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Foreword

While the fundamental role of proof in mathematics as a science is undisputed,
the picture that is painted at school is one that often hardly does justice to the
demands associated with it. This is especially true for the development after
TIMSS and PISA, in which mathematical applications have been more heavily
emphasized in curricula, while proving is assigned a rather subordinate role. Even
less consideration is given to proof in the practical implementation in lessons,
which are often strongly oriented towards the requirements of written examina-
tions and central benchmarks, in which proof hardly plays a role. Consequently,
students have difficulties at the transition from school to universities, especially
those who choose mathematics as a subject. These problems are not new but have
been magnified rather than diminished by developments in recent years. In the
last two decades, this development has led to increased subject didactic research
on the topic of argumentation and proof in schools and universities. However,
many questions in this regard have not yet been adequately clarified. This applies
in particular to the questions what comprehension and understanding of proof do
students have when they enter university, what persuasive power mathematical
proofs have for them, to what extent do they distinguish proofs from empirical
arguments, to what extent does the individual persuasive power of proofs depend
on the type of argument, and what is the underlying understanding of generality.
Milena Damrau’s doctoral dissertation seeds to find answers to these questions.
The main objective of the study is to investigate the understanding of general-
ity of mathematical statements of first-year students in connection to the reading
and construction of proofs. In particular, the influence of different types of argu-
ments (no argument, empirical argument, generic proof, formal proof) on the
understanding of proof and on the respective degree of individual conviction is
investigated. For this purpose, the author develops an experimental survey, which
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vi Foreword

is conducted on a sample of 430 mathematics students and student teachers. The
study is based on five mathematical statements, each of which is presented to
four sample groups together with different types of arguments to justify the truth
of the statements. Subsequently, questions are asked about the truth value of the
statements, the generality of the statement, and the persuasiveness of the argu-
ments. Of particular interest is the relationship between (a) the assessment of the
truth value of the respective statements and (b) the question of whether or to what
extent there can be counterexamples in the respective cases. Frederick’s Cogni-
tive Reflection Test (CRT) is used as a control instrument. The study leads to
impressive results: Regarding the central question about the relationship between
the assessment of the truth value and the assessment of the existence of possible
counterexamples, it turns out that about one third of the participants—and thus
a comparatively high proportion—do not have an adequate understanding of the
generality of mathematical statements. As expected, the extent of this understand-
ing is directly related to students’ previous mathematical education. Furthermore,
the study provides a detailed analysis of correlations between the understanding
of generality of statements and other proof-related activities; in particular, a pos-
itive correlation regarding the comprehension of proof and a negative correlation
regarding the acceptance of empirical arguments should be mentioned. Interest-
ing and new are also the results regarding the influence of the type of argument
on students’ performances in proof-related activities, which turn out to be very
different depending on whether no arguments, empirical arguments, generic or
formal proofs are offered. Remarkable and perhaps unexpected is the high influ-
ence of empirical arguments on the assessment of the truth value of a statement.
Overall, Milena Damrau develops results in two main fields of research:

• With her conceptualization of the understanding of generality of mathemati-
cal statements and the development of instruments related to it, she has not
only developed a methodological basis for her own work, but moreover a
methodology that can also be used profitably for other future investigations.

• Her empirical study leads to detailed results on the understanding of generality
of mathematical statements and their dependence on the type of argument, the
type of statement, and other conditional characteristics, which were not known
in this form before and which expand the didactic knowledge in argumentation
and proof.
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I hope that these results will attract the interest of the mathematics education com-
munity and contribute to further research into mathematical learning processes in
the areas of reasoning, argumentation, and proof.

Bielefeld
September 2023

Rudolf vom Hofe
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Abstract

The transition from school to university is very challenging for many mathemat-
ics students and preservice mathematics teachers, which consequently leads to
high drop out rates (Heublein, Hutzsch, & Schmelzer, 2022). One of the main
reasons identified in the literature are students’ difficulties with proof-based math-
ematics to which they are commonly introduced when they start university (e.g.,
Gueudet, 2008; A. Selden, 2012). While research on first-year students’ proof
skills has increased significantly over the last decades, activities related to the
reading of statements, which are to be proven—or for which a proof has to be
read–have largely been neglected. I therefore adapted the framework on proof-
related activities introduced by Mejía Ramos and Inglis (2009b) by distinguishing
activities related to the reading of the statement and those related to the reading
and construction of arguments. The comprehension of a statement, as part of read-
ing the statement, involves understanding the generality of the statement, which
can be defined as consistent evaluation of the truth value of the statement and
the existence of counterexamples. Understanding generality is essential for the
comprehension of mathematical statements and students’ conceptions of proof,
because it is the mathematical generality that is the defining element of mathe-
matical proof and what distinguishes mathematics from other disciplines (Heintz,
2000).

The present thesis therefore aims at investigating the understanding of the gen-
erality of mathematical statements in first-year university students and its relation
to the reading and construction of proofs. Previous studies have shown differences
in students’ understanding and evaluation of different types of arguments (e.g.,
Healy & Hoyles, 2000; Kempen, 2018, 2021; Tabach, Barkai, et al., 2010). Thus,
I focused on the influence of reading different types of arguments (no argument,
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empirical argument, generic proof, and ordinary proof) on students’ understand-
ing of generality and other proof-related activities. Additionally, I considered
the familiarity with the statement and its truth value as important characteris-
tics that might also influence students’ performance in proof-related activities,
as suggested in the literature (e.g., Barkai, Tsamir, Tirosh, & Dreyfus, 2002;
Dubinsky & Yiparaki, 2000; Hanna, 1989; Stylianides, 2007; Weber & Czocher,
2019).

I designed an experimental study to analyze the effect of reading different
types of arguments on students’ understanding of the generality of statement,
estimation of truth, proof comprehension, and conviction. The experiment was
conducted online during two first-semester lectures in November 2020. 430 pre-
service teachers and mathematics students from a German university completed
the questionnaire. They were randomly divided into four groups. All participants
were asked questions about the same five universal statements (two of them famil-
iar, two of them unfamiliar, and one of them false). The first group received no
arguments to justify the statements, but was asked to produce justifications them-
selves. These justifications were analysed using a coding scheme mainly based
on the categories suggested by Harel and Sowder (1998). The second group was
provided with empirical arguments, the third group with so-called generic proofs,
and the fourth group with ordinary proofs (those that are typically constructed by
mathematicians). The data was analyzed using mainly generalized linear mixed
models.

The results show that in a comparatively large percentage of observations
(about one third), students lacked understanding of the generality of mathematical
statements, that students with a correct knowledge of mathematical generality are
more likely to have a correct understanding of the generality of statements, and
that students’ usage and conviction of empirical arguments is negatively related
to their understanding of the generality of statements. Further, students’ level of
conviction of the truth of statements is related to the reading and construction of
different types of arguments. In particular, empirical arguments (and to a lesser
degree generic proofs) support students in successfully estimating the truth value
of true universal statements–but ordinary proofs do not. My findings also provide
evidence for the influence of familiarity with the statement and the truth value
on students’ understanding of the generality of statements and performance in
proof-related activities.

Results confirm prior research findings that students lack basic mathematical
knowledge and therefore have difficulties with proof comprehension and evalua-
tion (e.g., Dubinsky & Yiparaki, 2000; Harel & Sowder, 1998; Healy & Hoyles,
2000; Kempen, 2019; Recio & Godino, 2001; Weber, 2001), that most students’
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find generic and, in particular, ordinary proofs convincing (e.g., Kempen, 2021;
Ko & Knuth, 2013; Weber, 2010), and that many students use empirical argu-
ments to justify universal statements (Barkai et al., 2002; Bell, 1976; Healy &
Hoyles, 2000; Lee, 2016; Recio & Godino, 2001).

These findings can be used to develop future university courses in a manner
that eases and promotes the transition to proof-based mathematics. I present sev-
eral suggestions for future research on students’ proof skills and, in particular
students’ understanding of the generality of statements. Lastly, this thesis further
highlights the benefits of and need for more experimental studies in mathematics
education and in particular in research on proof and argumentation.
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1Introduction

Mathematical research generally results in statements that are–once they have been
validly proven–true without any exceptions. In this respect, mathematics differs
from other sciences: The unrestricted generality and absolute conviction of truth as
well as the method, namely proof, with which respective results are achieved, are
unique (e.g. Poincaré, 1952; Toulmin, 2003). Mathematics is therefore sometimes
called a proving science (in German beweisende Wissenschaft), particularly in Ger-
man literature (e.g., Dreher & Heinze, 2018; 2000; A. Heinze, Anderson, & Reiss,
2004; Hilbert, Renkl, Kessler, & Reiss, 2008; Kirsten, 2021; Reiss & Ufer, 2009).
Because of its fundamental role in mathematics, proof has been a research focus in
philosophy of mathematics and mathematics education for many decades, but the
research area saw a particular rise of interest in the last 10–15 years (Sommerhoff
& Brunner, 2021). Even though proof and argumentation are internationally seen as
important learning goals in mathematics and are incorporated in many national cur-
ricula (e.g., Department of Basic Education, 2011; Kultusministerkonferenz, 2012;
National Council of Teachers of Mathematics, 2000), students seemingly do not
gain sufficient experience with proof during high school (e.g., Hemmi, 2008; Kem-
pen & Biehler, 2019). Consequently, students of different school levels and forms
seem to lack fundamental proof skills and understanding of proof (e.g., Dubinsky
& Yiparaki, 2000; Harel & Sowder, 1998; Healy & Hoyles, 2000; Kempen, 2019;
Recio & Godino, 2001; Weber, 2001). Difficulties with proof are diverse and in-
clude insufficient proof comprehension and difficulties with proof construction and
validation (a good overview can be found in Reid & Knipping, 2010, pp. 59–72,
for instance). The lack of proof skills is particularly relevant for students entering
university, because in many countries it coincides with the transition to proof-based
mathematics. Students’ insufficient proof skills and understanding are in fact often
identified asmain reasons for students’ difficultieswithmathematics at the transition
from school to university (e.g., Gueudet, 2008; A. Selden, 2012). High drop out rates
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2 1 Introduction

in mathematics, in particular compared to other fields, seem to be one of the conse-
quences (e.g., Dieter, 2012; Heublein et al., 2022). Research on university students’
proof skills has therefore increased significantly over the past 30 years, especially at
the transition (e.g., Alcock, Hodds, Roy, & Inglis, 2015; Gueudet, 2008; Kempen &
Biehler, 2019; Moore, 1994; Rach & Ufer, 2020; Recio & Godino, 2001; A. Selden
& Selden, 2003; Sommerhoff, 2017; Stylianides & Stylianides, 2009; Stylianou,
Chae, & Blanton, 2006).

While a large body of research has focused on students’ proof construction,
the reading of proof, which includes proof evaluation and comprehension, is still
under-researched (e.g., Mejía Ramos & Inglis, 2009a; Sommerhoff, Ufer, & Kollar
2015). For instance, studies have repeatedly provided evidence that many students
find empirical arguments convincing (e.g., Gholamazad, Liljedahl, & Zazkis, 2004;
Healy & Hoyles, 2000; Knuth, 2002; Martin & Harel, 1989; Segal, 1999), but most
do not consider them to be proofs (e.g., Healy & Hoyles, 2000; Lesseig, Hine, Na,
& Boardman, 2015; Stylianou, Blanton, & Rotou, 2019; Tabach, Levenson, et al.,
2010). However, it is unclear and therefore an open research question what level of
conviction students gain by reading or constructing these types of arguments (We-
ber & Mejia-Ramos, 2015). Moreover, research on aspects that influence students’
conviction, for instance, understanding the argument, the perceived generality of
the argument, or being familiar with the type of argument, is still scarce (Ko &
Knuth, 2013; Sommerhoff & Ufer, 2019). Further, only few studies have investi-
gated students’ proof comprehension and further research is needed to find ways to
better assess it and to identify specific difficulties students encounter when trying to
comprehend a proof (e.g., Mejía Ramos, Fuller,Weber, Rhoads, & Samkoff, 2012;
Neuhaus-Eckhardt, 2022).

To make proofs more accessible to students, different types of arguments have
been considered in research on proof comprehension as well as proof evaluation. In
particular, generic proofs are considered to be potentially useful in the learning of
proof and argumentation (Dreyfus, Nardi, & Leikin, 2012; Mason & Pimm, 1984;
Rowland, 2001). However, little is known yet regarding the influence of the type
of argument on students’ understanding of proof (see, e.g., Lew, Weber, & Mejía-
Ramos, 2020; Malek & Movshovitz-Hadar, 2011; Mejía Ramos et al., 2012).

In research on students’ proof construction and reading, the comprehension of
the statementswhich are to be proven–or forwhich a proof has to be read–has largely
been neglected, even though it can be considered as a prerequisite for proof compre-
hension. The comprehension of a statement involves understanding the statement’s
generality, which is defined in this study as consistent evaluation of both the truth
value of the statement and the existence of so-called counterexamples. Understand-
ing generality is essential for the comprehension of mathematical statements and
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students’ proof skills, because it is the mathematical generality that is the defin-
ing element of mathematical proof and what distinguishes mathematics from other
disciplines, as already mentioned above. Further, without understanding the gen-
erality of statements it might be difficult to develop an intellectual need for proof
(see, e.g., Harel, 2013). As such, the importance of understanding generality has
repeatedly been emphasized in the literature (e.g., Conner, 2022; Ellis, Bieda, &
Knuth 2012; Fischbein, 1982; Kunimune, Kumakura, Jones, & Fujita, 2009; Lesseig
et al., 2019). However, virtually no studies have explicitly investigated students’ or
teachers’ understanding of the generality of statements. The few studies that have
been conducted so far in this direction, most of them qualitative, relate students’
understanding of the generality of mathematical statements to the understanding of
the generality of proof. For instance, some researchers have reported that students
and (preservice) teachers, who seemed to be absolutely convinced of the truth of a
statement and the correctness of its proof, were at the same time not fully convinced
that no counterexample to the statement can exist (Chazan, 1993; Knuth, 2002).
Others have investigated students’ awareness that one counterexample disproves
a universal statement (Buchbinder & Zaslavsky, 2019; Galbraith, 1981) or that a
proof holds for any given subset of cases (Healy & Hoyles, 2000). With respect to
the understanding of the generality of proof, some researchers argue that students’
usage or conviction of empirical arguments may indicate an insufficient understand-
ing of generality (e.g., Conner, 2022). However, this relation has not been explicitly
investigated so far, in particular, with respect to the understanding of generality of
statements. Overall, neither the extent to which students lack understanding of the
generality of mathematical statements nor the specific relations to the construction,
evaluation, and comprehension of proofs have explicitly been researched yet.

The main goal of the present study is therefore to investigate the understanding
of the generality of mathematical statements and the relation to the reading and
construction of proofs in first-year university students. Previous studies have shown
differences in students’ understanding and evaluation of different types of arguments
(e.g., Healy & Hoyles, 2000; Kempen, 2018, 2021; Tabach, Barkai, et al., 2010).
Thus, I focused on the influence of reading different types of arguments (no argu-
ment, empirical argument, generic proof, and ordinary proof) on students’ under-
standing of generality and other proof-related activities. Additionally, I considered
the familiarity with the statement and its truth value as important characteristics that
might also influence students’ performance in proof-related activities, as suggested
in the literature (e.g., Barkai et al., 2002; Dubinsky & Yiparaki, 2000; Hanna, 1989;
Stylianides, 2007; Weber & Czocher, 2019).

To investigate students’ understanding of generality, proof comprehension, eval-
uation and construction, their relations, and, in particular, the influence of the type
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of argument and statement on students’ performance in these activities, I designed
an experimental study which was conducted online during two first-semester lec-
tures in November 2020. 430 preservice teachers and mathematics students from a
German university completed the questionnaire. They were randomly divided into
four groups. All participants were asked questions about the same five universal
statements (two of them familiar, two of them unfamiliar, and one of them false).
The first group received no arguments to justify the statements but was instead asked
to produce justifications themselves. The second group was provided with empirical
arguments, the third group with so-called generic proofs, and the fourth group with
ordinary proofs (those that are typically constructed by mathematicians). I analyzed
the data using mainly generalized linear mixed models. Results confirm prior re-
search findings that students lack basic mathematical knowledge and therefore have
difficulties with proof comprehension and evaluation, and that many students use
empirical arguments to justify universal statements. They further extent findings in
that a comparatively large percentage of students lacks understanding of the gen-
erality of mathematical statements, that students level of conviction of the truth of
statements is related to the reading and construction of different types of arguments,
and how the familiarity with the statement and the truth value influence students’
understanding of generality and performance in proof-related activities. Further-
more, the results of this study suggest relations between students’ proof evaluation,
proof comprehension, the estimation of truth, and their comprehension of state-
ments, particularly their understanding of the generality of statements. Based on
these findings, implications for future university courses, especially at the transition
from school to university, and directions for future research can be derived.

The theoretical basis for the conceptualizations of understanding generality and
proof is build in chapter 2 by highlighting characteristics ofmathematical statements
and generality, in particular how mathematical generality differs from generality in
other sciences, how proof is shaped historically by so-called socio-mathematical
norms, and different views and characteristics of proof. Further, this chapter also
discusses usages and relations of the terms reasoning, argumentation, and proving,
before different types of arguments widely used in mathematics education are in-
troduced. The second theoretical chapter (chapter 3) provides an overview of the
current state of research on students’ understanding of generality of statements and
proofs as well as proof-related activities relevant for this thesis. Thereby, the frame-
work on proof-related activities proposed by Mejía Ramos and Inglis (2009b) is
adapted and used for structuring the discussion of prior research findings. Resulting
research desiderata are summarized in chapter 4, from which the research questions
of the present thesis are then derived and specified. In chapter 5, the design of the
study, the construction of instruments, and the collection and analysis of data are
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thoroughly described and justified. Subsequently, the results are presented com-
prehensively in chapter 6, guided by the research questions. Research findings are
interpreted and discussed in detail with respect to prior research in chapter 7, where
I also reflect on methodological decisions and the adapted framework on proof-
related activities, identify limitations, and outline implications for the teaching of
proof and further research. Lastly, in chapter 8, I conclude the thesis with a short
summary and outlook regarding theoretical and practical implications.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Cre-
ative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, youwill need to obtain permission
directly from the copyright holder.
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2Theoretical Background of Mathematical
Statements and Proof

Proof is fundamental in mathematical practice. In contrast to empirical sciences,
mathematical research does not only provide evidence, but generally results in state-
ments that are proven to be true or false in a particular axiomatic system. An un-
derstanding of statements and the underlying theories are vital for learning about
proof, as Mariotti (2006) emphasizes: “It is not possible to grasp the sense of a
mathematical proof without linking it to the other two elements: a statement and
overall a theory” (p. 184). The understanding of mathematical statements, in partic-
ular their generality, as well as the acceptance and knowledge about the theoretical
framework from which the truth of the statement is drawn, can both be seen as
necessary prerequisites for students’ understanding and learning about proof (see
also Balacheff, 2010).

In this chapter I first explain the meaning of two main types of quantified state-
ments: universal statements and existential statements. Secondly, the meaning of
generality in mathematics, other sciences, and everyday life, as well as potential
difficulties for students with the concept of mathematical generality in this regard
are discussed. While the terms proof, proving, argumentation, and reasoning are
widely and often used in mathematics education, there is no clear consensus about
their specific meaning and distinction. I therefore review and discuss different no-
tions, usages, and views of these terms as well as the relation between them. Finally,
I review different types of argumentations that are commonly being distinguished
in mathematics education.

© The Author(s) 2023
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8 2 Theoretical Background of Mathematical Statements and Proof

2.1 Mathematical Statements

A mathematical statement is a declarative sentence that is either true or false.
Thereby, it is not necessary that the truth value is known yet (or will ever be known).
For example, consider the following two statements:

• Every even number greater than 2 can be represented as the sum of two primes.
• There is an even number greater than 2 that cannot be represented as the sum of

two prime numbers.

Both sentences are either true or false and thus qualify as mathematical statements.
The second statement is the logical contradictory statement of the first and therefore,
only one of these statements can be true; it is still an open problemwhich one1 (e.g.,
Schütte, 1977).

Like the two statements above, most mathematical theorems can take one of the
following two forms2:

• For all objects x within a given domain D, property P(x) holds.
• There is at least one object x within a given domain D, for which a property

P(x) holds.

Statements of the first category are called universal statements (sometimes also
general statements). They can be written formally, i.e., in first-order logic using
the universal quantifier: ∀x ∈ D : P(x). Universal statements, when expressed
informally (i.e., using natural language), often contain words like (for) all, every,
each, always etc. Examples for universal statements include “For all odd numbers
a and b, a + b is even”, “Prime numbers greater than 2 are always odd”, and
“Every human is mortal” (even though the latter might not be provable, unless we
define humans as mortal). Statements of the second category are called existential

1 The first statement is the famous Goldbach’s conjecture. It has been tested in the scope
a computer can currently handle, i.e., it holds for all even numbers up to at least 4 × 1018

(Oliveira e Silva, Herzog, & Pardi, 2013) and no counterexample has been found. Still, it is
not known yet, if it holds for all even numbers (e.g., Reiss & Schmieder, 2014).
2 Another common type of statement is called conditional statement, which can formally
be written with logical implication as P(x) ⇒ Q(x) (“If property P(x) holds, then does
property Q(x)”). Most conditional statements are also universal, i.e., of the form ∀x ∈ D :
P(x) ⇒ Q(x). Although conditional statements are very common and important, especially
regarding proving practices, I do not go into more details, because the focus of this theses is
on quantified statements, in particular on universal statements.
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statements and can be represented formally with the existential quantifier: ∃x ∈ D :
P(x). Informally written, existential statements use expressions like there is/exists,
at least, (for) some etc. For instance, “There exists a natural number n, such that
n2 = 10”, “At least one prime number is even”, and “Some dolphins are pink” are
existential statements (and only one of them is false).

There are further subcategories of universal and existential statements. The prop-
erty P of a universal statement can also involve an existential quantifier and vice
versa, as the following examples illustrate:

• For all integers, there exists an additive inverse.
• There exists a natural number, such that all natural numbers are greater or equal

to that number.

The first statement is an example for a so-called universal existential statement
(since the property that holds for all given objects, in this case integers, is about
the existence of an object), while the second example is an existential universal
statement (e.g., Dubinsky & Yiparaki, 2000; Piatek-Jimenez, 2010). The involve-
ment of existential quantifiers in universal statements (and vice versa) often only
becomes apparent when the statement is expressed formally. For example, the uni-
versal statement “For all odd numbers a and b, a+b is even” can formally be written
as (∀a, b ∈ {z ∈ Z|∃k ∈ Z : z = 2k+1})(∃l ∈ Z)(a+b = 2l), and thus, it is more
precisely a universal existential statement. Regardless how a statement is expressed,
the potential presence of the existential quantifier in a universal statement becomes
particularly relevant for proving it; in the example above, because of the definition
of even (and odd) numbers:

Since a and b are odd, there exist k,m ∈ Z, such that a = 2k + 1 and b = 2m + 1.
We therefore get: a+ b = (2k + 1)+ (2m + 1) = 2k + 2m + 1+ 1 = 2k + 2m + 2 =
2(k +m + 1). Since k +m + 1 is a whole number (thus, we found the required l ∈ Z),
a + b = 2(k + m + 1) is divisible by 2 and therefore even.

The potential involvement of an existential quantifier in a universal statement (and
vice versa) could be a particular obstacle for students in reading (or constructing)
proofs, which teachers and lecturers should keep in mind.

The thesis at hand particularly aims at investigating first-year university students’
understanding of the generality of mathematical statements, more precisely, the
understanding of the fact that if a universal statement is true, it is true without any
exceptions. A universal statement would be disproved (or refuted) by finding just
one counterexample. Thus, if someone is completely convinced that a universal
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statement is true, the person—if having a correct understanding of the generality of
statements—should be just as convinced that no counterexample to the statement
exists.

This type of generality is characteristic formathematics. In the following section,
its particular meaning in contrast to other disciplines is clarified.

2.2 Generality in Mathematics

The significance of generality for mathematics and science in general was already
recognized in ancient Greece. A corresponding criterion for generality can be found
in Aristotle’s Posterior Analytics, according to which “any truly scientific demon-
stration should hold ‘for all’ the entities it concerns” (Rabouin, 2016, p. 113 ). Con-
sequently, progress in mathematics commonly has meant to achieve “ever higher
levels of generality” (Chemla, Chorlay, & Rabouin, 2016, p. 3). However, there
is no uniform meaning of (mathematical) generality. It can refer to a definition, a
theorem, a method, or a type of reasoning, and different mathematicians have used
different approaches to achieve different types of generality (Chemla et al., 2016).
Since the focus of this thesis is on universal statements, I refer to mathematical
generality (in German “Allgemeingültigkeit”) as the property of a statement hold-
ing for all objects of a given domain. In most cases, the expression “for all” in a
mathematical statement refers to an infinite domain; and, according to Poincaré,
the ability to obtain such a generality—with “the power of the mind” (Poincaré,
1952, p. 13), that is by the construction of mathematical concepts and proof—is
specific to mathematics (Ly, 2016). However, as stated by Aristotle, generalizing is
a goal aimed at in other sciences as well. What might come closest to the form of
mathematical, unrestricted generality is that of physical laws, e.g. Newton’s laws.
But even these “cannot be demonstrated by conclusive reasoning” (Kneale, 1949,
p. 21). The form of generality researchers seek in other sciences (e.g., biology and
chemistry) is fundamentally different (Toulmin, 2003).

Biologists, for example, ... may not pursue formulations of unrestricted generality, but
they are deeply committed to the search for formulations that we might describe as
being of ‘restricted’ generality. Indeed, their science abounds in claims about general
properties, and even statements that are often referred to as ‘laws’ .... But there is
no domain in which these laws are presumed to be exception-free [emphasis added].
They are generalities, but not unrestricted generalities. It is evident that generality is
valued in biology, but exceptions are neither a cause for alarm, nor do they necessarily
send researchers back to the drawing board in search of better—exception-free—laws.
Rather, they are reminders of how complex biological reality is. (Keller, 2016, p. 474)
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Restricted generality is also particularly present in sciences such as sociology,where
results are mostly being achieved by providing empirical (sometimes experimental)
evidence for them. These conclusions hold in general, usually meaning they “have
only high probability” (Kneale, 1949, p. 21). But there can be—and generally are—
exceptions.

The assumption that it is commonly considerednormal or even expected that there
are exceptions to a (general) rule or statement can be further affirmed by the usage of
the saying “The exception that proves the rule” (in German: Ausnahmen bestätigen
die Regel). It “is often taken in the paradoxical sense of asserting that the presence of
a counterexample establishes the general truth of a rule [emphasis added]” (Reid &
Knipping, 2010, pp. 25–26), even though this would, inmathematics, disprove a rule
or statement. The actual meaning of the expression might, however, be different.
Since to “prove” comes from the Latin verb “probare”, which means to test, the
expression can be interpreted as “the exception that tests the rule”, which suggests
“that examining exceptions closely and reasoning out the way they occur can lead
to a clarification and improvement of the rule.” (Reid & Knipping, 2010, p. 26).

In summary, statements that hold exception-free in a(n infinite) domain are unique
for mathematics. The fact that universal statements are very rare (or nearly non-
existent) outside of mathematics and the common view that there are typically
exceptions to a rule, might influence students’ understanding and acceptance of
the generality of mathematical statements. Furthermore, for obtaining these types
of general results, proof is essential. Understanding this need for proof might not
be obvious for students. Because of its essential role and further relevance for this
project, I discuss the meaning of proof and its different notions in the following
section.

2.3 What is Proof?

Inmathematics, statements are only accepted as true after they have been proven in a
way thatmeets certain standards. These standards vary over time and are based on so-
called socio-mathematical norms (Dawkins &Weber, 2017; Yackel & Cobb, 1996),
as Wilder (1981) emphasizes: “‘Proof’ in mathematics is a culturally determined,
relativematter.What constitutes proof for one generation, fails tomeet the standards
of the next or some later generation” (p. 40). Even though there is no consistent
definition of proof, certain characteristics and acceptance criteria can be identified.

In the following, I first outline major historical developments in the context of
proof (for a detailed historical overview, see, e.g., Reid & Knipping, 2010). This
provides the required background to better understand and reflect the different views
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and usages of proof in recent literature, which I review in the following section.
Furthermore, researchers have highlighted the potential relevance of historical de-
velopments of proof for the development of students’ proof conceptions (e.g., Harel
& Sowder, 2007). Lastly, main characteristics and acceptance criteria for mathe-
matical proof are summarized and discussed.

2.3.1 Brief Historical Background

The idea to prove a statement—and not just provide evidence for it—originated in
ancient Greece around 500 BCE (Reid & Knipping, 2010; Wußing, 2008):

For the early Egyptians, Babylonians, and Chinese, the weight of observational ev-
idence was enough to justify mathematical statements .... But the classical Greek
mathematicians found this way of determining mathematical truth or falsehood less
than satisfactory (Hanna & Barbeau, 2002, p. 36)

They started to agree on definitions of fundamental ideas and axioms, on which
they based their reasoning. In the 4th century BCE, the Greek philosopher Aristotle
formulated what we now call the (axiomatic) deductive method in his Posterior
Analytics (Anglin, 1994). The deductivemethod is a process of reasoningwhere each
argument “has to be justified either by an axiom or by a previously proved theorem
or by a principle of logic.” (Anglin, 1994, p. 63). The method shaped mathematics
significantly, as it has become its defining characteristic (Anglin, 1994; Harrison,
2008;Reid&Knipping, 2010). Euclid’sElements, which is a structured collection of
the fundamental mathematical ideas of that time, is in this regard often considered
as the most influential work of mathematical literature (Reid & Knipping, 2010;
Wußing, 2008).

European mathematics can mainly be seen as a continuation of the work of
the Greeks (Reid & Knipping, 2010). The 17th century CE “saw an explosion
of mathematical activity” (Anglin, 1994, p. 161), which led to the discovery of
important results, for example, by Newton and Leibniz. However, the methods
often did not meet the strict standards for proof (Reid & Knipping, 2010). Many
mathematicians at that time were unsatisfied with these methods. But in the case
of calculus, it lasted until the 19th century until a foundation based on precise
definitions was established (Reid & Knipping, 2010).

In the late 19th and early 20th century, a demand for the formalization of mathe-
matical statements and proofs arose (e.g., Ketelsen, 1994; Reid & Knipping, 2010;
Wußing, 2009). A first successful step in this direction was due to Frege’s Begriff-
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sschrift from 1897, in which he developed axiomatic predicate logic (e.g., Sjögren,
2010). Further important developments include: Peano’s Formulaire de Mathéma-
tiques, which present a purely formal structure for fundamental parts of mathemat-
ics; Russel’s and Whiteheads’s Principia Mathematica, an (unsuccessful) attempt
to build a complete foundation of mathematics based on axioms and logical rules
of inference; the axiomatic set theory of Zermelo and Fraenkel (which was further
extended by v. Neumann); and Hilbert’s Program (Ketelsen, 1994; Wußing, 2009).
The latter was intended to completely formalize mathematics in axiomatic form
and prove the consistency of this axiomatization (Wußing, 2009). Even though Kurt
Gödel’s incompleteness theorems proved the impossibility of this endeavor as a
whole3, it had a significant impact on the development of mathematical logic and
proof (e.g., Ketelsen, 1994; Wußing, 2009). As a consequence, these developments
made it possible—as intended by Hilbert—to formulate and answer metamathe-
matical questions within mathematics itself; new mathematical fields such as proof
theory emerged (Rav, 1999; Sjögren, 2010;Zach, 2019). Furthermore, amore formal
view and approach to solve mathematical problems has since been established (Ke-
telsen, 1994). Regarding the future development of proof, Harrison (2008, p. 1395)
argues that formalizing mathematics is a “natural further step ... towards greater
clarity and precision.”

2.3.2 Different Views and Usages of the Term Proof

As the short historical overview emphasizes, the concept of proof has developed
over time (and will most likely do so in the future) and depends on social norms
specified by the mathematical community. In this section, two main views of proof
which have grown historically are discussed.

One common view about mathematical proof shared by many mathematicians,
mathematics teachers, and students is that of a so-called formal proof 4 in the sense
of Hilbert (Lakatos, 1978; Tall et al., 2012; Weber, 2003). In this sense, “a math-
ematical proof is a formal and logical line of reasoning that begins with a set of
axioms and moves through logical steps to a conclusion” (Griffiths, 2000, p. 2).
Formal proofs can be expressed using first-order logic (e.g., Rav, 1999) and have

3 Gödel himself was surprised by his results, as it seems that he did not attempt to refute
Hilbert’s program, but to prove the consistency of arithmetic (Ketelsen, 1994).
4 Sometimes, the term formal proof is used to describe “proofs used by mathematicians to
communicate to each other in conversation and in journal articles” (Tall et al., 2012, p. 29).
Whenever I use the term formal proof, I refer to a precise form of proof in the sense of Hilbert
described here.
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the property that no interpretation by the reader is necessary to verify their validity.
In fact, it is possible to mechanically check the correctness of the proof via com-
puter programs in finite time (Harrison, 2008; Lakatos, 1978; Rav, 1999). Because
of these properties, formal proofs ensure rigor and reliability. They can be viewed as
an idealization of proof (Hersh, 1993; Jahnke & Ufer, 2015; Manin, 2010; Sjögren,
2010; Sommerhoff, 2017). However, because of their properties, formal proofs are
at the same time incredibly long and very difficult to read, which makes them gener-
ally useless for most mathematical fields (CadwalladerOlsker, 2011; Hanna, 1989;
Jahnke & Ufer, 2015; Weber, 2003). In fact, most published proofs, for example, in
textbooks and articles of mathematical journals, are not purely formal as they are not
completely expressed symbolically in first-order logic and not all logical steps have
explicitly been checked back to axioms (e.g., Rav, 1999; Tall et al., 2012). Aberdein
(2009) further emphasizes that “this [referring to formalizing] is not something that
mathematicians routinely do” (p. 1). The main mathematical fields in which formal
proofs do play an important role are mathematical logic (specifically proof theory)
and foundation of mathematics.

Because themajority of proofs are not (yet) completely formal5, Thurston (1991)
and other modern mathematicians and mathematics educators argue that it is impor-
tant to explicitly “distinguish between formal proofs and proofs that mathematicians
actually construct” (Weber, 2003, para. 2) and publish. The latter can be described
as “social conventions by which mathematicians convince one another of the truth
of theorems” (Buss, 1998, p. 2). They “are written in a way to make them easily
understood bymathematicians” (Hales, 2008, p. 1371). In contrast to formal proofs,
routine steps are omitted in these proofs and readers have to interpret the context
and translate intuitive arguments into more rigorous ones (Hales, 2008). There is
no clear consensus in the literature whether or not these proofs are or should be
formalizable, at least theoretically. Bass (2009) argues that for mathematicians, an
argument is convincing if their peer experts feel “empowered [...], given sufficient
time, incentive, and resources, to actually construct a formal proof” (p. 3). However,
Lakatos (1978) gives an example for aproof ofEuler’s theoremon simple polyhedra,
about which he states that “there does not seem to be any feasible way to formalize
this reasoning” (p. 64). Nevertheless, he is convinced “that mathematicians would
accept this as a proof” (Lakatos, 1978, p. 64).

By renouncing rigor and complete formalism, these proofs enable mathemati-
cians to focus on understanding and imparting the underlyingmathematical concepts
and ideas. However, the degree of (in)formality and the use of intuitive arguments

5 It is possible that this might change in the future, given that computer(-assisted) proofs
recently have become more relevant (Dawson, 2015; Hales, 2008; Harrison, 2008).
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varies a lot in these proofs. For example, proofs in (abstract) algebra are usually
more formal than those in geometry or topology, which quite often rely on intuitive
arguments (Hales, 2008; Sjögren, 2010).

In the last decades, various terms have been introduced to separate formal proofs
and proofs that mathematicians actually construct. For instance, Douek (2007)
distinguishes between mathematical proofs and formal proofs. However, the us-
age of the term mathematical proof is not consistent in the literature, which can
be confusing if the context is unclear. In contrast to Douek, Griffiths (2000) means
formal proofs when using the term mathematical proof, as already noted above.
The term mathematical proof is also often used more generally as a superset, which
comprises any kind of proof, thus including formal proofs (e.g., CadwalladerOlsker,
2011; Lakatos, 1978; Sjögren, 2010; Tall et al., 2012).

Many classifications in the literature highlight two main contrasting purposes of
formal proofs and proofs mathematicians actually construct: gaining absolute truth
vs convincing others and understanding the underlying mathematics. In this sense,
Davis, Hersh, and Marchisotto (2012) differentiate between proofs of metamathe-
matics and real mathematics; and Recio and Godino (2001) between foundation of
mathematics andmainstreammathematics. Proofs of the latter are sometimes called
mainstream (mathematical) proofs (e.g., Harrison, 2008), ordinary (mathematical)
proofs6 (e.g., Tall et al., 2012) or practical (mathematical) proof (e.g., Hersh, 1997),
to emphasize that these are the sort of proofs commonly produced in mathemati-
cal practice. Hales (2008) uses the term traditional (mathematical) proofs, which
refers to the historical development of proof and the fact that purely formal proofs
only recently became more relevant in mathematical research (see Section 2.3.1).
To highlight the influence of socio-mathematical norms, Buss (1998) uses the term
social proof. However, the usage of this term has not (yet) been established in the
literature, especially in mathematics education.

Another way to distinguish ordinary proofs from formal proofs is the use of
terms, which refer to a lesser degree of formality. The usage of these terms is not
always consistent. In (philosophy of) mathematics literature, ordinary proofs are
commonly called informal proofs as the opposite of formal proofs (Dawson, 2006;
Marfori, 2010; Sjögren, 2010; Tanswell, 2015), even though ordinary proofs are
usually not completely informal. Lakatos (1978) criticizes that often proofs are
misleadingly called informal, even though “a competent logician ... can formalize
any such proof without too much brain-racking” (p. 63). He suggests to call proofs
that are not completely formal, but formalizable formal proofs with gaps or quasi-

6 In the following, I use the term ordinary proof whenever I refer to proofs commonly con-
structed by mathematicians.
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Figure 2.1 Spectrum of mathematical proof by degree of formality

formal proofs, because they are simply “incomplete formal proofs” (Lakatos, 1978,
p. 63). To describe proofs that are “truly informal”, Lakatos uses the term pre-
formal7. To emphasize a lesser degree, but not complete absence of formality, Reid
and Knipping (2010) call ordinary proofs semi-formal.

I understand mathematical proof as a deductive form of argumentation,
accepted by the mathematical community, that comprises a spectrum of for-
mality from purely formal to the complete absence of formality, which I refer
to as non-formal. I assume non-formal proofs are rather rare and most published
mathematical proofs (the ordinary ones) can be assumed to be neither non-formal
nor formal but somewhere in between (see Figure 2.1). All these definitions of or-
dinary proofs are rather broad and vague. While formal proofs can be precisely
defined, it is indeed not possible to exactly define what constitutes a valid ordi-
nary proof (Buss, 1998; Davis et al., 2012; Lakatos, 1978; Sjögren, 2010). One
reason already mentioned above is the significance of socio-mathematical norms
and expectations of the mathematical community for proving practices, which the
following well-known quote from Manin (2010) illustrates: “A proof [in the social
sense] only becomes a proof after the social act of ‘accepting it as a proof”’ (p. 45).
As already noted at the beginning of this chapter, these “standards of acceptability
are changeable and subject to different constraints which vary according to different
variables” (Mariotti, 2006, p. 176).

The lack of a precise definition for (ordinary) proof complicates deriving clear
instructional implications for the teaching of proof. However, several acceptance
criteria of the mathematical community and characteristics of proofs, which are
seen to be useful for the teaching and learning of proof and argumentation, have
been discussed in the literature. These are outlined in the following section.

7 He actually divides “truly informal” proofs into two kinds: pre-formal and post-formal
proofs. The latter are proofs of metamathematical statements, e.g., Gödel’s proofs of his
Incompleteness Theorems (see Lakatos, 1978; Reid & Knipping, 2010).
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2.3.3 Characteristics and Acceptance Criteria for Proof

Even though a precise definition for (ordinary) proof does not exist, it is important to
agree on a conceptualization within mathematics education; otherwise “it is difficult
... to meaningfully build upon each other’s research and it is impossible to judge if
pedagogical goals related to proof are achieved” (Weber, 2014, p. 353). However,
such an agreement has not been reached yet (Balacheff, 2002; Reid & Knipping,
2010; Weber, 2014). Although there is no uniform conceptualization of proof, a
shared understanding seems to be that the definition of formal proof is not very
useful formathematics education (see, e.g., CadwalladerOlsker, 2011;Hanna, 1989;
Weber & Czocher, 2019), because (1) the arguments mathematicians refer to as
proofs, i.e., ordinary proofs, are in general not formal (with good reasons); and (2)
the underlying concepts and ideas we want students to understand are disguised in
formal proofs.

In 2007, Stylianides proposed a characterization of proof8, which is often cited
and used in mathematics education research. He views proof as a mathematical
argument containing...

1. ... a set of accepted statements, e.g., definitions, axioms, theorems, etc.;
2. ... valid and known forms of reasoning (which he callsmodes of argumentation),

e.g., application of logical rules of inferences, use of definitions, construction
of counterexamples, etc.;

3. ... appropriate and known forms of expression (which he callsmodes of argument
representation), e.g., linguistic, physical, pictorial, symbolic, etc.

According to this definition, proof highly depends on the context and individuals,
who construct or evaluate the proof, and thus it corresponds to a social view on
proof. In particular, the familiarity with different aspects of proof (known forms of
reasoning and expressions) seems to be an essential characteristic for the acceptance
of proof in Stylianides’ definition.

Weber (2014) views proof slightly differently. He argues that the frequently
used approach of defining proof by identifying characteristics that are shared by
all proofs, but not by other arguments has been unsuccessful, because there is
no “consensus on which ... properties capture the essence of proof” (p. 353).

8 Stylianides (2007) more specifically introduces a conceptualisation of proof for school
mathematics. However, others (e.g., Weber & Czocher, 2019) have used his characterisation
in a more general context.



18 2 Theoretical Background of Mathematical Statements and Proof

Consequently, he suggests to view proof as a so-called clustered concept consisting
of the following seven models: Proof as

1. a convincing argument.
2. a transparent argument where a mathematician can fill in every gap.
3. a deductive argument.
4. a perspicuous argument that provides an understanding of why a theorem is

true.
5. an argument within a representation system satisfying communal norms.
6. an argument that has been sanctioned by the mathematical community.

