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Preface

A drone is an aircraft controlled by a navigator, a pilot with remote transmission of 
signals from the ground or from another location, or that flies autonomously accord-
ing to preset memorized data. It should be noted that drones are used for both civilian 
and military purposes.

The most common use of drones or unmanned aerial vehicles is in the military. Unlike 
a cruise missile, a drone can be used more than once. It is constructed according to 
all the rules of the trade like other aircraft, but it does not have a crew or a pilot. A 
drone designed for one-time use is referred to as a suicide drone, which is constructed 
cheaply, filled with explosives or other lethal means, and used to destroy critical 
targets. Disposable drones can also be used as targets for shooting by anti-aircraft 
defense to train future pilots. Depending on the purpose, drones can be equipped 
and armed differently, or they can be unarmed. A drone’s construction, including its 
aerodynamics, is identical to that of modern military aircraft and manned helicopters. 
In fact, drones are more often designed as airplanes and less as unmanned helicopters.

The technique and principles of a drone’s takeoff and landing are similar to those of 
manned aircraft, however, there are also solutions based on appropriate catapulting and 
landing with a parachute. Usually, the drone is controlled in a combined or hybrid man-
ner. In one part of the path, it is guided from a ground station with remote transmission 
of the command signal, and in the other part of the path, the drone flies autonomously 
according to preset navigation data and set components of the flight profile.

Currently, military drones predominantly perform reconnaissance and espionage 
tasks. Nevertheless, they are becoming increasingly involved in direct combat mis-
sions. All armed forces intend to reinforce the number of drones in their arsenal of 
weapons, with different tasks.

Drones are also used for civilian purposes, such as aerial photography, fire detection 
and firefighting, monitoring flood-prone areas, traffic monitoring, migration or 
animal movement monitoring, monitoring of various pipeline routes, and provid-
ing appropriate data to video security systems. In addition to surveillance, drones 
are used in agriculture, to collect data for scientific research purposes (especially in 
dangerous situations for humans such as collecting data from volcano craters or other 
dangerous sources), and delivery of products and packages. Recently, drones have 
begun to be used in certain types of “sports”.

Navigator or drone pilot is expected to be one of the most in-demand jobs of the 
future. Huge amounts of money are being invested in drones and this is an obvious 
signal that drones are playing an important role in both military and civilian fields.

This book provides a comprehensive overview of drone technology and applications. 
Chapter 1 provides an overview of drone technologies and related applications. 

XII
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Chapter 2 discusses the importance of the detection and classification of drones, 
which is crucial due to their potential use in illicit activities. Radar systems can pro-
vide a promising solution when combined with machine learning and artificial intelli-
gence models, as outlined in the chapter. Chapter 3 is dedicated to defining autonomy 
or autonomous capability from the context of a single drone. However, future drone 
applications will be used as multi-drone systems consisting of multiple drones. 
Chapter 4 deals with deformable correlation networks for tracking and segmenting 
aerial objects, including drones. Chapter 5 discusses the modeling and simulation of a 
solar-powered quadcopter using the MATLAB package. Chapter 6 is devoted to issues 
“related” to electric unmanned aerial vehicles or drones. Chapters 7 and 8 are devoted 
to the integration of drones into the curricula of the respective educational institu-
tions in different environments. Chapters 9–13 examine the application of various 
drones in specific situations, such as fire detection and warnings, bridge inspection, 
collision prevention, detection of appropriate elements on agricultural goods, and 
mapping of agricultural goods based on predefined parameters.

I would like to express my sincere gratitude to all the authors and coauthors for their 
contributions. The successful completion of this book, Drones – Various Applications, 
is the result of the cooperation among many people. I especially want to thank 
Publishing Process Manager Ms. Mirna Papuga at IntechOpen for her support during 
the publishing process.

Dragan Cvetković
Singidunum University,

Belgrade, Republic of Serbia
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Chapter 1

Drone Technologies and 
Applications
Koç Mehmet Tuğrul

Abstract

Unmanned aerial vehicles, previously used for military purposes, have started to 
be used for civilian purposes since the 2000s. With the widespread use of unmanned 
aerial vehicles, mostly used for defense purposes, they have turned into flying vehicles 
called drones. Today, it is used for different purposes such as taking pictures, taking 
images from inaccessible places, competitions, and having a good time. However, it 
continues to evolve, playing an important role in social media and inter-company 
competition. In recent years, studies have continued on small drones that can fly 
autonomously, especially in closed areas, and assist people. The shrinkage and cost 
reduction of electronic components such as microprocessors, sensors, batteries, and 
wireless communication units shows that drones smaller than 1 kg will soon occur 
in many areas of our daily life at much more affordable prices. This rapid change, 
development, and proliferation of drones also raise privacy and security concerns. 
While obtaining images of people and institutions in supposedly private environ-
ments with such technological devices emphasizes individual security, its use in urban 
areas and airports draws attention to social security. The rapid developments in this 
area necessitate the necessary regulations and controls to prevent accidents and other 
problems due to the growth in use and loss of control.

Keywords: unmanned aerial vehicle, drones, drone features, drone technologies, drone 
usage fields

1. Introduction

Although the original translation refers to a flying electromechanical technol-
ogy used to mean “drone,” the term drone is based on a game using the term “Queen 
Bee” [1]. The historical development of drones shows that the first vehicle that fits the 
definition of unmanned aerial vehicles (UAV) was the unmanned hot air balloon used 
in France in 1783. Since then, drones have continued to be used in intelligence, aerial 
surveillance, search and rescue, reconnaissance, and offensive missions as part of 
the military Internet of Things (IoT). Drones are widely used in many areas, such as 
traffic surveillance, cargo, first aid, agriculture, entertainment, hobby, security, and 
surveillance, as they provide many customizable solutions that combine practicality 
and speed.

XIV
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In any case, the low resolution of open-source images provided by satellites, the 
expensiveness of high-resolution images, and the dependence of satellite images on 
weather conditions create significant problems in the supply and evaluation of images. 
Drones fill an important gap as images taken by drones that can fly several meters above 
the ground offer advantages such as cloud-based data analysis, allowing manufacturers 
to monitor product development and quality continuously, easily, and quickly [2].

Such technological equipment also allows real-time monitoring of the busi-
ness situation in the construction industry, rapid analysis of the excavation area in 
the mining industry, precise determination of the excavation to be excavated, and 
preliminary preparations. In the energy and infrastructure sector, it is possible to 
determine roads, cables, and pipelines and plan accordingly. Aid organizations use 
drones to locate camps, plan transportation routes, and monitor work. It allows the 
rapid delivery of goods and services and the arrangement of communication infra-
structures to areas with a high density of buildings and people or where there is no 
highway transportation.

Drones for transportation fulfill important tasks in delivering medical supplies 
and foodstuffs over long distances in emergencies and rapid rescue efforts. Drones are 
also used in the logistics industry to detect damage and cracks in the ship structure 
and hull, allowing emergency teams such as the fire brigade to intervene in dangerous 
areas quickly and safely. We also see drones in measuring the level of wear and tear on 
highway routes, security checks in bridges and tunnels and other determinations, and 
interior controls of partially damaged buildings in disaster. To provide the communi-
cation needs of different work groups or rescue teams in the field of activity, drones 
can be used in communication as well as helping to establish private communication 
networks quickly. Although the battery life problem, the biggest obstacle in using 
drones, is still a problem in long-distance tasks, it is possible to perform longer func-
tions by changing the battery in short-distance studies. Another important limitation 
of unmanned aerial vehicles used today is the need for human supervision to perform 
almost all of the tasks described, which are factors that slow down the performance of 
the specified functions and the intervention in case of danger.

Many factors are considered depending on the size and flight characteristics of 
drones. Among these, the increase in energy cost due to the reduction in size and the dif-
ficulty of hanging in the air can be counted. On the other hand, there is no ideal design 
for fixed and rotary wing drones that combines both aerodynamic and propulsion 
performance. These include traditional fixed-wing and rotary-wing designs and bio-
inspired designs based on flapping wings. Of course, each of these designs has advan-
tages and disadvantages. For example, fixed-wing aircraft can fly quickly and efficiently 
but cannot hover. Rotary-wing designs can hover and are highly maneuverable but have 
lower flight efficiency. On the other hand, there is no ideal design for both fixed and 
rotary-wing types that provides both aerodynamic and thrust performance [2].

The growth in the use of commercial and personal drones has necessitated many 
regulations to prevent accidents and provide drone control in a way that does not pose 
a hazard [3]. Although many countries have created UAV regulations, the increasing 
use of drones causes rules to change constantly and new rules to be introduced. These 
regulations vary between countries and regions. Among these regulations, in the UK, 
the Civil Aviation Authority (CAA) limits the flight altitude of unmanned aerial vehicles 
to 500 feet, drones weighing more than half a kilo. It is important to register it with the 
CAA. The agency also states that it is prohibited to fly near airports and an aircraft with 
its “Dronecode” that it is mandatory to stay below 400 feet and at least 150 feet away from 
buildings and people, and that the drone must be constantly observed during flight [1].
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2. Features of drones

Drones, designed with a kite-like mechanical architecture and one engine placed 
on its diagonal points, mainly consist of four basic components: propeller, engine, 
body, and flight board. Drones, generally defined as 250 and 450 class according to 
the distance between the two crossed motors, are classified as single rotor (helicop-
ter), multi-rotor (multicopter), fixed wing, and fixed-wing hybrid VTOL according 
to their physical structures.

Single-rotor drones are small-sized helicopters and fueled or electric types are 
available. Working with a single blade and fuel offers advantages such as increasing 
stability and flying longer distances, but it also brings safety risks.

Multicopter are the smallest, lightest, and most widely used drones on the market. 
Their flight distance, speed, altitude, and payload are limited. These drones, which 
usually carry a light load such as a camera, are used for terrestrial observations and 
determinations of up to 50 minutes of flight time.

Multicopters are divided into models with four engines (quadcopter), six engines 
(hexacopter), and eight engines (octocopter) according to the number of motors. 
The main factor determining the design here is the carrying capacity of the drone 
and the required range; accordingly, the size and number of engines are determined. 
According to the necessary range and control structure, there are many types of 
drones, from hobby-purpose models with a range of 30–40 meters to professional 
models with a range of 10 km+, together with the engine, chassis, and battery.

• Tricopter: It is a type of drone that can take off and land vertically and has six 
degrees of freedom on the X–Y–Z axes. Its cost is lower than other options. 
However, it is an important disadvantage that it is not symmetrical (Figure 1).

• Quadcopter: It is the most preferred type of drone. It is simple as well as versa-
tile. In this way, it provides ease of use. It has four propellers and four motors, 
two on the right and left, and can take off with a load of up to 5 kg. A higher 
flight comfort can be achieved with its four-arm structure being symmetrical. 
However, since the quadcopter system works as a whole, it has no backup plan 
or redundancy. Therefore, in case of any malfunction, the drone will most likely 
crash (Figure 2).

• Hexacopter: It is a type of drone with six propellers. It is a type of drone that 
can offer excellent performance even on indoor flights, thanks to its advanced 
forward vision system and ultrasonic sensors. It can be equipped with various 

Figure 1. 
Tricopter.
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equipment and take off with a load of up to 10 kg, as in other models. It has the 
features of using the vehicles in automatic or manual mode with products called 
desk or vehicle terminal, which enable longer range operation outside the flight 
control system and hand terminal, such as returning to the starting position 
when it goes out of the coverage area, when the signal is cut off or when the bat-
tery is about to run out (Figure 3).

• Octocopter: It is a type of drone with eight propellers. It is an advanced type of 
drone that can take off with a load of 25 kg with its equipment. It is especially 
preferred for heavily loaded works (Figure 4).

• Fixed-wing drones: Unlike rotary wings, they use wings like a regular airplane 
instead of vertical lift rotors to provide lift (Figure 5). In other words, they only 
need to use energy to move forward. They are much more efficient as they do 
not use additional power to stay in the air, so they can cover longer distances and 
scan much larger areas. Gasoline-powered ones can remain in the air for 16 hours 
or more.

The main disadvantage of a fixed-wing aircraft is that they cannot fly in one spot. 
Depending on their size, they need a runway or launcher to get them into the air. 
Fixed-wing also makes launching and landing them much more difficult, as a runway, 
parachute, or net may be needed for a safe landing again after the flight. Only the 
smallest fixed-wing drones are suitable for manual launch and “belly landing” in an 
open area. Other negative aspects are the high cost and difficulty of using fixed-wing 

Figure 2. 
Quadcopter.

Figure 3. 
Hexacopter.
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drones. Training and certification are needed to develop control capabilities to enable 
takeoff, flight, and soft landing when a fixed-wing drone is launched. The difference 
to be considered by the drone pilot is that a fixed-wing drone always moves much 
faster than a forward, multi-rotor drone.

• Fixed-wing hybrid VTOL drone: Fixed-wing hybrid VTOL drones are a new 
hybrid category that can also take off and land vertically, combining the advan-
tages of fixed-wing UAVs and the ability to hover. These drones are a mix of 
fixed-wing drones with rotors attached to the blades and rotor-based drones 
(Figure 6). There are fixed-wing designs with no movement feature of vertical 
lift engines, models with motors that provide forward motion, and various types 
with propellers that can move up and down for takeoff and horizontally for 
forward flight. Fixed-wing hybrid VTOL unmanned aerial vehicles, thanks to 
its hybrid approach, this technology offers users the durability of a fixed-wing 
design and the vertical flight capabilities of a rotor-focused design. With the 
introduction of modern autopilots, gyroscopes, and accelerometers in this field, 
it has become easier to operate these drones.

Fixed-wing hybrid VTOL unmanned aerial vehicles have the advantages of flying 
vertically and hovering, offering greater versatility than fixed-wing drones and the 

Figure 4. 
Octocopter.

Figure 5. 
Fixed-wing drone.
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durability needed to travel long distances with heavy payloads. On the other hand, 
they could be better in both forward flying and hovering features, and the need for 
specialized personnel in the flight and control of these types of drones is an important 
consideration.

Drones, divided into four main groups according to wing type, are used in aerial 
mapping, inspection, surveillance, agriculture, and search-and-rescue areas. Drones 
can be classified according to size, from very small to large drones [3].

Drones size, very small drones, length of 150 mm, weight of 200 g; small drones, 
length of 151–300 mm, weight of 200–1000 g; medium-sized drones, length of 
300–1200 mm, weight of 1–20 kg; large drones length of 120 cm, weight is classified 
as 20 kg. The payload a drone can carry will depend on the engine’s power and the lift 
generated by the propeller in standard weather conditions.

According to the payload they can carry, drones are featherweight, with a weight 
of less than 11 g and a load of 4–100 g. drones, light drones with a weight of 200–
1000 g, a payload of 150–270 g, medium-weight drones with a weight of 1–600 kg, a 
load of 400–1460 g Drones, and heavy-lift aircraft with a weight of more than 160 kg 
and a payload of more than 1000 kg are divided into four classes. Featherweight 
drones are mostly used for military surveillance, light and middleweight drones are 
used in recreation and photography, and heavy-lift aircraft are used in the cargo 
transport and cinema sector.

Drones by range, very close range drones, 5 km range and 1-h flight time; close 
range drones, 50 km range, 6-h flight time; short-range drones, 150 km range, 12-h 
flight time; medium range drones, 644 km range, 24-h flight time and long-range 
drones are divided into more than 644 km range and more than 24-h flight time. The 
drones in this grouping are mostly used in military surveillance, aerial photography, 
and mapping works.

