 3.1.3 for different realisations of the noise. Further, we
numerically confirm here the physical conservation properties of the models that
motivated their theoretical design.

• The model statistics for a large number of stochastic realisations are presented
in Sect. 3.1.4. Crucially, the evolution of the model statistics in time reveals
differences between the two stochastic models on the level of the individual triad
energies which go beyond the conservation properties. Moreover, we show here
the (in-)stability of either model with respect to large noise parameters.

• In Sect. 3.1.5 we exhibit the results of the data assimilation performed using
the transition kernels derived from the theoretical models developed in this
paper. We show here that using the stochastic transition kernels associated with
our proposed stochastic models improves the particle filtering procedure and
produces efficient ensemble evolutions that are well-suited for data assimilation
purposes.

In Sect. 4 we describe our conclusions on this topic. We conclude the paper
with a number of appendices: in Appendix 1 one can find a list of notations and
standard identities, in Appendix 2 we present a detailed derivation of shell models
(deterministic and stochastic), in Appendix 3 we introduce some supplementary
numerics related to the noise amplitude calibration.

Code Availability The code corresponding to the numerical experiments
in this paper is archived in [22]. The GitHub repository is located at
https://github.com/alobbe/stochastic-triads.

2 Reduced Order Models for Incompressible Fluids

2.1 Reduced Order Models for the 3D Euler Equation

The 3D Euler equations model incompressible inviscid fluid dynamics. These
equations may be written by using the Leray operator .P to project onto the
divergence-free part of its operand as

.

∂v
∂t

= P
(
v × curlv

)

= P
(

δE

δv
× δC

δv

)

with conserved Energy E(v) =
∫
R3

1

2
Pv · vd3x

and conserved helicity C(v) = 1

2

∫
R3

v · curl v d3x

(1)

where .δ/δv represents variational derivative with respect to the fluid velocity .v.
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Following [9, 10] we use a Galerkin expansion in orthogonal vector modes that
are eigenfunctions of the curl operator. Assume the fluid is contained in a periodic
box .D ⊂ R

3 of side length .L > 0. Then the velocity .v and vorticity .ω := ∇ × v
may be expanded in circularly polarised or helical modes .h±(k) exp(ik ·x), with the
wave vectors .k ∈ K := (2π/L)Z3. The modes shall be orthogonal, i.e.

.

∫
D
hsp (p) exp(ip ·x) · [hsq (q) exp(iq ·x)]∗ dx = Cδp,qδsp,sq ; C > 0 const. (2)

The complex vector amplitudes .h±(k) should satisfy .k·h±(k) = 0 and .ik×h±(k) =
±|k|h±(k). A convenient choice of basis for the .h±(k) is then given by

.h±(k) := ν × κ ± iν, with κ := k/k, ν := k × �/|k × �|, � := const,
(3)

for which .|h±(k)|2 := h±(k) · h±(k)∗ = 2 and .h±(k) · h∓(k)∗ = 0.
At this point, one notices the key features of the helical modes .h±(k) exp(ik · x)

which greatly simplifies analysis of modal expansions of the 3D Euler and related
equations, such as 3D Navier-Stokes. Namely, the helical modes .h±(k) exp(ik · x),
are divergence-free eigenfunctions of the curl operator. Specifically,

.∇ · hs(k)eik·x = ik · hs(k)eik·x = 0 (4)

and

.∇ × hs(k)eik·x = ik × hs(k)eik·x = s|k|hs(k)eik·x. (5)

See [9, 10, 28, 29] for more information about how this Galerkin decomposition into
divergence-free eigenfunctions of the curl are used as a standard tool in analysis of
3D solution behaviour of the deterministic Euler fluid equations and Navier-Stokes
fluid equations. In particular, the helical mode expansions in Eqs. (6) comprise the
source of the popular shell models as finite-dimensional expansions of turbulent
fluid dynamics. Thus, this expansion provides a useful framework for studying low-
dimension stochastic models of 3D Navier-Stokes turbulence.

In terms of the basis of helical modes .h±(k) exp(ik ·x), the divergence-free fluid
velocity .v(x, t) and vorticity .ω(x, t) are expressed in [28, 29] in terms of complex
vector amplitudes .u(k, t),� (k, t) ∈ C

3, respectively,

.

v(x, t) :=
∑
p

u(p, t)eip·x :=
∑
p

∑
sp=±

asp (p, t)hsp (p)eip·x ,

ω(x, t) :=
∑
q

� (q, t)eiq·x :=
∑
q

∑
sq=±

sq |q| asq (q, t)hsq (q)eiq·x .

(6)
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Here, the choice

.u(k, t) := a+(k, t)h+(k) + a−(k, t)h−(k) =
∑
sk=±

ask (k, t)hsk (k), (7)

with .a∗
s (k) = as(−k) [29], was made, so that (5) implies

.� (k, t) := |k|
(
a+(k, t)h+(k) − a−(k, t)h−(k)

)
= |k|

∑
sk=±

sk ask (k, t)hsk (k).

(8)

The conservation laws for the Euler fluid kinetic energy and helicity—expressed as
integrals over the spatially periodic box .D—can be evaluated in Fourier space via
Parseval’s theorem, as follows,

.

1

2

∫
D

|v(x, t)|2 d3x=1

2

∑
k

u(k, t) · u∗(k, t)=
∑
k

∑
sk=±

ask (k, t) · a∗
sk

(k, t) ,

∫
D
v(x, t) · curlv(x, t) d3x =

∑
k

u(k, t) · � ∗(k, t)

=
∑
k

∑
sk=±

ksk ask (k, t)a∗
sk

(k, t)hsk (k) · h∗
sk

(k)

= 2
∑
k

∑
sk=±

ksk ask (k, t)a∗
sk

(k, t) .

(9)

Expanding the terms of the Euler equation in curl form (57), we obtain the Euler
equations for the coefficients .ask (k, t). For all .k ∈ K, .sk ∈ {+,−} we have

.∂task (k, t)=−1

4

∑
p+q+k=0

∑
sp,sq

(sp|p|−sq |q|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p)×h∗
sq

(q)·h∗
sk

(k).

(10)

For the explicit derivation of Eq. (10) see section “Deterministic Euler” in
Appendix 2.

The elementary interactions in Fourier space take place between triads of wave
vectors such that .k + p + q = 0, as exemplified in Eq. (10) above. There are two
degrees of freedom per wave vector, .(a+, a−), so eight different types of interaction
are allowed according to the value of the triplet .(sk, sp, sq) = (±1,±1,±1).
Consider a fixed triple of wave vectors .k,p,q ∈ K such that .k + p + q =
0 and a fixed triple .sk, sp, sq ∈ {+,−}. This gives rise to three coefficients
.ask (k, t), asp (p, t), asq (q, t), which we compactly summarise into the complex
vector
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.a = (ask , asp , asq ) ∈ C
3 .

The dynamics of .a is determined by the three equations obtained from (10)

.
dask

dt
= g(sp|p| − sq |q|)a∗

sp
a∗
sq

+ R, . (11)

dasp

dt
= g(sq |q| − sk|k|)a∗

sq
a∗
sk

+ R, . (12)

dasq

dt
= g(sk|k| − sp|p|)a∗

sk
a∗
sp

+ R, (13)

We pick out a summand and cycle through .k, p, q

.
dask

dt
= g(sp|p| − sq |q|)a∗

sp
a∗
sq

, . (14)

dasp

dt
= g(sq |q| − sk|k|)a∗

sq
a∗
sk

, . (15)

dasq

dt
= g(sk|k| − sp|p|)a∗

sk
a∗
sp

, (16)

with the constant complex scalar

.g := −1

4
h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k). (17)

The equations corresponding to the single triad interaction of type .(sk, sp, sq) with
.k + p + q = 0 thus have the complex vector form also derived in [28],

.
da
dt

= ga∗ × Da∗ = g(a × Da)∗, (18)

with the constant diagonal matrix

.D := diag
(
sk|k|, sp|p|, sq |q|). (19)

The form of the factor g defined in (17) above can be calculated from (3) to show that
it depends on the shape and the orientation of the wave-vector triad, but not on its
scale; since the real and imaginary parts of the complex helical vector amplitudes .hsk

are unit vectors. Moreover, .Da can be seen to represent the .(sk, sp, sq) components
of the vorticity vector amplitude .� through Eq. (8) above. Two conservation laws
for real-valued triad energy and helicity follow immediately from Eq. (18), as

.
d

dt
(a · a∗) = 0 and

d

dt
(a · Da∗) = 0 . (20)
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The dynamical system in Eq. (18) is similar to rigid body dynamics, but replaced by
complex angular momentum .(a), complex angular velocity .(Da) and real moment
of inertia .I = D

−1 relating the two complex quantities.1

2.2 Stochastic Parametrizations for the 3D Euler Equation

In the following we introduce a reduced order model for the stochastic parametriza-
tions introduced through the Stochastic Advection by Lie Transport paradigm as
well as the Location Uncertainty paradigm. We explain below the rationale of these
parametrizations:

2.2.1 Modelling Under the Stochastic Advection by Lie Transport
Principle

The SALT equations were derived in [16] using a Stratonovich stochastic version
of Hamilton’s variational principle [18] in combination with Kraichnan’s scalar
turbulence model based on Stratonovich stochastic Lagrangian paths [20]. The
application of Hamilton’s principle with an imposed stochastic Lie transport
constraint implied an Euler-Poincaré equation for the fluid motion [18]. The 3D
SALT Euler equations for divergence-free fluid velocity .v(x, t) are given by

.

dv + ( dxt · ∇)v + vj∇ dxj
t = −∇ dp ,

with dxt = vdt +
∑

i

ξ i (x) ◦ dWi
t .

(21)

As discussed in [16], this motion equation yields a Kelvin-Noether circulation
theorem for the stochastic system

. d
∮

c(xt )

v · dx = −
∮

c(xt )

∇ dp · dx = 0 . (22)

This stochastic Kelvin circulation theorem is has the same form as that for the
deterministic system, except that each line element of the material loop in Kelvin’s
theorem follows the Stratonovich stochastic Lagrangian path, .xt .

The real vectors .ξ i comprise the time-independent noise amplitudes which are
to be determined from data assimilation. The .Wi are independent (uni-dimensional)
standard Brownian motions and .◦ denotes stochastic integration in the Stratonovich
sense.2 The curl form of the SALT Euler motion equation in (21) is obtained

1 Rigid body dynamics with complex angular momentum has also been discussed previously in
[3].
2 An exposition of Brownian motion, stochastic calculus and the Stratonovich integral is to be
found, for example, in the monograph [19].
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from (56) and given by

. dv − dxt × curlv + ∇(v · dxt ) = −∇ dp. (23)

The motion equation (23) and its curl yielding the SALT vorticity equation implies
a formula for the evolution of the helicity of the flow, .�, defined as

.� :=
∫
D
v · curlv d3x . (24)

Upon applying the divergence theorem, one finds

. d� = −
∫

∂D
n̂ ·

(
(v · curlv) dxt + curlv dp

)
dS . (25)

Thus, in a periodic 3D domain, or in an infinite 3D domain with asymptotically
vanishing boundary conditions, the SALT motion equation in (21) or (23) preserves
the helicity, .�, defined in (24). However, a glance at the SALT motion equation
in (23) informs us that it will not preserve the kinetic energy, since even with the
usual fluid boundary conditions .divv = 0 implies

.
1
2 d‖v‖2L2 :=

∫
D
v · dxt × curlv d3x 	= 0 . (26)

2.2.2 Modeling Under the Location Uncertainty Principle

The Location Uncertainty principle consists in decomposing the flow trajectory
.x : � × R

+ → � over a bounded domain, .� ⊂ R
3

.dxt = v (xt , t) dt + σ (xt , t) dWt (27)

in terms of .v (xt , t), a smooth-in-time component of the (Lagrangian) velocity
and a noise .σ (xt , t) dWt , which has here to be understood in the Itô sense and
that accounts for the unresolved processes. The Wiener process, .Wt is a H -
valued (cylindrical) Brownian motion, where H is the Hilbert space of square
integrable functions. The noise is then properly defined as the application of an
Hilbert-Schmidt symmetric integral kernel .σ tf (x) = ∫

S σ̆ (x, y, t)f (y) dy to
the H -valued cylindrical Wiener process .W as

. (σ tdWt )
i (x) =

∫
S

σ̆ik (x, y, t) dWk
t (y) dy, (28)
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The role of the integrable kernel .σ̆ is to impose a spatial correlation on the small-
scale component. It leads to the covariance tensor .Q

.Qij (x, y, t, s) = E
[
(σ tdWt (x))i (σ tdWs (y))j

]

= δ (t − s) dt
∫
S

σ̆ik (x, z, t) σ̆kj (z, y, s) dz,

of the centered Gaussian process .σ tdWt ∼ N (0,Qdt). The diagonal components
of the covariance tensor per unit of time, referred to as the variance tensor, .a,
is a positive definite matrix defined as .a(x, t)δ(t − t ′)dt = Q(x, x, t, t ′), that
quantifies the strength of the noise and has the dimension of a viscosity in .m2s−1.
The operator Q being compact auto-adjoint positive definite operator on H , it
admits eigenfunctions .ξn (·, t) with (strictly) positive eigenvalues .λn (t) satisfying
.
∑

n∈N λn (t) < +∞. As a consequence, the noise and the variance tensor .a can be
expressed through the spectral representation

.σ tdWt (x) =
∑
n∈N

λ
1/2
n (t) ξn (x, t) dβn. (29)

a (x, t) =
∑
n∈N

λn (t) ξn (x, t) ξ†n (x, t) . (30)

The rate of change of a volume .Vt of the scalar q is given by the stochastic Reynolds
transport theorem, introduced in [23]

.d
∫

Vt

q (x, t) dx =
∫

Vt

{
Dt q + q∇ · [

v
 dt + σ tdWt

]}
(x, t) dx, (31)

with the transport operator

.Dt q = dt q + [
v
 dt + σ t dWt

] ·∇q − 1

2
∇ · (a∇q) dt. (32)

In this formula, the first component of the right-hand side is the increment in time at
a fixed location of the process q, that is .dt q = q (xt , t + dt) − q (xt , t), playing the
role of a derivative in time for a non differentiable process. The effective velocity .v


is defined as

.v
 = v − 1

2
∇ · a + σ ∗

t (∇ · σ t ) , (33)

where the velocity component .vs = 1
2∇ · a results from the noise inhomogeneities.

For incompressible homogeneous noise as considered in this work .v
 = v.
Besides, the diffusion term exactly balances the noise brought by the noise. With
Stratonovich convention and a homogeneous noise the transport operator takes a
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simplified form similar to the material derivative:

.Dt q = dt q + (v dt + σ t ◦ dWt ) ·∇q. (34)

For a divergence free homogeneous noise, the Euler equation, in the LU framework,
can then be defined as:

.dtv + (v dt + σ t ◦ dWt ) ·∇v = −∇dpt , ∇ · v = 0, (35)

where .dpt denotes the pressure composed of a finite variation term and a martingale
pressure term. With the Leray projection, .P, this pressure term can be removed and
we obtain, the inertial form of the Euler equation:

.dtv + P
(
(dxt ·∇)v

) = 0, ∇ · v = 0. (36)

2.3 Triad Model Comparison

The reduced order model for the full-scale 3D SALT Euler and 3D LU Euler for a
single triad interaction equation is obtained by projecting the continuous stochastic
Euler models onto the helical modes, in the same fashion as for the deterministic
equation (18). Therefore, we introduce an additional Stratonovich stochastic term
into the transport velocity in (7) as

. dxt (k, t) := (
a+(k, t)h+ + a−(k, t)h−

)
dt +

∑
i

(
bi+(k)h+ + bi−(k)h−

) ◦ dWi
t ,

(37)

where the .k-dependent complex vector .b(k) := (bsk , bsp , bsq )
T ∈ C

3 represents the
time-independent noise amplitude which is to be determined from data assimilation,
similar to the continuous stochastic models (21). Enumerating the equation for a
single triad then yields, after rearranging using exchange symmetry in .(k,p,q), the
matrix equation

. d

⎡
⎣ask

asp

asq

⎤
⎦ = g

⎡
⎣ 0 −qsqasq pspasp

qsqasq 0 −kskask

−pspasp kskask 0

⎤
⎦

∗ ⎡
⎣ask dt + bsk ◦ dWt

asp dt + bsp ◦ dWt

asq dt + bsq ◦ dWt

⎤
⎦

∗

. (38)

Upon applying the previous steps for the deterministic case to the stochastic velocity
in (37), the single triad interaction dynamics for the SALT case would emerge as,
cf. Eq. (18),

. da = g
(
a(k, t)dt + b(k) ◦ dWt

)∗ × Da∗ . (39)
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The details of this computation can be found in section “LU Euler” in Appendix 2
for the 3D LU Euler model and in section “SALT Euler” in Appendix 2 for the 3D
SALT Euler model.

Remarkably, the HST equation for triad interaction (39) still preserves the triad
helicity .a · Da∗. Hence we name this model the helicity preserving stochastic triad
(HST) model. Note that in both equations we use as single source of noise (One
Brownian motion drives the entire system).

It is readily checked that the HST triad evolution (39) preserves the helicity. Let’s
have a look at the diffusion coefficients.

.a∗ × Db =
⎡
⎢⎣a∗

psqqbq − a∗
qsppbp

a∗
qskkbk − a∗

k sqqbq

a∗
k sppbp − a∗

pskkbk

⎤
⎥⎦ , b × Da∗ =

⎡
⎢⎣bpsqqa∗

q − bqsppa∗
p

bqskka∗
k − bksqqa∗

q

bksppa∗
p − bpskka∗

k

⎤
⎥⎦ .

(40)

Taking the difference

.a∗ × Db − b × Da∗ =
⎡
⎢⎣a∗

p(sqq + spp)bq − a∗
q(spp + sqq)bp

a∗
q(skk + sqq)bk − a∗

k (sqq + skk)bq

a∗
k (spp + skk)bp − a∗

p(skk + spp)bk

⎤
⎥⎦ . (41)

Writing .ρ := TrD we get

.a∗ × Db − b × Da∗ =
⎡
⎢⎣ a∗

p(ρ − skk)bq − a∗
q(ρ − skk)bp

a∗
q(ρ − spp)bk − a∗

k (ρ − spp)bq

a∗
k (ρ − sqq)bp − a∗

p(ρ − sqq)bk

⎤
⎥⎦ . (42)

So that the difference term becomes

.a∗ × Db − b × Da∗ = (ρ Id−D)(a × b)∗. (43)

Since the projections of the LU and SALT models onto a single triad are
indistinguishable, we introduce a different model that conserves energy on a single
triad to enable a comparison between energy conserving and helicity conserving
models.

Energy-Preserving Stochastic Triad (EST) Model We introduce below a mod-
ified version of the HST triad equation (39) that introduces stochasticity into the
vorticity instead of into the transport velocity and thereby conserves the energy.
This is inspired by the full-scale model introduced in [17]. The reduced model is as
follows

. da = − ga∗ × D

(
a(k, t) dt + b(k) ◦ dWt

)∗
. (44)



Comparison of Stochastic Parametrization Schemes Using Data Assimilation. . . 171

We call this model the energy preserving stochastic triad (EST). Written in matrix
form Eq. (44) becomes

. d

⎡
⎣ask

asp

asq

⎤
⎦ = g

⎡
⎣ 0 −asq asp

asq 0 −ask

−asp ask 0

⎤
⎦

∗ ⎡
⎣ kak

(
ask dt + bsk (k) ◦ dWt

)
psp

(
asp dt + bsp (p) ◦ dWt

)
qsq

(
asq dt + bsq (q) ◦ dWt

)
⎤
⎦

∗

. (45)

The exchange symmetry between the two models HST and EST in the placement
of the noise in Eqs. (39) and (44) is apparent already in the exchange symmetry
between velocity and vorticity in Euler’s fluid equations (1).

Deviation from the Conservation Laws We can write the equations for the
deviation from the conservation laws, which is present in both models. The SALT
model deviates from the energy conservation by

. dtEHST = gb · (Da∗ × a∗) ◦ dWt (46)

whereas the LU model deviates from the helicity conservation by

. dtHEST = gDb · (Da∗ × a∗) ◦ dWt. (47)

This is seen, since, to get the energy we dot the HST equation with .a∗ and to get
helicity we dot the EST equation with .Da∗ and use the standard identities

.a∗ · (b × Da∗) = b · (Da∗ × a∗). (48)

Da∗ · (a∗ × Db) = Db · (Da∗ × a∗). (49)

Therefore, .b respects the right scaling and no further scale adjustments between the
SALT and LU noise scaling need to be performed in order to compare the models.

3 Data Assimilation Comparison

In this section, we perform a comparative study of the two reduced order models
(HST and EST) introduced above by using data assimilation tools. The particular
methodology that we make use of is that of particle filters. We will first briefly
explain the particle filtering methodology in a generic framework:

Let X and Z be two processes defined on a given probability space .(�,F ,P).
The process X is usually called the signal process or the truth and Z is the
observation process. In this paper, X is the pathwise solution of a (deterministic)
shell model. The pair of processes .(X,Z) forms the basis of the nonlinear
filtering problem which consists in finding the best approximation of the posterior
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distribution of the signal .Xt given the observations .Z1, Z2, . . . , Ztn .
3 The posterior

distribution of the signal at time t is denoted by .πt . We let .dX be the dimension
of the state space and .dZ be the dimension of the observation space. This
mixed continuous-discrete time framework can be embedded into a fully discrete
framework, whereby one is interested in computing the conditional probability law
of the signal at the time corresponding to the observation time. in other words
one wants to compute the conditional distribution .πtn of .X(tn) given the data
.Z(t1), Z(t2), . . . , Z(tn). The process X is assumed to be a Markov process, and
we will denote by .Kn its transition kernel, that is

.Kn : RdX × B(RdX) → [0, 1], Kn(x, B) = P(Xtn ∈ B|Xtn−1 = x) (50)

for any Borel measurable set .B ∈ B(RdX) and .x ∈ R
dX . The process Z models

noisy measurements of the truth, using the so-called observation operator .H :
R

dX → R
dZ :

.Zn = H (Xtn) + Vn (51)

where .{Vn}n≥0 are independent identically distributed random variables that rep-
resent the measurement noise and .H is a Borel-measurable function. In this
paper we will assume that .{Vn}n≥0 have standard normal distributions, but the
same methodology can be applied to more general distributions. Observations are
incorporated into the system at assimilation times. The following recursion formula
holds (see [2])

.πn = gn 
 πn−1Kn (52)

where by ‘.
’ we denoted the projective product (see e.g. Definition 10.4 in [2]).
In the following, we compare approximations of the posterior distribution of

the signal using particle filters. These are sequential Monte Carlo methods which
generate approximations of the posterior distribution .πt using sets of particles. That
is, they generate approximations that are (random) measures of the form

.πn ≈
∑

�

w�
nδ(x

�
n),

where .δ is the Dirac delta distribution, .w1
t ,w

2
t , . . . are the weights of the particles

and .x1
t , x2

t , . . . are their corresponding positions. Particle filters are used to make
inferences about the signal process by using Bayes’ theorem, the time-evolution
induced by the signal X, and the observation process Z.

3 For a mathematical introduction on the subject, see e.g. [2].
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In a standard particle filter, the particles evolve between assimilation times
according to the law of the signal. As we explain below, at each assimilation time
the observation is incorporated into the system through the likelihood function:

.g
zt
t : RdX→R+, g

zt
t (x)= gt (zt−H (x)) such that P(Zt∈dzt |Xt = x)= g

zt
t (x)dzt

(53)

and all particles are weighted depending on the likelihood of their corresponding
position, given the observation. More precisely, the particle .� is given the weight
.wl

n = g
Zn
n (x�). Heuristically, the particle weight measures how close the particle

trajectory is to the signal trajectory. A selection procedure is then applied to the set
of weighted particles. Particles with higher conditional likelihood (guided by the
observation) have higher weights and will be multiplied, while those which have
small likelihoods will be eliminated. For the basic particle filter, this is done by
sampling with replacement from the population of particles, with corresponding
probabilities proportional to their weights.

A Monte Carlo implementation of the transition kernel of the signal may not
always yield good approximations. In many situations one replaces the original
transition kernel with likelihood informed importance proposals, leading to much
better approximations. One situation when this is necessary is when the original
process is actually deterministic (aside for the initial position which is assumed to
be random). This is the case in our paper.

To overcome the collapse of the particle filter when using deterministic transition
kernels, one can use a Markov Chain Monte Carlo procedure that leaves the
deterministic dynamics invariant. This procedure can be costly and might not always
introduce enough spread into the sample. In this paper, we propose a different
approach, which we illustrate numerically in Sect. 3.1.2 below. In particular,
we propose two different transition kernels based on the physical conservation
properties:

• The transition kernel associated with the HST model equation (38). We will
denote this transition kernel by .KHST. As we have explained above, this transition
kernel preserves the helicity of the system.

• The transition kernel associated with the triad model equation (45) we will denote
this transition kernel by .KEST. As we have explained above, this transition kernel
preserves the energy of the system.

3.1 Numerical Studies

3.1.1 Numerical Implementation

The models are discretised using the stochastic SSPRK3 scheme which is docu-
mented, for example, in [11]. In our specific case, for instance, the HST model is
discretised as
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.qn
1 = an + g(a∗

n × Da∗
n)
t + g(b × Da∗

n)
W

qn
2 = (3/4)an + (1/4)(qn

1 + g((qn
1)

∗ × D(qn
1)

∗)
t + g(b × D(qn
1)

∗)
W)

an+1 = (1/3)an + (2/3)(qn
2 + g((qn

2)
∗ × D(qn

2)
∗)
t + g(b × D(qn

2)
∗)
W)

where .
t denotes the timestep and .
W the increment of the driving Brownian
motion. Further, .an is the approximate complex vector amplitude at time .t =
n
t . The EST model is discretised completely analogously. For the numerical
simulations we chose the following triad throughout. We set

.k = [1, 0, 0], p = [0,−1, 1], q = [−1, 1,−1], (54)

with parities .sk = 1, sp = −1, sq = −1 and the initial value .a0 = 1√
3
[1, 1, 1]. We

set the parameter .� = [1, 1, 1] and used a time stepsize of .
t = 0.0005.

3.1.2 Data Assimilation for the Deterministic Model

We illustrate the failure of the particle filter with deterministic transition kernel
in Fig. 1. In this case, the particle filtering is performed for an ensemble of
.n = 25 particles evolving according to the deterministic triad dynamics. The initial
ensemble is spread around the initial value .a0 of the signal according to a Gaussian
distribution with standard deviation .1/

√
600 and, in particular, does not contain

the true initial point. Data assimilation is performed every 10 time units and the
observations are taken from the modal energies of the truth with an observation
error .η distributed as .η ∼ N (0,C) with covariance .C = diag(0.0052, 0.052, 0.052).
We observe that both the bias and the RMSE keep increasing with time to values
much larger than the observation error. Moreover, the number of distinct particles
decreases rapidly: after 30 steps, a single particle remains that is not the true particle
since the true particle was not part of the initial cloud. The particle filter does not
work.

3.1.3 Reduced Order Model Realisations

The deterministic model in Fig. 1a exhibits continually oscillating triad amplitudes.
Plotted are the modal energies. Writing .a = [ak, ap, aq ] we call the real value .aka∗

k

the energy of mode k. Similarly for the two other modes.
We simulate the model realisations for different noise scenarios. We simulate

the effect of noise in each single mode. Let the noise amplitude vector be .b =
[bk, bp, bq ]. Then we simulate the two models for .b = [bk = 0.1, bp = 0, bq =
0], .b = [bk = 0, bp = 0.1, bq = 0], and .b = [bk = 0, bp = 0, bq = 0.1].
The trajectories of the modal energies for .n = 20 realisations of the driving noise
for each scenario are shown in Fig. 2. We also simulate the case of full noise for
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Fig. 1 Deterministic Triad Model. The horizontal axis shows time. (a) Evolution of the modal
energies (colored lines) as well as the total energy (dashed line) and helicity (dash-dotted line). The
deterministic model exhibits continually oscillating modal energies. The simulation also confirms
the conservation of energy and helicity. (b–e) Data assimilation for the deterministic model using
particle filter. (b) Evolution of the energy of mode .p of the signal (grey line) and evolution of the
energy of mode .p for the particle ensemble (blue lines). Noisy observations (black stars) are made
and assimilated every 10 time units. (c) The number of unique particle positions in the filtering
ensemble. (d) The bias of the particle ensemble wrt. the observations. (e) The RMSE of the particle
ensemble wrt. the observations

Fig. 2 Model realisations for both stochastic triad models. Plotted are the modal energies (colored
lines), total energy (black line) and helicity (grey line). The respective thick lines are the ensemble
means, and the thin lines represent the different stochastic realisations. (a+ e) The noise coefficient
.b = [0.1, 0, 0]. (b+ f) The noise coefficient .b = [0, 0.1, 0]. (c+g) The noise coefficient .b =
[0, 0, 0.1]. (d+h) The noise coefficient .b = [0.1, 0.05, 0.01]
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Fig. 3 Evolution of statistical moments of the modal energies for both stochastic models in the full
noise case. The statistics are computed pointwise in time from an ensemble of 1000 realisations up
to a final time of 150. (a+ e) Ensemble mean. (b+ f) Ensemble standard deviation. (c+ g) Ensemble
skew. (d+h) Ensemble kurtosis

the noise amplitude vector .b = [bk = 0.1, bp = 0.05, bq = 0.01] which was
calibrated to the data assimilation objective using the procedure explained in section
“Calibration of the Noise Amplitude” in Appendix 3. The ensemble of .n = 20
realisations of the driving noise in the full noise case is depicted in Fig. 2d and h.
In all cases, it can be observed that the mean energy amplitudes of the modes are
dampened in both stochastic models. Furthermore, we can experimentally verify the
conservation of triad energy for the EST model and the conservation of triad helicity
for the HST model.

3.1.4 Model Statistics

Figure 3 shows various statistics of the generated ensembles of .n = 1000 particles
for the HST and EST triad models in the full noise case introduced above. We plot
the ensemble mean, standard deviation, skew, and kurtosis.

The effect of large noise coefficients is exemplified in Fig. 4. We observe that
the HST model explodes whereas the EST model is more tolerant to large noise
coefficients, and even in the extreme case, does not become unstable in the mean.
The ensemble means are computed from .n = 500 realisations, using the noise
coefficient .b = [0.0, 1.0, 0.0]. Moreover, to stress the EST model, we also ran the
same experiment with a noise coefficient of .b = [0.0, 10.0, 0.0] for the EST model
alone.

The mean ensemble for a large number of particles, .n = 20,000, is shown in
Fig. 5. We can observe that, compared to Fig. 3a and e the oscillations after time 40
are reduced for a very large number of particles. Hence, we believe that the system
stabilizes in the mean to stationary modal energies as the limiting effect of the noise.
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Fig. 4 The effect of large noise coefficients on the mean. Evolution of the mean modal energies
(colored lines), mean total energy (black), and mean helicity (grey) for the HST (a) and EST (b)
model with noise coefficient .b = [0, 1, 0]. (c) Evolution of the mean modal energies, mean total
energy, and mean helicity for the EST model with the strong noise coefficient .b = [0, 10, 0]

Fig. 5 Evolution of mean modal energies for a very large number of realisations for the EST (a)
and HST (b) models. The mean is computed from .20,000 particles in the full noise case

3.1.5 Data Assimilation

Using the two stochastic models in the full noise case described above, we perform
the data assimilation tests using the following framework:

The signal process (the truth) is given by the deterministic triad model. The
observations are the modal energies of the deterministic model, observed every 10
time units, and perturbed by noise of the form

.η ∼ N (0,C), (55)

where the covariance matrix .C ∈ R
3 is chosen to be the diagonal matrix .C =

diag(0.0052, 0.052, 0.052).
We use the sequential importance resampling (SIR) particle filter to assimilate

the periodically observed signal process under the influence of observation noise.
The particles evolve according to the stochastic triad models. Figures 6 and 7 show
the results of filtering the ensemble of .n = 100 particles of the EST and HST triad
models, respectively. The ensembles are assessed in terms of the bias and RMSE
statistics. We analyse the comparison details below:
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Fig. 6 Filtering experiment for EST model using SIR particle filter. (a–c) Ensemble evolution for
100 particles in mode k (a, red), p (b, blue), and q (c, green). The signal (grey) is the deterministic
model and the observations (black stars) are noisy and taken and assimilated every 10 time units.
(d–f) Bias of the filtering ensemble. (g–h) RMSE of the filtering ensemble

Mode k

This is the least energetic of all the modes (hence the reason why we observe it with
the least amount of measurement noise). The cloud of particles is well placed around
the truth even with the small sample. The bias remains small for both the HST
and the EST versions and it reduces significantly when observations are assimilated
more frequently (see Fig. 9 in Appendix 3) as well as when we use a large number
(500) of particles (see Fig. 10 in Appendix 3). The RMSE remains small in all cases
and decreases (though not substantially) when the DA step is small.

Modes p and q

These are the two energetic modes of the system. We used here a measurement
noise that is one order of magnitude larger. Despite this, the results remain equally
good. The cloud of particles provide a good envelope for the truth at all times.
This validates the choice of the stochasticity: the uncertainty is properly modelled.



Comparison of Stochastic Parametrization Schemes Using Data Assimilation. . . 179

Fig. 7 Filtering experiment for HST model using SIR particle filter. (a–c) Ensemble evolution for
100 particles in mode k (a, red), p (b, blue), and q (c, green). The signal (grey) is the deterministic
model and the observations (black stars) are noisy and taken and assimilated every 10 time units.
(d–f) Bias of the filtering ensemble. (g–h) RMSE of the filtering ensemble

For both models the bias can become very large, reaching .30% of the size of the
oscillations for the HST model and .25% of the size of the oscillations for the EST
model. As expected, it is drastically reduced when observations are assimilated more
frequently. The RMSE for mode p is also large but substantially smaller for mode q.
The addition of more intermediate DA steps or more particles has a less pronounced
effect for the q mode.

Remark 2 We record the Effective Sample Size (ESS) for a typical run (for both
EST and HST) in Fig. 11. As usual, the ESS is computed just before the application
of the resampling procedure. The ESS is seen to decay dramatically from 100 down
to single digits numbers in most instances in time.

Remark 3 We record the results over 10 independent runs of the filtering experi-
ment for the EST model with 500 ensemble members in Fig. 12. More precisely, in
graphs 12a, b and c each, we plot the mean across the 10 independent filtering runs
together with the evolution of the signal and the individual ensemble means for each
mode. The mean bias as well as the envelope obtained from the independent runs
are shown in graphs 12d, e and f. The same is shown for the RMSE in graphs 12g,
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h and i. Compared with a single run of the same experiment reported in Fig. 10
we observe the approximations are now near perfect (the statistical error has been
drastically reduced).

4 Conclusions

The introduction of stochasticity into the deterministic triad models leads to two new
stochastic models. Stochasticity is introduced in a principled way (rather than ad-
hoc). It starts with a full scale fluid dynamic model which is randomly perturbed. At
the full scale, the stochastic parametrisation models the small-scale effects in fluid
dynamics modelling. In particular, it efficiently captures the high-frequency small-
scale dynamics and correctly correlates it with the slow, large-scale fluid motion.
In addition, it is constrained to conserve either the helicity or the kinetic energy
of the system. This inspires two different stochastic triad models of Euler type
which we compare using data assimilation procedures based on particle filtering.
The methodology we employ can be used as a benchmark when analysing new types
of stochastic parametrisations: ours is the first study that assesses the efficiency of
stochastic parametrisations from a data assimilation perspective.

The introduction of stochasticity ensures that the correct spread (one that
preserves the physical properties of the system) is introduced in the ensemble of
particles. In its absence, the particle filter degenerates quite rapidly: after a few
DA steps, a single particle survives the culling procedure which does offer a good
approximation of the truth. A purely deterministic transition kernel does not work,
generating a rapid degeneracy of the particle filter.

The two stochastic systems (one which preserves helicity and the other one
which preserves energy) are analysed using a standard particle filter. There is no
need for additional procedures (such as tempering, nudging, or jittering). They
perform equally well from the viewpoint of DA: both the RMSE and the bias are
drastically reduced and stabilised when the noise is carefully calibrated. The two
different stochastic kernels require different noise calibrations in order to perform
well in similar data assimilation scenarios. This is somehow expected, given that the
underlying stochastic parametrisations preserve different physical quantities.

Appendix 1: Notation and Basic Identities

Notation

In this work we use the following notation. We write .Z, .R and .C for the sets
of integers, real numbers and complex numbers, respectively. Boldface letters
denote three-dimensional complex vectors. For two complex vectors .a and .b with
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components .aj and .bj , their dot product is denoted by

.a · b =
3∑

j=1

ajbj = ajbj ∈ C.

This paper uses the Einstein convention of summing over repeated indices. The
norm of the complex vector .a is defined as

.|a| = √
a · a∗ =

√
aja

∗
j ≥ 0,

with the superscript symbol .
∗ denoting complex conjugation. Further, the cross

product of two vectors .a and .b is given by

.a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ∈ C
3.

The gradient of a scalar field .φ : D ⊆ R
3 → C at a point .x ∈ D is denoted by

.∇φ(x) = (
∂1φ(x), ∂2φ(x), ∂3φ(x)

) ∈ C
3.