Weber (2014) admits that these features have been stated before, but he claims
it is original that according to his approach, none of “these more basic models”
(p. 358) can completely characterize proof by themselves. However, he states that
“it would be desirable for proofs to satisfy all six criteria”. Furthermore, proofs
that fit into all models should not be controversial; but some arguments that only
fit into some of the models might either be disputed or can nevertheless qualify as
proofs. The models 5. and 6. seem to correspond to the second and third property of
the conceptualization given by Stylianides (2007). Further, the conceptualization of
Weber (2014) contains several goals (or functions) of proof9, in particular proving
as convincing someone of the truth of a statement and proving as explaining (to
provide insights of why the statement is true), which are both often identified as
the main goals of proof (e.g., Hersh, 1993). The latter is often seen as particularly
important regarding the teaching of proof and proving in school (e.g., Brunner,
2014; Hanna, 2000). In my understanding, the models are not all independent of
each other. For example, models 2. to 6. can be viewed as influencing factors for
being a convincing argument (i.e., for model 1).

Even though the two discussed approaches for conceptualizing proof differ, they
still contain similar features. For instance, they both refer in some sense to convinc-
ing and accepted arguments. What remains unclear in this sense is what arguments
should students find convincing or accept as proof? A common approach to answer
this question is to investigate if (or to what degree) mathematicians agree on what
forms of arguments and representations are valid and appropriate. In this regard,
Weber and Czocher (2019) differentiate between two positions: “The consensus
view on proof asserts that mathematicians agree on which inferential schemes are

9 Because it is not of particular relevance for this thesis, I do not discuss all different functions
of proof identified in the literature further. Formore details see, for example, de Villiers (1990)
and Hanna (2000).



2.3 What is Proof? 19

permissible in a proof; the pluralistic view holds that mathematicians disagree on
which inferential schemes are permissible” (p. 254). Hanna and Jahnke (1996) have
argued that acceptance criteria that are shared by all mathematicians do not exist,
which several studies confirm (e.g., Inglis & Alcock, 2012; Inglis & Mejía-Ramos,
2013; Weber, 2008, see also Section 3.2.3). However, Weber and Czocher (2019)
found that there seem to be “three categories of inferential schemes”: Standard
methods in “typical proofs” mathematicians agree on; “invalid schemes” such as
empirical arguments10 on which mathematicians also agree; and “controversial
schemes whose permissibility is unclear”, for example, computer-assisted proofs
and visual arguments (p. 264). Thus, disagreement might almost exclusively oc-
cur regarding atypical proofs. Apparently, the familiarity with the mathematical
argument is indeed a major factor for its acceptance.

However, apart from the existence of a proof and the acceptance of it, there are
other criteria that influence mathematicians’ conviction of the truth of a statement.
According to Hanna (1989), mathematicians accept new or unfamiliar theorems by
a combination of the following criteria:

1. They understand the theorem, the concepts embodied in it, its logical antecedents,
and its implications ...;

2. The theorem is significant enough to have implications in one or more branches
of mathematics ...;

3. The theorem is consistent with the body of accepted mathematical results;
4. The author has an unimpeachable reputation as an expert in the subject matter of

the theorem;
5. There is a convincing mathematical argument for it (rigorous or otherwise), of a

type they have encountered before. (pp. 21–22)

Noteworthy, only the last criterion explicitly refers to proof.Moreover, the first three
criteria highlight the importance of understanding the theorem and its implications
for the acceptance of it. In line with Stylianides (2007), Hanna (1989) characterizes
a convincing argument as one with which the reader is familiar, as she states that
it is an argument “they have encountered before” (p. 22), i.e., in other proofs. This
is of direct importance for the teaching of proof at the transition from school to
university, because students usually do not gain extensive experience with proof
and proving during high school (e.g., Hemmi, 2008; Kempen & Biehler, 2019).
Thus, they might not have strong conceptions regarding what forms of reasoning
and representations are appropriate. Research findings on students’ conviction and
acceptance of different types of arguments are reviewed in Section 3.2.3.

10 Empirical arguments consist of empirical evidence for the claim, i.e., are based on examples.
See Section 2.4.2 for further explanation.
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The list above also emphasizes that the acceptance of an argument is indeed not
a necessity for the acceptance of the truth of statement, but only one component.
For instance, the fourth factor introduced by Hanna (1989), namely that of the
authors reputation or authority, might also be of particular relevance regarding
actual acceptance criteria of students. It can have a convincing power for them,
when teachers or textbooks state that some statement is true (e.g., Harel & Sowder,
1998; Tall et al., 2012). Evenmore, studentsmay ask themselves “why is it necessary
to prove something that is known to be true?” (Tall, 1989, p. 29).

It seems that even mathematicians sometimes rely on authoritarian arguments,
when estimating the truth of a statement, in particular, if the statement lies outside
their field of specialty and high levels of uncertainty regarding a given argument are
involved (Harel & Sowder, 1998; Inglis &Mejia Ramos, 2009). However, according
to a study conducted by Heinze (2010), the reputation of an author does not often
influence mathematician’s conviction of the truth of a theorem (but sometimes it
does). However, the theorem being checked and used by “other mathematicians
with high standards” or the theorem existing “for a long time and no contradiction
has been found” (p. 106) are both criteria mathematicians claim to employ, when
deciding if a mathematical statement is true.

The different approaches and criteria reviewed in this and the previous sections
illustrate the complexity of proof and the resulting challenges for teaching practices.
In regard to the learning of proof and proving, argumentation and reasoning skills
are often viewed as essential. Although these terms are used quite extensively in
mathematics education, there is no shared understanding of their meaning. In the
following section, different usages of these terms as well as their relation to each
other and to proving are examined. In this regard, I also discuss several types of
arguments that are common in mathematics education.

2.4 Reasoning,Argumentation, and Proving in
Mathematics Education

The terms argumentation, reasoning, and proving or proof are widely used inmathe-
matics education literature aswell as in (national) curricula (e.g.,Kultusministerkon-
ferenz, 2012; National Council of Teachers of Mathematics, 2000). For instance, in
the German national curricula (“Bildungsstandards”) for higher secondary schools:

This competence [referring tomathematical argumentation] includes both the develop-
ment of independent, situation-appropriate mathematical argumentations [emphasis
added] and conjectures and the understanding and evaluation of given mathemati-
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cal statements. The spectrum ranges from simple plausibility arguments to operative
reasonings [emphasis added; in German inhaltlich-anschauliche Begründungen] to
formal proofs [emphasis added] (Kultusministerkonferenz, 2012, p. 14, translated by
the author)

As with the term “proof”, there is no unique definition for the terms (mathematical)
argumentation and reasoning, and a shared understanding regarding their relation to
each other and to proving has not been reached yet in mathematics education (e.g.,
Balacheff, 1999; Reid&Knipping, 2010; Stylianides, 2016). In the following, I give
a short overview of the main understandings of these terms and their relationship to
emphasize differences and to avoid confusion. The terms and definitions on which
the framework of this project is based are then clarified.

2.4.1 Definition of and Relation between Reasoning,
Argumentation, and Proving

Among the terms reasoning, argumentation, and proving, reasoningmay be the term
least discussed in mathematics education literature. Two different understandings
can nevertheless be identified: reasoning as themost fundamental activity of drawing
conclusions (e.g., Duval, 1991) and reasoning as a specific form of argumentation
(e.g., Hefendehl-Hebeker & Hußmann, 2003; Reiss, Hellmich, & Thomas, 2002).
Following the first view, reasoning does not necessarily have to have the goal to
convince someone of the truth of a (controversial) statement. Rather, it can simply
be used to provide contextual explanation, e.g., to answer questions like “How have
you come to be in a position to speak about [or know] this” (Toulmin, 2003, p. 199).
The answer might consist of a biographical reason, for instance, “I know how to
make toffee because my mother taught me” (Toulmin, 2003, p. 199), or a reference
to authority (e.g., “My teacher said so”).

In contrast, the second view is based on the understanding that argumentation
rather than reasoning is the elementary activity ofwhich reasoning is a specific form,
namely one that is (logically) consistent (Reiss et al., 2002, p. 51). According to this
view, the difference between reasoning and proving—the latter being the process
of constructing a mathematical proof (e.g., Douek, 2007)—results from different
modes of argumentation and degree of formality (Reiss & Ufer, 2009).

In contrast to reasoning, different views of the concept of argumentation have
been discussed in detail (see, e.g., Kirsten, 2021; Mariotti, 2006; Pedemonte, 2007;
Reid&Knipping, 2010). A shared understanding seems to be that argumentation (in
general, not specifically mathematical) is a discursive activity, usually consisting of
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a sequence of inferences rather than a single argument (e.g., Douek, 2007; Toulmin,
2003), being used to convince someone of the truth of a statement (Duval, 1999;
Krummheuer, 1995).

There are several reasons for differences among researchers regarding their view
of the relation between argumentation and proving, including different foci of char-
acteristics of argumentation and different conceptualizations of proof. In this re-
gard, Balacheff (1999) argues that different conceptions of argumentation can ei-
ther lead to the conclusion of argumentation being an obstacle or a continuous
path for the learning of mathematical proof. To “provide a system of benchmark”
(Balacheff, 1999, p. 3), Balacheff compares the views of three authors: Perelman,
Toulmin, and Ducrot. According to Perelman (1970), argumentation is not mainly
about establishing “the validity of a statement” but about “its capacity to convince”
(Balacheff, 1999, p. 3) someone. This view may contradict a continuity position
of argumentation and proof. Because, even though it is one of its characteristics,
proof—particularly in its formal sense—can most certainly not be reduced to just
be convincing. On the other hand, in Toulmin’s view, the main characteristic of
argumentation is the reliance of its validity on a structure, accepted by a community
(Toulmin, 2003). While Toulmin acknowledges different methods of argumenta-
tions being used in different fields (e.g., logic) and by “everyday arguers” (Toulmin,
2003, p. 37), his view of argumentation nevertheless containsmain characteristics of
mathematical proof. Therefore, argumentation and proof could be understood as a
continuity, a view shared, for instance, byBoero, Garuti, andMariotti (1996). Lastly,
for Ducrot (1980) argumentation is the core of discourse and connecting words are
essential for the imparting of an argument: “The analysis of conjunctions (connect-
ing words) has a particular importance for Ducrot because it is they which make
the information contained in a text subject to its global argumentative intention”
(Balacheff, 1999, p. 3). Within Ducrot’s framework, as with Perelman’s, a con-
tinuous view of the relation between argumentation and proof “appears doubtful”
(Balacheff, 1999, p. 4). Furthermore, such a conception might lead to the conclu-
sion of argumentation being an obstacle for the learning of proof, as Duval (1991)
highlights:

Deductive thinking does not work like argumentation. However these two kinds of
reasoning use very similar linguistic forms and propositional connectives. This is one
of the main reasons why most of the students do not understand the requirements of
mathematical proofs (p. 233)

While acknowledging similarities in linguistic and grammatical aspects, Duval un-
derstands argumentation and proof as two forms of reasoning—namely
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argumentative reasoning and deductive reasoning11—but simultaneously as fun-
damentally separate activities. Regardless of whether or not one shares this view,
it should not be dismissed that general argumentation (e.g., in everyday situations)
might negatively effect students’ understanding of argumentation in mathematics.
For instance, as discussed in Section 2.1, only one counterexample disproves a uni-
versal statement. However, in other sciences and in everyday situations, not only
would a counterexample not automatically refute the whole statement, it might even
be expected that it exists (see Section 2.2).

The notion of mathematical argumentation is widely used in the literature and
often includes not only activities regarding the verification of a statement, but a
broader spectrum of mathematical activities, such as investigating conjectures and
open-ended questions (e.g., Reiss & Ufer, 2009). However, the existence of mathe-
matical argumentation as a particular form of argumentation being unique to math-
ematics, but not being part of mathematical proof, is seen controversial. It depends
on the researchers view of both, argumentation and proof. Someone with a formal
view of proof would most likely be able to find argumentations which do not qual-
ify as a part of proving, but that are specific to mathematics, for example, visual
arguments that are—as noted in Section 2.3.3—controversial. In contrast, someone
with a broader (i.e., social or ordinary) view of mathematical proof might find it
more difficult to identify such examples of argumentations. Balacheff (1999) adopts
the latter position. He argues “that there is no mathematical argumentation in the
frequently suggested sense of an argumentative practice in mathematics which is
characterized by the fact that it escapes certain of the constraints present for mathe-
matical proof” (p. 4). This does not imply that argumentation in mathematics does
not exist, but these argumentative methods “could be used elsewhere” and would
“disappear in the construction of a discourse acceptable with regard to the rules
specific to mathematics” (Balacheff, 1999, p. 5). One such prominent example are
plausibility arguments, in particular empirical arguments, which are discussed fur-
ther in the following section.

In this thesis, I follow the understanding that reasoning is a fundamental
activity of which argumentation is a specific form. Other than Duval (1991),
I do not view proving as being fundamentally different to argumentation, but
rather as a subset of argumentation that meets specific criteria (namely those
discussed in Section 2.3.3. As Balacheff (1999) and in line with a broader view
of mathematical proof, I take the position that mathematical argumentation, as an
activity being completely different from proving, does not exist.

11 This way of reducing mathematical proof to deductive reasoning is controversial, see for
instance Balacheff (1999)
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Another term that is often used in the context of proof and proving (e.g., Lesseig
et al., 2019; Mejía Ramos & Inglis, 2009b; Yackel & Cobb, 1996), but is less
discussed in mathematics education literature, is justification or justify (Staples
& Conner, 2022). While it is mainly clear what is expected from students when
asked to prove a theorem or statement, namely, to construct a(n ordinary) proof (see
above), it is less obvious what is exactly meant when students are asked to justify
(why) a statement (is true or false) (Dreyfus, 1999). In the context of mathematical
argumentation, it usually refers to providing sufficient “mathematical evidence in
support of a result” (Staples&Conner, 2022, p. 5). In this thesis, I adopt the following
definition given by the National Research Council (2001):

We use justify in the sense of ‘provide sufficient reason for.’ Proof is a form of justifi-
cation, but not all justifications are proofs. Proofs (both formal and informal) must be
logically complete, but a justification may be more telegraphic, merely suggesting the
source of the reasoning. (p. 130)

In this broader sense, justification is therefore particularly relevant for themathemat-
ics classroom and can serve as “on-the-way-to-proof reasoning practices” (Staples
& Conner, 2022, p. 5, see also Dreyfus (1999)). Similar to proof, what is considered
sufficient in this sense needs to be negotiated within the respective community.

In the following section, I describe several types of arguments that are particularly
relevant for the teaching and learning of proof and proving in school and that are
widely referred to in mathematics education literature.

2.4.2 Types of Arguments

Several argumentation and proof concepts12 have been identified and discussed
in mathematics education, specifically in regard to teaching proof and proving in
school (e.g., Biehler & Kempen, 2016; Brunner, 2014; Reid & Knipping, 2010).
In particular, the following three main types of “proofs” are often distinguished,
especially in the German literature:

• experimental proof
• operative proof (in German also inhaltlich-anschaulicher Beweis)
• formal-deductive proof

12 I do not discuss different forms of proof such as direct and indirect proofs, as they are not
part of this project’s framework.
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Reference is usually made toWittmann andMüller (1988), although they originally
cite Branford (1913) (a German translation of the English publication from 1908).
Branford (1908) introduces the terms “experimental evidence or proof”, “intuitional
evidence or proof” and “scientific evidence or proof” (p. 233).

Not all of these types of arguments classify as mathematical proof, neither in
a formal nor in an ordinary view (both as defined in Section 2.3.2). Experimental
proof, sometimes also called experimental verification (e.g., Kunimune et al., 2009),
refers to a form of argumentation based on empirical evidence for a claim. As such,
it cannot establish general truth and is therefore not a valid scheme for mathematical
proof, as discussed in Section 2.3.3. Further, this type of argument is not specific to
mathematics, as giving examples are a common form of argumentation in everyday
situations. Other terms that are used in the literature to describe a form of reason-
ing where a conclusion is drawn from the observation or verification of a (small)
number of cases, are naive empiricism (Balacheff, 1988b) or empirical arguments
(e.g., Reid & Knipping, 2010). In this thesis, I use the latter term. Even though
empirical arguments do not ensure the non-existence of counterexamples, and thus,
the generality of the statement, they are nevertheless and without doubt relevant for
mathematical practice, for instances, to examine patterns and to explore or test con-
jectures. A good overview of several functions of experimentation in mathematics
is provided by de Villiers (2010).

Operative proofs are based on specific observations, but in contrast to empirical
arguments, they reveal a structure that can be generalized to hold for a whole class of
objects (Wittmann&Müller, 1988). In the understandingofBlumandKirsch (1989),
this process of generalizing should consist of correct (non-formal) inferences and the
underlying idea of why it is generalizable should be grasped intuitively. The latter
emphasizes Branford’s usage and understanding of the term “intuitional proof”.
Figure 2.2 provides an example of such a proof for the statement “the sum of any
two odd numbers is always even”. The explanation above the figure is not necessarily
required. However, some researchers argue that with regard to the generality of the
argument, valid explanations should be included; otherwise it could not be classified
as proof (e.g., Kempen & Biehler, 2019).

Every odd number can be grouped into pairs (of twos), such that exactly one is left.
By adding two odd numbers, one can group the two one’s that are left, such that the
sum now only consists of pairs (of twos).

Another term that is widely used in the international literature to describe a similar
type of proof, is generic proof (e.g., Bass, 2009; Dreyfus et al., 2012; Rowland,
2001) or generic example and thought experiment (Balacheff, 1988b; Mason &
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Figure 2.2 Example of an operative (or generic) proof

Pimm, 1984).Movshovitz-Hadar andMalek (1998) introduced the term transparent
pseudo proof to highlight two main properties: That these types of arguments are
not proofs in a formal sense (thus pseudo), but that “[one] can ‘see’ the formal
proof through it” (Malek & Movshovitz-Hadar, 2011, p. 37), thus transparent—
like glass. Different researchers highlight and define different features of these
types of arguments (for more details, see Reid & Knipping, 2010). Regardless
of the differences and terms being used, these types of arguments are often seen
as an opportunity for the teaching and learning of proof to understand underlying
mathematical concepts and ideaswithout the difficulties of (seemingly) complicated
mathematical language:

A generic proof aims to exhibit a complete chain of reasoning from assumptions to
conclusion, just as in a general proof; however, ... a generic proof makes the chain of
reasoning accessible to students by reducing its level of abstraction; it achieves this by
examining an example that makes it possible to exhibit the complete chain of reasoning
without the need to use a symbolism that the student might find incomprehensible
(Dreyfus et al., 2012, p. 204)

Depending on its specific definition and with respect to a broader understanding of
mathematical proof, generic argumentsmay qualify as validmathematical proof and
could be placed at the non-formal end of the spectrum (see Fig. 2.1 in Section 2.3.2).
This would be in line with Wittmann (2014), who states that operative and formal
proof (due to his explanations, I assume he actually refers to ordinary proofs) do not
differ fundamentally, but only in the form of argumentation and its representation
(e.g., one uses iconic, the other mainly symbolic representations). In contrast, in
a formal sense, generic arguments would most certainly not qualify as proof. As
noted in Section 2.3.3, visual arguments in mathematics (which are often generic)
are seen controversial among mathematicians.

The term formal-deductive proof is sometimes used more or less synonymously
for formal proof and should as such not be controversial. However, it appears
doubtful that Wittmann and Müller (1988) explicitly wanted to refer to formal
proof rather than ordinary proof, as they cite Branford (1913), who uses the term
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“scientific proof”. Wittmann and Müller (1988) thus describe formal-deductive
proofs as those proofs that are constructed and published by professionalmathemati-
cians. Wittmann and Müller argue that formal(-deductive) proofs are too complex
and sophisticated, and therefore an obstacle for the learning of proof and proving
in school. Regarding the formal sense of proof, I agree (as most researchers do,
see Section 2.3.3). However, not in a broader understanding of proof (i.e., ordinary
proof) with its characteristics as discussed in Section 2.3.3. Learning about these
characteristics seems to be essential to gain an appropriate understanding of proof
and to ease the transition to university.

In the framework of this project, I distinguish between empirical arguments and
generic and ordinary proofs, in the understanding discussed above. Further types of
arguments that are used by students and are relevant in this thesis (so-called proof
schemes) are discussed in Section 3.2.5.
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The previous chapter has illustrated how argumentation and proof, and in particular
generality, are fundamental for mathematics, but also that defining what constitutes
mathematical proof is not that simple. Because of its central role in mathematics,
proof and argumentation are seen as essential for the learning of mathematics in
school as well as university by many researchers (e.g., Hanna, 2000; Schoenfeld,
2009) and national curriculum frameworks around the world have specified respec-
tive learning goals (e.g., Department of Basic Education, 2011; Kultusministerkon-
ferenz, 2012; National Council of Teachers of Mathematics, 2000). Consequently,
proof and argumentation have been researched extensively in mathematics educa-
tion, in particular in the last three decades (Hanna, 2000; Hanna & Knipping, 2020;
Sommerhoff, Kollar, & Ufer, 2021). About 16% of all PME research reports pub-
lished between 2010 and 2014 focused on proof and argumentation in secondary or
tertiary education (20% in total, including primary education), as Sommerhoff et al.
(2015) report. The majority of these studies is qualitative (57%) and had not more
than 100 participants, which highlights the need for further large-scale quantitative
studies. Research foci in mathematics education range from theoretical investiga-
tions on the importance and relevance of proof for the teaching of mathematics to
empirical research on students’ and teachers’ proof skills regarding, for instance,
the understanding, evaluation, and construction of proofs (see, e.g., Mejía Ramos &
Inglis, 2009a; Sommerhoff et al., 2015). Difficulties with proof and proving related
to several activities have been reported by numerous researchers (e.g., Dubinsky
& Yiparaki, 2000; Harel & Sowder, 1998; Healy & Hoyles, 2000; Kempen, 2019;
Recio & Godino, 2001; Weber, 2001). In particular, more attention has recently
been given to empirical research on proof and argumentation in higher education
with a focus on the transition from school to university and first-year university
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students (e.g., Alcock et al., 2015; Gueudet, 2008; Hanna & Knipping, 2020; Kem-
pen & Biehler, 2019; Moore, 1994; Rach & Ufer, 2020; Recio & Godino, 2001;
Sommerhoff, 2017; Stylianides & Stylianides, 2009; Stylianou et al., 2006).

With respect to the present research interest, the focus of this chapter is on
research findings regarding (first-year) university students and mathematics (pre-
service) teachers, but wherever appropriate, findings regarding secondary school
students are considered as well. Thereby, this chapter is mainly divided into the
following three parts. Because of its central role for this thesis, research on the un-
derstanding of the generality of mathematical statements and proofs as well as the
role of (counter-)examples is first reviewed in section 3.1. In section 3.2, different
activities related to proof and proving are then discussed and research findings re-
garding activities that are relevant for the present thesis are summarized. Lastly, in
section 3.3, resources that may influence individual’s performance in proof-related
activties are discussed.

3.1 Understanding Generality and the Role of
(Counter-)Examples

Generality as an essential characteristic of mathematical statements and proof has
been repeatedly highlighted as an important learning goal in the literature on proof
and argumentation (e.g., Conner, 2022; Ellis et al., 2012; Fischbein, 1982; Ku-
nimune et al., 2009; Lesseig et al., 2019). To prove the generality of a (universal)
statement (as defined in section 2.1), a general deductive argument needs to be
constructed. The awareness and understanding of this requirement of proof is usu-
ally meant, when researchers refer to understanding the generality of proof (e.g.,
Conner, 2022). While most likely equally important for the learning of proof and
proving, understanding the generality of statements has not been explicitly defined
yet. Whenever I refer to the understanding of the generality of statements, I mean
the understanding that true universal statements hold for all elements in the given
domain–without any exceptions (see also section 2.2), i.e., no counterexamples to
the statement exist. Research on students’ (and teachers’) understanding of gen-
erality has mainly focused on the generality of proof, occasionally in relation to
understanding the generality of statements.

For instance, the framework for students’ understanding of proof by Kunimune
et al. (2009) consists of the two aspects construction of proof and generality of proof
(see p. 442). According to Kunimune et al. (2009), one necessity for students’ un-
derstanding of “generality of proof” is the understanding of the universality and
generality of statements. They do not further clarify how the understanding of uni-
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versality and generality of statements and proof differ. In particular, they do not
explicitly define what constitutes understanding of the generality of statements. But
they introduce levels of students’ proof understanding. For example, regarding the
generality of algebraic proof, students on level 0 “do not understand what they have
to explain”. It is unclear, if this corresponds to an insufficient understanding of the
generality of a statement. One could argue, however, that students, who are aware
that the correctness of a statement has to be explained in some way, can at the same
time be unaware what it means that a universal statement is correct, namely, that no
counterexamples exist. Those students would then not have a complete understand-
ing of the generality of a statement. The study of Kunimune et al. (2009) consisted
of written survey questions, which were answered by 418 lower secondary students
(Grade 8 and 9) from Japan. Kunimune et al. (2009) come to the conclusion that
participants who were able to construct proofs not necessarily valued the generality
of proofs. They seemed to believe that empirical arguments are also an equally ac-
ceptable way to prove a statement. In this regard, Stylianides (2016) concludes that
students’ “inability to recognize the generality of proof may suggest that [they] do
not conceive of proof as a means for establishing truth.” (p. 320). If this is the case,
understanding the generality of statements and proof might influence students’ in-
tellectual need (see, e.g., Harel, 2013) and understanding of the necessity for proof.

Lesseig et al. (2019) have also explicitly included the generality of statements
and proof in their framework. They investigated preservice secondary mathematics
teachers’ understanding of proof. According to their framework for mathematical
knowledge for teaching proof, teachers should have the following “essential proof
understandings:

• A theorem has no exceptions [emphasis added]
• A proof must be general [emphasis added]
• Proof is based on previously established truth
• The validity of a proof depends on its logic structure” (p. 396)

The first aspect corresponds to an understanding of the generality of universal state-
ments and the second aspect to the understanding of the generality of proof. In their
pilot study, 34 students from the USA, Australia, and Korea completed the survey.
Regarding the generality of statements and proof, Lesseig et al. (2019) found that
30% of the participants considered generality when evaluating proofs, where as
20% did so when they were asked to identify requirements of proof. Further, the
researchers argue that “merely knowing that a proof must be general was not nec-
essarily sufficient, as [the teachers] had different interpretations of what constituted
generality” (p. 413).
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As has been pointed out at the beginning of this section, no clear definition for
understanding generality, in particular, of statements, and how to assess this under-
standing has been given yet. Regarding the understanding of generality of proof,
Conner (2022) has recently provided a framework to identify students’ (limited)
understanding of generality, which she refers to as understanding the generality re-
quirement, meaning “the requirement that a proof must demonstrate the claim to be
true for all cases indicated within the domain of the claim” (p. 2). Her framework
aims to assess students’ understanding of this requirement in two proof-related ac-
tivities, students’ construction and evaluation of arguments. Through a case study,
she identified instances that demonstrate an understanding of generality and in-
stances that demonstrate limited understanding. For instance, with respect to the
evaluation of arguments, according to Conner’s framework, students who refer to
the need for a general argument demonstrate understanding and students, who refer
to the inclusion of examples as proof, demonstrate limited understanding. Further,
the usage of empirical arguments to prove a universal statement was also identified
as an instance, which shows limited understanding of generality. However, several
researchers have argued that students’ usage or conviction of empirical arguments
does not necessarily relate to an insufficient understanding of generality (e.g., Healy
& Hoyles, 2000; Weber, Lew, &Mejía-Ramos, 2020), which Conner herself noted.
Students’ conviction and usage of empirical arguments are further discussed in sec-
tions 3.2.3 and 3.2.5. Apart from the role of examples in justification and evaluation
tasks, Conner (2022, p. 6) also included the usage and interpretation of variables (as
“generalized numbers” vs as “placeholders for specific values”), and the notation
and interpretation of diagrams (e.g., “representing all possible cases” vs. “showing a
specific case”) into her framework. She did not explicitly consider the understanding
of the generality of statements.

Most studies that have investigated students’ (or teachers’) understanding of the
generality of statements and proof and the respective role and usages of (counter-
)examples were mainly qualitative with comparatively small sample sizes. The ex-
isting research suggests that some students and teachers do not completely under-
stand the generality of true universal statements and proof (e.g., Balacheff, 1988b;
Chazan, 1993; Galbraith, 1981; Knuth, 2002). For instance, Balacheff (1988b) ob-
served 14 pairs of students age 13 to 14 to explore their proving processes. He found
that some students understand counterexamples as exceptions from the rule and not
necessarily as refutation of the statement, which indicates a limited understanding
of the generality of statements. Similarly, in a study conducted by Galbraith (1981)
with about 170 students age 12 to 17 from Australia, about 18% of the students
thought that one (or few) counterexamples are insufficient to disprove a (universal)
statement.
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In other studies, participants were confronted with (different types of) arguments
and proofs for a statement. Chazan (1993), for example, investigated students beliefs
about empirical evidence and deductive proof through semi-structured interviews
with 17 high school students from geometry classes. He found that several students
were not convinced that a deductive proof ensures that no counterexamples can
be found. One student explicitly stated that it is impossible “to prove a statement
for everything” (p. 372)–neither with empirical arguments nor with a deductive
proof–a belief shared by other students of the study as well. These students seemed
to have an insufficient understanding of the generality of proof and potentially of
statements. However, some students were (correctly) convinced that a deductive
proof guarantees that no counterexamples can exist. Because “a substantial num-
ber of students in this study” (p. 382) seem to have beliefs that are contrary to
those of the mathematical community, Chazan (1993) emphasizes the importance
of discussing the characteristics of empirical arguments and deductive proof explic-
itly in the mathematics classrooms. However, it is not clear if teachers themselves
have a complete understanding of the generality of statements and proofs and their
characteristics, as some teachers seem to have similar beliefs to those of students.
Knuth (2002) conducted an interview study with 16 secondary school teachers to
investigate teachers’ conceptions of proof. His findings suggest that several of the
teachers do not have a complete understanding of the generality of statements and
proofs. Six of the teachers thought that counterexamples, which would make the
proof invalid, could still be found, even though they claimed to have understood
(and accepted) the (ordinary) proof. Further, several teachers did not seem to be
completely convinced that no counterexamples to a proven statement can exist, as
some needed to verify that the argument holds for particular cases. It is not clear if
this relates to limited understanding of the generality of proofs, statements, or both.

Even though 72% of the teachers who participated in a study conducted by
Barkai et al. (2002) correctly justified the falsity of a universal statement by giving
a counterexample, only 36% seemed to think their argument would be accepted as
proof. Furthermore, several teachers gave more than one counterexample, which
suggests “that they do not believe that a single counterexample is sufficient to refute
a universal statement” (Reid & Knipping, 2010, p. 64).

In their influential study,Healy andHoyles (2000) explicitly considered students’
understanding of the generality of statements. They assessed understanding of the
generality of a proven statement by asking students if the proof “automatically held
for a given subset of cases” (p. 402) or if a new proof has to be constructed. About
60 % of the students correctly thought that no further proof is needed. In their
study, Healy & Hoyles directly related understanding of the generality of universal
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Table 3.1 Logical relationship between examples and statements, reprinted fromBuchbinder
and Zaslavsky (2019, p. 131), with permission from Elsevier

Classes of examples with
respect to domain D and
property P

Types of examples

For universal statements For existential statements

x ∈ D, P(x) Supporting Confirming

x ∈ D,¬P(x) Counterexample Non-confirming

x /∈ D, P(x) or
x /∈ D,¬P(x)

Irrelevant

statements to the generality of proof. Similar to other studies, they did not explicitly
define what understanding of the generality of statements specifically consists of.

Buchbinder and Zaslavsky (2019) investigated students’ understanding of the
role of examples in proving. Their REP (Roles of Examples in Proving) framework
highlights the relationship between (counter-)examples, statements, and proof (Ta-
ble 2, p. 131). It is based on the logical relationship between examples and statements
(see Table 3.1).

Because existential statements are not considered in the present thesis, only the
column regarding universal statements is relevant here. It highlights two aspects of
understanding the generality of universal statements in relation to proof: That ex-
amples (i.e., empirical arguments) only support the truth of a universal statement,
but do not prove it, and that one counterexample is sufficient to refute the statement.
Twelve high-attaining Grade 10 students from Israel participated in the study, which
consisted of task-based semi-structured interviews. The students were interviewed
in pairs “to create opportunities for verbal communication and spontaneous con-
vincing and justifying” (p. 133). Tasks included the estimation of truth of several
universal and existential statements (some of them true, some of them false) from
algebra and geometry, the evaluation of arguments, and questions regarding the ex-
istence of objects with certain properties. Responses were coded according to the
REP framework such that alignmentwith conventionalmathematicswas considered.
They found three types of inconsistencies in students’ responses: “(1) inconsistency
with respect to the type of example [see Table 3.1], (2) inconsistency with respect
to the type of statement [universal or existential], and (3) inconsistency with respect
to the type of inference” (p. 139); for instance, regarding the “status of supporting
examples [i.e., empirical arguments] in proving universal statements”. The number
of observations where students were aware that examples do not prove a universal
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statement was equal to the number of observations where students had the contrary
belief (16 observations each). Regarding the status of counterexamples in disprov-
ing universal statements, most students responded correctly (62 observations); the
researchers found only 9 observations in which students though that a counterexam-
ple does not disprove a universal statement. Thus, while many participants seemed
to have not fully grasped the generality of proof, most participants in this study
seemed to have a correct understanding of the generality of universal statements.
Interview studies with 16 secondary school students conducted by Stylianides and
Al-Murani (2010) revealed similar findings. The students were selected based on
their responses to an earlier survey, in which they seemed to have the belief that a
proof and a counterexample can both exist to the same universal statement (as they
assumed that both, a proof and a counterexamples to the same statement would get
high marks from the teacher). However, Stylianides and Al-Murani found that all
of these students correctly believed that a counterexample to a proven statement
cannot exist.

In summary, several studies have investigated students’ or teachers’ understand-
ing of the generality of proof and some of these considered the understanding of the
generality of statements. However, all of these studies related the understanding of
the generality of statements to that of proof. Moreover, what constitutes understand-
ing of the generality of mathematical statements has not been explicitly defined so
far and it is not clear how it relates to the understanding of (the generality of) proof
as well as the usage and conviction of (counter-)examples. In particular, the existing
research does not provide clear findings regarding the proportion of students and
teachers with a limited understanding of the generality of statements (i.e., those
who respond inconsistently regarding the estimation of truth of a universal state-
ment and the existence of counterexamples) and aspects (such as the truth value of
the statement and the type of argument) that might influence their understanding of
the generality of statements.

The following section first provides an introduction to different activities that are
related to proof and proving. Then, research findings regarding relevant activities
with respect to the present project are discussed.

3.2 Activities Related to Proof

Research on students’ proof skills and understanding of proof and argumentation fo-
cuses on different activities. Mejía Ramos and Inglis (2009b) proposed a framework
to classify the respective activities. Based on a general classification of mathemati-
cal activities provided by Giaquinto (2005)—making, presenting, taking in—Mejía
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Figure 3.1 Sub-activities related to proof by Mejía Ramos and Inglis (2009b)

Ramos and Inglis distinguish three main argumentative activities: “constructing a
novel argument, presenting an available argument, and reading a given argument
[emphasis added]” (Mejía Ramos & Inglis, 2009b, p. 68), which other researchers
often refer to as proof construction, proof presentation, and proof reading (e.g.,
Selden & Selden, 2017). In order to consider different behavior due to different
contexts, they further subdivide the three activities. Based on the work of de Villiers
(1990) on different goals of proof, Mejía Ramos and Inglis (2009b) propose the
classification of argumentative activities as shown in Figure 3.1.

According to their framework, proof reading comprises proof comprehension
and proof evaluation, depending on the goal with which a proof is being read. The
goal of proof comprehension is the understanding of a given argument. Aspects of
proof comprehension include knowing the meaning of definitions and terms, under-
standing the meaning and logical status of statements within the proof, being able to
summarize main ideas of the proof, and illustrating the proof with examples (Mejía
Ramos et al., 2012; Neuhaus-Eckhardt, 2022; Yang & Lin, 2008) (see further sec-
tion 3.2.4). In the framework of Mejía Ramos and Inglis (2009b), proof evaluation
consists of both, the validation of proofs (i.e., determining its correctness) and other
evaluative tasks, such as assessing if a proof is convincing or explanatory. Simi-
larly, Pfeiffer (2011) describes proof evaluation as “determining whether a proof
is correct ... and also how good it is regarding a wider range of features such as
clarity, context, sufficiency without excess, insight, convincingness or enhancement
of understanding” (p. 5). To distinguish between proof validation and proof evalua-
tion, A. Selden and Selden (2017) separate validation tasks from proof evaluation.
Regarding proof evaluation, they put a focus on the judgement of qualitative aspects
such as convincingness, clarity, context, and aesthetics (see also Inglis & Aberdein,
2015). Similar to proof reading, Mejía Ramos and Inglis (2009b) further subdivide
proof presentation into sub-activities with different goals. All four of these sub-
activities have in common that an argument is presented to an audience, but they
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differ with respect to different functions of proof (e.g., the argument is presented to
convince the audience of the truth of a statement or to provide an explanation why
a statement is true). In the understanding of Mejía Ramos and Inglis (2009b), proof
construction is not only about finding and giving arguments to justify a statement,
i.e., justification (see also section 2.4.1); their framework equally includes problem
exploration and the estimation of truth of a statement as important aspects of proof
construction.

Particularly relevant for the present thesis are the two sub-activities proof compre-
hension and proof evaluation regarding the reading of given arguments and the sub-
activities estimation of truth and justification regarding the construction of (novel)
arguments. I therefore do not discuss presenting available arguments further. Like
Mariotti (2006), I assume that it is not possible to “isolate proof from the state-
ment to which it provides support, and from the theoretical frame within which this
support makes sense” (p. 184).

Therefore, to highlight the importance of the statement itself, I propose an
adapted version of the framework ofMejíaRamos and Inglis (2009b) by adding
theactivity readinga statement (seeFig.3.2).Thepresentation of arguments could
potentially also be included in the adapted framework, however, it seems to be more
difficult to directly relate it to the other activities. In the adapted framework, the sub-
activity estimation of truth can be viewed as part of reading a statement of which
the truth value is initially unknown1. The conclusion of whether or not a statement
is true can either be drawn by constructing an argument oneself or by reading a
given argument (although on most occasions where an argument is provided, the
reader already knows that the statement is true). Also, a deeper comprehension of
a statement can be supported by both of these activities. Similar to proof compre-
hension, the comprehension of a statement contains aspects such as knowing and
understanding the meaning of definitions, terms, and symbols, its logical structure,
and its relation to other statements, as well as understanding the generality of the
statement, i.e., understanding that there cannot be any counterexamples if the state-
ment is universal and true (see also section 3.2.1). The comprehension of a given
argument is therefore closely related to the comprehension of the statement itself.
Even more: Without fully understanding the statement (including relevant defini-
tions and terms etc.), it seems to be impossible to fully understand or construct an
argument. Furthermore, the necessity for and generality of proof might only become
clear when completely understanding the generality of the statement.

Before discussing main research findings related to the respective activities,
quantitative results from the literature reviews of Mejía Ramos and Inglis (2009a)

1 Mejía Ramos and Inglis (2009b) refer to such statements as conjectures.
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Figure 3.2 Adapted framework on proof-related activities based on Mejía Ramos and Inglis
(2009b)

and Sommerhoff et al. (2015) regarding argumentative activities (Sommerhoff et al.
use the term situations) are summarized. Both studies found that the majority of
mathematics education literature is on proof construction, followed by proof read-
ing, and (almost) no literature was found on proof presentation (see Table 3.2 for
a comparing overview of the studies and the respective results). The articles in the
bibliographical study of Mejía Ramos & Inglis were further allocated to argumen-
tative sub-activities (as shown in Figure 3.1). Regarding proof construction, most
articles (54%) were about problem exploration, followed by the “justification of
a statement” (27%); the minority of the articles (20%) was on the “estimation of
the truth of a conjecture”. Articles on proof reading were mostly on the evaluation
of the argument (87.5%). Only 12.5% were on the comprehension of arguments.
One reason for that might be that it is more difficult to develop assessment models
for proof comprehension than, for instance, proof construction, because one first
has to define what proof comprehension consists of (see further section 3.2.4 on
recent developments). Mejía Ramos and Inglis (2009a) argue that further research
on proof comprehension and proof presentation is needed, because both of these
(sub-)activities have received little attention in mathematics education so far, even
though they can be viewed as two key argumentative activities.

In the following sections, research findings related to the comprehension of state-
ments, the estimation of the truth of statements, the comprehension of arguments,
the evaluation of arguments (particularly with respect to convincingness), and jus-
tification (with a focus on different types of arguments being used, i.e., so-called
proof schemes) are reviewed with respect to the present research interest. Research
on problem exploration is not considered, as it was not explicitly investigated in the
present thesis. Lastly, relations between these activities are discussed.
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Table 3.2 Comparing overview of descriptive literature reviews on argumentative activities

Mejía Ramos and Inglis (2009a) Sommerhoff et al. (2015)

Source of articles Cognition & Instruction,
Educational Studies in Math.,
For the Learning of Math.,
Journal of Math. Behaviour,
Journal for Research in Math. Edu.,
Math.Thinking and Learning, and
ZDM

Proceedings of IGPME

Publication type Journal articles found in ERIC Research Reports

Years 1966–2008 2010–2014

Education level any level secondary or tertiary

# of articles 131 129

Relative frequencies by argumentative activities

Proof construction 63% 57%

Proof reading 18% 7%

Proof presentation no articles found 1%

Multiple not specified 7%

Not explicit 19% 29%

3.2.1 Comprehension of Statements

In literature on proof and proving, little attention has explicitly been given to the
comprehension of statements themselves. Often, the understanding of the statement
is seen as part of proof comprehension (see section 3.2.4), which in the framework of
Mejía Ramos and Inglis (2009b) belongs to proof reading. As discussed in the previ-
ous section, in the present thesis, the comprehension of a statement is understood as
(an integral) part of reading a statement which is related to both, the reading, and in
particular the comprehension of proof, as well as proof construction. In section 3.1,
research findings on the understanding of the generality of statements, which can
be seen as part of the comprehension of statements, have already been discussed in
detail. Thus, in this section, main findings on students’ comprehension of statements
with respect to the statements’ content and logical structure are summarized.