For a drone to fly, it must have a power source such as batteries or fuel. Their 
power sources classify drones as battery-powered, gasoline-powered, hydrogen fuel 
cell, and solar drones. Despite the advantages of battery-operated drones, such as 
lightweight, sufficient energy storage, and high discharge rates, they have disadvan-
tages, such as short lifespan, rapid energy consumption, and burn risks. Gasoline 
drones have important advantages such as not needing expensive spare batteries 
and charging stations, no need to wait for the storms to recharge, high flight speeds, 
carrying heavy loads, and long flight times. On the other hand, it has undesirable 

Figure 6. 
Fixed-wing VTOL drone.
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features such as large size, noisy operation, and combustion and explosion due to fuel. 
Although hydrogen fuel cell drones have positive features such as using renewable and 
environmentally friendly energy, higher energy efficiency than batteries, long flight 
time, and short refueling, they have disadvantages such as excessive heat generation 
and low operating efficiency. Solar drones, on the other hand, have low operating 
costs and are lightweight but have limited flight time.

According to the motor type, drone types are divided into brushed and brushless. 
Brushed motors are the type of motor used in recreational drones. Although these 
engines are inexpensive, they require much maintenance. The larger the dimensions 
of these engines, the greater their power. Most motors are not in direct contact with 
the propeller. Brushless motors, being in connection with the rotor, reduce the need 
for maintenance and increase operating efficiency. It has much higher power than 
brushless motors. However, since this type of drone motor predominantly works with 
alternating current, each motor must have an electronic speed controller (ESC) that 
adjusts its rotation speed [3].

3. Main structural elements of drones

3.1 Frame

The drone body is the main skeleton system where all drone parts are placed 
(Figure 7). The drone body can be compared to the chassis in computers. The 
propellers, motors, battery, camera, and receivers fit into the fuselage and are 
ready to do their job. It has an “X” style design with four arms extending from 
the middle body. All other parts are in the body, especially the rotors, battery, 
cards, and camera. If we compare it with the human anatomy, the body forms the 
skeleton of the drone. F330, F450, and F550 models are the most preferred drone 
bodies. The most important criteria in choosing these bodies are the ease of spare 
parts supply, suitability of the price/quality ratio, and the performance it provides. 
Despite its high price, the QAV250 fiber carbon material is another preferred drone 
body because the carbon-fiber material reduces the possibility of breakage in case 
of falling [4].

Figure 7. 
Drone frame.
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3.2 Propellers

Also called rotor or blade, drone propeller comes in various shapes, sizes, and 
materials. Regardless of their specific characteristics, all propellers are the basic 
equipment that does not allow the drone to take off (Figure 8). The propeller is one 
of the most sensitive parts of the drone and can be easily damaged as it needs to be 
constantly replaced or installed. These parts, which can be easily dislodged, broken, 
or corroded during the flight, must be checked. The propellers should be maintained 
for a good and uninterrupted flight, and continuous preflight checks should be 
carried out. Propellers are generally made of plastic material, and shaft and propeller 
diameter are important parameters when changing.

3.3 Motors

The drone motor is the main dynamo that makes the propellers spin and provides 
enough thrust for flight. They convert the electrical energy stored in the battery into 
motion energy and enable the propellers to rotate (Figure 9). Motors, one of the most 
important parts of the drone, are very important, especially for the drone to work 
effectively. Removing dust and debris is necessary to prolong motor life and ensure 
trouble-free operation. If the engine makes an unusual noise, it is time to check the 
motor. Two types of brushed and brushless motors are used, which vary according 
to their size, weight, and load. Brushed motors are preferred for lighter and partially 
entry-level drones, and brushless motors are preferred for heavy and professional 
drones. While determining the drone motor, size, work, and speed are important 
parameters.

3.4 Battery

The battery, described as the heart of the drone, is the most important part in 
terms of power generation and performance (Figure 10). The lithium polymer 
or lithium-ion battery inside can easily supply propellers’ movement energy. 
Drone batteries are defined as 1s, 2s, and 3s according to the number of cells in the 
battery. Each cell corresponds to a voltage of 3.7 volts. In this case, 1-cell lithium 
polymer batteries are preferred in light hobbyist drones, while 2- or 3-cell batteries 
are used in drones that require higher voltage. They are not easily damaged, but 
they can be discharged. For this reason, uninterrupted flights need to have spares 
for batteries and propellers.

Figure 8. 
Propellers.
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3.5 Flight control cards

This part, which provides the necessary controls by interpreting the signals from 
various cards, sensors, and receivers, is the drone’s brain. The flight control card is a 
circuit board that enables the UAV to move through the sensor information it receives. 
Sensors are just like a nervous system and are essential for boarding cards. It converts 
received signals into action for setting speed and direction, activating the camera, 
and executing other commands. By combining many sensors such as the gyroscope, 
magnetometer, and accelerometer with GPS, flight control CPUs can use data about 
the UAV’s status, speed, position, and direction to guide the vehicle’s flight and opera-
tion according to parameters. These operations are guided by the settings determined 
by the user before the flight. Other sensors also enable the autopilot to avoid obstacles 
and collisions while operating. Autonomous UAVs, on the other hand, can perform all 
flight plans, including VTOL or runway takeoffs, in-flight maneuvers, and landing, 
according to defined parameters (Figure 11).

Figure 9. 
Motor.

Figure 10. 
Power supply.
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3.6 Power distribution board

PDB (Power Distribution Board), mounted on the Drone; the circuit board 
organizes the power connections of batteries, ESCs, and other onboard systems. It is 
unnecessary for all drones but helps create a neat and organized drone (Figure 12). 
In particular, it is responsible for power distribution from the flight battery to each 
electronic speed controller for the drone control board. In some cases, the PDB is also 
used to power components such as the camera, LED taillights, and flight controller.

3.7 Electronic speed controller

Like the PDB, the Electronic Speed Controller (ESC) is another essential part 
that only requires a little attention or maintenance. Its task is to control the speed 
of electronic motors (Figure 13). Each motor has its own ESC connection. In many 
standard installations, each branch has a separate ESC. However, 4-in-1 ESC parts are 
also available and provide different advantages. The ESC is the first place to look when 
a power-related problem occurs, especially local issues with a particular engine.

Figure 11. 
Flight control board.
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3.8 Drone controller and receiver

The drone controller is the tool for managing and directing the drone. The most 
important feature of the remotes is the number of channels. The number of channels 
should be as much as the type of command given to the drone. While 6-channel con-
trols are mainly used in drones today, this number can increase with accessories such 
as cameras. A digital display on the controls is another feature that makes it easier to 
use (Figure 14).

Receivers are like sensory nerves; they collect information (signals) from external 
sources (radio transmitters) and transmit them to the brain (flight controller). It is 

Figure 12. 
Multiple power control board used for quadcopter.

Figure 13. 
Electronic speed control and controller.
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the part that detects the commands from the remote control and enables the drone to 
move. Receivers using radio waves offer a very fast and uninterrupted transmission. 
Typically, they use an integrated antenna that allows the reception of radio signals. 
The receiver will have four channels to control the down, oscillation, acceleration, 
and yaw. However, many receivers have auxiliary channels to perform certain func-
tions or trigger flight modes. Five or 6-channel receivers are generally the preferred 
models [4].

3.9 Camera

Not all drones have a camera system, but models offer additional options in-flight, 
such as aerial photography, cinematic photography, or pilot’s eye view (FPV) flight. 
As with drones, video systems are available in various models and layouts when 
considering drone uses and have their parts, such as the gimbal, video transmitter, 
antenna, and FPV goggles (Figure 15).

One of the most important components in FPV (first-person view) imaging is the 
FPV camera. The FPV camera is mounted in front of the aircraft, and images from 
the camera are transmitted to the pilot’s glasses or monitor. There are two types of 
FPV cameras, analog and HD [5]. In these drones, the image comes first to the lens on 
the FPV camera; the sensors capture the image and convert it into electrical signals. 
These converted signals are sent to the video transmitter. When choosing a camera, 

Figure 15. 
Camera.

Figure 14. 
Six-channel drone receiver.



13

Drone Technologies and Applications
DOI: http://dx.doi.org/10.5772/intechopen.1001987

parameters such as sensor type (CCP/CMOS), sensor size, dynamic range, width 
ratio, field of view (FOV), delay, and low-light performance are the features to be 
considered.

There are two sensors used in cameras as CCD and CMOS. CCD sensor collects data 
using scanning method pixels simultaneously. It has less jelly effect due to the global 
more shot, high dynamic range performance, good performance in multi-light and 
low-light (WDR) environments, and better black/white transitions than CMOS. CMOS 
sensors collect line-by-line data for all pixels on the horizontal and vertical axis. This 
process can create delays, according to CDD. CMOS sensors may generally experience 
image distortions with the rolling shutter, that is, the jelly effect, which occurs when the 
CMOS sensor collects data line-by-line from the pixels. These sensors have good color 
fidelity and performance, have low power consumption, and are cheaper.

Another factor affecting image quality in cameras is sensor size. Low-light 
performance and dynamic range depend on sensor size. The larger the sensor size, 
the greater the field of view as the lens size and low-light performance increase. 
The dynamic range improves the image in bright and dark environments according 
to the light intensity and allows the user to see the desired object comfortably. The 
cameras have two aspect ratios, 16:9 and 4:3. Many cameras today have an adjustable 
double-width balance. Field of view (FOV) and angle are important user features. 
The larger the angle, the more difficult it is to view distant objects due to the fisheye 
appearance. The smaller the field of view, the closer and clearer the image. This event 
is preferred on immediate flights.

On the other hand, decreasing the lens length or increasing the sensor size 
increases the field of view. The “lux” unit is an important feature when shooting 
in low-light environments, and the increase in this value is a feature that improves 
low-light performance. Sensor size is very important in low light. As the sensor grows, 
the sensor area increases, causing more light to enter, and lower speed performance 
occurs.

3.9.1 Sensor features of drone cameras

Drones, cameras, and sensors detect differences, modeling, classification, devel-
opment, and changes, especially for agricultural applications. Imaging sensors such 
as red, green, and blue (RGB), and near-infrared, multispectral, hyperspectral, and 
thermal and distance sensors such as LiDAR and search-and-rescue (SAR) are widely 
used. RGB sensors capture the image as the human eye sees these red, green, and blue 
(RGB) colors, a narrow band of the electromagnetic spectrum.

Multispectral image sensor offers the opportunity to easily detect differences in 
the target area by using sensors sensitive to certain wavelengths along the electromag-
netic spectrum. The sensor types and features used for this purpose are divided into 
green, red, and blue visible bands, red edge, and near-infrared.

Visible light has wavelengths in the range of 400 to 700 nm. It determines regional 
features, elevation modeling, and object counting applications, especially for agricul-
tural uses.

Red Edge: The 717 nm center is a band corresponding to the 12 nm bandwidth. 
This tape provides information on phytosterols and chlorophyll. Accordingly, it is 
used in plant health, plant counting, and water management.

Near-infrared (NIR): 842 nm center is a band corresponding to 57 nm bandwidth. 
This reflection is used in soil, moisture analysis, crop health, and stress analysis 
depending on the chlorophyll level in the plant.
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Like other spectral imaging, hyperspectral imaging collects information and 
processes it into the electromagnetic spectrum. Nevertheless, aside from visible 
light, which the human eye can detect in three bands (red, green, and blue), spec-
tral imaging looks at objects using a wide part of the electromagnetic spectrum. In 
other words, thanks to this technique, which divides the image into many bands, it 
offers the opportunity to grasp objects and their properties in a much wider band 
range than what is visible in the pictures with a single camera. In particular, it is a 
technology that can be used in the detection of underground resources in mining, 
agriculture, the prevention of diseases and pests, the military field, thermal infra-
red hyperspectral imaging, the chemical field, in the detection of colorless and 
odorless harmful substances in the air, in environmental issues, in the detection 
of leaking toxic wastes. Despite the advantages of hyperspectral imaging, such as 
imaging in a wide spectrum, it is very expensive, and complex processing processes 
pose a significant problem [6].

Thermal imaging is an imaging system based on invisible IR energy (heat) and 
determines the general structure of the image, colors, and shapes formed according 
to IR energy. While normal cameras create the image thanks to the light, thermal 
cameras make the image thanks to the heat. Similarly, color differences are important 
when the human brain and eye use colors and light to create an image.

Thermal cameras are used to map the amount of water in the soil (SWC) depend-
ing on the land surface temperature (LST) [7]. Thermal cameras have limited spatial 
resolution, which often causes difficulties in homogeneous areas such as farmland 
with bare soil [8]. It is especially used in agriculture to determine plant water needs, 
detect disease, and for phenotyping.

4. Drone technologies

4.1 Radar positioning and returning home

Today’s drones can operate in GNSS and nonsatellite modes using a combina-
tion of Global Navigational Satellite Systems (GNSS) such as GPS and GLONASS. 
This precision navigation system brings 3D map creation, navigation, and search-
and-rescue (SAR) tasks while flying. Satellites take advantage of GNSS satellites 
when the drone is first powered up. It uses constellation technology. A satellite 
constellation is a group of synchronized satellites with overlapping coverage areas. 
The built-in compass lets the drone and remote control system know exactly the 
flight location. The compass is calibrated to set a starting point. Thus, the drone’s 
position will return in case of signal loss between the drone, and the remote 
control system is determined. This adjustment is also known as the “fail-safe func-
tion.” The radar technology in the drone checks some information on the control 
screen before starting the flight, confirming the suitability of the current condi-
tions for flight. This information includes that communication with good drone 
GNSS satellites has been established, and the drone is ready-to-fly. It provides 
information such as determining the current location, returning home using 
the button for any reason, reaching the set low battery level, and recording the 
starting point for the “Return to Home” feature in case of loss of communication 
between the drone and the remote control, and can return to the starting position 
without any problems [10].



15

Drone Technologies and Applications
DOI: http://dx.doi.org/10.5772/intechopen.1001987

4.2 Obstacle detection and collision avoidance technology

Drones are equipped with collision avoidance systems for safety purposes [9]. 
These systems consist of sensors that do not scan the environment but detect obsta-
cles. Data from the vision sensor, ultrasonic, infrared, LiDAR, time-of-flight (ToF), 
and monocular vision sensors transform images into 3D maps, allowing the flight 
controller to detect and avoid the object. With the help of software algorithms and 
SLAM technology using this data, 6-way obstacles are detected, and necessary actions 
are taken to prevent them.

4.3 Drone movement patterns

Roll is the Z-axis on the nose and tail of the aircraft, i.e., longitudinal. It means it 
rotates around the axis; the wings move up and down (Figure 16).

Pitch is the X-axis between one wing and the other wing of the aircraft, Lateral. It 
rotates around the axis; in other words, the nose and tail of the aircraft move up and 
down is also called the pitching motion.

Yaw is the Y-axis that runs between the upper and lower parts of the fuselage, 
passing through the aircraft’s center of gravity. It means the rotational movement 
on the axis. In other words, it is the right-left movement of the nose and wing of the 
aircraft [8].

4.4 Gyro stabilization, IMU, and flight controllers

The gyroscope immediately responds to varying forces coming into the drone 
by providing the necessary navigation information to the central flight controller. 
The inertial measurement unit (IMU) detects the current acceleration rate using 
the accelerometer and the gyroscope to see changes in rolling characteristics such 
as pitch, roll, and yaw. The IMU includes a magnetometer to calibrate against 
drift during flight. The gyroscope and IMU are core components of the drone 
flight controller, which is the drone’s brain. Gyro stabilization technology is one 
component that provides the drone with smooth flight capability by using all these 
components [10].

Figure 16. 
Drone movements.
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4.5 Drone engine orientation and propeller design

Motors and propellers are the technology that lifts the drone, allowing it to fly or 
hover. On a quadcopter, the motors and propellers work in pairs, with two motors/
propellers rotating clockwise and two motors/propellers rotating counterclockwise. 
The drone moves according to the data it receives from the flight controller and 
electronic speed controllers (ESC) for hover or engine flight direction.