The divergence of a vector field .ψ : D ⊆ R
3 → C

3 with components .ψj at a point
.x ∈ D is defined as

.∇ · ψ(x) = ∂1ψ1(x) + ∂2ψ2(x) + ∂3ψ3(x) = ∂jψj (x) ∈ C

and the curl of .ψ at .x is given by

.∇ × ψ(x) = (
∂2ψ3(x) − ∂3ψ2(x), ∂3ψ1(x) − ∂1ψ3(x), ∂1ψ2(x) − ∂2ψ1(x)

) ∈ C
3.

Vector Identities

For three vectors .a, .b and .c, we have the following algebraic vector identities

.a · (b × c) = b · (c × a) = c · (a × b),

a × (b × c) = (a · c)b − (a · b)c,

(a × b) · (c × d) = (a · c)(b · d) − (b · c)(a · d),

a × a = 0.

Moreover, we have the vector calculus identity

.(a · ∇)b + bj∇aj = −a × (∇ × b) + ∇(a · b). (56)
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Appendix 2: Derivation of Triad Models

Deterministic Euler

We compute the projection of the terms corresponding to the deterministic Euler
vorticity equation in curl form:

.∂tv − v × (∇ × v) + 1
2∇|v|2 = −∇p. (57)

onto the helical basis. For the time-derivative we get

.

∫
D

∂tv(x, t) · h∗
sk

(k)e−ik·x dx =
∑
p

∑
sp

∂tasp (p, t)hsp (p) · h∗
sk

(k)

∫
D

ei(p−k)·x dx

= L3
∑
sp

∂tasp (k, t)hsp (k) · h∗
sk

(k)

= L3∂task (k, t)hsk (k) · h∗
sk

(k)

= 2L3∂task (k, t).

The vorticity term gives

.

∫
D

(v(x, t) × ω(x, t)) · h∗
sk

(k)e−ik·x dx

=
∑
p,q

∑
sp,sq

asp (p, t)sq |q|asq (q, t)hsp (p) × hsq (q) · h∗
sk

(k)

∫
D

ei(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

a∗
sp

(p, t)sq |q|a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

(58)

Note that we can write (58) in a form which is symmetric in .p and .q since, renaming
the indices,

.

∑
p+q+k=0

∑
sp,sq

a∗
sp

(p, t)sq |q|a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k)

=
∑

p+q+k=0

∑
sp,sq

a∗
sq

(q, t)sp|p|a∗
sp

(p, t)h∗
sq

(q) × h∗
sp

(p) · h∗
sk

(k)

= −
∑

p+q+k=0

∑
sp,sq

a∗
sq

(q, t)sp|p|a∗
sp

(p, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).
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Therefore,

.

∫
D

(v(x, t) × ω(x, t)) · h∗
sk

(k)e−ik·x dx. (59)

= L3

2

∑
p+q+k=0

∑
sp,sq

(sq |q| − sp|p|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

(60)

Moreover, the gradient terms in (57) vanish upon expansion into helical modes.
Thus, the Euler equation (57) in helical basis becomes

.∂task (k, t)=−1

4

∑
p+q+k=0

∑
sp,sq

(sp|p|−sq |q|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p)×h∗
sq

(q)·h∗
sk

(k).

SALT Euler

We expand the 3D SALT Navier-Stokes equation (23) using (6) and (37). Assume
.bs(−p) = b∗

s (p).

.

∫
D
dv(x, t) · h∗

sk
(k)e−ik·x dx =

∑
p

∑
sp

dasp (p, t)hsp (p) · h∗
sk

(k)

∫
D

ei(p−k)·x dx

= 2L3dask (k, t)

And

.

∫
D
dxt (x, t) × ω(x, t) · h∗

sk
(k)e−ik·x dx

=
∑
p,q

∑
sp,sq

[
asp (p, t)dt + bsp (p) ◦ dWt

]
sq |q|asq (q, t)hsp (p)

× hsq (q) · h∗
sk

(k)

∫
D

ei(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sp

(p, t)dt + b∗
sp

(p) ◦ dWt

]
sq |q|a∗

sq
(q, t)h∗

sp
(p)

× h∗
sq

(q) · h∗
sk

(k).

Renaming the indices, we can write
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.L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sp

(p, t)dt + b∗
sp

(p) ◦ dWt

]
sq |q|a∗

sq
(q, t)h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k)

=L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sq

(q, t)dt+b∗
sq

(q) ◦ dWt

]
sp|p|a∗

sp
(p, t)h∗

sq
(q) × h∗

sp
(p) · h∗

sk
(k)

=−L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sq

(q, t)dt+b∗
sq

(q) ◦ dWt

]
sp|p|a∗

sp
(p, t)h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k).

Thus, we arrive at

.

∫
D
dxt (x, t) × ω(x, t) · h∗

sk
(k)e−ik·x dx

= L3

2

∑
p+q+k=0

∑
sp,sq

[
(sq |q|b∗

sp
(p) ◦ dWta

∗
sq

(q, t) − sp|p|b∗
sq

(q) ◦ dWta
∗
sp

(p, t))

+ (a∗
sp

(p, t)dtsq |q|a∗
sq

(q, t) − a∗
sq

(q, t)dtsp|p|a∗
sp

(p, t))

]
h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k).

Therefore,

.dask (k, t) = 1

4

∑
p+q+k=0

∑
sp,sq

[
(sq |q|b∗

sp
(p) ◦ dWta

∗
sq

(q, t) − sp|p|b∗
sq

(q) ◦ dWta
∗
sp

(p, t))

+ (a∗
sp

(p, t)dtsq |q|a∗
sq

(q, t) − a∗
sq

(q, t)dtsp|p|a∗
sp

(p, t))

]
h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

LU Euler

Written in terms of the SALT model, the LU model is

. dv + dxt · ∇v + vj∇ dxj
t − vj∇(ξ ◦ dWt)

j = −∇ dp.

Expanding the additional term gives

.∇(ξ ◦ dWt)
j = ∇

∑
q

(b±(q)h±(q)eiq·x ◦ dWt)
j =

∑
q

iqb±(q)hj
±(q)eiq·x ◦ dWt.
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Thus we get

.vj∇(ξ ◦ dWt)
j =

∑
p,q

∑
sp,sq

asp (p, t)hj
sp (p)iqbsq (q)hj

sq (q)ei(p+q)·x ◦ dWt.

Now projecting and renaming, we have

.

∫
D
vj∇(ξ ◦ dWt)

j · a∗
sk

(k, t)h∗
sk

(k)e−ik·x dx =

=
∑
p,q

∑
sp,sq

a∗
sk

(k, t)asp (p, t)[bsq (q) ◦ dWt ](iq · h∗
sk

(k))(hsp (p) · hsq (q))

∫
D

e(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

a∗
sk

(k, t)a∗
sp

(p, t)[b∗
sq

(q) ◦ dWt ](−iq · h∗
sk

(k))(h∗
sp

(p) · h∗
sq

(q))

= L3
∑

p+q+k=0

∑
sp,sq

(f
pq
k

)∗a∗
sk

(k, t)(a∗
sp

(p, t)[b∗
sq

(q) ◦ dWt ] + a∗
sq

(q, t)[b∗
sp

(p) ◦ dWt ])

with

.f
pq
k = (−i(p + q) · hsk (k))(hsp (p) · hsq (q)).

Note that, due to the triad condition .p + q + k = 0,

.f
pq
k = f

kq
p = f

kp
q = 0

so that the difference term between SALT and LU vanishes in the helical projection
and the two projected models coincide.

Appendix 3: Supplementary Numerics

Calibration of the Noise Amplitude

To calibrate the noise amplitude for the data assimilation experiments, we rely
on two forecast verification metrics. The rank histogram (or Talagrand histogram)
and the continuous ranked probability score (CRPS). We evaluated these for both
models on 64 different noise amplitude vectors. The metrics were recorded by
running the data assimilation/particle filtering experiment described in the main
text for the noise amplitude vectors .b = [bk, bp, bq ] resulting from all possible
combinations of .bk ∈ {0.05, 0.1, 0.2, 0.5}, .bp ∈ {0.025, 0.05, 0.1, 0.2} and .bq ∈
{0.01, 0.02, 0.04, 0.1}. We present the mean CRPS scores for the top 5 tested noise
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Table 1 CRPS scores (lower is better) for the five best—in terms of overall mean CRPS score—
tested noise amplitude vectors .b (first column). The mean CRPS score over the three modal
energies is shown for the EST (second column) and HST (third column) models. The overall mean
CRPS score for the respective noise amplitude is shown in the Mean column (fourth column).
Finally, we provide references to the figures showing the associated rank histograms (last column)

.b EST HST Mean Histograms

.[0.05, 0.025, 0.01] .0.0282 .0.0394 .0.0338 Figure 8a + f

.[0.05, 0.025, 0.02] .0.0338 .0.0392 .0.0365 Figure 8b + g

.[0.10, 0.025, 0.02] .0.0352 .0.0385 .0.0368 Figure 8c + h

.[0.10, 0.05, 0.02] .0.0393 .0.0356 .0.0375 Figure 8d + i

.[0.10, 0.05, 0.01] .0.0363 .0.0409 .0.0386 Figure 8e + j

Fig. 8 Rank histograms for the 5 best noise amplitude vectors in terms of CRPS score (see Table 1)
for the EST and HST models. Each individual graph shows the rank histogram of an ensemble of
15 particles run up to a final time of 1400, with data assimilation performed every 10 time units.
The top histogram in each subfigure represents the ensemble for mode .k, the middle histogram
represents the ensemble for mode .p and the bottom one for mode .q

amplitude vectors in Table 1. The mean is taken across both models. Based on
this calibration, we chose the case .b = [0.10, 0.05, 0.01] for the data assimilation
experiment, as the other ones have inferior rank histograms, so we achieve a good
balance between the visual judgment of rank histograms and the CRPS score
(Fig. 8).

Data Assimilation Verification

See Figs. 9, 10, 11, and 12.
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Fig. 9 Filtering experiment for EST model using SIR particle filter with a small data assimilation
interval of 5 time units. (a–c) Ensemble evolution for 100 particles in mode k (a, red), p (b, blue),
and q (c, green). The signal (grey) is the deterministic model and the observations (black stars)
are noisy and taken and assimilated every 5 time units. (d–f) Bias of the filtering ensemble. (g–h)
RMSE of the filtering ensemble



188 A. Lobbe et al.

Fig. 10 Filtering experiment for ESTmodel using SIR particle filter with a large particle ensemble
of 500 members. (a–c) Ensemble evolution for 500 particles in mode k (a, red), p (b, blue), and q
(c, green). The signal (grey) is the deterministic model and the observations (black stars) are noisy
and taken and assimilated every 5 time units. (d–f) Bias of the filtering ensemble. (g–h) RMSE of
the filtering ensemble

Fig. 11 Typical ESS for the filtering experiments. See Remark 2 in the main text. (a) ESS for EST
experiment. (b) ESS for HST experiment
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Fig. 12 Statistics of the mean ensemble over 10 independent runs of the particle filter with 500
ensemble members for the EST model. See Remark 3 in the main text
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An Explicit Method to Determine
Casimirs in 2D Geophysical Flows

Erwin Luesink and Bernard Geurts

Abstract Conserved quantities in geophysical flows play an important role in the
characterisation of geophysical dynamics and aid the development of structure-
preserving numerical methods. A significant family of conserved quantities is
formed by the Casimirs i.e., integral conservation laws that are in the kernel of the
underlying Poisson bracket. The Casimirs hence determine the geometric structure
of the geophysical fluid equations among which the enstrophy is well known. Often
Casimirs are proposed on heuristic grounds and later verified to be part of the
kernel of the Poisson bracket. In this work, we will explicitly construct Casimirs by
rewriting the Poisson bracket in vorticity-divergence coordinates thereby providing
explicit construction of Casimirs for 2D geophysical flow dynamics.

1 Introduction

Models of geophysical flows involve a fluid with a free interface under the influence
of gravity on a rotating domain, often forced by variations in temperature, salinity
and density. In this paper, we will consider the thermal rotating shallow water
equations, which is a two dimensional model that includes all of the features above.
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The variations of temperature and salinity are collected in a single scalar field that
we call the buoyancy. The thermal rotating shallow water equations can be derived in
several different ways from the rotating Euler equations with stratification. The best
known method is to assume that the domain is shallow, allowing the replacement of
the prognostic equation for the vertical velocity by a hydrostatic pressure relation
from which the vertical velocity can be inferred. The result is the system of inviscid
primitive equations. Upon assuming columnar motion, e.g., motivated by the Taylor-
Proudman theorem, meaning that the horizontal velocity field does not depend on
the vertical coordinate, one can vertically average the primitive equations to obtain
the thermal rotating shallow water equations.

The focus in this contribution is with the preservation of key structures that
characterise the governing equations and their dynamics. In geophysical fluid
dynamics (GFD) models in 2D so-called conservation of Casimirs forms a major
framework for the modelling and construction of methods for their numerical
treatment. We present an explicit constructive method with which the Casimirs
of a general class of GFD models can be explicitly computed. This provides an
alternative to earlier work by Cotter and Holm [2013] that yields explicit Casimirs
for 2D systems.

This entire sequence of assumptions and approximations can be performed at
the level of the Lagrangian formulation of the models, as shown in Holm and
Luesink [2021]. Doing so is helpful because the geometric structure associated with
such a variational formulation implies various important dynamical quantities and
conservation laws. For two-dimensional geophysical fluids, we find that the key
dynamical quantities are the potential vorticity and the potential buoyancy, where
the latter is the ratio of the buoyancy to the depth. Both quantities play a key role in
cyclogenesis, as shown in Holm et al. [2021]. In the present work, we will show that
the potential vorticity and potential buoyancy can also be used to give an alternative
formulation of the fluid equations. This formulation is particularly useful for the
identification of Casimirs, which are conserved integral quantities. The Casimirs
in turn help interpret mechanisms in geophysical turbulence. For instance, in the
incompressible setting without buoyancy effects in two dimensions, the enstrophy
is one of the Casimirs and plays a central role in the double cascade predicted by
Kraichnan [1967]. From a geometric point of view, the Casimirs are the functionals
that form the kernel of the Poisson bracket. Usually, the form of the Casimirs is
assumed or guessed and then verified by checking whether the Poisson bracket
indeed vanishes. We will use two subsequent changes of variables to provide a
constructive derivation for the form of the Casimirs.

The organization of this paper is as follows. In Sect. 2 we present the main
equations relevant to 2D geophysical flow and sketch the central importance of
the retaining symmetries and conserved properties of the models. Among these
properties, Casimirs are a major structure for the GFD models in 2D. Explicit
methods to determine these Casimirs will be sketched in Sect. 3. Concluding
remarks are collected in Sect. 4.
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2 Geophysical Flows

In Holm and Luesink [2021] it is shown that starting from the Lagrangian for
the rotating, stratified Euler equations in three dimensions, one can derive the
Lagrangian for the thermal rotating shallow water equations by assuming hydro-
static pressure and applying vertical averaging. The benefit of performing this
sequence of approximations at the level of the Lagrangian is that the geometric
structure is not affected. This means that the thermal rotating shallow water
equations can be formulated using a Lie-Poisson bracket. As was shown in Marsden
and Weinstein [1983], there exist multiple equivalent formulations in terms of Lie-
Poisson brackets of the two-dimensional Euler equations. Similar formulations can
be derived for the compressible two-dimensional fluid models. This was first done
in Holm and Long [1989]. The retained Lagrangian structure in 2D is basic to a
possible systematic approach to determining the conserved quantities associated
with the thermal rotating shallow water equations. This systematic approach will
be elaborated on in this paper.

It is possible to derive the equations for geophysical fluid dynamics on arbitrary
smooth manifolds starting from the Euler equations, as shown in Holm et al. [1998].
This level of generality requires tools of differential topology, such as the Lie
derivative, the pullback and the pushforward, see for instance Abraham andMarsden
[1978], Marsden and Ratiu [2013], Holm et al. [2009]. However, if the domain
is a two-dimensional compact subset .� embedded in .R

3 or .R
2 with Cartesian

coordinates and appropriate boundary conditions, we can formulate the equations
of motion also using vector proxies of exterior calculus. The computations are in
arbitrary orthonormal coordinate systems. To this end, we start from the dimension-
less Lagrangian for the thermal rotating shallow water (TRSW) equations, which
are given by

. LT RSW (u, η, b) =
∫

�

(
1

2
|u|2 + 1

Ro
u · R − 1

2 Fr2
(1 + sb)(η − 2h)

)
η dμ.

(1)

In this Lagrangian, .u is the velocity field, .η = αζ + h is the total depth, .ζ is the
free surface elevation, h is the bottom topography, .R is the vector potential for the
Coriolis parameter and b is the buoyancy variable. Furthermore, the dimensionless
numbers are the aspect ratio .σ , the Rossby number .Ro, the Froude number .Fr, the
wave amplitude .α and the stratification parameter .s. The stratification parameter
represents the importance of the buoyancy variable, which itself is of order one. The
vector potential for the Coriolis parameter satisfies .∇⊥·R = f (x, y), where .f (x, y)

is the usual Coriolis parameter. The .⊥ operator corresponds to a Hodge star operator,
which for Cartesian coordinates is defined by .(x, y)⊥ = (−y, x). The volume form
is given by .dμ, which in Cartesian coordinates is expressed as .dμ = dx dy. The
Lagrangian is a functional on .X(�) × V ∗(�), the product space of the space of
vector fields .X(�) and the space of advected quantities .V ∗(�). That is, .u ∈ X(�)
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and .η, b ∈ V ∗(�). More information and details on these spaces can be found in
Luesink [2021]. The thermal rotating shallow water equations associated with the
Lagrangian (1) are given in the advective formulation by

.

∂

∂t
u + (u · ∇)u + 1

Ro
f u⊥ = − α

Fr2
∇((1 + sb)ζ ) + s

2 Fr2
(αζ − h)∇b,

∂

∂t
η + ∇ · (ηu) = 0,

∂

∂t
b + (u · ∇)b = 0.

(2)

Equations (2) describe a compressible fluid with thermal effects in a rotating frame
in two dimensions. Note that the equations take the same form on the sphere.
The bold symbols denote vector valued quantities, which assumes the existence
of a basis. Since we are working with two dimensional manifolds, such a basis is
available. We will now recall an important vector calculus identity that is central
to the manipulations that we will perform. This identity follows from differential
topology, as shown in Holm et al. [2009], where vector fields and differential forms
in arbitrary coordinate systems can be defined. The vector-valued coefficients of
these objects can be identified when the underlying space is Euclidean with the
standard inner product. This means that .u is simultaneously the coefficient of a
vector field and a differential 1-form. This can lead to confusion, so in what follows
u denotes a vector field in arbitrary coordinates and v denotes a differential 1-form.
The Lie derivative can be defined as the derivative of the pullback

.Luv = d

dt

∣∣∣
t=0

φ∗
t (v), (3)

where .φ is the flow associated with the vector field u. The asterisk on .φ means that v
is pulled back along .φ. Here, .φ is the solution to the differential equation .dφ/dt =
u(φ, t)with arbitrary initial condition, i.e., representing a trajectory of a test-particle
in the flow field u. The arbitrariness is what allows Lagrangian formulations of fluid
dynamics to be related to Eulerian formulations. The Lie derivative can also be
defined by means of Cartan’s formula

.Luv = iudv + d(iuv), (4)

where .iuv denotes the interior product of uwith v and d is the exterior derivative, see
e.g. Abraham and Marsden [1978], Marsden and Ratiu [2013], Holm et al. [2009].
Setting the two definitions (3) and (4) of the Lie derivative equal to one another in
.R

2 provides the following vector calculus identity

.(u · ∇)v + (∇u) · v = (∇⊥ · v)u⊥ + ∇(u · v), (5)
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where the left hand side results from the pullback definition (3) and the right hand
side follows from the Cartan formula (4).

Using (5), an alternative formulation to (2) of the thermal rotating shallow water
equations is given by

.

∂

∂t
u +

(
ω + 1

Ro
f

)
u⊥ = − α

Fr2
∇((1 + sb)ζ ) − 1

2
∇|u|2 + s

2 Fr2
(αζ − h)∇b,

∂

∂t
η + ∇ · (ηu) = 0,

∂

∂t
b + (u · ∇)b = 0,

(6)

where .ω = ∇⊥ · u is the scalar vorticity. This formulation is often called the
vector invariant formulation of fluid dynamics. There are several situations where
the vector invariant formulation has advantages over the advective formulation.
The vector invariant form offers an easier basis for numerical discretisations
because it hides the nonlinearity. Additionally, on the right hand side of the
velocity equation in (6), one recognises the gradient of the Bernoulli function
.B = 1

2 |u|2 + α

Fr2
(1+ sb)ζ , further explaining the physical mechanisms responsible

for the flow of fluid.
Both (2) and (6) can be formulated as a Hamiltonian system with a Lie-

Poisson bracket. This is a crucial property of these models as it prepares for a
clear formulation of conserved quantities, i.e., the desired Casimirs. By Legendre
transforming the Lagrangian (1), we obtain the Hamiltonian associated with the
thermal rotating shallow water equations. The Legendre transform is given by

.H(m, η, b) = 〈m,u〉 − L(u, η, b), (7)

where .m = δL/δu is the momentum variable in terms of the functional derivative
of the Lagrangian. The Legendre transform only relates the velocity and the
momentum and does not affect the advected quantities. The Hamiltonian is therefore
a functional on the space .X∗(�) × V ∗(�), where .X∗(�) is the dual space of .X(�)

with respect to .L2-pairing on .�. For the thermal rotating shallow water model, the
momentum is given by .m = η(u + R) and the Hamiltonian is

.HT RSW (m, η, b) =
∫

�

(
1

2η2
|m|2 + 1

2 Fr2
(1 + sb)(η − 2h)

)
η dμ. (8)
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The Poisson bracket that will allow us to formulate the equations of motion has the
following general form, see e.g. Holm et al. [2009],

.{F,G} =
∫

�

⎛
⎝δF/δm

δF/δη

δF/δb

⎞
⎠ · J(m, η, b)

⎛
⎝δG/δm

δG/δη

δG/δb

⎞
⎠ dμ , (9)

where F and G are two arbitrary functionals on the space .X∗(�) × V ∗. The matrix
.J is operator valued and depends on the state. .J can be explicitly derived using
reduction theorems, following Marsden and Weinstein [1974], Holm et al. [1998].
We speak of Hamiltonian dynamics if the evolution of a functional F is expressed by

.
d

dt
F = −{F,H }, (10)

where H is the Hamiltonian of the system. We obtain the equations of motion (2)
by choosing .G = H and using .J(m, η, b) as in Holm et al. [2021] to find

.
∂

∂t

⎛
⎝mi

η

b

⎞
⎠ =

⎛
⎝mj∂i + ∂jmi η∂i −b,i

∂j η 0 0
b,j 0 0

⎞
⎠

︸ ︷︷ ︸
=J(m,η,b)

⎛
⎝δHT RSW/δmj

δHT RSW/δη

δHT RSW/δb

⎞
⎠ (11)

and reproduces Eqs. (2) after using the definition of the momentum, rewriting the
momentum equation using the continuity equation and applying the Lie derivative
identity (5) to the vector potential of the Coriolis parameter. We have used Einstein’s
summation convention of summing over repeated indices and the notation .b,i refers
to i-th component of the gradient of b (the comma denotes a spatial derivative). Note
that the dependence on the state .(m, η, b) is linear. This means that the Poisson
bracket is in fact a Lie-Poisson bracket. The kernel of a Lie-Poisson bracket is
nontrivial and is precisely the kernel of the linear operator .J. The kernel is spanned
by functionals known as Casimirs and the goal of the remainder of this work is to
derive these Casimir functionals explicitly.

In Holm and Long [1989], the momentum bracket (11) is transformed by
means of a change of variables to the rotational form. The change of variables is
.(m1,m2, η, b) �→ (u, v, η, b), where .u = m1

η
and .v = m2

η
, which is invertible as

long as .0 < η < ∞. This change of variables is not the same as just formulating
the Hamiltonian and the Lie-Poisson bracket in terms of velocity because of the role
of the rotating frame. Performing the transformation of Holm and Long [1989], we
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obtain the following formulation

.
∂

∂t

⎛
⎜⎜⎝

u

v

η

b

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 −q ∂x − bx

η

q 0 ∂y − by

η

∂x ∂y 0 0
bx

η

by

η
0 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=J(u,v,η,b)

⎛
⎜⎜⎝

δHT RSW/δu = ηu

δHT RSW/δv = ηv

δHT RSW/δη = B

δHT RSW/δb = T

⎞
⎟⎟⎠ , (12)

where .q = 1
η
(ω+ 1

Rof ) is the potential vorticity, .B = 1
2 |u|2+ 1

2 Fr2
(1+sb)(η−2h)

is the Bernoulli function and .T = s

2 Fr2
(η2 − 2ηh). This Hamiltonian formulation

corresponds to (6) and extends the bracket of Holm and Long [1989] to include
thermal variations. This bracket is linear and it is a simple exercise to show that it is
skew-symmetric with respect to the .L2-pairing. To prove that it satisfies the Jacobi
identity, we repeat the argument of Holm and Long [1989] and state that the bracket
in (12) is an invertible transformation of variables in the Lie-Poisson bracket (11).

We now wish to express the bracket (12) in another set of variables to achieve
a formulation in independent scalar variables. This is accomplished using the
transformation .(u, v, η, b) �→ (ω,D, η, ηb), where .ω = ∇⊥ · u is the vorticity and
.D = ∇ · u is the divergence. If the domain .� has no holes, then the vector Laplace
equation has a unique solution. This is the Helmholtz theorem for Euclidean space.
If the domain does have holes (or islands) then appropriate boundary conditions
are required to eliminate harmonic functions in order to guarantee uniqueness
of solutions. In either case, provided with appropriate boundary conditions when
necessary, one can uniquely split up the vector field .u into potentials via the
Helmholtz decomposition

.u = ∇⊥ψ + ∇χ, (13)

where .ψ is the stream function and .χ is the velocity potential. Uniqueness of
solutions to the Laplace equation is required to reconstruct .u, since the potentials
satisfy Poisson’s equations

.
ω = ∇⊥ · (∇⊥ψ) = 
ψ,

D = ∇ · (∇χ) = 
χ.
(14)

This permits us to write the velocity field in terms of vorticity and divergence as
follows

.u = ∇⊥
−1ω + ∇
−1D, (15)

which means that changing variables in the Hamiltonian amounts to substitut-
ing (15) for the velocity. The first term in (15) is analogous to the two-dimensional
version of the Biot-Savart law, but since the fluid is compressible it does not
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determine the full velocity field. The potential buoyancy variable .r = b/η

is introduced to remove the fraction terms .±bx/η and .±by/η in the Poisson
bracket (12). This is convenient from a notation point of view, but also means that
all the variables that appear inside the .J matrix in the Poisson bracket are “potential
variables”, i.e., potential vorticity and potential buoyancy. To change variables in
the Cartesian coordinate case, we sandwich the Poisson bracket of Eq. (12) with the
functional Jacobian derivative operator and its .L2-adjoint as follows

.

⎛
⎜⎜⎝

−∂y ∂x 0 0
∂x ∂y 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

0 −q ∂x − bx

η

q 0 ∂y − by

η

∂x ∂y 0 0
bx

η

by

η
0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

∂y −∂x 0 0
−∂x −∂y 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (16)

Similar manipulations can be performed for different coordinate systems, provided
that one takes an orthonormal coordinate basis. For the sphere this would be a
latitude-longitude basis. Performing this change of coordinates in the bracket (12)
leads to

.

{
F,G

}
= −

∫
�

⎛
⎜⎜⎝

δF/δω

δF/δD

δF/δη

δF/δb

⎞
⎟⎟⎠ ∇ ·

⎛
⎜⎜⎝

q × −q 0 r ×
q q × 1 r

0 −1 0 0
r × −r 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
=J(ω,D,η,b)

∇

⎛
⎜⎜⎝

δG/δω

δG/δD

δG/δη

δG/δb

⎞
⎟⎟⎠ dμ . (17)

This bracket formulation has a number of interesting properties. First of all, the
differential operators can be factored out of the matrix upon introducing the
convention .×∇ = ∇⊥. Secondly, the matrix only features the potential vorticity
q and the potential buoyancy r . The kernel of this bracket is the kernel of the
matrix operator .J(ω,D, η, b), which is skew-symmetric in both q and r . The most
interesting property in our opinion is that this bracket governs a number of two-
dimensional fluid models through submatrices of .J.

The full four by four setting corresponds to the thermal rotating shallow water
equations. If there is no underlying rotation, one simply adapts the definition of
the potential vorticity q to obtain the thermal shallow water equations. When there
are no buoyancy variations, the bracket can be restricted to the three by three case,
which corresponds to the rotating shallow water equations. Again, upon adapting
the potential vorticity variable q, one can obtain the shallow water equations in
case rotation is absent. In the incompressible case where buoyancy variations still
play a role, the divergence is zero. Then one can use the submatrix consisting of
the .(1, 1), (1, 4), (4, 1), (4, 4) elements, which corresponds to the thermal rotating
Euler equations. If buoyancy variations do not play a role, the matrix is simply the
.(1, 1) element, which can describe the two-dimensional rotating Euler equations
and the quasi-geostrophic (QG) equations. Important to note is that the thermal
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Table 1 The models that can be described by submatrices of the Poisson bracket (17)

Incompressible Compressible

1. Euler 5. Shallow water

2. Rotating Euler 6. Rotating shallow water

3. QG 7. Thermal shallow water

4. Thermal rotating Euler 8. Thermal rotating shallow water

QG (TQG) model described in Warneford and Dellar [2013], Zeitlin [2018], Holm
et al. [2021] does not fit into the Lie-Poisson bracket formulation because its .(1, 1)
position features .q − b rather than just q, see Holm et al. [2021]. This is a result of
the fact that the TQG model is derived as a perturbation around thermal geostrophic
balance, rather than around geostrophic balance. To summarise, we list all models
that can be described by (17) in order of complexity in Table 1.

The transition from incompressible models to compressible models is a steep
increase in complexity, since the compressible models involve an additional two
equations compared to the incompressible case. The divergence and the depth
variable are always paired together, since changes inD imply changes in .η and vice-
versa. This bracket is particularly useful in the explicit computation of Casimirs,
which is shown in Sect. 3. It also has other uses. In ocean dynamics, gravity
waves propagate at speeds that are orders of magnitude higher than the typical
flow velocity. If the Rossby number, the Froude number, the wave amplitude and
the stratification parameter satisfy .O(Ro) = O(Fr) = O(α) = O(s), then one
can derive the thermal geostrophic balance condition. This condition provides an
algebraic relation for the balanced velocity field. The balanced velocity field is
divergence free. Since the bracket (17) features the divergence variable explicitly,
it is natural to perform an asymptotic expansion in a small parameter .ε where

.

ω = ω0 + εω1 + o(ε),

D = εD1 + o(ε).
(18)

The expansion (18) applied to the thermal rotating shallow water Lagrangian (1)
and truncated at order .o(1) yields the thermal extension of the L1 model of Salmon
[1983]. This derivation is shown in detail in Holm et al. [2021].

3 Explicitly Determining the Casimirs

The bracket (17) is particularly helpful in the explicit computation of the Casimirs
since the variables are all independent scalars. We are looking for functionals
.C(ω,D, η, b) such that .{F,C} = 0 for any functional F . The following compu-
tations follow a procedure of step-by-step elimination. Expanding the bracket and
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requiring .{F,C} = 0 for any F yields the equation

.

0 = {F,C} = −
∫

�

δF

δω
∇ ·

(
q∇⊥ δC

δω
− q∇ δC

δD
+ r∇⊥ δC

δb

)

+ δF

δD
∇ ·

(
q∇ δC

δω
+ q∇⊥ δC

δD
+ ∇ δC

δη
+ r∇ δC

δb

)

− δF

δη
∇ ·

(
∇ δC

δD

)

+ δF

δb
∇ ·

(
r∇⊥ δC

δω
− r∇ δC

δD

)
dμ .

(19)

Since F is an arbitrary functional, we can solve for this functional equation per
variational derivative of F and get the explicit form of the Casimirs by a process of
elimination. In fact, the third line of (19), the one that features .δF/δη, will be our
starting point in the explicit computations. The third line implies that C may be at
most linear in D with constant coefficients, since only then the variational derivative
of C with respect to D is constant in space. Applying the gradient leads to zero,
meaning that the third term vanishes under the assumption of linear dependence
of C on mass density D. If the variational derivative of C with respect to D is
not constant with respect to space, then this term does not vanish, as .
D is not
necessarily zero. So at this stage we know that

.C(ω,D, η, b) =
∫

�

γD + f (ω, η, b) dμ , (20)

where .γ ∈ R is a constant and .f (ω, η, b) is a function that is determined next. Since
we have established that C must be linear in D, all terms that involve variational
derivatives of C with respect to D vanish. Simplifying (19) accordingly, we obtain

.

0 = {F,C} = −
∫

�

δF

δω
∇ ·

(
q∇⊥ δC

δω
+ r∇⊥ δC

δb

)

+ δF

δD
∇ ·

(
q∇ δC

δω
+ ∇ δC

δη
+ r∇ δC

δb

)

+ δF

δb
∇ ·

(
r∇⊥ δC

δω

)
dμ .

(21)

The third line of (21), the one that features .δF/δb, vanishes if C depends linearly on
.ω. In this case we do not have to insist on constant coefficients. If the coefficient of .ω
is an arbitrary differentiable function .�(r) of the potential buoyancy, i.e., .δC/δω =
�(r), we have

.∇·
(

r∇⊥ δC

δω

)
= ∇·(r∇⊥�(r)

) = � ′(r)(∇r ·∇⊥r)+r(∇·∇⊥)�(r) = 0, (22)
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because .∇r,∇⊥r and .∇,∇⊥ are orthogonal. Here .� ′(r) denotes the derivative of
.� with respect to its argument. Recall that the potential buoyancy is defined as
.r = b/η. At this stage, we know that C must have the form

.C(ω,D, η, b) =
∫

�

γD + ω�(r) + g(b, η) dμ . (23)

The next step is to determine .g(b, η). Knowing the explicit form of the variational
derivative of C with respect to .ω, we can simplify (21) further to obtain

.

0 = {F,C} = −
∫

�

δF

δω
∇ ·

(
q∇⊥�(r) + r∇⊥ δC

δb

)

+ δF

δD
∇ ·

(
q∇�(r) + ∇ δC

δη
+ r∇ δC

δb

)
dμ .

(24)

We focus on the term that features .δF/δω. We have an explicitly constructed term
and the variational derivative of C with respect to b. By the same argument as in
the previous step, we know .∇ · (r∇⊥(δC/δb)) vanishes if the variational derivative
of C with respect to b is a differentiable function of r . So, let .�(r) = �(b/η) be
this differentiable function. Since a variational derivative of .�(b/η) with respect
to b produces a factor of .1/η, we introduce the term .η�(b/η) into C. So at this
stage, after the three steps, we have an expression for C in terms of two arbitrary
differentiable functions .� and .�

.C(ω,D, η, b) =
∫

�

η�(r) + ηq�(r) + γD dμ (25)

where .γ ∈ R is a constant and .ηq = ω + 1
Rof . Going back to (24), we can verify

whether .C(ω,D, η, b) is indeed the family of Casimirs of the Poisson bracket (17).
This means that the terms multiplying variational derivatives of F must vanish. So
we substitute (25) into (24) and compute the term multiplied by .δF/δω

.

∇ ·
(

q∇⊥ δC

δω
− q∇ δC

δD
+ r∇⊥ δC

δb

)

= ∇ ·
(
q∇⊥�(r) + r∇⊥(

�′(r) + q� ′(r)
))

= �′′(r)(∇r · ∇⊥r) + r(∇ · ∇⊥)�′(r)

+ � ′(r)(∇q · ∇⊥r) + � ′(r)(∇r · ∇⊥q)

+ r� ′′(r)(∇r · ∇⊥q) + r� ′′(r)(∇q · ∇⊥r)

= 0.

(26)
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In this computation we have used orthogonality of .∇,∇⊥ and .∇r,∇⊥r and skew-
symmetry, i.e., .∇r ·∇⊥q = −∇q ·∇⊥r (.= −rxqy +qxry for Cartesian coordinates).
It remains to check whether the term multiplied by .δF/δD also vanishes. In the
following computation, we suppress the dependence of .� and .� on r for notational
convenience. We compute from the second line in (19)

.

∇ ·
(

q∇ δC

δω
+ q∇⊥ δC

δD
+ ∇ δC

δη
+ r∇ δC

δb

)

= ∇ ·
(
q∇� + ∇(

� − r�′ − rq� ′) + r∇(�′ + q� ′)
)

= ∇ ·
(
q∇� − r∇(q� ′) − q� ′∇r + r∇(q� ′)

)
= 0.

(27)

The computation is a sequence of applying the identity .∇f (r) = f ′(r)∇r . In the
first step we have applied this to all the terms that involve .�. Performing the same
manipulations on .� subsequently, implies the result. Note that in (24) we required
cancellations of terms orthogonal to the terms that are required to cancel in (27).
The reason that the perpendicular gradient of the variational derivative of C with
respect to .η does not appear in (24) is because it is trivially zero due to orthogonality
of .∇ and .∇⊥. Hence we can conclude that (25) is the complete description of the
Casimirs for the bracket (17) and thus also for (11). We can repeat the computation
for each of the models described in Table 1 to obtain the corresponding Casimirs.
This is summarised in Table 2. Here one can see that in presence of thermal effects
enstrophy is no longer a Casimir.