Regarding the comprehension ofmathematical statements, students seem to have
difficulties with both, the logical structure of the statement (e.g. Dubinsky & Yi-
paraki, 2000; Moore, 1994; A. Selden, Mckee, & Selden 2010; J. Selden & Selden,
1995) as well as (basic) understanding of the content and relating it to a mathemat-
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ical theory (e.g., Dubinsky & Yiparaki, 2000; Ferrari, 2002). In particular, students
often seem to ignore unpacking the statement’s conclusion, but solely focus on the
assumption, which limits their understanding of the statement and their attempts to
prove it (Moore, 1994; A. Selden et al., 2010). Correctly unpacking the logical struc-
ture of a statement is seen as an important activity for understanding the statement
and a necessity to construct and evaluate proofs (e.g., J. Selden & Selden, 1995).
By unpacking the logical structure of an informal statement J. Selden and Selden
(1995) mean “associating with it a logically equivalent formal statement” (p. 128).
J. Selden and Selden (1995) examined 61 US university students’ abilities to under-
stand and use the logical structure of mathematical statements in proof construction
and validation by providing them with four informal calculus statements (two true,
two false) which the participants had to unpack. They report that no student was
able to unpack all informal statements into equivalent formal ones in first-order logic
“which they were familiar with” (p. 139). The percentage of students who gave a
correct logical unpacking of a statement was between 0 and 20.8%, depending on
the statement. But students not only seem to struggle with unpacking statements
into (more) formal ones, but also with the translation of terms used in informal
statements into (simple) symbolic expressions, as Piatek-Jimenez (2004) reports.
She illustrates this observation with the following example: One student in her study
“converted her memorized definition of m being odd [the author probably means
even] from ‘m is an integer divisible by 2’ into the symbols ‘m = n

2 ’ ” (p. 195). If
a statement is given informally and a respective proof uses symbolic expressions,
students having these kinds of difficulties would most likely struggle to follow the
proof (as well as constructing one).

Dubinsky and Yiparaki (2000) also report on students’ difficulties with the log-
ical structure of statements. They conducted a study with 63 students from two
US universities and one liberal arts college (mainly mathematics and mathematics
education majors) in which participants had to estimate the truth value of eleven
statements, nine of them in everyday context (e.g., every pot has a cover) and
two of them mathematical statements and justify their decision. The authors of the
studywere in particular interested in students’ understanding of universal existential
statements and existential universal statements (see also section 2.1). The twomath-
ematical statements were therefore chosen such that they basically only differed in
the order of quantifiers2. Dubinsky and Yiparaki (2000) found that about 42% of

2 The statements were: “For every positive number a there exists a positive number b such
that b < a.” and “There exists a positive number b such that for every positive number a
b < a.”
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the participants incorrectly assumed that the two statements were equivalent. This
finding indicates that students have difficulties with the interpretation of quantified
statements, which was confirmed by the study conducted by Piatek-Jimenez (2004).
Dubinsky and Yiparaki (2000) furthermore found that students mainly focused on
the particular content of the statement and how that content relates to their experi-
enced reality as they “referred to a world they were already familiar with and they
considered that the statement described that world” (p. 53). The students were not
able to understand and unpack the (logical) structure of the statements. Moreover,
they hadmore difficulties with correctly interpreting and justifying statements when
the context was mathematical, which the authors see as an indicator for students’
difficulties on a semantic level.

Fundamental difficulties were reported by Ferrari (2002), who conducted a study
with 39 Italian first-year computer science students. He identified several difficulties
regarding the participants’ comprehension of elementary number theory statements
with respect to the content and language of the statement. For instance, students (1)
had poor understanding of basic definitions; (2) lacked conceptual understanding
of the content (e.g., division and fractions), as they used simplifications in a way
that overemphasized procedural aspects; and (3) had difficulties with distinguishing
between a number and its representation.

The findings reported above highlight the importance of (basic) content knowl-
edge, including knowledge about (school) mathematical concepts, which also have
been identified as essential prerequisites for a successful transition from school to
universities (e.g., Rach & Ufer, 2020). Further, many, if not most students also
seem to have difficulties with understanding and unpacking the logical structure of
statements. These findings are not only relevant for the teaching and learning of
proof and argumentation, but should be considered in the development of research
instruments that aim to assess students’ proof skills (see section 5.3).

Fully comprehending (themeaning of) a mathematical statement is not only
necessary for proving it or understanding a given proof, but it is also important
for getting a better intuition regarding its truth value. The following section
summarizes research findings regarding students’ success in estimating the truth
value of statements as well as their respective strategies.

3.2.2 Estimation of Truth of Statements

Deciding wether or not a statement is true can be seen as an essential activity in
mathematics. Consequently, many curricula suggest that students should be able to
make, evaluate (e.g., estimating the truth value), and justifymathematical statements
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(e.g., Department of Basic Education, 2011; Kultusministerkonferenz, 2012; Na-
tional Council of Teachers ofMathematics, 2000). For instance, theGerman national
curriculum for upper secondary schools states that “this competence [referring to
argumentation] includes ... the understanding and evaluation of given mathematical
statements” (Kultusministerkonferenz, 2012, p. 14, translated by the author). Simi-
larly, from prekindergarten through grade 12, students in the US should be enabled
to “make and investigate mathematical conjectures” (National Council of Teachers
of Mathematics, 2000, p. 56).

Of all articles on proof and argumentation that were included in the literature
review of Mejía Ramos and Inglis (2009a), approximately 12% were about the esti-
mation of the truth of a conjecture. Studies have reported awide range of percentages
of participants correctly judging the statements’ truth values, ranging from about 30
to 100% (Barkai et al., 2002; Dubinsky & Yiparaki, 2000; Hoyles & Küchemann,
2022; Ko, 2011; Ko&Knuth, 2009; Riley, 2003; Zeybek Simsek, 2021). In addition
to investigating students’ or teachers’ success in estimating the truth value of mathe-
matical statements, some studies have examined its relation to the type of statement
(e.g., universal or existential, true or false) and/or strategies students or teachers
use to come to a respective conclusion. For instance, Barkai et al. (2002) report
on 27 elementary school teachers’ correct judgements regarding the truth of three
universal and three existential statements, some of which are true and some false.
The percentage of teachers who correctly estimated the truth value was between 68
and 100%, thus, most were comparatively successful in estimating the truth (see
Tab. 3.3). Descriptively, it seems that it was more difficult for them to correctly
decide on the truth value of existential statements (the true existential statement #4
is the same as #1 and therefore true for all n, thus it can be seen as an exception), in
particular, regarding statements that are true for some n, no matter if the statement is
expressed as false universal or true existential. However, the number of participants
as well as items is comparatively small and might therefore not be representative.

Comparatively high success rates were also reported by Ko (2011). She con-
ducted semi-structured interviews with eight secondary mathematics education ma-
jors from a US university, who were either in their third-year, fourth-year, or fifths-
year. The majority of participants (about 83%) correctly estimated the truth value of
six statements (four of them true, two of them false; from different content areas).
However, one of the false statements was correctly evaluated by only half of them
(the other one by 87.5%). Moreover, most of the students (successfully) used mixed
reasoning strategies in which “individuals both use examples to identify relevant
patterns and structures, and manipulate (partially) correct properties, definitions,
and/or theorems to identify a reasonable example to attempt to prove or disprove
the statement” (p. 481), fewer participants used other strategies such as deductive
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Table 3.3 Teachers’ estimation of truth by truth value and domain of discourse of statements;
findings reported by Barkai et al., table adapted from (Reid & Knipping, 2010, p. 70), with
permission from Brill

Statement #1 #2 #3 #4 #5 #6

Type Universal Existential

Truth value True False False True False True

Correct
judgement

100% 100% 69% 100% 77% 68%

True for
what set?

All n No n Some n All n No n Some n

arguments (the author refers to sophisticated reasoning) or purely empirical argu-
ments. A false statement that has been used in several studies is that if the perimeter
of a rectangle increases, the area of it also increases. The percentage of preservice
teachers who incorrectly evaluated this statement to be true has been reported to be
comparatively high: About 57% of 23 preservice secondary school teachers from
a US university and 72% of 50 preservice middle school teachers from a Turkish
university that participated in a study conducted byRiley (2003) and Zeybek Simsek
(2021), respectively, thought the statement is correct. Some researchers argue that it
is no surprise that students particularly struggle with correctly estimating the truth
value of false statements, because in schools (and universities), students usually
have to prove true statements in contrast to disproving false ones (e.g., Buchbinder
& Zaslavsky, 2007; Ko, 2011). However, no noteworthy difference was found by
Ko and Knuth (2009) regarding the success rates of 36 Taiwanese mathematics un-
dergraduates (most of them prospective secondary school teachers). For both a true
and a false statement, the percentage of students who failed at estimating the truth
value was about 20%. Most of these students provided an incorrect counterexample
regarding the true statement and an incorrect proof regarding the false one. More
research is needed to better understand the influence of the truth value on students’
success in estimating the truth value of statements.

To better understand students’ usage and understanding of (counter-)examples
in the process of estimating the truth value of a statement, some researchers have
investigated how students estimate the truth or falsity of statements (see also sec-
tion 3.2.5 for further research on types of arguments being used by students and
teachers to justify statements). In this regard, Buchbinder and Zaslavsky (2007)
conducted a study to identify students’ strategies in determining the truth value of
statements. They found that the first step “was based on their intuition and sense
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of confidence” (p. 563). Depending on their confidence regarding the truth value of
the statement, students searched for evidence (either by deduction or based on em-
pirical arguments) or directly gave empirical arguments to support their assertion.
Empirical argumentations thereby occasionally resulted in “students shift to a dif-
ferent decision”, for instance, when they “have found by chance a counterexample
that contradicted [their] decision” (p. 564). Thus, as has been emphasized by other
researchers, experimentation is not only common but potentially useful to explore
conjectures (e.g., de Villiers, 2010 Lockwood, Ellis, & Lynch, 2016).

To estimate the degree to which mathematicians use examples to evaluate and
prove universal statements, Alcock and Inglis (2008) conducted two case studies
with doctoral mathematics students. The participants were asked to decide if several
statements were true and to justify their decision with a proof. Both doctoral stu-
dents used empirical arguments in the interviews, however, “the degrees to which
they invoked examples to support their reasoning were strikingly different” (p. 126).
While one participant did not seem to use empirical arguments to get a better un-
derstanding of the statement, the other one did. Alcock and Inglis (2008) conclude
that these findings highlight the usefulness of skills involving experimentation for
the exploration of statements.

In summary, the success rates of students’ and teachers’ evaluation of the truth
value of mathematical statements differ substantially and seem to depend on charac-
teristics of the statement such as its actual truth value and its domain of discourse (if
it is true for all, for some, or for no entities/cases). However, more research is needed
to identify specific relations, for instance, regarding the influence of the statements’
truth value.Moreover, example based reasoning (or amixed strategy including some
deductive arguments) seems to be a common and useful approach–even though to
different degrees–to get an understanding of the statement and a better intuition re-
garding its truth value. But if and how the usage of empirical arguments is related to
students’ success in estimating the truth value of statements and the understanding
of the generality of statements is unclear and needs to be investigated.

In the following section, research findings regarding students’ proof evaluation
are summarized. Thereby, a particular focus is on students’ conviction and accep-
tance regarding different types of arguments.

3.2.3 Proof Evaluation

The evaluation of given arguments is another essential sub-activity of proof reading.
As already stated in section 3.2, proof evaluation can include different aspects, such
as the validation of arguments, i.e., deciding whether an argument is correct (i.e., a
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valid proof) and other evaluative activities, for instance, assessing if an argument is
convincing or explanatory. Being able to decide if an argument is valid or not is seen
as an important skill, for both students and teachers, and a necessity for establishing a
proper understanding of proof (Pfeiffer, 2011; Powers, Craviotto, & Grassl, 2010;
A. Selden & Selden, 2003; Sporn, Sommerhoff, & Heinze, 2021; Weber, 2010).
In particular, researchers have argued that evaluative activities in general may be
beneficial for the learning of proof construction, because both activities rely on the
knowledge of acceptance criteria for proof (e.g., Pfeiffer, 2011; A. Selden& Selden,
2003). The focus of this section is on students’ proof evaluation regarding conviction
and validity of arguments, but not on other aspects, such as how explanatory an
argument is. Before empirical research on proof evaluation is reviewed, the relation
between conviction and validity is discussed.

Conviction andValidity
Even though some researchers define the evaluation regarding the validity of ar-
guments as a separate activity, namely that of proof validation (e.g., A. Selden &
Selden, 2017, see also section 3.2), proof validation and other evaluative activities
are generally not independent of each other. The degree of conviction is influenced
by several aspects, for instance, by the perceived validity of the argument (see sec-
tion 2.3.3). If someone identifies an argument as not valid, they will likely also find
it not (completely) convincing. On the other hand, the sole existence and acceptance
of a proof does not necessarily lead to conviction (Fischbein, 1982; Segal, 1999;
Weber, 2010). For instance, in a study conducted by Fischbein (1982), many of the
participating high school students felt the need to verify the truth of a statement
through empirical investigations, even though they had claimed that the provided
argument was a valid proof.

It is not always clear what is meant by conviction and how students interpret
questions regarding their conviction of arguments. Conviction is sometimes used
regarding the validity of proofs (e.g., Weber & Mejia-Ramos, 2015), often to ex-
press different degrees of conviction in the validity of proofs (see also discussion on
relative and absolute conviction further below). However, likely more often, convic-
tion relates to the truth of a statement (see, e.g., Segal, 1999). In this sense, questions
regarding students’ conviction aim at investigating if the reading (or construction)
of (certain types of) arguments lead to the conviction of the truth of a statement. As
mentioned above, several aspects may influence students’ conviction of the truth of
a statement, in particular, the perception of the argument as proof.

However, one can gain high levels of conviction for the truth of a statement by
reading an argument without accepting the argument as a proof (Tall, 1989; Weber,
2010) or even without the existence of a proof, as de Villiers (1990) highlights:
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“Proof is not necessarily a prerequisite for conviction—to the contrary, conviction
is probably far more frequently a prerequisite for the finding of a proof” (p. 18).
This observation had also been made by Polya (1954), who argues that “without ...
confidence [in the truth of the theorem] we would have scarcely found the courage
to undertake the proof which did not look at all a routine job.” (pp. 83–84).

As discussed in section 2.3, proof –in the social sense–is not a clearly defined
concept, but depends on socio-mathematical norms. Thus, the validation of an argu-
ment depends on the respective mathematical community. To highlight the different
psychological aspects that are involved in proof validation and conviction, Segal
(1999) distinguishes between personal conviction (convincing oneself) and pub-
lic validation (persuading others). She found that first year mathematics students
from a UK university showed personal conviction regarding empirical arguments
but no public validation, indicating that they assume empirical arguments do not
meet the requirements of proof. Regarding ordinary proofs, however, no such dif-
ference was found. The students either found these types of arguments convincing
and thought they were proofs or neither of those two. To highlight different degrees
of conviction, Weber and Mejia-Ramos (2015) have introduced the terms relative
and absolute conviction, to which I come back to further below.

Due to their relevance for the present thesis, the following sections outline re-
search findings regarding students’ evaluation of different types of arguments: em-
pirical arguments and generic and ordinary proofs.

Findings on the Evaluation of Empirical Arguments
Healy and Hoyles (2000) found evidence that students are often convinced by em-
pirical arguments, but at the same time recognize their limitations and thus, do not
accept those arguments as valid proofs. Several studies have confirmed that most
students seem to be aware of the limitations of empirical arguments (e.g., Healy
& Hoyles, 2000; Lesseig et al., 2019; Stylianou et al., 2015; Tabach, Levenson,
et al., 2010). Combined, these findings are in line with those of Segal, indicating
that distinctions between personal conviction and public validation may be useful.
However, other studies found the contrary, namely, that some students (and teachers)
seem not only be convinced by empirical arguments but judge them as being valid
proofs (Gholamazad et al., 2004; Knuth, 2002;Martin &Harel, 1989). For instance,
in a study with 101 preservice elementary teachers from a US university conducted
by Martin and Harel (1989), more than half of the participants accepted inductive
arguments3 as proof for both familiar and unfamiliar statements. The convincing

3 The inductive arguments consisted of simple (numerical) examples, big numbers, several
verifications that reveal a pattern (see Martin & Harel, 1989, p. 44)
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power of empirical arguments is underlined by findings reported byBieda andLepak
(2014). They conducted an interview study with 22 junior high school students from
the US. The majority of the participants (15) chose an empirical argument over a
general argument as being more convincing, mainly because they claimed that em-
pirical arguments enhance their comprehension of the statement and provide more
information. Four participants found the generic argument more convincing and
two of them explicitly referred to a lack of generality of the empirical arguments.

Other studies did not find evidence that students find empirical arguments con-
vincing. For instance,Weber (2010) conducted a studywith 28mathematics students
from a US university, who had completed a transition-to-proof course. Most partic-
ipants neither found the empirical arguments provided in the study convincing nor
thought they constitute a proof. These findings were reproduced by D. Miller and
CadwalladerOlsker (2020), who investigated 38 mathematics students from a US
university, who were also enrolled in a transition-to-proof course. Thus, more ad-
vanced mathematics students do not seem to find empirical arguments convincing.
Similar results were found by Ko and Knuth (2013), who investigated 55 mid-
dle school mathematics teachers’ proof evaluation, and by Sommerhoff and Ufer
(2019), whose findings show that most of the participating high school and univer-
sity students judged the empirical arguments as being no valid proofs. Even though
about 70% of more than 650 German high school students, who participated in a
study conducted by Ufer, Heinze, Kuntze, and Rudolph-Albert (2009), correctly
judged empirical arguments as invalid, only about one third of them could explain
why these argument do not meet the criteria for proof. The authors argue that the
students seem to be familiar with the fact that empirical arguments are insufficient
to prove a universal statement, however, not in a way that they were able to explain
why.

Findings on the Evaluation of Generic Proofs
Similar to empirical arguments, research findings on students’ and teachers’ eval-
uation of generic proofs seem to be inconsistent. Some studies suggest that many
students do find generic proofs (in particular diagrammatic arguments4) convincing
and think they constitute a proof (Ko&Knuth, 2013;Weber, 2010). Even though not
all participants of the study conducted byMartin and Harel (1989) accepted generic
proofs (the authors refer to particular proofs), those who (correctly) accepted an
ordinary proof for a statement also rated the acceptance of the respective generic

4 A diagrammatic argument is a type of visual argument. As it illustrates the statement for a
particular case but reveal an underlying structure or idea, it can be seen as a form of generic
proof.
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proof highly. However, other studies have found the opposite. Tabach, Barkai, et al.
(2010), for instance, conducted a study with 50 high school teachers and found that
about half of the participants did not accept the provided generic proofs (the authors
refer to verbal justifications) because of a perceived absence of generality. The (per-
ceived) generality of an argument seems to be a criterion, teachers often consider
when evaluating a proof (Ko &Knuth, 2013). Moreover, the mode of representation
was another reason why participants in the study of Tabach, Barkai, et al. rejected
correct generic proofs. Further evidence that teachers assume generic proofs do not
meet the criteria for proof was provided by Lesseig et al. (2019). They found that
the majority of secondary school teachers who participated in their study did not ac-
cept the presented atypical proofs (a generic proof and a visual argument). Further,
some participants explicitly stated that these arguments did not convince them. The
focus in both studies was on teachers’ acceptance of arguments. A study conducted
by Kempen (2018) aimed at investigating preservice teachers’ evaluation regard-
ing verification as well as conviction. He found that generic proofs received low
ratings regarding verification, while the ordinary proof (the author refers to formal
proof) received very high ratings.While ratings regarding students’ conviction were
higher than for verification, the generic proofs still received lower ratings than the
ordinary proofs. In comparison to empirical arguments, Kempen (2021) found that
students gave generic proofs higher ratings regarding both familiar and unfamiliar
statements, which may indicate that students “do not mix up the idea of generic
proofs with purely empirical verifications” (p. 4).

Findings on the Evaluation of Ordinary Proofs
Most students (and teachers) find ordinary proofs convincing and accept them as
proof (e.g., Knuth, 2002; Ko & Knuth, 2013; Martin & Harel, 1989; Ufer et al.,
2009), regardless of the familiarity with the statement (see, e.g., Martin & Harel,
1989). However, Weber (2010) observed that some students in his study did not find
ordinary proofs convincing, even though they accepted them as proof, in line with
findings reported by Fischbein (1982), as discussed above. Interviews conducted
with the respective participants indicate that one reason for these contradictory re-
sponses is that these students seem to not have fully understood the proof (but
nevertheless stated the proof was valid). Further, as discussed in section 3.1, some
students believe that all arguments–ordinary proofs as well as other types of argu-
ments such as empirical ones–can only provide evidence for a statement, but are not
able to guarantee its truth (Chazan, 1993).

Several studies suggest that students also evaluate invalid ordinary proofs as
being convincing or think they constitute a proof (Knuth, 2002; Martin & Harel,
1989; A. Selden & Selden, 2003; Weber, 2010). This indicates that students (and
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teachers) tend to focus on surface features such as the use of mathematical symbols
and algebraic manipulations instead of the content and logical structure of the ar-
gument (Harel & Sowder, 1998; Inglis & Alcock, 2012; Knuth, 2002; A. Selden &
Selden, 2003), which researchers sometimes refer to as ritualistic aspects of proof
(e.g., Martin & Harel, 1989). A focus on the form of an argument has also been
reported byUfer et al. (2009):Most of the German high school students (about 80%)
correctly evaluated the ordinary proof (the authors refer to a “formally expressed
... solution”, p. 41, in German “formal dargestellte ... Lösung”), but less students
(about 66 to 68%) did so regarding a correct narrative proof, suggesting that the
(perceived) formality of the proof plays a role regarding its acceptance.

Moreover, Stylianou et al. (2015) found that students’ answers regarding proof
evaluation and construction can be contradictory: The students in the study were
askedwhich argument (out of four) is closest to one they would produce themselves.
Most students either chose a (numeric) empirical argument, a narrative deductive
proof, or a symbolic deductive proof (each was chosen by about one third of the
participants). But when students were asked to construct proofs to the same state-
ments, the majority of students constructed numeric empirical arguments (45 to
75%) or narrative deductive proofs (14 to 45%). The students’ answers regarding
what arguments they would give when asked to justify a statement did not fully
reflect what types of arguments they actually construct, but they were most likely
influenced by what they thought would be accepted as proof. This highlights that
students are often aware that empirical arguments do not meet the standards for
proofs and that general, deductive arguments are necessary. However, they are often
not able to produce these types of arguments, a finding which has repeatedly been
reported before, for instance, by Healy and Hoyles (2000).

Aspects that Influence Students’ andTeachers’Proof Evaluation
Several aspects that may influence students’ and teachers’ evaluation of arguments
have already been mentioned above, for instance, the form or representation of an
argument (e.g., A. Selden & Selden, 2003; Tabach, Barkai, et al., 2010; Ufer et al.,
2009), the perceived generality (Bieda & Lepak, 2014; Ko & Knuth, 2013; Tabach,
Barkai, et al., 2010), and the comprehension of the argument (Bieda & Lepak, 2014;
Weber, 2010). This section provides a summary of aspects that have been identified.
Only few studies have explicitly investigated which aspects influence students’ or
teachers’ proof evaluation5. Ko and Knuth (2013) have identified several character-
istics that may influence teachers’ conviction and judgement of validity, including

5 Mathematicians’ acceptance criteria have been outlined in section 2.3.3 and are further
discussed in the following section.
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the ones just mentioned. Other aspects they identified include the clarity and ex-
planatory power of the argument, the familiarity with the type of argument (the
authors refer to similarity), or the usage of mathematical facts (e.g., definitions or
theorems). They report that the 55 participating middle school teachers most often
referred to the generality of the argument regarding their conviction and to the usage
of algebraic rules or mathematical symbols regarding the validity of arguments. In
part, the coding scheme for acceptance criteria proposed by Sommerhoff and Ufer
(2019) contains similar aspects to those identified by Ko&Knuth, such as the usage
of counterexamples, understanding the argument, and aesthetics. But other char-
acteristics differ. In particular, Sommerhoff & Ufer considered the structure of the
proof, the proof scheme, and the logical chain in their coding, which were proposed
as students’ methodological knowledge by A. Heinze and Reiss (2003). Moreover,
during their coding process, they identified additional categories, for instance, ref-
erences to the argument (not) being a mathematical proof or the requirement of
proofs being unambiguous. Sommerhoff and Ufer (2019) analyzed school and uni-
versity students’ as well as active mathematicians’ justifications of why they think
the purported proofs are valid or not using the coding scheme for acceptance criteria.
They found that the proof structure, proof scheme, logical chain, and understanding
seemed to be the most important acceptance criteria overall. They emphasize that
understanding seemed to be particularly relevant for school and university students.

In the following section, I reflect on the researchfindings on students’ proof evalu-
ation, for instance, regarding their alignment with mathematicians’ proof evaluation
and differences in research approaches.

Reflection on Research Findings on Proof Evaluation
In the research findings outlined above, several aspects can be identified that may
influence results on proof evaluation and therefore possibly limit comparability:

• the different (mathematical) backgroundof participants (e.g., someare preservice
teachers, others mathematics majors; the age, etc.)

• the different research foci and designs (e.g., conviction vs validity, phrasing of
questions, etc.)

• a different (and sometimes unclear) understanding of (the level of) conviction.

The first two aspects provide indications of potential influencing factors and condi-
tions under which students might find particular types of arguments convincing or
accept them as proof, and how conviction and validation might be connected. These
should be considered for future investigations. To address the last aspect–a different
understanding of conviction–Weber and Mejia-Ramos (2015) have introduced the
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notion of relative and absolute conviction: Relative conviction is thereby defined
as a “subjective level of probability” regarding the truth of a claim that “exceeds a
certain threshold”; absolute conviction, however, is “a stable psychological feeling
of indubitability about that claim” (p. 16). Weber and Mejia-Ramos (2015) argue
that mathematicians have absolute conviction in certain statements, mainly those
that are well known for a long time, but also relative conviction regarding the truth
of “more sophisticated claims” (p. 16) as well as the validity of proofs. As an ex-
ample, they refer to Hales’s proof of Kepler’s Conjecture about sphere packing in
the Euclidean space (a computer-assisted proof by exhaustion) that was published
in 2005 in the Annals of Mathematics (Hales, 2005). According to the editor of
the journal, “the reviewers were only 99% sure the proof was valid” (see Weber &
Mejia-Ramos, 2015, p. 16). Even though the editor and reviewers only had (high)
relative conviction and not absolute conviction in the validity of the proof, (part of
the) proof got published6. The concept of relative and absolute conviction is related
to what Duval (1990) refers to as the epistemic value of a statement. That is, “a
personal judgement of whether and how the proposition is believed. It can take on
values such as opinion, belief, certainty, principle, hypothesis, etc.” (Reid & Knip-
ping, 2010, p. 74). In theory, mathematical proof “has the function of changing the
epistemic value of a statement, for example from conjecture to theorem” (p. 75),
thus, leading to absolute conviction in the truth of the statement.

With respect to the assessment of findings on students’ proof evaluation,Weber&
Mejia-Ramos (2015) argue that researchers should verify if students have relative
or absolute conviction regarding the truth of statements and proof. For instance,
students’ conviction of empirical arguments is not necessarily problematic, if these
arguments only lead to relative conviction in the truth of the statement. Similarly,
students having doubts about the truth of a statement “after reading or producing
a proof of the statement” (p. 19) may also be appropriate, if students only have
relative conviction in the validity of the proof. The distinction in relative and absolute
conviction may therefore be useful in interpreting and comparing research findings
of students’ proof evaluation, regarding both, conviction in the truth of statements
and validity of proofs.

To assess students’ evaluation of proof (and other proof-related activities), many
researchers in mathematics education refer to mathematicians’ conceptions of proof
and their respective acceptance criteria as a benchmark (e.g., Dawkins & Weber,
2017; Harel & Sowder, 2007; Stylianides, 2007; Weber, 2013; Weber & Czocher,
2019). Thereby, proving practices in the mathematics classrooms are not expected

6 In 2017, a team of researchers lead by Hales published a formal proof of the conjecture in
the journal Forum of Mathematics, see Hales et al. (2017)
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“to be exact replicas of professionalmathematical communities” (Weber&Czocher,
2019, p. 253), but general standards for the acceptance and understanding of proof
should be consistent with those of the mathematical community (Dawkins & We-
ber, 2017; Harel & Sowder, 2007)7. Respective acceptance criteria have already
been discussed in section 2.3.3. In summary, based on Weber and Czocher (2019),
mathematicians seem to

• agree on the acceptance of typical arguments;
• agree on the non-acceptance of invalid proof schemes, for instance, empirical

arguments;
• disagree on atypical arguments such as visual arguments and computer-assisted

proofs.

Furthermore, being familiar with the form of reasoning and representation that is
used in an argument can be seen as an important criterion for the acceptance of
proof. As a conclusion, students should accept typical arguments they are familiar
with–which implies that they need sufficient experience until they can be expected
to accept such arguments–but not invalid proof schemes, in particular empirical
arguments. Less obvious is the acceptance of atypical arguments, for instance,
generic proofs: Should students accept those as proof? As there might not be a
clear consensus among mathematicians regarding the validity of such arguments,
it is difficult to give an absolute answer. It seems to be more useful in this regard,
to let students explain why they accept an argument and assess if the reasoning is
consistent with characteristics of proof as outlined in section 2.3.3. Moreover, as
noted above, to decide wether an argument leads to (relative or absolute) conviction
in the truth of the statement and wether it meets the criteria for proof (personal
conviction vs public validation) might lead to different outcomes.

Even though there seems to be a consensus amongmathematicians that empirical
arguments should not be accepted as proof, a considerable percentage of them claim
to find empirical arguments nevertheless convincing (under specific conditions), as
Weber (2013) found. He conducted an experimental study in which 97 research-
active mathematicians participated. The main findings of the study are that, firstly,

7 Some researchers have argued that the imitation of research mathematics in the classroom
is limited by several factors, such as the inability to replicate the process of proving as well
as the fact that school mathematics deals “with theorems that have already been proven by
others” (Hanna & Jahnke, 1993, p. 433).
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mathematicians seem to find empirical arguments8 more convincing if the respec-
tive statement is about integers having some property than if it is about integers
not having some property. And secondly, that the mathematical domain seems to
influence the persuasiveness of arguments, as an empirical argument regarding a
statement about modular congruence was more convincing for the participants than
an empirical argument regarding a statement about generating primes. Furthermore,
about 27% of the participating mathematicians claimed they have been convinced
by empirical arguments at least once in their mathematical practice. Overall, the
mean ratings of persuasiveness of the empirical arguments were not very high,
but Weber’s study nevertheless demonstrates that under certain conditions (some)
mathematicians gainpersonal (relative) convictionby empirical arguments.Because
students need “to understand under what condition this type of evidence [empirical
proof] might be appropriate and informative” (Weber, 2013, p. 110), mathemati-
cians’ proof evaluation should be considered, when judging students evaluation (in
particular of empirical arguments) and teaching proof. Therefore, further research
on the conditions under which particular types of arguments (such as empirical ones
or atypical arguments, e.g., generic proofs) can provide high levels of conviction
for mathematicians is needed.

In summary, research findings on students’ proof evaluation of different types
of arguments is at least partially ambiguous. Most students (and teachers) seem to
find ordinary proofs convincing and think they are valid–even when the proof is in
fact incorrect. The degree to which students find generic and empirical arguments
convincing and/or think they are proofs is less clear. More experienced students
seem to find empirical arguments neither convincing nor think they are proofs.
Overall, the perceived generality, the representation of the argument, students’ un-
derstanding of the argument, and their methodological knowledge seem to influence
if and how convincing or valid students judge different types of arguments. More
research is needed to investigate the degree to which students find different types of
arguments convincing and what aspects influence their conviction. Distinguishing
between relative and absolute conviction might not only lead to more consistent
outcomes, it could also assess students’ actual conviction of (empirical) arguments
more accurately. Further, even mathematicians do not always agree on the validity
of arguments and sometimes evaluate arguments as convincing even though they
do not fully meet the criteria for proof (e.g., empirical arguments). These findings

8 In addition to receiving empirical evidence for the statement for the first 12 relevant cases,
the participants in Weber’s study were provided with the information that the statements have
been checked by a computer up to the first 10, 000 relevant cases.
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should be taken into account regarding the assessment of students’ (and teachers’)
evaluation of proof.

The following section provides an overview of research on students’ (and teach-
ers’) proof comprehension. First, developments in the assessment of proof compre-
hension are discussed. Following this, empirical findings on students’ and teachers’
proof comprehension are outlined.

3.2.4 Proof Comprehension

So far, in comparison to proof construction, not many studies have particularly
focussed on the reading comprehension of arguments and proofs (Mejía Ramos &
Inglis, 2009a; Neuhaus-Eckhardt, 2022; Sommerhoff et al., 2015), as already noted
in section 3.2. This is somewhat surprising, because proof comprehension can be
viewed as one of themain activities inmathematics university courses. Furthermore,
the goal of teaching proof and argumentation in school (and university) is notmainly
to convince students of the truth of a statement, but to enable a deeper understanding
(e.g., de Villiers, 1990; Hanna, 1990; Hersh, 1993).

The assessment of proof comprehension in school und university is mostly car-
ried out by asking students to reproduce a proof or to adjust it to a different context,
although researchers argue that this does not provide sufficient inside in students’ ac-
tual proof comprehension, because correctly reproducing a proof can be achieved by
solely memorizing it and does not necessarily require understanding (e.g., Conradie
& Frith, 2000; Weber, 2012). Therefore, researchers have defined different aspects
that may indicate proof comprehension (e.g., Bürger, 1979; Conradie & Frith, 2000;
Kunimune et al., 2009; Pracht, 1979). Commonly, proof (reading) comprehension is
thereby understood as the understanding of a particular (and valid) proof9. However,
even though lists of relevant aspects have been collected, Mejía Ramos et al. (2012)
point out that “what it means for a proof to be understood, and how we can tell if
students comprehend a given proof remain open questions in mathematics educa-
tion” (p. 4). Thus, to measure students’ proof comprehension more systematically,
researchers have recently begun to create assessment models, which are discussed
in the following section.

9 Whereas proof understanding often–but not always–also refers to students’ proof concep-
tions, e.g., what students think a valid proof consists of (see, e.g., Harel, 1999; Reiss&Heinze,
2000).



3.2 Activities Related to Proof 55

Assessment of Proof Comprehension
Particularly noteworthy among developments in operationalising the assessment of
students’ proof comprehension are the works of Conradie and Frith (2000), Yang
and Lin (2008), and Mejía Ramos et al. (2012). Conradie and Frith (2000) were
among the first researchers, who emphasized the importance of measuring proof
comprehension at university level and explicitly suggested proof comprehension
tests10. They constructed two proof comprehension tests, which were used in a final
exam for second-year university students at the University of Cape Town tomeasure
students’ understanding of two particular proofs. Apart from providing specific test
questions, Conradie and Frith (2000) summarize the following aspects of proof
comprehension that could be tested individually: “understanding of specific steps
..., understanding of the structure of the proof ..., understanding of concepts used in
the proof ..., understanding of assumptions and conclusions ... and understanding
of some of the more subtle aspects of a proof” (p. 231).

The model of reading comprehension of geometry proof (RCGP) proposed by
Yang and Lin (2008) for the learning of proof in secondary schools was the first
research based assessment model that aimed at defining and structuring relevant
aspects of proof comprehension. It consists of five facets (basic knowledge, logical
status, summarization, generality, application) which can be allocated between four
different levels of understanding (surface, recognizing elements, chaining elements,
encapsulation). For instance, the comprehension of generality is placed between the
third and last level. In contrast to other researchers (see section 3.1), Yang and Lin
(2008) define understanding of generality as understanding “what is really proved
by this proof” (p. 70). In describing their model, Yang and Lin (2008) concentrated
on the first three levels and did not further specify the highest level of encapsulation,
explicitly stating that the RCGP model “is not aimed at diagnosing if a student has
reached this top level” (p. 71). Furthermore, their model was particularly designed to
measure geometry proof comprehension at secondary level. Therefore,MejíaRamos
et al. (2012) adapted the RCGP model of Yang & Lin to better fit the requirements
at tertiary level. In particular, the model of Mejía Ramos et al. (2012) is supposed to
expand on the highest level of theRCGPmodel, atwhich students need to understand
the proof as a whole, for instance, understanding the main idea of the proof. To
identify and justify relevant aspects of proof comprehension, they reviewed literature
on different goals and methods of proof discussed in mathematics education and

10 Houston (1993) has also raised the importance of comprehension tests in mathematics. He
suggests several questions to assess students reading comprehension of mathematical articles
in university courses on mathematical modelling. Even though these questions also address
aspects of proof comprehension, he did not specifically design the tests to measure proof
comprehension.
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conducted interviews with mathematicians regarding their conceptions of proof
comprehension. Furthermore, they drew from the proof comprehension questions
suggested by Conradie and Frith (2000). Mejía Ramos et al. (2012) identified seven
types of questions that each “measures a different facet of proof comprehension”
(p. 5). They subdivided these facets into two groups: local and holistic aspects
of proof comprehension. Local understanding thereby means the understanding of
a particular statement within the given proof and its (logical) connection to other
specific statements in the proof. Understanding themeaning of terms and statements
(within the proof) is part of a local understanding, for example. In contrast, to gain
holistic understanding, one has to understand the proof as a whole or at least its
main parts, for instance, one has to be able to summarize the main idea of the proof
or transfer the proof’s methods to another context. Thus, holistic understanding
relates to the highest level of the RCGP model, encapsulation. Mejía Ramos et al.
(2012) specify three types of questions that relate to local understanding and four
that relate to holistic understanding. The three local aspects can be summarized as

• understanding the meaning of terms and statements
• understanding the logical status of statements and proof framework
• being able to provide justifications of claims.

The four aspects of holistic understanding, that Mejía Ramos et al. have identi-
fied, were particularly valued by the interviewed mathematicians. These types of
questions consist of:

• summarizing main ideas of the proof
• identifying the modular structure
• transferring the general idea or method to another context
• illustrating (parts of) the proof with examples.

Even though Mejía Ramos et al. (2012) state that they do not view their model to be
hierarchical, they do not rule out the possibility that relationships between facets ex-
ist, for example, “being able to summarize the proof ... may be necessary in order to
successfully transfer [the] ideas andmethods to another context” (p. 16). The assess-
ment model of Mejía Ramos et al. was used to design three reliable multiple-choice
tests that “validly measure students’ comprehension of the proofs that they read”
(Mejía Ramos, Lew, Torre, & Weber, 2017, p. 140). Thus, they have demonstrated
a useful alternative method of measuring students’ proof comprehension compared
to asking students to simply reproduce a proof, for example.
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Another recent work on proof comprehension worth mentioning is the doctoral
thesis of Neuhaus-Eckhardt (2022). She defines proof comprehension as the con-
struction of a mental model of a valid proof in written form through processes of text
comprehension (Neuhaus-Eckhardt, 2022, p. 36). Based on the assessment model of
Mejía Ramos et al. (2012) and a literature review on proof comprehension, Neuhaus-
Eckhardt proposes a list of aspects that indicate proof comprehension. She expanded
themodel ofMejía Ramos et al. (2012) by introducing a third group, namely, aspects
of proof comprehension beyond the particular proof (in German “über den Beweis
hinausgehende Aspekte”, pp. 49–50). While Mejía Ramos et al. (2012) include as-
pects such as transferring to another context in the group of holistic understanding,
Neuhaus-Eckhardt (2022) argues that such questions do not refer to the particular
proof but to the underlying ideas and methods used in the proof. Thus, students’
ability to transfer the idea of the proof to another context, for instance, indicates an
understanding beyond the particular proof.

In the following section, I summarize empirical research findings on students’
proof comprehension.

Findings on Proof Comprehension
Since literature on proof reading comprehension is rare (Mejía Ramos et al., 2012;
Neuhaus-Eckhardt, 2022), findings from studies on proof reading in general and
students’ difficulties with proof are also considered in this section.

Studies have found that students tend to read proofs line by line–Inglis andAlcock
(2012) refer to zooming in–focussing on local aspects (A. Selden & Selden, 2003),
in contrast to mathematicians, who, as already mentioned above, claim to value
a holistic understanding of proof (e.g., Mejía Ramos & Weber, 2014). Inglis and
Alcock (2012) conducted an eye-tracking study, which confirmed the findings of A.
Selden and Selden (2003) that students tend to focus on surface features of proof,
such as notational and computational aspects, instead of the logical structure of the
arguments. Moreover, the mathematicians in their study “made nearly 50% more
between-line saccades than the undergraduates” (Inglis & Alcock, 2012, p. 380),
suggesting thatmathematicians triedmore often to connect statements between lines
on a local level. However, no evidence was found that mathematicians “engage
in zooming out” (p. 380), meaning a non-sequential reading strategy to identify
links between different parts of the proof on a holistic level. This can be seen as a
contradiction to mathematicians’ self-report on proof reading, according to which
mathematicians claim to first start with skimming the proof (Mejía Ramos&Weber,
2014;Weber, 2008). Thus,mathematicians’ behaviourmay to be different fromwhat
they claim they do when attempting to comprehend or validate a proof.
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Students’ focussing on local aspects, in particular surface features, might not be
surprising, because many students’ seem to already lack basic knowledge. For in-
stance, they have difficulties with knowing and understanding definitions, notations,
and theorems (Conradie & Frith, 2000; Moore, 1994; Reiss & Heinze, 2000). In a
study on high school students’ understanding of proofs, Reiss and Heinze (2000)
found that only about 9% were able to correctly define the concept of congruence
and only about 11% were able to state a theorem involving congruence.

Furthermore, many students do not seem to understand the logical status of
statements and the purpose of specific statements used in the proof, for instance,
they have difficulties distinguishing between assumption and definition (regarding
proof by contradiction) or between assumption and conclusion (Conradie & Frith,
2000). As already discussed in section 3.2.1, unpacking the logical structure, in
particular interpreting and understanding the meaning and order of universal and
existential quantifiers, seems to be another difficulty students encounter (Dubinsky
& Yiparaki, 2000; J. Selden & Selden, 1995) which can be seen as an obstacle
regarding proof comprehension.

Even though researchers have argued that generic proofs can improve students’
proof comprehension by making the ideas more accessible to them (Dreyfus et al.,
2012;Mason& Pimm, 1984; Rowland, 2001), not many empirical studies explicitly
investigated the influence of different types of arguments on proof comprehension.
Findings on proof comprehension of generic proofs in comparison to ordinary proofs
are not consistent so far. In a qualitative studywith ten first year engineering students
from a university in Israel, Malek &Movshovitz-Hadar (2011) found that students,
who were presented with generic proofs (or transparent pseudo proofs, as they call
them, see section 2.4.2), performed better at proof comprehension than students,
who received ordinary proofs. However, this was only the case for proofs involving
methods with which the students were not familiar and that were based on ideas
that could easily be transferred to another context. To provide more evidence for the
influence of generic proofs on proof comprehension, Lew et al. (2020) employed an
experimental quantitative study inwhich 106mathematics students fromuniversities
in the United States and Canada participated. Students were randomly assigned
to either receive a generic proof or an ordinary proof. All participants then had
to complete a proof comprehension test based on the assessment model of Mejía
Ramos et al. (2012). They did not find evidence that the generic proof lead to
better proof comprehension than the ordinary proof. Similarly, Fuller,Weber,Mejia-
Ramos, Rhoads, and Samkoff (2014) used the assessment model of Mejía Ramos
et al. in a quantitative study with 300 mathematics students to investigate proof
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comprehension of so-called structured proofs11 in comparison to ordinary proofs.
They could not find consistent evidence that students generally perform better on
proof comprehension tests when presented with structured proofs. Even if generic
or structured proofs do not lead to better proof comprehension for mathematics
university students–for which further evidence is needed–they could still potentially
improve proof comprehension of high school students or at the transition fromschool
to university.