4.6 GPS ready-to-Fly and No-Fly zone drone technology

According to the compass calibration, when the drone starts to work, the drone 
searches for the position of GPS satellites; when more than six satellites are detected, 
the drone becomes “ready-to-fly.” To increase flight safety and prevent accidents in 
restricted areas, the “no-fly zone” feature is activated, and flight is blocked. No-fly 
zones are divided into two categories, A and B. These regions can be renewed and 
changed by software updates. Suppose all controls are in the direction of flight. In 
that case, the flight of the drone is provided, and the existing flight telemetry and 
the objects or environments that the drone monitors with the camera can be followed 
over the mobile device or the control device.

4.7 Creating 3D maps and models

The drone visualization’s hyperspectral, multispectral, LiDAR, and thermal 
sensors are created by 3D digital surface models (DSM) of buildings, earth, and 
landscape and the land’s digital height maps (DEM). It has become very easy to make 
evaluations and plans about agricultural products, flowers, fauna, shrubs, and trees.

Time-of-Flight (ToF) is a precision mapping and 3D imaging technology that 
emits a very short pulse of infrared light and measures the rotation time of each 
camera sensor pixel. Flash LiDAR time-of-flight cameras offer a variety of solutions 
by measuring distances within a captured scene. This way, operations such as object 
scanning, obstacle avoidance, tracking and recognizing objects, and measuring 
volumes become easier.

Turning images into maps and models is as important as taking high-resolution 
drone images. For this, Pix4D Mapper, AutoDesk ReCap, 3DF Zephyr, Agisoft 
Photogrammetry software such as PhotoScan and ESRI Drone2Map for 2D/3D map-
ping and imaging software such as ArcGIS, PrecisionHawk, and DroneDeploy are 
among the most widely used tools.

5. Systems supporting the development of drone technology

The use of new technologies with existing systems is an important issue that ensures 
the development of the system and the increase in performance. With the addition of 
new generation technologies such as artificial intelligence (AI), the Internet of Things 
(IoT), big data, blockchain, 3D printing, robotics, gene studies, 5G, nanotechnology, and 
solar cells, which gained the first remote control feature with the use of radio signals, the 
usage area of drones expanded [11]. When evaluated in terms of the contributions of the 
developed technologies to the drones, the body, propeller, and engine parts are modeled 
with a 3D printer; with artificial intelligence technology, the range is increased with a 
solar cell, and it can process big data quickly with 5G, and control and coordinate the use 
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of a robot for special purposes with the results it produces. A drone that can fly is notable 
for most industries. The capabilities and usage areas of drones will develop depending 
on the technology development. Although drones are seen as the end users of developed 
technologies, they have the potential to be an important tool in the development of 
technological innovation, depending on the needs.

6. Drone usage areas

Although the use and development of drones are always for military purposes, the 
use of drones in both commercial and other sectors is becoming widespread today. 
The evaluations regarding the usage areas still used in this regard and expected to 
become more widespread soon are summarized below.

6.1 Agriculture

In agricultural areas, it contributes significantly to providing data to sector stake-
holders and increasing producers’ productivity by collecting data with regular land 
observation. Drones in spraying, fertilization, and plant damage detection applica-
tions inspect the planted crops (Figure 17). The use of drones in agricultural produc-
tion is becoming more common daily, and it provides convenience for producers to 
optimize production by increasing efficiency and reducing physical load. Drones offer 
significant time savings in agricultural research, planting seeds, monitoring livestock, 
and predicting crop yields. Smart farming techniques will become more widespread 
with drone and satellite data for producers to monitor their products and plan for 
planting, fertilization, and spraying times.

6.2 Environment

Depending on the increasing city population, drones are successfully used in 
environmental control and emergency response processes. To prevent environmental 
pollution, drones not only carry out projects aimed at cleaning the seas but also make 
an important contribution to the fight against poaching and the tracking of endan-
gered animals. The behavior and disease conditions of animals can be followed thanks 
to thermal cameras. In addition, oil companies use drones for inspections of oil and 
gas leaks. Drones with thermal cameras perform important tasks in detecting leaks 
quickly and preventing possible risks.

Figure 17. 
Agricultural drone.
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6.3 Health

The use of drones for medical purposes is used to transport response equipment 
to the scene in urban areas, to direct people to the stage with drones with cameras and 
audio devices, to transport equipment such as medicine and trauma kits in rural areas, 
or to facilitate search-and-rescue efforts.

In patients with shockable rhythm in prehospital events, delivering a life-saving 
defibrillator (AED) by drone is 32% faster in urban centers and 93% faster in rural 
areas where other vehicles cannot reach [12]. In the same way, it has been demon-
strated that it is possible to transport drugs/tissues, and blood products, with drones, 
with the research conducted with samples taken before and after the flight on the 
effect of vibration on the transported tissue. These materials can be delivered to dif-
ficult areas faster than the traditional methods [13].

6.4 Photography and cinema

Professional video shoots are made today using drones in commercials, TV series, 
and movie sets, successfully capturing specific images. It is used in the direct market-
ing of products and in taking aerial images to show a city, beach, or building from a 
bird’s eye view in advertising shoots. Advertising drones are becoming increasingly 
common in crowded events and areas with high density. It provides great convenience 
in collecting images and information from places that cannot be visited or entered, 
especially due to security problems. The use of drones can make a significant contri-
bution to innovation and quality in the film industry.

6.5 Mapping

Drones, becoming increasingly widespread in mapping, can map almost all terrains 
quickly and in three dimensions. For this purpose, LiDAR Drones with sensors provide 
highly successful and accurate data. LiDAR technology offers important solutions in the 
evaluation of agricultural products as well as the mapping of landforms (Figure 18).

Figure 18. 
Mapping with a drone.
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6.6 Logistics

Drones are used in the logistics industry to transport food, packages, or goods. It is 
preferred for transporting urgent or frequently sent small parcels and for delivery to 
hard-to-reach areas. One of the most important and pending problems in logistics use 
is that drones need a sufficient carrying capacity. Similar to agriculture, it is also used 
to scan different warehouse materials. Heavy-duty drones can improve road traffic by 
replacing existing carriers for material management and transporting goods between 
warehouses. Soon, drones may be an important player in the delivery options of pack-
ages (Figure 19).

6.7 Emergencies

Another area where drones are used is in emergencies. Drones help the fire 
brigade, police officers, volunteer rescuers, and more. Drones are used for recon-
naissance before guiding the rescue team, especially when the extent of the disaster 
is unknown. Autonomous underwater vehicles (AUVs) prevent possible drownings 
and assist in rescue in situations such as when a boat capsizes. Drones are also used to 
search for the injured in avalanche cases.

6.8 Conservation of wildlife and historic buildings

Drones are an economical and effective alternative to monitor wildlife species and 
protect natural life. Rapid aerial observations are important tools in gaining a better 
idea of the health of the species and ecosystem, monitoring and researching migra-
tion routes by monitoring animal groups, and preventing poaching.

Drones also scan forest floors destroyed by fires, releasing seed containers con-
taining seeds, fertilizers, and nutrients to help trees regenerate. Considering that 

Figure 19. 
Logistics drone.
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reforestation of such areas with human labor will take many years, the importance of 
using drone technology becomes apparent.

On the other hand, drones also play an important role in historic preservation 
efforts. Drones provide great convenience in creating 3D maps of historical places or 
structures. The 3D images used to reconstruct lost areas provide clues to experts about 
culture and architecture [14].

6.9 Military

The first known use of drones was for military purposes. It is used for differ-
ent purposes ranging from military, espionage, radar system, area detection, and 
observation to transporting food, weapons, and ammunition. Highly sophisticated 
drones are used, equipped with tools for thermal imaging, laser rangefinder, and 
even air strikes. MQ-9 Reaper, one of the drones used for military purposes today, 
has a length of 36 feet and is equipped with a 1852 km flight system at an altitude of 
50,000 feet [14].

7. Barriers to drone technology

Although drones have multiple potential uses, there are certain obstacles to their 
widespread use. Some of these barriers are summarized below.

7.1 Power source

One of the biggest problems for these vehicles, which have managed to work with 
increasingly smaller and lighter components, is the power requirement. Due to the 
limited flight times, developing drones capable of long flights with smaller and more 
powerful batteries remain the priority to solve this problem. Another important 
expectation is the development of systems that can analyze the terrain with object 
detection and recognition software instead of onboard systems that require increased 
weight and more power.

7.2 Security

The biggest obstacle to drone use is security. All human-operated aircrafts inher-
ently pose a risk of falling. Working on limited battery power, having fast spinning 
propellers, and the potential to fall from heights greatly threaten living things, 
structures, and the environment due to the increasing number of drones. In addi-
tion to obtaining the necessary permits for flights to be made in residential areas, it 
is essential to develop technologies to prevent possible accidents by autonomously 
detecting drone obstacles. The importance of safe use is increasing, especially with 
using drones in daily life. On the other hand, law enforcement should be put in place 
to limit drones’ interference with the privacy of others.

Drones are becoming a bigger target for cyberattacks as their use increases. 
Hackers can intercept the transmitted data to take control of the drone. For this 
purpose, extra measures should be developed to protect drones and the information 
they store, such as using protective software or passwords.
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8. Future prospects

Drones, which have high technology and raise the level of technology daily, are 
vehicles made of lightweight composite materials that increase strength and maneu-
verability. Today, drones are used in a wide variety of fields, such as construction, 
defense, photography, marketing, delivery, agriculture, rescue, and entertainment, 
and they will certainly meet with drones in new sectors soon, depending on the need 
for use.

It seems to be a handicap that fixed-wing drones, capable of long-distance flight, 
cannot perform vertical takeoff and landing. For this reason, long-distance drones 
with VTOL technology that can take off vertically, hover, and land will become wide-
spread. Drones with improved navigation technology and enhanced connection sensi-
tivity to the group navigation satellite will further improve their ability to direct to the 
right target. With advanced obstacle detection technology and sensing sensors such 
as ultrasonic, vision sensor, infrared, LiDAR, and monocular vision, drones will gain 
new capabilities in 3D mapping. It seems possible to further improve the manifold of 
accuracy and speed of real-time data transmission, combined with 5G technology of a 
GPS that helps to know the real-time location and increases the accuracy. Introducing 
new services in agriculture, construction, defense, aerial photography, marketing, 
delivery, rescue, and entertainment will expand the use of drones, thanks to high-
definition cameras that record and transmit real-time video of a location while flying 
at a high altitude. Particularly in small-scale enterprises, delivering parcels by drones 
to regions with low productivity and short distances will be an important element 
in reducing operational costs. Using drones to rapidly deliver small packages for 
logistics, medicines, and food over short distances saves labor. However, it can also be 
offered as a solution to intensifying road traffic due to increasing urbanization.

Increasing environmental concerns and road traffic also increase the demand 
for air taxis. The widespread use of drone taxis will shorten travel times and reduce 
carbon emissions, cost, and traffic congestion. The spread of air ambulances will 
improve the rapid delivery of medical aid to areas in need and the use of drone ambu-
lances in regions affected by natural disasters and congested areas. Drones equipped 
with thermal sensors, infrared, night vision cameras, and transmission devices, 
working as a powerful surveillance system, are one of the important tools in obtaining 
real-time information about the locations of missing persons, injured, and criminals 
in difficult and high terrain. In addition, drones facilitate tracking poachers, as they 
continuously monitor forest life and wildlife protection areas without approaching 
wild animals.

Drones, which provide a detailed view of large areas, spaces, and a particular 
subject, also intensify the interest of professionals such as commercial photographers, 
cartographers, and geologists and provide information about the environment at a low 
cost. Drones are the important helpers in ensuring the crowd’s safety in demonstra-
tions, marches, and other meetings held in public areas. Drones with high-definition 
cameras serve successfully in aerial image and video shooting at sports events.

Thermal sensors and gyroscopes, with their high maneuverability, small size, and 
power, increase the accuracy of regional and national weather forecasts by following 
the scientists’ weather events in detail. It will be inevitable to use it more widely by 
developing in taking precautions and early warning works by giving an idea about the 
trajectory of large-scale weather events such as hurricanes.
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Agriculture mechanization is important in developing agricultural practices for 
human nutrition and a sustainable, healthy food supply. The destruction caused by 
the increasing weight of the massive machines used for efficient and economical 
production in large areas is a reality. Drones have the potential to be an option in 
solving this problem. Particularly in agriculture 4.0, IoT applications, taking data 
quickly from large areas with unmanned aerial vehicles (UAV) and unmanned ground 
vehicles (UGV), swarm communicating with each other, mapping the land and 
field-specific applications of agricultural processes according to the data obtained 
accordingly, and product yield and quality. It has a sustainable solution potential that 
will increase.

9. Conclusions

Significant developments in drone technology in recent years have made the 
procurement cost of drones cheaper, and their use has become widespread for profes-
sional and civilian purposes. Although there are many different types of drones, it has 
become easy to find one that appeals to everyone. Drones are classified by fixed-wing, 
multi-rotor, or VTOL construction, size, weight, and power source. These features 
also determine the drone’s range, flight time, and loading capacities. The transported 
load, cameras, sensors, and sensors can be hardware, parcels, drugs, and physical. In 
the control of the drone under load, certain frequencies are used for communication 
between the user controller and the drone. International coordination and standard-
ization of this connection, called frequency spectrum in terms of flight and commu-
nication security, will fill a deficiency.

Future developments in drone technology include making drones smaller, lighter, 
more efficient, and cheaper. As such, drones will increasingly become available to the 
general public and be used for an ever-increasing scope of applications. Drones are 
expected to become more autonomous soon, and the ability to move in swarms will 
increase.

The main factor limiting the use of drones is the power supply, namely the flight 
time issue associated with the battery draining and needing to be recharged. On the 
other hand, the framework of the rules and sanctions that drone users must comply 
with regarding other citizens’ privacy and personal rights while doing their targeted 
work are among the issues that should be clearly stated. In parallel with the develop-
ing technology, it is a fact that some features still considered a problem will be solved 
soon, and drones will become more visible in our daily lives.
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Chapter 2

Detection and Classification of
Drones Using Radars, AI, and
Full-Wave Electromagnetic
CAD Tool
Ahmed N. Sayed, Omar M. Ramahi and George Shaker

Abstract

Detection and classification of drones have become crucial due to their potential
usage in illicit activities. Radar systems can provide a promising solution to this
needed task when combined with machine learning (ML) and artificial intelligence
(AI) models. Radar datasets that contain drone information are needed to train AI
models. Generating radar datasets that contain drone information is one of the most
important challenges in this application as it is expensive and time-consuming. In
addition, such datasets are limited to the radar used, the background environment,
and drone types. In this chapter, full-wave electromagnetic (EM) and computer-aided
design (CAD) tools are proposed for use to generate radar datasets that contain drone
information. The proposed method overcomes this prevailing challenge in the field of
radar detection and classification of drones. Furthermore, drones are widely classified
using their range-Doppler information, which depends on their mechanical motions.
The impact of the control systems of four different drones on their range-Doppler
signatures is examined using a full-wave EM CAD tool. Finally, we demonstrate how
we advance state-of-the-art literature on the detection and classification of drones
utilizing radar systems, a mechanical control-based machine learning (MCML)
algorithm is used to classify the four unmanned air vehicles (UAVs).

Keywords: radar detection, UAV classification, machine learning, numerical
simulations, UAV control

1. Introduction

Unmanned air vehicles (UAVs), also known as drones, have become easily acces-
sible worldwide in which they are possibly be used in many terrorist attacks and illegal
activities [1–10]. This requires having systems to detect and classify drones at a
distance to have time to take actions if needed. Radar-based systems are preferred in
comparison with optical, acoustic, and RF-based systems due to their advantages in
this application [11–16]. Radar systems work night and day, and in bad weather
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conditions, they can detect several drones at a time, track autonomous drones, and
classify them when combined with ML models [11–16].