Table 2 The Casimirs of the models that can be described by submatrices of the Poisson
bracket (17)

Incompressible Casimirs

1. Euler .C = ∫
�

�(q) dμ

2. Rotating Euler .C = ∫
�

�(q) dμ

3. QG .C = ∫
�

�(q) dμ

4. Thermal rotating Euler .C = ∫
�

�(r) + q�(r) dμ

Compressible Casimirs

5. Shallow water .C = ∫
�

η�(q) + γD dμ

6. Rotating shallow water .C = ∫
�

η�(q) + γD dμ

7. Thermal shallow water .C = ∫
�

η�(r) + ηq�(r) + γD dμ

8. Thermal rotating shallow water .C = ∫
�

η�(r) + ηq�(r) + γD dμ
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4 Conclusion

In geometric approaches to fluid dynamics one often may exploit constructive
methods to infer conservation laws via Noether’s theorem Abraham and Marsden
[1978], Marsden and Weinstein [1983], Marsden and Ratiu [2013], Holm et al.
[2009]. Casimirs identify conservation laws that arise as the kernel of the Poisson
bracket. We provided an explicit method of determining these Casimir functionals
for two-dimensional fluid dynamics by means of two changes of variables for the
thermal rotating shallow water equations. We formulated the equations in vector
invariant form by using an important vector calculus identity. The Poisson bracket
corresponding to this vector invariant form is convenient for further manipulation.
By changing coordinates from velocity to vorticity and divergence, we derive a
Poisson bracket that only involves (skew) gradients and divergences. By means
of this formulation, it is a systematic computation to obtain the Casimirs. The
computations were performed for arbitrary coordinate systems, which means that
the above computations can easily used for domains such as the sphere.
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comments.
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Correlated Structures in a Balanced
Motion Interacting with an Internal Wave

Igor Maingonnat, Gilles Tissot, and Noé Lahaye

Abstract Characterizing the loss of coherence of an internal tide propagating
through mesoscale turbulence has been a major challenge in oceanography, particu-
larly due to its implications for the interpretation of satellite data. In this paper, we
intend to study the correlations between a balanced motion and the incoherent part
of a wave in an idealised configuration. We introduce a new modal decomposition
technique, named broad-band proper orthogonal decomposition (BBPOD), which
consists in performing a proper orthogonal decomposition (POD) on complex
demodulated variables. After connecting BBPOD to the standard SPOD, we show
that BBPOD, coupled with the extended POD technique enables us to associate the
principal components of the incoherent field to the slow flow structures responsible
of this loss of coherence through triadic interactions with the incident wave.

Keywords Internal tide interactions · Spectral proper orthogonal decomposition ·
Broadband proper orthogonal decomposition

1 Introduction

Internal tides, generated by interactions between the barotropic tide and topographic
features such as ridges or continental slopes, are ubiquitous in the ocean, playing
a crucial role in vertical mixing and energy transport. They propagate over large
distances, encountering regions with energetic mesoscale turbulence, and they
lose their fixed phase relationship with the astronomical forcing, a phenomenon
known as incoherence. This loss of coherence, highly unpredictable, complicates
for example our ability to disentangle internal tides and low-frequency turbulent
signals from satellite data (Richman et al. 2012).
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To face these difficulties, there have been various studies to better understand
and predict the impact of a balanced (turbulent) jet on the inertia-gravity wave
field properties. For instance, Savva and Vanneste (2018) and Ward and Dewar
(2010) studied the internal tide scattering. Ponte and Klein (2015) examined the
incoherence time scales for different turbulent configurations, and Dunphy et al.
(2017) quantified the interaction terms via vertical-mode projection of the linearized
Boussinesq equations.

We consider in the present paper a data-driven approach to study from idealised
numerical simulations, the structures of the jet, which are correlated with the
incoherent contributions of the wave field. Extracting coherent structures from a
data set can be performed in the spectral domain by spectral proper orthogonal
decomposition (SPOD) (Towne et al. 2018). Some attempts to connect these reduced
features with non-linear interactions have been proposed for instance in Karban
et al. (2022) by identifying the contribution of the non-linear term correlated
with the SPOD mode through extended proper orthogonal decomposition (EPOD,
Boree (2003)). Unfortunately, non-linear forcing is a quantity more difficult to
interpret and associate with physical mechanisms than a pressure or velocity field for
instance. We propose instead a new broad-band proper orthogonal decomposition
(BBPOD), derived from the SPOD. By taking advantage of the strong time scale
separation between the two dynamics and considering small-amplitude wave, this
formulation allows us to connect the non-linear interactions between the slow
motions of the jet and the incoherent contributions of the wave through the EPOD
method. The non-linear interactions are here understood as triadic interactions with
the slow motion that will lead to a broadband frequency structure of the incoherent
wave field.

The plan is as follows. We will begin by describing the model used for our
simulations in Sect. 2. In Sect. 3.1, the original SPOD method is reviewed and a
connection to the proposed BBPOD method is made (Sect. 3.2). Sections 4 and 5
will summarize the study and bring some perspectives.

2 Model

The propagation of internal tides through a nearly-balanced jet is examined in a one
layer rotating shallow water (RSW) model. The equations are non-dimensionalized
as follows. The characteristic time-scale is the inertial time .T = f −1, inverse
of the Coriolis frequency. The reference length scale L is chosen to be of the
order of the jet thickness, taken equal to the first Rossby radius of deformation
.Rd , such that the Burger number .Bu = R2

d/L2 is equal to one. A beta-plane
approximation, with parameter .β, accounts for the effect of rotation, and a radiative
damping term .α is added on the continuity equation, (following e.g. Brunet and
Vautard 1996). Adequat artificial hyperviscosity, consistent with energy dissipation
and conservation of angular momentum, is also used (see Ochoa et al. 2011).
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Let .� be a bounded subset of .R
2, the equations without viscosity, defined on

.� × R+, are

. ∂th + Budiv v + Ro((v·∇)h + h div v) = −αh. (1)

∂tv + (1 + βy)v⊥ + Ro(v·∇)v = −∇h, (2)

where .v = (u, v) is the horizontal velocity, .v⊥ = (−v, u)T , h is the sea surface
height (SSH) anomaly and .Ro = U/(f L) is the Rossby number.

A numerical simulation of system (1) and (2) of a plane wave interacting with
a zonal jet has been performed. Equations have been discretized by a pseudo-
spectral method and with a Runge-Kutta time-scheme using the code Dedalus
(Burns et al. 2020). The domain .� is a doubly periodic rectangular domain of size
.[0, 20] × [−20, 20] discretized on a .128 × 512 grid. The simulation is initialized
with an eastward zonal jet at geostrophic equilibrium with a small perturbation
to trigger the instabilities. During the whole experiment, a northward propagating
plane wave with frequency fixed at .ω = 2 is generated in a nudging layer in the
South of the domain, and an eastward wind forcing is applied to maintain the
balanced current. A spin-up phase allows the jet to evolve toward a statistically
stationary state. The experiment continues with snapshots stored every 0.1 wave
period, such that a sufficiently long series .q = (u, v, h)T of 12,000 snapshots are
collected, representing nearly 4000 wave periods. Note that a sufficient sampling in
time is required for extracting the wave field by filtering in Sect. 3.2. An example of
snapshot associated with one run of the simulation is shown in Fig. 1.

Fig. 1 A snapshot taken from the RSW simulation. On the left the vorticity field and on the right
the internal wave SSH anomaly .hω, extracted by bandpass filtering centered around the wave
frequency .ω = 2
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This simple model can sustain waves interacting with a turbulent flow. Northward
rotating shallow water waves are inertia gravity waves satisfying the dispersion
relation

.k2y = ω2 − (1 + βy)2

Bu

, (3)

with .ky denoting the spatial wavenumber in the meridional direction, which is
function of the tidal frequency .ω.

3 Methods

The methods to extract correlated structures in a flow field are described in this
section. In the following we denote our state vector by q = (u, v, h)T .

3.1 Spectral Proper Orthogonal Decomposition

Spectral proper orthogonal decomposition is an extension of POD methods (see
Lumley 1967), and aims at extracting coherent structures in spectral space from
numerical or experimental data. The data are assumed to be issued from a
statistically stationary random process, which is verified thanks to the hypothesis
of small-amplitude waves, such that the balanced flow is marginally impacted by
the wave propagation. The modes obtained from this decomposition are space-time
uncorrelated from each other.

We interpret our state vector as a zero-mean second order random process q

(which can be obtained by subtracting the time averaged field beforehand) indexed
over � × R

+, a subset of spatio-temporal variables. Consider q̂(ω) the Fourier
transform of the process at angular frequency ω. We assume that each realization
of q̂(ω) belongs to L2

W(�,C3) = {g : � → C
3,

∫
�

g∗(z)W(z)g(z) dz < ∞}, the
ensemble of square integrable functions in space (periodic at boundary) relatively
to a positive definite weight matrix W: � → Mn(R). The superscript ·∗ denotes
the transpose-conjugate operation. The matrix W is chosen such that the L2-norm
approximates the energy of the RSW model (1) and (2):

.‖q‖2W = 1

2

∫
�

(1 + λh̄)(u2 + v2) dxdy + 1

2Bu

∫
�

h2 dxdy, (4)

where λ refers to the deviation of the isopycnal taken equal to Ro/Bu and h̄

corresponds to the temporal-mean of SSH anomaly. The term 1 + λh̄ is assumed to
remain strictly positive (which is necessary for ensuring positiveness of the norm),
since we do not consider zero or negative sea-surface height.
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Let us recall briefly the basic principle of SPOD. By stationarity the auto-
correlation function C(x, y, t, x′, y′, t ′) = E(q(x, y, t) ⊗ q∗(x′, y′, t ′)) satisfies:

.C(x, y, t, x, y, t ′) = C(x, y, x′, y′, t − t ′), (5)

where ⊗ denotes the dyadic product of two vectors in R
3. The objective of SPOD

method is therefore to find a deterministic function ψ satisfying the Fredholm
equation:

.

∫
�

S(x, y, x′, y′, ω)W(x′, y′)ψ(x′, y′, ω) dx′dy′ = λ(ω)ψ(x, y, ω), (6)

where S(x, y, x′, y′, ω) = ∫
R
C(x, y, x′, y′, τ )e−iωτ dτ is the cross spectral density

matrix (CSD).
The Karhunen-Loeve theorem (Loève 1955) states that ∀ω ∈ R, Eq. (6) has

an infinite number of solutions (λj (ω),ψj (ω))∞j=1 such that: (ψj (ω))∞j=1 is an

orthonormal basis in L2
W(�,C3) where we can expand the Fourier transform of

the field into structures uncorrelated from each other:

.q̂(x, y, ω) =
∞∑

j=1

aj (ω)ψj (x, y, ω) (7)

with E(aj (ω)aj ′(ω′)) = λj (ω)δj,j ′(ω − ω′) and ∀j, λj (ω) ≥ 0. Moreover, a
truncated expansion at order n will maximize the mean energy (defined by the norm
‖·‖2W), compared to any other decomposition of the same order, and SPOD provides
an optimal decomposition of the CSD:

.E(‖q̂(ω)‖2W) =
∞∑

j=1

λj (ω). (8)

S(x, y, x′, y′, ω) =
∞∑

j=1

λj (ω)ψj (x, y, ω)ψ∗
j (x

′, y′, ω). (9)

Therefore, by solving the Fredholm equation at the tidal frequency, we are
able to separate the fast from the slow component of the process by a spectral
decomposition, expanded onto an orthonormal basis optimal energetically.

It can be remarked that when there is an homogeneous direction, it is possible
to compute the Fredholm equation in spectral space with respect to this direction.
Each wave-number can be computed independently, and each corresponding Fourier
component is solution of the original Fredholm problem. For more complete
description of SPOD (see Towne et al. 2018; Schmidt and Colonius 2020). In our
case, the domain is homogeneous in the x direction, but we still consider the 2D
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problem for the physical relevance of the extended BBPOD problem presented in
Sect. 3.2.

3.2 Broadband Proper Orthogonal Decomposition

The BBPOD consists in estimating by complex-demodulation (see Godfrey 1965)
the correlation tensor of a band-passed-filtered signal, and its eigenfunctions. The
associated algorithm is presented in this section. It will be compared with the
Welch’s method used in SPOD (see Welch 1967; Towne et al. 2018) and it will
be shown that under some hypotheses both algorithms are equivalent. It can be
noted that in Welch (1967), the connection with complex demodulation is briefly
mentioned, and it is leveraged here with the computation of the eigenvectors and
eigenvalues of the correlation tensor for a POD decomposition. We highlight by this
equivalence, that due to windowing in the Welch’s method, the features extracted by
SPOD possess a spectral component with a thick frequency band. For the Broadband
POD algorithm, this frequency band is explicit, and chosen through the definition
of a filter. In the RSW model, the incoherent wave field possesses a broad band
structure and Broadband POD allows us to obtain a complete decomposition of this
field.

3.2.1 Complex Demodulation of the Wave Field

Given a temporal series .xt , the principle of complex demodulation consists in the
following computation:

.xd = L(xt e
−iωt ), (10)

where .xd is called the complex demodulated signal, .L is a low-pass filter and .ω

is the demodulated frequency. Complex demodulation enables to extract the slowly
varying amplitude envelop and phase deviations of the wave field. These variations
are associated with wave incoherence.

First, we decompose the process .q(x, y, t) in a sum of .qj (x, y, t) and
.qω(x, y, t), representing the jet and wave contributions, respectively. The wave
field can be expressed as:

.qω(x, y, t) = qd(x, y, t)eiωt , (11)

where .ω is the tidal frequency and .qd is a complex field slowly varying in
time, accounting for the incoherence. The latter is then extracted by the complex
demodulation of .q (10), with a filter designed such that it isolates the slow variations
of the background flow. As a consequence, through the .e−iωt shift, the spectral-
band of the extracted wave contains all effects of triadic interactions between the
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slow motions and the coherent wave. The jet contribution .qj is obtained by directly
filtering .q (zero frequency), including here the time-average. In this study, we
assume that .q is dominated by the superimposition of .qj and .qω, which interact non-
linearly. Note that for simplicity, a uniform time sampling of the data was chosen
but this can be adapted to a non-uniform one, e.g. by interpolation on a regular grid
or using filtering algorithms to irregular sampling.

3.2.2 Link with SPOD

For making the link with SPOD to estimate the CSD of a signal .xt , we write the
temporal filter in a discrete form, with a time spacing .
t and .tk = k
t . A wide
class of linear filter can be expressed as the convolution:

.L(xt ) =
m∑

i=−m

bixt−i , (12)

where (bi)−m≤i≤m are the discrete coefficients of the filter. Then,

.(L(xt e
−iωt ))j =

m∑
k=−m

bkxj−ke
−iωtj−k . (13)

=
j+m∑

k=j−m

bj−kxke
−iωtk . (14)

In the Welch method, xt is subdivided into possibly overlapping blocks of size N
and with an overlap No. A Fast Fourier Transform is performed on each windowed
block to extract the Fourier component at the tidal frequency, denoted Xl

ω where l

is the block index. We define

.Xl
ω =

N∑
k=0

xk+l(N−No)Wke
−iωtk , (15)

where Wk is a window function. By changing variable k′ = k + l(N − No), we
obtain

.Xl
ω = eiωtl(N−No)

N+l(N−No)∑
k′=l(N−No)

xk′Wk′−l(N−No)e
−iωtk′ . (16)

Assuming that the window function is symmetrical in the middle of each block
(which is verified for most windows used in the literature), i.e. Wk = WN−k ,
Eq. (16) gives
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.Xl
ω = eiωtl(N−No)

N+l(N−No)∑
k′=l(N−No)

WN+l(N−No)−k′xk′e−iωtk′ . (17)

Finally, by choosing Wk = bk which sets m = N
2 , relation (14) yields

.Xl
ω = eiωtl(N−No)(L(xt e

−iωt ))N
2 +l(N−No)

. (18)

Consequently, up to a phase, the Welch method corresponds to the computation of
the complex demodulated signal sampled every N − No. The phase shift cancels
when computing the correlation over Nb blocks:

.

Nb∑
l=0

Xl
ωXl

ω

∗ =
Nb∑
l=0

(L(xt e
−iωt ))N

2 +l(N−No)
(L∗(xt e

−iωt ))N
2 +l(N−No)

. (19)

The CSD can thus be obtained by computing the correlation over Nb snapshots
sampled every N − No of the complex demodulated signal, which is proving the
equivalence between the two methods for appropriate numerical parameters.

As said before, it can be remarked that the window function acts as a filter in the
Welch procedure, but without giving an explicit expression of the frequency band.
Moreover, if we aim at studying the whole broadband field, the classical SPOD
(with its single frequency interpretation when the window function is designed to
only estimate a pure harmonic) requires the computation of a set of spatial modes
at each discrete frequency in the peak. In comparison, BBPOD computes at only
one frequency the dominant modes of the wave field. This has the drawback for
the SPOD algorithm to include at each frequency a few modes of nearby frequency
due to the convolution with a finite length window, leading to misinterpretation or
counting the same mode several times in the reconstruction of the whole wave field.
More precisely, BBPOD gathers the first SPOD mode of each frequency providing
a simpler representation of the whole wave field and avoids spurious modes in the
reconstruction. Another important remark is that the connection of our method with
SPOD lies on the fact that the spectral peak is sufficiently narrow corresponding of
a sufficiently large window in the Welch method guaranteeing a good estimation of
the CSD.

The final step is to compute the eigenvalues and eigenvectors of the CSD,
estimated by complex demodulation. The complex demodulated signal at frequency
ω is then decomposed on this BBPOD basis:

.qd(x, y, t) =
∑
j

aj (ω, t)ψj (x, y, ω), (20)

with aj (ω, t) = ∫
�

q∗
d(x, y, t)W(x, y)ψj (x, y, ω) dxdy slowly varying coeffi-

cients.
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3.2.3 Extended Broadband Proper Orthogonal Decomposition

Non-linear interactions between slow variations of the background flow and the
wave induce incoherent wave contributions through triadic interactions. A major
interest of BBPOD is that it allows us to study the correlations between the slow
perturbations of the jet, and the incoherence of the fast wave field, by extracting the
slowly varying complex demodulated amplitudes. To that end, we propose to apply
the concept of EPOD in the framework of BBPOD. EPOD, originally presented in
Boree (2003), enables to identify the part of a target field correlated with a given
POD mode. The target field we first consider is the balanced motion obtained by
low-pass filtering. The p-th extended POD mode of the slow motion qj correlated
to the p-th BBPOD coefficient of the wave aω

p is defined by:

.χ
j
p = E(qj ap(ω))

λp(ω)
, (21)

where the expectation operator is a temporal average over snapshots. The mode
χ

j
p will be referred to as direct EPOD, and ap(ω)χ

j
p represents the part of the jet

correlated with the p-th broadband POD coefficient of the wave.
Complementary to direct EPOD, we define as well an inverse EPOD, applying

BBPOD for ω = 0, thus obtaining an orthonormal basis representative of the jet
variability, and considering the complex demodulated of the wave contribution qd

as the target field. In this situation, we identify the contribution of the incoherent
wave field correlated with the BBPOD coefficients of the jet noted ap(ω = 0).
Therefore, in the following direct EPOD refer to jet modes while inverse EPOD
refer to wave modes.

4 Results

This section details the numerical results carried out in this work. The goal is to
understand the non-linear interactions between the balanced motion and the wave
field by means of the methods presented in Sect. 3, that will extract the correlations
between the two dynamics.

Figure 2 shows the real part of the first three energy-scaled BBPOD modes at
the tidal frequency, sorted by decreasing energy (4). Specifically here, we plot the
scaled quantities .

√
λjψj to highlight their respective energy contribution, but the

analysis was performed with the normalized modes. To define the low pass filter
.L, a fourth order Butterworth filter has been taken with a frequency cut-off equals
to the typical frequencies of the jet, such that the whole wave-field scattered by
the jet is captured. The first mode containing the most energy corresponds to the
coherent wave field, that is defined here as the part of the wave correlated to the
tidal forcing and thus phase-locked in time, since it corresponds to the time-average
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Fig. 2 Real part of the first three energy-scaled BBPOD modes .
√

λjψj associated with u at the
tidal frequency. Sponge regions are not shown

Table 1 Normalized energy
of the first 5 modes shown in
percentage. Computed in .�

and in .�N . Each eigenvalue
is divided by the total
variance in .� at the tidal
frequency .

∑
j λ�

j (f )

Mode .� .�N

1 57.35 29.04

2 13.81 12.98

3 9.86 9.51

4 3.86 3.77

5 2.34 2.13

Sum of incoherence 42.64 37.91

of the complex-demodulated signal. Other modes account then for the incoherent
structures as space-time decorrelated of the mean. They show deflections in opposite
direction, with mode-number .mx = ±2, and with meridional mode-number .my

expected to be determined by the dispersion relation (3) and the structure of the jet
(see Bühler 2014). This is a consequence of the homogeneity in the zonal direction,
guaranteed by our idealised set-up, which makes SPOD modes equal to Fourier
modes in x.

Table 1 shows the normalised energy contained in the first five BBPOD modes
and in the incoherence field. It is computed for the domain without sponge regions
noted .� = [0, 20] × [−12, 12] and for the subset .�N = [0, 20] × [−2, 12]
representing the region of incoherences.

In the total domain, the coherent plane wave accounts for 57.35% of the energy
and the first three modes 81% of the energy. This shows that linear effects dominate
the wave propagation, because we are in a configuration for which incoherence
is relatively weak. As explained in Ward and Dewar (2010), a more energetic jet
interacting with a tide with higher frequency would result in a more energetic
incoherent wave field for a RSW simulation. As expected, incoherent modes have
nearly all their energy in the upper part while it is rather equally distributed for
the coherent mode. In this region, incoherences are dominant due to non-linearities
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Fig. 3 Cumulative energy .
∑N

j=1 λj (ω)/
∑+∞

j=1 λj (ω)[%] contained in the reconstruction of the
incoherent field by BBPOD modes

in the center of the domain, which leads to an increase of the amplitude of the
modes with y, even though the coherent mode still contains the most energy.
Figure 3 shows the energy contained in the reconstructed incoherent wave field
in terms of cumulative energy. The first two incoherent modes account for 58%
of the total incoherent energy. For 6 modes, 80% of the energy is recovered in the
reconstruction. The cumulative energy can be understood as a normalized RMSE
measuring the accuracy of the basis to reconstruct the true incoherent wave field .qinc

according to .
E(‖qinc−

∑N
j=1(qinc,ψj )ψj ‖2

L2(�)
)

E(‖qinc‖2L2(�)
)

= 1−∑N
j=1 λj (ω)/

∑+∞
j=1 λj (ω). It can

be remarked that spatial coherence can be computed with the coherence function .γ

through the CSD.
A SPOD decomposition was also performed in Egbert and Erofeeva (2021) for

a realistic HYCOM simulation. Similar results were found for the energy captured
by the SPOD modes at the M2 frequency, which is similar to our forcing frequency.
This encourages to extend this analysis to a more realistic simulation.

Figure 4 depicts the direct EPOD modes of the balanced motion, correlated with
the BBPOD modes of the wave. The modes are weighted as explained before. The
first extended mode is showing that the part of the jet correlated with the coherent
field is the stationary mean flow, which connects the first order statistic of both
dynamics. This results is the expression of the linear propagation of the incident
wave through the mean flow (in time and in the x-direction). The second and third
EPOD modes represent the meanders of the jet, consisting of a vortex train. The
modes are defined up to a complex constant. We can see that .χ

j

2 is approximately

proportional to .χ
j

3, suggesting that meandering of the jet generates eastward and
westward propagating incoherent perturbations.
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Fig. 4 On the left column are presented the real part of the first three BBPOD modes of u at the
tidal frequency. On the last column are the corresponding direct EPOD modes of u. Modes are
scaled as follows: .

√
λjψj

The opposite procedure is done next by inverse EPOD. Figure 5 shows the
leading three jet (energy-scaled) BBPOD modes associated with .ω = 0 and the
associated EPOD modes of the wave. As in direct EPOD, the first mode is showing
the correlation between the mean of both dynamics. For the second and third modes,
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Fig. 5 On the first column are presented the first three BBPOD modes of u of the jet. On the last
column are the associated inverse EPOD modes of u. Modes are scaled as follows: .

√
λjψj

BBPOD shows jet meandering structures identical to the direct EPOD modes (up
to a phase). However, their associated inverse EPOD indicate a standing wave
corresponding to the sum of the two direct broadband PODmodes that represent left
and right deflections, expressing the fact that the EPOD and BBPOD association is
not bijective. A given meander will give rise to a wave deflected eastward nearly as
much as a wave deflected westward, and their relative contribution is not possible
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to predict, but the present result suggests that an approximately equal repartition
would constitute a fair estimate.

Globally, we can infer that the most energetic triadic interactions between the
jet and the plane wave are caused by meandering structures of the jet generating
an incoherent field of the form of a standing wave in the zonal direction x and
propagating northward. The rising of a standing wave suggests in average an equal
distribution of the eastward and westward propagating modes. This gives nice
perspectives of incorporating this methodology in the context of data assimilation to
estimate the incoherent wave field with some knowledge of the slow balanced flow
through triadic interactions.

5 Summary and Perspectives

This study investigates the correlated processes at stake within the non-linear
interactions of a plane wave propagating through a meso-scale oceanic current. For
that purpose, the method of broadband POD is introduced and connected to extended
POD. A first methodological point is done to show that BBPOD is equivalent to
the common Welch method to estimate the cross spectral density matrix, to which
SPOD are the eigenfunctions. More importantly for our study, connecting these
two methods allows us to understand that the most energetic features of the wave
are obtained by triadic interactions with the most energetic features of the jet. In
our idealised configuration, the wave is deflected in both directions by a given
meander. The spatial periodicity of the meander sets the zonal deflections, giving
us clearer insight on the BBPOD of the wave knowing only the extended modes
of the jet. This method can be seen as complementary to methods based on the
bispectrum to detect triadic interactions in the data. Here we have an a priori on
the nature of the interactions, between a low frequency jet and a fast wave field,
allowing to study directly their correlations and to propose a methodology well
suited for reconstruction. In a future work, we intend to examine the sensitivity of
the results to other jet or wave configurations, and even to richer models. Studying
the implications of these methods to reconstruct by correlation the internal wave
field by the knowledge of the instantaneous slow motion is also envisaged for data
assimilation problematics, either by direct estimation, or for learning an observation
operator associated with a Galerkin model defined in the BBPOD space.
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Linear Wave Solutions of a Stochastic
Shallow Water Model

Etienne Mémin, Long Li, Noé Lahaye, Gilles Tissot, and Bertrand Chapron

Abstract In this paper, we investigate the wave solutions of a stochastic rotating
shallow water model. This approximate model provides an interesting simple
description of the interplay between waves and random forcing ensuing either from
the wind or coming as the feedback of the ocean on the atmosphere and leading in a
very fast way to the selection of some wavelength. This interwoven, yet simple,
mechanism explains the emergence of typical wavelength associated with near
inertial waves. Ensemble-mean waves that are not in phase with the random forcing
are damped at an exponential rate, whose magnitude depends on the random forcing
variance. Geostrophic adjustment is also interpreted as a statistical homogenization
process in which, in order to conserve potential vorticity, the small-scale component
tends to align to the velocity fields to form a statistically homogeneous random field.

1 Introduction

Oceanic global circulation currents show a predominance of near inertial waves
(NIW) in their spectrum. These waves result from the repeated forcing of atmo-
spheric winds over the globe together with the influence of global earth rotation
at Coriolis frequency. Besides, large-scale numerical representations of oceanic
circulation require to introduce subgrid scale models that inescapably damp in the
long run velocity fields and wave solutions. In such models high frequency waves
are obviously completely smoothed out. But even large scale structures might be
also affected if no particular attention is paid to the subgrid model design.
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In the last year, there has been an increasing effort to devise stochastic parameter-
izations for large-scale flows [2, 10, 11]. The motivations come from the failure of
classical subgrid models to represent accurately the effect of the flow state variables
at the unresolved scales and the necessity to provide reliable and computationally
efficient models at the climatic scale. Uncertainty quantification, ensemble methods
for forecasting and data assimilation are also prevailing, and the Bayes principle on
which they are built leads naturally to considering stochastic dynamics.

Stochastic dynamics can hardly be devised on ad hoc grounds if one wants
to provide generic and flexible systems. Control of the variance’s growth and the
respect of the physical properties of the underlying turbulent flows is of the utmost
importance to define stable and physically relevant systems, in which the unresolved
variables or the different physical and numerical approximations performed are
faithfully represented. Two main schemes have been recently proposed to that
purpose in the literature [12, 20]. The first one is a geometric framework relying
on a Hamiltonian formulation, whereas the second one—referred to as modelling
under location uncertainty (LU)—is based on Newton’s principles and a stochastic
formulation of the Reynolds transport theorem. Both schemes have been analyzed
and numerically experimented for several geophysical models and configurations
[1, 4, 5, 6, 17, 23, 25]. Surface waves and linear models have been proposed in the
LU framework [8, 26, 27].

Nevertheless, the analysis of basic geostrophic mechanisms such as geostrophic
adjustment or the form of basic wave solutions in linearized simple systems has not
been investigated so far. This is the objective of this work. We will in particular
analyze a stochastic rotating shallow water model recently proposed in [4, 16].
The focus will be on wave solutions of this system. We will show in particular
that ensemble-mean waves ensuing from a random forcing at given frequencies
are preserved whereas the others are very quickly damped. The stochastic model
will allow us to propose a very simple mechanism leading to the emergence
and conservation of NIW in atmosphere and ocean dynamics as a coupled self
entrainment process.

The paper is organized as follows. In a first section we briefly recall the proposed
stochastic model—rotating shallow water under location uncertainty (RSW-LU).
We then identify a stationary solution of this stochastic system. We next analyze
and illustrate the plane wave solutions associated to the linearized system under
some specific noises. Finally, we provide a picture of the geostrophic adjustment
process associated to the random system.

2 Review of RSW-LU

Let us first recall the stochastic transport operator introduced in the LU framework
[1, 18, 17, 24]:
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.DtΘ := dtΘ +
((

u − 1

2
∇ ·a)

dt + σ tdB t

)
·∇Θ − 1

2
∇ · (a∇Θ

)
dt = 0, (1a)

where the tracer, .Θ , is a stochastic process with an extensive property (e.g.
temperature, salinity, buoyancy), .dtΘ(x) := Θ(x, t + δt) − Θ(x, t) stands for
the time-increment of .Θ at a fixed point .x with .δt an infinitesimal time variation,
.u denotes the time-smooth resolved velocity that is both spatially and temporally
correlated, .σ tdB t stands for the highly oscillating unresolved noise component,
assumed in the present study to be divergence-free, with its quadratic variation
[22] denoted by .a and .

1
2∇ · a is the so-called Itô-Stokes drift [1] ensuing from

the inhomogeneity of the noise. The mathematical definitions of the noise and its
quadratic variation are given by

.σ tdB t (x) =
∫
D

σ̆ (x, y, t)dB t (y) dy =
∑
n∈N

λ
1/2
n (t)ξn(x, t)dβn

t , (1b)

.a(x, t) =
∫
D

σ̆ (x, y, t)σ̆ †(y, x, t) dy =
∑
n∈N

λn(t)
(
ξnξ

†
n

)
(x, t), (1c)

where .σ t is an integral operator defined on the Hilbert space .(L2(D))d with a
bounded spatial domain .D ⊂ C

d (.d = 2 or 3), .σ̆ = (σ̆ij )i,j=1,...,d is a spatially
and temporally bounded matrix kernel of .σ t , .λn and .ξn are the eigenfunctions and
eigenvalues of the composite operator .σ tσ

∗
t (.σ

∗
t denotes the adjoint of .σ t ), .•† stands

for transpose-conjugate operation, .B t is a cylindrical Wiener process [22] and .βn
t

are independent (one-dimensional) standard Brownian motions.
Under the stochastic transport notations (1), the governing equations of the

energy-preserved RSW-LU system [4] read

.(Conservation of momentum)

Dtu + f0u
⊥ dt = −g∇η dt, . (2a)

(Conservation of mass)

Dt h + h∇ ·u dt = 0, . (2b)

(Incompressible constraints)

σ tdB t = ∇⊥ϕdBt , ∇ ·∇ · a = 0, . (2c)

(Conservation of energy)

dt

∫
D

1

2
ρ
(
h|u|2 + gh2

)
dx = 0, (2d)

where .u = [u, v]T denotes the two-dimensional horizontal velocity with .u⊥ =
[−v, u]T , .∇ = [∂x, ∂y]T stands for the horizontal gradient with .∇⊥ = [−∂y, ∂x]T ,
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.h(x, t) = H + η(x, t) is the water thickness with H the flat bottom height
and .η the free-surface position, .f0 is a constant approximation of the Coriolis
parameter, g is the gravity constant, .ρ is the water density and .ϕdBt denotes a
random (scalar) stream function defined in a similar way as in (1b). As shown
in [4], the incompressible conditions (2c) for both noise and Itô-Stokes drift
ensure the path-wise conservation of the total energy (2d). We remark that the
analytical properties for the RSW-LU system have been investigated in [16] and
some numerical applications of (2) have been performed in [4].

3 Stationary Solution

We focus now on stationary solutions associated to the previous system. To that
end, neglecting the time increments .dtu and .dt h in (2a) and (2b) and recalling that
.∇η = ∇h due to the flat bottom assumption, we obtain

.

((
u − 1

2
∇ ·a) ·∇u − 1

2
∇ ·(a∇u) + f0u

⊥ + g∇h
)
dt + σ tdB t ·∇u = 0, (3a)

.

((
u − 1

2
∇ · a

) ·∇h − 1

2
∇ · (a∇h) + h∇ ·u

)
dt + σ tdB t ·∇h = 0, (3b)

.σ tdB t = ∇⊥ϕdBt , a = ∇⊥ϕ(∇⊥ϕ)T . (3c)

From Bichteler-Dellacherie decomposition of a semi-martingale, the martingale
terms (i.e. the Brownian terms) and the finite variation terms (i.e. the differentiable
terms) can be safely separated. Decomposing in such way the mass equation (3b)
and considering the corresponding martingale part leads to .σ tdB t · ∇h = 0.
The random surface height gradient is aligned with the large-scale surface height
gradient

.σ tdB t = α∇⊥h, (4)

The noise being divergence free yields that .α is constant along the level sets of h:

.∇α ·∇⊥h = 0. (5)

It is hence necessary of the form .α = φ(h) + C, with C a constant, and .φ a
differentiable function. For such a noise the variance tensor is given by

.a = α2∇⊥h∇⊥hT , (6)

while the ISD reads
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.∇ · a = α2∇ · (∇⊥h∇⊥hT ) = α2(∇⊥h ·∇)∇⊥h, (7)

and we notice that .a∇h = 0. The mass equation then boils down to

.
(
u − 1

2
∇ · a

) ·∇h + h∇ ·u = 0. (8a)

In the same way, we get from a semi-martingale decomposition of (3a) that

.σ tdB t ·∇u = 0, (8b)

which yields

.
(
u − 1

2
∇ · a

) ·∇u + f0u
⊥ + g∇h = 0. (8c)

At this point it is interesting to interpret the random streamfunction in terms of
nondimensional units to infer the importance of the Itô-Stokes drift (ISD) in compar-
ison to geostrophic flows. To that end, we assume that .ϕdBt ∼ √

εT (gH/f0)
√

T ,
where T denotes the characteristic time scale and .εT stands for a small-scale
decorrelation time with .ε the strength of uncertainty (the greater .ε the stronger
the noise is). From definition (3c), the noise’s quadratic variation scales then as
.a ∼ εT (gH)2/(f0L)2 with L the characteristic length scale. As a consequence, the
ratio of the ISD advection term with the geostrophic gradient pressure scales as

.
(∇ · a) ·∇u

g∇h
∼ ε

gH

f 2
0 L2

= ε
L2

d

L2 = εBu, (9)

where .Ld = √
gH/f0 is the Rossby deformation radius, and .Bu denotes the Burger

number, which stands for the ratio between vertical density stratification and the
earth’s rotation in the horizontal (.Bu = (NH/�L)2 = (Ld/L)2). If the ISD
advection has the same importance as the gradient pressure term, then we must
have .

√
ε = L/Ld . This means that when the scale of motions is greater than the

deformation radius, the rotation will dominate and the noise must be important
to have the ISD playing a role. At the opposite, when the scale of motions is
smaller than the Rossby radius, the small-scale flow component does not need to
be important to be as significant as the gradient pressure term. From this point of
view, the deformation radius can be interpreted as the limiting scale under which
the statistically modified advection due to the inhomogeneity of the small-scale
component plays a role.

In the following, we will assume to be at a scale much larger than the deformation
radius, so that the action of the ISD becomes negligible. In that case, the stationary
system finally simplifies as

.(u ·∇)u + f0u
⊥ + g∇h = ∇ · (uh) = 0. (10)
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This system is structurally the same as the nonlinear stationary system, at the
exception of a scaling constraint on the ISD, which makes negligible the nonlinear
advection term. As a matter of fact, noticing that for .u ∝ ∇⊥h, the advection
term corresponds to the ISD (7), it follows that the geostrophic balance, .u =
−(g/f0)∇⊥h, is a stationary solution of such system for a null ISD. We show below
it is the only non-trivial stationary solution of such system.