In summary, comparatively few studies have systematically investigated stu-
dents’ proof comprehension. Most students seem to focus on local aspects instead
of holistic aspects. They often lack basic knowledge to comprehend particular state-
ments or terms used in the proof and have difficulties with understanding the logical
status of statements and unpacking the logical structure. These findings are not
surprising, as similar difficulties have been reported regarding students’ compre-
hension of mathematical statements (see section 3.2.1). So far, the influence of
different types of proofs, such as generic proofs on students’ proof comprehension
is not clear. Recent experimental studies suggest that they may not improve proof
comprehension in comparison to ordinary proofs. Overall, the findings discussed in
this section highlight the need for further research on students’ proof comprehen-
sion, in particular with respect to different types of arguments.

The following section outlines frameworks and research findings regarding the
justification of statements. The focus is thereby on students’ so-calledproof schemes.

3.2.5 Justification

Students’ ability to construct proofs on their own is seen as a major learning goal in
mathematics (Hanna, 2000; Harel & Sowder, 1998; Stylianou&Blanton, 2015;We-
ber, 2001). Consequently, as noted in section 3.2, most of the research on proof and
proving is on students’ proof construction.Many studies have shown that students at
all levels as well as (prospective) mathematics teachers have difficulties with proof
construction (e.g., Barkai et al., 2002; Bell, 1976; Healy & Hoyles, 2000; Hemmi,
2008; Moore, 1994; Weber, 2001).

Several reasons for these difficulties have been discussed in the literature. These
include cognitive challenges, for instance, due to the fact that proving is understood
as a complex activity, which requires cognitive and other skills such as problem

11 Structured proofs were introduced by Leron (1983) as “a novel way to present proofs in
terms of levels” (Fuller et al., 2014, p. 4) to highlight the main ideas and methods used in the
proof.
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solving (e.g., Chinnappan, Ekanayake, & Brown, 2012; Moore, 1994; A. Selden &
Selden, 2013; Sommerhoff et al., 2015; Stylianou et al., 2006;Ufer, Heinze,&Reiss,
2008; Weber, 2005). As with students’ proof comprehension, basic knowledge is
central for success in proof construction (e.g., Bell, 1976; Chinnappan et al., 2012;
Sommerhoff, 2017; Ufer et al., 2008). Further, affective and epistemological aspects
such as a lack of intellectual need for proof andmissing or inappropriate conceptions
of proof also seem to play a crucial role (e.g., Harel & Sowder, 1998; Tall, 1989).
The latter has been explained in the literature by the fact that in the teaching of
proof, not enough emphasis is put on “gradually refining students’ conceptions of
what constitutes evidence and justification in mathematics” (Harel & Sowder, 1998,
p. 237).

In the following, the focus is on so-called proof schemes students (and teachers)
demonstrate when asked to justify mathematical statements. These are described
in the following section and different categories that have been identified in the
literature are discussed.After that, findings on students’ proof schemes are reviewed.

Frameworks for Students’Proof Schemes
Several studies have been conducted to identify different types of arguments school
and university students use when asked to justify a mathematical statement (Balach-
eff, 1988b; Bell, 1976; Harel & Sowder, 1998; Recio & Godino, 2001). Reference
is sometimes made to so-called proof schemes (Harel & Sowder, 1998; Lee, 2016;
Recio & Godino, 2001) to separate these types of arguments from other distinc-
tions, such as the distinction of proofs that prove and proofs that explain made by
Hanna (1990) and classifications regarding the content and method of proof made
by Usiskin (1980) (see also Harel & Sowder, 1998). Harel and Sowder (1998)
emphasize that the notion of proof schemes should not be interpreted “in terms of
mathematical proof in its conventional sense” (p. 275), but as arguments someone is
convinced by or thinks others may find convincing. Investigating and understanding
students’ proof schemes is perceived as useful among researchers to better under-
stand students’ difficulties with proof (e.g., Balacheff, 1988b; Harel & Sowder,
1998).

An early study on students’ proof schemes was conducted by Bell in 1976 with
32 pupils aged 14–15 from a grammar and two comprehensive schools. He divided
students’ responses to questions about the justification of statements into two main
categories, empirical and deductive arguments, which both were further divided into
several subcategories (see Tab. 3.4). Bell points out that the categories partly overlap,
for instance, the first subcategories are both failures to provide an argument and the
last subcategories are both valid proofs. Further, it should be noted that some of the
statements used in the study are about finite sets, thus, those statements could validly
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Table 3.4 Categories of students’ proof explanations identified by Bell (1976, pp. 18–19)

Empirical arguments Deductive arguments

Failure to generate correct examples or to
comply with given conditions.

Non-dependence: One or more examples
correctly worked, but not used to test the
general statement; lack of awareness of
connection between conclusion and details
of the data.

Extrapolation: Truth of general statement
inferred from a subset of the relevant cases;
any apparent reasons are either assertions
that the conditions have been complied with,
or added fragments. The basis of the
inference is clearly empirical.

Dependence: Attempts to make a deductive
link between data and conclusion, but fails
to achieve any higher category.

Non-systematic: Finds some of the required
cases, no complete subsets, ignores the
requirements to find all.

Relevant, general restatement: Makes no
analysis of the situation, mentions no
relevant aspects beyond what are actually in
the data, but re-presents the situation as a
whole, in general terms, as if aware that a
deductive connection exists but unable to
expose it.

Partially systematic: Finds some partially
complete subsets of cases; has some
awareness of the requirement to find all.

Relevant, collateral details: Makes some
analysis of the situation, mentions relevant
aspects which could form part of a proof,
possibly identifies different subclasses but
fails to build them into a connected
argument; is fragmentary.

Systematic: Finds at least some complete
subsets of cases, is clearly attempting to find
all.

Connected, incomplete: Has a connected
argument with explanatory quality, but is
incomplete.

Check of full finite set of cases. Connected, side-step: Failing only because
it appeals to facts or principles which are no
more generally agreed than the proposition
itself (a ‘side-step’).

Complete Explanation: Derives the
conclusion by a connected argument from
the data and from generally agreed facts or
principles.

be proven by checking all relevant cases. Therefore, not all subcategories proposed
by Bell (1976) might be relevant or useful for categorizing students’ justifications
of statements about infinite sets.



62 3 State of Research

Table 3.5 Summary of students’ main proof schemes identified by Harel and Sowder (1998,
p. 245)

Students’ proof schemes

External conviction Empirical Analytical

Ritual: The student focusses
on the appearance of the
argument.

Inductive: The student
verifies the statement by
checking “one or more
specific cases” (p. 252).

Transformational: The
students’ “observations
involve operations on objects
and anticipations of the
operations’ results” (p. 258).

Authoritarian: The student
refers to a textbook or
teacher.

Perceptual: The students’
justification is based on
“rudimentary mental
images”, thus, they do not
“anticipate results of
transformations” (p. 255)
and therefore do not see the
casual relationship
underlying the observation.

Axiomatic: The student
“understands that at least in
principle a mathematical
justifications must have
started originally from
undefined terms and axioms”
(p. 273)

Symbolic: The student does
not approach the problem
with “comprehending its
meaning”, but with directly
starting to “manipulate the
symbolic expressions
involved” (p. 251).

Another well-known and often cited study, which aimed at identifying students’
usage of arguments, was conducted by Harel and Sowder (1998). Through an ex-
ploratory study that consisted of classroom observations, interviews, and students’
homework and tests, they identified three main categories of college students’ proof
schemes: external conviction proof schemes, empirical proof schemes, and analyti-
cal proof schemes, each with several subcategories. Table 3.5 provides a summary
of the main categories and subcategories identified in the study. The empirical proof
scheme subcategory of inductive arguments relates to what other researchers, such
as Bell (1976), usually refer to as empirical arguments. In contrast to Harel and
Sowder (1998), Bell (1976) did not identify perceptual arguments in his study. Bell
mainly made distinctions within a category regarding the degree of completeness
and systematization. The analytical proof schemes identified by Harel and Sowder
(1998) relate to Bell’s deductive arguments as Harel & Sowder (1998) describe
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analytical proof schemes as those that “validate conjectures by means of logical de-
duction” (p. 258). However, unlike Bell (1976), who categorized students’ deductive
arguments mainly by successfulness and degree of completeness of the argument,
Harel and Sowder (1998) identified two types of deductive/analytical proof schemes,
transformational (which include generic proofs, for example) and axiomatic proof
schemes.

Recio and Godino (2001) also conducted a study on students’ proof schemes.
They categorized first-year university students’ responses into the following five
categories (which were identified in an earlier study, see Recio & Godino, 1996):

1. The answer is very deficient (confused, incoherent)
2. The student checks the proposition with examples, without serious mistakes.
3. The student checks the propositionwith examples, and asserts its general validity.
4. The student justifies the validity of the proposition, by using other well-known

theorems or propositions, by means of partially correct procedures.
5. The student gives a substantially correct proof, which includes an appropriate

symbolization.

While Recio and Godino (1996; 2001) did not explicitly define upper categories, the
five categories could be divided into either empirical or deductive arguments (the
first category can be viewed as unclear, i.e., no clear type of argument/proof scheme
can be identified; the second and third category can be seen as empirical arguments;
the fourth and fifths category as deductive arguments), similar to those identified by
Bell (1976) and Harel and Sowder (1998) (who used the term analytical, or, more
specific axiomatic).

Other researchers have build upon these three systems of categories. Kempen
(2019), for instance, grounded the development of categories on Bell (1976) and
Recio andGodino (2001), thus focussing on empirical and deductive proof schemes.
Thereby, he introduced the category pseudo argument, referring to arguments that
are circular, redundant or simply incorrect (see p. 118). Lee (2016), on the other
hand, based his categories essentially on the threemain categories identified byHarel
and Sowder (1998). However, Lee’s levels are not always strictly divided by the
main categories proposed by Harel & Sowder, such as empirical and (incomplete or
false) deductive proof schemes. For example, students who based their justification
on examples and those, who used incorrect logical reasoning, were allocated to the
same level.

In summary, the three main categories of students’ proof schemes that have been
identified by at least one of the studies discussed above are external proof schemes,
empirical proof schemes, and deductive or analytical proof schemes. A further
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distinction regarding the completeness of deductive arguments as well as other
aspects, such as the subtype of proof scheme as proposed by Harel and Sowder
(1998), seems to be useful for analyzing students’ attempts to justify mathemati-
cal statements. In the following section, empirical findings on students’ usages of
different types of arguments are summarized.

Findings on Students’Proof Schemes
Several studies found that many school and first-year university students as well
as teachers give empirical arguments when asked to justify a statement (Balacheff,
1988a;Barkai et al., 2002;Bell, 1976;Bieda, 2010;Healy&Hoyles, 2000;Housman
& Porter, 2003; Lee, 2016; Recio & Godino, 2001; Sears, 2019; Sen & Guler,
2015; Stylianou et al., 2006). For instance, Recio and Godino (2001) report that
about 40% of the 429 first-year university students, who participated in their study,
gave empirical arguments to justify universal statements. Similarly, about half of
the participants in a study conducted by Barkai et al. (2002) with 27 elementary
school teachers used empirical arguments to prove a universal statement. In line
with the categories proposed by Bell (1976), the nature of empirical arguments
used by students (and teachers) seems to differ in that some of them only choose
random examples while others search for patterns (Stylianou et al., 2006). In a study
conducted by Housman & Porter (2003) with eleven above-average mathematics
students, the majority of participants used perceptual arguments, only one student
made also use of inductive arguments (both as defined by Harel & Sowder, 1998).
But some students seem to even have difficulties to produce an empirical argument,
as Bell (1976) found: About one forth of the participants were allocated to the
respective first subcategory of empirical arguments (see Tab. 3.4). Those students
were not able to generate correct examples, whichBell (1976) explainswith a lack of
knowledge and “an inability to coordinate all the data” (p. 34). Another 19% of the
participants in Bell’s study checked all relevant cases regarding a statement about
a finite set, thus proving the correctness of the statement by exhaustion. However,
none of the students gave a complete explanation for neither of the statements and
only one student was able to give some (deductive) explanations, even though these
were incomplete.

There is strong evidence that many students as well as teachers fail to construct
valid deductive arguments (Barkai et al., 2002; Bell, 1976; Healy & Hoyles, 2000;
Kempen, 2019; Lee, 2016; Recio & Godino, 2001; Sears, 2019; Sen &Guler, 2015;
Sevimli, 2018; Stylianou et al., 2006). Most of the respective studies report that less
than half of the participants justified true universal statements (and false existential
statements) with a complete and correct proof (e.g., Barkai et al., 2002; Kempen,
2019; Lee, 2016; Recio & Godino, 2001). Findings suggest that many first-year
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university students thereby often seem to constructpseudo arguments (e.g.,Kempen,
2019; Stylianides & Stylianides, 2009). For instance, Kempen (2019) reports that
about 26%of the 149 preservice teacherswhowere asked to justify a statement about
the sum of two even numbers used such incorrect deductive arguments; about 23%
gave an incomplete deductive argument, about 20% constructed a valid proof, about
9% gave empirical arguments, 8% no justification at all, and about 13% seemingly
did not answer. The percentages differed substantially regarding the semester. For
instance, first-semester preservice teachers more often gave empirical arguments
(about 14%) and less often incomplete or complete deductive arguments (about 9
and 10%). Although research findings are generally consistent regarding students’
difficultieswith correct justifications, success at constructing proofs seems to depend
on several factors such as the respective statement (universal vs existential, the truth
value, mathematical context, etc.) as well as age (see also Reid & Knipping, 2010).
For instance, the statements used in Barkai et al. (2002) consisted of three universal
(one true, two false) and three existential statements (two true, one false), all in
the context of divisibility. Depending on the statement, the percentages of teachers
who gave correct justifications (either proving or disproving the statement) varied
between about 23% (regarding the false existential statement) and 96% (regarding
a true existential statement). The true universal statement could only be proven by
about 40% of the participants; the success rates regarding the two false universal
statements were significantly higher with 69 and 88%. In those cases, the statements
could be disproven with providing just one counterexample, which is an easier task
than producing a deductive argument that holds for an infinite number of cases.
Similarly, proving a true existential statement only requires finding one example;
for proving the falsity of an existential statement one needs to construct a general
deductive argument.

Fewer studies have reported results on students use of external conviction proof
schemes (Harel & Sowder, 1998; Sears, 2019; Sen & Guler, 2015; Sevimli, 2018;
Stylianou et al., 2006). In a study conducted by Stylianou et al. (2006, p. 57) with
34 first-year mathematics students, about 20 to 35% (depending on the task) gave
externally based arguments. These justifications were mainly based on symbolic
manipulations or a redesign of the statement, but not on authority (e.g., a textbook
or teacher). Sevimli (2018) also reports on students’ usages of external arguments.
Most of the justifications given by his participants (172 first-semester students from
three different mathematics departments in Turkey) belonged to the external proof
scheme. In contrast to the findings reported by Stylianou et al., these students par-
ticularly made reference to authority. School students also often make reference to
authority, as Sen and Guler (2015) found. They conducted a study with 250 7th
Grade students from Central Anatolia. Most of the participants used either external
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or empirical arguments to justify mathematical statements. Thereby, the externally
based arguments were mainly authoritarian and ritual (but in particular for one
statement also symbolic). Sears (2019) reports on a (small-scale) study with similar
results, but regarding the justification of statements given by preservice middle and
secondary school teachers. The six participants mainly used external and empirical
arguments, and reference was often made to authority. However, due to the small
number of participants, these findings are not generalizable.

Several studies have investigated if students and teachers, who give empirical
arguments to justify universal statements, are aware that these types of arguments do
not meet the requirements of proof (Barkai et al., 2002; Stylianides & Stylianides,
2009). Findings suggest that many (if not most) participants are aware that a general
argument is needed. For instance, in the study conducted by Barkai et al. (2002),
about 20% of the 27 participating elementary school teachers stated that they know
that a general proof is needed, but that they lack necessary knowledge to construct
such an argument. Similarly, in a study conducted by Stylianides & Stylianides
(2009) with 39 prospective elementary school teachers, most of the participants
who submitted empirical arguments were aware that their arguments were not valid
as proofs. Thus, as Weber and Mejia-Ramos (2015) pointed out, “behaviour on
justifications tasks is [not] a sufficient warrant to establish this claim [referring to
the claim that students are convinced by empirical arguments]” (p. 16). Not all
students and teachers, who use empirical arguments to justify a universal statement,
might do so because they think these are sufficient to prove a statement, but because
they are simply not able to construct a valid proof. However, as discussed in section
3.2.3, some students and teachers do think empirical arguments are sufficient (see,
e.g., Martin & Harel, 1989).

Overall, students as well as teachers have difficulties with the construction of
ordinary proofs. Several aspects may influence students’ success to construct valid
arguments, for instance, the truth value of the statement. Further, most students
give empirical arguments when asked to justify the truth of a statement, potentially
because of their inabilities to construct ordinary proofs and not because they assume
that these arguments are sufficient. Some studies have reported on (high school)
students’ external proof schemes such as authoritarian arguments. However, it is
unclear what characteristics of the statements (e.g., truth value or familiarity) and
students (e.g., age, experience,...) influence the usage of these, but also other types
of arguments, which highlights the need for further research.

In the following section, potential relation between proof-related activities and
respective research findings are discussed.
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3.2.6 Relation Between Activities

As described in section 3.2, the three main activities reading a statement, reading
an argument, and constructing an argument are related in that both reading and
constructing an argument may support the comprehension of a statement as well as
estimating its truth (see relations marked asA in Fig. 3.3). Vice versa, without some
understanding of the statement, it is neither possible to decide if the statement is
true or false nor to understand and evaluate a given argument or construct a novel
one (the latter relations are marked as B in Fig. 3.3; see also discussions in sections
3.2.2 and 3.2.4, respectively).

Further, it seems plausible that proof evaluation, in particular with respect to
conviction, and proof comprehension are related: If students do not understand an
argument, they may judge it as not convincing, which in turn could influence the
estimation of truth of the statement (see also Weber & Mejia-Ramos, 2015).

There are only few studies that have investigated the relation between the dif-
ferent (sub-)activities, as has already been highlighted by other researchers (e.g.,
A. Selden & Selden, 2017; Sommerhoff, 2017). As has already been discussed in
section 2.3.3, the acceptance of an argument as proof is highly influenced by the con-
text and individuals who read or construct a proof, thus, socio-mathematical norms.
The respective acceptance criteria can not only influence the evaluation of given
arguments, but also the construction of novel ones. This assumption is supported
by research which found correlations (even though weak) between proof validation
and proof construction (Ufer et al., 2009). Further, studies suggest that engaging
with proof validation activities may positively influence proof construction (Pfeif-
fer, 2011; Powers et al., 2010; A. Selden & Selden, 2003; Yee et al., 2018). Findings
reported by Sommerhoff (2017) suggest that the correlation between proof valida-
tion and proof construction is not mainly based onmethodological knowledge (e.g.,
knowledge about appropriate proof schemes, see A. Heinze & Reiss, 2003), but an
effect of different resources that underlie both of these activities (see also following
section).

Figure 3.3 Adapted framework on proof-related activities based on Mejía Ramos and Inglis
(2009b), highlighted relations
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Table 3.6 Teachers’ estimation of truth and correct justification by truth value and domain
of discourse of statements; findings reported by Barkai et al., table adapted from (Reid &
Knipping, 2010, p. 70), with permission from Brill

Statement #1 #2 #3 #4 #5 #6

Type Universal Existential

Truth value True False False True False True

Correct
judgement

100% 100% 69% 100% 77% 68%

Correct
argument

41% 88% 69% 96% 23% 64%

True for
what set?

All n No n Some n All n No n Some n

Of particular interest in the present thesis are relations between the comprehen-
sion of a statement–in particular its generality–and the estimation of truth on one
hand and proof comprehension as well as justification on the other hand. Findings
reported by Barkai et al. (2002) suggest a relation between the estimation of truth
and justifications given by the participating teachers, in particular with respect to
the truth value and domain of discourse of the statement (see Tab. 3.6, an extended
version of Tab. 3.3). The first universal statement was correctly estimated as a true
statement by all teachers, but only 41% constructed correct arguments to prove it.
Most of the incorrect arguments were empirical (about 50%), which might imply
that the empirical verifications convinced the teachers of the truth of the statement,
even though they could not prove the statement (about a third of the teachers thought
the empirical arguments count as proof). The truth value of the second statement
(whichwas false) was also correctly estimated by all teachers, but significantlymore
teachers were able to provide a correct proof (most gave one or more counterex-
amples). In contrast, the third statements was correctly estimated as being false by
fewer teachers (69%), however, all of these teachers were able to correctly justify
their decision by providing one or more counterexamples. It seems that it was easier
for the teachers do disprove a false universal statement (by providing a counterex-
ample) than proving a true universal statement, at least for those who were able
to correctly estimate the truth value. Similar observations can be made regarding
the existential statements: Most of the teachers who correctly estimated the truth
value of the true existential statements were able to provide a correct justification
(by giving an example). But the false existential statement was proven by only 23%
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of the participants, most likely because a general argument was needed (see also
Reid & Knipping, 2010, p. 70).

To the author’s knowledge, no studies on the relation between understanding the
generality of a statement (as part of reading a statement, in particular, comprehension
of a statement) and proof reading or proof construction have been conducted so far.
In general, more research is needed to understand the interplay between the different
(sub-)activities related to proof.

The following section aims to identify appropriate control variables regarding
(cognitive) resources that underly students’ proof skills and potentially their under-
standing of the generality of statements.

3.3 Resources

In research on argumentation and proof skills, several resources underlying these
skills have been identified and investigated (Chinnappan et al., 2012; Sommerhoff,
2017; Ufer et al., 2008; Weber, 2001). As was pointed out by Sommerhoff (2017),
no general framework or list for these resources exist so far. This section aims at
giving an overview of potential resources that might be relevant for argumentation
and proof skills and could therefore be used as control variables in the analysis of
students’ understanding of generality and other proof-related activities. Thereby, the
focus is on cognitive resources rather than non-cognitive ones such as motivation
and beliefs12

The resources identified in the literature so far can mainly be categorized into
content-specific, domain-specific, and domain-general resources (see Sommerhoff,
2017; Ufer et al., 2008). Different terms are sometimes used to refer to similar re-
sources (e.g.,mathematical knowledge base andmathematical content knowledge),
here, the notation is taken fromSommerhoff (2017). Content-specific resources refer
to knowledge that belongs “to a specific mathematical content area” (Sommerhoff,
2017, pp. 45–46). It contains conceptual (e.g., knowledge about concepts and defini-
tions) aswell as procedural knowledge (e.g., knowledge about rules and procedures).
Domain-specific resources, such as mathematical strategic knowledge (first intro-
duced by Weber, 2001) and methodological knowledge (see further above), are not
specific to a particular mathematical content but belong “to the [general] field of
mathematics” (Sommerhoff, 2017, p. 46). In contrast, domain-general resources are

12 No consistent results regarding affective aspects and beliefs have been shown yet (see, e.g.,
A. Heinze & Reiss, 2009; Sommerhoff, 2017). Sommerhoff (2017) argues that this “may
result from ambiguities in the definition of the diverse affective constructs” (p. 76) as well as
difficulties to measure them.
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not specific to mathematics and include problem-solving skills and (general) rea-
soning skills (Sommerhoff specifically refers to conditional reasoning skills, i.e.,
reasoning skills needed to handle conditional statements).

According to the literature review conducted by Sommerhoff et al. (2015) (see
also section 3.2), mathematical content knowledge was considered most often in
PME research reports on proof and argumentation (about 47%). Methodological
knowledge was studied by only 17% and problem-solving skills by 18%. Only
few research reports investigated other resources such as mathematical strategic
knowledge or beliefs (3–5%). Conditional or more general reasoning skills were
seemingly not analyzed in any of the research reports considered in the literature
review.

Overall, research findings suggest a strong impact of content- and domain-
specific resources on activities related to proof and argumentation (Sommerhoff,
2017). In particular, mathematical content knowledge seems to be a main predic-
tor for students’ performance in proof construction, as several studies have shown
(Chinnappan et al., 2012; Sommerhoff, 2017; Ufer et al., 2008). Further, Weber
(2001) reports that a lack of mathematical strategic knowledge is “a primary cause
for undergraduates’ failure” (p. 115) in proof construction. The quantitative study
conducted by Sommerhoff (2017) provides further evidence for the influence of
mathematical strategic knowledge on students’ performance in proof construction
and validation.

The importance of problem-solving skills for proof competencies and their rela-
tion has been highlighted bymany researchers (e.g., Chinnappan et al., 2012; Selden
& Selden, 2013; Stylianou et al., 2006; Ufer et al., 2008;Weber, 2005). However, its
actual influence on students’ performance in activities related to proof is not clear
yet. Several studies found significant correlations (Chinnappan et al., 2012; Ufer
et al., 2008), while Sommerhoff (2017) reports a low and insignificant effect on
students’ performance in proof construction. Sommerhoff assumes that mathemat-
ical strategic knowledge, which was included in the regression model, “reduces the
impact of problem-solving skills, as mathematical strategic knowledge can partially
be seen as a domain-specific analogue of problem-solving heuristic” (p. 89). How-
ever, he furthermore found that there seems to be a correlation between performance
in proof validation and problem-solving skills. Further research is needed to better
understand the impact of students’ problem-solving skills on proof performance.

Regarding mathematical reasoning skills, Chinnappan et al. (2012) report a sig-
nificant influence on students’ success in proof construction. However, mathemat-
ical reasoning skills were measured using a geometry test conducted at the end of
Grade 10. Even though this test requires deductive reasoning, the skills needed to
solve the tasks seem to overlap with other resources such as mathematical content
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knowledge. According to findings reported by Sommerhoff (2017), conditional rea-
soning skills (measured by questions in which participants had to accept or reject
logical inferences) seem to “play a minor role compared to the domain-specific
resources” (p. 90).

To my knowledge, other more general cognitive measures have not been con-
sidered as potential resources underlying argumentation and proof skills so far. In
section 5.3.6, the so-called Cognitive Reflection Test (CRT) is introduced as an
instrument to control for individual differences in cognitive resources.
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sharing, adaptation, distribution and reproduction in any medium or format, as long as you
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4Derivation of Research Questions

Argumentation and proof are undoubtedly complex and challenging parts of mathe-
matics. In particular, during the transition from school to university, which coincides
in many countries (such as Germany) with the introduction to proof-based math-
ematics, several activities related to proof have been shown to be challenging for
many students (e.g., Kempen, 2019; Moore, 1994; Recio & Godino, 2001; Weber,
2001). Furthermore, since proof and argumentation are also major learning goals in
school mathematics (e.g., Kultusministerkonferenz, 2012), it is important to investi-
gate the knowledge and difficulties of (preservice) teachers. When teachers have an
insufficient understanding of proof—which research suggests—it is not surprising
that students do so as well (e.g., Reid & Knipping, 2010).

In Chapter 3, research findings on students’ and teachers’ proof skills and under-
standing were discussed. Thereby, several gaps could be identified. So far, research
on proof and argumentation has mainly focused on activities related to the con-
struction of novel arguments and partly to the reading of given arguments (Mejía
Ramos & Inglis, 2009a; Sommerhoff et al., 2015). The comprehension of state-
ments which are to be proven—or for which a proof has to be read—and underlying
principles, however, have largely been neglected in research. Understanding the
generality of mathematical statements and proofs is an essential part of the com-
prehension of statements and students’ proof skills, because it is the mathematical
generality that is the defining element of mathematical proof and what makes math-
ematics unique (see Section 2.2). However, to my knowledge, neither the extent to
which students lack understanding of the generality of statements nor the relation
to reading and constructing different types of arguments have been researched yet.
Therefore, this thesis particularly aims at investigating students’ understanding of
the generality of statements and its potential connections to activities related to
proof. This seems especially relevant for studies that have reported on students’
high conviction regarding empirical arguments (and their validity) (e.g., Healy &
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Hoyles, 2000; Martin & Harel, 1989) and students’ belief that it is impossible to
prove a universal statement (for every case) at all (Chazan, 1993). Such an under-
standing of proof might be related to an insufficient understanding of generality.
Without an understanding of the generality of statements, it might be difficult for
students to develop an intellectual need for proof and appropriate conceptions of
proof. Further, because previous studies have reported ambiguous research findings
regarding students’ conviction, comprehension, and construction of different types
of arguments (see Sections 3.2.3, 3.2.4, and 3.2.5, respectively), the present study
aims to provide more clarity on this matter and to investigate the relation between
students’ understanding and conviction of different types of arguments and their un-
derstanding of generality. The types of arguments that are of interest in this thesis are
empirical arguments, generic proofs, and ordinary proofs, because of their promi-
nent role in mathematics education (see Sections 2.3.2 and 2.4.2). Because research
findings have provided evidence for the influence of the truth value on students’
performance in several proof-related activities, such as the estimation of truth (e.g.,
Barkai et al., 2002), both true and false statements were considered. Moreover, the
influence of the familiarity with statements (and arguments) on the understanding
and acceptance of proof has often been highlighted in the literature (e.g., Dubinsky
& Yiparaki, 2000; Hanna, 1989; Stylianides, 2007; Weber & Czocher, 2019). The
familiarity with the statement was therefore also considered as a potential influence
on students’ understanding of generality of statements and their performance in
other proof-related activities. In short, in this study, the type of statement refers to
characterizing statements by their truth value and students’ (expected) familiarity
with the statement.

The research framework is based on the adapted framework shown in Figure
3.2. That is, it is assumed that reading a statement, in particular estimating its truth,
is influenced by the reading and/or construction of arguments. Understanding the
generality of a universal statement, as part of the comprehension of statements and
underlying (logical) principles, is defined here as consistent responses regarding the
estimation of truth and the potential existence of counterexamples (see Sections 2.1
and 2.2, as well as Section 5.3.5 for the exact definition used in this study).

To control for individual differences in students’ responses, resources and back-
ground information were taken into account. Thereby, the focus was on cognitive
resources, because firstly, research on non-cognitive resources such as beliefs and
affects has not provided evidence for major direct effects independent of cogni-
tive resources (e.g., Furinghetti & Morselli, 2009; Herppich et al., 2017; Semeraro,
Giofrè, Coppola, Lucangeli, & Cassibba, 2020), and secondly, the scope of the
survey should be reasonable for participants (see also Sommerhoff, 2017). Cogni-
tive resources that are commonly considered (see Section 3.3) are content-specific



4 Derivation of Research Questions 75

Figure 4.1 Overview and relation of research questions

knowledge, domain-specific knowledge (such as mathematical strategic knowl-
edge), and domain-general knowledge (such as problem-solving skills and general
reasoning skills). Due to its short length and positive correlation with problem-
solving and reasoning skills, a cognitive reflection test (see Section 5.3.6) was used
to control for individual differences in participants’ general cognitive skills. Further
control variables are specified in Section 5.4.1. Figure 4.1 provides an overview of
the research questions and their relation.

The focus of the first set of research questions is on students’ conviction of the
truth of universal statements and potential relations to reading different types of
arguments. Students’ conviction of the truth of statements was thereby divided into
students’ performances in two proof-related activities: the estimation of truth and
proof evaluation regarding conviction. Firstly, the potential influence of reading
different types of arguments on students’ estimation of truth was investigated. As
previous research has provided evidence for the influence of characteristics of the
statement on the estimation of truth (e.g., Barkai et al., 2002, see Section 3.2.2), the
effect of the type of statement was also analyzed. The second research question in
this set aims at investigating students’ evaluation of different types of arguments.
More precisely, the aim is to find out how students rate the conviction they gain
regarding the truth of statements from reading different types of arguments. In
contrast to other studies (e.g., Martin & Harel, 1989; Stylianou et al., 2015; Tabach,
Levenson, et al., 2010; Ufer et al., 2009), the interest is not on students’ validation
of arguments (i.e., which arguments students identify as valid proofs). Furthermore,
aspects of arguments students claim to find not convincing were identified. It was
of particular interest if students refer to the (lack of) generality and what role the
comprehension of the statement and proof plays regarding conviction.
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RQ1: Conviction of the truth of universal statements and its relation to reading
different types of arguments

RQ1.1: How do the type of argument and the type of statement influence students’
estimation of the truth of universal statements?

RQ1.2: How do the type of argument, the type of statement, and the level of comprehen-
sion influence how convincing students find different types of arguments? What
aspects of mathematical arguments do students identify as not convincing?

Regarding students’ conviction of arguments (re. RQ1.2), I expected significant dif-
ferences regarding the evaluation of different types of arguments, with ordinary and
generic proofs receiving higher levels of conviction than empirical arguments. Even
though findings on students’ conviction of different types of arguments are ambigu-
ous (see Section 3.2.3), many university students—which are investigated in this
project—seemingly (and desirably) tend to be more convinced by deductive proofs
than by empirical ones (e.g., D. Miller & CadwalladerOlsker, 2020; Weber, 2010).
A positive effect was also expected regarding familiar statements, because the role
of being familiar with statements andmodes of argumentations for the acceptance of
proof has been highlighted in the literature (e.g., Hanna, 1989). However, so far, no
such influence on proof evaluation has been shown (e.g., Kempen, 2021; Martin &
Harel, 1989). As research findings suggest that the comprehension of the argument
is important regarding students’ conviction of it (e.g., Sommerhoff & Ufer, 2019;
Weber, 2010), a positive effect was expected, i.e., students’ with higher levels of
comprehension also have higher levels of conviction. Further, it was expected that
many students would claim to have difficulties with understanding the argument
when asked about aspects that they find not convincing. I also expected students to
refer to the generality of the argument, in particular regarding empirical arguments,
but also generic proofs, because generality has also been identified as an important
aspect in previous research (e.g., Bieda & Lepak, 2014; Ko & Knuth, 2013; Lesseig
et al., 2019; Tabach, Barkai, et al., 2010).

In contrast, regarding the influence of different types of arguments on students’
estimation of truth (re. RQ1.1), no studies have been conducted so far that would
lead to a respective hypothesis. If students’ evaluate the proofs regarding conviction
based on their actual conviction of the truth of the statement, I would expect a similar
influence of different types of arguments on students’ estimation of truth, that is,
students should be more likely to evaluate (true) statements as true when reading
generic and ordinary proofs thanwhen they receive empirical arguments. Otherwise,
their responses would be inconsistent. However, previous research findings suggest
that students aswell asmathematicians often use empirical arguments to estimate the
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truth value of a statement before proving it (e.g., Alcock& Inglis, 2008; Buchbinder
& Zaslavsky, 2007; Lockwood et al., 2016). Therefore, it would also be possible
that empirical arguments provide students with an intuition of the truth value of the
statement, and thus, make them more likely to evaluate the statement as true. As
mentioned above, prior research suggests that the truth value of a statement aswell as
being familiar with a statementmay influence students’ (and teachers’) estimation of
truth (e.g., Barkai et al., 2002;Buchbinder&Zaslavsky, 2007;Dubinsky&Yiparaki,
2000; Hanna, 1989; Ko, 2011). In particular, researchers have argued that it is more
difficult for students to correctly estimate the truth value of false statements than the
truth value of true statements (Buchbinder&Zaslavsky, 2007;Ko, 2011). Therefore,
I hypothesized a negative effect for the false statement compared to true statements.
Regarding familiar statements, I expected a positive effect on students’ estimation of
truth as suggested by other researchers (Dubinsky & Yiparaki, 2000; Hanna, 1989;
Stylianides, 2007; Weber & Czocher, 2019), and simply because students’ should
have gained (extensive) experience with these statements during school.

The second set of research questions refers to the comprehension of generic
and ordinary proofs. Firstly, I investigated the effect of the type of proof and the
familiaritywith the statement on students’ self-reported proof comprehension. Since
proof comprehension relates only to the understanding of correct proofs (see, e.g.,
Neuhaus-Eckhardt, 2022), I excluded the false statement in the analysis. The second
research question then aimed at identifying aspects of generic as well as ordinary
proofs that students claim to have not understood. Of particular interest was to
investigate to what extent students identify different aspects in these types of proofs
that they claim to not understand.

RQ2: Proof comprehension

RQ2.1: How does students’ (self-reported) proof comprehension differ between students
who receive generic proofs and those who receive ordinary proofs? How does
the familiarity with the statement influence students’ proof comprehension?

RQ2.2: What aspects of mathematical arguments do students identify as not understand-
able? How do these aspects differ regarding generic and ordinary proofs?

Aswas pointed out in Section 3.2.4, only few studies have investigated differences in
students’ proof comprehension regarding different types of arguments.With respect
to generic and ordinary proof, research findings are ambiguous. However, experi-
mental studies suggest that no differences in students’ comprehension of generic and
ordinary proof exist (e.g., Lew et al., 2020). These studies made use of proof com-
prehension tests, while the present study relied on students’ self-reported level of
comprehension and aspects they did not understand. I nevertheless expected similar



78 4 Derivation of Research Questions

findings, namely, no significant difference between students’ comprehension of the
arguments (re. RQ2.1). Similar to proof evaluation, I expected a positive influence
on proof comprehension for familiar statements in contrast to unfamiliar statements.
Based on previous research on proof comprehension (e.g., Conradie & Frith, 2000;
Moore, 1994; Neuhaus-Eckhardt, 2022; Reiss &Heinze, 2000, see Section 3.2.4), it
was expected that students mainly refer to local aspects (Mejía Ramos et al., 2012)
such as surface features (A. Selden & Selden, 2003), when asked what they did not
understand. In particular, I expected students to refer to not knowing definitions,
expressions, and the meaning of terms, and to a lesser extent to the logical structure
of the arguments (re. RQ2.2). It was further expected that the (un)familiarity with
the form of generic proofs would lead to a greater proportion of students referring
to the proof framework when asked what they did not understand in comparison
with ordinary proof.

The focus of the third set of research questions is on the types of arguments
students use to justify the truth or falsity of universal statements. At first, students’
responses were allocated to different proof schemes (coding categories were based
on Section 3.2.5). Then, the relation between students’ proof schemes and their
level of conviction regarding the truth of statements was investigated to identify
differences with respect to the type of proof scheme. This research question derived
from the discussion about relative and absolute conviction, initiated by Weber and
Mejia-Ramos (2015) (see paragraph on the Assessment of Research Findings on
Proof Evaluation in Section 3.2.3).

RQ3: Construction of arguments to justify the truth of universal statements
(students’ proof schemes)

RQ3.1: What types of arguments do students themselves use to justify the truth or falsity
of a universal statement? How do students’ proof schemes differ regarding the
type of statement (i.e., familiarity and truth value)?

RQ3.2: What potential relation between the type of argument used by students and the
level of conviction of the truth of the statement exists?

Research findings discussed in Section 3.2.5 suggest that students (and teachers)
mainly have empirical proof schemes and, depending on the context, external con-
viction proof schemes (e.g., Barkai et al., 2002; Bell, 1976; Recio & Godino, 2001;
Sevimli, 2018; Stylianou et al., 2006). Thus, it was expected that the majority of
students would use empirical arguments, in particular regarding unfamiliar state-
ments, and to a lesser degree, regarding familiar statements, external proof schemes
such as authoritarian arguments (re. RQ3.1). I expected only few students to use
deductive arguments. The relation between the type of proof scheme and students’
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level of conviction of the truth of the statement is less clear (re. RQ3.2). To my
knowledge, no studies have explicitly investigated this questions. However, stu-
dents who are able to construct a (valid) proof might be more convinced of the truth
of a statement—having absolute conviction—than students who only use empir-
ical arguments—who might only have relative conviction. On the other hand, as
Polya (1954) has pointed out, “without ... confidence [in the truth of the theorem]
we would have scarcely found the courage to undertake the proof ...” (pp. 83–84),
which suggests that a proof might not be necessary to gain high levels of conviction
in the truth of a statement.

Lastly, the fourth set of research questions investigates the primary outcome
variable of this study—students’ understanding of the generality of mathematical
statements and potential relations to proof reading and construction. Due to the
scarcity of related research, the purpose of the first question in this set is to find
out the proportion of first-year university students—enrolled in different study pro-
grams, namely, primary, lower secondary, and upper secondary education as well
as mathematics—who have limited understanding of the generality of mathemat-
ical statements. The remaining research questions in this set then aim at identi-
fying factors that potentially influence students’ understanding of the generality
of statements. Of particular interest is the influence of reading different types of
arguments—empirical arguments, generic proofs, ordinary proofs, or no arguments
at all (RQ4.2). Further, it was investigated how the type of statement—both its truth
value and the familiarity with the statement—influences students’ understanding
of generality. The third question in this set aims at investigating the influence of
students’ proof comprehension and level of conviction on students’ understanding
of generality of statements. Moreover, the potential relation between types of argu-
ments students use to justify a statement (proof schemes) and their understanding
of generality was examined (RQ4.4).

RQ4: Students’ understanding of the generality of mathematical statements

RQ4.1: What proportion of first-year university students have a correct understanding of
the generality of statements?

RQ4.2: What is the influence of reading different types of arguments on students’ un-
derstanding of the generality of mathematical statements? How does the type of
statement influence students’ understanding of its generality?

RQ4.3: How does students’ comprehension and conviction of arguments influence their
understanding of generality of statements?

RQ4.4: What potential relation exists between students’ proof schemes and their under-
standing of the generality of statements?
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Only few studies reported on students understanding of the generality of statements
(e.g., Balacheff, 1988b; Buchbinder & Zaslavsky, 2019; Chazan, 1993; Galbraith,
1981). In particular, I am not aware of (large-scale) quantitative studies that have
explicitly investigated students’ understanding of the generality of mathematical
statements without relating it to the understanding of generality of proof. Based
on the findings reported in prior studies (e.g., Buchbinder & Zaslavsky, 2019), it
was expected that only a minority of students would have limited understanding of
the generality of statements, with a higher proportion regarding preservice primary
school teachers and a lower proportion regarding mathematics majors (re. RQ4.1).
Even though the study was conducted at the beginning of their first semester, which
implies no influence of the study program itself yet, it can be assumed that the
students’ choice for a respective study program (e.g., primary education vs mathe-
matics major) is influenced by resources that also influence their understanding of
proof (and generality), for instance, their previous mathematical knowledge based
on their school education.