Classification of radar targets is widely achieved through the generation of range-
Doppler images and micro-Dopler signatures [17–19]. Generating radar datasets that
contain UAV information using real measurements costs a lot and wastes time. In
addition, these datasets are limited to the used radars, UAV types, and the location
and surroundings in which these measurements are made [20]. In this chapter, we
propose to use a full-wave EM CAD tool, such as Ansys high-frequency structure
simulator (HFSS) [21], to generate radar datasets the contain UAV information for
the purpose of training ML algorithms [22–25]. Traditionally, full-wave EM CAD
tools are used for designing and simulating high-frequency stationary electronic
products. The proposed method using Ansys HFSS SBR+ solver [21–25] can be
used to move drones and perform time-based full-wave analysis. For example,
Figure 1a–c illustrate the DJI S900 hexacopter UAV, Ansys HFSS model of this
hexacopter, and three-time stamps showing the rotation of its blades in Ansys HFSS,
respectively.

2. Datasets generation

Six different UAVs are modeled using the full-wave EM tool, the six UAVs are a
fixed-wing UAV, a helicopter UAV, 3 quadcopter UAVs, and a hexacopter UAV. They
are modeled according to the Albatross drone [27, 28], the Black Eagle 50 drone [29],
the DJI FPV drone [30], the MD4-1000 drone [31, 32], the Phantom 3 standard drone
[33], and the DJI S900 drone [26], respectively. The specifications of these drones are
shown in Table 1. A W-band frequency modulated continuous wave (FMCW) radar

Figure 1.
(a) The DJI S900 UAV [26], (b) Ansys HFSS model for the DJI S900 UAV, and (c) three-time stamps for the
modeled DJI S900 UAV showing its blades’ rotation.
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is used to generate the datasets required for this work for its high resolution. The radar
parameters used in this work are shown in Table 2, these parameters are chosen for
simplicity.

The six UAVs are modeled to pitch forward to the radar from a distance of
50 m/s with 5 m/s velocity, this distance is chosen to match the state-of-the-art
literature using mmWave radars for this application [34–38]. Figure 2 shows the
Ansys HFSS simulation setup used to generate the required datasets for this work,
while Figure 3a–f shows the range-Doppler maps obtained through Ansys HFSS for
the Albatross, Black Eagle 50, DJI FPV, MD4 1000, DJI Phantom 3 standard, and DJI
S900 UAVs, respectively.

A convolutional neural network (CNN) model is used to classify the six UAVs. The
architecture of the CNN model showing the number, types, and dimensions of layers
used in this work is illustrated in Figure 4. The CNN model is based on the
DopplerNet CNN model [39], a max pooling layer is added to this model to decrease
its complexity and avoid overfitting. The CNN model is applied to a dataset that

Type UAV Dimensions (m)

Fixed wing Albatross 0.74 � 0.2 � 0.15

Helicopter Black Eagle 50 2.65 � 0.56, blade 3.75

Quadcopter A DJI FPV 0.178 � 0.232 � 0.127

Quadcopter B MD4-1000 1.136 � 1.730 � 0.495

Quadcopter C Phantom 3 Diagonal 0.35 and blade 0.24

Hexacopter DJI S900 Diagonal 0.9 and arm 0.358

Table 1.
Dimensions of the six UAVs.

Quantity Symbol Value

Center frequency f0 77 GHz

Bandwidth BW 300 MHz

Range resolution ΔR 0.5 m

Velocity resolution ΔV 0.4 m/s

Maximum range Rmax 60 m

Table 2.
Radar parameters.

Figure 2.
Ansys HFSS test setup.
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contains a total of 1200 range-Doppler maps, 200 range-Doppler maps for each UAV.
The classification result is found to exceed 97% as shown in Figure 5. The findings of
this work demonstrate how accurate the proposed method can be used to generate
radar datasets that contain UAV information and training ML models on them.

Figure 3.
Range-Doppler image for the (a) Albatross UAV, (b) Black Eagle 50 UAV, (c) DJI FPV UAV, (d) MD4 1000
UAV, (e) DJI Phantom 3 standard UAV, and (f) DJI S900 UAV.

Figure 4.
The CNN model architecture.
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3. Mechanical control-based machine learning

UAVs have five basic motions, which are hovering, pitching, throttling, rolling,
and yawing. To perform each motion, the speeds of a UAV’s rotors have to be
changed, which affects its Doppler signature [23]. In the state-of-the-art literature,
ML models are trained on datasets that contain a UAV’s hovering and pitching

Figure 5.
The confusion matrix for the CNN model.

Figure 6.
(a) Traditional algorithm and (b) MCML algorithm.

29

Detection and Classification of Drones Using Radars, AI, and Full-Wave Electromagnetic…
DOI: http://dx.doi.org/10.5772/intechopen.1002532



motions only, and they are tested on the same datasets [36, 40–50]. This leads to a
degradation on ML accuracy if these trained models were tested using different
datasets that contain other motions [23]. As radar signature of UAVs is highly

Figure 7.
Ansys HFSS simulation setups for different motions. (a) Throttle, (b) pitch, (c) roll, and (d) yaw.

Figure 8.
Range-Doppler maps for the hexacopter UAV at different motions.
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dependent on the mechanical control information of them [23]. In this section, the
impact of the mechanical control information of four UAVs on ML accuracy is inves-
tigated, and a mechanical control-based machine learning (MCML) algorithm is pro-
posed to overcome this effect [23]. Figure 6a and b shows the traditional algorithm
used for the state-of-the-art literature and the MCML algorithm, respectively [23].

To perform this investigation, the full-wave EM simulator is used to model the
different motions of the four UAVs, a helicopter, a hexacopter, and two different
quadcopters, Figure 7a–d show the throttle, pitch, roll, and yaw motions,

Figure 9.
The confusion matrix of the CNN model when it is tested on: (a) same dataset and (b) different dataset.
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respectively [23]. As an example, the range-Doppler maps for the hexacopter UAV for
the different motions are shown in Figure 8.

Two different datasets, containing the range-Doppler maps for the four UAVs, are
generated: the first dataset contain the pitch and hover motions only to match the
state-of-the-art literature, and the second dataset contain all the basic motions for the
UAVs. The CNN model shown in Figure 4 is trained on the first dataset and is tested
on the same dataset as done in the state-of-the-art literature, and then it is tested on
the second dataset that contains different motions to investigate the impact of the
mechanical control information of the four UAVs. The result of this investigation is
summarized in Figure 9a and b, which illustrates how the CNN model failed to
classify the four UAVs when it was tested on another dataset that has different
motions. Subsequently, the MCML algorithm [23] is applied, yielding an accuracy of
92.5% as shown in Figure 10. The MCML method gets over the loss in classification
accuracy that occurs if the mechanical control information of UAVs is ignored.

4. Countering radar deception

Using numerical simulations to generate radar drones datasets facilitate the process
for UAV and radar researchers to design and test appropriate radar systems for the
detection and classification of drones. Furthermore, the proposed method can be used
to decrease the effects of the attempts taken to deceive radar systems. Some of these
several attempts that are not limited to modifying a UAV’s body/blades, stealth-coating
to reduce a UAV’s radar cross section (RCS) area, equipping a standard UAV with
explosives, and training birds to hide a UAV from radar detection. All these examples
and more can be modeled using the proposed method to generate radar drones datasets
and train ML models on them. For example, Figures 11 and 12 and show the DJI S900
hexacpoter equipped by dynamite, and an octocopter is hidden by a group of birds,
respectively. Radar signature of these cases can be generated to be studied, and in

Figure 10.
The confusion matrix of the CNN model when applying the MCML method.

32

Drones – Various Applications



addition, signal processing techniques and ML models can be developed to counter
these attempts.

5. Conclusions

In this chapter, full-wave electromagnetic CAD tools are used to generate radar
UAV’s datasets to train machine learning (ML) models. The method provides accurate

Figure 11.
Ansys HFSS model for the DJI S900 hexacopter UAV with dynamite attached.

Figure 12.
Ansys HFSS model for a hidden octocopter by a group of trained birds.
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results for range and Doppler information of UAVs. The accuracy of a CNN model
used in this work is found to exceed 97%. The proposed method presents a paradigm
shift in how machine learning experts think about the application of radar classifica-
tion of UAVs. The effect of the mechanical control information of UAVs on machine
learning accuracy is explored using a full-wave electromagnetic CAD tool. The Dopp-
ler information is found to be highly dependent on mechanical control information of
UAVs. A MCML method gets over the loss in classification accuracy that occurs if the
mechanical control information of UAVs is ignored. The accuracy of the MCML
algorithm is found to exceed 90% compared with the state-of-the-art literature in the
application of radar detection and classification of UAVs.
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HFSS High-frequency structure simulator
BW Bandwidth
CNN Convolutional neural network
RCS Radar cross section

34

Drones – Various Applications



Author details

Ahmed N. Sayed*, Omar M. Ramahi and George Shaker
Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario, Canada

*Address all correspondence to: ansayed@uwaterloo.ca

© 2023TheAuthor(s). License IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

35

Detection and Classification of Drones Using Radars, AI, and Full-Wave Electromagnetic…
DOI: http://dx.doi.org/10.5772/intechopen.1002532



References

[1] Heathrow airport: Drone sighting
halts departures - bbc news. 2022.
[Online]. Available from: https://www.
bbc.com/news/uk-46803713

[2] Drone sightings keep closing london’s
airports - bloomberg. 2022. [Online].
Available from: https://www.
bloomberg.com/news/articles/2019-01-
09/drone-sightings-keep-closing-lond
on-s-airports

[3] Shrapnel injures 12 at saudi abha
airport as drone intercepted - reuters.
2022. [Online]. Available from: https://
www.reuters.com/world/middle-east/sa
udi-led-coalition-says-destroyed-drone-
launched-towards-abha-airport-4-
injured-2022-02-10/

[4] Iraq assassination attempt signals
new era of non-state drone attacks -
middle east eye. 2022. [Online].
Available from: https://www.middleea
steye.net/opinion/iraq-assassination-
new-era-drone-non-state-actors

[5] Turkey closes diyarbakir airport for
month after drone attack ‘by pkk’ -
world - the times. 2022. [Online].
Available from: https://www.thetimes.
co.uk/article/turkey-closes-diyarbakir-
airport-for-month-after-drone-attack-
by-pkk-gmcj8skfz

[6] Drone attack in abu dhabi kills 3
wounds 6 - cbc news. 2022. [Online].
Available from: https://www.cbc.ca/
news/world/abu-dhabi-drone-attack-1.
6317555

[7] Flights diverted at east midlands
airport after drone sightings - air
transport - the guardian. 2022. [Online].
Available from: https://www.theguardia
n.com/world/2022/jun/11/
flights-diverted-at-east-midlands-a
irport-after-drone-sightings

[8] Rcmp charge two from b.c. after
drone used to smuggle drugs into
prison - ctv news. 2022. [Online].
Available from: https://winnipeg.ctvne
ws.ca/drone-used-to-smuggle-drugs-
into-manitoba-prison-rcmp-charge-two-
men-from-b-c-1.5980061

[9] Small drones are giving ukraine an
unprecedented edge - wired. 2022.
[Online]. Available from: https://www.
wired.com/story/drones-russia-
ukraine-war/

[10] Ukraine: How drones are changing
the way of war - science - in-depth
reporting on science andtechnology -
dw. 2022. [Online]. Available from:
https://www.dw.com/en/ukraine-how-
drones-are-changing-the-way-of-war/
a-61681013

[11] Lykou G, Moustakas D, Gritzalis D.
Defending airports from uas: A survey
on cyber- attacks and counter-drone
sensing technologies. Sensors. Jun 2020;
20(12):1-35

[12] Park S, Kim HT, Lee S, Joo H, Kim H.
Survey on anti-drone systems:
Components, designs, and challenges.
IEEE Access. Mar 2021;942 635-42 659

[13] Samaras S, Diamantidou E,
Ataloglou D, Sakellariou N, Vafeiadis A,
Magoulianitis V, et al. Deep learning on
multi sensor data for counter uav
applications—a systematic review.
Sensors. Nov 2019;1922:4837

[14] Flórez J, Ortega A, Betancourt A,
García M, Bedoya, Botero JS, A review of
algorithms, methods, and techniques for
detecting uavs and uas using audio,
radiofrequency, and video applications.
TecnoLógicas. May 2020;23(48):
269-285

36

Drones – Various Applications



[15] Sedunov A, Haddad D, Salloum H,
Sutin A, Sedunov N, Yakubovskiy A.
Stevens drone detection acoustic system
and experiments in acoustics uav
tracking. In: 2019 IEEE International
Symposium on Technologies for
Homeland Security (HST). Woburn,
MA, USA: Institute of Electrical and
Electronics Engineers Inc.; Nov 2019

[16] Balachandran V, Sarath S. A novel
approach to detect unmanned aerial
vehicle using pix2pix generative
adversarial network. In: 2022 Second
International Conference on Artificial
Intelligence and Smart Energy (ICAIS).
Coimbatore, India: Institute of Electrical
and Electronics Engineers Inc.; 2022,
pp. 1368-1373

[17] Kang KB, Choi JH, Cho BL, Lee JS,
Kim KT. Analysis of micro-doppler
signatures of small uavs based on
doppler spectrum. IEEE Transactions on
Aerospace and Electronic Systems.
Oct 2021;57(5):3252-3267

[18] Sun H, Oh BS, Guo X, Lin Z.
Improving the doppler resolution of
ground-based surveillance radar for
drone detection. IEEE Transactions on
Aerospace and Electronic Systems.
Dec 2019;55(6):3667-3673

[19] Oh BS, Lin Z. Extraction of global
and local micro-doppler signature
features from fmcw radar returns for
uav detection. IEEE Transactions on
Aerospace and Electronic Systems.
Apr 2021;57(2):1351-1360

[20] Hanif A, Muaz M, Hasan A, Adeel
M. Micro-doppler based target
recognition with radars: A review.
IEEE Sensors Journal. Feb 2022;22(4):
2948-2961

[21] Ansys inc. 2022. [Online]. Available
from: https://www.ansys.com/products/
electronics/ansys-hfss

[22] Sayed AN, Riad MMYR, Ramahi
OM, Shaker G. A methodology for
uav classification using machine learning
and full-wave electromagnetic
simulations. In: 2022 International
Telecommunications Conference
(ITC-Egypt). Alexandria, Egypt;
Aug 2022. pp. 1-2

[23] Sayed AN, Ramahi OM, Shaker G.
Machine learning for uav classification
employing mechanical control
information. IEEE Transactions on
Aerospace and Electronic Systems.
May 2023:1-14. DOI: 10.1109/
TAES.2023.3272303

[24] Sayed AN, Abedi H, Ramahi OM,
Shaker G. On the impact of an antenna
field of view on the classification of uavs.
In: 2023 International Workshop on
Antenna Technology (iWAT). Aalborg,
Denmark. May 2023. pp. 1-2

[25] Sayed AN, Ramahi OM, Shaker G.
Uav classification utilizing radar digital
twins. In: 2023 IEEE International
Symposium on Antennas and
Propagation and USNC-URSI Radio
Science Meeting (USNC-URSI).
Portland, OR, USA. 2023. pp. 741-742

[26] Spreading wings s900 - dji. 2022.
[Online]. Available from: https://www.
dji.com/ca/spreading-wings-s900

[27] Albatross uav: Long range drone.
2022. [Online]. Available from: https://
www.appliedaeronautics.com/
albatross-uav/

[28] Fixed-wing drone, commercial long
range uav, applied aeronautics. 2022.
[Online]. Available from: https://www.
unmannedsystemstechnology.com/
company/applied-aeronautics/

[29] Unmanned helicopter, small rotary,
tactical uav, isr drones, ruav. 2022.