Let us write the velocity as a superposition of the geostrophic component and an
ageostrophic component:

.u = − g

f0
∇⊥h + v, (11)

where .v is defined through the Helmholtz decomposition from a potential function,
.Φ, and a stream function .Ψ that both depend on the surface elevation:

.v = ∇⊥Ψ (h) + ∇Φ(h), . (12)

= ∇⊥h Ψ ′(h) + ∇h Φ ′(h). (13)

As .∇⊥h belongs to the null space of the velocity gradient (8b), .∇h either belongs
also to the null space or it is an eigenvector of the velocity gradient tensor .(∇u).
From the momentum equation (10) we have

.
(∇hΦ ′(h)

) ·∇v = −f v⊥.

Then if .∇h belongs to the null space of the velocity gradient, .v directly cancels out.
If is an eigenvector of the velocity gradient with eigenvalue .λ, the above equation
reads

.λ∇hΦ ′(h) = −f
(∇hΨ ′(h) + ∇⊥hΦ ′(h)

)
,

which implies .Φ ′(h) = Ψ ′(h) = 0 and hence .v = 0.
Physically, we see hence that the considered nonlinear system admits a stationary

solution for a negligible ISD. Let us note that no such constraint is available in
the deterministic setting. In the following we will interpret this stationary solution
in the linearized stochastic shallow water system in terms of wave solutions and
geostrophic adjustment.

4 Stochastic Rotating Shallow Water Waves

In order to look at the different wave solutions associated to the stochastic shallow
water system (2), we proceed in the same way as in the deterministic case [19, 28]. In
particular, we assume that the noise’s structure in (1b) is independent of the resolved
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prognostic variable .u. In that case, the associated linearized system of (2) reads

.dtu +
(
f0u

⊥ + g∇η − 1

2
∇ · (a∇u)

)
dt + σ tdB t ·∇u = 0, (14a)

.dt η +
(
H∇ ·u − 1

2
∇ · (a∇η)

)
dt + σ tdB t ·∇η = 0, (14b)

.∇ · σ tdB t = ∇ · a = 0, (14c)

.dt

∫
D

1

2
ρ
(
H |u|2 + g(H + η)2

)
dx = 0. (14d)

It can be checked that this system conserves the total energy (14d) in the same way
as the initial nonlinear stochastic system (2) does. For noise defined through Hilbert-
Schmidt correlation tensor this system admits a mild solution [22]. Existence of
strong solution could also be shown from the nonlinear system [16]. In order to build
some simple analytical solutions of this linearized system and to better understand
the physical behaviours of the resulting waves, only very specific noise models will
be considered in the following. We first build the ensemble-mean wave solutions
under homogeneous noise, then investigate the path-wise solutions under constant
noise and under homogeneous noise but with very smooth structures.

4.1 Ensemble-Mean Waves Under Homogeneous Noise

Let us first recall the definition of the homogeneous and incompressible noise:

.σ t (x)dB t =
∫
D

∇⊥ϕ(x − y)dB t (y) dy

=
∑
m

ik⊥
mϕ̂(km)dβt (km) exp(ikm · x), (15a)

.a =
∑
m

|ϕ̂(km)|2k⊥
m(k⊥

m)T , (15b)

where i denotes the imaginary unit, .km = [km, �m]T ∈ R
2 is the m-th wavenumber

vector, .̂• stands for Fourier transform (in space) coefficient and .βt ∈ C are
independent Brownian motions satisfying .βt (−km) = βt (km) with .Re{βt } and
.Im{βt } be independent. This noise is homogeneous, and thus associated to a constant
matrix .a. Its ISD is null and fits naturally the condition on the stationary solution
found in the previous section.

For sake of simplicity, we assume hereafter that the noise is defined by only
one Fourier mode (associated to a wavenumber .kσ ) combined with its complex
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conjugate, namely

.σ t (x)dB t = Re
{
ik⊥

σ α exp(ikσ · x) dβt

}
, a = |α|2k⊥

σ (k⊥
σ )T , (16)

where .α = ϕ̂(kσ ) is assumed to be deterministic and real. This monochromatic
noise can be directly extended to a multi-scale noise model (15a). Results with a
multiscale version of the noise will be shown in the numerical section.

Taking now the expectation (.E) of the linearized random system (14), we have

.∂tE
[
u
] + f0E

[
u
]⊥ + g∇E

[
η
] − 1

2
∇ · (a∇E

[
u
]
) = 0, (17a)

.∂tE
[
η
] + H∇ ·E[

u
] − 1

2
∇ · (a∇E

[
η
]
) = 0, (17b)

where .∂t denotes the partial time derivative. In order to infer the mean wave
solutions, we look for a deterministic ansatz of the form

.E
[̃
q
]
(x, t) = q̂0 exp

(
i(k · x − ωt)

)
, (18)

where .q = [u, η]T = Re
{̃
q
}
is a compact notation for the prognostic variables of

the RSW-LU (14), .̂q0 is the initial constant vector (also assumed to be deterministic)
and .ω is the time-frequency. We remark that .E[̃q] = Ẽ[q] due to the commutativity
of expectation with linear operators.

Injecting next the previous ansatz together with the constant matrix .a (16) into
the system (17), we get .Lq̂0 = 0 with

.L =
(

− iω + 1

2
|α|2(kσ × k)2

)
I3 +

⎡
⎣ 0 −f0 igk

f0 0 ig�

iHk iH� 0

⎤
⎦ , (19)

where .I3 stands for the .3× 3 identity matrix, .kσ × k = kσ �− �σ k denotes the cross
product between the wavenumber vectors .kσ and .k with .|kσ × k| = |kσ ||k| sin(θ)

and .θ is the angle between them.
As usual, the dispersion relations are then given by the solution of .det(L) = 0,

namely

.ω = − i

2
|α|2(kσ × k)2, ω = − i

2
|α|2(kσ × k)2 ±

√
gH |k|2 + f 2

0 . (20)

We realize immediately that when the noise has the same direction as the initial
wave (i.e. .kσ ×k = 0), these two frequencies correspond to the steady and Poincaré
(inertia-gravity) waves of the deterministic system [19, 28]. Conversely, when the
noise is not aligned to the initial wave, then the term .− i

2 |α|2(kσ × k)2 leads to



Stochastic Linear Shallow Water Waves 231

a damping of the ensemble mean wave. We next construct the mean plane wave
solutions associated to the frequencies (20).

4.1.1 Mean Poincaré Waves

With the value of the last two (opposite) frequencies in (20) and the associated
eigenvector of .L (19), one obtains the following polarization relations:

.E
[̃
q
] =

⎡
⎢⎣

ωk+if0�

H |k|2
ω�−if0k

H |k|2
1

⎤
⎥⎦ η̂0 exp

(
i(k · x − ωt)

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (21)

Taking the real part, we finally deduce the ensemble-mean wave solution:

.E
[
η
] = η̂0 cos

(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22a)

.E
[
u
] = E

[
u‖

] k

|k| + E
[
u⊥

]k⊥

|k| , (22b)

.E
[
u‖

]
(x, t) = η̂0ω

H |k| cos
(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22c)

.E
[
u⊥

]
(x, t) = η̂0f0

H |k| sin
(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22d)

where the component .E[u‖] is associated to the mean pressure waves that depends
on surface elevation mean, whereas the latter component .E[u⊥] is associated to
mean vorticity waves that are initiated by rotation. Note that in the short waves limit
with .‖k‖2 � 1/L2

d , the mean Poincaré wave corresponds to the inertia-gravity wave
of a shallow water system without rotation. The damping term .exp

( − 1
2 |α|2(kσ ×

k)2t
)
depends on the noise’s wavelength and variance. This term is zero when the

noise and the wave are colinear (i.e. the angle .θ between .kσ and .k is zero). For high
noise magnitude (and .θ �= 0), the damping occurs in a very fast way. In the long
wave limit with .‖k‖2 
 1/L2

d , the frequency approaches the Coriolis frequency
and the damping term is much less important unless the noise amplitude is very
high. Nevertheless, the exponential damping in time remains when the noise and
the waves are not aligned.

4.1.2 Mean Geostrophic Mode

The polarization for the eigenvalue .ω = − 1
2 |α|2(kσ × k)2 reads
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.E
[̃
q
]
(x, t) =

⎡
⎢⎣

−i
g
f0

�

i
g
f0

k

1

⎤
⎥⎦ η̂0 exp

(
ik · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (23)

The ensemble-mean of the wave solutions are given by

.E
[
η
] = f0η̂0 cos

(
k · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (24a)

.E
[
u
] = −gη̂0k

⊥ sin
(
k · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (24b)

This is a pure vorticity wave. When the noise and the wave are aligned, it
corresponds to a steady wave in geostrophic balance, which is also, as we saw, a
stationary solution of the nonlinear stochastic system associated to a divergence-
free quadratic variation (10). We next look at the path-wise wave solutions under
specific noise.

4.2 Path-Wise Waves Under Constant Noise

As an initial informative example, we first assume that the noise is constant in space
using a zeroth order approximation of the Fourier mode .exp(ikσ · x) in (16). It can
be expressed as

.σ tdB t = Re
{
iαk⊥

σ dβt

}
, a = α2k⊥

σ (k⊥
σ )T . (25)

In order to infer wave solutions, we look for stochastic ansatz of the form

.̃q (x, t) = q̂0 exp
(
i
(
k · x − ωt − Re{iγβt }

))
, (26a)

where .γ is of unit s.−1/2. This ansatz has been shown to be a solution of a linear
stochastic water waves for constant noise in [8]. Applying now the Itô formula [22]
for the deterministic function .(t, z) �→ q̂0 exp

(
i(c − ωt − z)

)
composed with the

random process .Re{iγβt }, we deduce

.dt q̃ = −
((

iω + 1

2
|γ |2) dt + iRe

{
iγ dβt

})
q̃, (26b)

where the second term on the right-hand-side (RHS) comes from the quadratic
variation of the random phase.
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Injecting next the stochastic ansatz (26) as well as the noise definition (25) into
the linearized system (14), we obtain a system composed of differentiable terms and
Brownian (martingale) terms that can be compactly written as

.Lq̂0 dt = 0, L =
(

− iω − 1

2
|γ |2 + 1

2
α2(kσ × k)2

)
I3 +

⎡
⎣ 0 −f0 igk

f0 0 ig�

iHk iH� 0

⎤
⎦ ,

(27a)
. − iRe

{
iγ dβt

} + ik ·Re{iαk⊥
σ dβt

} = 0. (27b)

The last equation leads to

.γ = αkσ × k ∈ R. (28)

Substituting it into (27a), we deduce

.L =
⎡
⎣−iω −f0 igk

f0 −iω ig�

iHk iH� −iω

⎤
⎦ . (29a)

We remark that in this case the linear operator .L for the resolved variables reduces to
the same as that of the deterministic system [19, 28]. Solving subsequently .det(L) =
0 gives us

.ω = 0, ω = ±
√

gH |k|2 + f 2
0 . (29b)

We next construct the stochastic plane wave solutions associated to these frequen-
cies.

4.2.1 Stochastic Poincaré Waves

With the value of the last two frequencies in (29b) and the associated eigenvector of
.L, one can find the following polarization relations:

.̃q(x, t) =

⎡
⎢⎢⎢⎢⎢⎣

ωk + if0�

H |k|2
ω� − if0k

H |k|2
1

⎤
⎥⎥⎥⎥⎥⎦ η̂0 exp

(
i
(
k · x − ωt + γ Im{βt }

))
. (30)

Taking the real part of this ansatz, we deduce the path-wise wave solution:
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.η(x, t) = η̂0 cos
(
k · x − ωt + γ Im{βt }

)
, (31a)

.u(x, t) = η̂0ω

H |k| cos
(
k · x − ωt + γ Im{βt }

) k

|k|

+ η̂0f0

H |k| sin
(
k · x − ωt + γ Im{βt }

)k⊥

|k| . (31b)

In this simple case, we can analytically compute the ensemble-mean from these
path-wise wave solutions. Note that .Xt := k · x − ωt + γ Im{βt } ∼ N (k · x −
ωt, γ 2t), and the characteristic function of the Gaussian process .Xt is given by
.E

[
exp(iXt )

] = exp
(
i(k · x − ωt) − 1

2γ
2t

)
. One can then deduce the mean of the

random ansatz (26), taking its real part leads finally to

.E
[
η
] = η̂0 cos

(
k · x − ωt

)
exp

( − 1

2
γ 2t

)
, (32a)

.E
[
u
] = η̂0

H |k|2
(
ωk cos

(
k·x−ωt

)+f0k
⊥ sin

(
k·x−ωt

))
exp

(− 1

2
γ 2t

)
. (32b)

It can be readily observed from the random dispersion relation (28), that we recover
the general mean solution (22) presented in the previous section.

4.2.2 Stochastic Geostrophic Mode

The polarization for the eigenvalue .ω = 0 reads

.̃q(x, t) =
⎡
⎢⎣

−i
g
f0

�

i
g
f0

k

1

⎤
⎥⎦ η̂0 exp

(
i
(
k · x + γ Im{βt }

))
. (33)

The path-wise wave solutions are then given by

.η = f0η̂0 cos
(
k · x + γ Im{βt }

)
, u = −gη̂0k

⊥ sin
(
k · x + γ Im{βt }

)
. (34)

Similarly, one can recover the general mean solution (24) by taking the expectation
of these path-wise solutions. As in the previous case only the waves that are excited
by the stochastic forcing remain active on long terms horizon.
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4.3 Approximation of Path-Wise Waves Under Homogeneous
Noise

We now extend the previous solution to statistically homogeneous noise. In the same
way as previously we will assume a monochromatic noise as defined in (16), but now
slowly varying in space:

.σ tdB t = Re
{
iαk⊥

σ exp(iεkσ · x)dβt

}
, a = |α|2k⊥

σ (k⊥
σ )T , (35)

where .ε 
 1 is a small parameter to ensure the smooth structure of the noise. To
infer wave solutions for such homogeneous noise, we now look for the following
ansatz:

.̃q (x, t) = q̂0 exp
(
i
(
k · x − ωt − Re

{
iγ exp(iεkσ · x)βt

}))
, (36a)

which generalizes our previous ansatz to homogeneous noise. Applying the Itô
formula for this ansatz, we have

.dt q̃ = −
((

iω + 1

2
|γ |2) dt + iRe

{
iγ exp(iεkσ · x)dβt

})
q̃. (36b)

Injecting these solutions ansatz into system (14), we can separate again the
Brownian parts and the time-differentiable component. The former reads

. − iRe
{
iγ exp(iεkσ · x)dβt

} + ik ·Re{iαk⊥
σ exp(iεkσ · x)dβt

} = 0, (37a)

which leads to

.γ = αkσ × k ∈ R. (37b)

In a similar way to the previous case, substituting this random dispersion into the
diagonal component of the resolved linear operator satisfying .Lq̂0 dt = 0, we get
.diag(L) = −iωI3. However, in order to compute the gradient terms of the anti-
symmetric part of .L, the random phase is linearized as

.̃q (x, t) ≈ q̂0 exp
(
i
(
k · x − ωt − γRe

{
i(1 + iεkσ · x)βt

}))
,

= q̂0 exp
(
i
(
(k + εkσ γRe{βt }︸ ︷︷ ︸

:=k̃t

) · x − ωt + γ Im{βt }
))

. (38)

Hereafter, .̃kt = [̃k, �̃]T is referred to as the effective wavenumber vector ensuing
from the space varying random phase. It can be noticed that the real component of
the complex Brownian path influences the wave’s spatial phase, whereas the wave’s
temporal phase is randomized by the imaginary component. This latter has already
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been considered in the constant noise case. With the previous approximation, the
linear operator .L can be finally written as

.L =
⎡
⎣−iω −f0 igk̃t

f0 −iω ig�̃t

iH k̃t iH �̃t −iω

⎤
⎦ . (39a)

The two resulting dispersion relations are now given by

.ω = 0, ω = ±
√

gH
∣∣̃kt

∣∣2 + f 2
0 . (39b)

The latter random dispersion relation reduces to the previous relation (29b) (asso-
ciated to a spatially constant noise) when .ε = 0. We note that the homogeneous
random noise leads to wave scattering. Such phenomena corresponds to similar
results found in the setting of theWentzel-Kramers-Brillouin approximation [15, 21]
or more recently through Wigner transform [7, 13, 14]. The stochastic framework
explored here leads nevertheless to simpler formal developments.

In the same way as previously, we exhibit in the following the two types of
stochastic waves associated to this spatially slowly varying homogeneous noise.

4.3.1 Stochastic Poincaré Waves

The path-wise wave solution in this case can be written as

.η(x, t) = η̂0 cos
(̃
kt · x − ωt + γ Im{βt }

)
, (40a)

.u(x, t) = η̂ω

H
∣∣̃kt

∣∣ cos (̃kt · x − ωt + γ Im{βt }
) k̃t∣∣̃kt

∣∣
+ η̂f0

H
∣∣̃kt

∣∣ sin (̃
kt · x − ωt + γ Im{βt }

) k̃
⊥
t∣∣̃kt

∣∣ . (40b)

It can be remarked that the surface elevation phase has two sources of randomness:
a temporal one, in the modified frequency, and one in space coming from the
space varying noise. For .k = kσ the solutions corresponds again to the classical
deterministic waves, while, as shown in Sect. 4.1, when .k �= kσ , the mean of
the stochastic wave solutions (22) is damped compared to the deterministic surface
elevation (.hd(x, t)).
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4.3.2 Stochastic Geostrophic Mode

The path-wise wave solutions are given by

.η = f0η̂0 cos
(̃
kt ·x + γ Im{βt }

)
, u = −gη̂0k̃

⊥
t sin

(̃
kt ·x + γ Im{βt }

)
. (41)

These solutions correspond to dispersive geostrophic modes wave packet. The
velocity wave is a pure vorticity wave packet. Its ensemble mean is also damped
for .k �= kσ and corresponds to the geostrophic stationary wave for .k = kσ (24).

As a final word, on the general linear stochastic shallow water system, it can
be noticed that in the long wave limit with .|̃k|2 
 1/L2

d , (when the frequency
approaches the Coriolis frequency), the pressure gradient force becomes negligible
compared to the other terms in (14a), and for a noise amplitude of order unity the
linear shallow water system boils down to a linear stochastic transport equation in a
rotating frame:

.dtu +
(
f0u

⊥ − 1

2
∇ · (a∇u)

)
dt + σ tdB t ·∇u = 0. (42)

Up to the diffusion and noise term (whose energy balances exactly) this closely
corresponds to the so-called near inertial regime in which the fluid is purely
transported. In the LU setting, the noise acts always as a random deviation whose
energy is exactly compensated by the diffusion term. In the particular case of the
shallow water model (linear or nonlinear) the total energy is conserved. For the
linear system the total energy of the mean being damped up to a constant, the total
energy variance increases up to a constant as a consequence of the total energy
conservation.

4.4 Numerical Illustrations

We next give simple illustrations of the stochastic wave solutions. Here, rather than
evaluating the analytical solutions presented in the previous sections, we propose
to discretize numerically the linearized RSW-LU system (14) and perform Monte-
Carlo simulations in order to estimate both path-wise and ensemble-mean wave
solutions. To that end, the spectral (Fourier) method is adopted for the spatial
discretization within a periodic domain, and an exponential integrator [8] combined
with the Milstein scheme [9] is used to approximate the mild solution. This semi-
discrete problem can be written as

.q̂ (1) = −ik · ̂(q tσ tΔBt ), (43a)

.q̂ (2) = −ik · ̂(q (1)σ tΔBt ), (43b)
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.̂q t+Δt = exp(AΔt)

(
q̂ t + q̂ (1) + 1

2
q̂ (2)

)
, (43c)

.A =
⎡
⎣ 0 f0 −igk

−f0 0 −ig�

−iHk −iH� 0

⎤
⎦ , q =

⎡
⎣u

v

η

⎤
⎦ , (43d)

where .̂• denotes the projection coefficient on the discrete Fourier modes, .q =
F−1(̂q) is the inverse discrete Fourier transform of .̂q, .Δt and .ΔBt stands for the
timestep and the Brownian motion’s increment respectively. We remark that the
classical 2/3 dealiasing rule can be adopted for the practical computations of (43a)
and (43b).

A deterministic monochromatic wave corresponding to a single frequency of the
Poincaré waves (propagating to the left) is fixed as the initial condition:

.̂q0 =
⎡
⎢⎣

ωk+if0�

H |k|2
ω�−if0k

H |k|2
1

⎤
⎥⎦ δ(k − k0), ω =

√
gH

∣∣k∣∣2 + f 2
0 , (44)

where .δ denotes the Dirac function and .k0 is the initial wavenumber vector.
For the simulation configuration, we consider a squared shallow basin of length

.L = 5120 km and depth .H = 100m at mid-latitude (.f0 = 10−4 s.−1) and a large-
scale wave with .k = [3Δk, 0Δ�]T , where .Δk = Δ� = 2π/L. Each random
system either under constant (25) or under homogeneous noises (16) has been
simulated over 5 years with 100 realizations. We remark that here we do not use the
smoothness approximation (35) in the homogeneous case. The noise’s amplitude is
fixed as .α = √

τg/f0, where .τ = Δx/
√

gH with .g = 9.81m s.−2, .Δx = 40 km
and .Δt = 5τ .

Figure 1 illustrates the evolution of the path-wise surface elevation .η and of
the ensemble-mean solution .E[η] under a constant noise which has a different
direction (with .kσ = [4Δk, 6Δ�]T ) than that of the wave (.k0). In this case, the path-
wise solution preserves the magnitude of the initial monochromatic wave while the
ensemble-mean wave is damped along time.

Figure 2 demonstrates the results obtained with the homogeneous noise (with
the same .kσ as in the previous case). In that case, the path-wise wave is dispersive
(scattering effect) whereas the mean wave is dissipative.

The solutions related to the homogeneous noise is rougher than for a constant
noise. The damping associated to the mean solution is visually similar in both case.

We then diagnosed an energy decomposition with respect to ensemble of
different runs in Fig. 3. This decomposition consists of the (ensemble) mean of
energy .E

[ ∫
D

1
2 (H |u|2+gη2) dx

]
, the energy of (ensemble) mean .

∫
D

1
2

(
H |E[u]|2+

gE[η]2) dx and the energy of “eddy” .E
[ ∫

D
1
2

(
H |u − E[u]|2 + g(η − E[η])2) dx]

.
Figure 3 shows that for both noise models, the energy of mean waves is quickly
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Fig. 1 Illustration for the path-wise surface elevation (top) and its ensemble-mean (bottom) with
constant noise (with .kσ × k �= 0) at different time (by columns)

Fig. 2 Illustration for the path-wise surface elevation (top) and its ensemble-mean (bottom) with
an homogeneous noise (with .kσ × k �= 0) at different time (by columns)

dissipates along time while the energy of eddy waves increases with the same
rate and continuously backscatters the variance to the ensemble. This mechanism
ensures that the mean of the random energy is preserved in time. This corresponds
well to the characteristic (2d), (14d) of the proposed stochastic transport model.

Figure 3 illustrates also the dissipation rate of the energy of the mean waves in
terms of different scales of the noise (equivalently, different angles of directions
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Fig. 3 (Top) Time evolution of energy decomposition (w.r.t. ensemble) with constant (left) and
homogeneous (right) noises; (Bottom) Comparison of dissipation of ensemble mean for different
noise’s scales

Fig. 4 Illustrations under multi-scale noise. From left to right: pathwise wave solution after 5 years
simulation, the corresponding ensemble-mean and evolution of energy decomposition

between the noise and the wave). The numerical results confirm our analyses in
Sect. 4: the larger the angle .θ , or the smaller the noise’s scale .kσ , the faster the
mean waves are damped in both cases.

Furthermore, propagation of the monochromatic wave by a multi-scale noise
model have been numerically tested. In particular, we consider a band of wavenum-
bers for the noise, .kσ = {kj }j=m,...,M with .|km| < |kj | < |kM |, ∀m < j < M ,
satisfying the .−3 spectrum power law: .α2

j |k⊥
j |2 = α2

m|k⊥
m|2 (|kj |/|km|)−3, i.e. .αj =

αm(|kj |/|km|)−5/2. Figure 4 shows the results with .km = [5Δk, 5Δ�]T , .αm = α (as
mentioned above) and 10 wavenumbers in total with uniform step .Δk. After 5 years
of simulation, the pathwise wave is dispersive while the mean wave is dissipative,
and both of them are more irregular than the monochromatic noise solutions (see
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Fig. 2). We obtain also the consistent conclusion for the ensemble decomposition of
the total energy. Moreover, the conversion from energy of mean to energy of eddy
in this case is more faster and efficient than that of the monochromatic noise model
(see Fig. 3).

5 Shallow Water PV Dynamics and Geostrophic Adjustment

The geostrophic adjustment is the process by which the flow and the pressure
field tend to mutually adjust at large scale under the influence of earth’s rotation.
An obvious manifestation of this adjustment corresponds to isobaric wind field
and geostrophic current in the ocean. In the classical case of the deterministic
linear shallow water model the geostrophic adjustment can be explained in terms
of a variational formulation as the state of minimum energy corresponding to a
given constant value of the potential vorticity (PV). Within the LU modelling, the
geostrophic adjustment can be explained from the nonlinear system. To that end, let
us derive the PV equation of the stochastic system (2). Taking first the curl of the
momentum equation (2a) under the space-time invariant Coriolis parameter .f0, we
have

.Dt (ξ + f0) = −(ξ + f0)∇ ·u dt + [∇⊥u,∇σ tdB t

]
F

+ 1

2

∑
i,j=1,2

∂xi
∂xj

(∇aij × u
)
dt, (45a)

where .ξ = ∇×u = ∂xv−∂yu denotes the relative vorticity and .[A,B]F = tr(AT B)

stands for the Frobenius inner product of two matrices .A and .B. Applying next the
chain rule [24] for the stochastic transport of height (2b), one obtain

.Dt h
−1 = h−1∇ ·u dt. (45b)

Let us recall the product rules of two stochastic transport equations in the following.
In particular, if two arbitrary tracers .θ and .ζ satisfy

.Dt θ = Θ dt, Dt ζ = Z dt + ΣdBt , (46a)

where .Θ,Z are time-differentiable forcing terms and .Σ a martingale forcing
component, then according to the Itô-integration-by-part formula [22], we have

.Dt (θζ ) = θDt ζ + ζDt θ − d
〈 ∫ t

0
σ sdBs ·∇θ,

∫ t

0
ΣdBs

〉
t
, (46b)
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where the last bracket term denotes the quadratic covariation of two martingales
[22]. Applying such rule for .θ = h−1 and .ζ = ξ + f0 associated with (45), one
deduces the stochastic evolution of the PV, .q = (ξ + f0)/h, namely

.Dt q = h−1[∇⊥u,∇σ tdB t

]
F

+ 1

2
h−1

∑
i,j=1,2

∂xi
∂xj

(∇aij × u
)
dt

− d
〈 ∫ t

0
σ sdBs ·∇h−1,

∫ t

0

[∇⊥u,∇σ sdBs

]
F

〉
t
. (47a)

Opposite to the deterministic shallow water case the PV is not transported by the
stochastic flow in general and some source/sink terms appear on the right-hand
side of this PV equation. These source/sink terms reflect here the action of the
small-scale on the non conservation of PV. In the deterministic context, PV is very
sensitive to turbulence and subgrid modelling [3]. The same mechanism is at play
here. We can nevertheless explore the condition for which PV remains conserved in
the setting of a stochastic modeling of the small scales effect. The first and last terms
cancel if the large-scale velocity field and the small-scale random component align
with each other up to a uniform vector field. The second term trivially cancels if the
random field is homogeneous in space (as in that case .a becomes a constant matrix).
With these two previous conditions (alignment and homogeneity) PV is path-wise
conserved. For homogeneous (incompressible) noise the expectation can be written
in flux form and the mean PV is globally conserved. For homogeneous field, the PV
equation reduces then to

.Dt q = h−1[∇⊥u,∇σ tdB t

]
F

− d
〈 ∫ ·

0
σ tdBs ·∇h−1,

∫ ·

0

[∇⊥u,∇σ tdBs

]
F

〉
t
.

(47b)

The above equation, combined with the previous results on the stochastic linear
dynamics, enables revisiting the mechanism of geostrophic adjustment in the
presence of a forcing. The corresponding global pictures is as follows. Let us
first consider random fluctuations in the ocean generated by wind forcing at large
scales. Then, due to the wavelength mechanism described in the previous section,
all the waves that are not aligned with this forcing are smoothed out and eventually
annihilated following an exponential decay. The only waves that eventually remain
are aligned with the wind forcing, which at large scale corresponds essentially to
near inertial waves, and the PV dynamics corresponds then to a pure transport.
Thus, the system tends then to relax to a balanced state as in the deterministic
case. Conversely, we can devise a similar picture in the atmospheric context, in a
configuration where the ocean plays the role of a noise for the atmosphere. The
atmospheric waves will evolve toward a near inertial wave field aligned with the
noise, following the exact same process. As a result, merging these two perspectives
provides an interesting ocean/atmosphere coupling mechanisms of auto adjustment.
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At small scales, things are more complicated as the ISD has to be taken into account
with an isotropization process that is likely less obvious. As a result the forcing
terms in the PV equation remain. Furthermore, in that case the smooth spatial
structure assumption of the noise imposes a very low noise amplitude. For the study
of strong small-scale forcing this assumption as well as the wave ansatz associated
to it have to be revisited. This will be the objective of future works.

6 Conclusions

This stochastic extension of the shallow water equations highlights the behavior
of the LU setting for large-scale representation of flow dynamics. Opposite to
classical eddy viscosity models, which introduces a similar damping term on the
waves form, here, the waves that are sustained by the noise term keep their full
classical expressions. This provides a simple mechanism for waves selection and
an interesting simplified model explaining the emergence of near inertial waves in
ocean atmosphere systems. In the LU representation of the linearized shallow water
system, the ensemble-mean waves that are not excited by a noise term with the same
wavelength vanish exponentially fast whereas the others correspond to the classical
deterministic wave solutions. The decay rate depends on the noise variance and on
the wavenumber (in a quadratic way). The vanishing is therefore all the more fast
for waves with small wavelength. The noise acts hence as a Dirac comb on the mean
wave field.
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Analysis of Sea Surface Temperature
Variability Using Machine Learning

Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile Gaultier,
and Ronan Fablet

Abstract Sea surface temperature (SST) is a critical factor in the global climate
system and plays a key role in many marine processes. Understanding the variability
of SST is therefore important for a range of applications, including weather and
climate prediction, ocean circulation modeling, and marine resource management.
In this study, we use machine learning techniques to analyze SST anomaly (SSTA)
data from the Mediterranean Sea over a period of 33 years. The objective is to best
explain the temporal variability of the SSTA extremes. These extremes are revealed
to be well explained through a non-linear interaction between multi-scale processes.
The results contribute to better unveil factors influencing SSTA extremes, and the
development of more accurate prediction models.

Keywords Sea surface temperature · Machine learning · Stochastic models ·
Extremes

1 Introduction

Sea surface temperature (SST) is a critical parameter in the global climate system
[1, 2] and plays a vital role in many marine processes, including ocean circulation,
evaporation, and the exchange of heat and moisture between the ocean and
atmosphere [3, 4, 5].

In recent years, particular attention has been attracted by marine heat waves,
when SST largely exceeds the local expected average values [6, 7]. Extreme SST
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can cause coral bleaching [8, 9], with cascading effects on the entire ecosystem.
Additionally, localized events affect the amount of atmospheric moisture available,
to impact precipitation patterns and the likelihood of drought or flooding in certain
regions [10]. Better uncovering factors contributing to these extreme events is
therefore of great importance to help predicting and mitigating their impacts.

The SST dynamics compound many processes that interact across a continuum
of spatio-temporal scales. A first-order approximation of such a system was
initially introduced by [11, 12]. Hasselmann pioneered a two-scale stochastic
decomposition, to represent the interactions between slow and fast variables. In this
study, we focus on SSTA data collected in the Mediterranean Sea, and examine
the potential of machine learning techniques to derive relevant dynamical models.
Focus is given on the seasonal modulation of the SSTA and we wish to unveil factors
influencing the temporal variability of SSTA extremes. The proposed analysis builds
on Hasselmann’s assumption that the variability of the SSTA can be decomposed
into slow and fast components. The slow variables mostly follows the seasonal
cycle, while the fast variables are linked to rapid processes, e.g. the wind variability.
We thus approximate the probability density function of the SSTA data, using a
stochastic differential equation in which the drift function represents the seasonal
cycle and the diffusion function represents the envelope of the fast SSTA response.

The paper is organized as follows. We start by introducing the general under-
lying state space model of the SST anomaly. Rather than directly presenting
the stochastic model, we first assume that an underlying deterministic ordinary
differential equation (ODE) can represent the non-periodic variability of the SSTA.
Considering a phase space reconstruction setting, we use the neural embedding of
dynamical systems (NbedDyn) framework [13, 14] for this task. We then discuss the
limitations of such a representation, and present the stochastic model. We conclude
by summarizing our findings and potential future directions.

2 Method

Let us assume the following state-space model

.żt = f (zt ). (1)

xt = H(zt ) (2)

where .t ∈ [0,+∞] is time. The variables .zt ∈ R
s and .xt ∈ R

n represent the
state variables and the SST anomaly observations respectively. f and .Ht are the
dynamical and observation operators. The impact of noise on the dynamics and
observation models is omitted for simplicity of the presentation.
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2.1 Deterministic Model Hypothesis

The NbedDyn Framework If we assume that .zt is asymptotic to a limit-set .L ⊂
R

s and that the observations model is not an embedding [15], The NbedDyn model
allows one to jointly derive a geometric reconstruction of the unseen phase space
from partial observations and a corresponding dynamical model. For any given
operator .H of a deterministic dynamical system, Takens theorem [16] guarantees
that such an augmented space exists. However, instead of using a delay embedding,
NbedDyn defines a .dE-dimensional augmented space with states .ut ∈ R

dE as
follows:

.uT
t = [xT

t , yT
t ] (3)

where .yt ∈ R
dE−r are stated as the latent states and T represents the matrix

transpose. They account for the unobserved components of the true state .zt .

The augmented state ut is assumed to satisfy the following state space model:

.u̇t = fθ1(ut). (4)

xt = (Gut) (5)

where G is a projection matrix that satisfies xt = Gut. The dynamical operator fθ1

belongs to a given family of neural network operators parameterized by a parameter
vector θ1. In this work, we follow [14] and use a linear quadratic parameterization
of fθ1 . This particular parameterization allows us to guarantee boundedness of the
ODE (4) using the Schlegel boundedness theorem [17]. A linear quadratic ODE
model can be written as follows:

.u̇t = fθ1(ut) = c + Lut + [uT
t Q

(1)ut , . . . ,uT
t Q

(dE)ut ]T (6)

where c ∈ R
dE , L ∈ R

dE×dE and Q(i) = [qi,j,k]dE

j,k=1, i = 1, . . . , dE . The above

approximate model is shifted according to ūt = ut − m with m ∈ R
dE . The

approximate dynamical equation of the shifted state can be written as:

. ˙̄ut = d + Aūt + [ūT
t Q

(1)ut , . . . , ūT
t Q

(dE)ūt ]T (7)

with

.d = c + Lm + [mT Q(1)m, . . . ,mT Q(s)m]T (8)

and
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.A =
(

aij

)
=

(
lij +

s∑
k=1

(qi,j,k + qi,k,j )mk

)
(9)

Given an observation time series of size N +1 {xt0 , . . . , xtN }, the training setting
comes to jointly learning the model parameters θ1 = {c,L,Q1,Q2, · · · ,QdE ,m}
and the latent states yt according to the following constrained optimization problem

.

θ̂1, {ŷti
}i=N−1
i=0 = arg min

θ1,{yti
}

N∑
i=1

‖xti − GΦθ1,ti

(
uti−1

) ‖2

+ λ1‖uti − Φθ1,ti (uti−1)‖2
+ λ2C1
+ λ3C2

(10)

with Φθ1,t (ut−1) = ut−1 + ∫ t

t−1 fθ1(uw)dw is the flow of the ODE (6)
(in our work, this flow is approximated using a Runge Kutta 4 scheme)
and C1 = ∑s

i,j,k=1 ‖qi,j,k + qi,k,j + bj,i,k + bj,k,i + bk,i,j + bk,j,i‖2 and
C2 = ∑s

i=1 Max(αi, 0)/Max(αi + 1, 0) where αi, i = 1, . . . , dE the eigenvalues
of the matrix As = 1

2 (A + AT ). The variables λ1,2,3 are constant weighting
parameters. The first constraint C1 steams from the energy-preserving condition of
the quadratic non-linearity. It forces the contribution of the quadratic terms of fθ1

to the fluctuation energy to sum up to zero. The second constraint, C2, ensures that
the eigenvalues of As are negative. Satisfying these constraints guarantees that the
model fθ1 is bounded through the existence of a monotonically attracting trapping
region that includes the limit-set revealed by the minimization of the forecasting
loss. Similarly to the Takens delay embedding technique, the sequence:

.Rt0,tN = {ûT
ti

= [xT
ti
, ŷT

t ] with ti = t0, . . . , tN } (11)

represents a geometric reconstruction of the phase space. In addition to this
reconstruction, the NbedDyn model can be used to forecast new observations by
determining an initial condition of the unobserved component yt and performing
a numerical integration of the ODE model (6). We infer the initial condition using
a minimization of an objective function similar to (10), but only with respect to
the latent states yt . This minimization can be seen as a variational data assimilation
problem, with partial observations of the state-space variables and known dynamical
and observation models [18].