From the studies conducted so far, it is unclear if the understanding of generality
differs by the (type of) statement and/or is related to the reading and construction of
(different types of) arguments, or if it is solely influenced by the knowledge of the
meaning of mathematical generality. To my knowledge, no studies on the influence
of the type of argument on students’ understanding of generality (of statements)
have been conducted so far. As has been mentioned above, research that has in-
vestigated the influence of the type of argument on other activities, for instance,
proof comprehension, suggests no or only minor effects with respect to generic and
ordinary proof (e.g., Lew et al., 2020). However, findings on students’ proof eval-
uation reported by Kempen (2018, 2021) suggest that students are less convinced
by empirical arguments than by generic and ordinary proofs. What remains unclear
and is difficult to derive from these findings is if the understanding of generality
of statements is affected by the reading of (different types of) arguments at all. If
a relation exists, a positive, but weak correlation regarding analytical arguments
(generic and ordinary proofs) compared to reading no arguments or empirical argu-
ments was hypothesized (re. RQ4.2), because valid proofs should at least in theory
provide the reader with certainty that no counterexamples to true universal state-
ments exist (Reid & Knipping, 2010). A similar hypothesis was made regarding
potential correlations between students’ proof schemes and their understanding of
generality, that is, it was expected that students with empirical proof schemes have
limited understanding of the generality of statements (see also Conner, 2022) and
students with deductive proof schemes are more likely to have a correct understand-
ing (re. RQ4.4). Regarding the effect of the truth value of statements on students’
performance in proof-related activities, two contradictory observations have been
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reported. On the one hand, students seem to be more familiar with (proving) true
statements than with (disproving) false ones, which suggests that they might be
more successful in handling them (Buchbinder & Zaslavsky, 2007; Ko, 2011). On
the other hand, it seems to be easier to disprove false universal statements by pro-
viding a counterexamples than to prove a true universal statement (Barkai et al.,
2002). In this case, the role of a counterexample might be more apparent for stu-
dents, thus, resulting in a better understanding of the (absence of) generality of the
statement. Previous research findings suggest that the familiarity with a statement
seems to play no or only a minor role for proof evaluation (e.g., Kempen, 2021;
Martin & Harel, 1989), even though its general importance for the acceptance of
proof has often been highlighted (e.g., by Hanna, 1989). However, the familiarity
with the statement might nevertheless lead to a higher awareness of its generality,
as students would have applied the statement to many cases before. Therefore, a
positive effect with respect to familiar as well as false statements was expected
(re. RQ4.2). The relation between students’ understanding of generality and their
level of comprehension as well as conviction is also difficult to derive from prior
research. A positive relation regarding both activities might be expected, because
higher levels of conviction and comprehension could potentially result in higher
levels of certainty regarding the absence of counterexamples (re. RQ4.3).
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5Methodology

In this chapter, the research design and methods used to answer the research ques-
tions are described in detail. First, I justify the chosen approach and give an overview
of my research design. Second, the data collection process is outlined. In particu-
lar, the experiment and the construction of all instruments are described. Lastly, I
explain and justify the methods being used to analyze the data.

5.1 Research Design

Based on the present research interest, a quantitative, experimental research design
was chosen. In this section, I first justify the decision for the particular research
approach. Then, an overview of the research process and the development of the
research design is given.

5.1.1 Justification of the Research Approach

Despite numerous studies being conducted on students’ proof skills, surprisingly
few of them have specifically focused on students’ understanding of the generality
of mathematical statements. Most of these studies have used qualitative methods,
making their findings limited and not widely applicable (e.g., Bryman, 2012; Mat
Roni, Merga, &Morris, 2020). That is why I took a different approach. I conducted
a quantitative research study to determine the extent to which students lack under-
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standing of generality of statements and examine how their understanding is related
to reading and constructingmathematical arguments. A particular goal was to inves-
tigate the impact of reading different types of arguments and statements on students’
performance in proof-related activities, with a specific focus on their understand-
ing of generality. To truly uncover the cause-and-effect relationship, I designed and
implemented an experimental study (e.g., Bryman, 2012). The experiment was fur-
ther supplemented with open-ended questions to gain a deeper understanding of
students’ comprehension and conceptions on proof and generality.

To estimate the effect of different types of arguments on students’ performance
in proof-related activities, a between-subjects approach was taken, i.e., participants
were randomly allocated to different groups, in which they received only one par-
ticular type of argument for all statements (experimental groups)—or no arguments
at all (control group). Another approach would have been to provide different types
of arguments to each participant. However, I decided against such a within-subjects
approach regarding the type of argument, mainly because I wanted to avoid poten-
tial influences caused by participants directly comparing the types of arguments, in
particular regarding proof evaluation—which would also be an interesting question,
but not one I was investigating (see also discussion in Section 7.2.2).

A within-subjects approach via repeated measures was chosen to investigate the
effect of different types of statements (familiarity and truth value, see Chapter 4)
on students’ understanding of generality of the statements and their performances
in other proof-related activities. Furthermore, the inclusion of different statements
was assumed to provide more reliable results (e.g., Bryman, 2012; Döring & Bortz,
2016).

A field experiment was chosen to provide high external validity (e.g., Döring &
Bortz, 2016). The decision against the conduction of a laboratory experiment was
mainly based on the difficulty of recruiting participants and a potentially resulting
selection bias. Potential advantages of and suggestions for laboratory experiments
are discussed in Section 7.2.2.

5.1.2 Overview of the Research Process

The research process consisted of two parts, the development and conduction of
the pilot study, and the main study. The pilot study was conducted in October 2019
and aimed to ensure the feasibility of the chosen approach as well as to identify
any modifications needed in the overall design and items. Figure 5.1 provides an
overview of the timeline of the research process.
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Figure 5.1 Timeline of research process

The first version of the experimental design was developed between June and
September 2019. After the research questions had been specified, the experimental
groups regarding the type of argument were defined. Due to their prominent role in
mathematics education, the following types of arguments were chosen: empirical
arguments, generic proofs, and ordinary proofs (see Section 2.4.2). The fourth group
received no arguments at all, and therefore corresponds to a control group.

During the development of the experimental design, the questionnaire was given
to several colleagues working in mathematics and mathematics education as well
as to a small number of high school and university students. The mathematics
(education) researchers were asked to evaluate the questions regarding correctness
(both mathematical and language-wise), validity, completeness, structure, and other
aspects they notice; the students mainly provided feedback regarding comprehen-
sibility, completeness of answer options, and how reasonable the questionnaire is
regarding its length and duration1. The experimental design and items were then
revised accordingly. The pilot study was deliberately conducted during the second
session of a first-semester mathematics lecture (with the title Arithmetik und Alge-
bra) to avoid influences of university lectures on students’ performance in proof-
related activities, since the aim of this study is to identify students’ understanding
and performance in proof-related activities when they enter university. The partic-
ipants consisted of students who want to become either primary (the majority) or
lower secondary school teachers. They were randomly given a piece of paper with

1 Due to the possibility of reduced test-taking motivation, “respondent fatigue” and “a greater
tendency for questionnaires not to be answered in the first place” (Bryman, 2012, p. 235),
overly long questionnaires should be avoided (see also Moosbrugger & Kelava, 2012). Re-
duced test-taking motivation is associated with lower performance (e.g., Wise & DeMars,
2005). It was therefore aimed at an average duration of about 25 minutes. This duration
seemed feasible, also considering that the experiment was planned to be conducted during
the second half of a lecture, which limited the maximum duration in which all participants
should be able to finish the questionnaire to about 40-45 minutes.
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a QR code on it with which they could access one of four different online question-
naires via their mobile phones, tablets, or laptops. The four questionnaires related
to the four experimental groups. 382 students completed the questionnaire in the
pilot study in October 2019.

The data of the pilot study was then analyzed and design issues regarding struc-
ture, selection of statements and arguments, as well as other necessary modification
were identified. The experimental design was adapted accordingly and the ques-
tionnaire was again given to and discussed with colleagues and students. The main
study was conducted in November 2020, again right at the beginning of the winter
term. The data was collected in the lecture Arithmetik und Algebra as well as in
a second lecture—Lineare Algebra 1—for first-semester mathematics majors and
preservice higher secondary school teachers. The decision to collect data in these
two lectures was made to provide a larger sample size as well as to investigate
differences regarding the study program and students’ (cognitive) resources.

5.2 Data Collection

In this section, the data collection of the main study is described in detail. First,
background information regarding the setting in which the data collection took
place is presented. Secondly, the characteristics of the sample and the participants’
background are described. Lastly, the experimental design is outlined.

5.2.1 Setting

As mentioned in Section 5.1.2, the experiment was conducted in two mathematics
lectures at BielefeldUniversity inNorth Rhine-Westphalia (NRW),Germany,which
are aimed at two different groups of first-semester university students.

Due to the COVID-19 pandemic and respective lockdowns, university courses
could not be given in person. This meant that, in contrast to the pilot study, the
participants of both lectures were not present in a lecture hall, but attended the
lectures via the online conference tool Zoom. Thus, students participated in the
experiment via answering online questionnaires, which implied some lack of control
over the participants’ environment, one disadvantage of internet-based research.
However, internet-based research seems to be as valid as more traditional methods,
such as pencil-and-paper-questionnaires (e.g., Gosling, Vazire, Srivastava, & John,
2004). Moreover, due to students not being present in a lecture hall, another way
of randomly assigning students to the four experimental groups had to be found.



5.2 Data Collection 87

The decision was made to use the breakout-room-function already implemented in
Zoom,withwhich it is possible to create several sub-meetings and assignparticipants
randomly. The four versions of the questionnaire (one for each experimental group)
were implemented via theweb-based survey-software unipark. The linkswere given
to the participants via chat in the respective Zoom-breakout-rooms.

5.2.2 Participants

In total, 430 students completed the questionnaire (67.4% female, 31.2% male,
and 1.4% chose not to answer). The average age of the participants was about
21 years (SD = 4.2) and about 96% were German native speakers. 116 of the
participants received no arguments, 112 empirical arguments, 107 generic proofs,
and 95 ordinary proofs. As the same number of participants had been allocated to
each experimental group in the beginning (via the Zoom-breakout-room-function),
the percentage of participants not completing the questionnaire (i.e., dropping out
of the experiment) was the highest for ordinary proofs.

Figure 5.2 provides an overview of the distribution of participants with respect
to the study program. The vast majority of the participants were preservice primary
school teachers without mathematics as major2 (290), followed by mathematics
students3 (70), preservice lower secondary school teachers (26), preservice higher
secondary school teachers (25), and preservice primary school teachers with mathe-
matics as major (19). This distribution corresponds roughly to the actual distribution
of mathematics students at the faculty of mathematics at Bielefeld University (see
Universität Bielefeld, 2020). About 94% of the participants stated to have attended
the respective lectures for the first time. However, about 25% of the students were in
the second semester or higher4. Therefore, it cannot be ruled out that these students
have already gained experience with proof in other mathematics lectures. About
57% of the participants attended a transition course—a so-called Vorkurs (see foot-
note in Section 5.3.7)—prior to the lecture (58% of participants that attended the
lecture Arithmetik und Algebra and 54% of participants that attended the lecture
Lineare Algebra 1). Most participants got their university entrance degree in North

2 At Bielefeld University, all preservice primary school teachers are trained in mathematics,
but they can also choose it as their major. In contrast, preservice lower and higher secondary
school teachers do have to choose their subjects—and all respective participants in this study
had chosen mathematics.
3 Either mathematics majors or minors.
4 Students atBielefeldUniversity can begin their studies either in thewinter (themore common
case) or summer term.



88 5 Methodology

290

70

26 25 19

0

100

200

300

Primary (no maths major) Maths Lower secondary Higher secondary Primary (maths major)

study program

co
un

t

Figure 5.2 Distribution with respect to study program

Rhine-Westphalia (about 90 %), about 9% in another German state, and less than
1% in another country. The mean university entrance grade5 of the participants
(M = 2.28, SD = 0.58) corresponds approximately to the average of the uni-
versity entrance grade in North Rhine-Westphalia (e.g., in 2021: M = 2.35; see
Kultusministerkonferenz, 2022); the participants’ mean final high school grade in
mathematics was M = 2.36 with noticeably higher dispersion (SD = 1.05). About
37% of participants (about 25% of participants that attended the lecture Arithmetik
und Algebra and 81% of participants that attended Lineare Algebra 1) specialized
in mathematics during high school in a so-called Leistungskurs (honors course, see
footnote in Section 5.3.7).

5.2.3 Structure of the Experiment

I designed an experiment, which mainly aimed at analyzing the influence of differ-
ent types of arguments on students’ understanding of the generality of mathematical
statements, their conviction of the truth of the statements, as well as their compre-
hension of proof. Apart from the instructions, the experiment consisted of three
main parts as shown in Figure 5.3. The instructions contained explanations on the
overall goal and implications of the project—investigating students’ knowledge at
the transition from school to university to be able to better support future students.

5 Grades in Germany are scaled from 1 to 6, where 1 is the best grade.
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Figure 5.3 Overall experimental design

More specific research interests such as students’ understanding of generality or stu-
dents’ proof skills were not communicated to avoid influencing the participants. In
the first part of the experiment, all participants had to read five universal statements
and respective arguments. The type of argument participants received depended
on the experimental group they were randomly assigned to. Group A got no argu-
ments at all, group B only got empirical arguments, group C got generic proofs,
and group D got ordinary proofs. Then, all participants had to estimate the truth
value of each statement and decide wether or not counterexamples might exist. In
addition, participants in Group A—who received no arguments—were asked to jus-
tify the truth or falsity of each statement. The participants in the remaining groups
were asked to evaluate the provided arguments regarding conviction and if they
have comprehended the arguments. At the end of the first part, all participants were
asked to evaluate the difficulty of the questions asked so far. In the second part, all
participants had to complete a Cognitive Reflexion Test (see Section 5.3.6). In the
third and last part, participants were asked to answer questions about their demo-
graphics as well as their understanding of the meaning of mathematical generality
(in German Allgemeingültigkeit). The decision to put the demographic questions at
the end was made because thinking about these questions can unconsciously influ-
ence the participants’ answers to other questions. For instance, Steele and Ambady
(2006) showed that “women who were subtly reminded of ... their gender identity
... expressed more stereotype consistent attitudes towards the academic domain of
mathematics ... than participants in control conditions.” (p. 428)
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5.3 Instruments

In this section, I first describe and justify the selection of statements and arguments.
Then, in Sections 5.3.2, 5.3.3, 5.3.4, 5.3.5, the respective items addressing the re-
search questions are specified. In Section 5.3.6, the CRT (Cognitive Reflexion Test)
used as a control instrument for individuals’ cognitive resources, is introduced.
Lastly, I give a summary of collected demographic information.

5.3.1 Selection of Statements and Arguments

The influence of the type of statement (familiarity and truth value) on students’
understanding of the generality of statements, their conviction of the truth of the
statement, their comprehension of the statement, and their construction of arguments
were investigated in this study (see research questions in Chapter 4). Because of
their prominent place in school curricula, the following two familiar statements
were chosen: 1) the pythagorean theorem and 2) the sum of interior angles of a
triangle. Both statements are explicitly listed in all NRW lower secondary curricula
and it is even expected that the school students prove these statements or justify
the overall idea of the proof (e.g., Ministerium für Schule und Bildung des Landes
Nordrhein-Westfalen, 2019, p. 30 and p. 34). Even though it is questionable, if the
participants actually had to prove these theorems in school, it can be assumed that
they had to apply them frequently in their mathematics classes.

Secondly, for the selection of unfamiliar mathematical statements, three main
criteria were specified:

• The statement should not be explicitlymentioned in the school curricula inNRW.
• Only (little) basic content knowledge should be necessary to understand and

prove the statement.
• It should be possible to support/prove the statement by the three types of argu-

ments: empirical, generic, and ordinary.

In previous studies, statements from elementary number theory (arithmetic) have
often been chosen, because they generally require comparatively few prior knowl-
edge, are thereforemostly easy to understand, and they can quite easily be proven by
generic arguments (e.g., Barkai et al., 2002; Healy & Hoyles, 2000; Kempen, 2018;
Martin & Harel, 1989; Tabach et al., 2011). Therefore, two unfamiliar statements
(both of them true) were selected: 1) the sum of two odd numbers is always even and
2) the product of two odd numbers is always odd. In particular the first statement
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has been used in studies on proof and argumentation before (e.g., Healy & Hoyles,
2000; Kempen & Biehler, 2019).

To find suitable (unfamiliar) universal statements that are false and fulfill all three
criteria turned out to be more difficult. In particular, it had to be possible to construct
(non-general) arguments (generic and ordinary proofs) for these statements, where
it is not too obvious why these arguments do not prove the truth of the statements
for all cases. One such statement, which had been used in prior research (e.g.,
Barkai et al., 2002), was identified: The sum of three consecutive numbers is always
divisible by 6. This statement proved to be suitable, because both a generic proof and
an ordinary proof could be constructed rather easily on the basis that the statement
is true if (and only if) the first number is odd (see Fig. 5.5 and 5.6 further below).

In summary, five statements were selected for the main study, two of them fa-
miliar, two of them unfamiliar and one of them false (and unfamiliar). The decision
was made to phrase all statements using natural language, because firstly, students
tend to have difficulties interpreting (more) formal, symbolic statements, in par-
ticular quantification (e.g., Dubinsky & Yiparaki, 2000; Piatek-Jimenez, piateksp-
sjimenez2004; J. Selden & Selden 1995). And secondly, the form of all statements
became more similar in that way and thus, more comparable. For instance, the
pythagorean theorem is often presented symbolically as a2 + b2 = c2, were a, b
are the legs and c the hypothenuse of a right triangle. To avoid any influence of the
statement being expressed as an equation, which students might simply associate
with a formula, the pythagorean statement was also phrased using natural language.
Further, to express and emphasize the generality of the statement, the terms beliebig
(in English arbitrary) and immer (in English always) were used. The term Behaup-
tung (in English claim) was used for all statements to express uncertainty about the
truth value.

Regarding the order of the statements in the questionnaire, two possibilities were
discussed: Using randomization or ordering the statements from (presumably) eas-
iest to most difficult. Randomization would have had the advantage of considering
potential influences of the order of statements. However, it was decided to order the
five statements by difficulty instead, because studies have shown that this can lead to
a lower percentage of participants dropping out of the study and higher performance
overall (e.g., Anaya, Iriberri, Rey-Biel, & Zamarro, 2022; Kleinke, 1980). Placing
the most difficult item right at the beginning of a questionnaire, which can occur



92 5 Methodology

if items are randomly ordered, particularly increases the risk of high drop out rates
(Anaya et al., 2022). For the assessment of difficulty of the statements, the required
knowledge to understand the statement and the complexity of the proofs (number
of steps, required concepts etc.) were considered. Further, several colleagues were
asked to evaluate the difficulty of the statements and proofs. The type of statement
(i.e., familiarity and truth value) was also taken into account. This process lead
to the following order of statements (English translations, see Appendix A in the
Electronic Supplementary Material for the original German items):

Claim 1: The sum of two arbitrary odd numbers is always even.
Claim 2: In an arbitrary triangle, the sum of the interior angles is always equal

to 180◦.
Claim 3: The product of two arbitrary odd numbers is always odd.
Claim 4: The sum of three arbitrary consecutive natural numbers is always divis-

ible by 6.
Claim 5: In an arbitrary right triangle, the sum of the areas of the squares of the

legs is always equal to the area of the square of the hypothenuse.

In the following, the selection and phrasing of the different types of arguments are
described and justified.

Empirical Arguments
The empirical arguments used for the present study consisted of four examples for
the false and the two unfamiliar (arithmetic) statements and three examples for both
familiar (geometry) statements6 (see Fig. 5.4 for the empirical arguments used to
justify claim 1 and 2, respectively). The empirical arguments always started with
the sentence Begründung: Ich habe mir verschiedene Beispiele angeschaut und
die Behauptung überprüft (which roughly translates to Justification: I looked at
several examples and verified the claim), followed by the respective examples. The
exampleswere chosen in away that they appear to cover various cases (e.g., right and
equilateral triangles)—which some students seemingly consider when they evaluate
or construct empirical arguments (e.g., Chazan, 1993)—and that participants could
easily verify their correctness.

6 Three examples instead of four were used for the geometry statements because of space
limitations.
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Figure 5.4 Example items for empirical arguments to justify claims 1 and 2 (translated)

Generic Proofs
All generic proofs (and the incorrect one for statement 4) consisted of specific
examples which reveal the respective underlying structure that can be generalized,
and an explanation that the illustrated idea indeed works for any other example
as well, as suggested by Kempen & Biehler (2019), for instance (see Fig. 5.5 for
example items). The explanationswere rather detailed to ensure that participants can
follow the argument. For instance, in the generic proof for claim 1, it was explained
that every odd number can be divided into pairs of twos such that exactly one is left.
The decision to use more detailed explanations was made, because students seem
to lack knowledge regarding basic concepts (Conradie & Frith, 2000; Moore, 1994;
Reiss & Heinze, 2000), which was also observed in the pilot study of this project
(e.g., the definition of even and odd numbers). The generic proof for the false claim
4 is based on the generic proof for the (true) statement the sum of four arbitrary
consecutive odd numbers is always divisible by 8 given by Brunner (2014, p. 22). A
similar argument proves claim 4, but only if the first number is odd. This fact was
used to construct the generic proof as well as the ordinary one (see below).

Ordinary Proofs
Similartothegenericproofs, theordinaryproofs(andtheincorrectoneforstatement4)
were rather detailed to enable participants to comprehend the argumentsmore easily.
Further, no illustrative figures were included in the proofs for claims 3 and 5 (the
familiar geometry statements), even though it might have facilitated understanding
the arguments. This decision was made, because such figures always show specific
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Figure 5.5 Example items for generic proofs to justify claims 1, 2, and 4 (translated)

examples and the distinction between an ordinary proof and a generic onewould then
nothavebeenthatclear.Figure5.6providesexamplesof theordinaryproofsforclaims
1, 2, and 4. As was already mentioned above regarding the generic proof of claim 4,
the argument used in the ordinary proof for claim 4 is also not general.

5.3.2 Conviction of the Truth of Statements

Two closed items were designed to investigate students’ conviction of the truth of
universal statements and the respective influence of different types of arguments. All
participantswere first asked to estimate the truth value of the statement (see Fig. 5.7).
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Figure 5.6 Example items for ordinary proofs to justify claims 1, 2, and 4 (translated)

Figure 5.7 Closed item for the estimation of truth of the statements (translated)

Thereby, it was decided to give participants the opportunity to express absolute
or relative conviction, as was proposed byWeber andMejia-Ramos (2015). Further,
the term richtig (in English correct) was used instead of wahr (in English true), to
avoid any confusion about the meaning of true statements. The participants of the
three experimental groups B, C, and D, who were provided with different types of
arguments, were then asked if the provided argument has convinced themof the truth
(correctness) of the statement (see Fig. 5.8). The decision was made, to not only
ask if the participants find the argument convincing, as it might not have been clear
to them, what is specifically meant by that and may have left more possibilities
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Figure 5.8 Closed item for the conviction of arguments (translated)

for interpretation. Instead, it was explicitly referred to conviction regarding the
truth of the statement. The response options were again chosen in a way such
that absolute and relative conviction could be expressed, but the participants only
had three options. This decision was made, because distinguishing between being
partially convinced and being partially not convinced did not seem to be useful.
Further, the option I have no idea was not provided, because this question does not
assess knowledge and I wanted participants to take a stand. Participants who were
not completely convinced by the provided argument were further asked to describe
why the justification did not convince them of the correctness of the claim. The
responses were coded based on aspects identified in the literature (see Section 5.4.3
for the coding scheme).

5.3.3 Comprehension of Arguments

To assess students’ comprehension of generic and ordinary proofs, participants were
first asked if they have understood the provided argument (see Fig. 5.9). Similar to
the closed item regarding students’ conviction, three response options were pro-
vided. Participants, who self-reportedly could not completely understand the pro-
vided argument were further asked to describe what they did not understand about
the argument. These answers were coded regarding aspects of proof comprehension
identified in the literature (see Section 5.4.4 for the respective coding scheme).

Figure 5.9 Closed item for the comprehension of arguments (translated)
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Figure 5.10 Open item regarding students’ proof schemes (translated)

5.3.4 Justification: Students’Proof Schemes

The participants in group A received no arguments justifying the truth of the state-
ments. Instead, they were asked to explain why they think/are convinced that the
claim is correct/false (see Fig 5.10). The main research question regarding students’
proof construction was to investigate students’ proof schemes. Participants were not
asked to prove the statements, because it would have been unclear what they view
as proof and it was not the goal of this study to investigate their respective under-
standing, but the aim was to analyze how students convince themselves of the truth
and falsity of universal statements—and in particular how this relates to their under-
standing of the generality of statements (RQ4.4). The responses to this open-ended
question were coded with respect to the main proof schemes (see Section 5.4.5).

5.3.5 Understanding the Generality of Statements

While students’ understanding of the generality of mathematical statements has not
been explicitly defined in previous studies (see also Section 3.1), related findings
mostly referred to students or teachers whowere seemingly convinced of the truth of
the statement (and/or the correctness of a respective proof), butwere at the same time
not convinced that no counterexamples can exist (e.g., Chazan, 1993; Knuth, 2002),
or to students’ awareness that one counterexample disproves a universal statement
(e.g., Buchbinder & Zaslavsky, 2019; Galbraith, 1981). Another approach has been
taken by Healy and Hoyles (2000), who assessed students’ understanding of the
generality of a proven statement by asking them if the proof “automatically held for
a given subset of cases” (p. 402) or if a new proof has to be constructed. In all these
conceptualizations, students’ understanding of generality of statements is explicitly
related to students’ understanding of the generality of proof.

My aim was to define and analyze students’ understanding of the gener-
ality of statements independent of that of proof. The potential influence of
and relation to proof was considered through the experimental design of my
study. Therefore, for this study, the understanding of generality of mathemati-
cal statements was defined as shown in Table 5.1. The checkmarks stand for a
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Table 5.1 Definition of a correct understanding of the generality of mathematical statements

absolute conviction
that no counter-
examples exist

relative conviction
that no counter-
examples exist

relative conviction
that counter-
examples exist

absolute conviction
that counter-
examples exist

absolute conviction
that statement is
true

� inconsistent inconsistent inconsistent

relative conviction
that statement is
true

inconsistent � inconsistent inconsistent

relative conviction
that statement is
false

inconsistent inconsistent � inconsistent

absolute conviction
that statement is
false

inconsistent inconsistent inconsistent �

consistent estimation of truth of a statement and the existence of counterexam-
ples and indicate a correct understanding of the generality of mathematical state-
ments. Thus, in addition to the estimation of truth of the statement (see Fig.
5.7), the participants were asked to decide if a counterexample to the state-
ment can exist. Thereby, the term counterexample was not used, as it could
not be assumed that participants are familiar with the concept. Further, the us-
age of the term counterexample might even be suggestive and therefore poten-
tially bias results. Instead, individual closed items for each statement were con-
structed, in which participants were indirectly asked about the existence of re-
spective counterexamples. Figure 5.11 provides an example for such an item
for claim 1. Participants again had the opportunity to express absolute or rel-
ative conviction regarding the (non-)existence of counterexamples. The variable

Figure 5.11 Example for a closed item regarding the existence of counterexamples (trans-
lated)



5.3 Instruments 99

Figure 5.12 Item regarding the meaning of generality of mathematical statements (trans-
lated)

measuring students’ understanding of generality (yes/no) was then defined based
on Table 5.1. Observations in which participants responded “I have no idea” to both
questions were treated asmissing values, because no decision could bemade regard-
ing the understanding of generality. Observations in which participants responded
“I have no idea” to only one of the questions were seen as inconsistent. These
observations were therefore set to not having a correct understanding of generality.

The last item of the questionnaire (see Fig. 5.12) aimed at assessing students’
(domain-specific) knowledge regarding the meaning of generality of mathematical
statements. A variable regarding correct knowledge of the meaning of generality
(yes/no) was defined based on correct ( response option c)) and incorrect ( response
options a), b), and d), as the comments of those who had chosen d) were also
incorrect) responses.

5.3.6 Cognitive Reflection Test

A so-called Cognitive Reflection Test (CRT) was used to control for individual
cognitive resources. The CRT, first described by Frederick (2005), “is designed to
measure a person’s propensity to override an intuitive, but incorrect, response with a
more analytical correct response” (Thomson & Oppenheimer, 2016, p. 99). It is as-
sumed that the intuitive answers do not require any effort, while effortful thinking is
needed to ultimately come to the correct solution (Frederick, 2005; Patel et al., 2019).
Therefore, the CRT has been very influential in literature on so-called dual-process
theory, which is based on the assumption that thinking processes can be divided into
these very two types, an intuitive System 1 and a more analytical, reflective System
2 (Kahneman & Frederick 2002; Patel et al., 2019; Stanovich & West, 2000). A
huge body of research has provided evidence that CRT performance is associated
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with broadmeasures of rational thinking and thinking dispositions7 (e.g., Frederick,
2005; Patel et al., 2019; Primi et al., 2016; Thomson & Oppenheimer, 2016). For
instance, there seems to be a strong relation between CRT score and the so-called
need for cognition (Frederick, 2005; Toplak, West, & Stanovich, toplak2014). A
need for cognition (Cacioppo & Petty, 1982) is defined as a person’s “tendency to
enjoy effortful thinking” (Thomson & Oppenheimer, 2016, p. 99)—which should
be quite useful in mathematical activities, in particular, in those related to proof.
Further, CRT performance is also associated with mathematical abilities (Frosch &
Simms, 2015), (insight) problem-solving skills, including cognitive restructuring,
which “involves the ability to reinterpret a problem” (Patel et al., 2019, p. 2131),
the preference for more explanatory detail (Fernbach, Sloman, Louis, & Shube,
2013), general reasoning skills (Primi et al., 2016), decision making (Frederick,
2005; Primi et al., 2016), and belief bias (e.g., Toplak et al., 2011), which is defined
as “the tendency to be influenced by the believability of the conclusion when eval-
uating the validity of logical arguments” (Thomson & Oppenheimer, 2016, p. 99).
While several studies have provided evidence (see, e.g., Shenhav, Rand, & Greene,
2012; Toplak et al., 2011) that “the CRT assesses something beyond general intelli-
gence” (Patel et al., 2019, p. 2131), there is no consensus in the literature regarding
the question if “individual differences in the disposition to overcome an initial intu-
ition account for the predictive power of the CRT” (Baron, Scott, Fincher, & Emlen
Metz, 2015, p. 279) and, in particular, if the CRT measures something completely
unique fromnumeracy8 (see, e.g., Pennycook, Cheyne,Koehler,&Fugelsang, 2016;
Sinayev & Peters, 2015).

Despite the fact that more research is needed to fully understand what the CRT
actually measures, it seems nevertheless useful for investigating students’ perfor-
mance in proof-related activities for twomain reasons. Firstly, it can be assumed that
activities related to proof and argumentation require numeracy, but also high levels
of rational thinking, including problem-solving skills (e.g., Chinnappan et al., 2012;
Moore, 1994; Stylianou et al., 2006; Weber, 2005), and thinking dispositions (such
as need for cognition and belief bias) might play a role, in particular regarding the
understanding of generality of mathematical statements. As the CRT performance
correlateswith thesemeasures, it should cover several individual cognitive resources
that have been discussed in Section 3.3. Secondly, the CRT requires not much (time)
effort, thus, it does not significantly affect the test duration, while still providing po-
tentially useful information regarding individuals’ cognitive differences. The CRT

7 A thinking disposition “is a tendency, propensity, or inclination to think in certain ways
under certain circumstances” (Siegel, 1999, p. 209).
8 Numeracy means the ability to do basic mathematical calculations.
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Figure 5.13 CRT items used in the study. (Based on Frederick, 2005; Primi et al., 2016;
Thomson & Oppenheimer, 2016)

was therefore used as a control instrument for individual differences in cognitive
resources. I want to highlight that the purpose for using the CRT in the present study
was not to identify specific cognitive resources underlying students’ performance
in proof-related activities. For the main study, German translations of the four items
shown in Figure 5.13 were used in random order.

The first two items are based on Frederick’s original version of the CRT. Because
of potential prior exposure to the questions and the CRT’s reliance on numeracy as
well as its level of difficulty, itwas decided to also includeCRT items fromalternative
versions. The third itemwas taken and translated from the so-calledCRT-2 proposed
by Thomson and Oppenheimer (2016), which showed to be significantly less reliant
on numeracy than the original CRT. The fourth and last item is based on an item
from CRT-long proposed by Primi et al. (2016)9. The CRT-long was developed as a
more appropriate scale for a wider target group, because the original CRT is limited
in that the item difficulty leads to floor effects in many populations, such as non-elite
groups and adolescents (Frederick, 2005; Primi et al., 2016; Toplak et al., 2014).
On average, 1.24 out of 3 items (about 41%) were correctly solved by participants
in the CRT by Frederick and 2.95 out of 6 items (about 49%) in the CRT-long by
Primi et al. About 33% and 12% of the participants scored zero in the CRT and
CRT-long, respectively.

9 The item has also been used in prior CRTs, such as the CRT7 proposed by Toplak et al.
(2014). It was seemingly provided by Shane Frederick (see Toplak et al., 2014, p. 151).



102 5 Methodology

In summary, the CRT items were selected such that the risk of prior exposure,
over-reliance on numeracy, and floor-effects were reduced. Furthermore, the items’
context was considered regarding a meaningful translation into German.

The CRT score was calculated based on the number of correctly solved items,
resulting in values between 0 (no CRT item correctly solved) and 4 (all CRT items
correctly solved).

5.3.7 Demographics

In the last part of the questionnaire, the participants were asked about their de-
mographics including university-entry grade, final high school mathematics grade,
study degree program, and number of semesters. Furthermore, they were asked if
they were attending the respective lecture for the first time and if they attended
a so-called Vorkurs10 prior to the beginning of the winter term. Lastly, they were
asked if they specialized in mathematics during high school in a so-called Leis-
tungskurs11. This information was used to (at least indirectly) consider prior math-
ematical knowledge of the participants. It can be assumed that, on average, students
who specialized in mathematics gained more experience in mathematics at school
than students attending a regular mathematics course. Attendance in a Vorkurs was
considered because at least one of the statements used in the study had been dis-
cussed and proven in at least one of these courses. Thus, participants who attended
the transition course might have been more familiar with the respective item.

5.4 Data Analysis

In this section, the methods and approaches used to analyze the data are described.
First, the procedures used in this study are explained and justified. What follows is

10 The two Vorkurse (transition courses)—one for preservice primary and lower secondary
school teachers and one for preservice higher secondary school teachers and mathematics
students—aim at closing the gap at the transition from school to university by recapping
selected school topics and providing an introduction to proof-based mathematics. Students
can optionally attend the Vorkurs, which takes place during the two weeks prior to the start
of regular lectures.
11 In the German school system, high school students usually have to choose two subjects as
Leistungskurse (honors courses). These courses include more hours per week and cover more
material than regular courses (so-called Grundkurse).
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a more detailed summary of the analysis process and respective assumptions that
were made.

5.4.1 Statistical Analysis

All statistical analysis was performed using the statistical software environment R
(version 4.2.0, R Core Team, 2022). The relevant codes can be found at Damrau
(2023).

To estimate the effects of the type of argument and statement (and other vari-
ables of interest) on students’ understanding of generality—the primary outcome
measure of this study—generalized linear mixed models (GLMM) were calculated
using the glmer function of the R package lme4 (version 1.1-31, Bates, Mächler,
Bolker, & Walker, 2015) because understanding generality was defined as a binary
variable (see Section 5.3.5). Classical linear models rely on normally distributed
variables and could therefore not be used (e.g., Bolker, 2015). Similarly, to analyze
students’ performance in estimating the truth value of statements, students’ con-
viction, and students’ proof comprehension, respectively, cumulative link mixed
models (CLMM) were fitted using the function clmm of the R package ordinal (ver-
sion 2019.12-10, Christensen, 2019), because the respective dependent variables
are ordinal. In both cases (GLMM and CLMM), logistic link functions were used.
Further, using mixed regression models has the advantage that both random and
fixed effects can be included (e.g., Bolker, 2015). The individuals participating in
the study were considered as a random effect to control for individual differences
in the repeated measures. All other independent variables were considered as fixed
effects, such as the type of argument and statement.

For variable selection and regression model building, the following approach
was taken (based on suggestions in Gelman & Hill, 2007; Harrell, 2015; G. Heinze,
Wallisch, & Dunkler, 2018):

1. Theoretical background informationwas used to decidewhich independent vari-
ables (IVs) should be considered.

2. A directed acyclic graph (DAG) was drawn to illustrate the relationship between
IVs.

3. Some IVs were eliminated based on the DAG (e.g., study program).
4. Backward elimination model selection was cautiously applied, where control

variables with comparatively small and/or highly insignificant (p > .5) effects
were dropped (as suggested by Harrell, 2015), while considering the theoretical
background (e.g., the expected direction of the effect). Akaike and Bayesian
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information criterions (AIC and BIC) were used for choosing the final model
(see also Heinze et al., 2018).

The following control variables were included in the global models to consider
individual (cognitive) difference of the participants:

• CRT score
• attendance of honors course in mathematics during high school (yes/no)
• attendance of transition course (yes/no)
• final mathematics grade in high school

The two continuous control variables (CRT score and final mathematics grade) were
standardized by subtracting the mean and dividing by two standard deviation to be
able to better compare the coefficient estimates to those of untransformed binary
predictors, as suggested by Gelman (2008).

I decided to adjust the p-values in the final regression models whenever multiple
testing was involved, which was for instance the case regarding hypotheses on the
influence of the type of argument (e.g., comparisons of experimental groups against
control) and statement (see following sections for specific comparisons and number
of tests).

For choosing an appropriate correction method, the expected losses from Type
I and II errors were considered. The consequences of Type I error would mainly
consist of falsely considering variables (here, the type of argument, for instance)
in practical implications and for future investigations. Type II errors, on the other
hand, would result in falsely excluding relevant aspects. It can be expected that,
in the context of the present study, both types of errors would not result in serious
consequences. Further, no comparable research has previously been conducted, in
particular regarding students’ understanding of the generality of statements. Thus,
to avoid prematurely excluding potential variables (Type II errors), it was decided to
use Holm’s correction (Holm, 1979) to control for family-wise error-rate (FWER)
instead of the more conservative Bonferroni correction, which is a bit better in
decreasing the probability of Type I errors, but also (highly) increases the probability
of Type II errors (e.g., Aickin & Gensler, 1996). If the number of tests would have
been higher, an even less conservative method such as Benjamini-Hochberg (BH)
correction (Benjamini & Hochberg, 1995) that controls for false discovery rate
(FDR) instead of FWER would also have been a reasonable choice. But due to the
small number of tests, the results were to be expected not being much different than
for Holm’s correction. Holm’s correction is a stepwise procedure in which the p-
values/levels of significance are adjusted iteratively, from smallest to largest value.
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The unadjusted p-values are first sorted in ascending order. The i-th BH adjusted
p-value12 p.ad ji is then calculated by

p.adji = min{max1≤j≤i(m − j + 1) · pj, 1},

where m is the number of tests and p j is the j-th unadjusted p-value. The adjusted
p-values are then compared to the unadjusted level of significance, which was set
to the common value of α = .05 in this thesis. The Holm’s adjusted p-values were
calculated with the R function p.adjust. In the regression summaries, unadjusted
significance is reported using traditional stars and significance based on adjusted
p-values is marked bold in the final models. Whenever I have corrected the level of
significance, Holm’s adjusted p-values are reported as p.ad j .

5.4.2 Content Analysis

A quantitative content analysis (sometimes referred to as structured qualitative
content analysis, see, e.g., Döring & Bortz, 2016; Mayring, 2022) was chosen to
measure students’ proof schemes, students’ proof evaluation regarding conviction,
and students’ proof comprehension. The three respective open questions were an-
alyzed following theory-based coding schemes. To refine the coding schemes, the
following approach was taken (see Döring & Bortz, 2016; Krippendorff, 2004):

1. A set of a priori categories was identified based on the literature.
2. The categories were discussed and modified.
3. The set of categories was applied to a sample of the data, resulting in the deletion

of categories, rephrasing of categories, differentiation of categories, and the
addition of a few new categories.

4. The set of revised categories were further specified to maximize mutual exclu-
siveness as well as exhaustiveness.

5. The resulting coding scheme was pretested to ensure applicability.
6. After adequately refining and clarifying the categories, the coding scheme was

settled upon as final.

The resulting coding schemes are described in Sections 5.4.3, 5.4.4, and 5.4.5,
respectively.

12 Alternatively, adjusted α’s can be calculated to which the unadjusted p-values are then
compared.
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Over 20%of randomly chosen students’ responseswere coded by two colleagues
working in mathematics education. Following suggestions in the literature (e.g.,
Krippendorff, 2004), the coders were chosen such that they are familiar with the
respective content (e.g., with typical proof tasks and university students’ attempts
to solve them) and have strong backgrounds in mathematics. A detailed coding
protocol (including decision trees) was provided (in German, see Appendix B in the
Electronic Supplementary Material) and both coders were sufficiently trained. This
lead to very good inter-coder reliabilities (.88 < κ < .93), based on Cohen’s kappa
(e.g., Davey, Gugiu, & Coryn, 2010; McHugh, 2012; O’Connor & Joffe, 2020).

In the following sections, more specific information on both the statistical as
well as content analyses of the respective data is provided.

5.4.3 Conviction of the Truth of Statements

Students’ conviction of the truth of statements was assessed by students’ perfor-
mance in two proof-related activities: The estimation of truth and proof evaluation
regarding conviction. I first describe the analysis of students responses regarding
estimation of truth and then outline how students’ proof evaluation regarding con-
viction was analyzed.