37

Detection and Classification of Drones Using Radars, AI, and Full-Wave Electromagnetic…
DOI: http://dx.doi.org/10.5772/intechopen.1002532



[Online]. Available from: https://www.
unmannedsystemstechnology.com/
company/steadicopter/

[30] Dji fpv - specs - dji. 2022. [Online].
Available from: https://www.
dji.com/ca/dji-fpv/specs

[31] Torres-Sánchez FL, Pez-Granados D,
Castro, Barragán AIPA. Configuration
and specifications of an unmanned aerial
vehicle (uav) for early site specific weed
management. PLoS ONE. Mar 2013;8(3):
58210

[32] Microdrones md4-1000 full
specifications & reviews. 2022. [Online].
Available from: https://
productz.com/en/microdrones-
md4-1000/p/y5RW

[33] Phantom 3 standard - dji. 2023.
[Online]. Available from: https://www.
dji.com/ca/phantom-3-standard

[34] Semkin V, Haarla J, Pairon T, Slezak
C, Rangan S, Viikari V, et al. Analyzing
radar cross section signatures of diverse
drone models at mmwave frequencies.
IEEE Access. Mar 2020;8:48 958-48 969

[35] Karlsson A, Jansson M, Hämäläinen
M. Model-aided drone classification
using convolutional neural networks.
In: 2022 IEEE Radar Conference
(RadarConf22). New York City, NY,
USA. 2022. pp. 1-6

[36] Rai PK, Idsoe H, Yakkati RR, Kumar
A, Khan MZA, Yalavarthy PK,
Cenkeramaddi LR. Localization and
activity classification of unmanned aerial
vehicle using mmwave fmcw radars.
IEEE Sensors Journal. Jul 2021;21(14):16
043-16 053

[37] Fu R, Al-Absi MA, Kim KH, Lee YS,
Al-Absi AA, Lee HJ. Deep learning-based
drone classification using radar cross

section signatures at mmwave
frequencies. IEEE Access. Sep 2021;9:161
431-161 444

[38] Caris M, Johannes W, Sieger S, Port
V, Stanko S. Detection of small uas with
w-band radar. In: 2017 18th International
Radar Symposium (IRS). Prague, Czech
Republic, 2017. pp. 1-6

[39] Roldan I, Del-Blanco CR, De
Quevedo ÁD, Urzaiz FI, Menoyo JG,
Ĺopez AA, et al. Dopplernet: A
convolutional neural network for
recognising targets in real scenarios
using a persistent range-doppler radar.
IET Radar, Sonar and Navigation. Apr
2020;14(4):593-600

[40] Park J, Park J-S, Park S-O. Small
drone classification with light cnn and
new micro-doppler signature extraction
method based on a-spc technique. Arxiv.
Sep 2020

[41] Kim BK, Kang HS, Park SO. Drone
classification using convolutional neural
networks with merged doppler images.
IEEE Geoscience and Remote Sensing
Letters. Jan 2017;14(1):38-42

[42] Zhang P, Yang L, Chen G, Li G.
Classification of drones based on micro-
doppler signatures with dual-band radar
sensors. In: 2017 Progress in
Electromagnetics Research Symposium -
Fall (PIERS - FALL). Singapore:
Electromagnetics Academy; Nov 2017.
pp. 638-643

[43] Zhang P, Li G, Huo C, Yin H.
Exploitation of multipath micro-doppler
signatures for drone classification. IET
Radar, Sonar & Navigation. Apr 2020;14
(4):586-592

[44] Zhang W, Li G, Baker C. Radar
recognition of multiple micro-drones
based on their micro-doppler signatures

38

Drones – Various Applications



via dictionary learning. IET Radar,
Sonar & Navigation. Sep 2020;14(9):
1310-1318

[45] Rahman S, Robertson D. Time-
frequency analysis of millimeter-wave
radar micro-doppler data from small
uavs. In: 2017 Sensor Signal Processing
for Defence Conference (SSPD).
London, UK: Institute of Electrical and
Electronics Engineers Inc.; Dec 2017.
pp. 1-5

[46] Li CJ, Ling H. An investigation on
the radar signatures of small consumer
drones. IEEE Antennas and Wireless
Propagation Letters. Jul 2017;16:649-652

[47] Kumawat HC, Chakraborty M, Raj
AAB, Dhavale SV. Diat-“μsat: Small
aerial targets’ micro-doppler signatures
and their classification using cnn. IEEE
Geoscience and Remote Sensing Letters.
Aug 2021;19:1-5

[48] Patel JS, Al-Ameri C, Fioranelli F,
Anderson D. Multi-time frequency
analysis and classification of a micro-
drone carrying payloads using
multistatic radar. The Journal of
Engineering. Oct 2019;2019(20):
7047-7051

[49] Ritchie M, Fioranelli F, Borrion H,
Griffiths H. Multistatic micro-doppler
radar feature extraction for classification
of unloaded/loaded micro-drones. IET
Radar, Sonar and Navigation. Jan 2017;11
(1):116-124

[50] Mendis GJ, Randeny T, Wei J,
Madanayake A. Deep learning based
doppler radar for micro uas detection
and classification. In: MILCOM 2016 -
2016 IEEE Military Communications
Conference. Baltimore, MD, USA:
Institute of Electrical and Electronics
Engineers Inc.; Dec 2016. pp. 924-929

39

Detection and Classification of Drones Using Radars, AI, and Full-Wave Electromagnetic…
DOI: http://dx.doi.org/10.5772/intechopen.1002532





Chapter 3

Defining and Implementing
Autonomy in Multi-Drone Systems
Ogbonnaya Anicho

Abstract

Defining autonomy or autonomous capability from the context of a single drone is
often the default position. However, future drone applications will deploy as multi-
drone systems comprising multiple drones. Such systems will carry out specific and
complex tasks cooperatively in various use scenarios. It is imperative to understand
how autonomy for these multi-drone systems could be better defined for design,
regulatory and operational purposes. The chapter proposes a framework for defining
and evaluating autonomy for multi-drone systems by segregating the system into
hierarchies and layers. In the work, a typical multi-drone system is segregated into
three (3) layers consisting of; Single Vehicle Control (Layer 1), Multi-Vehicle Control
(Layer 2) and Global Mission Control (Layer 3). This framework could be beneficial to
designers, regulators and standardisation efforts. Currently, some progress is in
motion to find a consensus on the definition and ramifications of autonomy levels and
human-autonomy interactions. This chapter contributes to the ongoing efforts by
proposing a framework that addresses autonomy or autonomous capability for multi-
drone systems.

Keywords: drone, UAV, autonomy, autonomous drones, multi-drone, UAS
operations

1. Introduction

A drone which is also known as an Unmanned Aerial Vehicle (UAV) is a powered
aerial platform or vehicle that does not have a human pilot physically on board. It can
be designed to fly autonomously or remotely piloted hence also called a remotely
piloted aircraft (RPA). According to the UK Civil Aviation Authority (CAA) and the
European Union Aviation Safety Agency (EASA), an Unmanned Aircraft (UA) is ‘any
aircraft operating or designed to be operated autonomously or to be piloted remotely
without a pilot on board’ [1, 2]. The UK CAA & EASA also distinguish between
autonomous and automatic operations. In automatic or automated operations, the
drone follows pre-programmed instructions with the Remote Pilot (RP) still able to
intervene in the flight [1, 2]. The term unmanned aircraft system (UAS) [2] is used
when all other aspects of the system are considered including those on the ground. A
typical UAS will include the UAV, ground control station (GCS), payload, control and
data link and all other supporting equipment [3]. It is essential to lay out these key
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definitions to enhance our understanding and considerations for autonomy or auton-
omous capabilities in drones. Drones as shown in Figures 1 and 2, are mainly
multirotor or fixed-wing (or some form of hybrid) with consequential technical and
operational differences.

UAV autonomy is often defined from the context of a single drone and its capa-
bilities to make decisions with minimal or no human input. The use of single remotely
piloted drones within visual line of sight (VLOS) is commonplace and implemented
across several use cases. However, the application of fully autonomous multi-drone
systems is still futuristic. Multi-drone systems in the context of this chapter refer to
the use of multiple drone (multi-drone) platforms in a coordinated fashion to carry
out a specific or diverse array of tasks. It is important to distinguish the context and
definition of autonomous multi-drone systems from swarming or drone swarms and
the implications of the concept of systems.

Figure 1.
Multirotor drone [1].

Figure 2.
Fixed-wing drone [4].
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Drones are fast becoming mainstream and increasingly deployed within our
industrial, social and digital domains to solve various challenges, for example, Agri-
culture, traffic management, logistics & last-mile delivery, power line inspection,
connectivity and a host of other areas [4, 5]. According to GSMA, it is estimated that
drones can boost Gross Domestic Product (GDP) by 1.6% in the UK alone by 2030 [6].
Globally, this trend is also noticeable and growing across industries and applications.
Drone startups and technology companies are driving innovation and solutions with
drones globally. On the regulatory front, efforts are ongoing to provide adequate
oversight and support to find the right balance between safety and security on one
hand and innovation on the other. The regulatory aspect of the drone business will be
crucial in determining its short- and long-term viability, especially from a commercial
standpoint. One of the key challenges is safely integrating them with the rest of the
manned airspace. Currently, most drones operate outside controlled or restricted
airspace minimising incidences with other airspace users [5]. This is in addition to the
significant challenge of regulating growing drone traffic with aeroplanes, helicopters
and other aerial systems.

The main contribution of this paper is to propose a framework or model to define
the autonomy of multi-drone systems which are still in development or futuristic at
this time. This framework will help understand the challenges of designing,
implementing and regulating the operations of such autonomous multi-drone use
cases. Regulators have been cautious in approving the use of fully autonomous drone
operations and have constantly requested input from stakeholders. This chapter is
expected to contribute some ideas to the ongoing conversation on the parameters for
implementing safe and autonomous drone systems. Section 1, introduces some key
definitions and context of the chapter. In Section 2, the concept of drone autonomy/
autonomous operations is evaluated. BVLOS operations and the concept of autonomy
were addressed in Section 4. In Section 5, the proposed framework detailing hierarchy
and layers of autonomy for both single and multi-drone systems was introduced.
Finally, the conclusions drawn by the author are captured in Section 6.

2. Defining autonomy or autonomous operations for drones

Generally, autonomy or autonomous capability is defined within the context of
decision-making or self-governance in a system. According to the Aerospace Tech-
nology Institute (ATI), autonomous systems fundamentally can decide by themselves
how to achieve the objectives of a mission without any human intervention [7]. These
systems are also capable of learning and adapting to the changing state of the operat-
ing environment. Autonomy, however, is defined in levels and may depend on the
design, functions and specifics of the mission or system [8]. Autonomy more broadly
can be viewed as a spectrum of capabilities ranging from zero autonomy to full
autonomy. The Pilot Authority and Control of Tasks (PACT) assigns levels of author-
ity, from level 0 (full human pilot authority) to level 5 (full system autonomy), also
applied to the automotive industry for autonomous vehicles (see Figure 3) [7].
Another general but useful model for describing levels of autonomy in unmanned
systems is the Autonomous Levels For Unmanned Systems (ALFUS) [9].

The EASA in one of its technical reports provided some insight on autonomy levels
and guidelines for human-autonomy interactions. According to the EASA, the concept
of autonomy, its levels and human-autonomous system interactions are not settled
and remain actively discussed in different domains (including aviation) as no
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common understanding of these terms currently exists [2]. Since these concepts are
still fluid in a sense, it becomes a huge challenge for the UAS regulatory environment
as these concepts remain largely unsettled. This chapter attempts to provide a frame-
work that may address some of the current challenges around a common understand-
ing of concepts across jurisdictions. A framework that will have universal appeal must
be uncomplicated and effective in addressing the concerns of regulators across
jurisdictions.

3. Autonomy in multi-drone systems

Multi-Drone Systems in the context of this chapter refer to systems or
implementations where multiple drones work together to complete a specific task. In
these implementations, a single drone cannot deploy singularly regardless of sophisti-
cation. It is also technically not a swarm since a swarm by definition constitutes simple
entities or agents interacting locally with their environments and jointly achieving an
emergent advanced global behaviour [10] which far outweighs what any agent could
have achieved as a single entity. The fascinating murmuration of a flock of starlings is
a good example of how simple local actions can have an incredible global output.
However, in multi-drone systems, individual drones are not expected to be simple and
oblivious to the global mission. The design of multi-drone systems requires individual
drones to have elevated levels of autonomous capabilities. Some of the tasks or areas
where multiple drones can be implemented are;

• Search and Rescue Missions

• Network Area Coverage and Connectivity

• Space Specific Explorations

• Exploration and Extraction in Hostile Environments

Figure 3.
Pilot authority and control of tasks (PACT) [7].
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• Sensitive Material Handling and Transportation

• Coordinated Wildfire Containment

Some of the use cases cited above are currently being resourced by single drones
working solo. For instance, the NASA ingenuity helicopter deployed for Mars explo-
ration is a single drone (see Figure 4) [11]. Upgrading this single drone to a fully
autonomous multi-drone system will entail having about 2 or more of these helicop-
ters working in a coordinated and autonomous mode on the surface of Mars. This is
also the case with the firefighting support drone (see Figure 5), used by the Spanish
Emergency Military Unit (UME) in emergencies like wildfires and natural disaster
responses [12]. These firefighting drones at the moment contribute mainly towards
providing timely information to commanders on the ground about the progress of the

Figure 4.
Ingenuity - NASA’s Mars helicopter [11].

Figure 5.
Spanish UME firefighting drone [12].
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fires whilst reducing the risks to those on the ground. However, in a fully autonomous
multi-drone firefighting system, drones can coordinate and contain or extinguish fires
with minimal or no human intervention using artificial intelligence and machine
learning-based capabilities. This is the desired trajectory for multi-drone systems,
however, this has to be done with the highest safety case.

Whilst the autonomous capabilities for single drones can be technically easier to
define and evaluate, the question is can these same considerations be extended to a
multiple drone system? As shown in Figures 6 and 7, most operational or commercial
drone applications are mainly single drone operational models. For example, Zipline
uses single drone operations to deliver its autonomous aerial logistics business. It
provides on-demand blood delivery, vaccines and many essential medical products
using its fixed-wing drones [13]. The key consideration here is that the logistics use
case being delivered by Zipline does not meet the definition of a multi-drone system.

Figure 6.
Zipline’s drone logistics use case [13].

Figure 7.
Alphabet’s drone delivery use case [14].
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The same applies to Aplhabet’s drone subsidiary which employs a single drone opera-
tional mode for its drone delivery business.

4. Beyond visual line of sight (BVLOS) and autonomy

Aviation authorities are careful to ensure that safety is of the highest consideration
in the operations of any manned or unmanned flight. This becomes even more critical
as the weight of the vehicle increases or flies over populated areas. In the civil UAV
domain, the mode of operation mostly supported by regulation is one in which the
UAV is within the pilot’s visual line of sight (VLOS), (between 500 m and 2 km) [15].
The International Civil Aviation Organisation (ICAO) insists that VLOS means a
straight line along which the remote pilot or UA observer has a clear view of the UA
[16]. This mode of operation is cautiously considered to minimise safety and security
hazards that may result from flying beyond visual sight. However, this approach
imposes significant challenges on innovation and prevents and imposes limitations on
scaling the operations. The conservative and cautious regulatory position on keeping
VLOS as the default mode is understandable but stifles innovation in the civil UAV
domain. Another option for UAS operations is the extended visual line of sight
(EVLOS), where the pilot’s view is extended by using other human observers posi-
tioned within the visual line of sight of the drone. The EASA guidance document
defines BVLOS operations broadly as any UAS operations that are not conducted
under VLOS conditions which specifically require the remote pilot to maintain con-
tinuous unaided visual contact with the unmanned aircraft [2] (see Figure 8).