Related Works Related state-of-the-art techniques mainly rely on the reconstruc-
tion of a phase space using delay embedding [16]. This includes both traditional
parametric and non-parametric modeling techniques [19, 20] as well as recurrent
neural networks (RNNs). The latter family of methods includes both simple RNN
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parameterizations of dynamical systems, as well as latent space inference techniques
that are built on an approximation of a posterior distribution that requires the
parameterization of a delay embedding [21, 22, 23].

The interest of the NbedDyn framework in contrast to delay embedding based
approaches resides in the fact that we do not exploit either a delay embedding or an
explicit modeling of the inference model (i.e., the reconstruction of the latent states
given the observed time series). As such, our scheme only involves the selection
of the class of ODEs of interest. This model reduces the complexity of the overall
scheme to the complexity of the ODE representation and guarantees the consistency
of the reconstructed latent states w.r.t. the learnt ODE.

2.2 Stochastic Model Hypothesis: The Stochastic NbedDyn

When using phase space reconstruction techniques, one should not forget about
the assumptions that this theory is built on. For any embedding to work, we are
assuming that the dynamical model in (1) exists and can be represented by an
ordinary differential equation [15]. For several realistic applications, this ODE may
not exist or can have an extremely large dimension. In geoscience, for instance,
the dimension of a state space variable can reach .s ≈ O(109). In these situations,
reconstructing such an high-dimensional phase space becomes significantly more
challenging. In practice, the model returned by any embedding technique can be
complemented by an appropriate closure. The form of this closure term can be
deterministic using for example the framework of [24] or stochastic through an
appropriate calibration of a noise forcing.

When considering SST anomaly data, after calibration of the neural embedding
model, an unpredictable, high frequency residual remains. Based on Hasselmann’s
idea, we assume this residual component represents the effect of fast-scale pro-
cesses, e.g. passages of atmospheric and oceanic eddies. To first order, it can be
represented as a modulated white noise. Indeed, this residual, shown in Fig. 3,
exhibits correlations with the slow-scale SST anomaly data.

To model stochastic SST anomalies, the deterministic NbedDyn model described
above is first optimized, and further complemented (6) with a stochastic forcing as
follows:

.

{
u̇t = fθ1(ut ) + gθ2(ut )ξ t

xt = Gut
(12)

with .ξ t is a white noise. We derive the parameters of the model (12), as follows.
Given an observation time series of size .N + 1 .{xt0 , . . . , xtN }, similarly to the
deterministic case, we optimize the diffusion parameters .θ2 to minimize the forecast
of the observations. In addition to the diffusion parameters, we also reconstruct a
noise realization .ξ rec that generates the observations process under (12). Overall,
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the optimization problem can be written as follows:

.

θ̂2, {ξ̂ rec

ti
}i=N−1
i=0 = arg min

θ2,ξ
rec

T∑
t=1

‖xt − GΦθ,t

(
ut−1, ξ

rec
t−1)

∥∥2

Subject to

⎧⎨
⎩
ut = Φθ,t (ut−1, ξ

rec)

Gut = xt

Rξ recξ rec (τ ) = 0 for all τ �= 0

(13)

with .{ξ̂ rec

ti
}i=N−1
i=0 is the noise realization that minimizes the objective function

in (13) and .Φθ,t :

.Φθ,t (ut−1, ξ
rec) = ut−1 +

∫ t

t−1
fθ (uw)dw +

∫ t

t−1
gθ (uw)ξ rec

w dw

the solution of the stochastic model. This solution is approximated in this work
using an Euler-Maruyama scheme, which makes the model converge to an Ito SDE.

In practice, we use the following regularized optimization problem:

.

θ̂2, ξ̂
rec = arg min

θ2,ξ
rec

T∑
t=1

‖xt − GΦθ,t

(
ut−1, ξ

rec)
∥∥2

+ λ4C3
+ λ5C4
+ λ6C5

(14)

with .C3 = ‖Rξ recξ rec (τ )‖2, .C4 = Var(Φθ,t (ut−1, ξ
samp)), .C5 = ‖Φθ,t (ut−1, ξ

rec)−
E[Φθ,t (ut−1, ξ

samp)]‖2 and .ξ samp is a sampled Gaussian white noise. The variables
.λ4,5,6 are constant weighting parameters. The first constraint .C3 makes the recon-
structed noise path white. The second and third constraints, .C4,5, ensure that the
SDE generalizes to sampled white noises. Specifically .C3 makes an ensemble of
trajectories generated from sampled white noise close to the trajectory generated
from the reconstructed noise and .C2 reduces the spread of the ensemble around the
trajectory simulated from the reconstructed noise.

After optimization, we can couple the optimization problems (10) and (14) and
calibrate jointly all the model parameters .θ1, θ2, yt , ξ

rec. This fine tuning step is not
essential but allows both the drift and diffusion parameters of the model to adapt to
each other.
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3 Numerical Experiments

3.1 Data

Sea Surface Temperature Anomalies (SSTA) in the Mediterranean Sea correspond
to the Ligurian Sea at .8.6◦E, 43.8◦N. The anomalies are computed based on a yearly
average of the annual 99th percentile of the SST reanalysis [25, 26]. The time series
is made up of daily SST anomaly measurements from 1987 to 2019.We use the daily
data from 1987 to 2014 as training data. Figure 3e illustrates the time series. These
time series include a seasonal cycle and non-periodic high temperature extremes in
the summer.

3.2 Analysis of the Deterministic Model

In this first experiment, we investigate if the deterministic neural embedding model
is able to model the non-periodic variability of the SSTA extremes. For this purpose,
we test 3 models with dimensions of the embedding ranging from 1 to 10.

Analysis of the Embeddings The choice of the dimension .dE is linked to the
number of independent variables that can be used to model the dynamics using, in
our context, a bounded autonomous linear quadratic ODE. We start by studying the
direct impact of .dE on the performance of the NbedDyn model. Figure 1 shows
the impact of .dE on the training error between the observations and the model
simulation. Other criteria could be used (please refer to [13, 14] for a more in
depth analysis of this parameters on other case studies), but overall, the training
error provides a direct measure of the effectiveness of the embedding dimension
in the training phase. The first evaluation of the training error reported in Fig. 1

Fig. 1 Mean training error at
convergence. We report the
mean training error at
convergence of the
deterministic NbedDyn
model for different
dimensions .dE of the
embedding. This error is
averaged over the training
time series, and we highlight
here both the mean and
standard deviations
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corresponds to .dE equal to the dimension of the measurements, i.e. .dE = 1.
In this experiment, no latent states .yt are used and the embedding .ut = xt . In
such situations, the ODE model can not perfectly fit the data. Furthermore, at this
particular value of .dE , the models are more likely to display a bad asymptotic
behavior. As the dimension increases, this training error decreases which confirms
better modeling abilities using the NbedDyn model. In the following, we study the
models with .dE = 3, 6 and 10.

Asymptotic Properties of the Models We evaluate the asymptotic behavior of the
deterministic models for .dE = 3, 6 and 10. For this purpose, we run the nbedDyn
models for a period of 27 years. The resulting simulation is visualized with respect
to the reconstructed phase space (11) of the training data in Fig. 2. Overall, the

Fig. 2 Asymptotic solution of the deterministic models. We visualize the simulation of the
deterministic models with respect to the reconstructed phase space. The models with .dE = 3, 6
and 10 are given in figure (a), (b) and (c) respectively. For .dE > 3, we project the simulation and
the reconstructed phase space into .R3
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models are only able to reproduce the seasonal cycle of the SST anomaly data. Other
experiments (not shown here) suggest that even a farther increase of the dimension
of the embedding does not allow the model to capture the non-periodic behavior of
the SST anomaly extremes.

Analysis of the Training Residuals To further investigate the asymptotic behav-
ior of the deterministic models, we visualize in Fig. 3 the training residual
.{xti − GΦθ,ti (uti−1) with ti = t0, . . . , tN }. When the dimension of the embedding
increases above .dE = 1, a qualitative and quantitative change in the residual error
is present. This is due to the fact that a two-dimensional ODE (in .R) is needed
to capture the oscillations of the seasonal cycle of the SSTA. However, when the
dimension of the embedding increases above 2, no clear qualitative or quantitative
change is present. Furthermore, the residual is much more high frequency than
the training SSTA data, which suggests that the errors are due to a missing high
frequency scales that can not be modeled using the standard deterministic model.

Based on these considerations, and motivated by Hasselmann’s works on stochas-
tic climate models with applications on SST anomaly data, we proposed the
stochastic NbedDyn model. In this framework, the SST residual of Fig. 3 is modeled
as a stochastic forcing.

3.3 Analysis of the Stochastic Model

We focus our analysis on the model with .dE = 6. We add a stochastic forcing to the
neural embedding model (the parameters of the diffusion function .gθ2 are optimized
according to Appendix 1). Figure 4 shows the reconstructed phase space under
this new model, as well as a model simulation of 27 years. When compared to the
simulations of the deterministic model in Fig. 2, the stochastic model is able to cover
the whole reconstructed phase space, including the regions with high temperature
extremes. This shows that including the high frequency forcing is crucial for the
model to capture the non-periodic behavior of the extremes.

These observations are further illustrated in the simulation example given in
Fig. 5. The stochastic model is able to produce an ensemble of SST anomaly
trajectories that reproduce the non-periodic variability of the extremes. Furthermore,
the trajectories generated from a sampled white noise match the one of the
reconstructed noise, which validates the proposed training procedure.

We can also discuss the marginal PDF of the stochastic model and compare it to
the one computed from the data in Fig. 6. The PDF of the model is computed over a
simulation of 109 years. Overall, the model is able to correctly model the high SST
anomalies (in the summer), including the non-periodic extremes that form the tail of
the distribution. The negative SST anomalies (in the winter) are not approximated
as good as in the summer case. This is due to the fact that the model flattens the
PDF in the winter by generating trajectories that have more spread (as highlighted
in the ensemble prediction experiment in Fig. 5). We did not investigate this problem
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Fig. 3 Training residual and corresponding training data. We visualize the training residual for
.dE = 1 in (a), .dE = 3 in (b), .dE = 6 in (c) and .dE = 10 in (d). Corresponding training data are
given in (e)
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Fig. 4 Simulation of the
stochastic model. We
visualize a stochastic model
simulation and compare it to
the reconstructed phase space.
Both the model simulation
and reconstructions are
projected into .R3

Fig. 5 Ensemble simulation of the stochastic model. We visualize an ensemble simulation of
the stochastic model, both in the training (a) and test (b) sets. The simulation in the training
set is carried to compare trajectories computed from a sampled noise to the one issued from the
reconstructed noise .ξ rec

Fig. 6 PDF of the data and
the stochastic model. We
compare the marginal PDF of
the stochastic model with the
one of the data

within the present study. However, we can make the PDF sharper in the winter by
forcing the diffusion of the model to be closer to zero during this season.
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4 Conclusion

In this work, we examined the potential of machine learning techniques to derive
relevant dynamical models of sea surface temperature anomaly data in the Mediter-
ranean Sea. We focused on the seasonal modulation of SSTA extremes and used
a neural embedding model to reconstruct the phase space of SSTA data. We then
added a stochastic forcing term to account for the missing high frequency variability.
Our results contribute to the understanding of the factors influencing SSTA extremes
and the development of more accurate prediction models. In particular, the analysis
highlights the importance of including these fast high-frequency scales in the
modeling of SSTA data.

One potential avenue for future work is to investigate the white noise hypothesis
in comparison to other types of stochastic models, such as those based on colored
noise or fractional Brownian motion. Furthermore, it would be interesting to apply
the methodology to other regions and compare the results to evaluate the local
impacts of the fast-scales on the slower ones. The ability of using this model as
an emulator and studying its predictive skills with respect to standard ocean data
assimilation based systems is also a promising perspective.

Finally, and from a methodological point of view, this work highlights the impor-
tance of complementing models that are returned by an embedding methodology.
Specifically, and as discussed in Sect. 2.2, in complex applications such as the ones
in geosciences, the dimension of the underlying state variables is likely to be huge
and defining ways of complementing reduced order models through appropriate
closure terms is mandatory in order to capture the variability of the data. Analysing
the residual of the model fitting procedure is a natural way to define and optimize
this closure terms.

Appendix 1: Training

The trainable parameters of the deterministic NbedDyn models i.e. the linear
quadratic ODE and initial conditions of the latent states are initially sampled from a
uniform distribution. The training of all models is carried using the Adam optimizer.
We use a varying learning rate (from 0.1 to 0.001) in all the experiments to speed
up the training. Regarding the weighting parameters .{λi}i=3

i=1, we set .λ1 = 1 during
all the training. The weights responsible for the boundedness constraints were set at
higher values in the beginning of the training i.e. .λ2 = 100 and .λ3 = 1000 and
then reduced to .λ2 = 1 when .λ3C2 = 0. The training is stopped using cross-
validation. Regarding the stochastic forcing, the parameters of the diffusion are
initially sampled from a uniform distribution and the noise path ξ rec is initialized
from a standard normal distribution. We use a learning rate of 0.001 and the
weighting parameters {λi}i=6

i=4 to one during all the training. We finished the training
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with a fine tuning step, in which all the parameters of the model are optimized jointly
with a learning rate of 0.0001.

Appendix 2: Parameterization of the Diffusion Function

The diffusion function .gθ2 : RdE −→ R
dE×dN where .dN is the dimension of the

noise. In our experiment, we parameterized this function using a fully connected
neural networks with 2 hidden layers with a sigmoid activation and 400 neurones
per hidden layer. The dimension of the noise .dN is set to the dimension of the state
.ut .
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Data Assimilation: A Dynamic
Homotopy-Based Coupling Approach

Sebastian Reich

Abstract Homotopy approaches to Bayesian inference have found wide- spread
use especially if the Kullback–Leibler divergence between the prior and the
posterior distribution is large. Here we extend one of these homotopy approaches
to include an underlying stochastic diffusion process. The underlying mathematical
problem is closely related to the Schrödinger bridge problem for given marginal
distributions. We demonstrate that the proposed homotopy approach provides a
computationally tractable approximation to the underlying bridge problem. In
particular, our implementation builds upon the widely used ensemble Kalman filter
methodology and extends it to Schrödinger bridge problems within the context of
sequential data assimilation.

1 Introduction

Sequential data assimilation interlaces dynamic processes with intermittent partial
state observations in order to provide reliable state estimates and their uncertainties.
A wide array of numerical methods have been proposed to tackle this problem
computationally. Popular methods include sequential Monte Carlo, variational infer-
ence, and various ensemble Kalman filter formulations [5, 8]. These methods can
encounter difficulties whenever the predictive distribution is incompatible with the
incoming data; in other words whenever the distance between the prior, as provided
by the underlying stochastic process, and the data informed posterior distribution is
large. It has long been realized that this challenge can be partially circumvented
by altering the underlying stochastic process through appropriate control terms
or modified proposal densities [5, 23, 16, 9]. Recently, the connection between
devising such control terms and Schrödinger bridge problems [4] has been made
explicit [16]. However, Schrödinger bridge problems are notoriously difficult to
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solve numerically. The key contribution of this paper is to provide a computationally
tractable (sub-optimal) solution via a novel extension of established homotopy
approaches [7, 14]. Similar to related homotopy approaches for purely Bayesian
inference, the solution of certain partial differential equations (PDE) is required
in order to find the desired control terms [14, 25]. In line with standard ensemble
Kalman filter (EnKF) methodologies we approximate these PDEs via a constant
gain approximation [21]. There are also alternative approaches to sequential data
assimilation or inference which utilize ideas from optimal transportation; see for
example [15, 6, 20, 3].

The paper is structured as follows. The mathematical formulation of the data
assimilation problem, as considered in this paper, is laid out in Sect. 2. The standard
optimal control and Schrödinger bridge approach to data assimilation is briefly
summarized in Sect. 3, and the novel control formulation based on an homotopy
formulation is introduced in Sect. 4. A practical implementation based on the
EnKF methodology is proposed in Sect. 5. A series of increasingly complex data
assimilation problems is considered in Sect. 6 in order to demonstrate the feasibility
of the proposed methodologies. The paper concludes with some conclusions in
Sect. 7. Detailed mathematical derivations can be found in Appendices 1 and 2,
respectively.

2 Problem Formulation and Background

We consider drift diffusion processes given by a stochastic differential equations
(SDE)

.dXt = f (Xt )dt + √
2σdWt, (1)

where .Xt : � → R
dx , .f : Rdx → R

dx , .σ ∈ R≥0, and .Wt : � → R
dx denotes

.dx-dimensional standard Brownian motion [12, 13].
Assuming the law of .Xt is absolutely continuous w.r.t. Lebesgue measure with

density .πt , this leads to the Fokker–Planck equation [13]

.∂tπt = −∇ · (πt (f − σ∇ log πt )) . (2)

The SDE (1) can be replaced by the mean field ODE

.
d

dt
X̃t = f (X̃t ) − σ∇ log π̃t (3)

where .π̃t denotes the law of .X̃t . Provided .π̃0 = π0, it holds that .π̃t = πt for all
.t > 0. Note that the evolution of the random variable .X̃t is entirely deterministic
subject to random initial conditions .X̃0 ∼ π0.

At time .t = T > 0, we have observations of the system according to
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.yT = h(x
†
T ) + ν (4)

from which we wish to infer the unknown state .x
†
T ∈ R

dx . Here .h : Rdx → R
dy

denotes the forward map and .ν ∼ N (0, R) is .dy-dimensional Gaussian noise with
covariance matrix .R ∈ R

dy×dy .
Let .L : R

dx → R denote the corresponding negative log-likelihood function.
Since .ν is Gaussian it is given by

.L(x) = 1

2
(h(x) − yT )�R−1(h(x) − yT ) (5)

up to an irrelevant constant. The observations are combined with the predictive
density .πT at time .t = T according to Bayes’ theorem,

.πa
T = e−LπT∫

e−L(x)πT (x)dx
. (6)

The process of transforming the random variable .XT ∼ πT into a random variable
.Xa

T ∼ πa
T is called data assimilation in the context of dynamical systems and

stochastic processes [10, 17, 8].
Since performing data assimilation can be difficult if the relative Kullback–

Leibler divergence

.KL(πT |πa
T ) =

∫
Rdx

πT (x)(log πT (x) − log πa
T (x))dx, (7)

also called the relative entropy [13], between the prior .πT and posterior .πa
T is large

and/or if the involved distributions are strongly non-Gaussian [19, 1], we propose
to construct a new SDE with state process .Xh

t such that .Xh
0 ∼ π0 and .Xh

T ∼ πa
T .

In other words, we are looking for a stochastic process (bridge) with initial density
.π0 and final density .πa

T . The problem of finding the optimal process (in the sense of
minimal Kullback–Leibler divergence) is known as the Schrödinger bridge problem
[4].

3 Schrödinger Bridge Approach

The Bayesian adjustment (6) at final time .t = T leads in fact to an adjustment over
the whole solution space of the underlying diffusion process described by (1). Let
us denote the so called smoothing distribution by .πa

t , .t ∈ [0, T ] [18, 5]. It is well
established that these marginal distributions can be generated from a controlled SDE

.dXa
t = f (Xa

t )dt + ga
t (X

a
t )dt + √

2σdWt (8)
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for appropriate control .ga
t : R

dx → R
dx such that .Xa

0 ∼ πa
0 implies .Xa

t ∼ πa
t

for all .t > 0. It is also well known that finding a suitable .ga
t can be formulated

as an optimal control problem which in turn is closely related to the backward
Kolmogorov equation [13, 16]. Formulations related to (8) have also been used in
the context of sequential Monte Carlo methods [5].

As proposed in [16], an alternative perspective on sequential data assimilation is
provided by Schrödinger bridges. Given two marginal distributions .q0 and .qT and
stochastic process .Xt (referred to as the reference process), a Schrödinger bridge
is another stochastic process .X̂t such that .X̂0 ∼ q0, .X̂T ∼ qT and the Kullback–
Leibler divergence between the processes .{X̂t }t∈[0,T ] and .{Xt }t∈[0,T ] is minimal.
Specialised to our problem and considering a single data assimilation cycle that
means the marginals are the initial and posterior densities, i.e. .q0 = π0 and .qT =
πa

T , and the reference process is the solution to (1). The solution to the associated
Schrödinger bridge problem is again of the form (8) with modified control term
denoted by .gSB

t (x).
A Schrödinger bridge is thus the optimal coupling as measured by the Kullback–

Leibler divergence to the underlying reference process. Unfortunately Schrödinger
bridges lead to boundary value problems in the space of probability measures and
the required control term .gSB

t seems rather difficult to compute in practice. In
addition to the computational complexity of solving nonlinear Schrödinger bridge
problems, the target distribution .πa

T is implicitly defined in the setting of data
assimilation. The next section offers a solution to both of these issues. We point to
[23] for a discussion of alternative approaches which introduce appropriate control
terms into data assimilation procedures.

4 Homotopy Induced Dynamic Coupling

Since Schrödinger bridges are computationally challenging, we ask whether a less
optimal but cheaper approach might also be feasible. Indeed, in the context of data
assimilation a non-optimal coupling can be found via a homotopy between the initial
and target distribution as follows. Let

.πh
t (x) = Z−1

t e− t
T

L(x)πt (x) (9)

denote the homotopy in question, with .Zt = ∫
e− t

T
L(x)πt (x)dx the time dependent

normalization constant. It clearly holds that .πh
0 = π0 and .πh

T = πa
T . Note that

the scaling .t 	→ e− t
T

L was chosen for its simplicity and follows previous work on
Bayesian inference problems [7, 14]. Finding better homotopies or systematic ways
of constructing one could be an interesting direction for future research.

We can then reason backwards from the Fokker–Planck equation of .πh
t to

conclude that if it is the density of a random variable .Xh
t then that random variable

must satisfy the modified SDE:
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.dXh
t = f (Xh

t )dt − σ t

T
∇L(Xh

t )dt + gt (X
h
t )dt + √

2σdWt, (10)

where .gt is a solution to the PDE

.∇ · (πh
t gt ) = 1

T
πh

t

(
L + t∇L ·

(
f − σ t

T
∇L − σ∇ log πh

t

))
+ πh

t

Żt

Zt

. (11)

The derivations of (11) can be found in Appendix 1.
Note that (10) constitutes a mean field model since .gt depends on the distribution

.πh
t of .Xh

t . We also wish to point out that

.ĝSB
t (x) := −σ t

T
∇L(x) + gt (x) (12)

provides a solution to the associated coupling problem. The control term .ĝSB
t is

however non-optimal in the sense of the Schrödinger bridge problem since it does
not minimise the Kullback–Leibler divergence.

Since (11) is linear in .gt we can decompose (11) into a set of simpler equations
.∇ · (πh

t gi
t

) = πh
t (ki − Eki) such that the .ki add up to the right hand side of (11). In

order to maintain .
∫ ∇ · (πh

t gt

) = 0 for the individual .gi
t we can make use of the fact

that the terms in (11) are of the form .πh
t (k − Ek). Separating the terms, we obtain

the following equations, the sum of whose solutions solves (11):

.∇ ·
(
πh

t g1
t

)
= πh

t

(
L

T
− E

L

T

)
. (13a)

∇ ·
(
πh

t g2
t

)
= πh

t

(
t

T
∇L · f − E

t

T
∇L · f

)
. (13b)

∇ ·
(
πh

t g3
t

)
= −πh

t

(
σ t

T
∇L · ∇ log πh

t − E
σ t

T
∇L · ∇ log πh

t

)
. (13c)

∇ ·
(
πh

t g4
t

)
= −πh

t

(
σ t2

T 2 ∇L · ∇L − E
σ t2

T 2 ∇L · ∇L

)
. (13d)

Note that

.πh
t ∇L · ∇ log πh

t = ∇
(
πh

t ∇L
)

− πh
t �L, (14)

which can be used to avoid the computation of .∇ log πh
t (with .� = ∇ · ∇ the

Laplacian operator) in (13c). Thus the controlled SDE (10) can be replaced by

.dXh
t = f (Xh

t )dt − 2σ t

T
∇L(Xh

t )dt + ĝt (X
h
t )dt + √

2σdWt, (15)
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where .ĝt is a solution to

.∇ · (πh
t ĝt ) = 1

T
πh

t

(
L + t∇L ·

(
f − σ t

T
∇L

)
+ σ t�L

)
+ πh

t

Żt

Zt

. (16)

Furthermore, if .�L is a constant (as a function of x) or small in comparison to the
other contributions in (16), then (16) simplifies further. In particular, this is the case
if the forward map is linear, that is, .h(x) = Hx.

Building upon the mean field ODE (3), one obtains the equivalent controlled
mean field ODE system

.
d

dt
X̃h

t = f (X̃h
t ) − σ t

T
∇L(X̃h

t ) + gt (X̃
h
t ) − σ∇ log π̃h

t (X̃h
t ), (17)

with .gt defined as before. This mean field formulation again requires knowledge
(or approximation) of .∇ log π̃h

t . A Gaussian approximation might be sufficient in
certain circumstances giving rise to

.∇ log π̃h
t (x) ≈ −(�̃h

t )−1(x − μ̃h
t ), (18)

where .μ̃h
t denotes the mean of .X̃h

t and .�̃h
t its covariance matrix.

5 Numerical Implementation

No analytic solution to (11) is known and we thus have to resort to approximations.
We note that a similar PDE arises in the computation of the gain in the feedback
particle filter [24] and one could use the diffusion map based approximation [22] for
the problem at hand. This method also transforms the PDE into a Poisson equation
which it then translated into an equivalent integral equation, the semi-group form
of the Poisson equation. As the name suggests the integral equation makes use of
the generator of a semi-group which can be approximated by diffusion maps. Here
we instead propose to follow the constant gain approximation first introduced in the
EnKF methodology [21].

5.1 Ensemble Kalman Mean Field Approximation

Let us assume that .�L ≈ const in (16). Then we only need to deal with the modified
negative log likelihood function

.L̃(x) = 1

T

(
L(x) + t∇L(x) ·

(
f (x) − σ t

T
∇L(x)

))
. (19a)



Data Assimilation: A Coupling Approach 267

≈ 1

T

(
L(x) + t

�t

{
L(x) − L

(
x − �tf (x) + �t

tσ

T
∇L(x)

)})
(19b)

with .�t being the time-step also used later for time-stepping the evolution equa-
tions (10) or (15), respectively. Since L is given by (5), we define the modified
forward map

.h̃(x) = h

(
x − �tf (x) + �t

σ t

T
∇L(x)

)
(20)

and thus

.L̃(x) ≈ t + �t

2�tT
(h(x) − yT )�R−1(h(x) − yT ) − t

2�tT
(h̃(x) − yT )�R−1(h̃(x) − yT ).

(21)

Following the standard EnKF methodology for quadratic loss functions, this
suggests to approximate the drift function .ĝt in (15) as follows:

.ĝKF
t (x) = − t + �t

�tT
�xh

t R−1
(

1

2

(
h(x) + πh

t [h]
)

− yT

)
. (22a)

+ t

�tT
�xh̃

t R−1
(

1

2

(
h̃(x) + πh

t [h̃]
)

− yT

)
. (22b)

Here we have introduced the notation .πh
t [l] to denote the expectation value .El of a

function .l(x) under the PDF .πh
t . Furthermore, .�xh

t denotes the correlation matrix
between x and .h(x) under the PDF .πh

t etc. The derivation of (22) can be found in
Appendix 2.

5.2 Particle Approximation and Time-Stepping

The controlled mean field equations (15) can be implemented numerically by the
standard Monte Carlo Ansatz, that is, M particles .X

(i)
t are propagated according to

.dX
(i)
t = f (X

(i)
t )dt − 2σ t

T
∇L(X

(i)
t )dt + ĝKF

t (X
(i)
t )dt + √

2σdW
(i)
t (23)

for .i = 1, . . . ,M . The required expectation values in .ĝKF
t are evaluated with respect

to the empirical measure

.π̂h
t (x) = 1

2

M∑
i=1

δ(x − X
(i)
t ). (24)
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The interacting particle system can be time-stepped using an appropriate adaptation
of (61) from Appendix 2. The computation of gradients can be avoided by applying
the statistical linearisation (60).

6 Examples

We now discuss a sequence of increasingly complex examples. The purpose is both
to illuminate certain aspects of the proposed control terms as well as to indicate
the computational advantages of the proposed methodology. All examples will be
based on linear forward maps .h(x) = Hx and, therefore .�L is constant and can be
ignored.

6.1 Pure Diffusion Processes

We set the drift f to zero in (1) and also assuming Gaussian initial conditions. Then
the control term (22) gives rise to the mean-field SDE

.dXh
t = √

2σdWt − 2σ t

T
H�R−1(HXh

t − yT )dt . (25a)

−�h
t H�

{
1

T
R−1 − 2σ t2

T 2 R−1HH�R−1
} (

1

2

(
HXh

t + Hμh
t

)
− yT

)
dt

(25b)

in the limit .�t → 0. We note that .Xh
t ∼ πh

t will remain Gaussian for all times and
we denote the mean by .μh

t and the covariance matrix by .�h
t . Hence, it holds that

.�xx
t = �h

t and .πh
t [x] = μh

t .
Please note that the additional drift term in (25a) is pulling .Xh

t towards the
observation .yT regardless of the value of .�h

t . It should also be noted that the drift
term in (25b) can be both attractive or repulsive with regard to the observation .yT

depending on the eigenvalues of

.�t = 1

T
R−1 − 2σ t2

T 2 R−1HH�R−1. (26)

The strength of this drift term is moderated by the covariance matrix .�h
t .

We consider a one-dimensional problem with .R = 0.01, .σ = 1, .H = 1, .yT = 1
and .T = 1. The initial conditions are Gaussian with mean .μ0 = 0 and variance
.�0 = 1. It follows that .π1 is Gaussian with mean .μ1 = 0 and variance .�1 = 2 and
the resulting Gaussian posterior .πa

1 has mean and variance given by
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Fig. 1 Time evolution of the
mean .μh

t and the variance .�h
t

under the mean field
equations (25). Their values
at final agree with the
posterior values provided by
(27)

0 0.2 0.4 0.6 0.8 1
time

0

0.2

0.4

0.6

0.8

1

1.2
pure diffusion

variance
mean

.μa
1 = KyT ≈ 0.9524, μa

1 = 2 − 2K ≈ 0.0952 (27)

with Kalman gain .K = 2/(2 + 0.01) ≈ 0.9524.
In Fig. 1 one can find the time evolution of the mean and the variance under

the mean field equations (25). The early impact of the data driven control term on
the dynamics is perhaps surprising and quite opposite to the standard sequential
approach to data assimilation where one first propagates to final time and only then
adjusts according to the available data. It is also worth noticing that the sign of the
corresponding .�t changes sign at .tc = √

2/20 implying that the drift term in (25)
has a destabilizing effect on the dynamics for .t > tc.

6.2 Purely Deterministic Processes

We now set .σ = 0 in (1). We obtain from (22) the mean field ODE system

.
d

dt
Xh

t = f (Xh
t ) − t + �t

�tT
�h

t H�R−1
(

1

2
H

(
Xh

t + μh
t

)
− yT

)
. (28a)

+ t

�tT
�xh̃

t R−1
(

1

2

(
h̃(Xh

t ) + πh
t [h̃]

)
− yT

)
(28b)

with

.h̃(x) = Hx − �tHf (x). (29)

These equations can be expanded giving rise to

.
d

dt
Xh

t = f (Xh
t ) − 1

T

{
�h

t + t�
xf
t

}
H�R−1

(
1

2
H

(
Xh

t + μh
t

)
− yT

)
. (30a)
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− t

2T
�h

t H
�R−1H

(
f (Xh

t ) + πh
t [f ])

)
(30b)

upon ignoring terms of order .O(�t). Unless the drift function f is linear, these
mean field equations provide only an approximation to the controlled mean field
equations (15).

6.3 Linear Gaussian Case

It is instructive to investigate the linear case

.f (x) = Fx + b (31)

in more detail where again everything remains Gaussian provided .Xh
0 is Gaussian

distributed, that is .π0(x) = N (x;μ0, �0). Under these conditions the densities .πt

and .πh
t will also be Gaussian, we write .πh

t (x) = N (x;μh
t , �

h
t ). The associated

mean field equations follow from Appendix 2 and are given by

.
d

dt
Xh

t = FXh
t + b + σ(�h

t )−1(Xh
t − μh

t ) − 2σ t

T
H�R−1(HXh

t − yT ). (32a)

− CtH
�R−1

(
1

2
H

(
Xh

t + μh
t

)
− yT

)
. (32b)

− t

T
�h

t H�R−1H

(
1

2
F

(
Xh

t + μh
t

)
+ b

)
. (32c)

with

.Ct = 1

T
�h

t + t

T
�h

t F� − 2σ t2

T 2 �h
t H

�R−1H. (33)

A qualitative discussion can be performed in the scalar case, that is .dx = 1,
.H = 1, .σ = 1, .b = 0, .T = 1 and .F = λ. One finds that the control terms involving
F stabilize the dynamics whenever .λ > 0. This observation is in line with the fact
that the data is crucial only if the dynamics in .Xt is unstable, that is, .λ > 0.

We consider a two dimensional diffusion process with state variable .x =
(x1, x2)

� and linear drift term (31) given by

.F =
(−2 1

1 −2

)
, (34)

.b = 0, and diffusion constant .σ = 0.1I . The forward operator is .H = (
1 0

)
and the

variance of the noise .R = 0.01. The initial distribution was .π0 = N ((1, 3), 0.02I ).
The observed value at time .T = 1 is set to .yT = 2.5.
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Fig. 2 Left panel: Time evolution of the mean in .x1 and .x2, the two associated variances and the
covariance between .x1 and .x2 under the linear diffusion process. Right panel: Time evolution of
the same quantities under the controlled diffusion process

The posterior mean takes values .μa
1 ≈ 2.25 and .μa

2 ≈ 1.50, while the posterior
covariance matrix becomes

.�a ≈
(

0.0086 0.0039
0.0039 0.0503

)
. (35)

Numerical results can be found in Fig. 2. The impact of the control term on the
linear diffusion process can clearly be seen and is most prominent on the observed
.x1 component of the process. The final values of the controlled process agree well
with their posterior counterparts.

6.4 Nonlinear Diffusion Example

We consider a two-dimensional problem and denote the state variable by .x =
(x1, x2)

�. The drift term is given by

.f (x) = −∇V (x), V (x) = λ1

2

(
x2 − 2 + βx2

1

)2 + λ2

2

(
x4

1

2
− x2

1

)
(36)

with parameters .λ1 = 2000, .λ2 = 5, and .β = 1/5. The diffusion constant is set to
.σ = 1. The choice of the potential .V (x) has two effects: (1) there is a relative high
barrier for particles to pass from positive to negative .x1-values and vice versa; (2)
the dynamics stay close to the parabola .x2 = 2 − βx2

1 .
The initial distribution is obtained by sampling .x1 from a Gaussian with mean

.1.5 and variance .0.0625. The .x2 component is obtained from the relation
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Fig. 3 Initial (blue) and final
particle positions (red) under
the given evolution process
together with the posterior
approximation provided by
the EnKF (yellow). The
observed value is also
displayed
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.x2 = 2 − βx2
1 . (37)

We observe the first component .x1 of the state vector at time .T = 1 with
measurement error variance .R = 0.01. The observed value is set to .yT = −1.5.
Due to the tiny observation error the posterior is centred sharply about the observed
value. Furthermore, recall that the dynamics is essentially slaved to the parabola
.x2 = 2 − βx2

1 which makes the inference problem strongly nonlinear.
All particle simulations are run with an ensemble size of .M = 1000. Essentially

identical results are obtained for .M = 100. Smaller ensemble sizes lead to
numerical instabilities.

In Fig. 3, one can find the particle distribution at time .t = 1 which constitutes
the prior distribution for the associated Bayesian inference problem. It is obvious
that a particle filter would fail to recover the posterior distribution which is sharply
centered about the observed value. We found that increasing the ensemble size to
.M = 10,000 allows a particle filter to recover the posterior distribution; but the
effective ensemble size still drops dramatically. The approximation provided by the
EnKF is also displayed. The EnKF fails to recover the posterior due to its inherent
linear regression ansatz which is inappropriate for this strongly nonlinear inference
problem even in the limit ensemble size .M → ∞.

In Fig. 4, the results from the controlled mean field formulation are displayed.
It can be concluded that the posterior distribution is well approximated despite the
constant gain approximation made in order to formulate the control term .ĝKF

t in (22).

6.5 Lorenz-63 Example

All examples so far have considered a single data assimilation cycle only. We now
perform a proper sequential data assimilation experiment for the standard Lorenz-63
model [11]
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Fig. 4 Left panel: Initial and final particle positions under the controlled evolution process. Right
panel: Particle positions at intermediate times .tk ∈ [0, 1]

.
d

dt
Xt = f (Xt ), (38)

where .Xt : � → R
3 and

.f (x, y, z) =
⎛
⎝ a(y − x)

x(b − z) − y

xy − cz

⎞
⎠ (39)

with parameters .a = 10, .b = 28 and .c = 8/3.
In order to obtain a reference solution .X

†
t for .t ≥ 0, the ODE (38) is solved

numerically with step-size .�t = 0.005 and initial condition

.X
†
0 =

⎛
⎝−0.587276

−0.563678
16.8708

⎞
⎠ . (40)

Scalar-valued observations are generated every .�tobs > 0 units of time using the
forward model

.yn�tobs = HXn�tobs + νn, n = 1, . . . N, (41)

with measurement errors .νn ∼ N(0, 1) and forward map .H = (1 0 0) ∈ R
1×3.