Estimation of Truth
To be able to meaningfully compare responses regarding both true and false state-
ments, students’ responses were recodedwith respect to a correct estimation of truth
(“yes (absolutely sure)”, “yes (relatively sure)”, “no (relatively sure)”, “no (abso-
lutely sure)”). The answer “I have no idea” was coded as undecided and allocated
between “yes (relatively sure)“ and “no (relatively sure)”, because these participants
could not decide whether or not the statements were true. In that way, the responses
were ordered conclusively and no information was lost in the regression analysis.
As has been described above, cumulative linked mixed models were used to analyze
students’ (correct) estimation of truth (as an ordinal variable). The main goal was
to estimate the effect of the type of argument and statement. In addition, the four
control variables listed in Section 5.4.1 were considered for the global regression
model. Holm’s correction was used for analyzing the influence of the type of argu-
ment (three comparisons, each experimental group against the control group, which
received no arguments) and the type of statement (two comparisons, true familiar
and false statements against true unfamiliar statements).
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Students’Conviction (Statistical Analysis)
The analysis of students’ proof evaluation regarding conviction is based on the
responses of groups B, C, and D, as participants in group A did not receive any
justification. To analyze students’ proof evaluation regarding conviction (measured
via the closed item shown in Fig. 5.8), cumulative linked mixed models were again
calculated. Thereby, the main goal was to analyze the effect of the type of argument
and statement as well as students’ proof comprehension (as an ordinal variable). In
addition, the four control variables listed in Section 5.4.1 (CRT score, attendance of
honors course in mathematics during high school, attendance of transition course,
final mathematics grade in high school) were considered for the global regression
model. Holm’s correction was used for analyzing

• the influence of the type of argument (three comparisons in total: generic and
ordinary proofs against empirical arguments, plus another comparison, generic
vs ordinary proof),

• the influence of the type of statement (two comparisons, true familiar and false
unfamiliar statements both against true unfamiliar statements),

• the influence of the level of proof comprehension (an ordinal variable) on stu-
dents’ conviction (two comparisons, completely understood and not at all under-
stood both against partially understood).

Students’Conviction (Content Analysis)
The coding scheme used to analyze what aspects students’ claim to not find con-
vincing in different types of arguments is based on respective aspects identified in
research on proof evaluation (see Section 3.2.3) as well as characteristics and ac-
ceptance criteria suggested by Stylianides (2007) and Hanna (1989) as discussed
in Section 2.3.3. It was decided to include the aspect of sample size/selection as
a possible category regarding the evaluation of empirical arguments, because of
respective observations in prior research (e.g., Chazan, 1993). Table 5.2 gives an
overview of the final coding scheme. The generated measured values were then
analyzed using descriptive statistics. Responses of group B for statements 1 and 2,
and responses of groups C and D for statements 1, 2, 3, and 5 were included in
the analysis. The goal of including responses regarding empirical arguments was
to investigate if students are aware of the limitations of empirical arguments and
thus refer to a lack of generality when asked why the argument did not convince
them. For this purpose, it did not seem necessary to analyze the responses regarding
all statements, because responses which refer to a lack of generality of empirical
arguments would become redundant. To account for potential differences regarding
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Table 5.2 Coding scheme regarding argument evaluation of convincingness (examples trans-
lated by the author)

Code Value Description Example

NA No answer The student did not submit an
answer or claims to not know.

“I don’t know”

0 Answer is deficient The student claims to be
convinced by the justification
(after all) or the answer is
otherwise unclear.

“the justification convinced
me, but only because it is all
explained by way of
example.”

1 Comprehension The student (seemingly) did
not understand the statement
(e.g., terms used) or the
justification.

“Probably because I don’t
understand it [the
justification] 100%.”;
“Because the justification is
given only for natural
one-digit numbers and not for
other cases, e.g., the integers
or the rational numbers.”

2 Correctness The student states that the
statement is false or the proof
is incorrect.

“because I do not believe that
it works like this for any
triangle”

3 Sample size/selection The student states that the
number of cases is too small,
other relevant cases have not
been checked, or verifies the
statement with additional
examples.

“because there are not
enough examples”

4 Generality The student refers to a lack of
generality of the argument,
e.g., because it only consists
of examples or is based on
one example, or the student
states that the justification is
not a mathematical proof.

“Only examples are given,
but it should be valid for all
odd numbers.”

5 Argument representation The student refers to an
inappropriate, inaccurate, or
abstract form of
representation/notation.

“Calculating with the
rest-one sounds not very
mathematical to me.”

6 Familiarity The student claims to not
being familiar with the
representation or type of
argument.

“such proofs did not exist in
school”



5.4 Data Analysis 109

the familiarity with the statements, statements 1 (unfamiliar, number theory) and 2
(familiar, geometry) were included. Statement 4 was not considered at all because
of the statement being false and therefore the proofs incorrect.

5.4.4 Comprehension of Arguments

In the analysis of students’ proof comprehension, only responses of groups C and
D (generic and ordinary proofs) were considered (as a reminder, group A did not
receive any justification and group B only empirical arguments). Further, I excluded
responses regarding the false statement 4 from the analyses since proof comprehen-
sion relates only to the understanding of correct proofs (see, e.g., Neuhaus-Eckhardt,
2022).

Statistical Analysis
Similar to the analysis of students’ estimation of truth and conviction, cumulative
linked mixed models were used to analyze students’ (self-reported) proof compre-
hension. Thereby, the main goal was to estimate the effect of the type of argument
(generic vs ordinary proof) and the familiarity with the statement. In addition, the
four control variables listed in Section 5.4.1 were again considered for the global
regression model. Holm’s correction was neither used for the type of argument
(generic vs ordinary proof) nor for the type of statement (unfamiliar vs familiar),
because for each only one comparison (i.e., one test) was involved.

Content Analysis
The coding scheme used to analyze the open item on students’ proof comprehension
is mainly based on the local aspects introduced by Mejía Ramos et al. (2012) (see
Section 3.2.4). It was decided to explicitly differentiate between students’ lack of
understanding the statement itself (as a prerequisite to understand the proof) and
statements/terms/illustrations etc. only used in the proof. Based on prior research, it
was assumed that students would generally not refer to holistic aspects and aspects
beyond the particular proof when asked to identify what they did not understand (see
Section 3.2.4). Generality was added as a possible category to the coding scheme,
because of its importance for the present thesis. Furthermore, it was expected that
students might (implicitly) refer to an insufficient understanding of the generality of
generic proofs, as research on proof evaluation suggests that some students/teachers
think generic proofs lack generality (see Section 3.2.3). The aspect of generality
might contain holistic aspects, because students’ not understanding why a generic
proof is general could be related to an insufficient understanding of the main idea
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of the proof, which due to Mejía Ramos et al.’s model corresponds to holistic un-
derstanding. Table 5.3 gives an overview of the final coding scheme. The generated
measured values were then analyzed using descriptive statistics.

Table 5.3 Coding scheme regarding proof comprehension (examples translated by the au-
thor)

Code Value Description Example

NA No answer The student did not submit an
answer or claims to not know.

“I don’t know”

0 Answer is deficient The student claims to have
understood the justification
(after all) or the answer is
otherwise unclear.

“I got it”

1 Unspecific The student did not specify
what they did not understand.

“I can not understand it [the
justification], I lack the
imagination”; “too
complicated”

2 Meaning of the statement itself The student (seemingly) did not
understand the statement (e.g.,
terms used).

“What exactly is a product,
simply the sum?”

3 Meaning of terms, statements,
and illustrations used in the
proof

The student did not know the
meaning of terms and/or
statements used in the proof or
how to interpreted illustrations.

“I don’t know what alternate
angles are”; “why the 1 is
outside the bracket”

4 Logical status and proof
framework

The student (seemingly) did not
understand the purpose of
particular
statements/concepts... and/or
the connection between (parts
of) the proof and the claim.

“why are alternate angles used
to justify the statement”; “I did
not understand the relation to
the claim”

5 Generality of the proof The student seemingly did not
understand why the argument is
general (e.g., because they did
not understand the main idea of
the proof)

“I did not understand why the
justification is applicable to all
products of odd numbers”

5.4.5 Justification: Students’Proof Schemes

The coding scheme used to analyze students’ proof schemes is based on Harel
and Sowder (1998), Bell (1976), Recio and Godino (2001), and Kempen (2019)
(see Section 3.2.5). Table 5.4 gives an overview of the final coding scheme. The
generated measured values were then analyzed using descriptive statistics. Further
analysis was conducted to investigate the relation between students’ proof schemes
and their understanding of generality (see following section).
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Table 5.4 Coding scheme regarding students’ proof schemes (examples translated by the
author)

Code Value Description Example

NA No answer The student did not submit a
justification or claim to not know.

“I don’t know”

0 Answer is deficient The student misunderstood the
statement or the answer does not
contain a justification or is otherwise
unclear.

“I suspect it”; “because the number is
divisible by 6 when multiplied three
times”

1 Authority based argument The student makes reference to
school, a lecture, a teacher, etc.

“I have learned it like this”

2 Rule argument The student states that the statement is
a general rule/law/known theorem.

“This is an always valid law”

3 Empirical argument (no apparent
awareness of generality)

The student provides examples or
claims to have verified the statement
by examples.

“by means of example”

4 Empirical argument (awareness of
generality)

The student provides examples or
claims to have verified the statement
by examples, but seems to be aware of
the necessity of a general argument,
e.g., by making reference that no
counterexample could be found.

“Since I am not aware of any numbers
where this is not true”

5 Pseudo argument The student re-states the statement or
uses circular, redundant, irrelevant,
not goal-oriented, or incorrect
arguments.

“Because if the sum is not 180
degrees it is not a triangle”

6 Relevant aspects The student mentions relevant aspects,
which could form part of a proof, but
does not attempt to construct a chain
of arguments.

“Angles can be combined on a straight
line”

7 Transformational argument
(incomplete or with error)

The student gives a partially correct
transformational argument, which is
characterized by the consideration of
particular examples (and operations
on them) and the generality of the
argument, but contains gaps and/or
errors.

“Because it works for 1,3,5,7 and 9,
so it will work for all numbers.”

8 Transformational argument
(complete)

The student gives a substantially
correct transformational argument,
which is characterised by the
consideration of particular examples
(and operations on them) and the
generality of the argument.

no example found

9 Deductive argument (incomplete or
with error)

The student gives a partially correct
ordinary proof, which contains gaps
and/or errors.

“The two ones that are too many
combine to make an even number.”
(missing: sum of even numbers is
even (and why))

10 Deductive argument (complete) The student gives a substantially
correct ordinary proof.

“Odd numbers can be written as
2k + 1. So if I add two odd numbers it
looks like this:
(2n + 1) + (2k + 1) = 2 ∗ (n + k + 1),
which is always even.

11 Counterexample (At least) one correct counterexample
is given or it is claimed that
counterexamples have been found.

“since 2 + 3 + 4 is not divisible by 6”
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5.4.6 Understanding the Generality of Statements

For a potentially easier interpretation and to be able to compare results to those of
prior research, I first investigated participants who where absolutely convinced of
the truth of the statement but not absolutely convinced that no counterexample to the
statement exists (which relates to the first row shown in Tab. 5.1). Chi square tests
and Cramer’s V were used to analyze differences regarding the type of argument
and statement.

For interpreting the effect size given by Cramer’s V, the following rule of thumb
introduced by Cohen (1988) was used (Table 5.5):

Table 5.5 Cohen’s rule of thumb for interpreting Cramer’s V

Effect size:

Degrees of
freedom

Negligible Small Medium Large

1 < .10 [.10, .30) [.30, .50) ≥ .50

2 < .07 [.07, .21) [.21, .35) ≥ .35

3 < .06 [.06, .17) [.17, .29) ≥ .29

4 < .05 [.05, .15) [.15, .25) ≥ .25

5 < .05 [.05, .13) [.13, .22) ≥ .22

As has been described in Section 5.4.1, generalized linear mixed models were
then calculated to analyze students’ understanding of the generality of mathematical
statements as defined in Table 5.1. In addition to the type of statement and argument,
the analysis also aimed at estimating the effect of students’ knowledgeof themeaning
ofmathematical generality (correct knowledge or not, see Fig. 5.12 in Section 5.3.5).
The four control variables listed in Section 5.4.1were again considered for the global
regressionmodel. Holm’s correctionwas used for analyzing the influence of the type
of argument (three comparisons, the experimental groups against the control) and
the type of statement (two comparisons, true familiar and false unfamiliar statements
both against true unfamiliar statements).

Understanding Generality in Relation to Conviction and Proof
Comprehension
Further regressions were calculated to analyze the relation between students’
understanding of generality and their conviction and comprehension (see footnotes
in Section 6.5 for p-value adjustment). Observations regarding the false statement
were excluded in these analyses, because the effect was expected to be in the
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opposite direction, in particular regarding conviction. Moreover, analyzing the rela-
tion to proof comprehension was based on the data of groups C and D (participants
who received generic or ordinary proofs), because the influence of students’ proof
comprehension of empirical arguments did not seem to be meaningful.

Understanding Generality in Relation to Proof Schemes
To analyze the relation between students’ understanding of generality and their proof
schemes (group A), Chi-square test and Cramer’s V were used instead of fitting
generalized mixed effects models. This decision was made to increase statistical
power and because setting a reference category was not possible in a meaningful
way, even though using GLMM would have been preferable, because individuals
could have been included as a random effect. To further increase statistical power,
the categories introduced in Section 5.4.5 were summarized as follows, based on
the main categories of Harel and Sowder (1998):

• External conviction: authority based, rule, pseudo
• Empirical: empirical (no apparent awareness of generality), empirical (aware-

ness of generality)
• Counterexamples: counterexamples
• Analytical: deductive (complete and incomplete), transformative (complete and

incomplete), relevant aspects
• Unclear: unclear

In theory, counterexamples could be seen as an empirical proof scheme—because
they are indeed empirical—however, as counterexamples prove the falsity of a state-
ment (in contrast to other empirical arguments, which usually are not able to proof
the truth of a statement), it seemed oversimplifying to code them empirical. Because
neither of the other main categories introduced by Harel & Sowder seemed to be
appropriate either, counterexamples were treated as another main category. Further,
pseudo arguments were allocated to external conviction proof schemes. Similar
arguments, such as restating the statement or saying its contraposition, had been
observed by Harel and Sowder (1998) as examples for authoritarian proof schemes.
I decided to use the term external conviction for the main category, based on exter-
nal proof schemes, proposed by Harel & Sowder, to distinguish pseudo arguments
and references to a rule from explicit references to authorities. Responses that were
coded as unclear were considered as an additional category to not lose potentially
useful information.
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6Results

Before the results are presented in this chapter, further information on the sample
characteristics and findings from preliminary analyses are provided. The subse-
quent sections are then structured according to the four sets of research questions.
In section 6.6,missing values regarding the understanding of generality–those obser-
vations in which participants answered “I have no idea” regarding the estimation of
truth and the existence of counterexamples, see section 5.3.5–are analyzed. Lastly,
I summarize the main findings in section 6.7.

6.1 Preliminary Analysis

In this section, further information on the sample characteristics and findings from
preliminary analyses are provided.

To be able to better interpret and compare the results with respect to the specific
sample of my study, information regarding participants’ CRT (Cognitive Reflexion
Test) scores is first reported in the following. The most frequent CRT score was
0, which means that many of the participants (about one third) answered all four
CRT questions incorrectly (see Fig. 6.1 for absolute frequencies of CRT scores).
On average, participants solved 1.3 CRT items (about 33%) correctly (SD = 1.2)
As discussed in section 5.3.6, similar floor effects in less elite populations have
frequently been reported in the literature. The CRT score differed substantially by
study program of the participants, as Figure 6.2 illustrates. The floor effect can only
be observed regarding preservice primary school teachers without mathematics as
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major. About 45% of these students had a CRT score of 0. This group also had
the lowest average CRT score (M = 0.9, SD = 1.1). In contrast, less than 5% of
the mathematics students did not solve any of the CRT questions correctly. These
students had the highest average CRT score (M = 2.4, SD = 1) compared to all
other study degree programs. The preservice primary school teachers formed the
largest group in the sample (see section 5.2.2), which results in the overall floor
effect.
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The participantswere asked to rate the difficulty of questions regarding the proof-
related activities to verify if respective ceiling or floor effects exist. Figure 6.3 shows
the rating of difficulty of questions by the participants. Only few participants rated
the questions very difficult or very easy, which indicates no ceiling or floor effects,
at least regarding the perceived difficulty of the questions.

Even though the participants mainly received the same questions (in particular
those in the experimental groups B, C, and D, who were provided with justifica-
tions for the statements), the perceived difficulty of the questions differed by the
type of argument (see Fig. 6.4). The questions were perceived the most difficult
by students who received ordinary proofs and the least difficult by students who
received empirical arguments. Students who were not provided with any justifica-
tion were asked to justify the truth/falsity of the statements. They perceived the
questions to be more difficult than the participants who got empirical arguments
and slightly more difficult than participants who received generic proofs, but less
difficult than the participants who got ordinary proofs. Noteworthy, students who
received generic proofs perceived the questions to be less difficult than students who
received ordinary proofs.

On average, participants completed the questionnaire in about 24minutes (SD =
9). Participants who received ordinary proofs spend the most time answering the
questions, while participants who received no arguments needed the least amount of
time, closely followed by participants who received empirical arguments (see Fig.
6.5). Given that participants who received no arguments were asked to justify the
truth/falsity of the statements, it is surprising that they needed the least amount of
time to finish the questionnaire.
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Figure 6.5 Minutes needed to answer the questionnaire by group

Mainly small to moderate intercorrelations between the considered independent
variables were observed (see Tab. 6.1; because some of these variables are nominal,
correlation coefficients were calculatedwith Cramer’s V). The CRT score correlated
comparatively strongly with the attendance of an honors mathematics course (LK),
which should be taken into account when interpreting the results. However, both
of these variables were used as controls and were other than that not of particular
interest.
Overall, no severe multicollinearity was expected.
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Table 6.1 Intercorrelation among variables

meaning
generality

LK transition course final grade
maths

CRT score 0.20*** 0.46*** 0.10*** 0.19***

meaning
generality

0.18*** 0.05* 0.16***

LK 0.02 0.26***

transition course 0.14***

Note: ∗p<.05, ∗∗p<.01, ∗∗∗p<.001

6.2 Conviction of the Truth of Statements

This section reports on the results regarding the first set of research questions. It
is divided into two main parts: Students’ estimation of truth and students’ proof
evaluation regarding conviction.

6.2.1 Estimation of Truth

Between about 45 and 70% of the participants correctly estimated the truth of the
statements and claimed to be absolutely sure, depending on the statement. If relative
conviction of the truth of the statement is included, about 60% (regarding the false
statement) to 95% (regarding one of the true unfamiliar statements, closely followed
by one of the familiar statements) correctly estimated the truth of the statements.
Figure 6.6 gives an overview of students’ correct estimation of truth regarding
the five statements (as a reminder, statements 1 and 3 were true and supposedly
unfamiliar, statements 2 and 5were familiar, and statement 4was false). Noteworthy,
almost one fourth of all participants claimed to not know if the pythagorean theorem
(statement 5) is true, which seems unexpected at first. Moreover, comparatively
many participants incorrectly estimated the truth values of the unfamiliar statement
that the product of two odd numbers is odd (statement 3) and the false statement
that the sum of three consecutive numbers is divisible by 6 (statement 4); about one
third of the participants was relatively or absolutely sure that this statement is true.

Figure 6.7 shows participants’ correct estimation of the truth of the statements,
depending on the type of statement (familiarity and truth value) and argument (ex-
perimental group). Participants were generally more successful in estimating the
truth value of familiar and unfamiliar statements–all of which are true–than of the
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Figure 6.6 Correct estimation of truth by statement 1: sum of two odd numbers is even, 2:
sum of interior angles in a triangle, 3: product of two odd numbers is odd, 4: sum of three
consecutive numbers is divisible by 6, 5: pythagorean theorem
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Figure 6.7 Correct estimation of truth by type of statement and argument

false (unfamiliar) statement. In particular, a substantial percentage among the partic-
ipants who received empirical arguments or ordinary proofs seemed to be absolutely
sure that the false statement is true. Furthermore, the graph suggests that students
who received empirical arguments were overall the most successful in estimating
the truth values of the true universal statements, followed by those who received
generic proofs.
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The effects of the type of argument and statement on students’ estimation of truth
was analyzed usingmixed effects ordinal logistic regression (see also section 5.4.1).
The results are summarized in Table 6.2.Model 2was selected as the final model. As
was expected, the familiarity and the truth value of the statement affected students’
estimation of truth. Being familiar with the statement correlated positively with
correctly estimating the truth value, even though not as strongly as was expected
(β = .20, p.adj1= .041), while the falsity of a statement had a strong negative
effect (β = −.92, p.adj < .001). This means that participants were more likely to
correctly estimate the truth value of the familiar statements and less likely regarding
the false statement, both compared to estimating the truth of the true unfamiliar
statements.

Furthermore, students who received empirical arguments were more likely to
correctly estimate the truth value than students who did not receive any justifications
(β = .44, p.adj = .004). Reading generic proofs also had a positive effect on
students’ estimation of truth, but this effect did not reach significance regarding the
adjusted p-value (β = .27, p.adj = .088). Ordinary proofs had no significant effect
on students’ estimation of truth (β = −.09, p.adj = .537).

Among the four control variables (CRT score, honors course, transition course,
and final high school mathematics grade), only the CRT score and the participation
in a mathematics honors course during high school predicted students’ estimation
of truth. The higher the CRT score, the more likely participants correctly estimated
the truth value (β = .63, p < .001). Similarly, and with an even larger effect, if
participants specialized in mathematics in an honors course during high school, the
more likely they were successful in estimating the truth value (β = .80, p < .001).
The effect of the final mathematics grade was comparatively smaller and did not
quite reach significance (β = −.20, p = .051; note that in Germany, 1 is the
best grade and 6 the worst, which explains the opposite sign of the estimate). The
attendance of a transition course had an even smaller effect, which was highly
insignificant (β = .03, p = .798) and therefore excluded from the models. Due
to the comparatively small effect, the mathematics grade was excluded in Model
3. But because Model 3 did not have a smaller AIC value2 than Model 2 and the
influence of the mathematics grade is conclusive, Model 2 seemed to be the best
choice overall.

1 In this chapter, p.adj always refers to to the Holm’s adjusted p-values and the level of
significance is set to α = .05 throughout this thesis, see section 5.4.1.
2 AIC refers to Akaike Information Criterion. It is used to estimate the model quality relative
to other models (see also section 5.4.1).
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Table 6.2 CLMM comparison regarding students’ estimation of truth

Dependent variable:

Estimation of truth (correct)

Model 1 Model 2 Model 3

Threshold coefficients

no (absolutely sure) | no (relatively sure) −2.683*** −2.695*** −2.675***

(0.150) (0.143) (0.142)

no (relatively sure) | undecided −1.865*** −1.877*** −1.856***

(0.135) (0.127) (0.126)

undecided | yes (relatively sure) −1.244*** −1.255*** −1.234***

(0.128) (0.119) (0.119)

yes (relatively sure) | yes (absolutely sure) 0.045 0.033 0.053

(0.123) (0.114) (0.114)

Variables of interest

empirical arguments 0.436** 0.438** 0.462***

(0.136) (0.135) (0.135)

generic proofs 0.269* 0.272* 0.277*

(0.135) (0.135) (0.135)

ordinary proofs −0.088 −0.085 −0.069

(0.137) (0.137) (0.137)

familiar 0.200* 0.200* 0.201*

(0.098) (0.098) (0.098)

false (unfamiliar) −0.924*** −0.924*** −0.924***

(0.120) (0.120) (0.120)

Controls

CRT score 0.628*** 0.625*** 0.681***

(0.117) (0.116) (0.113)

LK 0.802*** 0.804*** 0.824***

(0.119) (0.119) (0.119)

final grade maths −0.197+ −0.200+
(0.104) (0.103)

transition course 0.026

(0.100)

SD (Intercept id) 0.437 0.437 0.442

Observations 2150 2150 2150

AIC 4896.8 4894.8 4896.6

BIC 4976.2 4968.6 4964.7

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Holm’s adjusted signif. marked bold
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6.2.2 Proof Evaluation Regarding Conviction

About half of the participants who received generic or ordinary arguments claimed
that the argument completely convinced them of the truth of the statement (see
Fig. 6.8). Noticeably, in about 25% of the observations, participants claimed to be
completely (!) convinced by the empirical arguments.
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Figure 6.8 Conviction by type of argument

As would be expected, students claimed to be less convinced by the (incorrect)
arguments regarding the false statement than regarding the true familiar and unfa-
miliar statements (see Fig. 6.9). However, over 60% of participants who received
ordinary proofs were also at least partially convinced by the argument regarding
the false statement. In contrast, less than 50 and 40% of participants who received
empirical arguments and generic proofs, respectively, claimed to be at least partially
convinced by the arguments regarding the false statement.

Figure 6.10 illustrates the relation between students’ conviction and their self-
reported level of comprehension of the argument (completely, partially, not at all).
As would be expected, participants, who claimed to have (partially) understood
the arguments were more often also (partially) convinced by them. Vice versa,
participants who self-reportedly did not understand the arguments at all were in
general also not at all convinced by the arguments.
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Figure 6.9 Conviction by type of argument and statement
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Figure 6.10 Conviction by type of argument and statement, and by comprehension of argu-
ment
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To investigate the effect of the type of argument and statement aswell as students’
proof comprehension on their proof evaluation regarding conviction, mixed effects
ordinal logistic regression was used (see Tab. 6.3). As was expected, students’ rating
of convictionwas affectedby the typeof argument. Participantswho receivedgeneric
or ordinary proofs were more likely to claim being convinced by the argument
than participants who received empirical arguments (β = 1.70, p.adj < .001 and
β = 2.20, p.adj < .001, respectively). The falsity of the statement had a negative
effect on students’ conviction, which means that participants were less likely to be
convinced by arguments regarding the false (unfamiliar) statement than regarding
the true unfamiliar statements (β = −1.31, p.adj < .001), which was also expected.
The familiarity of the statement had a comparatively smaller, but positive effect on
students’ conviction (β = .54, p.adj < .001).

Further, understanding the argument highly correlated with students’ conviction
with the largest effect overall. Participants who claimed to have completely under-
stood the argument were more likely to be convinced by the argument and partici-
pants who claimed to have not understood the argument at all were less likely to be
convinced by the argument, both compared to students who claimed to have partially
understood the argument (β = 2.73, p.adj < .001 and β = −2.84, p.adj < .001,
respectively), as would be expected.

Among the control variables, only the CRT score seemed to be predictive
for students’ proof evaluation. Unexpectedly, the CRT score correlated nega-
tively with students’ conviction, even though the effect was comparatively small
(β = −.60, p = .003). It was suspected that this effect was caused by including
observations regarding empirical arguments: Participants with a higher CRT score
were less likely to be convinced by empirical arguments–but not regarding generic
or ordinary proofs. To test this hypothesis, a second regression model was calcu-
lated, in which these observations were excluded (see Model 2 in Tab. 6.3). The
effects reported above mainly remained3, but the CRT score had no negative effect
anymore. In fact, all controls showed only small and insignificant effects (unad-
justed p-values between .475 and .850 ) and were therefore excluded in Model 3,
in which all other effects remain significant, with .002 being the largest (adjusted)
p-value.

3 Note that the effect of ordinary proofs is now in relation to generic proofs, and therefore
the effect is smaller as when compared to empirical proofs–but still significant after Holm’s
correction.
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Table 6.3 CLMM comparison regarding students’ conviction

Dependent variable:

Proof evaluation (conviction)
Model 1 Model 2 Model 3

Threshold coefficients

not at all | partially 3.413*** 1.651*** 1.632***

(0.333) (0.300) (0.277)

partially | completely 6.300*** 4.303*** 4.283***

(0.376) (0.345) (0.324)

Variables of interest

generic proofs 1.696***
(0.211)

ordinary proofs 2.203*** 0.489** 0.493**
(0.224) (0.156) (0.156)

familiar 0.537*** 0.704*** 0.709***

(0.129) (0.167) (0.167)

unfamiliar (false) −1.310*** −1.232*** −1.231***

(0.165) (0.203) (0.202)

understood completely 2.727*** 2.801*** 2.802***

(0.169) (0.194) (0.192)

understood not at all −2.844*** −2.443*** −2.451***

(0.273) (0.273) (0.272)

Controls

CRT score −0.589** 0.128

(0.201) (0.179)

LK −0.329+ −0.103

(0.199) (0.178)

transition course 0.301+ 0.117

(0.176) (0.158)

final grade maths 0.272 0.030

(0.187) (0.156)

SD (Intercept id) 1.101 0.326 0.333

Observations 1570 1010 1010

AIC 2429.2 1398.3 1391.3

BIC 2498.9 1457.3 1430.6

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Holm’s adjusted signif. marked bold
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Aspects That Influence Conviction
Participants who were not completely convinced by the arguments were asked to
describewhy the argument did not convince them. 353out of 499observations (about
71%), in which participants claimed to be not completely convinced by empirical
arguments for statements 1 and 2 and generic or ordinary proofs for statements 1,
2, 3, and 5 (see section 5.4.3 for reasons why the analysis was restricted to these
observations), contained explanations why (i.e., about 71% responded to the open-
ended question). These were coded according to the coding scheme shown in Table
5.2 in section 5.4.3. In 9 of the responses, participants claimed to “don’t know”.
These responses were coded as NA and not further considered in the analysis.

The vast majority of students who received generic or ordinary proofs referred
to not having understood the argument, when they were asked why they were not
(completely) convinced by the argument (see Fig. 6.11). This finding is in line
with the regression analysis above (Tab. 6.3), where students’ self-reported proof
comprehension was highly predictive for their (lack of) conviction. The percentage
was particularly high–about 81%–for students who were provided with ordinary
proofs. In comparison, about 64% were not (completely) convinced by generic
proofs because they did not understand them. More students referred to a lack of
generality regarding generic proofs (about 12%) than ordinary proofs (about 4%).
Students who received empirical arguments weremostly (about 78%) not convinced
because of a lack of generality of the argument. Another 11% referred to the number
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Figure 6.11 Reasonswhyparticipants did not find arguments convincingby typeof argument
(based on 344 observations)
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or selection of examples, for instance, that too few examples were considered or
that (seemingly) relevant cases were ignored. Some participants referred to the
representation of the argument regarding empirical arguments and generic proofs
(3 and 6% of the observations, respectively), but not regarding ordinary proofs.
The familiarity with the argument was only mentioned on three occasions, once
regarding a generic proof and twice regarding an ordinary proof.

6.3 Comprehension of Arguments

Overall, participants had higher levels of self-reported proof comprehension re-
garding the generic proofs compared to ordinary proofs. In particular, more stu-
dents claimed to have completely understood the generic proofs than the ordinary
proofs (see Fig. 6.12). However, the percentage of participants who claimed not
having understood the provided arguments at all was comparatively small in both
experimental groups (about 10%).
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Figure 6.12 Comprehension of argument: generic vs ordinary proof

Unexpectedly, participants claimed to have comprehended the generic and or-
dinary proofs regarding the unfamiliar statements from elementary number theory
more often than the proofs regarding the familiar geometry statements (see Fig.
6.13).

Figure 6.14 illustrates the relation between students’ proof comprehension and
the type of argument, familiaritywith the statement, and their attendance in anhonors
(LK) or regular course (GK) in mathematics during high school. Students who
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Figure 6.14 Comprehension of argument by familiarity with the statement: generic vs ordi-
nary proof and LK (honors course) vs GK (regular course)

attended an honors course generally claimed to have comprehended the provided
arguments more often than students who attended a regular course.

Mixed effects ordinal logistic regression was used to estimate the effect of the
type of argument and familiarity with the statement on students’ (self-reported)
proof comprehension (see Tab. 6.4). Model 2 was selected as the final model (see
explanation further below). Participants who received ordinary proofs were less
likely to claim having understood the arguments than participants who received



130 6 Results

generic proofs (β = −.59, p < .001). The familiarity with the statement also had
a significant effect on students’ self-reported proof comprehension. Participants
were less likely to claim having (completely) understood the arguments regarding
the familiar (geometry) statements (β = −.55, p < .001) than the true unfamiliar
statements.

Table 6.4 CLMM comparison regarding students’ self-reported proof comprehension

Dependent variable:

Proof comprehension
Model 1 Model 2

Threshold coefficients

not at all | partially −2.865*** −2.817***

(0.228) (0.206)

partially | completely −1.102*** −1.054***

(0.191) (0.166)

Variables of interest

ordinary proofs −0.593*** −0.594***

(0.168) (0.168)

familiar −0.545*** −0.546***

(0.154) (0.154)

Controls

CRT score 0.638** 0.648**

(0.200) (0.199)

LK 0.593** 0.581**

(0.198) (0.197)

final maths grade −0.324+ −0.312+

(0.170) (0.168)

transition course −0.088

(0.174)

SD (Intercept id) 0.478 0.481

Observations 808 808

AIC 1326.5 1324.8

BIC 1368.8 1362.3

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001



6.3 Comprehension of Arguments 131

Further, except for attending a transition course all other considered control vari-
ables (CRT score, honors vs regular mathematics course, final mathematics grade
in high school) correlated positively4 with students’ self-reported comprehension
of the arguments (β = .65, p = .001, β = .58, p = .003, and β = −.31, p = .063,
respectively). Regarding these variables, the CRT score and the participation in an
honors class had the largest effects. The mathematics grade had the smallest effect
and did not reach significance.

Aspects of Students’ Proof Comprehension
284 observations were made in which participants claimed not having completely
understood the (correct) generic and ordinary proofs. 149 of these observations
contained responses regarding the open-ended question on what participants did not
understand. Because responses to the open-ended question on students’ conviction
also often contained information regarding aspects students (seemingly) did not
understand, these responses were also considered (see coding protocol in Appendix
B in the Electronic Supplementary Material). In total 208 responses (about 73%
of observations in which students claimed not having completely understood the
arguments) were coded according to the coding scheme shown in Table 5.3 in
section 5.4.4.

The aspect students most often referred to when asked what they did not under-
stand was local proof comprehension (32% for generic proofs and 54% for ordinary
proof, see Fig. 6.15). These students claimed to have not understood particular state-
ments, equations, or illustrations used in the proof. In particular, many participants
seemed to not fully understanding the meaning of variables. Several participants
referred to not understanding why two different variables are needed for the two
odd numbers, if “2n+ 1 stands for every odd number”. Further, about one fourth of
the participants who received generic proofs had difficulties understanding the state-
ment itself, compared to about 14% of participants who received ordinary proofs.
These students lacked knowledge of the meaning of basic terms, for instance, divis-
ible, product, and odd and even numbers. Not understanding the proof’s framework
was slightly more often mentioned regarding generic proofs (about 8%) than ordi-
nary proofs (about 5%). Further, reference was made to the generality of the proof
in about 14% of the observations for generic proofs, while none of the participants
who received ordinary proofs claimed to not have understood why the argument
is general. The percentage of participants not being able to specify what they did

4 Note again that inGermany, the best grade is 1 and theworst is 6, which explains the opposite
sign of the estimate.
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Figure 6.15 Aspects of participants’ (self-reported) proof comprehension: generic vs ordi-
nary proof (based on 208 observations)

not understand was higher for ordinary proofs (about 21%) than for generic proofs
(about 15%).

Aspects of proof comprehension mentioned by participants also differed regard-
ing the familiarity with the statement (see Fig. 6.16). Students more often made
reference to not having understood the arguments regarding unfamiliar statements
than regarding familiar ones (25 and 10%, respectively). Further, the proof frame-
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ment (based on 208 observations)



6.4 Justification: Students’ Proof Schemes 133

work and the generality of the proof wasmore often (self-reportedly) not understood
by the participants regarding the familiar (geometry) statements (11 and 10%, re-
spectively) than the unfamiliar (arithmetic) statements (2 and 3%, respectively). The
percentage of participants not being able to specify what they did not understand
was almost twice as high for familiar statements (about 24%) than for unfamiliar
ones (about 13%).

6.4 Justification: Students’Proof Schemes

Most participants responded when asked to justify why they think the statements
are true/false (about 80% of all 580 potential observations–i.e., potential responses
of the 116 participants in the control group A for each of the 5 statements). Overall,
467 observations were coded according to the proof schemes shown in Table 5.4.
5 of these observations were excluded from the analysis reported in this section
because they included references to the geometry statements not being true on the
sphere (which is of course correct, but made these responses difficult to interpret
regarding the analysis of students’ proof schemes). Table 6.5 provides an overview
of the number of observations in each category.

As was expected, most students used empirical proof schemes (109 in total).
Fewer students had a deductive proof schemes (39 in total). Transformative proof
schemes were only occasionally observed (5). Many participants also showed ex-
ternal proofs schemes, such as referring to an authority (49) or claiming that the
statement is a general rule (65). Noteworthy, 59 observations (about 13%) were
coded as unclear. Most of these responses were coded as unclear because partici-
pants either seemed to have not understood the statement and/or falsely thought the
statement was incorrect or were not able to give any argument, for instance, they
just stated “I suspect it”.

Table 6.5 Students’ proof schemes (462 observations)

unclear authority rule empirical empirical
(generality)

pseudo relevant

59 49 65 94 15 78 12

transf. (incomplete) transf. (complete) ded. (incomplete) ded. (complete) counterex.

5 0 30 9 46
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Students’ proof schemes differed highly by the type of statement (see Fig. 6.17).
Regarding familiar statements, participants most often referred to the statement be-
ing a general rule or a known theorem (about 37%), in particular regarding the
pythagorean theorem. Further, one quarter of participants used pseudo arguments to
justify the familiar statements. For instance, one student wrote that “if the sum is not
180 degrees it is not a triangle” (see also Tab. 5.4 in section 5.4.5). Another quarter
of participants gave authoritarian arguments. These students often stated to have
learned the statement in school or in a lecture. In contrast, the majority of justifica-
tions for the unfamiliar statements were coded as empirical proof schemes (about
45% in total). Only few students referred to the statement being a general rule (1%)
or to any type of authority (4%). Complete or incomplete deductive arguments were
given in 3 and 12% of the observations, respectively. Another 4% contained relevant
aspects, but no chain of arguments, and even fewer participants attempted to give
a transformative argument (2%). 16% of the observations regarding the unfamil-
iar statements contained pseudo arguments which often consisted of re-stating the
claim. About half of the participants correctly provided one or more counterexam-
ples to refute the false statement. Only few participants gave complete or incomplete
deductive arguments to disprove the false statement (2% each). Further, 18% gave
empirical arguments to (falsely) justify the truth of the statement.
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Figure 6.18 illustrates the relation between students’ proof schemes, the type
of statement, and students’ (correct) estimation of truth of the statement. It should
be noted that the number of observations for each of the proof schemes differed
substantially (see Fig. 6.17) and the frequencies reported are based on these ob-
servations. Except for one observation regarding the false statement, participants
with a (complete or incomplete) deductive proof scheme correctly estimated the
truth of the statements mostly with absolute conviction. The participant who gave
a complete deductive proof to refute the false statement stated that “the statement
is correct, provided that one accepts fractions as a solution.” The student then gives
a correct proof why the statement is generally false, if fractions are not accepted as
a solution. But regarding the closed item on estimating the truth value, the student
chose the answer “Yes, I am absolutely sure the claim is correct.” Further, most
participants referring to a rule or authority correctly estimated the truth of the state-
ments with absolute conviction. Regarding the true statements, the vast majority of
participants giving empirical arguments was only relatively convinced of the truth
of the statement. Similarly, most students who gave examples to justify the truth
of the false statement was relatively (and not absolutely) convinced of the truth
(which is of course not the correct answer in this case). About 25% of participants
who provided correct counterexamples for the false statements were not absolutely
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convinced of the falsity of the statement, but only relatively–even though they had
in fact disproven the statement.

6.5 Understanding the Generality of Statements

To be able to better compare the results on students’ understanding of generality
with those of previous research, I first report results regarding those students who
were absolutely convinced of the truth of a statement, but not absolutely sure that
there cannot be counterexamples. Depending on the type of statement, about 4 to
35% of the observations in which participants correctly estimated the truth of the
statement consisted of inconsistent estimations of the existence of counterexamples
(see Tab. 6.6). Participants more often showed a correct understanding of generality
regarding the false statement than the true statements. Moreover, the percentage
of observations regarding a correct understanding of generality of statements was
higher for the familiar statements than for the (true) unfamiliar statements. Based
on Chi squared test, these differences were highly significant with medium effect
size (χ2(2) = 73.4, p < .001, Cramer’s V = .25).

The percentage of observations in which participants correctly estimated the
truth of the statement (with absolute conviction) but inconsistently estimated the
existence of counterexamples also differed by the type of argument (see Tab. 6.7).
However, these differences were comparatively small. Moreover, in contrast to the
type of statement, the differences regarding the type of argumentwere not significant
(χ2(3) = 3.5, p = .32, Cramer’s V = .05).

In the remainder of this section, results regarding students’ understanding of the
generality of statements as defined in Table 5.1 are reported. Overall, in about 64%
of all observations, participants showed a correct understanding of generality (see
Fig. 6.19). In about 6% of the observations, participants claimed to not know the
answer to the two respective questions. These observations were therefore treated
as missing values in the regression analysis (see section 5.3.5).

Table 6.6 Number/Percentages of observations in which the truth of the statement was cor-
rectly estimated (with absolute conviction) and the existence of counterexamples as well (yes)
or not (no) by type of statement

familiar unfamiliar (true) unfamiliar (false) Sum

no 122 (22.7%) 170 (34.9%) 8 (4.1%) 300 (24.6%)

yes 415 (77.3%) 317 (65.1%) 188 (95.9%) 920 (75.4%)

Sum 537 487 196 1220
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Table 6.7 Number/Percentages of observations in which the truth of the statement was cor-
rectly estimated (with absolute conviction) and the existence of counterexamples as well (yes)
or not (no) by type of argument

no arg. emp. arg. generic proofs ordinary proofs Sum

no 66 (21.8%) 97 (27.5%) 81 (25.6%) 56 (22.7%) 300 (24.6%)

yes 237 (78.2%) 256 (72.5%) 236 (74.4%) 191 (77.3%) 920 (75.4%)

Sum 303 353 317 247 1220
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Figure 6.19 Participants’ understanding of the generality of statements

The understanding of generality differed (significantly) by study program. As
was expected, the higher the level of mathematics in the study program, the more
participants seemed to have a correct understanding of generality (see Fig. 6.20). As
most of the participants were in their first semester, influence of the study program
itself on students’ proof skills (including their understanding the generality of state-
ments) is highly unlikely. Therefore, the study program was not used as a predictor
in the regression models (see further below). But other control variables that were
considered may (at least partially) explain differences regarding the study program.
For instance, as was shown in Fig. 6.2, participants in study programs with higher
levels of mathematics had higher CRT scores. Therefore not surprisingly, students
with a higher CRT score also showed more often a correct understanding of gen-
erality (see Fig. 6.21). Another variable that might explain differences regarding
the study program is the attendance in a mathematics honors course (LK). As was
reported in section 5.2.2, students in study programswith higher levels ofmathemat-
ics also participated in an honors course more often. Expectedly, the percentage of
participants with a correct understanding of generality was higher for students who
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Figure 6.20 Participants’ understanding of generality by study program
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Figure 6.21 Participants’ understanding of generality by CRT score

participated in an honors course than for students who had a regular mathematics
course in high school (see Fig. 6.22).