BVLOS, which involves the UAV being able to continue operations beyond the
pilot’s field of view or observation, is highly restricted for civil UAS operations in most
jurisdictions globally [15]. To operate safely and fly autonomously, drones will need to
be BVLOS certified with reliable and secure methods for control [4]. BVLOS opera-
tions, however, have been in use by advanced military and defence establishments for
a long time now. In essence, the issue is not just about the technological capabilities
required for BVLOS but its management, integration and operational impact on the

Figure 8.
Illustrating VLOS, EVLOS & BVLOS [17].

47

Defining and Implementing Autonomy in Multi-Drone Systems
DOI: http://dx.doi.org/10.5772/intechopen.1002701



safety and security of the civil aviation environment. That is why this chapter is more
focused on the autonomy models or frameworks that will aid the management, oper-
ations and regulation of UAS within the civil aviation domain.

Currently, a jurisdiction’s BVLOS approval framework can be used to gauge appe-
tite and readiness for increased levels of autonomous UAS operations. The current
Federal Aviation Authority (FAA) Part 107 rules for commercial drone operations
prohibit flying BVLOS [18], though special waivers and approvals are granted on a
case-by-case basis to companies testing or trialling use cases. BVLOS operations can
unlock the potential of the drone industry and specifically the multi-drone use cases.
It will enable the capability to use connectivity, cloud infrastructure and other
enabling technologies to scale multi-drone applications. However, one crucial
requirement for BVLOS operations is a highly reliable C2 link which is imperative to
fulfilling the BVLOS safety case. In terms of defining autonomy especially in multi-
drone operations, is BVLOS capability the ultimate expression of autonomy? These
questions are important to guide and inform regulatory oversight of multi-drone
implementations and use cases.

5. Defining and segregating autonomy into hierarchies/layers

One approach to addressing the autonomy challenge is to segregate autonomy in
drones and multi-drone systems into hierarchies/layers. These layers will have stan-
dard definitions and protocols to guide technology development and regulatory
oversight. The author proposes two distinct layers for single drone autonomy models
which will consist of Vehicle/Platform Control (Layer 1) and Mission Control
(Layer 2), see Figure 9. As shown in Figure 9, multi-drone systems on the other hand
will have three (3) layers consisting of Single Vehicle/Platform Control (Layer 1),
Multi-Vehicle/Platform Control (Layer 2) and Mission Control (Layer 3). These layers
or hierarchies are not necessarily physical but logical to provide both conceptual and
functional ways to manage the complexities in design, technology standards, regula-
tion and operations. It is important to ensure that all aspects of the framework and
supported protocols are open which will drive innovation and lower barriers to entry.

Figure 9.
Autonomy hierarchies/layers for multi-drone systems.
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5.1 Hierarchy and layers for single drone autonomy

The autonomy hierarchy and layers for a single drone are outlined below and
capture a conceptual model that is consistent with current implementations.

• Single Vehicle Control - Layer 1: This layer occupies the highest position in the
single drone autonomy hierarchy or model. In practical terms, this layer ensures
that the drone remains airborne operating safely and able to return/land safely
even in the event of operational challenges without human pilot intervention. In
a typical single drone setup, this layer includes the Flight Control System (FCS)
and any other hardware/software needed to ensure the vehicle can fly safely and
securely without collision or stalling from one set point to another.

• Mission Control - Layer 2: In a single drone system, the mission control layer is
tasked with making decisions and fulfilling the objective of the mission as
defined. It is the mission managing layer and ensures that the drone can
autonomously handle the mission. In a typical single drone setup, the mission
control layer will largely need some sort of additional computing hardware to
process mission control tasks (e.g., signals from different sensors). It is currently
common to find companion computers supporting the mission control tasks
added as extra hardware separate from the FCS. In more advanced systems,
integrated units can handle both vehicle and mission control tasks, however, the
hierarchy (as shown in Figure 9) should prioritise the vehicle control layer with
the authority to override mission control in critical scenarios. It is therefore
necessary for designers of autonomous drones to ensure that this hierarchy model
is clearly defined at the fundamental level of the drone design philosophy. There
is also the design consideration to be made in terms of the level of autonomy each
layer should be tuned to. It is also possible to experiment with different
permutations of autonomy levels (PACT levels) to find the optimal combination.
However, the ideal goal or objective is to have both the vehicle and mission
control layers operating at full autonomy levels. Notably, the single vehicle
autonomy model does not have a third layer.

5.2 Hierarchy and layers for multi-drone drone autonomy

The multi-drone autonomy model has 3 layers, unlike the single drone case which
has only 2. It is important to emphasise that multi-drone systems are not just multiple
drones flying autonomously. Multi-drones in this context are fully autonomous drones
flying in a coordinated fashion to achieve a specific goal which cannot be done by any
single one of them. In such a scenario, the operational environment is more complex
than the single drone scenario. In these types of multi-drone systems, the layers of
autonomy are explained further below;

• Single Vehicle Control - Layer 1: A multi-drone system is made up of single
drones with autonomous capabilities. In a multi-drone setup, the single vehicle
control layer occupies the same hierarchy and serves the same functions outlined
in the single drone model. It is important to establish that the autonomy model
proposed in this work elevates the hierarchy of the single drones that make up the
autonomous multi-drone system. These single drones are expected to have
elevated levels of intelligence and decision-making capabilities for the
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multi-drone system to fulfil its mission, which is somewhat contrary to the
philosophy of swarming or swarm intelligence-based models. In essence, the
vehicle control layer is the same for both single and multi-drone systems. As a
practical matter, a single drone should have sufficient autonomy to make
decisions that may override the global mission objective if prevailing conditions
threaten its safety or security. Indeed, it is due to issues of this nature that the
author proposes a model of evaluating autonomy for multi-drone systems.

• Multi-Vehicle Control - Layer 2: In the multi-drone system autonomy
framework, the second layer is the multi-vehicle control layer tasked with
coordinating the multi-vehicle decision process. This layer introduces the
complexity inherent in multi-drone systems. For the first time, the issue of
coordination and information exchange comes into focus. In some sense, this
layer is difficult to simulate or conceptualise. Centralised control is not supported
as it defeats the concept of autonomy. Participating drones retain a subset of the
overall control structure. It is challenging to define autonomy at this layer as a
cumulative concept. The author would rather define autonomy at this layer as a
distributed and dynamic concept or capability that fluctuates based on what
happens in Layer 1. The structure of this layer must be robust and flexible to
adapt as local states in Layer 1 keep evolving. The ability of the entire system to
manage and learn from these changes is key to survival and fulfilling mission
goals. Depending on the use case or mission, the constituent drones in the system
have to make decisions relevant to their local environments whilst tracking
impact on the entire stability and posture of the fleet. How to functionally define
and implement the autonomy existing at this layer makes the multi-drone system
autonomy a challenging concept for design and regulation. This layer could be
viewed as a bridge linking the single vehicle control layer to the global mission
control layer.

• Global Mission Control - Layer 3: This is the layer that handles the actual
mission or the objective of the multi-drone system. It ensures that the global
mission i.e. the overall objective of the multi-drone application is achieved. For
instance, an autonomous multi-drone system that is tasked with identifying and
extracting a toxic or radioactive piece of material must be able to autonomously
coordinate all the drones in the mission to identify and transport the material to
the designated site. It is interesting when the decision-making process and the
autonomy requirements are analysed against the framework proposed. Each
drone in the fleet must be equipped with sensors that will enable it to identify the
target material, fly in formation, and position appropriately to lift and extract the
material. The multi-drone system in this scenario must be able to understand
the mission and coordinate with other drones to fulfil it. However, this layer is
the lowest in the hierarchy and can be overridden by layers 1 or 2.

6. Conclusions

The future of drones lies in the maturity and application of autonomous multi-
drone systems capable of fulfilling different use cases. However, the definition of
autonomy or autonomous capability is not settled for the multi-drone operational
scenario. Whilst the push for the standardisation and approval for beyond visual line
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of sight (BVLOS) operations is important, it is equally necessary to have a common
model or framework to guide BVLOS for multi-drone use in the civil aviation space.
Multi-drone systems are very different from single drone uses although a significant
aspect of current regulation is predicated or informed by single drone operational
concepts. This chapter lays out a framework that may be of interest to regulators,
UAV companies and the majority of other stakeholders. The framework defines
autonomy in both single and multi-drone implementations in hierarchies and layers.
The proposed multi-drone systems were segregated into 3 main layers and hierarchies
of autonomy namely single vehicle control (Layer 1), multi-vehicle control (Layer 2)
and global mission control (Layer 3). In this framework, Layer 1, which is single
vehicle control, occupies the highest hierarchy and hosts functions performed by the
flight control system (FCS) for instance. By developing and segregating these auton-
omy hierarchies, the design, implementation and regulation of autonomous multi-
drone systems can be approached and managed efficiently across jurisdictions.

6.1 Future work

This is still a very dynamic area of research with multidisciplinary implications. As
regulators request for input over the next few years, it is important to develop pro-
totypes and demonstrations of the framework and ideas shared in this chapter. It is
also important to look into how the physical forms of the drones may affect its
operational environment/specific use cases and how that may impact autonomy con-
siderations. Whilst the proposed framework is inherently designed to be agnostic to
technology, it will be helpful to see how much technological developments will impact
current thinking and by extension the extant regulatory regime.

Abbreviations

UA Unmanned Aircraft
UAV Unmanned Aerial Vehicle
UAS Unmanned Aircraft System
VLOS Visual Line of Sight
EVLOS Extended Visual Line of Sight
BVLOS Beyond Visual Line of Sight
PACT Pilot Authority and Control of Tasks
ALFUS Autonomous Levels For Unmanned Systems
EASA European Union Aviation Safety Agency
FAA Federal Aviation Authority
CAA UK Civil Aviation Authority
ICAO International Civil Aviation Organisation
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Chapter 4

Deformable Correlation Networks
for Aerial Object Tracking
and Segmentation
Daitao Xing and Anthony Tzes

Abstract

While recent object trackers, which employ segmentation methods for bounding
box estimation, have achieved significant advancements in tracking accuracy, they are
still limited in their ability to accommodate geometric transformations. This limitation
results in poor performance over long sequences in aerial object-tracking applications.
To mitigate this problem, we propose a novel real-time tracking framework consisting
of deformation modules. These modules model geometric variations and appearance
changes at different levels for segmentation purposes. Specifically, the proposal
deformation module produces a local tracking region by learning a geometric trans-
formation from the previous state. By decomposing the target representation into
templates corresponding to parts of the object, the kernel deformation module per-
forms local cross-correlation in a computationally and parameter-efficient manner.
Additionally, we introduce a mask deformation module to increase tracking flexibility
by choosing the most important correlation kernels adaptively. Our final segmenta-
tion tracker achieves state-of-the-art performance on six tracking benchmarks, pro-
ducing segmentation masks and rotated bounding boxes at over 60 frames per second.

Keywords: unmanned aerial vehicles, Siamese network, real-time object tracking,
object segmentation, deep learning

1. Introduction

Visual object tracking (VOT) is a fundamental task in various applications, such as
robot navigation [1], human-computer interaction [2], and unmanned aerial vehicle
(UAV) based monitoring [3]. Given the initial state of an arbitrary target in the first
frame, VOT aims to update the location and the states for all the subsequent video
frames in real time. Nevertheless, the target object may undergo large appearance
changes caused by illumination, deformation, occlusion, and fast motion, which make
VOT a very challenging task.

Recent works [4, 5], inspired by the video object segmentation (VOS) task,
attempt to obtain a precise target state from the binary per-pixel segmentation mask.
A binary segmentation mask provides a much more detailed representation and a
closer approximation of the target than a bounding box, especially for elongated and
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deformable objects. However, methods employing the u-net architecture or pixel-wise
binary mask classification are still limited by the model’s geometric transformations,
resulting in unstable tracking performance. Among these methods, such as D3S and
SATVOS, the focus is on reducing model complexity by utilizing prior knowledge to
meet real-time requirements. Nevertheless, the segmentation is performed on the
entire search region, which includes distractors. This approach hinders both robust-
ness and speed.

In this research, we propose a novel real-time aerial object tracking framework that
utilizes the accuracy of segmentation in a computationally and parameter-efficient
manner. Compared to methods such as D3S [5] and SiamMask [4], which predict
masks globally or densely, we perform segmentation only on a local tracking region.
To achieve this, we introduce a proposal deformation module (PDM) to narrow down
the search area to a fixed, small salience patch. Specifically, given the estimated object
state from the last frame, the PDM module predicts geometric transformations of the
target object by learning an offset from its old position, yielding a coarse updated
target state. To better model target geometric variances, we propose a Kernel defor-
mation module (KDM) that disentangles object pose and part deformation from
texture and shape for segmentation. A target representation learned from the first
frame is decomposed into templates corresponding to different parts of the object.
These templates are then applied to the cropped patch from the PDM module in a
pixel-wise manner. With a reduced segmentation area, fewer background distractors,
and reduced model complexity, our proposed modules achieve higher segmentation
accuracy and speed.

To further improve the model’s capability of adaption to the appearance variance
and abnormal states like occlusion and truncation, we employ the binary mask from
the initial frame and propose a mask deformation module (MDM).

Inspired by Spatial Transformer Networks (STN) [6], an affine transformation
function is regressed with a fully connected network conditioned on the current
search frame without additional supervision. The transformation is then performed on
the initial mask and can include scaling, cropping, and rotations as well as non-rigid
deformations. This endows the network with the flexibility of choosing the most
important correlation kernels adaptively, resulting in an improvement in model gen-
eralization and robustness.

We conducted comprehensive experiments on multiple benchmarks, including six
challenging VOT datasets: VOT2016 [7], VOT2018 [8], OTB100 [9], TrackingNet
[10], Got10K [11], and LaSOT [12], as well as two VOS datasets: DAVIS16 [13] and
DAVIS17 [14]. Superior performance, as well as extensive ablation studies, demon-
strate the effectiveness of the proposed method. Particularly, our approach achieves
state-of-the-art performance on VOT benchmarks, with an EAO score of 0.485 on
VOT2018 [8], while running at over 60 FPS. While our tracker was not originally
designed for the VOS task, it still achieves compatible results on both VOS
benchmarks.

2. Related work

2.1 Visual object tracking

SiamFC introduces a Siamese architecture, which measures the similarity between
the target and search image and trains the network offline. SiamRPN [15] introduces
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the region proposal network to jointly perform classification and regression in an end-
to-end way, DaSiamRPN [16] improves the discrimination power of the model with a
distractor-aware module, and SiamRPN++ [17] further improves performance with
more powerful deep architectures by overcoming spatial invariance restrictions.
Recent works like SiamFC++ [18], Ocean [19], and SiamBAN [20] replace the RPN
with an anchor-free mechanism and achieve faster tracking speed. Siamese network-
based trackers rely on the first frame to learn a robust target appearance representa-
tion without adaptation, which is unreliable during long-term tracking. In contrast to
Siamese-based approaches, recent works like DiMP [21] and ATOM [22] learn a
discriminative classifier online to distinguish the target from the background. How-
ever, the adaptation exists only for classification, while the bounding box estimation
still relies on a fixed template matching strategy.