We use .�tobs ∈ {0.05, 0.1, 0.12} in our experiments and perform .N = 20,000
assimilation cycles.

The initial ensemble .{X(i)
0 }Mi=1 is drawn from the Gaussian distribution with

mean .X
†
0 and covariance matrix .0.01I . We employ multiplicative ensemble inflation

which amounts to replacing the Lorenz-63 dynamics by



274 S. Reich

.
d

dt
X

(i)
t = f (X

(i)
t ) + σk(X

(i)
t − μ̂t ), i = 1, . . . ,M, (42)

with inflation factors

.σk = 0.025k, k = 0, . . . , 9. (43)

Here .μ̂t denotes the empirical mean of the ensemble .{X(i)
t }Mi=1. These equations are

combined with the augmented evolution equations (30) and solved numerically with
step-size .�t = 0.005 and ensemble sizes .M ∈ {5, 10, 15}.

We report the resulting root mean square errors

.RMSE =
√√√√ 1

3N

N∑
n=1

‖μ̂n�tobs − X
†
n�tobs

‖2, (44)

which are computed for each ensemble size M , observation interval .�tobs and
inflation factor .σk . The results are displayed in Table 1 where the smallest RMSE
over the range of inflation factors .{σk}9

k=0 is stated for each M and .�tobs. We
also state the corresponding RMSEs from a standard ensemble square root filter
implementation [2, 8]. We find that the proposed homotopy approach outperforms
the ensemble square root filter in terms of RMSE in all settings considered. The
improvements increase for increasing observation intervals .�tobs. The homotopy
approach also appears less sensitive to the ensemble size M .

We close this example by pointing out that less of an improvement could be
expected for a fully observed Lorenz-63 system. The proposed homotopy approach
seems particularly effective in guiding the unobserved solution components to
regions of high posterior probability. See also the example from Sect. 6.4.

Table 1 RMSE for both a standard ensemble square root filter (ESRF) implementation and
our homotopy approach in terms of ensemble sizes .M ∈ {5, 10, 15} and observation intervals
.�tobs ∈ {0.05, 0.1, 0.12}. The homotopy based data assimilation method leads to significantly
reduced RMSEs in all settings

M/.�tobs 5 10 15

0.05 ESRF 0.57 0.56 0.57

0.05 Homotopy 0.55 0.55 0.55

0.10 ESRF 0.85 0.82 0.82

0.10 Homotopy 0.77 0.76 0.77

0.12 ESRF 0.96 0.95 0.94

0.12 Homotopy 0.86 0.86 0.86
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7 Conclusions

Devising alternative proposal densities has a long history in the context of sequential
data assimilation and filtering. Here we have explored a computationally tractable
approach which combines the concept of Schrödinger bridges with a rather straight-
forward homotopy approach. A further key ingredient is the approximate solution
of the arising PDEs in terms of a constant gain approximation, which is also widely
used within the EnKF community. Numerical examples indicate that the approach is
viable and can overcome limitations of both standard sequential Monte Carlo as well
as standard EnKF methods. This has been demonstrated for single assimilation steps
as well as long-time data assimilation using the chaotic Lorenz-63 model with only
the first component observed infrequently. It remains to be seen how the proposed
methods behave for high dimensional stochastic processes.

Acknowledgments This research has been funded by the Deutsche Forschungsgemeinschaft
(DFG)- Project-ID 318763901 - SFB1294. We thank Nikolai Zaki for earlier work on the topic
of this paper.

Appendix 1: Derivation of Control Term Equation

Given an evolution equation

.dXt = f (Xt )dt + √
2σdWt (45)

we obtain the Fokker–Planck equation

.∂tπt = −∇ · (πt (f − σ∇ log πt )) . (46)

Now we modify (45) by an additional drift term, i.e.

.dXh
t = f (Xh

t )dt + g̃t (X
h
t )dt + √

2σdWt (47)

with .g̃t : Rdx → R
dx . In that case, we would get a Fokker–Planck equation for the

new equation:

.∂tπ
h
t = −∇ ·

(
πh

t

(
f + g̃ − σ∇ log πh

t

))
= −∇ ·

(
πh

t

(
f − σ∇ log πh

t

))
− ∇ · (πh

t g̃t ).

(48)

We can find .g̃t in terms of known quantities as follows: we begin by taking the
derivative of .πh

t with respect to time:

.∂tπ
h
t = −πh

t

(
Żt

Zt

+ L

T

)
+ 1

Zt

e− t
T

L∂tπt . (49)
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Next we substitute (46) for .∂tπt and use .πt = Zte
t
T

Lπh
t :

.∂tπ
h
t = − πh

t

(
Żt

Zt

+ L

T

)
− Z−1

t e− t
T

L∇ · (πt (f − σ∇ log πt )) . (50a)

= − πh
t

(
Żt

Zt

+ L

T

)
− Z−1

t e− t
T

L∇ ·
(
Zte

t
T

Lπh
t

(
f − σ∇ log Zte

t
T

Lπh
t

))
.

(50b)

= − πh
t

(
Żt

Zt

+ L

T

)
− e− t

T
L∇ ·

(
e

t
T

Lπh
t

(
f − σ

t

T
∇L − σ∇ log πh

t

))
.

(50c)

= − πh
t

(
Żt

Zt

+ L

T

)
− ∇ ·

(
πh

t

(
f − σ

t

T
∇L − σ∇ log πh

t

))
. (50d)

− t

T
πh

t ∇L ·
(

f − σ
t

T
∇L − σ∇ log πh

t

)
. (50e)

Comparing with (48) it follows that we require

.∇·(πh
t g̃t ) = 1

T
πh

t

(
L + t∇L ·

(
f − σ

t

T
∇L − σ∇ log πh

t

))
+ πh

t

Żt

Zt
−∇·

(
πh

t σ
t

T
∇L

)
.

(51)

For the .Żt term we have

.
Żt

Zt

= 1

Zt

∫
∂t e

− t
T

L(x)πt (x)dx. (52a)

= 1

Zt

∫
−L

T
e− t

T
L(x)πt (x) + e− t

T
L(x)∂tπt (x)dx. (52b)

= − 1

T
EL − 1

Zt

∫
e− t

T
L(x)∇ · (πt (f − σ∇ log πt )) dx. (52c)

= − 1

T
EL − 1

Zt

∫
t

T
e− t

T
L(x)πt∇L · (f − σ∇ log πt ) dx. (52d)

= − 1

T
EL − t

T
E∇L · (f − σ∇ log πt ) . (52e)

= − 1

T
EL − t

T
E∇L ·

(
f − σ∇ log πh

t − σ
t

T
∇L

)
, (52f)

where the third equality follows from integration by parts and the expected value is
with taken with respect to .πh

t . We finally note that
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.g̃t (x) = gt (x) − σ
t

T
∇L(x). (53)

Appendix 2: Ensemble Kalman Filter Approximations

We provide details on the derivation of the EnKF-like approximation (22) to the
controlled mean field equation (10) and the various simplifications that arise from
assuming a linear forward map.

We first recall that a continuous time formulation of the EnKF for a generic
likelihood function

.L(x) = 1

2
(ĥ(x) − yT )�R̂−1(ĥ(x) − yT ) (54)

is provided by

.
d

dt
Xt = −�xĥ

t R̂−1
(

1

2

(
ĥ(Xt ) + πt [h]

)
− yT

)
. (55)

Here .πt denotes the law of .Xt , .πt [g] the expectation value of a function g under .πt ,
and

.�xĥ
t = πt

[
(x − πt [x])(ĥ − πt [h])�

]
(56)

is the covariance matrix between the state x and the forward map .ĥ.
Formal application of this approach to the two contributions to the likelihood

function (21) leads to (22). More precisely, the first term leads to .ĥ = h and

.R̂ = t + �t

2�tT
R (57)

while the second term results in .ĥ = h̃ and

.R̂ = − t

�tT
R. (58)

The EnKF makes use of statistical linearization

.�xx
t πt [∇h] = �xh

t (59)

which holds provided .πt is Gaussian or if h is linear; a result known as Stein’s
identity. The identity can also be used to approximate derivatives in a (weakly) non-
Gaussian setting giving rise to
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.∇h(x) ≈ (�xx
t )−1�xh

t . (60)

We also recall the robust time-stepping method

.Xtn+1 − Xtn = −�t�xĥ
tn

(
�t�ĥĥ

tn
+ R

)−1
(

1

2

(
ĥ(Xtn) + πtn[h]

)
− yT

)
, (61)

which again can be adjusted appropriately to (22).
We now assume a linear forward map, that is .h(x) = Hx, and discuss the

simplifications that result in the computation of (22). Note that

.h̃(x) = Hx − �tHf (x) + �t
σ t

T
HH�R−1Hx. (62)

Hence the covariance matrix .�xh̃
t can be reformulated to

.�xh̃
t = �xx

t H� − �t�
xf
t H� + �t

σ t

T
�xx

t H�R−1HH� (63)

and (22) simplifies to

.ĝKF
t (x) = − 1

T
�xx

t H�R−1
(

1

2

(
Hx + Hμh

t

)
− yT

)
. (64a)

− t

T
�

xf
t H�R−1

(
1

2

(
Hx + Hμh

t

)
− yT

)
. (64b)

+ σ t2

T 2 �xx
t H�R−1HH�R−1

(
1

2

(
Hx + Hμh

t

)
− yT

)
. (64c)

− t

2T
�xx

t H�R−1H
(
f (x) + πh

t [f ]
)

. (64d)

+ σ t2

T 2
�xx

t H�R−1HH�R−1
(

1

2

(
Hx + Hμh

t

)
− yT

)
+ O(�t).

(64e)

= −CtH
�R−1

(
1

2

(
Hx + Hμh

t

)
− yT

)
. (64f)

− t

2T
�xx

t H�R−1H
(
f (x) + πh

t [f ]
)

+ O(�t) (64g)

with

.Ct = 1

T
�xx

t + t

T
�

xf
t − 2σ t2

T 2 �xx
t H�R−1H. (65)
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Upon dropping terms of order .O(�t) and using .�xx
t = �h

t , we obtain (25) for
.f = 0 and (30) for .σ = 0 as special cases. The mean field equations (32) also
follow easily from .f (x) = Fx + b.
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Constrained Random Diffeomorphisms
for Data Assimilation

Valentin Resseguier, Yicun Zhen, and Bertrand Chapron

1 Introduction

For ensemble-based data assimilation purposes, there is a definite need for relevant
ensemble sampling tools. Indeed, the quality and spreading of these ensembles
have deep implications in the quality of the data assimilation (Dufée et al 2022),
and—until recently—those so-called covariance inflation tools have mostly relied
on unsuitable linear Gaussian frameworks (Tandeo et al 2020, Resseguier et al
2020a). A promising alternative is the generation of ensembles through a stochastic
remapping of the physical space.

Consider a random mapping T , acting at every infinitesimal time step, such that
.Tt (x) − x is interpreted as a “location perturbation” expressed by

.Tt (x) = x + a(t, x)Δt + ei(t, x)Δηi(t), (1.1)

where .a(t, x), ei(t, x) ∈ R
n. In Eq. (1.1), .a(t, x) controls deterministic location

shifts, and .Δηi(t) ∼ N (0,Δt) random ones. At every time step, this random
mapping T shall induce a perturbation to any tensor field .θ(t) (Zhen et al 2022).
For instance, one can perturb a differential form .θ(t) applying .θ(t) → T ∗

t θ(t) with
.T ∗

t the associated pull-back operator.
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A rigorous mathematical definition and calculation of .Tt and .T ∗
t can be obtained

in terms of stochastic flows of diffeomorphisms and its Lie derivatives (e.g.,
Bethencourt De Leon 2021). Yet, to rapidly assess .T ∗

t θ , a Taylor expansion and
Itô’s lemma can be used. Given coordinates .(x1, . . . , xn), when .θ is a differential
.k−form, it can be written as

.θ =
∑

i1<...<ik

f i1,...,ik dxi1 ∧ · · · ∧ dxik , (1.2)

with f a semimartingale smooth in space. Then

.T ∗
t θ =

∑
i1<...<ik

f i1,...,ik (Tt (x))T ∗
t (dxi1 ∧ · · · ∧ dxik ), (1.3)

leading to a compact expression

.T ∗
t θ = θ + M(t, θ)Δt + Ni (t, θ)Δηi(t), (1.4)

with some differential .k−forms .M(t, θ) and .Ni (t, θ). Appendix 4 provides defini-
tions of .M and .N (see Zhen et al 2022, Appendix B for a full proof).

Hereafter, we present and discuss the potential of this random mapping scheme
to possibly prescribe .θ , and the parameters a and .ei to ensure that certain quantities,
i.e. mass, vorticity, helicity, energy, are conserved.

Several examples of .T ∗
t θ can indeed be considered. For instance, when .θ = f is

a function (differential .0−form),

.(T ∗
t θ) =f +

(
aj ∂xj f + 1

2e
p
i e

q
i ∂xp∂xq f

)
︸ ︷︷ ︸

=M

Δt + e
p
i ∂xpf︸ ︷︷ ︸
=Ni

Δηi. (1.5)

And when .θ = f dx1 ∧ · · · ∧ dxn (differential n-form), it then follows

.T ∗
t θ =

{
f +

(
(∂xpap + 1

2Ji)f + (ap + e
p
i ∂xq e

q
i )∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
Δt

+ (∂xpe
p
i f + e

p
i ∂xpf )Δηi

}
dx1 ∧ · · · ∧ dxn. (1.6)

Finally, when .θ = f jdxj = ∑n
j=1 f jdxj is differential 1-form, we have

.T ∗
t θ =

{
f j + (ap∂xpf j + 1

2e
p
i e

q
i ∂xp∂xq f j + ∂xj a

pf p + ∂xj e
p
i e

q
i ∂xq f p)Δt

+ (e
p
i ∂xpf j + ∂xj e

p
i f p)Δηi

}
dxj . (1.7)
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2 Induced Stochastic PDE

From the expression of .T ∗
t θ , a SPDE is derived from an original PDE, when .θ is a

differential form. Suppose .Sd is the full state variable of the deterministic dynamical
system:

.
∂Sd

∂t
= g(Sd). (2.1)

Let .f d be a component or a collection of components of .Sd . We then associate .f d

to a differential form .θd , i.e. there is an invertible map .F that maps the space of .f d

to the space of .θd , such that .F(f d) = θd . Typically, if .f d is a tracer, it is often
associated to the 0-form .θd = f d . If .f d is the density .ρd , we might associate the
n-form .θd = ρd dxi1 ∧· · ·∧dxin . More generally, .θd , and thus .F , can be prescribed
to ensure that certain quantities—such as mass, energy, circulation—are conserved
(Zhen et al 2022, section 3.3). Consider the propagation equation for .f d

.df d = gf (Sd)dt. (2.2)

It implies a propagation equation for .θ :

.dθd = gθ (Sd)dt. (2.3)

We will now stochastically perturb the above deterministic dynamics. Let us denote
.S, f and .θ the semimartingale solutions of this randomized dynamics. The proposed
discrete-time perturbation at each time step consists of the following two steps:

⎧⎨
⎩

.θ̃ (t + Δt) = θ(t) + gθ (S(t))Δt,

θ(t + Δt) = T ∗
t θ̃ (t + Δt),

(2.4)

(2.5)

with .T ∗
t θ̃ (t+Δt) = θ̃ (t+Δt)+M(t, θ̃ (t+Δt))Δt+Ni (t, θ̃ (t+Δt))Δηi(t)+o(Δt)

for the associated differential forms .M(t, θ̃ ) and .Ni (t, θ̃ ).
The deterministic PDE (2.4) and .‖θ̃ (t +Δt)−θ(t)‖ scales in .O(Δt). There is no

noise term to induce a scaling in .O(
√

Δt). Therefore, it can be assumed that there
exists .C > 0 so that .‖M(t, θ̃ (t + Δt)) − M(t, θ(t))‖ < CΔt and .‖Ni (t, θ̃ (t +
Δt)) − Ni (t, θ(t))‖ < CΔt , for .Δt small enough. Accordingly,

.T ∗
t θ̃ (t + Δt) =θ̃ (t + Δt) +

(
M(t, θ(t)) + O(Δt)

)
Δt

+
(
Ni (t, θ(t)) + O(Δt)

)
Δηi(t) + o(Δt),

=θ̃ (t + Δt) + M(t, θ(t))Δt + Ni (t, θ(t))Δηi(t) + o(Δt).

(2.6)
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Therefore,

.θ(t + Δt) = θ(t) + gθ (S(t))Δt + M(t, θ(t))Δt + Ni (t, θ(t))Δηi + o(Δt).

(2.7)

It suggests the following stochastic propagation equation for .θ :

.dθ = gθ (S)dt + M(t, θ)dt + Ni (t, θ)dηi. (2.8)

Since there is a 1-1 correspondence between .θ and f , Eq. (2.3) also suggests a
stochastic propagation equation for f , which can be written as

.df = gf (S)dt + Mf (f )dt + N f
i (f )dηi. (2.9)

We denote the additional terms in Eq. (2.9) by

.dsf := Mf (f )dt + N f
i (f )dηi. (2.10)

Then Eq. (2.9) can be written as:

.df = gf (S)dt + dsf. (2.11)

3 Comparison with Other Perturbation Schemes

Obtained above, .dsf is completely determined by .T ∗
t θ , but is not directly related to

the original dynamics Eq. (2.2). Once the expression of T in Eq. (1.1) and the choice
of the differential form .θd are determined, the perturbation term .dsf is prescribed.
However, the choice of .θd is up to the user, and may then be related to the original
dynamics.

In the following, we thus demonstrate that both the stochastic advection by Lie
transport (SALT) equation (Holm 2015) and the location uncertainty (LU) equation
(Mémin 2014, Resseguier et al 2017; 2020b) can be properly recovered using the
proposed perturbation scheme.

3.1 Comparison with the LU Equations

The Reynolds transport theorem is central to the LU setting. The Reynolds transport
theorem expresses an integral conservation equation for the transport of any con-
served quantity within a fluid, connected to its corresponding differential equation.
A link between the proposed perturbation approach and the LU formulation can



Random Diffeomorphisms 285

be anticipated to be related to differential n-forms. But first, we consider a key
ingredient of LU: the stochastic material derivative of functions (differential 0-
forms).

3.1.1 0-Forms in the LU Framework

Dropping the forcing terms, LU equation for compressible and incompressible flow
reads (Resseguier et al 2017)

.∂tf + w� · ∇f =∇ · ( 12a∇f ) − σḂ · ∇f ,. (3.1)

w� =w − 1
2 (∇ · a)
 + σ (∇ · σ )
, (3.2)

where .a = σ •kσ
T•k and f can be any quantity that is assumed to be transported by

the flow, i.e. .Df/Dt = 0 where .D/Dt is the Itô material derivative. For instance,
f could be the velocity (dropping forces in the SPDE), the temperature, or the
buoyancy.

Separating the terms of the SPDE related to the deterministic dynamics from the
term associated to the stochastic scheme, it comes

.dLUf = gf (S)dt + dLUs f, (3.3)

where

.gf (S) = − w · ∇f ,. (3.4)

dLUs f = − (w� − w) · ∇fdt − σdB · ∇f + ∇ · ( 12a∇f )dt. (3.5)

Besides, from our proposed scheme applied to a 0-form .θ = f (Eq. (1.5)), we
obtain:

.dsf =
(
ap∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
dt + e

p
i ∂xpfdηi. (3.6)

To physically interpret this equation, we rewrite:

.
dsf

dt
= −V p∂xpf + ∂xp

(
( 12e

p
i e

q
i )∂xq f

)
, (3.7)

where

.V p = −ap + 1
2∂xq (e

p
i e

q
i ) − e

p
i

dηi

dt
. (3.8)

Terms of advection and diffusion are recognized. The matrix .
1
2eie

T
i is symmetric

non-negative and represents a diffusion matrix. The p-th component of the advect-
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ing velocity .V p is composed of the drift .−ap, a correction .
1
2∂xq (e

p
i e

q
i ), and a

stochastic advecting velocity .−e
p
i
dηi

dt
.

Direct calculation yields that Eq. (3.5) coincides with Eq. (3.7) when .a =
σ •kσ

T•k = eie
T
i and .σḂ = −eidηi and

.Tt (x) = x + e
q
i ∂xq eiΔt + eiΔηi = x − wc

SΔt + (−wc
SΔt − σΔB), (3.9)

where

.wc
S = − 1

2 (σ •k · ∇)σ •k = − 1
2 (∇ · a)
 + 1

2σ (∇ · σ )
. (3.10)

The LU equation can thus be derived by choosing .θ = f and .Tt by Eq. (3.9). Note,
the term .(−wc

SΔt − σΔB) = ( 12e
q
i ∂xq eiΔt + eiΔηi) is the Itô noise plus its Itô-

to-Stratonovich correction. Hence, it corresponds to the Stratonovich noise .ei ◦ dηi

of the flow associated to .Tt . The additional drift .−wc
SΔt is different in nature. It

is related to the advection correction .wc
S · ∇f in the LU setting. Indeed, in the LU

framework, the Itô drift, .w, is seen as the resolved large-scale velocity. That is why,
in this framework, the deterministic dynamics (3.4) involve the Itô drift, .w. This
is also the reason why, under the LU derivation, the advected velocity is assumed
to be given by the Itô drift, .w. It differs from the Stratonovich drift .wS = w +
wc

S , used as advected velocity in SALT approach or in Mikulevicius and Rozovskii
(2004) (where the Stratonovich drift is denoted u). Interested readers are referred
to (Resseguier et al 2020b, Appendix A) for a discussion on these assumptions and
for the complete table of SALT-LU notations correspondences. Note however that
in all these approaches, the advecting velocity is always the Stratonovich drift. This
can be seen e.g., in the Stratonovich form of LU equations, derived in (Resseguier
2017, Appendix 10.1) and (Resseguier et al 2020a, 6.1.3):

.∂tf + wS · ∇f = − (σ ◦ Ḃ) · ∇f, (3.11)

where .σ ◦ Ḃ is the Stratonovich noise of the SPDE. Since the advecting velocity .wS

and the resolved velocity .w differ by a drift .wc
S , the term .wc

S · ∇f is interpreted as
an advection correction, being part of the stochastic scheme (3.5). Accordingly, the
remapping .Tt involves an additional drift .−wc

SΔt .
To also understand (3.9), the inverse flow can be considered:

.T −1
t (x) = x − eiΔηi = x + σΔB. (3.12)

If .Tt represents a necessary perturbation to match, at each time step, a true solution,
.T −1

t measures the difference, at each time step, between this true solution and
a model forecast. Therefore, the LU equation can be derived using the proposed
perturbation scheme, choosing .θ = f and assuming that a true solution differs from
a model forecast by a displacement prescribed by Eq. (3.12).
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3.1.2 n-Forms in the LU Framework

The LU physical justification relies on a stochastic interpretation of fundamental
conservation laws, typically conservation of extensive properties (i.e. integrals
of functions over a spatial volume) like momentum, mass, matter and energy
(Resseguier et al 2017). These extensive properties can be expressed by integrals
of differential .n−forms. For instance, the mass and the momentum are integrals of
the differential .n−forms .ρdx1 ∧ · · · ∧ dxn and .ρwdx1 ∧ · · · ∧ dxn, respectively.
In the LU framework, a stochastic version of the Reynolds transport theorem
(Resseguier et al 2017, Eq. (28)) is used to deal with these differential .n−forms
.θ = f dx1 ∧ · · · ∧ dxn. Assuming an integral conservation .

d
dt

∫
V (t)

f = 0 on a
spatial domain .V (t) transported by the flow, it leads to the following SPDE:

.
Df

Dt
+ ∇ · (w� + σḂ)f = d

dt

〈∫ t

0
Dtf,

∫ t

0
∇ · σḂ

〉
= (∇ · σ •i )(∇ · σ •i )

T f ,

(3.13)

where .D/Dt denotes the Itô material derivative. Forcing terms are dropped for the
sake of readability. This SPDE can be rewritten using the expression of that material
derivative (Eq. (9) and (10) of Resseguier et al (2017)):

.∂tf + ∇ · (wSf ) = 1
2∇ · (a∇f ) + 1

2∇ · (σ •i (∇ · σ •i )
T f ) − ∇ · (σḂf ).

(3.14)

The original deterministic equation and stochastic perturbation correspond to

.gf (S) = − ∇ · (wf ),. (3.15)

dLUs f =(−∇ · (wc
Sf )+ 1

2∇ · (a∇f )+ 1
2∇ · (σ •i (∇ · σ •i )

T f ))dt−∇ · (σdBf ),.

(3.16)

= − ∇ · ((−( 12∇ · a)T dt + σdB)f ) + ∇ · ( 12a∇f )dt. (3.17)

We can now compare these LU equations to our new stochastic scheme applied
to n-form .θ = f dx1 ∧ · · · ∧ dxn (Eq. (1.6)). This implies that

.dsf =
(
(∂xpap + 1

2Ji)f + (ap + e
p
i ∂xq e

q
i )∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
dt

+ (∂xpe
p
i f + e

p
i ∂xpf )dηi, (3.18)

where .Ji = ∂xpe
p
i ∂xq e

q
i − ∂xpe

q
i ∂xq e

p
i . Rewritten, it leads to:

.
dsf

dt
= −∂xp

(
Ṽ pf

)
+ ∂xp

(
( 12e

p
i e

q
i )∂xq f

)
, (3.19)
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where

.Ṽ p = V p − (e
p
i ∂xq e

q
i ) = −ap + 1

2 (∂xq e
p
i e

q
i − e

p
i ∂xq e

q
i ) − e

p
i

dηi

dt
. (3.20)

Again an advection-diffusion equation is recognized, but of different nature. Indeed,
as expected for an n-form, the PDE is similar to a density conservation equation.
Moreover, the advecting drift is slightly different to take into account the cross-
correlations between .f (Tt (x)) and .T ∗

t (dx1 ∧ · · · ∧ dxn).
Identifying .a = σ •kσ

T•k = eie
T
i and .σḂ = −eidηi ,

.Ṽ = −ap + 1
2 (∂xq e

p
i e

q
i − e

p
i ∂xq e

q
i ) − e

p
i

dηi

dt
= −( 12∇ · a)T + σḂ, (3.21)

i.e.

.ap = 1
2 (∂xq e

p
i e

q
i − e

p
i ∂xq e

q
i ) + 1

2∂xq (e
p
i e

q
i ) = e

q
i ∂xq e

p
i . (3.22)

A remapping is thus obtained to write

.Tt (x) = x + e
q
i ∂xq eiΔt + eiΔηi = x − wc

SΔt + (−wc
SΔt − σΔB), (3.23)

already derived for differential .0−form in LU framework (Eq. (3.9)). Therefore,
the proposed perturbation mapping can also encompass the LU framework for .n−
forms, and its capacity—given by the Reynolds transport theorem—to deal with
extensive properties.

Moreover, for incompressible flows, LU equation further imposes that

.

{
∇ · σ = 0,

∇ · ∇ · a = 0.
(3.24)

Translating it into our present notation, it reads as

.

{
∂xpe

p
i = 0, for each i

∂xp∂xq (e
p
i e

q
i ) = 0.

(3.25)

Following straightforward calculation, Eq. (3.24) is found equivalent to that .T ∗
t θ =

θ for .θ = dx1 ∧ · · · ∧ dxn. Such a result is expected since constraints Eq. (3.24) are
obtained from the LU density conservation.
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3.2 The SALT Perturbation Scheme

Holm (2015) derived the original SALT equation following a stochastically con-
strained variational principle δS = 0, for which

.

{
S(u, q) = ∫

	(u, q)dt,

dq + £dxt q = 0,
(3.26)

where 	(u, q) is the Lagrangian of the system, £ is the Lie derivative, and xt (x) is
defined by (using our notation)

.xt (x) = x0(x) +
∫ t

0
u(x, s)ds −

∫ t

0
ei(x) ◦ dηi(s), (3.27)

in which u is the velocity vector field. The ◦ means that the integral is defined in the
Stratonovich sense, instead of in the Ito sense. Hence, dxt = u(x, t)dt − ei ◦ dηi

refers to an infinitesimal stochastic tangent field on the domain. We can express
dxt = Tt (x)−x+udt . Note the difference between Ito’s notation and Stratonovich’s
notation, i.e. ei ◦ dηi �= eidηi . The initial expression of Tt essentially follows Ito’s
notation. In this subsection, it comes that Tt (x) �= x − eiΔηi . Instead, it becomes
Tt (x) = x + 1

2e
p
i ∂xpeiΔt − eiΔηi .

In the second equation of Eq. (3.26), q is assumed to be a quantity advected by
the flow. q can correspond to any differential form that is not uniquely determined by
the velocity (since the SALT equation for the velocity is usually determined by the
first equation of Eq. (3.26)). Holm (2015) evaluates the Lie derivative £dxt q using
Cartan’s formula:

.£dxt q = d(idxt q) + idxt dq. (3.28)

This Lie derivative £dxt q corresponds to T ∗
t q − q + f q(S)dt , if we assume that

the deterministic forecast of q is simply the advection of q by u. More generally,
£dxt−udt q = T ∗

t q − q. Therefore, the SALT equation for q is the same as our
perturbation for q. Note, the Cartan’s formula can not be directly applied to calculate
the Lie derivative if the expression of dxt is in Ito’s notation.

Within the SALT setting, the velocity u comes from the first equation of
Eq. (3.26). For most cases, the velocity u is associated with the momentum, a
differential 1−form m = ujdxj = u1dx1 + . . . + undxn. When the Lagrangian
includes the kinetic energy, Holm (2015) observed that the stochastic noises
contribute a term £dxt θ , where θ is a differential 1−form related to the momentum
1−form. In particular, θ = m for the “Stratonovich stochastic Euler-Poincaré flow”
example, and θ = m + Rjdxj for the “Stochastic Euler-Boussinesq equations of a
rotating stratified incompressible fluid”.
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Already pointed out, the operator £dxt is closely related to T ∗
t , and the SALT

momentum equation can thus also be derived using our proposed perturbation
scheme by properly choosing θ , without relying on Lagrangian mechanics.

Another way to appreciate the correspondence to SALT is by looking at the final
SPDE. If we choose θ to be a differential 1-form to represent the momentum f , i.e.
θ = f jdxj we obtain from Eq. (1.7) (more details in Zhen et al 2022):

.dsf
j = (ap∂xpf j + 1

2e
p
i e

q
i ∂xp∂xq f j + ∂xj a

pf p + ∂xj e
p
i e

q
i ∂xq f p)dt

+ (e
p
i ∂xpf j + ∂xj e

p
i f p)dηi. (3.29)

Regrouping the terms for physical interpretation, it writes:

.
dsf

j

dt
= −V p∂xpf j + ∂xp

(
( 12e

p
i e

q
i )∂xq f j

)

+ ∂xj

(
ap + e

p
i

dηi

dt

)
f p + ∂xj e

p
i e

q
i ∂xq f p. (3.30)

Two last terms of the right-hand side complete the advection-diffusion terms,

already appearing in (3.7). The first one, ∂xj

(
−ap − e

p
i
dηi

dt

)
f p, is reminiscent

to the additional terms appearing in SALT momentum equations (Holm 2015,
Resseguier et al 2020b). The second term, −∂xj e

p
i e

q
i ∂xq f p, comes from cross-

correlation in Itô notation.

4 Conclusion

As demonstrated, both SALT and LU equations can be recovered using a prescribed
definition of a random diffeomorphism .Tt used to perturb the physical space.
However, compared with SALT and LU settings, the proposed perturbation scheme
does not directly rely on a particular physics. Hence, the random mapping is more
flexible and can be applied to any PDE. Interestingly, similarities and differences
can then be identified and studied between the proposed use of the random
diffeomorphism and the existing stochastic physical SALT and LU settings. For
instance, the proposed derivation provides an interesting interpretation the operator
.£dxt−udt , appearing in the SALT equation. This term can indeed represent an
infinitesimal forecast error at every forecast time step.

To apply the proposed perturbation scheme to any specific model, the diffeomor-
phism parameters a and .ei must be determined specifically. Hence it is necessary to
learn these parameters from existing data, experimental runs, or additional physical
considerations. This framework naturally provides new perspectives to generate
ensembles through constrained stochastic mappings applied in the physical space.
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Appendix: Expression of T ∗
t θ

Given coordinates .(x1, . . . , xn) and a differential .k−form .θ , Zhen et al (2022)
(Appendix B) proof that:

.T ∗
t θ = f (Tt (x))T ∗

t (dxi1 ∧ · · · ∧ dxik )

= θ +
{(〈∇f, a〉 + 1

2
e

i Hf ei + IW

)
dxi1 ∧ · · · ∧ dxin

+
k∑

s=1

f ∂xj a
is dxi1 ∧ . . . dxj ∧ · · · ∧ dxik

+ ( ∑
s<r

f ∂xj e
is
i ∂xl e

ir
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxl ∧ · · · ∧ dxik

)

+ ( k∑
s=1

〈∇f, ei〉∂xj e
is
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxik

)}
Δt

+
{
〈∇f, ei〉dxi1 ∧ · · · ∧ dxik

+
k∑

s=1

f ∂xj e
is
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxik

}
Δηi

+ o(Δt), (A.1)

where IW is the additional term appearing in the Itô-Wentzell formula (Kunita
1997). Here, there is no noise in the original dynamics (2.3) (the first step (2.4)
of the randomized dynamics) which could be correlated with the noise of the
resulting stochastic scheme (2.5). That is why .IW = 0 in the above Taylor
development of f. Indeed, there is no additional cross-correlation term between .T ∗

t

and .θ̃ (t + Δt) = θ(t) + gθ (S(t))Δt . The final SPDE (2.8) makes clear the link
between the solution .θ and the Brownian motions .ηi . But, at a given time step t ,
since (2.2) has no noise term, .θ̃ (t + Δt) is correlated with the .t ′ �→ ηi(t

′) for
.t ′ < t only, and is independent of the new Brownian increment .Δηi(t) generating
.Tt . Therefore, there is no cross-correlation term between .T ∗

t and .θ̃ (t + Δt).
To simplify Eq. (A.1), wedge algebra is applied and the high-order infinitesimal

.o(Δt) is ignored. Accordingly, .T ∗
t θ is more compactly written as

.T ∗
t θ = θ + M(θ)Δt + Ni (θ)Δηi, (A.2)

for some differential .k−forms .M(θ) and .Ni (θ).
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Stochastic Compressible Navier–Stokes
Equations Under Location Uncertainty

Gilles Tissot, Étienne Mémin, and Quentin Jamet

Abstract The aim of this paper is to provide a stochastic version under location
uncertainty of the compressible Navier–Stokes equations. To that end, some clar-
ifications of the stochastic Reynolds transport theorem are given when stochastic
source terms are present in the right-hand side. We apply this conservation theorem
to density, momentum and total energy in order to obtain a transport equation
of the primitive variables, i.e. density, velocity and temperature. We show that
performing low Mach and Boussinesq approximations to this more general set of
equations allows us to recover the known incompressible stochastic Navier–Stokes
equations and the stochastic Boussinesq equations, respectively. Finally, we provide
some research directions of using this general set of equations in the perspective of
relaxing the Boussinesq and hydrostatic assumptions for ocean modelling.

1 Introduction

Stochastic modelling under location uncertainty (LU) relies on the decomposition
of the displacement of fluid particles into a time-differentiable velocity field, and a
highly fluctuating component represented by a Brownian motion. It was proposed
in [15] to apply this principle to fluid flows, leading to a stochastic version of the
Navier–Stokes equations. On this basis, a similar derivation has been performed
for various ocean models, such as Boussinesq models [16], quasi-geostrophic (QG)
models [4, 14, 17], surface quasi-geostrophic models (SQG) [18] and shallow water
equations [5].
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In the ocean, variations of density, temperature and salinity are of great impor-
tance. In the previously cited models the Boussinesq assumption of small com-
pressibility has been assumed from the start. This is a fair approximation, but
it can become limiting, for instance when radiative transfers heat the ocean
surface. Some research efforts have been performed to account for compressibility
in deterministic oceanic flow models [20, 9, 8] in order to obtain energetically
consistent formulations. Another key aspect is that, Boussinesq models cannot
sustain acoustic waves, which is relevant for two major applications: (i) ocean
acoustics and (ii) numerical simulations of non-Boussinesq models, where pseudo-
compressibility strategies [7] are employed to compute the pressure with explicit
schemes without having to solve an expensive 3D Poisson equation [3]. In addition,
a rigorous development of Boussinesq systems requires to perform the Boussinesq
approximations on the compressible equations [22].

The derivation of a compressible stochastic system cannot be derived from the
incompressible stochastic system, since it corresponds to a generalisation step.
We propose in this paper to start from the classical physical conservation laws
to derive a general stochastic compressible Navier–Stokes system. We verify that
the provided set of equations is consistent with the incompressible stochastic
models previously developed. We will moreover theoretically show some potential
developments enabling to perform a relaxation of the Boussinesq assumption. Such
a procedure will allow us to propose stochastic systems of increasing complexity
lying in between Boussinesq hydrostatic system and a fully compressible flow
dynamics.