Figures 6.23 and 6.24 illustrate the relation between students’ understanding of
generality and the type of argument and the type of statement, respectively. Similar
to the results reported above regarding themore restricted assessment of students un-
derstanding of generality (see Tab. 6.6), differences regarding the type of statement
can be observed. The percentage of students who showed a correct understanding
of generality was the highest regarding the false (unfamiliar) statement. But differ-
ences regarding true familiar and unfamiliar statements are now less obvious. One
reason for this is the comparatively high percentage of missing values regarding
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Figure 6.23 Understanding of generality by type of argument

the familiar statements. Also in line with the results regarding the more restricted
assessment of students understanding of generality (see Tab. 6.7), the differences
regarding the type of argument are comparatively small. However, the percentage
of observations in which participants showed a correct understanding of generality
was the lowest regarding ordinary proofs. Noteworthy is again the comparatively
high percentage of missing values for participants who received no arguments.

At the end of the questionnaire, participants were asked about the meaning of
generality (see Fig. 5.12 for the respective item and Fig. 6.25 for the result). The
majority chose the correct answer (option 3). However, about a quarter responded
incorrectly. 4 participants chose option 4. These participants then gave either in-
correct meanings of generality (e.g., “it [the statement] is valid until there is a case
where this statement is not true.”) or claimed to not know.
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Figure 6.24 Understanding of generality by type of statement
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Figure 6.25 Students’ knowledge of the meaning of mathematical generality 1: “The state-
ment is correct for many cases (e.g., for many odd numbers)”, 2: “The statement is correct in
general, i.e., with few exceptions”, 3: “The statement is correct without any exceptions”, 4:
“Something else, namely:...”

Figure 6.26 shows the relation between students’ actual understanding of
generality–as defined in this study via consistent responses regarding the estimation
of truth and the existence of counterexamples–and their knowledge of the mean-
ing of mathematical generality. The percentage of participants with an incorrect
understanding of mathematical generality was higher for students who also had an
incorrect knowledge of the meaning of mathematical generality (about 41 vs 27%).
However, about 27% of participants with a correct knowledge of generality still
responded inconsistently regarding their conviction of the truth of statements and
the existence of counterexamples.
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Figure 6.26 Understanding generality by knowledge of the meaning of mathematical gen-
erality

To estimate the effects of the variables of interest on students’ understanding
of generality, generalized linear mixed models were used (see also section 5.4.1).
As can be seen in Table 6.8, the three models that were fitted do not differ much
regarding AIC. Models 2 and 3 seem to be better than Model 1 regarding both AIC
andBIC.Given the small difference inAIC and a betterBICvalue, the smallerModel
3 seemed to be the best choice overall. The GLMM results confirm the observed
effects reported above. Participants who received ordinary proofs were less likely
to have a correct understanding of generality than participants that received no
arguments, even though this effect did not quite reach significance after Holm’s
adjustment (β = −.41, p.adj = .075). A similar, but smaller effect can be observed
regarding participants who received generic proofs and empirical arguments (β =
−.32, p.adj = .148 and β = −.27, p.adj = .148), also not reaching significance.

Being familiar with the statement as well as the truth value seemed to have influ-
enced students’ understanding of generality. Participants were more likely to have
a correct understanding of the generality of familiar statements (β = .29, p.adj =
.011) and the false (unfamiliar) statement (β = .46, p.adj = .003) compared to
true unfamiliar statements. Participants who correctly answered the closed item on
the meaning of mathematical generality, were also more likely to show a correct
understanding of generality as defined in this study (β = .68, p < .001). This effect
was overall the largest.

Further, among the considered control variables, only the CRT score and the
participation in an honors course were predictive for students’ understanding of
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Table 6.8 GLMM comparison regarding students’ understanding of generality

Dependent variable:

Understanding generality

Model 1 Model 2 Model 3

(Intercept) 0.376* 0.358* 0.257

(0.181) (0.179) (0.170)

Variables of interest

empirical arguments −0.257 −0.246 −0.267

(0.176) (0.176) (0.176)

generic proofs −0.297+ −0.298+ −0.319+

(0.178) (0.178) (0.178)

ordinary proofs −0.387* −0.382* −0.408*

(0.182) (0.182) (0.182)

familiar 0.291* 0.291* 0.293*
(0.115) (0.115) (0.115)

false (unfamiliar) 0.458** 0.458** 0.457**
(0.142) (0.142) (0.142)

meaning generality 0.678*** 0.682*** 0.675***

(0.146) (0.146) (0.147)

Controls

CRT score 0.614*** 0.642*** 0.655***

(0.148) (0.143) (0.143)

LK 0.387** 0.394** 0.381**

(0.147) (0.147) (0.147)

transition course −0.236+ −0.223+

(0.129) (0.128)

final grade maths −0.098

(0.134)

SD (Intercept id) 0.707 0.708 0.715

Observations 2014 2014 2014

AIC 2398.1 2396.6 2397.7

BIC 2465.4 2458.3 2453.7

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Holm’s adjusted signif. marked bold
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generality. Participants with a higher CRT score were more likely to have a correct
understanding of generality than participantswith a lower score (β = .66, p < .001).
Similarly, participants who attended an honors course were also more likely to have
a correct understanding than participants who had a regular mathematics course in
high school (β = .38, p = .010). The participation in the transition course had an
unexpected negative effect (andwas therefore excluded in the finalmodel), however,
not quite reaching significance (in Model 2, β = −.22, p = .081). The effect of the
final mathematics grade was comparatively small and not significant (in Model 1,
β = −.10, p = .463).

Students’ Understanding of Generality in Relation to Their Conviction and
Comprehension
Figure 6.27 shows the relation between students’ level of conviction regarding dif-
ferent arguments and their understanding of generality. Regarding empirical argu-
ments, there is a negative relation between students’ understanding of generality
and their level of conviction. Participants, who were convinced by empirical argu-
ments (partially or completely), had an incorrect understanding of generality more
often (about 37 and 43%, respectively) than participants who claimed to not find
the empirical arguments convincing at all (about 20%).

empirical arguments generic proofs ordinary proofs

not at all partially completely not at all partially completely not at all partially completely
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Figure 6.27 Understanding generality by type of argument and level of conviction
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A simple mixed effects logistic regression5 was calculated to analyze this rela-
tion, inwhich the individualswere considered as a randomeffect (seeModel 1 inTab.
6.9). Participants, who claimed to find the empirical arguments not at all convincing
were more likely to have a correct understanding of generality than participants who
claimed to be partially convinced by empirical arguments (β = .90, p.adj = .027).
In contrast, participants who were completely convinced by empirical arguments
were less likely to have a correct understanding of generality than participants who
were partially convinced, but this effect was comparatively smaller and not signifi-
cant (β = −.26, p.adj = .353).

It seems that this effect is reversed regarding generic and ordinary proof. How-
ever, more than a quarter of observations in which students found the arguments
not convincing at all consisted of missing values for their understanding of gen-
erality (these participants responded “I have no idea” regarding the two relevant
questions, see section 5.3.5). After removing these observations, the percentage of
observations in which participants claimed to be only partially convinced by the
generic or ordinary proofs with a correct understanding of generality was lower
than for both, participants claiming to be completely convinced by the argument
and participants who were not convinced at all (about 53% vs about 70 and 65%, re-
spectively). A mixed effects logistic regression6 was calculated with the individual
participants as a random effect and the type of argument and the level of conviction
as fixed effects (see Model 2 in Tab. 6.9). Participants, who claimed to find generic
or ordinary proofs completely convincing were more likely to have a correct under-
standing of generality than participants who claimed to be only partially convinced
(β = .74, p.adj < .001). Noteworthy, participants, who were not at all convinced by
the proofs were also more likely to have a correct understanding of generality than
participants who claimed to be only partially convinced, but this effect did not reach
significance (β = .52, p.adj = .202). The effect of the type of argument (generic vs
ordinary proof) was very small and highly insignificant (β = .05, p = .788).

Similar to the findings regarding students’ conviction, the percentage of missing
values for understanding generality is very high regarding participants who claimed
to have not understood the generic and ordinary proofs at all (see Fig. 6.28). There
seems to be a positive relation between students’ self-reported proof comprehension
and their understanding of generality, as the percentage of students with a correct
understanding of generality was the highest for students claiming to have under-

5 Regarding conviction of empirical arguments, p-values were adjusted based on two com-
parisons, not at all and completely convinced against partially convinced
6 Regarding conviction of generic and ordinary proofs, p-values were adjusted based on four
comparisons, not at all and completely convinced against partially convinced, both for each
of the two models (Model 2 and 4).
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Table 6.9 GLMM comparison regarding students’ understanding of generality in relation to
conviction and comprehension (Model 1 regarding empirical arguments; Models 2–4 regard-
ing generic and ordinary proofs)

Dependent variable:

Understanding generality

Model 1 Model 2 Model 3 Model 4

(Intercept) 0.652** 0.145 0.161 −0.632*

(0.202) (0.176) (0.194) (0.285)

completely convincing −0.258 0.744*** 0.352

(0.278) (0.180) (0.226)

not at all convincing 0.899* 0.519 1.069**
(0.365) (0.316) (0.375)

understood completely 0.697*** 0.423+

(0.193) (0.245)

understood not at all −0.288 −0.793+

(0.351) (0.410)

ordinary proofs 0.050 0.105 0.184

(0.184) (0.188) (0.183)

familiar 0.173

(0.166)

meaning generality 0.634**

(0.221)

CRT score 0.554**

(0.204)

LK 0.232

(0.207)

SD (Intercept id) 0.978 0.631 0.658 0.505

Observations 431 760 760 760

AIC 538.9 973.4 971.9 949.5

BIC 555.2 996.5 995.1 1000.5

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Holm’s adjusted signif. marked bold
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Figure 6.28 Understanding generality by type argument and level of comprehension

stood the respective arguments completely, regarding both generic and ordinary
proofs (about 68 and 71%, respectively). However, due to the percentage ofmissing
values, the effect is again less clear regarding students who claimed to have not
understood the argument at all. After removing observations with missing values,
for generic arguments, the percentage of students with a correct understanding of
generality was slightly higher for students claiming to have not understood the re-
spective arguments at all than for those claiming to have partially understood them
(about 55 and 52%, respectively). For ordinary arguments, the positive relation
between students’ self-reported proof comprehension and their understanding of
generality holds in general: The higher the level of proof comprehension, the higher
the percentage of observations with a correct understanding of generality (about 43,
57, and 71%). A mixed effects logistic regression7 was again calculated with the
individual participants as a random effect and the type of argument and the level
of self-reported comprehension as fixed effects (see Model 3 in Tab. 6.9). Partici-
pants, who claimed to have understood the generic or ordinary proofs completely
were more likely to have a correct understanding of generality than participants who
claimed have only partially understood the arguments (β = .70, p.adj = .001). In
contrast, participants who claimed to have understood the proofs not at all were less

7 Regarding comprehension of generic and ordinary proofs, p-values were adjusted based on
four comparisons, not at all and completely understood against partially understood, both for
each of the two models (Model 3 and 4).
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likely to have a correct understanding of generality, but this effect was compara-
tively smaller and not significant (β = −.29, p.adj = .411). The type of argument
was again not predictive (β = .10, p = .578).

A further mixed effects logistic regression was fitted, in which the predictive
variables from the main analysis of students’ understanding of generality (Model 3
in Tab. 6.8) were included. After controlling for these variables, the observed effects
regarding the influence of students’ conviction and proof comprehension are partly
different. The direction of the effect of students’ self-reported proof comprehension
remains: Students who claimed to have understood the proofs completely weremore
likely to have a correct understanding of generality and students who self-reportedly
understood the proofs not at all were less likely to have a correct understanding of
generality, both compared to students who claimed to have only partially understood
the proofs (β = .42, p.adj = .169 and β = −.79, p.adj = .159, respectively),
even though these effects did not reach significance. The effect regarding students
being completely convinced compared to students being only partially convinced
by the proofs remains positive, however, not reaching significance anymore (β =
.35, p.adj = .202). The effect that students whowere not convinced by the argument
at all were more likely to have a correct understanding of generality than students
who claimed to be partially convinced is larger after controlling for other variables
(β = 1.07, p.adj = .013). The positive effects of the CRT score and students correct
knowledge of the meaning of mathematical generality on students understanding of
generality mainly remain. However, the participation in an honors course (LK) and
the familiarity with the statement were not predictive anymore after students’ proof
comprehension and conviction were included in the model (β = .23, p = .263 and
β = .17, p = .299, respectively).

Students’ Understanding of Generality in Relation to Their Proof Schemes
Figure 6.29 gives an overview of students’ proof schemes in relation to their un-
derstanding of generality. The percentage of students with a correct understanding
of generality was the highest for students with (complete and incomplete) deduc-
tive proof schemes (about 90%) and the lowest for students with purely empirical
(no awareness of generality) or incomplete transformative proof schemes) about
60%). The percentage of participants having a correct understanding of generality
was similar for students referring to relevant aspects, authorities, a rule, or giving
pseudo arguments, namely about 75 to 80%.

To analyze the statistical significance of these differences, Chi square test was
used. To increase the power of the test, the categories were summarized as explained
in section 5.4.6. Overall, a relation between students’ proof schemes and their un-
derstanding of generality seems to exist (see Tab. 6.10). The percentage of students
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Figure 6.29 Understanding of generality by students’ proof schemes (based on 462 obser-
vations)

Table 6.10 Number/Percentages of observations in which students had a correct (yes) or
incorrect (no) understanding of generality by proof schemes

unclear external empirical counterexamples analytical Sum

no 17 (31.5%) 44 (22.9%) 41 (37.6%) 11 (23.9%) 9 (16.1%) 122 (26.7%)

yes 37 (68.5%) 148 (77.1%) 68 (62.4%) 35 (76.1%) 47 (83.9%) 335 (73.3%)

Sum 54 192 109 46 56 457

with a correct understanding of generality was the highest for students with an an-
alytical proof scheme (about 84%), followed by students with an external proof
scheme or one that consists of giving correct counterexamples (about 77 and 76%,
respectively). The lowest percentage was observed for students having empirical
proof schemes (about 62%). The percentage of students with a correct understand-
ing of generality whose justifications were coded as unclear was lower than the
average in group A (about 69% vs 73%). The differences reported are statistically
significant with medium effect size (χ2(4) = 12.0, p = .017, Cramer’s V = .16).
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6.6 Analysis of Missing Values

The results presented above have shown a comparatively high percentage of stu-
dents who responded “I have no idea” to both questions used to determine their
understanding of generality. Even though these observations are not true missing
values (because the participants in fact chose an answer regarding the two relevant
questions), a decision regarding the understanding of generality of statements could
not bemade for these observations. Therefore, theywere treated asmissing values in
the regression analyses. This section aims at identifying any patterns among these
observations by calculating mixed effects logistic regression models. A dummy
variable dropout generality was defined as follows:

• yes (1), for missing values in the variable understanding generality, and
• no (0), if a value for understanding generality was observed (either yes or no).

The individuals were again used as a random effect. All variables that were con-
sidered in the regression models above were used as fixed effects, to analyze the
potential relation between these variables and observations with missing values (in
the sense described above) regarding the understanding of generality. Table 6.11
shows the regression results. To estimate the effect of the type of argument partici-
pants received, Model 1 excluded the variables regarding students’ conviction and
comprehension, because this data was not collected for participants in group A, who
received no arguments. Participants who received any type of argument were less
likely to “drop out” (i.e., answering “I have no idea” regarding both the estimation of
truth and the existence of counterexamples) than participants who received no argu-
ments at all. This effect was particularly large and highly significant regarding em-
pirical arguments (β = −1.23, p < .001) and generic proofs (β = −.97, p < .001)
, but also present for ordinary proofs (β = −.57, p = .031). Compared to the
true unfamiliar statements, participants were significantly more likely to answer “I
have no idea” regarding the familiar statements (β = 1.80, p < .001) and the false
statement (β = .96, p = .003). Participants who attended a mathematics honors
course in high school were less likely to drop out than participants who attended
a regular mathematics course (β = −1.22, p < .001). Noteworthy, the CRT score
seemed only have a minor effect on participants’ likelihood of choosing “I have no
idea” regarding both questions, not reaching significance (β = −.47, p = .063).
Furthermore, the higher the math grade (which in Germany means a worse grade),
the more likely participants dropped out (β = .44, p = .036). However, similar to
the CRT score, this effect was comparatively small.
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Table 6.11 GLMM results of the dropout variable regarding students’ understanding of gen-
erality

Dependent variable:

Dropout generality

Model 1 Model 2

(Intercept) −3.100*** −1.506*

(0.318) (0.611)

empirical arguments −1.231***

(0.295)

generic proofs −0.965***

(0.278)

ordinary proofs −0.572* 0.192

(0.265) (0.396)

familiar 1.800*** 2.066**

(0.265) (0.715)

false (unfamiliar) 0.957**

(0.323)

CRT score −0.466+ −0.368

(0.251) (0.501)

LK −1.218*** −0.918

(0.295) (0.580)

transition course −0.179

(0.204)

final grade maths 0.442* 0.359

(0.211) (0.391)

partially understood −1.565**

(0.579)

completely understood −2.524**

(0.838)

partially convinced −1.061+

(0.617)

completely convinced −3.063**

(1.052)

SD (Intercept id) 0.606 0.065

Observations 2150 808

AIC 893.9 225.8

BIC 956.3 282.2

Note: +p<.1, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001
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InModel 2, only observations from groups C andD (generic and ordinary proofs)
were considered and the false statement was again excluded. Because the participa-
tion in a transition course showed no significant effect, it was excluded in Model 2,
also, because of the otherwise large number of variables. The participation in an hon-
ors course was not predictive for missing values in the variable understanding gen-
erality, once comprehension and conviction were included (β = −.92, p = .114).
The level of self-reported comprehension and conviction were both predictive for
the missing values regarding understanding of generality. In particular, students
who claimed to have partially or completely understood the proofs were less likely
to drop out than students who claimed to have not understood the proofs at all
(β = −1.57, p = .007 and β = −2.52, p = .003). Similarly, students who found
the proofs partially or completely convincing were less likely to drop out than stu-
dents who claimed to be not convinced by the proofs at all (β = −1.06, p = .085
and β = −3.01, p = .004).

Overall, these results indicate that the missing values–observations in which
students respondedwith “I have no idea”–substantially depended on other variables,
such as the (type of) statement, the type of argument (or more general, receiving any
argument at all), the self-reported comprehension of the proofs, and how convincing
students evaluated the proofs.

6.7 Summary of Main Results

This section provides an overview of the main results of the present study, in partic-
ular regarding the influence of the type of argument and statement on proof-related
activities, and students’ understanding of the generality of mathematical statements
and the relation to proof reading and construction.

6.7.1 Influence of the Type of Argument

The studywasmainly designed to experimentally analyze the influence of the type of
argument–receiving no arguments, empirical arguments, generic proofs, or ordinary
proofs–on students’ understanding of the generality of statements and other proof-
related activities (see section 5.2.3). In summary, the type of argument significantly
influenced:

• Students’ estimation of truth: Participants who received empirical arguments
were more likely to correctly estimate the truth value of the statements than
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participants who got no arguments. Reading generic proofs had a similar, but
smaller effect and did not reach significance after Holm’s correction was applied.

• Students’ proof evaluation regarding conviction: Participants who received
generic or ordinary proofs were more likely to claim being convinced by these
arguments than participants who received empirical arguments. The reasons why
participants claimed not to be convinced by the arguments also differed by the
type of argument. The reason most often referred to by participants who received
empirical arguments was a lack of generality of these arguments (78% of obser-
vations), while participants who received generic or ordinary proofs were mainly
not convinced by these arguments because they did not (completely) understand
them (64 and 81%, respectively).

• Students’ proof comprehension: Participants who received ordinary proofs were
less likely to have self-reportedly understood the arguments than those partici-
pants, who received generic proofs. Further, aspects that participants claimed to
have not understood differed between generic and ordinary proofs. For instance,
the generality of the proof was not mentioned at all by participants who received
ordinary proofs, but by those who received generic proofs (14%).

• The probability of missing values: Participants who received any type of argu-
ment were less likely to answer “I have no idea” regarding the estimation of
truth and the existence of counterexamples than participants who received no
arguments. This effect was particularly strong for participants who got empirical
arguments.

The type of argument did not have a large effect on students’ understanding of
the generality of statements, but participants who received ordinary (and with a
smaller effect generic) proofs were less likely to have a correct understanding than
students who got no arguments. However, these effects did not reach significance
after Holm’s correction.

6.7.2 Influence of the Type of Statement

To analyze the influence of the type of statement (truth value and familiarity), all par-
ticipants received five statements of different types: Two (true) familiar statements,
two (true) unfamiliar statements, and one false (unfamiliar) statement. Overall, the
truth value of the statement and the familiarity with the statement both significantly
influenced students’ performance in all considered activities. In summary, compared
to true, unfamiliar statements, participants were
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• less likely to correctly estimate the truth value of the false statement,
• less likely to be convinced by (incorrect) arguments regarding the false statement,
• more likely to show a correct understanding of generality regarding the false

statement,
• more likely to answer “I have no idea” regarding the estimation of truth and the

existence of counterexamples for the false statement.

Regarding the familiar (geometry) statements, participants were

• more likely to correctly estimate the truth value,
• more likely to be convinced by the arguments,
• less likely to claim to have understood the arguments,
• more likely to show a correct understanding of generality (with a comparatively

smaller effect than regarding the false statement),
• much more likely to answer “I have no idea” regarding the estimation of truth

and the existence of counterexamples,

all compared to the true, unfamiliar statements from elementary number theory.
Moreover, students’ proof schemes also differed by the type of statement: Partic-

ipants mainly gave counterexamples to refute the false statement (51%), empirical
arguments to justify the true unfamiliar statements (45%), and external arguments
(pseudo, rule based, authority) to justify the true familiar statements (25, 37, and
24%, respectively).

6.7.3 Students’Understanding of Generality and the Relation
to Proof

The focus of the present thesiswas to analyze students’ understanding of the general-
ity ofmathematical statements.Most predictive for students’ (correct) understanding
of generality was their knowledge of the meaning of mathematical generality (mea-
sured via the closed item shown in Fig. 5.12). Furthermore, the truth value and the
familiarity with the statement both influenced students’ understanding of generality
(see above). While reading different types of arguments significantly affected the
probability of participants answering “I have no idea” to the two relevant questions
(estimation of truth and existence of counterexamples), it did not seem to have a
large effect on students’ understanding of the generality of statements. The analysis
of the relation between students’ understanding of generality and their performance
in other proof related activities suggests:
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• There is a positive relation between students’ self-reported proof comprehen-
sion and their understanding of generality of statements: Students who claimed
to have completely understood the proofs were more likely to have a correct
understanding of generality and students who claimed to have not understood
the proofs at all were less likely to have a correct understanding of generality
both compared to students who claimed to have partially understood the proofs.

• There is a negative relation between students’ conviction of empirical arguments
and their understanding of generality: Students who claimed to be not at all
convinced by the empirical arguments were more likely to have a correct under-
standing of the generality of statements than those who claimed to be partially
(or completely) convinced by the arguments.

• There is no clear relation between students’ evaluation of generic and ordinary
proofs and their understanding of generality. Students’ who claimed to be com-
pletely convinced by these arguments might be more likely to have a correct
understanding of generality than students, who were only partially convinced.
However, after considering other (predictive) variables (such as knowing the
meaning of generality and the CRT score), this effect did not reach significance.
Even more, participants who claimed to be not at all convinced by the arguments
were more likely to have a correct understanding of generality.

• Students’ proof schemes are related to their understanding of the generality of
statements: Participants with empirical proof schemes most often had an incor-
rect understanding of generality, followed by participants with external proof
schemes. Among the participants with deductive proof schemes, the percentage
of participants with an incorrect understanding of the generality of statements
was the lowest.

6.7.4 Predictive Power of Control Variables

The CRT (Cognitive Reflection Test) score and the attendance of an honors mathe-
matics course in high school (LK)were overall themost predictive control variables.
In particular, participants with a higher CRT score were more likely

• to have a correct understanding of generality,
• to correctly estimate the truth value,
• to claim to have (completely or partially) understood the proofs.

Attendance of an honors course had similar effects, however, after proof compre-
hension (and conviction) was considered, it was not predictive for a correct under-
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standing of generality anymore (the CRT score still was). Unexpectedly, the final
mathematics gradewas only predictive for students’ self-reported proof comprehen-
sion (with a smaller effect when compared to the CRT score and LK participation)
and the estimation of truth (even though not reaching significance) but not for un-
derstanding the generality of statements.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Cre-
ative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, youwill need to obtain permission
directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


7Discussion

The main purpose of the present thesis is to investigate first-year university stu-
dents’ understanding of the generality of mathematical statements and the relation
to proof reading and construction (see Fig. 4.1 in Chapter 4). The respective re-
search questions were structured through my adapted version of the framework on
proof-related activities introduced by Mejía Ramos and Inglis (2009b), in which I
suggest to explicitly consider the reading of the statement that has to be proven or for
which a proof has to be read. The reading of a statement involves the comprehension
of the statement, among other aspects, its generality. I defined understanding the
generality of statements as consistent responses regarding the estimation of truth
and the existence of counterexamples, which was then used to operationalize this
understanding. To investigate the relation to proof reading and construction, stu-
dents’ performances in the relevant activities—estimation of truth, proof evaluation
regarding conviction, proof comprehension, and proof construction—were consid-
ered.Moreover, the experimental design ofmy study particularly aimed at analyzing
the influence of the type of argument as well as the type of statement (truth value
and familiarity) on students’ understanding of the generality of statements and their
proof skills.

In the following, the results presented in the previous chapter are interpreted and
discussed in the context of prior research. Thereby, I follow the structure of the four
sets of research questions derived in Chapter 4. Further, the adapted framework on
proof-related activities, methodological decisions, and potential limitations of this
study are discussed in Section 7.2. Lastly, main implications of the results for the
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learning and teaching of proof at the transition from school to university and future
research are presented in Sections 7.3 and 7.4, respectively.

7.1 Interpretation

In the following, the research questions are answered one by one and the results are
interpreted and discussed in relation to prior research.

7.1.1 Estimation of Truth and Proof Evaluation Regarding
Conviction

The first set of research questions focused on students’ performance in estimating
the truth of statements and proof evaluation regarding conviction:

RQ1: Conviction of the truth of universal statements and its relation to reading
different types of arguments

RQ1.1: How do the type of argument and the type of statement influence students’ esti-
mation of the truth of universal statements?

RQ1.2: How do the type of argument, the type of statement, and the level of comprehen-
sion influence how convincing students find different types of arguments? What
aspects of mathematical arguments do students identify as not convincing?

As researchers and prior studies have suggested (e.g., Barkai et al., 2002; Buch-
binder & Zaslavsky, 2007; Dubinsky & Yiparaki, 2000; Hanna, 1989; Ko, 2011),
the type of statement, in particular the statements’ truth value but also the familiarity
with the statement affected students’ estimation of truth. The falsity of the statement
had a negative effect and being familiar with a statement had a (smaller) positive
effect. These results were not surprising, but provide clear experimental evidence
on what has already been suggested in the literature. The comparatively small ef-
fect of familiarity can mainly be explained by students’ estimation of truth of the
pythagorean theorem. A comparatively large percentage of participants was unsure
about the truth value of this statement, even though they should be very familiar it.
The fact that the pythagorean theorem was expressed in natural language and not
as an equation is most likely the reason why some students seemed to not have rec-
ognized the statement and therefore had difficulties with estimating the truth value.
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This can be seen as a limitation (see also Section 7.2), but also provides informa-
tion regarding students’ content-specific knowledge and level of comprehension of
mathematical statements they have been taught in school.

Reading empirical arguments (and generic proofs) supports students to es-
timate the truth value of statements. The type of argument affected students’
estimation of truth. Participants who received empirical arguments (and generic
proofs, with a smaller effect and not reaching significance after Holm’s correction)
were more likely to correctly estimate the truth value of (true) statements than par-
ticipants who received no arguments. No prior studies on the influence of different
types of arguments on students’ estimation of truth had been conducted before,
which made it difficult to formulate a hypothesis. However, students as well as
professional mathematicians use empirical arguments to estimate the truth value of
statements (e.g., Alcock & Inglis, 2008; Buchbinder & Zaslavsky, 2007; Lockwood
et al., 2016), possibly because these experimental investigations provide better un-
derstanding of the statement and a better intuition regarding its truth value (see also
de Villiers, 2010). This is in line with findings reported by Bieda and Lepak (2014)
that empirical arguments provide students with more information and enhance their
comprehension of the statement in comparison to ordinary proofs. My findings now
provide strong evidence that empirical arguments (and to a lesser degree generic
proofs) may indeed help to better understandmathematical statements and therefore
lead to better performance in the estimation of truth. Furthermore, reading any of
the considered types of arguments seems to make participants more likely to choose
an answer different from “I have no idea”, in particular the reading of empirical
arguments. This strengthens the assumption that empirical arguments may provide
participants with a better understanding of the statement—or at least give them the
feeling to better understand it.

The second research question in this set focused on students’ evaluation regard-
ing conviction. Similar to the findings on students’ estimation of truth, the type of
statement also affected students’ conviction. Participants were less likely to find
the arguments convincing regarding the false (unfamiliar) statement than regarding
the true (unfamiliar) statements, which would be expected, because the respective
proofs were in fact incorrect. Further, participants were more likely to be convinced
by the arguments regarding the familiar statements than the unfamiliar (true) state-
ments, even though this effect was comparatively smaller than the effect of the
truth value. A positive effect of familiarity with the statement on students’ convic-
tion was also expected, because the role of familiarity for the acceptance of proof
(which most likely influences conviction) has been highlighted in the literature, as
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already mentioned (e..g., Hanna, 1989). But prior studies had not found respective
evidence (e.g., Kempen, 2021; Martin & Harel, 1989).

The type of argument also affected students’ conviction. In line with prior re-
search (e.g., Kempen, 2021; D. Miller & CadwalladerOlsker, 2020; Weber, 2010),
participants who received generic or ordinary proofs were more likely to find these
arguments convincing than students who received empirical arguments. However, in
a comparatively high percentage of observations, participants nevertheless claimed
to be completely (!) convinced by empirical arguments (about 25%). Those who
were not (completely) convinced by the empirical arguments were asked to explain
why they are not convinced by these arguments. Participants most often referred
to a lack of generality (78% of observations) of the arguments, which indicates
that the majority of these students is not only aware of the limitations of empir-
ical arguments, but understands—at least to some extent—why. In contrast, in a
study conducted by Ufer et al. (2009), only about one third of the participating
high school students could “adequately” explain why an empirical argument is not
valid. However, in the present study, the 78% reported above only refer to those
participants, who were not or only partially convinced by these arguments and who
responded to the open question. Further, the responses were not thoroughly coded
regarding adequacy of their responses, but with respect to mentioned aspects (here
generality). Thus, the comparability of the results may be limited, also because of
the differences regarding age and experience of participants (high school students
vs first-year university students).

As discussed in Section 3.2.3, prior research findings on students’ and teachers’
evaluation of generic proofs has been ambiguous. Some studies found that many
teachers are not convinced by generic proofs, for instance, because of a perceived
lack of generality and modes of representations that do not meet the criteria for
proof (e.g., Lesseig et al., 2019; Tabach, Levenson, et al., 2010). The majority of
participants in the present study seemed to be (at least partially) convinced by generic
proofs; participants claimed to not find these arguments convincing at all in less
than 25% of the observations. Moreover, a lack of generality was indeed mentioned
more often as a reason for not finding the arguments (completely) convincing by
participants who received generic proofs than by thosewho received ordinary proofs
(12%vs 4%). In contrast to the findings reported by Tabach, Barkai, et al. (2010), the
mode of representation, was only mentioned occasionally regarding generic proofs
(6%) (and not at all regarding ordinary proofs). Further, participants in the present
study were more convinced by the ordinary proofs than the generic proofs, which
experimentally confirms findings reported by Kempen (2018), for instance.
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The results of the present study furthermore clearly confirm the influence of
students’ (self-reported) proof comprehension on their (self-reported) conviction (as
has been reported by Weber, 2010, for instance): Participants with higher levels of
(self-reported) proof comprehensionwere alsomore likely to claim being convinced
by the arguments. Moreover, the results of the content analysis of aspects students
identified as not convincing also highlight these findings: The comprehension of the
statement or proof was the reason why most of the participants claimed to be not
convinced by generic or ordinary proofs (64 and 81%, respectively). While these
findings may not be surprising and confirm prior research findings (Ko & Knuth,
2013; Sommerhoff & Ufer, 2019), they nevertheless emphasize the strong relation
between proof comprehension and proof evaluation regarding conviction.

Self-reported conviction of arguments does not reflect actual conviction of the
truth of statements. While participants showed higher levels of self-reported con-
viction regarding generic and ordinary proofs compared to empirical arguments, the
participantswho received empirical arguments (andgeneric proofs)weremore likely
to correctly estimate the truth value of (true) universal statements than those partic-
ipants who received no arguments. Differences regarding ordinary proofs were not
significant. This suggests that participants assume that ordinary (and generic) proofs
should generally be convincing, in particular compared to empirical arguments, but
that empirical arguments (and potentially generic proofs) actually provide higher
levels of conviction regarding the truth of the statement. This finding highlights the
gap between self-report—which can potentially be influenced by social desirability,
for instance—and reality (Golke, Steininger, & Wittwer, 2022) and is particularly
relevant for the construction of future questionnaires. I come back to this finding
and its implications in Section 7.4.

7.1.2 Comprehension of Arguments

The second set of research questions aimed at investigating students’ (self-reported)
proof comprehension, in particular regarding differences between generic and or-
dinary proofs:
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RQ2: Proof comprehension

RQ2.1: How does students’ (self-reported) proof comprehension differ between students
who receive generic proofs and those who receive ordinary proofs? How does the
familiarity with the statement influence students’ proof comprehension?

RQ2.2: What aspects of mathematical arguments do students identify as not understand-
able? How do these aspects differ regarding generic and ordinary proofs?

Participants show higher levels of proof comprehension regarding generic
proofs than regardingordinaryproofs. Based onprior experimental studies (e.g.,
Lew et al., 2020), it was hypothesized that no significant differences between stu-
dents’ comprehension of generic and ordinary proofs exist. Therefore, the finding
that participants who received ordinary proofs were less likely to claim to have
understood these arguments than participants who received generic proofs was un-
expected. In contrast to other studies, for instance, by Lew et al., the present study
relied on students’ self-report on their proof comprehension. Thus, the participants
who received generic proofs might not actually have better understood these proofs,
but these types of arguments might just have appeared more comprehensible to
them. Previous research has indeed found that mathematics students often inaccu-
rately assess how well they have understood a proof (A. Selden & Selden, 2003).
However, it could also be the case that generic proofs do provide students with bet-
ter understanding, as other researchers have suggested (Dreyfus et al., 2012; Malek
& Movshovitz-Hadar, 2011; Mason & Pimm, 1984; Rowland, 2001). Given that
generic proofs supported students’ correct estimation of truth (see finding above),
they may indeed also help with the comprehension of proof. Further (experimental)
studies, which do not solely rely on students’ self-reports are needed to definitely
answer this question.

Unexpectedly, the familiarity with the statement had a negative effect on stu-
dents’ proof comprehension. This result is surprising, because the participants have
encountered these statements and potentially the proofs before during school and
should also be more familiar with the underlying theories of these statements. How-
ever, the statements did not only differ with respect to familiarity, but also regarding
their content domains. The familiar statements were from geometry and the unfa-
miliar statements from elementary number theory. Thus, most likely, participants
have perceived the proofs regarding the familiar statements from geometry to be
more difficult, not because of the familiarity.
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With respect to the second research question in this set, in line with prior research
(e.g., Conradie & Frith, 2000; Moore, 1994; Neuhaus-Eckhardt, 2022; Reiss &
Heinze, 2000) and therefore expected, participants mainly referred to local aspects
such as not having understood the terms, statements, equations, and/or illustrations
used in the proof. Moreover, in a comparatively high percentage of observations,
participants seemed to have not understood the statements themselves, for instance,
themeaning of simple terms such as themeaning of odd or even numbers, product, or
the square of the legs (in German Kathetenquadrat), and the explanations included
in the proofs seemed to have not clarified these terms for the participants. This
observation is of practical relevance for the teaching of proof, because it emphasizes
the need to first focus on sufficiently understanding the statements and relevant terms
before a proof is presented and discussed or before students are asked to prove a
claim. Onewould assume that this is obvious, but lecturers might not be aware of the
extent to which students have difficulties with simple terms and the comprehension
of statements.

In contrast to ordinary proofs, participants stated to not having understood why
the generic proofs are general on several occasions (14%), which is in line with
the findings on aspects participants identified as not convincing reported above.
As was expected, participants who received generic proofs also referred to the
proof framework slightly more often than participants who received ordinary proofs
when asked what they did not understand about the argument (8% vs 5%). But
overall, this aspect was not mentioned that frequently. Most likely students have
generally limited experience with proof and proving (as suggested by prior research,
for instance, Hemmi, 2008; Kempen & Biehler, 2019) and therefore do not often
consider the general proof idea, but focus on surface features, as has been reported
in the literature (e.g., A. Selden & Selden, 2003). Further, a smaller percentage
of participants referred to not having understood particular statements, equations,
illustrations used in the generic proofs than in the ordinary proofs (33 vs 58%),
but comparatively more participants did not understand the statements themselves
regarding the reading of generic proofs than the reading of ordinary proofs (24 vs
13%). This does not necessarilymean that participants who received ordinary proofs
had actually better understood the statements. It could also mean that the reading
of generic proofs more often reveals an insufficient understanding. Further research
would be needed to investigate this hypothesis.
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7.1.3 Justification: Students’Proof Schemes

The first experimental group did not receive any arguments but instead had to justify
why they think the statements are true or false. This group therefore served as a
control group regarding the influence of reading arguments and provided data to
answer the third set of research questions, which aimed at analyzing students’ proof
schemes:

RQ3: Construction of arguments to justify the truth of universal statements
(students’ proof schemes)

RQ3.1: What types of arguments do students themselves use to justify the truth or falsity
of a universal statement? How do students’ proof schemes differ regarding the
type of statement (i.e., familiarity and truth value)?

RQ3.2: What potential relation between the type of argument used by students and the
level of conviction of the truth of the statement exists?

As was expected based on prior research findings (e.g., Barkai et al., 2002; Bell,
1976; Recio&Godino, 2001; Sevimli, 2018; Stylianou et al., 2006), empirical proof
schemes could be observed most often, when participants were asked to justify the
truth of the unfamiliar statements (45%). In contrast, participants mainly showed
external proof schemes regarding familiar statements (86%). These participants of-
ten made reference to authorities (24%), such as school or university, claimed the
statement is a general rule (37%), or gave pseudo arguments (25%). Moreover, the
majority of participants used counterexamples to correctly refute the false statement
(about 51%). Expectedly, deductive proofs schemes were much rarer, but could be
observed more often regarding unfamiliar statements from elementary number the-
ory than familiar statements from geometry.Most likely, not only the (un)familiarity
with the statements but also the different content domains account for these differ-
ences (see Section 7.2 for a further discussion). Transformative arguments, such
as generic proofs, were only used 5 times, and these were all incomplete. I want
to highlight again that the participants were not explicitly asked to (dis)prove the
statements, but to justify why they think the statements are true or false, similar
to what has been done by Barkai et al. (2002), for instance. Thereby, the aim was
to gain insights about the types of arguments that convince students of the truth or
falsity of universal statements, in the sense proof schemes were defined by Harel
and Sowder (1998). Thus, these results might not be comparable to those of other
studies, in which students were explicitly asked to construct a proof, for instance, in
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the studies conducted by Recio and Godino (2001) and Stylianou et al. (2006), even
though these studies also found that many students fail to construct valid deductive
proofs and often give empirical arguments instead.

A relation between students’ proof schemes and their level of conviction was
identified. Participants who gave empirical arguments were generally only rela-
tively convinced (100% regarding the familiar statements and more than 60% re-
garding the unfamiliar statements) of the truth of the respective statements. Thus,
as argued by Weber and Mejia-Ramos (2015), one should not automatically worry
about students’ usage of empirical arguments, if they do not gain absolute conviction
by these arguments. There was still a comparatively large percentage of participants
with empirical proof schemes who seemed to have gained absolute conviction of
the truth of the statements. Thus, the usage of empirical arguments might be prob-
lematic for some students. However, that fact that these participants gave empirical
arguments does not necessarily mean that these arguments were the only source for
their conviction in the truth of the statement. Further research is needed to investi-
gate why some students seem to gain absolute conviction in the truth of a statement
by empirical arguments and what other factors may influence students’ (level of )
conviction. The findings of the present study suggest that students who construct
(complete or incomplete) deductive arguments have high levels of conviction of the
truth of statements. Participants with deductive proof schemes were in fact almost
all absolutely convinced of the truth of the true familiar and unfamiliar statements.
However, it cannot be derived from these findings that the construction of deductive
arguments (automatically) leads to absolute conviction, because other factors might
have played a role as well. The respective participants might have been convinced
by the truth of the statements before they even attempted to prove them (for instance,
because they were familiar with the statements), as has been pointed out by Polya
(1954). Noteworthy, external proof schemes seemed to provide most students with
absolute conviction as well. But given that participants mainly had external proof
schemes regarding familiar statements, the familiarity with these statements may
be mainly responsible for the high levels of conviction.

7.1.4 Understanding the Generality of Statements

Finally, the last set of research questions build the focus of the present thesis, which
is on students’ understanding of the generality of mathematical statements and the
relation to proof reading and construction:
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RQ4: Students’ understanding of the generality of mathematical statements

RQ4.1: What proportion of first-year university students have a correct understanding of
the generality of statements?

RQ4.2: What is the influence of reading different types of arguments on students’ un-
derstanding of the generality of mathematical statements? How does the type of
statement influence students’ understanding of its generality?

RQ4.3: How does students’ comprehension and conviction of arguments influence their
understanding of generality of statements?

RQ4.4: What potential relation exists between students’ proof schemes and their under-
standing of the generality of statements?

In 64%of all observations (about 68% if “don’t knowers” are excluded), participants
showed a correct understanding of the generality of mathematical statements. The
percentage of students having a correct understanding of generality of statements
thereby differed with respect to the study program. Overall, the higher the level of
mathematics in the chosen study program, the higher the percentage of students with
a correct understanding of generality. This can mainly be explained by differences
in prior knowledge/experience (e.g., attendance of an honors course) and general
cognitive skills (e.g., CRT score).

Understanding the generality of statements is not solely determined by stu-
dents’ knowledge of the meaning of mathematical generality but positively
related to it.
The most predictive for students’ understanding of generality of statements was
their knowledge of the meaning of mathematical generality. However, since a com-
paratively large percentage of students with a correct knowledge of the meaning of
generality still responded inconsistently regarding the estimation of truth and the ex-
istence of counterexamples, solely knowing what mathematical generality means is
not sufficient for a consistent correct understanding of the generality of statements.