2.2 Video object segmentation

Most recent works [23–26] resort to large deep networks, multi-scale feature
fusion, u-net architecture, or fine-tuning techniques, achieving impressive accuracy.
However, tracking efficiency is often overlooked, which is crucial for generic object
tracking. Inspired by the significant advancements in the visual object tracking task,
recent works tend to solve VOS with a correlation mechanism. SiamMask [4] first
proposed a unified approach that predicts the bounding box and mask from a corre-
lation feature map simultaneously. SiamRCNN deploys the segmentation by detection
paradigm and predicts the mask inside each proposed box. SiamAtt [27] improves the
robustness and discriminative representation ability of the correlation feature map by
introducing an attention mechanism. It then performs state estimation and segmen-
tation independently on a refined proposed region. D3S [5] removes the bounding box
regression branch and performs segmentation based on the classification map and
similarity score map, achieving state-of-the-art performance on the VOT2018 [8]
benchmark. However, all these works rely on multiple refinement modules made of
upsampling layers and skipping connections to increase robustness, which can also
hinder tracking efficiency.

2.3 Transformation modeling

Spatial transformer networks (STN) [6] were the first work to improve the
translation-invariant feature modeling ability for deep CNNs by learning a transfor-
mation affine function from the input image. Instead of performing global affine
transformations, Deformable ConvNets [28] learn offsets for each convolution kernel
or ROI pooling layer in a dense way, achieving significant performance improvement
on complex vision tasks.

3. Method

In this section, we describe our tracking framework in detail. The proposed
method DCNet consists of four parts: a Siamese-based backbone network for feature
extraction presented in Section 3.1, a proposal deformation module (PDM) presented
in Section 3.2, a Kernel deformation module (KDM) presented in Section 3.3, and a
mask deformation module (MDM) presented in Section 3.4. Figure 1 describes the
architecture outline.
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3.1 Network architecture

Before detailing the proposed modules, we first briefly introduce the backbone net-
work. Similar to a Siamese tracking framework, the proposed framework DCNet consists
of two branches: the template branch which takes cropped image z of sizew� h from the
initial frame as a reference, and the search branch which takes the cropped image x of
the same size with z from the current frame for tracking. The two inputs are processed by
the same backbone network ψ , yielding two feature maps ψ zð Þ∈W�H�C and
ψ xð Þ∈W�H�C for matching purposes. The reference image also provides the initial
target state, represented as a bounding box B0 ¼ cx0, c

y
0, w0, h0

� �
. An alternative repre-

sentation, a binary maskM0 ∈w�h�1 is given in some scenarios but is nonessential.
As in most Siamese-based trackers, cross-correlation is performed between feature

maps ψ zð Þ and ψ xð Þ. The response score maps representing the similarity between the
reference image and the test image are used for target localization and state estima-
tion. We thus retrieve two object-aware correlation kernels K∈6�6�C from ψ zð Þ to
represent target appearance. Specifically, we crop patches from block3 ψ zð Þ3 and
block4 ψ zð Þ4 with the initial state B0 and feed them into a Precise ROI Pooling
(PrPool) [29] layer, yielding two fixed-size feature maps K3 and K4. Finally, a depth-
wise correlation is performed between K and ψ xð Þ to generate a target-aware feature
representation f 3,4 ∈W�H�C. Following SiamRPN++ [17], we deploy the multi-layer
aggregation strategy by concatenating features f 3,4 and feed the joined feature map f 34
into a classification module for target localization.

Figure 1.
An overview of the proposed tracking framework, consisting of an Siamese-based correlation network, and three
deformation modules. The correlation kernels are cropped from different feature blocks, following PrPooling layer.
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3.2 Proposal deformation module

Compared to D3S [5] and SiamMask [4] which predict masks globally or densely,
we only perform prediction on a local tracking region. However, accurate and fast
segmentation of a target with appearance changes and deformation requires a proper
segment input that encloses the entire target object while precluding the distractors
from the background. While the target-aware feature f after correlation can be used to
distinguish the target from background distractors, it does not adapt to appearance
changes, leading to reduced robustness in localization. To this end, we first propose
the proposal deformation module (PDM) to reduce the size of segment input to the
ideal area by deforming the region of interest (RoI) from the search area. Unlike the
region proposal network (RPN) from mask-RCNN, we make use of the inter-frame
consistency of video and generate RoI from the target state in the last frame. Specifi-
cally, given the maximum of the correlation response, i.e., ĉxt , ĉ

y
t , together with the

width and height of the estimated state from the last frame, we generate an initial RoI

represented as R ¼ ĉxt , ĉ
y
t , ŵt�1, ĥt�1

� �
.

Proposal deformation: As shown in Figure 2, the proposed module refines by R
learning a deformation from the initial RoI to the ground-truth state. A PrPool layer is
applied on target-aware feature f 34, yielding a pooled representation of size K� K� C,
where K is the spatial output size of the PrPool layer. From the feature representation,
a fully connected layer generates the offsets d, which are then added to the initial RoI

R, resulting in a refined RoI R0. We represent the offsets d ¼ lth, ltw, rbh, rbw
� �

as

the distances from R’s left-top corner and right-bottom corner to the corresponding
ground-truth ones. Thus, d can be formulated as:

Figure 2.
The proposed deformation modules. The PDM takes the fusion correlation feature and initial proposal as inputs,
predicts the offset, and yields a new proposal. The KDM performs part similarity learning (⋆) between the ROI
feature and kernel sets from the initial frame. Further, a deformed mask learned from spatial transformation
network assigns different scores to the corresponding correlation map adaptively. The final segmentation is inferred
from the feature map consisting of local and global correlation maps.
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lth ¼ cyt �
ht
2

� �
� ĉyt �

ht�1

2

� �

ltw ¼ cxt �
wt

2

� �
� ĉxt �

wt�1

2

� �

rbh ¼ cyt þ
ht
2

� �
� ĉyt þ

ht�1

2

� �

rbw ¼ cxt þ
wt

2

� �
� ĉxt þ

wt�1

2

� �

(1)

where cyt , cxt , ht and wt are from the ground-truth state Bt. Since R provides a good
approximation of the target state, the module is lightweight with only a small amount
of parameters and computations for the offset learning.

3.3 Kernel deformation module

Given the refined RoI R0, a small feature map H of size 7 � 7 is extracted with a
PrPool layer from feature maps ψ xð Þ3,4. Generally, the pooled feature map can be used
for instance segmentation in object detection scenarios like MaskRCNN [30]. For the
generic object tracking task, however, the object class is nonessential to belong to
any set of known categories. Thus, the segmentation introduces misalignment
between the target and the instance object, which has a large negative effect on the
prediction of masks with pixel accuracy. While cross-correlation can be used to
determine interesting parts for segmentation, the cross-correlation methods in [30]
lack the ability to model the geometric variance of the target. To this end, we propose
a Kernel Deformation Module (KDM) which utilizes part correlation for segmentation
purposes.

3.3.1 Part correlation

Formally, given the compact target representation K of size 6 � 6 from ψ zð Þ3,4
which contains local information (e.g. color, shape) of the target, we first decompose
the kernel K into a separate vector kernel set Kiji∈ 0, … 36f gf g. The cross-correlation
is performed between H and kernel set Ki which can be formulated as:

C ¼ CijCi ¼ Ki⋆Hf gi∈ 0,… 36f g (2)

where Ci ∈7�7�1 is the response attention map after correlation with kernel Ki.
Apparently, kernels that represent distinct local information activate disparate regions
on the feature maps. This allows similarity learning which includes object part corre-
lation to find regions of a search image that are most relevant (attention). Finally, we
concatenate attention maps set C into a union feature map C0 ∈7�7�36.

3.3.2 Segmentation head

With the aim of producing a more accurate object mask, we merge low and high-
resolution features using parallel part-matching branches. As shown in Figure 2, we
use both Block3 and Block4 from ψ xð Þ and generate two pooled feature maps H3,H4,
resulting in two correspondent maps C0

3, C
0
4. These two attention maps are

concatenated before being fed into the segmentation branch. To further improve the
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discriminative representation ability, we also crop a feature map of size 7 � 7 f 34 from
and attach it with the attention maps. For the segmentation head, we closely follow
the architectures presented in previous work [30]. Specifically, three upsampling
blocks consisting of one convolution layer, one activation function, and one
deconvolution layer are connected and map the input C0

3kC04
� �

into a predicted mask
Mt ∈28�28�1. Figure 3 shows the architecture of the segmentation head. We follow
the design from MaskRCNN [30]. Specifically, we use two interpolation layers with
convolution layers to up-sample the target into 56 ∗ 56 for end-to-end training. During
inference, the output mask is resized to the original size. For video segmentation
tasks, the pixel-wise segmentation performance is highly related to the size of the
segmentation mask. We have since designed a refined module, following the skip
connection strategies [4]. As shown in Figure 4, we merge low and high-resolution
features by cropping and pooling different blocks (ψ2 to ψ4), and enlarging the size of
mask so that the output includes enough details.

3.4 Mask deformation module

While the KDM is able to accommodate geometric transformations in object pose,
scale, and part deformation, the fixed correlation template strategy without adapta-
tion, hinders the tracking robustness for target appearance variance in the long term,
especially in abnormal states like occlusion and truncation. To further improve track-
ing robustness in harsh cases, we utilize the binary mask from the initial frame M0

Figure 3.
Architecture details of segmentation head.

Figure 4.
Architecture details of refine module.
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and propose a mask deformation module. Specifically, we equip the initial sampling
grid from M0 ∈28�28�1 with a spatial transformation network T to convert the
sampling mask from the initial state to the deformed state. As shown in Figure 2, the
transformation function is T obtained from the target-aware map f using a PrPool
followed by a fully connected layer. The transformed mask is further encoded with
two 3 � 3 convolutional layers, following a max pooling on feature depth to reduce
channels into one. The feature map is turned into the desired shape by interpolation,
yielding the final encoded mask M̂. While M̂ is a coarse map with limited details
provided, the value on each sampling position indicates the importance of the
corresponding part from the correlation kernel K. Thus, the part matching could be
updated as:

C ¼ CijCi ¼ σ mið Þ ∗Ki⋆Hf gi∈ 0,… 36f g (3)

where mi is the scalar value from the transformed mask M̂ and σ denotes the
sigmoid function which turnmi into a significant score. This endows the network with
the flexibility of choosing the most important correlation kernels adaptively. Since
both the grid sampling and transformation are differentiable, no supervision is
required to learn the transformation parameters θ. In some scenarios such as motion
blur or “non-object” instance where a segmentation mask is not provided or
unavailable, the mask M0 is filled with ones that gives equal importance to part-
matching kernels.

4. Discriminative segmentation tracker

This section describes the implementation details from training to online tracking
with the proposed DCNet method.

4.1 Training

Similar to the Siamese-based tracker, the proposed network is trained offline with
image pairs. For considerable tracking robustness and speed, we use an ImageNet [31]
pre-trained ResNet-50 [32] model as a backbone network. We use the same training
split as ATOM [22], i.e., LaSOT [12], TrackingNet [10], and COCO [33] datasets. We
also include YouTube-VOS [34] for segmentation training purposes. Like SiamRPN
[15], we sample image pairs from the videos with a maximum gap of 50 frames and
augment the image dataset (e.g., COCO) with random transformation to generate
synthetic image pairs. From a reference image, we sample a square patch centered at
the target, with an area of 52 times the target size. For the test image, we sample a
similar patch, with some perturbation in the position and scale. Both patches are
resized to a fixed size of 288 � 288. To simulate the tracking scenario, we first
generate a region proposal by adding random Gaussian noises to the ground truth
bounding box and generating 16 candidate states. The variance of the Gaussian func-
tion is sampled randomly from [0.01, 0.05, 0.1, 0.2, 0.3, 0.4].

We set C ¼ 256 for feature representation in transformation modules. For the
PDM, the spatial output size K of the PrPool layer is set to 7. The fully connected layer
in MDM used to learn the transformation parameters has a weight matrix filled with
zeros and a bias equal to [1, 0, 0, 0, 1, 0].

62

Drones – Various Applications



4.2 Mask representation

In contrast to segmentation methods [5] in the style of FCN [35], which predicts a
mask on the entire search area, our approach restricts the segmentation inside the RoI
area for inference speed improvement. Apparently, there is an estimation bias of the
RoI proposal before and after refinement in PDM, which may impede the training
process, resulting in an upper bound of the segmentation head. To address this prob-
lem, we expand the proposal size by manipulating a factor γ to the width and height of
RoI. To prevent overfitting when learning the segmentation scale changes, we uni-
formly sample a factor between 1.2 and 1.5 during training. For the inference stage , is
fixed to 1.4 for all scenarios. we argue that this process will not introduce additional
computation since the RoI is pooled into fixed size, but stabilizes the training process
and improves the performance.

Unlike the VOS task, the initial mask is not provided in the VOT dataset. Besides,
some scenarios cannot provide a valid semantic mask, which disturbs the segmentation
process during inference. We thus fill the initial mask with ones given a probability for
the training stage. For inference, an estimated binary mask is predicted using GrabCut
[36] in case the mask is not provided. If the estimation fails for abnormal cases, a mask
of the same size with the bounding box, filled with ones will be used in MDM.

4.3 Training objective

Both PDM and KDM require supervision during training. We use the Smooth L1
loss for offset learning in Eq. 1 and Binary Cross Entropy (BCE) loss for both binary
mask generation and target localization. The total loss of DCNet is:

L ¼ λ1Lcls � λ2Lreg þ λ3Lmask (4)

where λ1,2,3 are weights for balancing losses and λ1 ¼ λ2 ¼ λ3 ¼ 1. Since the initial
RoI proposals have a relatively high IoU score between each other, it is unnecessary to
predict masks for each RoI proposal. During training, a random proposal is chosen to
train the segmentation module. For inference, instead, we use the default proposal
without augmentation. The network is trained for 40 epoches with 32 image pairs per
batch, giving a total training time of less than 1 day on four GPU TITAN X servers. We
use ADAM [37] optimizer with an initial learning rate of 10�3, and decay of the
learning rate with a factor of 0.9 every epoch.

4.4 Box generation

We consider the same strategy as [4] to generate a bounding box from a mask.
Specifically, a mask from the segmentation branch is converted to a binary mask with a
threshold of 0.5. Then, the rotated minimum bounding rectangle (MBR) is applied to
yield a rotated bounding box. The segmentation may fail in some abnormal states where
the target loses the semantics and cannot be discriminated from the background. We
thus measure the IoU score between the bounding box estimation from the segmenta-
tion branch with the refined RoI proposal and use the RoI value as the final prediction if
the IoU score is less than 0.5. Thanks to the efficiency and robustness of the proposed
modules, no additional post-processing steps are required to get the final prediction,
yielding a fast inference speed of over 60 FPS on an Nvidia 2060 GPU.
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5. Experiments

In this section, we compare our approach with the state-of-the-art (sota) methods
in two related tasks: VOS and VOT. We first evaluate DCNet on six challenging
tracking benchmarks: VOT2016 [7], VOT2018 [8], OTB100 [9], TrackingNet [10],
Got10K [11], and LaSOT [12] in Section 5.1. To extensively evaluate the proposed
method, we compare it with 21 state-of-the-art trackers. There are 4 anchor-based
Siamese framework based methods (SiamRPN [15], SiamRPN++ [17], DaSiamRPN
[16] and UpdateNet [38]),4 anchor-free Siamese framework based methods (SiamFC
[39], SiamFC++ [18], SiamBAN [20] and Ocean [19]),7 discriminative correlation
filter based methods (ECO [40], CSRDCF [41], CCOT [42], ASRCF [43], ROAM
[44], DiMP [21], and ATOM [22]), 2 attention based methods (SiamAttn [27],
CGACD [45]), 1 multi-domain method (MDNet [46]) and 3 tracking by segmentation
methods (D3S [5], SiamMask [4] and SiamRCNN [47]). We then perform an analysis
of the segmentation capabilities of DCNet on two popular VOS benchmarks:
DAVIS2016 [13] and DAVIS2017 [14] in Section 5.2. Finally, an ablation study is
performed based on the VOT2018 [8] dataset in Section 5.3.