The paper is organised as follows. In Sect. 2, we briefly recall the LU formalism
and provide a convenient form of the stochastic Reynolds transport theorem when
the budget of conserved quantities is balanced by external source or flux terms of
stochastic nature. In Sect. 3 we develop the stochastic compressible Navier–Stokes
equations. In Sects. 4 and 5, the low Mach number and Boussinesq approxima-
tions are performed respectively. We verify in these two sections the consistency
with stochastic models previously derived from stochastic isochoric models [16].
This stochastic Boussinesq model is generalised by incorporating thermodynamic
effects. In Sect. 6 these approximations are relaxed and we propose a model which
can be integrated explicitly in time, similarly as in [3]. In Sect. 7 some concluding
remarks are given. In appendix, technical calculation rules and important details to
perform energy budgets are provided.

2 Stochastic Reynolds Transport Theorem

The transport of conserved quantities subject to a stochastic transport is described
by the stochastic Reynolds transport theorem (SRTT) introduced in [15]. When
stochastic source terms are involved in the budget, additional covariation terms have
to be taken into account [16]. These terms are usually defined in an implicit manner.
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In the present section, we briefly present the modelling under location uncertainty,
and we rewrite the SRTT in a convenient form for further developments.

In the modelling under location uncertainty [15], the displacement .X(x, t) of a
particle is written in a differential form as

.dX(x, t) = u(x, t)dt + σ tdB t , (1)

where .u = (u, v,w)T is a time-differentiable velocity component, and .dB t is
the increment of a Brownian motion, whose aim is to model unresolved time-
decorrelated velocity contributions. The correlation operator .σ t is an integral
operator which involves a spatial convolution in the domain .Ω with a user-defined
correlation kernel .σ̌ , such that

. (σ tdB t )
i (x) =

∫
Ω

σ̌
ij
(x, x′, t)dB

j
t (x

′) dx′. (2)

Associated with .σ t , we define the (matrix) variance tensor .a (that corresponds to
the one point covariance tensor) such that

.aij (x)dt = E

(
(σ tdB t )

i (x) (σ tdB t )
j (x)

)
. (3)

Within this framework, the stochastic transport operator of a scalar quantity q is
defined by

.

Dt q �dt q +

⎛
⎜⎜⎜⎝

(
u − 1

2
∇ ·a + σ t (∇ · σ t )

)
︸ ︷︷ ︸

u�

·∇

⎞
⎟⎟⎟⎠ q dt

+ (σ tdB t ·∇) q − 1

2
∇ · (a∇q) dt,

(4)

where .u�, called drift velocity, is the resolved velocity corrected by the inhomogene-
ity and divergence of the noise correlation tensor, respectively. Physical relevance
of the drift velocity and the stochastic diffusion .

1
2∇ · (a∇q) dt has been extensively

highlighted in previous studies [e.g. 6, 4].
Variation of q integrated over a transported volume [16] can be written

.d
∫

Ω(t)

q dx =
∫

Ω(t)

(
Dt q + q∇ · (u� dt + σ tdB t

) + ∇ · (σ th) dt
)

dx, (5)

with .h defined as follows: when the stochastic transport operator is isolated on the
left-hand-side (LHS), .h is associated with the martingale part of the remaining right-
hand-side (RHS):

.Dt q = f dt + h · dB t . (6)
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Starting from (5), we can assume that some source terms .Qt dt +Qσ ·dB t , with
a time-differentiable and a martingale contribution respectively, are balancing the
budget of q in the control volume such as

.d
∫

Ω(t)

q dx =
∫

Ω(t)

(
Qt dt + Qσ · dB t

)
dx. (7)

These RHS terms correspond to forces (resp. work) when this general expression
is associated with the momentum (resp. energy) equation. Dropping the volume
integral, we can now identify .h

.h · dB t = −q∇ · (σ tdB t ) + Qσ · dB t . (8)

This leads to the explicit expression of the stochastic Reynolds transport theorem

.

dt q + ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
q

)
+ ∇ · (σ tQσ ) dt − 1

2
∇ · (a∇q) dt

= Qt dt + Qσ · dB t .

(9)
The absence of the term .σ t (∇ · σ t ) in the modified drift is an important feature of
this expression. It has been cancelled (not neglected) by accounting for the term
.−q∇ ·(σ tdB t ) in Eq. (8). As it will be detailed further, this term will reappear when
we will transform the conservative form of the equations to their associated non-
conservative form, i.e. writing a transport equation for the primitive variables. For
consistency checking, it has been assessed in appendix 7, that the same expression
is obtained using a Stratonovich stochastic integral convention.

3 Stochastic Compressible Navier–Stokes Equations

To obtain the stochastic compressible Navier–Stokes equations we apply the SRTT
equation (9) to the mass, momentum and total energy. This requires at first to
properly define the physical variables.

3.1 Non-dimensioning

We consider the time t , .x = (x, y, z)T the space coordinates of .Ω , and .(ex, ey, ez)

the associated canonical basis. Physical quantities are marked by .•φ and the other
quantities are non-dimensional. We adimensionalise by reference conditions (noted
.•ref), and introduce a reference distance .Lref, velocity .uref, density .ρref, sound speed
.cref as well as viscosity .μref. We get



Stochastic Compressible Navier–Stokes Equations Under Location Uncertainty 297

.

x = xφ

Lref

; t = tφuref

Lref

; u = uφ

uref

; c = cφ

uref

; M = uref

cref

;

ρ = ρφ

ρref

; μ = μφ

μref

; p = pφ

ρrefu2
ref

; T = T φc
φ
p

u2
ref

;

γ = c
φ
p

c
φ
v

; e = eφ

u2
ref

= T

γ
; g = gφLref

ρrefu2
ref

,

(10)

with .u the velocity vector, c the speed of sound, M the Mach number (i.e. the ratio
of typical particle speed to typical sound speed), .ρ the density, p the pressure, .μ

de dynamic viscosity, T the temperature, .γ the heat capacity ratio, .(cp, cv) the heat
capacities at constant pressure/volume, e the internal energy and .g = −gez the
acceleration vector due to gravity. We introduce as well the Reynolds and Prandtl
numbers

.Re = ρrefurefLref

μref

; Pr = c
φ
pμφ

k
φ
T

, (11)

with .k
φ
T the thermal conductivity.

3.2 Continuity

Mass conservation ensues upon applying the SRTT on density, i.e. .q = ρ with no
mass source of any kind:

.dt ρ + ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
ρ

)
= 1

2
∇ · (a∇ρ) dt. (12)

3.3 Momentum

Applying now the SRTT to the momentum .ρui balanced by forces, with .ui ∈
{u, v,w}.

.

dt (ρui) + ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
ρui

)
+ ∇ · (σ tF

ρui
σ ) dt

= − ∂p

∂xi

dt − ∂dpσ
t

∂xi

− ρgδi,ez

+ 1

Re

∂τij (u)

∂xj

dt + 1

Re

∂τij (σ tdB t )

∂xj

+ 1

2
∇ · (a∇(ρui)) dt,

(13)
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with .F
ρui
σ · dB t = −∂dpσ

t
∂xi

+ 1
Re

∇ · (τi(σ tdB t )). The forces involved here are

caused by pressure gradient, viscous stresses .τ and gravity. The pressure gradient
is decomposed in a time-differentiable part .p dt and a random component .dpσ

t . For
sake of generality, we consider the molecular viscosity stress tensor:

.τ (u) = μ
(
∇u + (∇u)T

)
+

(
μb − 2

3
μ

)
∇ ·u I, (14)

with .μb the bulk viscosity. Similarly to the pressure, there is a finite variation friction
contribution due to .u dt and a martingale contribution due to .σ tdB t .

After some manipulations and using the stochastic distributivity rule (70) given
in appendix 7, we obtain

.

ρ Dt ui

+
∑

k

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

∂

∂xk

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉

= − ∂p

∂xi

dt − ∂dpσ
t

∂xi

+ 1

Re

∂τij (u)

∂xj

dt + 1

Re

∂τij (σ tdB t )

∂xj

− ρgδi,ez .

(15)

This expression is very similar to the momentum equation of the incompressible
Navier-Stokes equations [15, eq. 41 with incompressibility assumption]. We only
have as an additional term the covariation between (the martingale part of) forces
and the small scale component .ρσ tdB t . This term, usually difficult to evaluate
analytically is generally neglected through a slight variation of the expression of
Newton’s law in the LU framework, as for instance in [16, Appendix E].

3.4 Energy

As in the deterministic framework [23, 2, 13], we now consider conservation of the
total energy and deduce a transport equation for the temperature.

General Formulation
Work of forces and heat fluxes acting on a transported control volume induce
variations of total energy E such that:

.

dt (ρE) + ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
ρE

)
+ ∇ · (σ tF

ρE
σ )

= 1

2
∇ · (a∇(ρE)) dt + dW − ∇ · (dq),

(16)



Stochastic Compressible Navier–Stokes Equations Under Location Uncertainty 299

with .dW and .dq the elementary work of the forces and heat fluxes detailed later.
The martingale part of these RHS terms is written .F

ρE
σ · dB t .

Using (70) and the continuity equation (12), we obtain

.ρDt (E) +
∑

k

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

∂

∂xk

(
1

ρ
F ρE

σ · dBs

)〉
= dW − ∇ · (dq).

(17)

Definition of the Energy
At this point, the form of the total energy has to be specified. It is strongly related to
the physical mechanisms at play. In the present study, we consider the total energy
.ρE = ρ(e + 1

2‖u‖2 + gz), as the sum of internal energy .e = T
γ

, kinetic energy
and potential energy due to gravity. We do not consider the energy of the Brownian
motion since it is possibly infinite.

Definition of the Work of Forces and Heat Fluxes
The work of the time-differentiable pressure represents how pressure is working
with the displacement of the control surface. The expression can be obtained by
integrating the force multiplied by the surface displacement over a transported
control volume and applying Green’s formulae. The procedure is similar to the
deterministic framework, with the additional implication of the drift velocity, as
demonstrated in appendix 7. We have for the pressure work:

.

∫
Ω(t)

dWp dx =
∫

δΩ(t)

(−p n dS) · (u�dt + σ tdB t )

= −
∫

Ω(t)

∇ · (p (u�dt + σ tdB t )) dx.

(18)

The minus sign comes from the outward normal .n convention. We can then identify

.dWp = −∇ · (p (u�dt + σ tdB t )). (19)

In the same way, the viscous stress of the resolved component can be written

.dWτ = 1

Re
∇ · (τ (u)

(
u� dt + σ tdB t

))
. (20)

Following Appendix 7, we take as well into account the work of the random
pressure:

.dWrp = −∇ · (u�dpσ
t

)
, (21)

and the work of the random viscous stress
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.dWrτ = 1

Re
∇ · (τ(σ tdB t )u

�
)
. (22)

As rigorously detailed in appendix 7, we do not consider work of random forces
associated with .σ tdB t , since such a work would be highly irregular (in time) and
should be in balance with variations of kinetic energy of .σ tdB t , which is possibly
infinite and not described by the present model.

There is no work contribution of gravity on total energy, since the gain in kinetic
energy directly associated with the gravity force is compensated by the loss in
potential energy.

Finally, we obtain the thermal conductivity by expressing the thermal fluxes by
the Fourier law .dq = − 1

ReP r
∇T dt .

Transport Equation of Temperature
By replacing the energy by the contributions of internal, kinetic and potential energy,
and by subtracting the contribution of the kinetic energy using the momentum
equation (15) and the distributivity rule (70), we obtain the transport equation for
the temperature

.

ρ

γ
Dt T +

∑
k

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

∂

∂xk

(
γ

ρ
F T

σ · σ sdBs

)〉
︸ ︷︷ ︸

QT

+
∑

i

ρ

2
dt

〈∫ t

0
F ui

σ · σ sdBs ,

∫ t

0
F ui

σ · σ sdBs

〉
︸ ︷︷ ︸

Qu

= −p∇ · (u�dt + σ tdB t )︸ ︷︷ ︸
Pt

−dpσ
t ∇ ·u�︸ ︷︷ ︸
Pσ

+ 1

Re
τ (u) : ∇ (

u� dt + σ tdB t

)
︸ ︷︷ ︸

Vt

+ 1

Re
τ (σ tdB t ) : ∇u�

︸ ︷︷ ︸
Vσ

+ (
(u� − u) dt + σ tdB t

) ·
(

−∇p + 1

Re
∇ · τ (u) + ρg

)
︸ ︷︷ ︸

Dt

+ (
u� − u

) ·
(

−∇dpσ
t + 1

Re
∇ · τ (σ tdB t )

)
︸ ︷︷ ︸

Dσ

+ 1

ReP r
∇ · (∇T ) dt.

(23)
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with .F
ui
σ = 1

ρ
F

ρui
σ , and .

γ
ρ
F T

σ · dB t the sum of all martingale terms of the RHS of
Eq. (23). In Eq. (23), we recover the terms present in the deterministic framework,
but considering the stochastic transport operator instead of the deterministic trans-
port operator. Nevertheless, some covariation terms are now arising. In particular
the term .QT is induced by the random work of the forces, and the term .Qu is
induced by the increase of kinetic energy through covariations of the forces in the
momentum equation. On the RHS, we remark that the drift velocity is involved in
the work of the time-differentiable pressure (in .Pt ) and random pressure (in .Pσ ),
consistently with Appendix 7. The terms .Vt and .Vσ are smooth in time and random
viscous stresses, respectively. In addition, the terms .Dt and .Dσ correspond to works
caused by the alignment between the drift and random velocities with the pressure
gradient and viscous forces. We call them drift works. Focusing on .−(u� − u) ·∇p,
we interpret this drift work to be related to baropycnal work [1], present in the
compressible large-eddy simulation framework. Indeed in standard compressible
LES, baropycnal work corresponds to a contribution caused by the alignment
between the large scale pressure gradient and the Reynolds stresses induced by
product between the small scales contributions of .ρ and .u (i.e. .

1
ρ
∇p · ρ′u′, with

.·′ denoting here small scale components and .· large scale filtering). This Reynolds
stress .

1
ρ
ρ′u′ has the dimension of a velocity. In our case, the interpretation of the

effective displacement associated with this work is directly the drift velocity over
. dt . Similar interpretations can be made for the other drift work terms, associated
with viscous stresses and random variables. The presence of gravity in the drift
work .Dt shows that in the vertical direction the time-differentiable drift work is of

the form .(w�−w)(
∂p
∂z

−ρg), and we see appearing the vertical small-scale mass flux
times the buoyancy .(w� − w)(ρ0b), plus non-hydrostatic pressure effects. It can be
noticed that for a divergence-free homogeneous noise (for which the variance tensor
is constant in space) the drift work is null as .u� − u cancels.

3.5 Equation of State

In order to close the system, we have to specify the equation of state. We keep
generality and write the equation of state formally as follows

.p = f (ρ, T ). (24)

As in the deterministic framework, since we have an evolution equation of density
and temperature, the pressure can be determined explicitly, at the price of a Courant-
Friedrichs-Lewi (CFL) condition constrained by the speed of sound.

The random pressure can be identified by differentiating the equation of state.
Indeed, we have an explicit evolution equation of the pressure, which can be
expressed through Itō formulae (the equation of state f being deterministic—i.e
the state map does not depend on the random events) as
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.

dtp =∂f

∂ρ
dt ρ + ∂f

∂T
dt T + 1

2

∂2f

∂ρ2 dt 〈ρ, ρ〉 + 1

2

∂2f

∂T 2 dt 〈T , T 〉 + ∂2f

∂ρ∂T
dt 〈ρ, T 〉

=∂p̃

∂t
dt + dpσ

t

τ
,

(25)

where .p̃ is the time-differentiable part of the pressure which contains, among
other things, all covariation terms. The martingale part of .dtp is .dpσ

t /τ , with .τ a
decorrelation time. This decorrelation time represents the typical time during which
the random pressure acts in a coherent manner to produce a change of momentum.
It is assumed to be the same decorrelation time than the one classically introduced
[e.g. 12, 4] to relate in practice the definition of the variance tensor to velocity

fluctuations variance: (i.e. .a = τ E

(
u′u′T

)
). The term .dpσ is identified from (25)

to be the random pressure acting on the momentum equation.
If we assume that the random pressure ensues from an isentropic process, i.e. of

acoustic nature, we can write

.dtp = ∂p

∂ρ

∣∣∣
s
dt ρ = c2dt ρ, (26)

with c the speed of sound and s the entropy. We can then identify from (12)

.dpσ
t = −τc2∇ · (ρσ tdB t ). (27)

It can be remarked that this expression is consistent with Eq. (25) under the
isentropic transformation assumption.

For oceanic flows, the equation of state is often expressed in terms of density
rather in pressure. A specific treatment adapted to oceanic flows is detailed in
Sect. 6.

4 Low Mach Approximation

To perform the low Mach approximation, we follow the same steps as [11], but
applied to the compressible stochastic Navier–Stokes equations. With our non-
dimensioning, we have at infinity for isentropic transformations,

.
∂p

∂ρ

∣∣∣
s

= c2
ref = 1

M2 . (28)

This suggests for small M the following asymptotic expansion
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.

ρ = ρ0 + M2ρ1 + o(M2),

u = u0 + o(1),

T = 1

M2 T0 + T1 + o(1).

(29)

and .p = O(
ρ1
M2 ) = O(1). Similarly, the random pressure .dpσ

t follows the same
scaling as the time-differentiable pressure.

Collecting .O(1) and .O(M2) terms in the continuity equation, we obtain respec-
tively

.∇ · (u�
0 dt + σ tdB t ) = 0 ; Dt ρ1 = 0. (30)

In the momentum equation (15), the order of magnitude of the covariation
term can be determined by integrating over the domain, using distributivity of the
divergence and performing an integration by parts:

.

∫
Ω

∑
k

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

∂

∂xk

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉
dx

=
∫

Ω

∑
k

∂

∂xk

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉
dx

−
∫

Ω

dt

〈∫ t

0
∇ · (ρσ sdBs),

∫ t

0

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉
dx

=
∫

δΩ

dt

〈∫ t

0
ρσ sdBs ·n,

∫ t

0

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉
dS

−
∫

Ω

dt

〈∫ t

0
∇ · (ρσ sdBs) ,

∫ t

0

(
1

ρ

(
−∂dpσ

s

∂xi

+ 1

Re

∂τij (σ sdBs)

∂xj

))〉
dx

=
∫

Ω

dt

〈∫ t

0
dt ρ︸︷︷︸

O(M2)

,

∫ t

0

1

ρ
F ρui

σ · σ sdBs︸ ︷︷ ︸
O(1)

〉
dx = O(M2),

(31)

where suitable boundary conditions at .δΩ (e.g. Dirichlet boundary conditions (no
random inflow velocity) or zero normal stress (outflow boundary conditions)), have
been applied to insure the first surface term vanishes.

By neglecting the order .O(M2) terms, we obtain then finally the incompressible
Navier-Stokes presented in [15] under the incompressibility assumption

.
ρ0 Dtu = −∇p dt − ∇dpσ

t + 1

Re
∇ · (τ (u)) dt + 1

Re
∇ · (τ (σ tdB t )) + ρg.

∇ ·u� = 0 ; ∇ · (σ tdB t ) = 0.

(32)
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5 Boussinesq-Hydrostatic Approximation

In this section, starting from the stochastic compressible Navier–Stokes equations,
we perform the Boussinesq approximation by considering small density fluctua-
tions. These fluctuations are neglected, when they are not multiplied by gravity .g,
which leads to the classical definition of the buoyancy. We perform as well the
hydrostatic approximation through the classical aspect ratio scaling .D = H/Lref �
1, with H the water depth. For simplicity, we do not consider a rotating frame.
Coriolis correction could be straightforwardly considered as in [21]. The vertical
coordinate .z ∈ [−H, η] is bounded by the bottom and the free surface.

Density
The density is decomposed through the following asymptotic expansion

.ρ = ρ0 + ερ1(z) + ερ2(x, y, z, t) + o(ε), (33)

with .ρ1(z) the time-averaged stratification term, and .ε � 1 and we do not need to
assume that .ρ1 > ρ2. We obtain hence

.∇ ·u� = 0 ; ∇ · σ tdB t = 0 ; Dt (ρ1 + ρ2) = 0. (34)

The drift velocity and the noise are divergence free. Density perturbations undergo
a stochastic transport by the flow. We remark that since .∇ · σ tdB t = 0, then the
transport operator .Dt (·) can be directly used.

The terms of order .ε of Eq. (34) can be expressed in terms of buoyancy .b =
−ε gρ2/ρ0:

.
ρ0

g
Dt b = (

w∗ dt + (σ tdB t )z
) ∂ρ1

∂z
− 1

2
∇ ·

(
a•z

∂ρ1

∂z

)
dt, (35)

with

.a =
(
aHHT aHz

azHT azz

)
, (36)

and .azHT = aT
Hz, for .H = (x y)T .

Thermodynamic Effects
Equation (35) is part of the stochastic version of what is often referred to as the
simple Boussinesq equations. In the ocean, thermodynamic effects can be important,
and we propose to incorporate these effects by combining the buoyancy and the
energy equation, following the steps of [22]. Assuming a linear equation of state for
sea water, we have
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.ρ = ρ0

(
1 − βT (T − T0) + βpp

)
, (37)

with .βp = 1/ρ0c
2 and .βT = 1/ρ0

∂ρ
∂T

the coefficients of the Taylor expansion. For
sake of simplicity, we do not take into account salinity effects, and we apply the
stochastic transport operator to Eq. (37). We obtain

.

Dt ρ = −ρ0βT Dt T + 1

c2Dtp

Dt

(
ρ − 1

c2
p

)
= −βT

γ
(dW + dQ) .

(38)

With no viscosity, divergence-free velocity and neglecting the quadratic variations
(with the same argument as in (31)) together with the hydrostatic assumption on the
leading term .p0, we can assume that the main dilatations are caused by radiative
effects to which the potential buoyancy .bφ is directly sensitive:

.bφ � − g

ρ0

(
δρ + ρ0gz

c2

)
= bst + b − g

z

Hp

, (39)

with .Hp = c2/g and .bst = −ε gρ1/ρ0. Upon applying the transport operator (with
forcing), the following evolution equation of the potential buoyancy is obtained

.Dt bφ = gβT

γρ0
(dQ + dWd), (40)

where .dQ = dQrad + 1
ReP r

∇ · (∇T ) dt , with .dQrad the radiative heat fluxes, and

.dWd = (
(u� − u) dt + σ tdB t

) · (−∇p + ρg)− (
u� − u

) ·∇dpσ
t

the drift works. The drift work on the vertical velocity component can be interpreted
(with a linear equation of state) as an alternative to the so-called eddy diffusivity
mass flux (EDMF) scheme proposed recently for atmospheric and oceanic penetra-
tive convection parameterization (see for instance [19, 10] and references therein).
Indeed, in EDMF, the subgrid stress in the transport equation of temperature is
modelled as a mass flux induced by a given number of plumes (corresponding here
possibly to .ρσ tdB t ), multiplied by the difference of temperature between the plume
and the ambient flow, which is here proportional to a buoyancy anomaly. Inter-
estingly, the pressure work provides a natural non-local (horizontal and vertical)
forcing term while the other term is a local upward/downward vertical statistical
forcing. EDMF schemes are obtained by specifying the noise in terms of velocity
fluctuations between the mean velocity and non-convective environment, upward
plumes and downward plumes. Such an interpretation need to be tested with
numerical simulations, and will be the focus of a future dedicated study.
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By defining the buoyancy frequency

.N2(z) � ∂

∂z

(
−εg

ρ1

ρ0
− g

z

Hp

)
= −ε

g

ρ0

∂ρ1

∂z
− g2

c2 , (41)

stratification and radiative effects can be introduced explicitly on the buoyancy
equation

.Dt b + (
w� dt + (σ tdB t )z

)
N2 − 1

2
∇ ·

(
a•zN

2
)

dt = gβT

γρ0
(dQ + dWd). (42)

Momentum
Concerning the momentum equation, we neglect here the viscous terms. In this
framework, g is assumed to be .O(1/ε). We decompose as well the pressure field
as follows

.p = p0(z)︸ ︷︷ ︸
O( 1

ε
)

+p1 + p2 + O(ε), (43)

where .p0 and .p1 are in hydrostatic balance:

.
∂p0

∂z
= −gρ0 and

∂p1

∂z
= −εgρ1. (44)

The momentum equation (15) becomes

.

(
ρ0 + ε(ρ1 + ρ2)

)
Dt ui −

∑
k

dt

〈∫ t

0
ρσ sdBk

s ,

∫ t

0

∂

∂xk

(
1

ρ

∂dpσ
s

∂xi

)〉

= − ∂p2

∂xi

dt − ∂dpσ
t

∂xi

− ερ2gδiz dt.

(45)

Similarly as in Sect. 4, the covariation term is .O(ε). By neglecting .O(ε) terms, we
obtain

.
Dt ui = − 1

ρ0

∂p2

∂xi

dt − 1

ρ0

∂dpσ
t

∂xi

−ε
ρ2

ρ0
g︸ ︷︷ ︸

b

δiz dt.
(46)

Finally, .p2 and the random pressure are determined through a generalisation of the
hydrostatic balance, accounting for a part of non-hydrostatic effects by balancing
in the vertical momentum equation the vertical pressure gradient with buoyancy,
stochastic diffusion, corrective drift and stochastic advection of w. We consider
a regime where the hydrostatic approximation in the deterministic framework is
only roughly valid (in other words at the limit of validity), such that a noise with a
strong amplitude can break this assumption—or changing viewpoint, the regime is
intermediate and we aim at modelling some weak non-hydrostatic effects through
stochastic modelling. By scaling analysis (weak aspect ratio and noise with strong
amplitude), .dtw and .(u ·∇) w are neglected while terms associated with the noise
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are kept. Indeed, denoting .Lσ the scale amplitude of .σ tdB t , and .τ the decorrelation
time, the advection of .σ tdB t cannot be neglected if1

.Lσ /Lref ∼ 1/(F r D)2

and stochastic diffusion and drift velocity are important if .(Lσ /Lref)
2τ/Tref ∼

1/(F r D)2, with the Froude number .Fr = uref/(NH). Since .dtw is neglected,
martingale and time-differentiable terms can then be safely separated, such that the
remaining pressure term can be determined by vertical integration through a scheme
similar to the one applied in the classical hydrostatic regime:

.

p2 = ρ0

∫ η

z

((
1

2
∇ ·a ·∇

)
w + 1

2
∇ · (a∇w) − b

)
dz

dpσ
t = −ρ0

∫ η

z

(σ tdB t ·∇) w dz.

(47)

Here, we have neglected .dtw, but random vertical transport could generate
some random vertical acceleration instead of only random pressure fluctuations.
An intermediary assumption could be to consider that the time-differentiable part of
.dtw is negligible (classical hydrostatic balance), but that its martingale part is not.
It could be obtained by diagnosing the vertical velocity time increment and thus
bringing and additional correction to .dpσ

t in Eq. (47).

Summary
By collecting the Eqs. (42), (46), and (47), we obtain the following stochastic
Boussinesq system with thermodynamic forcing

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dt ui = − 1

ρ0

∂p2

∂xi

dt − 1

ρ0

∂dpσ
t

∂xi

for i = {u, v}

w = 1

2
(∇ ·a)z −

∫ z

−H

(
∂u�

∂x
+ ∂v�

∂y

)
dz

∇ · (σ tdB t ) = 0

p2 = ρ0

∫ η

z

((
1

2
∇ ·a ·∇

)
w + 1

2
∇ · (a∇w) − b

)
dz

dpσ
t = −ρ0

∫ η

z

(σ tdB t ·∇) w dz

Dt b + (
w� dt + (σ tdB t )z

)
N2 − 1

2
∇ ·

(
a•zN

2
)

dt = gβT

γρ0
(dQ + dWd)

dQ = dQrad + 1

ReP r
∇ · (∇T ) dt

dWd =
(

1

2
∇ ·a dt − σ tdB t

)
· (∇p2 + ρ0bez) + 1

2
∇ ·a ·∇dpσ

t .

(48)

1 If the frame rotation is taken into account, the ratio .Ro/Bu Rossby over Burger is additionally
involved, but does not change the existence of an intermediary regime.
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In system (48), the pressure is obtained through a relaxed hydrostatic balance, and
the vertical velocity is deduced kinematically from the divergence-free condition
of the drift velocity. Neglecting the thermodynamic effects, together with a strong
hydrostatic balance assumption (weak to moderate noise regime), we recover
the simple Boussinesq system presented in [16], without the Coriolis correction.
Obviously, this latter could be added without any major difficulty.

In some applications, a more accurate evaluation of the buoyancy is required,
and it can be obtained through an equation of state .ρBQ(T , p) (salinity is not taken
into account here and left for future works) associated with a transport equation of
temperature (and salinity when considered). Under the aformentioned assumptions,
the transport equation of temperature (23) is simplified, and the full system can be
written

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dt ui = − 1

ρ0

∂p2

∂xi

dt − 1

ρ0

∂dpσ
t

∂xi

for i = {u, v}

w = 1

2
(∇ ·a)z −

∫ z

−H

(
∂u�

∂x
+ ∂v�

∂y

)
dz

∇ · (σ tdB t ) = 0

p2 = ρ0

∫ η

z

((
1

2
∇ ·a ·∇

)
w + 1

2
∇ · (a∇w) − b

)
dz

dpσ
t = −ρ0

∫ η

z

(σ tdB t ·∇) w dz

ρ

γ
Dt T =

(
1

2
∇ ·a dt − σ tdB t

)
· (∇p2 + ρ0bez) + 1

2
∇ ·a ·∇dpσ

t

+ 1

ReP r
∇ · (∇T ) dt + dQrad

b = − g

ρ0
ρBQ(T ,−ρ0gz).

(49)

Usually, a simple stochastic advection-diffusion equation is considered for the
transport of temperature, but in the system (49), we can point out that the drift works
remain. These source/sink terms in the temperature evolution equation is one of the
principal outcome of this study. As outlined this additional terms for parameterising
discrepancies to hydrostatic physics and primitive equations. In the next section, we
explore systems at finer resolution.
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6 Extension to Non-Boussinesq

The aim of this section is to propose a formulation to relax the Boussinesq
assumption in the LU stochastic framework while avoiding the resolution of a 3D
Poisson equation. We consider now an intermediate model between the fully non-
Boussinesq non-hydrostatic formulation and the system (49). For sea water, the
equation of state is formulated in terms of .ρBQ(T , p) instead of .p(ρ, T ) as in gas
dynamics. To take this aspect into consideration, we follow [3] in order to obtain
an explicit expression of the pressure. This is at the cost of resolving in time sound
waves, or a pseudo-compressibility information propagating at the velocity c. The
density is decomposed as

.ρ = ρBQ(T , p) + ∂ρ

∂p
δp︸ ︷︷ ︸

δρ

+O(δp2), (50)

with .ρBQ(T ,−ρ0gz) the Boussinesq density determined by the equation of state
under an hydrostatic balance condition. The deviation to this density is then assumed
to be ensue from an isentropic transformation, i.e. of acoustic nature. The term

.
∂ρ
∂p

= 1
c2 , is then directly related to the sound speed (or more precisely to the fastest

wave considered in the model). We determine now a transport equation for .δρ.

Continuity
We start from the continuity equation of the stochastic compressible Navier–Stokes
equations

.dt ρ + ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
ρ

)
= 1

2
∇ · (a∇ρ) dt. (51)

A transport equation for .δρ can be deduced as

.

dt (δρ) = − dt (ρBQ) − ∇ ·
((

(u − 1

2
∇ ·a) dt + σ tdB t

)
(ρBQ + δρ)

)

+ 1

2
∇ · (a∇ρBQ + δρ) dt.

(52)

At the scales considered here we assume that the unresolved contribution is of
hydrodynamic nature associated to a divergence free noise .∇ · (σ tdB t ) = 0.

Momentum
The pressure can be decomposed as well as

.p = patm +
∫ η

z

ρBQ(z
′)g dz′ + pNH + c2δρ, (53)
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where .patm is the atmospheric pressure, which will be neglected later for simplicity.
The second term is the hydrostatic pressure associated with the Boussinesq density.
The third term, .pNH, is associated with Boussinesq non-hydrostatic effects balancing
vertical advection, and finally .c2δρ corresponds to a non-Boussinesq component of
acoustic nature.

For the martingale random pressure, two components are considered: a Boussi-
nesq non-hydrostatic term as in Eq. (48), and a non-Boussinesq component of
acoustic nature as in Eq. (27)

.dpσ
t = −ρ0

∫ η

z

(σ tdB t ·∇) w dz′ − τc2 (σ tdB t ·∇) ρ. (54)

Neglecting the viscous terms, we obtain for the momentum equation

.ρ Dt ui −
∑

k

dt

〈∫ t

0
ρ(σ sdBs)

k,

∫ t

0

∂

∂xk

(
1

ρ

∂dpσ
s

∂xi

)〉
= − ∂p

∂xi

dt − ∂dpσ
t

∂xi

+ ρg.

(55)

Assuming that .ρ Dt ui ≈ ρBQ Dt ui , and following the same arguments as in Sect. 4
to neglect the quadratic variation term, one finally get

.

ρBQ Dt u = −∂p

∂x
dt − ∂dpσ

t

∂x

ρBQ Dt v = −∂p

∂y
dt − ∂dpσ

t

∂y

ρBQ Dtw = −∂p

∂z
dt − ∂dpσ

t

∂z
+ (ρBQ + δρ)g dt

p =
∫ η

z

(
(ρBQ(z

′) + δρ)g + ρBQ

((
1

2
∇ ·a ·∇

)
w + 1

2
∇ · (a∇w)

))
dz′ + c2δρ

dpσ
t = −ρ0

∫ η

z

(σ tdB t ·∇) w dz′ − τc2 (σ tdB t ·∇) ρ.

(56)

The system (52)–(56) can be solved explicitly and does not require the expensive
resolution of a 3D Poisson equation. Although system (49) proposes a deviation to
the hydrostatic hypothesis through the martingale random pressure, the system (56)
considers a non-hydrostatic model that fully accounts for stochastic vertical accel-
erations while relaxing the effect of fast waves truncation through the martingale
pressure term. This system remains restricted by a CFL condition depending on
the propagation speed of pseudo-compressibility informations. We believe this
modelling strategy opens some new research directions on the role of unresolved
small scales on non-hydrostatic and non-Boussinesq effects in oceanic flows.
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7 Conclusion

This paper proposes a stochastic representation under location uncertainty of the
compressible Navier–Stokes equations. It as been obtained from conservation
of density, momentum and total energy, undergoing a stochastic transport. The
structure of equations remains similar to the compressible deterministic case.
Nevertheless, because of the specificities related to stochastic transport, we have
identified additional terms such as work induced by the alignment between the time-
differentiable pressure gradient and the drift velocity. This small scale induced work
is alike the baropycnal work known in compressible large eddy simulations and
includes also terms reminiscent to mass flux parameterisation of atmospheric and
oceanic penetrative convection phenomenon. These terms are obtained by the mean
of a rigorous derivation from the conservation laws coupled with stochastic calculus
rules associated to stochastic transport, instead of phenomenological arguments.

We have verified that applying low-Mach and Boussinesq approximations on
the stochastic compressible system enabled us to recover the known incompressible
and simple Boussinesq stochastic systems respectively. The general set of stochastic
compressible equations allowed us to incorporate thermodynamic effects on the
Boussinesq system. Finally, this formulation has lead us to propose a way to
relax the Boussinesq and hydrostatic assumptions. This study opens some new
research directions to exploit the potential of stochastic modelling for the numerical
simulations of oceanic flows we will exploit in future works.
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Appendix A: Stochastic Reynolds Transport Theorem from
Stratonovich to Itō

The aim of this section is to rewrite the stochastic Reynolds transport theorem
with a Stratonovich convention, and verify that we get the same relation as the
ones obtained in Sect. 2 in the Itō setting. To that end, we follow the steps of
[16, Appendix D] but we use the Stratonovich convention. Then, we pass from
the Stratonovich to the Itō form. These forms are equivalent for regular enough
processes, thus allowing us to verify the consistency of the Eq. (9).

To pass from Itō to Stratonovich, we use the following relation

.Xt ◦dYt = XtdYt + 1

2
dt

〈∫ t

0
dXs,

∫ t

0
dYs

〉
. (57)

We define the characteristic function .φ(x, t) transported by the flow, such that
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.φ(Xt (x0)) = g(x0), (58)

with a compact spatial support .V(t) of non-zero values that does not include points
on the domain boundary. We can then write

.

d
∫
V(t)

(qφ)(x, t) dx =d
∫

Ω

(qφ)(x, t) dx

=
∫

Ω

dt ◦q φ + q dt ◦φ dx.

(59)

Since .φ is transported, we have

.

dφ(Xt , t) = dt ◦φ + ∇φ · dXt = 0

dt ◦φ + (u − 1

2
∇ ·a + 1

2
σ t (∇ · σ t )) ·∇φ + (∇φ · σ t )◦dB t = 0.

(60)

We have then

.

d
∫
V(t)

(qφ)(x, t) dx

=
∫

Ω

dt ◦q φ − q

(
(u − 1

2
∇ ·a + 1

2
σ t (∇ · σ t )) ·∇φ + (∇φ · σ t )◦dB t

)
dx

=
∫

Ω

[
dt ◦q + ∇ ·

(
q

(
(u − 1

2
∇ ·a + 1

2
σ t (∇ · σ t )) dt + σ t ◦dB t

))]
φ dx.