The percentage of observations in which participants responded inconsistently
regarding the two relevant questions also differed by the type of statement, which
further indicates that the understanding of generality of statements is not solely
determined by students’ knowledge of the meaning of generality. Participants were
more likely to have a correct understanding of generality of the false and the familiar
statements than of the (true) unfamiliar statements, as was expected. The content
analysis of students proofs schemes further suggests that most students who cor-
rectly refuted the false statement most likely did so, because they found one or more
counterexamples. These participants therefore knew that a counterexample exists,
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which proves the falsity of the statement, and consequently responded more often
consistently regarding the truth of the statement and the existence of counterexam-
ples. Similarly, as has been argued in Chapter 4, familiar statements havemost likely
been applied by the participants to many arbitrary cases before, which might have
made them more confident in the non-existence of counterexamples and therefore
more likely to have a correct understanding of generality for these statements.

The reading of any type of argument mainly influenced students’ responding
behavior in that they were less likely to answer “I have no idea” regarding the
estimation of truth and the existence of counterexamples. Thus, reading an argu-
ment may at least give them the feeling of knowing enough to make a decision.
However, reading generic or ordinary proofs did not lead to a higher probability of
having a correct understanding of generality, as was hypothesized. On the contrary.
If at all, it made participants less likely to respond consistently to the respective
questions. Reading empirical arguments seemed to have no significant effect on
students’ understanding of generality in comparison to reading no arguments at all.
The findings reported above indicate that reading ordinary proofs did not support
students’ correct estimation of truth, potentially because students lack knowledge
to gain information and certainty from proofs. Because of their limited knowledge,
reading proofs might actually make them more uncertain regarding the existence of
counterexamples, which might explain the higher likelihood of an incorrect under-
standing of generality of the statement. However, the significance of this effect is
unclear.

With respect to the third research question, there seems to be a positive relation
regarding students’ (self-reported) proof comprehension and their understanding of
generality of statements. After controlling for other individual resources, such as
the CRT score and students’ knowledge of the meaning of generality, this effect
was however smaller and did not reach significance. Thus, the relation between
proof comprehension and students’ understanding of generality might at least par-
tially be explained by other variables which influence both proof comprehension
and students’ understanding of generality (for instance, the CRT). In contrast, the
participation in an honors mathematics course during high school, which was pre-
dictive for students’ understanding of generality before proof comprehension was
considered, had no significant effect after it was included. Thus, the participation in
honors courses most likely provides students with better comprehension or these are
both simultaneously influenced by a further variable. As the present study relied on
students’ self-report on their understanding of the arguments, findings are limited
(see Section 7.2.3 for a further discussion on this). Measuring students’ proof com-
prehension through assessment tests, as suggested by Mejía Ramos et al. (2012),
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for instance, might provide further insights into the relation between students’ proof
comprehension and their understanding of the generality of statements.

The conviction of empirical arguments is related to students’ understanding
of the generality of statements. The findings reported in Section 6.5 on the influ-
ence of conviction on understanding of generality are inconclusive. A clear negative
effect was found regarding students’ conviction of empirical arguments on their un-
derstanding of generality. Participants who were not at all convinced by empirical
arguments were more likely to have a correct understanding of the generality of
statements than participants who were (at least partially) convinced by these ar-
guments. A relation between students conviction of empirical arguments and their
understanding of the generality of proof was suggested by some researchers (e.g.,
Conner, 2022). My findings now provide clear evidence for a relation between
students’ conviction of empirical arguments and their understanding of the gener-
ality of statements—which assumably is related to understanding the generality of
proofs. The effect of conviction regarding generic or ordinary proofs, however, is
less clear. There seemed to be a positive relation between students’ conviction by
the argument and their correct understanding of generality, however, after includ-
ing other (control) variables, this effect diminished and—even more—participants
who claimed to be not at all convinced by generic or ordinary proofs were then
more likely to have a correct understanding of generality than those who claimed
to by partially convinced by the proofs. Among the participants who claimed not
to be convinced by the arguments, a high percentage answered “I have no idea”
regarding the relevant questions for measuring students’ understanding of general-
ity. These were treated as missing values, which might have affected the estimates
of the regressions. Another explanation for this unexpected relation could be that
participants with an overall good understanding of proof—and potentially correct
understanding of generality—tend to either be completely convinced or not at all,
but not partially. Or vice versa, participants, who do not have a good understand-
ing of proof and generality might tend to answer that they are partially convinced,
simply because they have no reference of what (should) convince(s) them.

Students with empirical proof schemes are less likely to have a correct under-
standing of the generality of statements than students with deductive proof
schemes. In contrast to the effect of reading different types of arguments on under-
standing the generality of statements, a relation between students’ proof schemes
and their understanding of generality was found. Participants with empirical proof
schemes had an incorrect understanding of generality most often, compared to
participants with any other proof scheme. The percentage of participants with a
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correct understanding of generality was the highest among those with analytical
proof schemes, in particular deductive ones. The percentage of participants with ex-
ternal proof schemes and a correct understanding of generality was between these
two groups. Overall, these differences were significant with medium effect size. On
the one hand, these results make sense in that participants whowere able to construct
a proof gain absolute conviction (as discussed above) and simultaneouslymake them
more aware that no counterexamples exist, thus leading to a correct understanding
of generality. On the other hand, it is interesting that students who give empirical
arguments to justify universal statements respond inconsistently most often. It is
conclusive that they only gain relative conviction (as was found in this study), but
this does not explain that their estimation regarding the existence of counterexam-
ples is then inconsistent. These findings combinedwith those regarding the influence
of (or absence thereof) reading different types of arguments, could suggest that stu-
dents who give empirical arguments in general have an insufficient understanding
of proof which also affects their understanding of the generality of statements, but
that it is not the reading or construction itself that explains this relation.

7.2 Reflections and Limitations

The present study provides many new insights into students’ proof skills, in par-
ticular students’ understanding of the generality of statements. In the following
sections, I reflect on my adapted framework on proof-related activities and several
methodological decisions that were made in this study. In addition, I outline spe-
cific limitations of this study as well as more general limitations of empirical (field)
research.

7.2.1 The Adapted Framework on Proof-Related Activities

The present study was based on the framework for proof-related activities presented
in Section 3.2, which is an adapted version of the framework introduced by Mejía
Ramos and Inglis (2009b). I chose to distinguish between activities that are related
to the statements, which are to be proven or for which a proof is to be read, and
activities that are related to the arguments that aim to justify the statements. More-
over, I proposed potential relationships between the activities (see Fig. 7.1; problem
exploration was not explicitly considered in the present study).

The adapted framework has been shown to be very useful and conclusive in
this study. Further, my findings mainly confirm or at least highlight the presumed
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Figure 7.1 Adapted framework on proof-related activities based on Mejía Ramos and Inglis
(2009b), numbers refer to identified relationships

relationships. The content analysis of students’ responses regarding aspects they did
not understand showed that comparatively many participants insufficiently compre-
hended the statements for which they received and read arguments. These partici-
pants were therefore not able to understand the arguments and they would also not
have been able to decide if the arguments are valid proofs. Thus, not surprisingly,
reading the statementwith respect to comprehension is required for activities regard-
ing the reading of given arguments (relationship 1 in Fig. 7.1). Similarly, without
understanding the statement, students were not able to justify its truth or falsity,
which mainly resulted in unclear responses regarding students’ proof schemes (re-
lationship 2 in Fig. 7.1). Reading (particular types of) arguments affected students’
success in estimating the truth of the statements (relationship 3 in Fig. 7.1). In partic-
ular, reading empirical arguments (and to a lesser degree generic proofs) supported
students in deciding if the statements are true or false, likely because they helped
them to better understand the statements. But reading ordinary proofs did not have
this effect. Even more, it seemed that—if at all—reading ordinary proofs nega-
tively influenced students’ understanding of the generality of statements (as part
of statement comprehension). Moreover, my findings provide evidence that strong
relations between different proof reading activities exist as well, for instance, be-
tween comprehension of the arguments and evaluation regarding conviction. The
influence of constructing (different types of) arguments to justify the truth or falsity
of statements may also support students’ comprehension of statements and their
success in estimating the truth (relationship 4 in Fig. 7.1). Participants who were
not able to give any argument—not even empirical ones—to justify the statements
(coded as unclear regarding the proof scheme) were also most often unsuccessful in
estimating the truth value of the statements. Vice versa, most students who provided
arguments correctly estimated the truth of the statements, at least with relative con-
viction, and the type of proof scheme was related to their level of conviction as well
as their understanding of generality of the statements. Further research would be
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needed to explicitly investigate if and how the construction of arguments supports
the comprehension of statements and students’ success in estimating the truth value.

Overall, my adapted framework, in particular the distinction between activities
related to statements and arguments, provides a useful basis for further research on
proof-related activities and their relations.

7.2.2 Overall Research Design

In the present study, participants were randomly assigned to experimental groups
(types of arguments), which was methodologically desirable. However, there might
still have been a selection bias induced by the different types of arguments partic-
ipants received: The percentage of students who chose not to answer or complete
the questionnaire was higher for generic and ordinary proofs than for empirical ar-
guments and no arguments, possibly due to the perceived difficulty of reading these
proofs. Moreover, the percentage of “I don’t knowers” was lower among the partic-
ipants who received any type of argument in comparison to participants who were
not provided with arguments. Thus, responding behavior of participants who did
not drop out of the experiment early on was influenced by reading the arguments,
in that it made them more confident in choosing an answer different from “I have
no idea”. Therefore, while themissing valuesmight limit my results to some extent,
they also provide information on aspects that make participants less likely to be “I
don’t knowers”—for instance the reading of arguments—which can be useful for
future studies.

Furthermore, some of the questions might have been redundant for participants
who received empirical arguments, in particular, regarding the open-ended question
on why they thought these arguments are not convincing, as some students men-
tioned this in their responses to the open-ended questions. This could have resulted
in participants perceiving the questions as too easy and getting bored, thus a re-
duced test-taking motivation, which can lead to lower performance (e.g., Asseburg
& Frey, 2013). To avoid this, an alternative approach for investigating the influence
of the type of argument could have been taken. For instance, instead of providing
participants with the same type of argument, each participant could have been given
different types of arguments (as was shortly discussed in Section 5.1.1). However,
such a design also comes with its downsides. First, participants’ responses, particu-
larly regarding conviction, could be influenced by the possibility of comparing the
different types of arguments, which I did not aim for. Second, the number of items in
such a questionnaire should be larger for such an approach, because more than one
mathematical statement for each kind of argument would be necessary to be able to
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draw conclusions about the influence of the type of argument. Because otherwise,
the differences might not result primarily from the type of argument but the specific
statement. Such an approach could be used best in a laboratory experiment, where
the conditions are more controllable (e.g., Döring & Bortz, 2016). In addition, lab-
oratory experiments with financial rewards could increase test-taking motivation,
even though respective research is not consistent (e.g., Baumert &Demmrich, 2001;
Braun,Kirsch,&Yamamoto, 2011;O’Neil, Sugrue,&Baker, 1995), resulting in bet-
ter answer quality (e.g.,Wise&DeMars, 2005) and the possibility to increase testing
time. Alternatively, one could also design different versions of questionnaires, such
that all combinations of statements and types of arguments are considered. This
might, however, increase the needed sample size, because the specific combination
of type of argument and (type of) statement could also influence students’ responses.
Given the framework of this study, the chosen experimental design seemed to be
the best approach regarding the research questions of this study, even considering
the described limitations.

7.2.3 Conceptualization and Operationalization

Only few prior studies have investigated students’ understanding of the general-
ity, and to my knowledge, no studies have explicitly analyzed understanding of
generality of statements and the specific relation to proof construction and read-
ing. Further, prior studies on students’ understanding of generality have mainly
reported on students or teachers who were convinced of the correctness of the state-
ment and/or proof but not convinced that no counterexample exists (Chazan, 1993;
Knuth, 2002) or regarding students’ awareness that one counterexample disproves a
universal statement (Buchbinder & Zaslavsky, 2019; Galbraith, 1981). I decided to
consider participants’ responses regarding the estimation of truth and relate them to
the responses regarding the existence of counterexamples. An incorrect understand-
ing of generality was then defined as inconsistent responses. This conceptualization
might have limited the comparability of my results to the few prior studies that have
been conducted. Moreover, other reasons for inconsistent responses cannot be ruled
out and should also be discussed. For instance, participants responding inconsis-
tently might lack logical reasoning skills, as the question regarding the existence of
counterexamples was expressed implicitly via the negation of the statement. How-
ever, these students would then nevertheless have an insufficient understanding of
the particular statement, specifically regarding the appearance of respective coun-
terexamples. Moreover, the high correlation between students’ understanding of
generality and their knowledge of the meaning of mathematical generality, which
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was assessed via a closed item—further indicates that the chosen conceptualization
and operationalization of students’ understanding of the generality of statements
indeed provided valid results. Therefore, the chosen approach does not only pro-
vide new results of students’ understanding of the generality of statements and
the relation to proofs, but also builds a new basis for future research on students’
understanding of generality.

As has been highlighted by other researchers (e.g., Sommerhoff, 2017), studies
on students’ proof skills have generally not been using exactly the same definitions,
conceptualizations, and operationalizations. Even though I have tried to identify and
implement the essential commonalities, decisions were made regarding conceptu-
alization and operationalization, which may limit the generalizability and compa-
rability of my results. For instance, in contrast to other studies, in which proof
comprehension was measured via assessment tests, I decided to rely on students’
self-reports on their comprehension of the arguments. Assessing participants’ proof
comprehension via tests for five statements was assumed to unreasonably increase
the test duration, risking reduced test-taking motivation and mental fatigue effects
(e.g., Ackerman & Kanfer, 2009; Möckel, Beste, & Wascher, 2015; van der Lin-
den, Frese, & Meijman, 2003). Further, proof comprehension was measured via
a three-level scale—completely, partially, or not at all understood. More nuanced
measures might have provided further insights into students’ proof comprehension
and its relation to understanding generality. To ensure comparability to some ex-
tent, the coding scheme used to analyze participants’ responses regarding aspects
they claimed to have not understood was based on the assessment model developed
by Mejía Ramos et al. (2012). However, relying on students’ self-reports never-
theless limits generalizability and comparability of the research findings, because
self-reports are subject to several biases. For instance, students’ might not be able
to assess themselves accurately (see, e.g., A. Selden & Selden, 2003), which im-
plies that self-reports on students’ proof comprehension measure what participants
think they have (not) understood or how well they believe they have understood an
argument and not their actual comprehension of the specific proof, which limits the
validity of self-reported data on students’ comprehension.

To analyze students’ conviction by the argument, participants were first asked if
the presented justification has convinced them of the truth of the statement and, if
they did not claim to be completely convinced by the argument, why the justifica-
tion did not convince them. I relied again on self-reports, which implies limitations
already discussed above. In particular, the combined findings on students’ estima-
tion of truth and conviction suggest that asking participants questions about how
convinced they are by an argument might reveal what arguments participants as-
sume they should find convincing—not necessarilywhat types of arguments actually
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convince them the most of the truth of the statements. As conviction and acceptance
criteria for proof are subjective and influenced by prior experience, for instance, in
the classroom (e.g., Hanna, 1989; Stylianides, 2007), they may be susceptible to
biases such as social desirability. Students’ might know that empirical arguments
do not constitute a proof (e.g., Ufer et al., 2009) and therefore assume that they
should not find these convincing. However, empirical arguments can in fact be
convincing and lead to high levels of conviction in the truth of a statement (e.g.,
Weber, 2013), which my findings experimentally confirm. Even though partici-
pants were not asked if they thought the arguments are valid proofs, they might
have nevertheless—consciously or not—taken this into account when asked if the
argument has convinced them of the truth of the statement. In this regard, as has
been discussed by other researchers, for instance Inglis and Mejía-Ramos (2013),
participants might interpret questions about how convinced or persuaded they are
by an argument differently. To reduce this risk, I decided to explicitly ask partici-
pants if the argument convinces them of the truth of the statement. While this has
hopefully led to better comparability of responses of participants in this study, the
comparability of my results to those of other studies might be limited. Furthermore,
participants were not provided with pre-defined criteria for convincing arguments,
as suggested by Mejía Ramos and Inglis (2009b), for instance, and it is not fully
clear what criteria participants based their decision on. However, this limitation was
at least partially overcome by asking students to explain why they were not (com-
pletely) convinced by the arguments. The respective findings of the content analysis
further strengthen the assumption that participants may have considered acceptance
criteria for proof when asked why the arguments did not convince them of the truth
of the statements.

To investigate students’ proof schemes, participants were not explicitly asked
to (dis)prove the statements, but to justify why they think the statement is correct
or false. While some prior studies chose a similar approach (e.g., Barkai et al.,
2002; Harel & Sowder, 1998), others explicitly asked the participants to construct
a proof (e.g., Recio & Godino, 2001; Stylianou et al., 2006). Thus, these different
approaches might limit the comparability to some of the prior studies on proof
schemes.

7.2.4 Number, Selection, and Order of Statements

Significant effects of the type of statement were found across all analyzed activities
and students’ understanding of generality. A larger number of statements would still
have been desirable to increase validity and reliability of the findings. But due to
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testing time, the number of statements included in this studyhad to be limited to avoid
fatigue effects (as has been mentioned above). Moreover, the defined criteria for the
selection of statements also limited the number of suitable items, in particular false
statements. To further increase the validity of findings, it would have been beneficial
to include additional statements, in particular false ones.

The selection and allocation was mainly based on theoretical considerations,
such as the extent to which the statements are present in text books and school
curricula (see Section 5.3.1). However, because the two unfamiliar statements only
require basic knowledge and should be known by teachers, it is possible that teachers
teach and discuss these statements with their students, even though the statements
are not part of the school curriculum. The content analysis of the data on students’
proof schemes provides evidence that the allocation made in this study is generally
conclusive. Regarding the (true) unfamiliar statements, only few participants used
authority arguments or claimed that the statement is a general rule (4 and 1%, re-
spectively). Instead, they mainly used empirical arguments. Thus, it can be assumed
that the vast majority did not seem to have gained (much) experience with the un-
familiar statements during high school. In contrast, most participants used these
types of arguments (authority and rule) to justify the truth of the familiar statements
(24 and 37%), which indicates at least some degree of familiarity with these state-
ments. This interpretation might be limited by the fact that the statements do not
only differ by familiarity but also content-wise: The familiar statements were taken
from geometry and the unfamiliar statements from elementary number theory. This
choice was based on the respective criteria defined in Section 5.3.1. (NRW) School
curricula only mention geometry statements explicitly with respect to proving; and
statements from elementary number theory are assumed to require comparatively
few knowledge to understand and prove them, which was one of the main criteria
defined for the selection of unfamiliar statements. Few studies have explicitly re-
ported on the effect of the content domain on students’ performance in proof-related
activities (e.g., Ko & Knuth, 2013). The fact that the familiarity-or in other words,
geometry—unexpectedly had a negative effect on participants’ (self-reported) proof
comprehension suggests that the content area indeed plays a role. For future studies,
it would therefore be desirable to consider familiar and unfamiliar statements from
both content domains to specifically identify what characteristics—content domain
and/or familiarity—contribute to the observed effects, even though the defined cri-
teria for the selection of statements would make a respective implementation no
simple task (at least in Germany).

Further, to ensure comparability, all statements were mainly expressed in nat-
ural language. As a consequence, participants had difficulties understanding and
recognizing the pythagorean theorem, as mentioned several times in this thesis. In
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particular, a relatively high percentage claimed to not know the truth value of the
statement and if counterexamples exist, which resulted in missing values in the
variable understanding of generality. This could have biased the findings regarding
the effect of familiarity (because this statement was assumed to be known to the
participants), as participants for whom a value for understanding of generality was
measured might not only have had better content knowledge, but generally a better
understanding of proof and generality.

The order of items can also influence participants’ responding behavior and per-
formance, even though research on this is ambiguous (e.g., Anaya et al., 2022;
Bresnock, Graves, & White, 1989; Kleinke, 1980; Newman, Kundert, Jr, & Bull,
1988; Şad, 2020). I have decided to order the statements from easiest to most dif-
ficult, based on pre-tests and expert opinions (see Section 5.3.1). The percentage
of participants who claimed to not know the truth value of the statement and if
counterexamples exist increased over the course of the experiment and was the
highest for the last statement, the pythagorean theorem. Other reasons for the high
percentage of missing values regarding this statement have already been discussed.
But due to the fixed order of statements, it cannot be ruled out that the position
of the statement in the questionnaire also affected participants’ (non-)responses.
Therefore, a randomization of the statements might have been the better choice,
even though this could have resulted in a higher percentage of participants dropping
out of the experiment early on, if at random the first statement would have been
the most difficult one (Anaya et al., 2022). Randomization might nevertheless have
been preferable, because potential order effects could then have been analyzed and
verified.

7.2.5 Open-Ended Questions and Content Analysis

In general, the collection and analysis of responses to open-ended questions have
several limitations. One already mentioned is related to the sample size and poten-
tial selection bias, because some participants might perceive open-ended questions
as too time-consuming or they lack interest in the topic and decide to not answer
them (e.g., Holland & Christian, 2009; A. L. Miller & Lambert, 2014). Another
general limitation concerns the texts that are being analyzed. In the present study,
participants were asked open-ended questions regarding their proof schemes, proof
comprehension, and conviction. Participants might not be able to fully express their
thinking, identify all aspects they did not comprehend or find convincing, resulting
in incomplete responses. However, some studies have shown that most people are
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generally capable of articulating themselves in their answers to open-ended ques-
tions (e.g., Geer, 1988), but (more recent) research on this seems to be scarce.

It should be noted that content analyses almost always involve interpretation
to some extend (e.g., Bryman, 2012). The coding of complete and incomplete ar-
guments was specifically difficult, because mathematically it is not clear where to
draw the line (unless formal proofs would have been considered, which was not
done for good reasons), even mathematicians do not always agree, and it was not
always clear if participants did not include specific steps in their arguments because
they assumed them to be obvious or because they did not think about them. To
overcome these limitations and to ensure reliability, the coding schemes were based
on previous frameworks, of which some have been used extensively (e.g., Harel
& Sowder, 1998), and I provided detailed coding protocols as well as tried to be
as transparent as possible (see Section 5.4.2 and paragraphs on content analysis in
Sections 5.4.3, 5.4.4, and 5.4.5 as well as Appendix B in the Electronic Supplemen-
tary Material). This resulted in very high inter-coder reliabilities after coders were
sufficiently trained.

Overall, analyzing students’ responses to the open-ended questions provided
important insights into their understanding of generality and proof.

7.2.6 Control Variables

Prior knowledge was only indirectly considered by including participation in an
honors mathematics course (LK) and, to a lesser degree, by the participation in
a transition course (Vorkurs). The participation in an honors course proved to
be a useful predictor for most of the activities and for students’ understanding
of generality. However, it is not completely clear what it actually controls for:
Mainly content-specific resources such as conceptual and procedural knowledge
and domain-specific resources such as mathematical strategic and methodological
knowledge, or other (domain-general) resources or even something else. Similarly,
the CRT score was considered as a control variable to account for (domain-general)
cognitive resources. Overall, the CRT score was the most significant predictor re-
garding almost all proof-related activities (with the exception of conviction) and
students’ understanding of generality. Again, these findings do not provide infor-
mation regarding the influence of more nuanced (domain-general) resources such as
problem-solving and (general) reasoning skills. Furthermore, it can be seen as a lim-
itation that there is even a debate about what it is that the CRT measures—cognitive
reflection, rational thinking, numeracy, insight problem solving, and/or something
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else (e.g., Liberali, Reyna, Furlan, Stein, & Pardo, 2012; Patel et al., 2019; Penny-
cook et al., 2016; Toplak et al., 2014). However, as a control variable for individual
cognitive differences, the CRT score still seems to be a useful and easy to measure
control variable. Further research is needed to investigate the relation between CRT
score and students’ proof skills (see Section 7.4 for a further discussion).

As it was not the purpose of this study to identify specific predictive resources for
students’ proof skills, the limitation regarding the informative value of the consid-
ered control variables is acceptable. Moreover, the findings are nevertheless useful
in that they provide evidence for differences on an individual level and suggest
influences of resources that have not been considered in previous research in that
way. While the assessment and inclusion of content- and domain-specific resources
would have been beneficial to contribute to the existing research on the influence of
individual resources (e.g., Chinnappan et al., 2012; Sommerhoff, 2017), it would not
have been reasonable to consider these in this study, for instance, due to limitations
regarding the test length and the focus of this thesis.

7.2.7 Sample

The overall sample size was generally satisfactory. It would nevertheless have been
beneficial to have larger samples regarding some of the research questions, in partic-
ular regarding those in which only one or two experimental groups were considered,
for instance, the analysis of the influence of students’ conviction and proof compre-
hension on understanding of generality. Larger sample sizes would have increased
statistical power andmore robust estimates of the coefficients for the respective vari-
ables of interest. Moreover, the content analyses would have benefited from larger
sample sizes as well, because the sample size was not only limited by the selection
of experimental groups, but also by students’ responses to prior questions and their
willingness and ability to answer the open-ended questions (see also discussion fur-
ther below). Further, the sample was unbalanced regarding the study program, with
a large number of preservice primary school teachers and a much smaller number of
preservice secondary school teachers, for example. Even though the effect of study
programwas not directly analyzed, individual resources (for instance, the CRT score
and participation in honors mathematics courses) and most likely students’ proof
skills differ with respect to the study program, which could potentially have biased
research findings. Therefore, a more balanced sample would have been desirable,
even though the distribution of study program roughly corresponded to the actual
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distribution at Bielefeld university. Using more advanced statistical tools such as
generalized linear mixed models contributed to overcoming these limitations by
including respective control variables such as the CRT score and the attendance of
an honors course.

7.3 Implications for the Learning andTeaching of Proof at
the Transition from School to University

The results of my thesis contribute to the existing research on university students’
proof skills and understanding at the transition from school to university. My find-
ings confirm those of prior studies that many students have limited knowledge and
understanding of mathematical concepts and proof when they enter university (e.g.,
Gueudet, 2008; Kempen &Biehler, 2019; Recio &Godino, 2001). In particular, my
findings suggest that many students have no sufficient knowledge of the meaning of
basic terms and concepts, such as divisibility, even andoddnumbers, product, and the
meaning of variables. Further—and most important for this study—many students
also seem to lack sufficient understanding of the generality of mathematical state-
ments, which seems to be related to their conviction and usage of different types of
proofs, in particular, empirical arguments. It is therefore no surprise that students’
have difficulties with proof and proving when they enter university, and potentially
even lack an intellectual need for proof (see also directions for future research further
below). Most (German) universities already strive to close the gap at the transition
from school to university by offering transition (to proof) courses (see, for instance,
Gerdes,Halverscheid,&Schneider,2022).However, sofar, theeffectof thesecourses
is unclear (e.g., Greefrath, Koepf, & Neugebauer, 2017; Tieben, 2019) and dropout
rates in mathematics remain high at German universities Heublein et al., 2022. The
findings of my study further suggest that the attendance of a transition course had no
significant effect on students’ performance in the considered proof-related activities
and their understanding of generality. While one reason might be that these courses
aresimplytooshort—twoweeksatBielefelduniversity—otherreasonsmight include
that the content currently included in these courses does not fullymeet students’—or
lecturers’—needs. In this regard, the findings of the present thesis may be useful to
revise the content of transition courses. It particular, they provide a basis for (inter-
vention) studies that 1) aim at improving students’ understanding of the generality of
statements, and 2) analyze if and how an improved understanding affects students’
intellectual need for proof and their proof skills (see also Section 7.4).

When planning university courses for first-year students, lecturers should take
into account that many students currently have an insufficient knowledge of basic
mathematical terms and understanding of generality. In general, more emphasis
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should be put on sufficiently understanding a theorem first—and definitions, con-
cepts, etc. involved—before students are confronted with its proof. Moreover, read-
ing, constructing, and potentially discussing examples (i.e., empirical arguments)
can support students’ understanding of the statements, which may ease comprehen-
sion and construction of proofs. Generic proofs may also be useful in this regard,
as my findings suggest.

These results are particularly important in lectures for preservice teachers to break
the cycle of teachers not having sufficient knowledge, therefore school students not
learning sufficiently about proof and argumentation, which consequently leads to a
gap instudents’knowledgeat the transition fromschool touniversity.Thepresent the-
sisdidnotinvestigateoraimatidentifyingrespectivenewteachingmethods.However,
asmentioned,myfindingssuggest thatstudents lackbasicknowledgeandunderstand-
ing and may therefore benefit from activities that particularly aim at assessing and
improving their understanding of theorems—including their understanding ofmath-
ematical generality. Ingeneral, assessing students’knowledgeandunderstandingcan
help both lecturers and students, in that it would be more transparent to the students
what is expected from themandwhat theyneed to know to followalong, and lecturers
would get a better picture ofwhat their students actually know—andwhat not. In this
respect, (real-time) quizzes can be an effectiveway of assessing students’ knowledge
and understanding (e.g., Cohn& Fraser, 2016;Méndez Coca& Slisko, 2013; Plump
& LaRosa, 2017). Questions could not only assess students’ (prior) knowledge of
terms and statements being used in a theorem, but also consist of questions that more
specifically aim at their understanding of the generality of (particular) theorems. For
instance, after introducing a new theorem—which students most likely assume be-
ing true—lecturers could ask their students if counterexamples may exist. Thereby,
I would avoid using the term counterexample and phrase the respective question as
suggested in this study (see Section 5.3.5). The responses of the students could pro-
vide an opportunity for informative discussions about the theorem itself—including
its generality—but also about the purpose and intellectual need for proof. However,
the effectiveness of such instructions would need to be investigated.

7.4 Directions for Future Research

Finally, the findings and limitations combined give rise to directions for future
research of which some have already been identified in Section 7.2. In this section,
I first discuss potential research questions regarding the investigation of students’
understanding of generality, before other, partially more general implications for
future research are identified.
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7.4.1 Further Investigating Students’Understanding of the
Generality of Statements

To further generalize the findings on students’ understanding of the generality of
mathematical statements, replication studies at other (German) universities would
be valuable. Moreover, it would be beneficial to include additional or different
statements from other content domains to analyze if the findings of this study are
content-specific or generalizable to other areas. To analyze the influence of famil-
iarity on students’ understanding of generality—but also on other proof skills—it
would be valuable to include familiar and unfamiliar statements from the same
content domain, as has been highlighted before.

While the focus of the present study was on first-year university students’ under-
standing of generality, a replication of the studywith experienced university students
would enable to investigate potential developments of students’ understanding of
generality of statements throughout their studies. I would expect more experienced
students to have a more consistent understanding of generality, due to more experi-
ence with higher mathematics and proof in particular, but this hypothesis needs to
be tested.

The findings of the present thesis furthermore suggest a relation between stu-
dents’ understanding of generality and other proof skills, such as proof comprehen-
sion and evaluation. However, results were ambiguous. Several reasons have been
identified, such as sample size, but also relying on students’ self-reports on their
proof comprehension. Future studies could replicate the study with an even higher
number of students and/or consider measuring students’ proof comprehension via
assessment tests (see also discussion further below), as suggested by Mejía Ramos
et al. (2012), for instance.

Moreover, the correlations between students’ proof schemes and their under-
standing of generality found in this study need to be further investigated. For in-
stance, it is not clear by the results, if students’ with empirical proof schemes showed
an incorrect understanding of generality more often than students’ with deductive
proof schemes because they were not able to produce a general argument, or if other
characteristics of theses students explain the correlation. Future studies should con-
sider this when investigating the relation between students’ proof schemes and their
understanding of the generality of statements.

Further, while I had chosen to investigate students’ proof comprehension, convic-
tion, and proof schemes and their relation to understanding generality, future studies
could consider relations to other proof-related concepts or aspects. For instance, it
may be worthwhile to analyze potential relations between students’ understanding
of generality and their ability of logical inferences. Even though research suggests
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that logical reasoning skills, in particular conditional reasoning skills only play
a minor role regarding students’ proof skills (e.g., Sommerhoff, 2017), a relation
to students’ understanding of generality might nevertheless exist. As mentioned
before, understanding logical negation should—at least in theory—be particularly
relevant for the understanding of generality of statements as defined in this study.
Because questions regarding the existence of counterexamples were expressed via
the negation of the respective statement (see Section 5.3.5). However, this hypothe-
sis would need to be investigated. Further, the influence of participants’ CRT score
on their understanding of generality suggested by my findings implies a potential
relation between students’ (logical) reasoning skills and rational thinking and their
understanding of generality (e.g., Liberali et al., 2012; Primi et al., 2016; Toplak
et al., 2014). Further research is needed to analyze 1) what the CRT particularly
measures and 2) how this relates to students’ understanding of the generality of
statements and proof skills. Moreover, researchers who want to use the CRT score
as a control instrument in future studies may want to consider alternative CRT items
to avoid an overemphasis on numerical abilities and floor effects in non-elite pop-
ulation or younger students, for instance (e.g., Sirota, Dewberry, Juanchich, Valuš,
& Marshall, 2021; Young, Powers, Pilgrim, & Shtulman, 2018).

Further, the awareness and correct understanding that no counterexample to uni-
versal statements exist might be related to or even increase students’ appreciation of
proof and their intellectual need for certainty (introduced by Harel, 2013). Because
it is the mathematical generality that is the defining element of mathematical proof,
the reason why a deductive proof is indeed necessary and empirical arguments are
not sufficient to rule out the existence of any counterexamples. The findings of the
present thesis suggest that participants with empirical proof schemes more often
have an incorrect understanding of generality than students with deductive proof
schemes, for example, and further, that students’ who are convinced by empirical
arguments are more likely to have an incorrect understanding of generality than
students who are not convinced of these arguments. As some researchers have em-
phasized the relation between students’ usage of and satisfaction with empirical
arguments and their lack of intellectual need for proof (e.g., Zaslavsky, Nicker-
son, Stylianides, Kidron, & Winicki-Landman, 2012), investigating the potential
relation between students’ understanding of generality and their appreciation and
intellectual need for proof could be valuable.

Lastly, the findings of my study give rise to a potential intervention study. The
effect of students’ knowledge of the meaning of generality on students’ consistent
responses (i.e., their actual understanding of generality) was highly significant. An
intervention study that investigates the effect of explicitly teaching the meaning
of generality of mathematical statements on students’ understanding of generality
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could be promising in this regard. However, given that the sole knowledge of the
meaning of generality was also not sufficient for consistently having a correct un-
derstanding of generality, other factors (such as the familiarity with the statement
and logical reasoning skills) also play a role and should be considered.

7.4.2 Self-Reported Data and Reality

Several limitations discussed in Section 7.2 concern the relation between self-
reported data regarding students’ conviction and proof comprehension and students’
actual conviction and proof comprehension. The findings of the present study indi-
cate that participants might not always be able to assess themselves accurately. For
instance, as has been discussed, the question “Does the justification convince you of
the correctness of the claim?” does not necessarily provide information about stu-
dents’ actual conviction of the truth of a statement by different types of arguments,
but about which types of arguments they think should be convincing to them, thus,
their conceptions of convincing mathematical arguments or proof. In general, I find
it questionable what studies on students’ conviction actually assess—most likely
not students’ actual conviction regarding the truth of a statement, but more likely
acceptance of the argument and respective criteria in the sense of social proof. The
gap between self-reported conviction and actual conviction was only revealed by
the experimental design of this study. Thus, further investigating students’ convic-
tion or other proof skills experimentally would be very valuable. In particular, one
should be careful in interpreting results solely based on students’ self-reported data.
The observation that self-reports do not always reflect the reality is not new (e.g.,
Maki & McGuire, 2002; Thiede, Griffin, Wiley, & Redford, 2009), however, only
few researchers have explicitly investigated this in in the context of proof and to
my knowledge, the extent of this phenomenon has not explicitly been researched
yet. Further, existing studies on mathematicians’ conviction of arguments have also
relied on self-reports. It would be valuable to conduct a similar experimental study,
in which the relation between mathematicians’ estimation of truth—based on dif-
ferent types of arguments—and their self-reported level of conviction of the truth of
statements by the arguments is analyzed. Different statements that are not too simple
(i.e., that mathematicians are not familiar with) should be selected for such a study.
Another potential future study concerns the relation between students’ self-reported
proof comprehension and their actual proof comprehension, assessed via compre-
hension tests (e.g.,Mejía Ramos et al., 2012). Several studies on text comprehension
have provided evidence that many learners fail to accurately judge their text compre-
hension in that they often overestimate but also underestimate their comprehension
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(e.g., Golke et al., 2022; Maki & McGuire, 2002; Prinz, Golke, & Wittwer, 2020;
Thiede et al., 2009). Similarly, A. Selden and Selden (2003) have reported thatmath-
ematics students indeed overestimate their understanding of a proof (even though
the focus of their study was on proof validation). However, to my knowledge, no
studies have explicitly investigated differences in students’ self-reported and actual
proof comprehension. Proof comprehension tests have the advantage of providing
more valid, reliable, and nuanced results of students actual proof comprehension.
However, their construction as well as the conduction of such tests is time consum-
ing and not always feasible. Self-reports provide a much simpler way of measuring
students’ proof comprehension, which is why their validity needs to be investigated.

7.4.3 Question Order Effects

As has been discussed, the statements included in the questionnaire have been
ordered from most easiest to most difficult. While this is assumed to have benefits
such as a lower percentage of participants abandon the questionnaire and better
performance (e.g., Anaya et al., 2022; Kleinke, 1980), it might also lead to potential
order effect, such as less motivation to answer more difficult questions at the end
of the questionnaire. Therefore, future studies on students’ proof skills may want
to consider random ordering of statements. Moreover, it would be beneficial to
investigate respective order effects experimentally, because research on this is still
ambiguous and studies in the context of mathematic education, in particular proof,
seem to be scarce. In such a study, several questionnaires with different order of
statements could be designed, for instance, from easiest to hardest, from hardest to
easiest, and/or random.
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8Conclusions

It is well-known in mathematics education that the transition from school to univer-
sity is very challenging for many mathematics students and preservice mathematics
teachers. One of the main reasons identified in the literature is that students face
difficulties with proof-based mathematics to which they are commonly introduced
when they start university (e.g., Gueudet, 2008; A. Selden, 2012). Over the past
30 years, research on first-year students’ proof skills has increased significantly.
However, several proof-related activities are still under-researched and the specific
relations between these activities are not fully understood yet. In particular, no prior
research on students’ understanding of the generality of mathematical statements—
which can be seen as an essential part of the comprehension of statements and
students’ understanding of proof—and the specific relations to proof reading and
construction had been conducted. Therefore, the main goal of the present study was
to close this gap. Since no definition of understanding the generality of statements
could be identified in the literature, I provided a clear definition for understanding
the generality of statements myself by relating students’ estimation of truth to that
of the existence of counterexamples. A correct understanding was then defined as
consistent responses.

Further, to highlight the relevance of the statement itself for proof-related activi-
ties, I suggested an adapted version of the framework on proof-related activities by
Mejía Ramos and Inglis (2009b), which distinguishes activities related to the read-
ing of the statement, for which a proof needs to be constructed or a proof has to be
read, and activities related to the respective reading and construction of arguments.
The research questions were then mainly guided by this framework.

Since previous studies have shown differences in students’ understanding and
evaluation of different types of arguments (e.g., Healy & Hoyles, 2000; Kempen,
2018, 2021;Tabach,Barkai, et al., 2010), I analyzed the influenceof readingdifferent
types of arguments (no argument, empirical argument, generic proof, and ordinary
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proof) on students’ understanding of generality and other proof-related activities.
Additionally, I considered the familiarity with the statement and its truth value as
important characteristics that might also influence students’ performance in proof-
related activities, as suggested in the literature (e.g., Barkai et al., 2002; Dubinsky
& Yiparaki, 2000; Hanna, 1989; Stylianides, 2007; Weber & Czocher, 2019).

Through the experimental design of my study, I provided detailed results on the
influence of the type of argument and statement on students’ understanding of the
generality of statements, proof reading and construction, and on relations between
these activities. The data was thereby analyzed using mainly generalized linear
mixed models. My results extend prior research in that

• in a comparatively large percentage of observations (about one third), students
lacked understanding of the generality of mathematical statements,

• students with a correct knowledge of mathematical generality are more likely to
have a correct understanding of the generality of statements,

• students’ usage and conviction of empirical arguments is negatively related to
their understanding of the generality of statements,

• students’ level of conviction of the truth of statements is significantly related
to the reading and construction of different types of arguments; in particular,
empirical arguments (and to a lesser degree generic proofs) support students
in successfully estimating the truth value of (true) universal statements—but
ordinary proofs do not,

• the familiarity with the statement and the truth value influence students’ un-
derstanding of the generality of statements and performance in proof-related
activities.

Further, my results (experimentally) confirm prior research findings that

• first-year university students lack basic mathematical knowledge and therefore
have difficulties with the comprehension of statements (e.g., Dubinsky & Yi-
paraki, 2000; Ferrari, 2002) and proofs (e.g., Conradie & Frith, 2000; Dubinsky
& Yiparaki, 2000; Moore, 1994; Reiss & Heinze, 2000) as well as with proof
evaluation (e.g., Harel & Sowder, 1998; Healy & Hoyles, 2000; Kempen, 2019;
Recio & Godino, 2001; Weber, 2010),

• most students find generic and, in particular, ordinary proofs convincing (e.g.,
Kempen, 2018, 2021; Ko & Knuth, 2013; Weber, 2010),

• about half of the students used empirical arguments (Barkai et al., 2002; Bell,
1976; Healy & Hoyles, 2000; Lee, 2016; Recio & Godino, 2001) to justify
unfamiliar universal statements, while most of them used external arguments
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(i.e., based on authorities or a rule) (Harel & Sowder, 1998; Sen & Guler, 2015;
Sevimli, 2018; Stylianou et al., 2006) to justify familiar universal statements.

My findings can be used to develop future university courses in a manner that eases
and promotes the transition to proof-based mathematics. Particular attention should
be put on students’ comprehension of statements, including understanding their
generality, before they are confronted with proof reading or construction. Empirical
arguments and potentially generic proofs can support students’ understanding of
statements and their success in estimating the truth value, but their limitations and
the necessity of proof should be made clear.

Lastly, based on my findings, I provided several suggestions for future research
on students’ proof skills and students’ understanding of the generality of statements.
In particular, further research on students’ self-reports regarding proof-related ac-
tivities and their actual understanding and proof skills would be very valuable. My
study further highlights the benefits of and need for more experimental studies in
mathematics education and in particular in research on proof and argumentation.
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