(61)

We add now a force and obtain the SRTT in Stratonovich form:

.dt ◦q+∇ ·
(

q

(
(u − 1

2
∇ ·a+ 1

2
σ t (∇ · σ t )) dt+σ t ◦dB t

))
=Qt dt+Qσ ◦dB t .

(62)
Let us now write this in Itō form:

.

∂

∂xi

(
qσt,ij ◦dB

j
t

)
= ∂

∂xi

(
qσt,ij dB

j
t

)

+ 1

2
dt

〈∫ t

0
dt

(
∂

∂xi

(
qσs,ij

))
,

∫ t

0
dB

j
s

〉
︸ ︷︷ ︸

J

.
(63)

Since .σ t is time differentiable in the Eulerian grid, we have

.dt

〈∫ t

0
dt σs,ij ,

∫ t

0
dB

j
s

〉
= 0.
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Then,

.

J =dt

〈∫ t

0

(
∂

∂xi

(
dt qσs,ij

))
,

∫ t

0
dB

j
s

〉

=dt

〈∫ t

0

(
∂

∂xi

((
Qσ · dBs − ∂

∂xk

(
qσs,lmdBm

s

))
σs,ij

))
,

∫ t

0
dB

j
s

〉

= ∂

∂xi

(
Qj

σ σt,ij

)
dt − ∂

∂xi

(
∂

∂xl

(
qσt,lj

)
σt,ij

)
dt

= ∂

∂xi

(
Qj

σ σt,ij

)
dt − ∂

∂xi

(
∂q

∂xl

σt,lj σt,ij

)
dt − ∂

∂xi

(
q

∂σt,lj

∂xl

σt,ij

)
dt

=∇ · (σ tQσ ) dt − ∇ · (a∇q) dt − ∇ · (qσ t (∇ · σ t )) dt.

(64)

In addition, we make the hypothesis that .dQσ is time-differentiable in the
Lagrangian frame, such that we have

.

d
∫
V(t)

Qj
σ dx =

∫
V(t)

dtQ
j
σ + ∇ · (Qj

σ (u� dt + σ tdB t )) + 1

2
∇ · (a∇Qj

σ ) dt dx

=
∫
V(t)

F dt dx.

(65)
We can then write

.

∫
V(t)

Qσ ◦dB t dx =
∫
V(t)

Qσ dB t + 1

2
dt

〈∫ t

0
dtQ

i
σ ,

∫ t

0
dBi

s

〉
dx

=
∫
V(t)

Qσ dB t − 1

2
dt

〈∫ t

0
∇ · (Qi

σ σ sdBs),

∫ t

0
dBi

s

〉
dx

=
∫
V(t)

Qσ dB t − 1

2
dt

〈∫ t

0

∂

∂xj

(Qi
σ σs,jkdBk

s ),

∫ t

0
dBi

s

〉
dx

=
∫
V(t)

Qσ dB t − 1

2

∂

∂xj

(Qi
σ σt,j i) dt dx

=
∫
V(t)

Qσ dB t − 1

2
∇ · (σ tQσ ) dt dx.

(66)
Assembling everything and dropping the space integral, we obtain
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.

dt ◦q + ∇ ·
(

q

(
(u − 1

2
∇ ·a + 1

2
σ t (∇ · σ t )) dt + σ t ◦dB t

))

− Qt dt − Qσ ◦dB t

=dt q + ∇ ·
(

q

(
(u − 1

2
∇ ·a + 1

2
σ t (∇ · σ t )) dt + σ tdB t

))

+ 1

2

[∇ · (σ tQσ ) dt − ∇ · (a∇q) dt − ∇ · (qσ t (∇ · σ t )) dt
]

− Qt dt − Qσ dB t + 1

2
∇ · (σ tQσ ) dt.

(67)

We note that .dt◦q = dt q since .
1
2 dt

〈∫ t

0 ds ,
∫ t

0 q
〉
= 0. After simplification, we obtain

.

dt q + ∇ ·
(

q

(
(u − 1

2
∇ ·a) dt + σ tdB t

))
+ ∇ · (σ tQσ ) dt

= 1

2
∇ · (a∇q) dt + Qt dt + Qσ dB t ,

(68)

which is exactly Eq. (9).
To obtain Eq. (68), we had to assume that .dQσ is time-differentiable in the

Lagrangian frame, which renders the demonstration slightly more restrictive con-
cerning the shape of the forces. We do not have to perform such an assumption in
Itō form, and we consider the present appendix as a sanity check of Eq. (9).

Appendix B: Calculation Rules

Distributivity of the Stochastic Transport Operator

The distributivity of the stochastic transport operator is detailed in this section, in
the case where the stochastic transport operator is balanced by random RHS. If the
evolution of two variables f and g are given by

.

Dt f = Ft dt + F σ · dB t

Dt g = Gt dt + Gσ · dB t ,
(69)

we have then

.Dt (fg)=f Dt g+gDt f+F σ ·Gσ dt−(σ t (F σ ) ·∇) g dt−(σ t (Gσ ) ·∇) f dt, (70)

or less formally:
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.

Dt (fg) =f Dt g + gDt f

+ dt

〈∫ t

0
F σ · dBs ,

∫ t

0
Gσ · dBs

〉

− dt

〈∫ t

0
F σ · dBs ,

∫ t

0
(σ sdBs ·∇) g

〉

− dt

〈∫ t

0
Gσ · dBs ,

∫ t

0
(σ sdBs ·∇) f

〉
.

(71)

This relation is useful to transform the conservative form of the Navier-Stokes
equations into non-conservative form.

Proof

.

Dt (fg) =

dt (fg) + (
u� ·∇)

(fg) dt + (σ tdB t ·∇) (fg) − 1

2
∇ · (a∇(fg)) dt

= f dt g + gdt f + dt 〈f, g〉

+ f
(
u� ·∇)

g dt + g
(
u� ·∇)

f dt + 1

2
∇ · (f a∇g + ga∇f )

= f dt g + gdt f

+ dt

〈∫ t

0
− (σ sdBs ·∇) f + F σ · dBs ,

∫ t

0
− (σ sdBs ·∇) g + Gσ · dBs

〉

+ f
(
u� ·∇)

g dt + g
(
u� ·∇)

f dt

− 1

2

(
f ∇ · (a∇g) + ((a∇g) ·∇) f + g∇ · (a∇f ) + ((a∇f ) ·∇) g

)
dt.

(72)

Developing only the covariation term:

.

dt

〈∫ t

0
− (σ sdBs ·∇) f + F σ · dBs ,

∫ t

0
− (σ sdBs ·∇) g + Gσ · dBs

〉
=

((a∇f ) ·∇) g dt

+ dt

〈∫ t

0
F σ · dBs ,

∫ t

0
Gσ · dBs

〉

− dt

〈∫ t

0
F σ · dBs ,

∫ t

0
(σ sdBs ·∇) g

〉

− dt

〈∫ t

0
Gσ · dBs ,

∫ t

0
(σ sdBs ·∇) f

〉
,

(73)
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whose right hand side is written formally

.(a∇f ·∇) g dt + F σ ·Gσ dt − (σ t (F σ ) ·∇) g dt − (σ t (Gσ ) ·∇) f dt. (74)

Substituting (74) into (72), we obtain Eq. (70).

Work of Random Forces

For sake of clarity, we first detail calculation rules in the context of point mechanics
to define the work of random forces. We consider a random force, whose impulse is a
martingale .dF σ . We write its elementary work in a weak sense for any differentiable
function .φ(t) such that .φ(0) = φ(T ) = 0:

.

∫ T

0
φ(t)dWσ =

∫ T

0
φ(t)

(
∂

∂t

∫ t

0
dF σ

)
· dX. (75)

The random force .
∂
∂t

∫ t

0 dF σ is written here formally, since .dF σ is a martingale
and cannot be differentiated in time. The work in Eq. (75) can be split in two
contributions: .dWσ,u associated with the displacement .u dt , and .dWσ,σ associated
with the displacement .σ tdB t . We treat them separately.

.

∫ T

0
φ(t)dWσ,u =

∫ T

0
φ(t)

(
∂

∂t

∫ t

0
dF σ

)
·u(x, t) dt.

= −
∫ T

0

(∫ t

0
dF σ

)
· (φ(t)u(x, t))′ dt.

(76)

The last expression is well defined and is a proper way to write this term. We can
remark that .

∫ t

0 dF σ is homogeneous to a Brownian. If we expand the following
expression for a time-differentiable function .ψ(x, t)

.

∫ T

0
d

(
ψ(x, t) ·

∫ t

0
dF σ

)
=

∫ T

0

(∫ t

0
dF σ

)
· dψ(x, t) +

∫ T

0
ψ(x, t)dF σ

=
∫ T

0

(∫ t

0
dF σ

)
·ψ ′(x, t) dt +

∫ T

0
ψ(x, t)dF σ ,

(77)
by taking .ψ(x, t) = φ(t)u(x, t), we obtain
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.

∫ T

0
φ(t)dWσ,u =

∫ T

0
φ(t)u(x, t)dF σ −

∫ T

0
d

(
φ(t)u(x, t) ·

∫ t

0
dF σ

)

=
∫ T

0
φ(t)u(x, t)dF σ − φ(T )u(x, T ) ·F σ (x, T )

=
∫ T

0
φ(t)u(x, t)dF σ .

(78)

We can identify

.dWσ,u = u(x, t)dF σ . (79)

The second term .dWσ,σ is not well defined, even in weak form. Informally, it
should balance with kinetic energy of .σ tdB t , which is not well defined (possibly
infinite), and which has not been considered in the definition of total energy.
Discarding this term is consistent with the derivation of the momentum in [15],
where the acceleration associated with .σ tdB t being highly irregular is assumed
to be in balance with some forces components which are equally irregular. As a
consequence in our model, there is no work of the random forces associated with
the Brownian motion displacement of the control surface.

Appendix C: Displacement of a Transported Control Surface

Let us apply the SRTT to a characteristic function (.q = 1 in .Ω(t), .q = 0 outside)
transported by the flow [16], and use the divergence theorem. We obtain the volume
variation associated with a control surface transported by the stochastic flow.

.

dV (t) = d
∫

Ω(t)

1 dx =
∫

Ω(t)

∇ · (u� dt + σ tdB t ) dx

=
∫

δΩ(t)

(u� dt + σ tdB t )︸ ︷︷ ︸
dXd,t

·n dS.
(80)

Hence, the normal displacement of the control surface is .dXd,t ·n, which involves the
modified advection velocity. As a consequence, the modified advection velocity has
to be considered for the definitions of elementary works based on surface integrals.
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Data Driven Stochastic Primitive
Equations with Dynamic Modes
Decomposition

Francesco L. Tucciarone, Etienne Mémin, and Long Li

Abstract As planetary flows are characterised by interaction of phenomenons in a
huge range of scales, it is unaffordable today to resolve numerically the complete
ocean dynamics. In this work, a stochastic version of primitive equations are
implemented into the NEMO community ocean model to assess the capability of
the so-called Location Uncertainty framework in representing the small scales of
the ocean flows.

Keywords Stochastic parametrization · Ocean modelling

1 Introduction

Numerical resolution of planetary flows is nowadays a key tool to investigate
possible future climates. The Ocean is a key actor of climate regulation and its
evolution is for that reason of major interest. High resolution simulations are
however extremely expensive and their usage remains limited to small domains.
Large-scale simulations remain the primary tool to investigate future states of
the Ocean (and of the Atmosphere as well). These simulations however do not
resolve the complex interdependence of mesoscale and sub-mesoscale dynamics
that characterises the global circulation, and thus great care must be put in the choice
of the parametrization of all the scales that are too small to be efficiently resolved.
Recent approaches incorporate noise terms to the dynamics of the flow with the goal
of modelling the unresolved (and parametrised) processes, including small-scale
turbulence, boundary value and scale coarsening uncertainty, as well as discretiza-
tion and numerical errors. Rigorously justified methodologies have been introduced
by Mémin [1] and Holm [2], providing a theoretically consistent stochastic large
scale representation of the Navier-Stokes equations [3] conserving either energy
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or circulation, respectively. Both models rely on a stochastic decomposition of the
Lagrangian trajectory into a smooth-in-time component induced by the large scale
velocity and a random fast-evolving uncorrelated part. From such models, a large-
scale representation with a stochastic definition of the small-scale effect emerges
naturally. Moreover, compared to classical large-scale deterministic modelling, the
additional degree of freedom brought by the stochastic component allows us to
devise new intermediate models [4, 5, 6, 7, 8]. The Location Uncertainty (LU)
approach [1] has been tested within the barotropic quasi-geostrophic model, the
rotating shallow water model and the surface quasi-geostrophic model, where it has
proven to be more accurate in structuring the large-scale flow [4], reproducing long-
term statistics [9] and providing a good trade-off between model error representation
and ensemble spread [10, 11] This work investigates the benefits of such model in
the hydrostatic primitive equations, following the work of [12] in which noise based
on Empirical Orthogonal Functions (EOF) was proposed. Here, a more elaborate
noise defined from a Dynamics Mode Decomposition (DMD) strategy is proposed.

2 Location Uncertainty (LU)

The Location Uncertainty principle consists in describing the trajectory .Xt of a fluid
particle with a stochastic decomposition of the Lagrangian trajectory, represented
with the following stochastic differential equation (SDE):

.dXt = v (Xt , t) dt + σ (Xt , t) dBt , (1)

where .X : Ω × R+ → Ω is the fluid flow map, i.e. the trajectory followed by fluid
particles starting at initial map .X|t=0 = x0 of the bounded domain .Ω ⊂ R3. The
first component, .v (Xt , t), acts as the smooth-in-time component of the (Lagrangian)
velocity of the flow, which is correlated both in space and time and associated with
the integration of the equations of motion. The second component, .σ (Xt , t) dBt ,
is a stochastic contribution (referred to as noise) that accounts for the processes
that cannot be resolved at a given resolution or that have been neglected through
a given numerical or physical modelling approximation. To completely define this
last component, let H be the Hilbert space, .H = (

L2 (S) , Rd
)
, the space of square

integrable functions over .S with value in .Rd , with the inner product .〈f ,g〉H =∫
S(f †g) dx and induced norm .‖f ‖H = √〈f ,f 〉H , and let T be a finite time,

.T < +∞. In this framework .{Bt }0≤t≤T is defined as an .H−valued (cylindrical)
Brownian motion [13]:

.Bt =
∑
i∈N

β̂iei , (2)
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where .(ei )i∈N is a Hilbertian orthonormal basis of H and .(β̂i)i∈N is a
sequence of independent standard Brownian motions on a stochastic basis
.(Ω,F , (Ft )t∈[0,T ], P). The noise is then properly defined as the application of
an Hilbert-Schmidt symmetric integral kernel .σ tf (x) = ∫

S σ̆ (x, y, t) f (y) dy to
the .H−valued cylindrical Wiener process .B as

. (σ tdBt )
i (x) =

∫
S

σ̆ik (x, y, t) dBk
t (y) dy, (3)

where the Einstein summation notation is adopted. The role of the integrable kernel
.σ̆ is to impose a fast/small scale spatial correlation. It leads to the covariance
tensor .Q

.Qij (x, y, t, s) = IE
[
(σ tdBt (x))i (σ tdBs (y))j

]

= δ (t − s) dt
∫
S

σ̆ik (x, z, t) σ̆kj (z, y, s) dz,

of the centred Gaussian process .σ tdBt ∼ N (0,Q). The diagonal components of the
covariance tensor per unit of time, defined as .a(x, t)δ(t − t ′)dt = Q(x, x, t, t ′), are
referred to as the variance tensor. This tensor provides a measure of the strength of
the noise. Notably, the variance tensor has the dimension of a viscosity in .m2s−1 and
is symmetric and positive definite. The operator .a is a compact auto-adjoint positive
definite operator on H , that admits hence eigenfunctions .ξn (·, t) with (strictly)
positive eigenvalues .λn (t) satisfying .

∑
n∈IN λn (t) < +∞. As a consequence,

the noise and the variance tensor .a can be expressed (with another sequence of
independent standard Brownian motions) through the spectral representation

.σ tdBt (x) =
∑
n∈IN

λ1/2 (t) ξn (x, t) dβn. (4)

a (x, t) =
∑
n∈IN

λ (t) ξn (x, t) ξ†n (x, t) . (5)

This noise term is centred, however a modification can be applied in order to
consider a Lagrangian displacement of the form

.dXt = [v (Xt , t) − σ tYt (x)] dt + σ tdB̃t (Xt ) . (6)

In contrast with (1), this decomposition sees the contribution of a centred Wiener
process .̃Bt that is drifted by a correlated component .σ tYt (x). A proof of this
statement can be given with Girsanov theorem, as a new probability measure .̃P can
be built in such a way that a non centred Wiener process as
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.̃Bt = Bt +
∫ t

0
Ys ds, (7)

where .{Yt }t is a random process shifting the process .̃Bt , remains centred on
.{Ω,F , P̃, {Ft }0≤t≤T }. The new definition of the noise reads then

.σ tdBt (x) = σ tdB̃t (x) − σ tYt (x) dt, (8)

with .{B̃t }t a .̃P−Wiener process. All the arguments provided in the following will
hold for this process under .̃P, but the usage of a drifted noise is of paramount
importance when the phenomenon to be modelled displays a non-zero time average
and the physical processes involved cannot be regarded as completely uncorrelated,
like in the case of ocean eddies and gyres. In the following, Eq. (6) will define our
Lagrangian trajectory and the tilde notation will be dropped for simplicity.

3 Stochastic Boussinesq Equations

Within the Location Uncertainty formalism the evolution of a random tracer q

transported along the stochastic flow is described by the stochastic Reynolds
transport theorem, introduced in [1]. The rate of change of a scalar q, integrated
within the volume .Vt , is described by

.d
∫

Vt

q (x, t) dx =
∫

Vt

{
Dt q + q∇ · [

v� dt + σ tdBt

]}
(x, t) dx, (9)

and summarised by the operator

.Dt q = dt q + [
v� dt + σ t dBt

] ·∇q − 1

2
∇ · (a∇q) dt. (10)

In this formula, the first component of the right-hand side is the increment in time
at a fixed location of the process q, that is .dt q = q (Xt , t + dt) − q (Xt , t), playing
the role of a derivative in time for a non differentiable process. Encased in the
square brackets there is the stochastic advection displacement, composed of a time
correlated modified advection .v� and a fast evolving, time uncorrelated noise .σ t dBt ,
both advecting the scalar q. Under the probability measure .̃P the velocity .v� is
defined as

.v� = v − 1

2
∇ · a + σ ∗

t (∇ · σ t ) − σ tYt , (11)

where .v is the resolved component of the velocity, .vs = 1
2∇ · a is the effective

transport velocity resulting from the noise inhomogeneities and the last term is
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the Girsanov drift due to a non centred noise. With this operator it is possible to
formulate the Boussinesq equations under location uncertainty as done in [12] and
reported below, split into horizontal and vertical equations using the convention
.v = (u, w) and with the buoyancy defined as .b = −g

ρ−ρ0
ρ0

.

. Horizontalmomentum :

Dtu+f e3 ×
(
u dt+1

2
σ tdBH

t

)
=∇H

(
−p′+ν

3
∇ · v

)
dt−∇Hdp

σ
t . (12)

Verticalmomentum :
Dtw = ∂

∂z

(
−p′ + ν

3
∇ · v

)
dt − ∂

∂z
dpσ

t + b dt . (13)

Temperatureandsalinity :
Dt T = κT ΔT dt, . (14)

Dt S = κSΔS dt, . (15)

Incompressibility :
∇ · [

v − vs
] = 0, ∇ · σ tdBt = 0, ∇ · σ tYt = 0. (16)

Equationofstate :
b = b (T , S, z) . (17)

In this formulation Temperature T and Salinity S are introduced as active tracers
and transported along the stochastic flow, thus impacting the stochastic transport
of momentum through the equation of state. The term .dpσ

t in Eqs. (12) and (13)
is a martingale term representing (under the measure .̃P) a zero-mean turbulent
pressure related to the noise, termed stochastic pressure. From this starting point,
Primitive equations can be achieved through a hydrostatic hypothesis on the vertical
acceleration equation, resulting in the two conditions

. − ∂p′

∂z
+ b = 0 and

∂ dpσ
t

∂z
= 0, (18)

the first one being the usual hydrostatic balance, the second being the result of
the uniqueness of the semi-martingale decomposition. In this work and within the
scaling used in [12], the stochastic pressure is constant along depth and is supposed
to be in a pure geostrophic balance [10, 14], thus not impacting the rate of change
of momentum. In this hydrostatic setting the vertical component of momentum is
a diagnostic variable computed through integration of the incompressibility condi-
tion (16), and the large scale pressure .p′ is obtained through vertical integration of
the buoyancy term.
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4 Methods

The proposed method is implemented in the level-coordinate free-surface primitive
equation model NEMO [15] in a double-gyre configuration consisting of a .45◦
degrees rotated beta plane centred at .∼30◦N, .3180 km long, .2120 km wide and
.4 km deep, bounded by vertical walls and with a flat bottom. Seasonal winds and
buoyancy changes are imposed as external forcings to induce the creation of a
strong jet that separates a cold sub-polar gyre from a warm sub-tropical gyre. The
complete details of this configuration are given in [16, 17], and the parameters of
the simulation were chosen accordingly to the reference papers. The only change is
in the values of eddy viscosity and diffusivity, enhanced of a factor five to suppress
aliasing in the salinity field observed for smaller values (see Table 1 for an overview
of their values). In order to assess the benefits brought by this stochastic approach,
two purely deterministic simulations at different resolutions, 1/27.◦ (R27d) and 1/3.◦
(R3d), are compared to a stochastic simulation at 1/3.◦ (R3LU). Each simulation
consists of 10 years of data, collected every 5 days and averaged over the 5 days.
The R27d simulation has been spun-up for 100 years before collecting data for the
LU framework. Similarly, an additional 1/9.◦ deterministic simulation has been spun
up for 100 years in similar conditions in order to construct an initial state for the
deterministic and stochastic 1/3.◦ simulations.

4.1 High Resolution Data Filtering

The high resolution data used to force the low resolution stochastic model need to be
filtered before being used, in order to avoid the injection of energy scales that can
jeopardise the stability of the simulation. The low resolution velocity fluctuations
are obtained through spatial filtering of high resolution temporal fluctuations. First,
a time average is defined on the high resolution fields as

.u t
HR

(x) = 1

T

∫
T

uHR (x, t) dt, (19)

Table 1 Parameters of the model experiments

R27d R3d R3LU

Horizontal resolution 1/27◦ (3.9 km) 1/3◦ (35.3 km) 1/3◦ (35.3 km)

Horizontal grid points 540×810 60×90 60×90

Vertical levels 30 30 30

Time step 5 min 20 min 20 min

Eddy viscosity −5×10−9 m4s−1 −5×10−12 m4s−1 −5×10−12 m4s−1

Eddy diffusivity −5×10−10 m4s−1 1500 m2s−1 1500 m2s−1
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so to obtain with Reynolds decomposition the high resolution fluctuations:

.u′
HR

(x, t) = uHR (x, t) − u t
HR

(x) . (20)

The corresponding low resolution fluctuations are obtained through a band-pass
filter as .u′

LR
= (G1 − G2) u′

HR
, where .G represents a Gaussian filter. These filtered

fields have a smaller amount of energy compared to the original snapshots, and they
are re-scaled to this amount as

.u′
LR

=
∥∥∥u′

HR

∥∥∥
2∥∥∥∥[

(G1 − G2)u′
HR

]↓
LR

∥∥∥∥
2

[
(G1 − G2)u′

HR

]↓
LR

, (21)

where the downward arrow represents downscaling towards low resolution. The
result of this procedure sees the velocity fluctuations have the same spatial structure
as before but enhanced level of energy.

4.2 Off-Line Noise Modelling Through DMD

Dynamical Mode Decomposition is a methodology [19] to construct a proxy linear
dynamical system to describe an unknown non-linear dynamics. In this paper
DMD is applied to the evolution in time of the velocity fluctuations, that is thus
approximated as

.u′ (x, ti+1) ∼ Au′ (x, ti ) . (22)

Such (finite dimensional) linear dynamical system is known to have a general
solution:

.u′ (x, t) =
N∑

m=1

bm exp (μmt)φm (x) , (23)

where .φm (x) ∈ Cd are the eigenvectors of A associated to the eigenvalues .μm ∈ C
and .bm ∈ C are amplitudes. In particular .μm = σm + iωm, the real part .σm is the
growth rate of the mode and .ωm is the periodic frequency of the mode m. Since the
initial data are real valued fields, the eigenvectors, eigenvalues and amplitudes will
be two-by-two complex conjugate, that is .φ2p = φ2p+1. Following the successful
proposition of [18], we split the DMDmodes into correlated and uncorrelated modes
in order to define the Girsanov drift through the slow component of the dynamics
and the random noise through the fast component. The two sets of modes, .Mu for
the uncorrelated noise and .Mc for the correlated part are defined as
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Fig. 1 Illustration of the selection of the DMD modes. On the left, frequencies of the modes are
plotted on the unitary circle; they are coloured differently to represent their characteristic physical
time scale. At this point, a threshold .τc = 25d is chosen to differentiate the correlated from the
uncorrelated modes. On the right, over violet background are plotted the correlated modes, over
orange background the uncorrelated modes. The amplitude threshold for the correlated mode .Cc

is set to zero, while for uncorrelated modes .Cu is set to 2. The grey dots represent the set of
uncorrelated modes below this threshold, that are thus discarded

. Mu =
{
m ∈ [1, N] : |μm| ∼ 1, |ωm| >

π

τc

, |bm| ≥ Cu

}
, . (24)

Mc =
{
m ∈ [1, N] : |μm| ∼ 1, |ωm| ≤ π

τc

, |bm| ≥ Cc

}
, (25)

where .τc is a temporal separation scale between correlated and uncorrelated
(usually set to a value for which a spectral gap is observed and fixed here
to twentyfive days) and .Cu, .Cc are empirical cut-off of amplitudes. A visual
representation of the aforementioned procedure is given in Fig. 1. As the DMD
modes are not orthogonal, a scaling is applied to avoid spurious effects and to make
sure that the reconstructed data corresponds to an orthogonal projection onto the
subspaces spanned by the set of modes contained in .Mu and .Mc. The procedure
reads as follow:

– Construct the Gramian matrix G of components .gm,n = 〈φm,φn〉H
, with .m, n ∈

M;
– Invert the Gramian matrix and compute the dual set of modes .Φ∗ = G−1Φ;
– define the amplitudes as the initial state data on the dual set of modes: .ϕm =

〈u′ (x, t0) ,φ∗
m〉

H
φm.

Such procedure is applied for .M = Mu and .M = Mc separately.
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4.3 On-Line Noise Reconstruction

Inside the NEMO core, during the simulation, the noise and Girsanov drift are
defined as:

.σ t,θdBt = √
τθ

∑
m∈Mu

exp (iωmt)ϕm (x) dβm, . (26)

σ tYt = u t +
∑

m∈Mc

exp (iωmt)ϕm (x) , (27)

with .ξm = √
τθϕm. In Eqs. (26) and (27) .τθ is the process decorrelation time. It is

supposed to be different for each component evolving in the system, as momentum,
temperature and salinity do not diffuse with the same decorrelation time. The
subscript .θ can thus indicate momentum .u, temperature T or salinity S and the
corresponding noise and variance will be indicated as .σ t,θdBt (x) and .aθ (x, t). The
different decorrelation times are difficult to characterize precisely (as they depends
in space), but their ratio can be justified by physical reasoning. The decorrelation
times are chosen in such a way that .τu = Δt , .τT = κT

κu
Δt and .τS = κS

κu
Δt , where

.Δt is the simulation time step and .κ the molecular diffusion coefficients. Each
(eigen) frequency .ωn comes in pairs and each pair of complex Brownian motion are
conjugates. The real and imaginary parts of the Brownian motion are independent.
As such, both the noise and Girsanov drift are real-valued fields. The variance tensor
of such noise remains stationary:

.aθ (x) = τθ

∑
m∈Mu

ϕm (x)ϕ†
m (x) . (28)

After construction with the offline data through Eqs. (26) and (27), the noise
.σ t,θdBt is constrained to live on the tangent space of the isopycnal surfaces. This
procedure is operationally implemented as the application of an isopycnal projection
operator .Pρ

.Pρ = I − ∇ρ (∇ρ)T

|∇ρ|2 (29)

to the noise. Being the density function of temperature and salinity, .ρ = ρ (T , S, z),
the isopycnal projection operator carries information about the current state of the
simulation. The projected noise .σ tdB

ρ
t (x) = Pρ σ tdBt (x) is thus strongly tied to

the evolution of the flow density.
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5 Results

In this work we analyse the result of a single realisation. Qualitatively speaking,
a coarser resolution simulation is far from being as representative as the fine
resolution simulation, as can be seen in both Figs. 2 and 3, where the leftmost panel
contains results from the R27 deterministic simulation, the centre panel contains
the R3 deterministic simulation and the rightmost panel contains the R3 stochastic
simulation. The effect of the forcing is manifested in the R27 simulation in a jet
current roughly aligned with latitude (tilted by a 45 degrees angle in the domain
frame). The presence of this structure and of a secondary and smaller jet stream, is
visible in the reference papers [16, 17]. This feature is absent in the R3 deterministic

simulation. Figure 2 depicts the average relative vorticity .ζ
10Y = (

∂xv − ∂yu
)
/f

10Y

and shows primarily the difference between a high resolution simulation and a
coarse resolution simulation. In the centre panel, representing the deterministic low
resolution simulation R3d, there is no sign of the characteristic jet that can be seen
in the left panel as a strong contraposition of opposite sign vorticity. Viscosity on
the boundary creates a sequence of alternating bands of opposite vorticity, related
to jet separation problem in low resolution simulations [20]. The stochastic R3LU
simulation conversely presents a much better representation of the dynamics, as a
jet can now be identified clearly. The time averaged sea surface height, represented
in Fig. 3 shows for the high resolution simulation the characteristic geostrophic
properties of the jet stream: the northern, cold sub-polar gyre is characterised by
a smaller height than the southern, warm sub-tropical gyre. This characteristic is
not visible in the deterministic low resolution simulation R3d, where one can only
find the effects of the boundary, while the stochastic R3LU simulation presents

Fig. 2 10-years averaged relative vorticity .ζ = (
∂xv − ∂yu

)
/f at the surface layer of the model

for deterministic high-resolution (1/27.◦, left), for deterministic low resolution (1/3.◦, middle) and
for stochastic low resolution (1/3.◦, right)
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Fig. 3 10-years averaged sea surface height for deterministic high-resolution (1/27.◦, left), for
deterministic low resolution (1/3.◦, middle) and for stochastic low resolution (1/3.◦, right)

Fig. 4 10-years averaged kinetic energy for deterministic high-resolution (1/27.◦, left), for deter-
ministic low resolution (1/3.◦, middle) and for stochastic low resolution (1/3.◦, right)

a much more faded picture of this process, which is not as intense as in the
R27d but definitely present. Viscosity on the left boundary provides a strong
constraint to the dynamics, biasing the representation of the jet stream in both low-
resolution cases. Figure 4 shows the ten years average of kinetic energy, .KE10Y =(
u2 + v2

)
/2

10Y
. From this picture is clear that, while the stochastic simulation

includes much more features when compared to its deterministic counterpart, it is
still suffering the influence of the boundary, affecting the position of the jet stream
separation. Figure 5 shows the vertical profiles of horizontally averaged temperature
at different times for the three simulation, . T

x,y
(z, t) = 1

A

∫
A

T (x, y, z, t) dxdy.
The deterministic high resolution profile is plotted in green, the deterministic low
resolution profile is plotted in orange and the stochastic low resolution simulation is
plotted in dark red. From this plot it is difficult to assess the benefits of the stochastic
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Fig. 5 Vertical profile of temperature at 5 equidistant points in time. In red, the stochastic
simulation, in orange the deterministic simulation, in green the reference R27 simulation

formalism to the temperature equation, as the stochastic and deterministic low
resolutions simulation are close. However, no spurious vertical mixing is observed.
This corresponds to an improvement with respect to [12], and is brought by the
new methodology for noise generation detailed in the previous section. In particular,
constraining the noise on the isopycnal surfaces tangent planes considerably reduces
the spurious mixing in POD as well. Furthermore, the projection operator has the
effect of localising the effects of the noise on the jet region. From a quantitative
point of view the simulations are compared using the Root Mean Square

.RMS(fM) =
√

E
[
(fM)2

]
, (30)

providing a measure of the energy content for the variable .fM, and the Root Mean
Square Error

.RMSE(fM) =
√

E
[
(
[
fR27

]↓
M

− fM)2
]
, (31)
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Table 2 Comparison of the
values obtained with the
diagnostic

.ζ . 12

(
u2 + v2

)
T

.RMS(f
t
) R27d 3.25e.−06 18.48e.−02 6.72

R3d 4.30e.−07 1.69e.−02 6.56

R3LU 1.62e.−06 9.21e.−02 6.56

.RMSE(f
t
) R3d 3.67e.−06 17.17e.−02 0.58

R3LU 4.18e.−06 16.46e.−02 0.54
GRE R3d 547.78 2987.56 27.46

R3LU 2.92 1.46 7.49

Boldface is used to highlight the best performance accord-
ing to the metric.

that in turns describes the energy content of the errors. In all previous equations the
expected value is considered to be taken in the volume, i.e. .E [f ] = 1

V

∫
V

f dV .

Finally, defining .f
t = 1

T

∫
T

f dt the time average and .σ 2
f = 1

T

∫
T
(f − f

t
)2 dt the

time variance, the Relative Gaussian Entropy [21] (GRE) at a single point

.GRE = 1

2

[
(f

t

R27 − f
t

M)2

σ 2
f,M

+ σ 2
f,R27

σ 2
f,M

− 1 − ln

(
σ 2

f,R27

σ 2
f,M

)]
, (32)

measures with a single criterion both the mean and variance reconstructions. The
first term on the right-hand side of GRE represents the error in the mean weighted
by the variance of the model. The remaining terms measure the error in model
variability and is referred to as “dispersion”. The lower this criterion the better
the reconstruction. It can be observed from (32) that this criterion is minimal
if, for all points, the mean is perfectly reconstructed and if the variance of the
reference equals the one of the coarse model tested. These quantitative measures
have been evaluated for the mean component of three quantities, namely vorticity
.ζ , the horizontal energy of the flow .

1
2

(
u2 + v2

)
and temperature T . The values of

the proposed metrics for each simulation are given in Table 2. Figure 6 provides a
visual representation of the behaviour of the fluctuations around the mean states of
vorticity and energy, where the fluctuations are computed in time in a Reynolds
splitting fashion, .f ′ = f − f

t
. The first 2 years can be considered as the

time required for some adjustment of the filtered and downsampled 1/9.◦ initial
condition. It can be outlined that, while the deterministic simulation cannot sustain
the initial level of variability, its stochastic counterpart shows opposite behaviour,
maintaining a higher variability. Concerning the benefits of the stochastic model to
the dynamical quantities .ζ and .

1
2

(
u2 + v2

)
, all the presented results show that the

stochastic model outperforms the deterministic simulation. The mean flow contains
much more energy than the deterministic counterpart, as stated by higher values
of .RMS(f

t
), the .RMSE(f

t
) of the average fields seems to be reduced , with the

exception of vorticity, for which a systematic bias in the positioning of the jet stream
jeopardise the computation of the .RMSE. In other words the .L2 norm is lower for
a null vorticity field than for a vorticity field exhibiting clearly a meaningful jet
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Fig. 6 Comparison between the fluctuations Root Mean Square (in space) along 10 years. In blue,
the fluctuation RMS for the deterministic high resolution simulation (R27d). In green, the low
resolution stochastic simulation (R3LU), in orange the low resolution deterministic simulation
(R3d). The solid line shows for the three cases the values of vorticity, with corresponding scale on
the left; the dotted line shows for the three cases the values of Energy, with corresponding scale on
the right

but with bias. The corresponding fluctuations show a higher RMS in time during
the whole simulation, thus the stochastic simulation is energetically closer to the
high resolution simulation. The distance between the stochastic simulation and the
high resolution simulation, as measured by the GRE, is lower for both vorticity and
energy when compared to a deterministic simulation. The effect of the stochastic
parametrisation to the distribution of temperature T is of more difficult assessment,
as the metrics show very similar behaviours. The distance measured by the GRE is
lower than for the stochastic case, as much as the corresponding RMSE. However,
the RMS of the mean temperature are very similar between deterministic and
stochastic simulation. A comparison of the temperature fluctuations RMS in time
(similar to that of Fig. 6 and not presented in this paper) confirms this similarity by
showing no sensible difference between the simulations.

6 Conclusions

The considered stochastic model has been implemented in the ocean model NEMO.
A dynamical mode decomposition based noise was considered and has been shown
to be beneficial to improve the variability of the coarse resolution models and to
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represent temporal statistics in a more accurate fashion. The intrinsic variability of
the model has been greatly enhanced for dynamical variables as vorticity and energy,
as much as the qualitative behaviour of both long time average and time-snapshots
appearance. The same benefits do not seem to apply to thermodynamic quantities
like temperature.
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