5.1 Evaluation on VOT benchmarks

VOT2016 [7] and VOT2018 [8] VOT datasets each consist of 60 sequences with
different challenging factors in which targets are annotated by rotated rectangles.
VOT benchmarks use the protocol [7] in which the tracker is reset upon tracking
failure. Therefore, the tracking results are more comprehensive and insightful. The
performance is compared in terms of accuracy (average overlap over successfully
tracked frames), robustness (failure rate), and the EAO (expected average overlap),
which is a principled combination of the former two measures.

In the VOT2016 dataset, we compare DCNet with the following sota trackers
which cover most of the current representative methods: two segmentation-based
trackers D3S [5], SiamMask [4], Siamese network-based trackers DaSiamRPN [16],
SiamRPN [15], discriminative correlation filter based methods ROAM [44], ASRCF
[43], and CSRDCF [41].

Results are reported in Table 1, DCNet outperforms all top-performance sota by a
large margin especially in EAO measurement, achieving approximately a 6% boost in
EAO compared to the D3S and almost 20% boost in EAO compared to the SiamMask.
The accuracy inference comes from two aspects: (1) the segmentation is performed on
the RoI proposal instead of the entire search area which may cause truncation if the
RoI is not precise enough. (2) The output of segmentation is limited to 28� 28 for best
speed and accuracy trade-off. Nevertheless, the efficiency of the proposed transfor-
mation module brings both robustness and speed to the tracker, resulting in an overall

CSRDCF
[41]

DaSiam RPN
[16]

Siam RPN
[15]

ASRCF
[43]

Siam Mask
[4]

ROAM
[44]

D3S
[5]

Ours

A 0.51 0.610 0.560 0.563 0.670 0.599 0.660 0.640

R 0.238 0.220 0.302 0.187 0.233 0.174 0.131 0.125

EAO 0.338 0.411 0.344 0.391 0.442 0.441 0.493 0.526

Table 1.
VOT2016 [7] – Comparison with state-of-the-art trackers.
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boost in performance. Compared with D3S which runs only at 25 FPS, our approach
doubles the inference speed, achieving 62 FPS with a significant accuracy increase.

Table 2 shows the performance results on the VOT2018 [8] dataset. DCNet still
achieves sota performance in all measures, compared with the recent top-performer
D3S. Our method achieves an EAO score of 0.485, a relative 25% improvement
compared with SiamMask. Furthermore, DCNet achieves a top robustness score of
0.145 and outperforms the most recent sota discriminative correlation filter DiMP [21]
and ATOM [22], demonstrating the robustness of our state transformation module.

OTB100 [9] The OTB100 [9] dataset contains 100 fully annotated video sequences
with substantial variations. We adopt the straightforward One-Pass Evaluation (OPE)
as the performance evaluation method. For the performance evaluation metrics, we
use precision plots and success plots. Following the protocol in the OTB benchmark,
we use the threshold of 20 pixels and Area Under Curve (AUC) to present and
compare the representative precision plots and success plots of trackers, respectively.
Figure 5 shows the success and precision plots on OTB100. DCNet achieves a similar
AUC score compared with top performer SiamRPN++ [17] and outperforms all other
sota methods SiamPRN++ [17]. Specifically, our DCNet surpasses ATOM, which is the
top discriminative tracker using the same online classification module for target
localization, by 4.5 and 4.8% on the success and precision plots respectively, demon-
strating the effectiveness of refining RoI proposals using the state transformation
module. In addition, our DCNet outperforms the very recent anchor-free tracker
SiamBAN [20] on the precision plot.

Siam RPN+
+ [17]

DiMP
[21]

ATOM
[22]

Siam FC+
+ [18]

Siam
Mask [4]

Siam
Attn [27]

Siam
RCNN [47]

D3S
[5]

Ours

A 0.600 0.597 0.590 0.587 0.642 0.630 0.609 0.640 0.602

R 0.234 0.153 0.204 0.183 0.295 0.16 0.220 0.150 0.145

EAO 0.414 0.440 0.401 0.426 0.387 0.470 0.408 0.489 0.485

Table 2.
VOT2018 [8] – Comparison with state-of-the-art trackers.

Figure 5.
Evaluation results of trackers on OTB100 [9].
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TrackingNet [10] TrackingNet [10] is a large-scale dataset consisting of more than
30 K videos for training and 511 videos for testing. Trackers are ranked in terms of
AUC, and precision. As shown in Table 3, DCNet significantly outperforms all sota
methods on precision metric. In detail, our DCNet obtains an improvement of 4.4, 7.3,
and 1.1% on precision score compared with top-performing trackers D3S, ATOM [22],
and DiMP [21], respectively.

Got10K [11] Got10K [11] is another large-scale dataset that was proposed recently.
Following the requirement of generic object tracking, there is no overlap in object
categories between the training set and test set, which is more challenging and requires
a tracker with a powerful generalization ability. We follow their protocol and train the
network with training split and YouTube-VOS [34] dataset. The results are shown in
Table 4. Note that all the results are tested on their online server. Trackers are ranked
according to the average overlap and success rates at two overlap thresholds 0.5 SR0:5ð Þ
and SR0:75ð Þ 0.75, respectively. We consider the following sota trackers in comparison:
D3S [5], ROAM [44], DiMP [21], SiamMask [4], SiamFC++ [18], ATOM [22], and
MDNet [46]. DCNet outperforms all sota methods by a large margin in all performance
measures, achieving a relative 4% higher performance in average overlap compared
with the sota Siamese-based tracker SiamFC++ [18]. It also outperforms the most recent
ATOM [22] and D3S [5] by over 3.7% and over 10.9% in average overlap, respectively,
demonstrating the powerful capability of generalized object tracking.

LaSOT [12] LaSOT [12] contains 280 video sequences for testing and employs
success and precision plots as measurements. We evaluate our DCNet against the top-
performing trackers, including Ocean [19], ATOM [22], DiMP [21], SiamRPN++ [17],
SiamFC [39], ECO [40], and SiamBAN [20]. Figure 6 presents the comparison
results. Our DCNet achieves sota performance compared with the recent DiMP [21].
Specifically, our DCNet achieves an AUC score of 0.570, with a boost of over 52.8% on
performance since MDNet.

NFS30NFS dataset contains 100 fully annotated video sequences with substantial
variations. For the performance evaluation metrics, we use precision plots and success
plots. The performance of DCNet is compared with sota trackers including SiamBAN
[20], ATOM [22], DiMP [21], UPDT [49], ECO [40], MDNet [46], and CCOT [42].
Figure 7 shows the success and precision plots on NFS30. DCNet outperforms all

Update Net
[38]

DiMP
[21]

ATOM
[22]

Siam RPN++
[17]

CGACD
[45]

ROAM
[44]

PrDiMP
[48]

Ours

Succ. 0.677 0.740 0.703 0.733 0.711 0.670 0.758 0.729

Prec. 0.625 0.687 0.648 0.694 0.693 0.623 0.704 0.693

Table 3.
Results on the TrackingNet [10] test set in terms of precision and success (AUC).

DiMP [21] Siam FC++ [18] ROAM [44] D3S [5] Ocean [19] Ours

AO 0.611 0.596 0.465 0.597 0.611 0.618

SR0.5 0.717 0.694 0.532 0.676 0.721 0.734

SR0.7 0.492 0.479 0.236 0.462 — 0.488

Table 4.
State-of-the-art comparison on the GOT-10 k test set in terms of average overlap (AO) and success rates (SR) at
overlap thresholds 0.5 and 0.75.
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state-of-the-art trackers under both metrics. Specifically, our DCNet surpasses
DIMP-50, which is the top discriminative tracker using the online classification module
for target localization, by 4.1% on the precision plots, while achieving a better success
rate score, demonstrating the effectiveness of refining RoI proposals using the state
deformation module. In addition, our DCNet outperforms the very recent anchor-free
tracker SiamBAN [20] on both precision and success plots.

5.2 Evaluation on VOS benchmarks

For both DAVIS datasets, we use the official performance measures: the Jaccard
index Jð Þ to indicate region similarity and the F-measure Fð Þ to represent contour

Figure 7.
State-of-the-art comparison on the NFS dataset in terms of precision and success rate.

Figure 6.
Evaluation results of trackers on LaSOT [12].
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accuracy. Following D3S [5], we only report the mean Jaccard index JMð Þ and mean
F-measure. We compare DCNet with several sota VOS methods including D3S [5],
SiamMask [4], OnAVOS [23], FAVOS [24], and OSVOS [25].

For a compact comparison, we designed three variants, i.e. (1) DCNet withoutmask as
input in which caseM0 the is filled with (2) The proposed method with both bounding
box and mask as input. (3) The proposed method follows with refinement modules as in
[5]. Table 5 shows the results of the comparison. DCNet achieves a compatible perfor-
mance compared with segmentation-based trackers D3S [5] and SiamMask [4]. Com-
pared to D3S [5], the performance of DCNet-w/o mask on DAVIS2016 [13] is only 3 and
9% lower in the mean Jaccard index and mean F-measure respectively, but with speed
improvement over 1.5 times. A relatively smaller difference is achieved when providing
the tracker with an initial mask. Due to the low resolution (28 � 28) of the segmentation
mask, the KDM is prone to giving a lower performance score, especially for the F-measure
metric, which expresses the contours similarity. By attaching a refinement module,
DCNet outperforms the performance of D3S and SiamMask on DAVIS2016 [13] while
reducing the inference speed by over 55%.We thus do not choose to extend the size of the
segmentation output. This choice contributes significantly to the efficiency which is
crucial for the visual tracking task.

5.3 Ablation analysis

An ablation analysis is performed on the VOT2018 [8] dataset to prove the effective-
ness of the different modules of DCNet framework. We establish a baseline by removing
all three transformation modules. Specifically, we eliminate the PDM and MDMmodules
and perform segmentation on the expanded RoI region with the scale factor 0.5 using
FCN [35] style, following D3S [5]. The output of the segmentation head has full resolution
and same size as the input. The results of the ablation study are presented in Table 6.

Effectiveness of PDM. Adding PDM to the baseline model causes an 11.5% perfor-
mance gain with an ignorable impact on inference speed. This demonstrates the PDM
has the capability of locating the most relevant regions of an image in a computation-
ally and parameter-efficient way. Figure 8 shows the state transformation process
with RoI proposals before and after refinement.

DAVIS2016 DAVIS2017 FPS

JM FM JM FM

D3S [5] 75.4 72.6 57.8 63.8 25.0

SiamMask [4] 71.7 67.8 54.3 58.5 55.0

OnAVOS [23] 86.1 84.9 61.6 69.1 0.1

FAVOS [24] 82.4 79.5 54.6 61.8 0.8

OSVOS [25] 79.8 80.6 56.6 63.9 0.1

DCNet-w/o mask 72.9 65.7 53.2 56.1 62.0

DCNet 74.5 71.1 54.2 59.4 62.0

DCNet-refine 76.9 73.2 57.9 63.3 28.0

Table 5.
State-of-the-art comparison over the DAVIS2016 and DAVIS2017 VOS benchmarks. Mean Jaccard index and
mean F-measure are donated as JM and FM, respectively.
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Effectiveness of KDM. The overall tracking performance increased by 7.7%with KDM
included to replace the FCN architecture. We argue that the improvement is mainly
attributed to two aspects: (1) The FCN [35] relies on skipping connection mechanisms to
replenish details, but introduces additional parameters to optimize, causing overfitting
problem. We only perform segmentation on a low-resolution patch making the network
much easier to converge. (2) FCN deploys a template matching strategy which makes the
prediction unstable in abnormal cases over long sequences. Instead, KDM is able to
accommodate model geometric transformation by using a part-matching strategy. The
attention layers from different part matching are presented in Figure 9.

Figure 8.
Impact of PDM, green and red rectangles are RoIs before and after refinement, respectively.

PDM KDM MDM EAO FPS

Baseline — — — 0.397 40

+ PDM ✓ — — 0.442 38

+ KDM ✓ ✓ — 0.477 65

+ MDM ✓ ✓ ✓ 0.484 62

Table 6.
Ablation analysis of DCNet on VOT2018 [8] dataset. We compare the impact of proposal deformation module
(PDM), kernel deformation module (KDM), and mask deformation module (MDM).

Figure 9.
Impact of KDM, attention maps from different part matching results.
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Effectiveness of MDM. MDM assigns different weights to part kernels in KDM
which is helpful in some abnormal cases like occlusion and truncation. While only a
small fraction of those extreme cases appear over the whole video sequence, they
become pivotal when designing a robust tracking framework, as shown in Figure 10.
Overall, MDM brings an extra 1.4% improvement in EAO score with a slight
speed drop.

Speed Analysis In Figure 11, we visualize the EAO on VOT2018 with respect to the
Frames-Per-Second (FPS). From the plot, our method achieves the best performance,
while still running at real-time speed (62 FPS). Figure 10 shows further qualitative
results of segmentation branch and bounding box estimation.

Figure 11.
A comparison of the quality and the speed of state-of-the-art tracking methods on VOT2018.

Figure 10.
Segmentation mask and final output: Predicted mask from segmentation branch after interpolation and final
output with rotated bounding and mask.
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6. Conclusions

In this work, we propose a deformable correlation network that models geometric
transformation from different levels in a highly efficient manner. The comprehensive
experiments demonstrate that our approach significantly improves the tracking
results, achieving new state-of-the-art performance.
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Chapter 5

Modeling and Simulation of a
Solar-Powered Quadcopter
Using MATLAB
Rahmi Elagib and Ahmet Karaarslan

Abstract

Solar-powered quadcopters have the potential to revolutionize the way we think
about aerial transportation and surveillance. These aircraft can potentially fly for
extended periods of time without the need for external fuel, making them ideal for a
wide range of applications. In this paper, we present a modeling and simulation
approach for a solar-powered quadcopter using MATLAB. The model includes the
quadcopter’s dynamics, solar panel power generation, and energy storage system. A
PID control system for the solar-powered quadcopter simulation model was created
using MATLAB/Simulink. The simulation findings indicate that the solar-powered
quadcopter can be accurately simulated and controlled with a PID controller. It also
reveals that a solar-powered quadcopter can fly for 2.18 hours with a state of charge
(SOC) of more than 20%, compared to a nonsolar quadcopter’s flying duration of
34.37 minutes. The results of this study can be used to design and optimize the
performance of solar-powered quadcopters for various applications.

Keywords: quadcopter, MATLAB, PID, solar-powered, unmanned aerial vehicles

1. Introduction

Solar-powered quadcopters have gained significant attention in recent years due to
their potential for extended flight and their ability to operate in a wide range of
environments. These aircraft are typically equipped with photovoltaic cells, which
convert sunlight into electricity that can be used to power the quadcopter’s motors and
electronics. However, there are many challenges to overcome in order to make
solar-powered quadcopters a practical reality, including the design of efficient and
lightweight solar panels, the optimization of the energy storage system, and the
management of the quadcopter’s power consumption.

Modeling and simulation can be a powerful tool for understanding the performance
and behavior of solar-powered quadcopters. By building a virtual model of the
quadcopter and its components, it is possible to study the effects of various design choices
and operating conditions without the need for physical experimentation. In this paper, we
present a modeling and simulation approach for a solar-powered quadcopter using
MATLAB. The model includes the quadcopter’s dynamics, solar panel power generation,
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and energy storage system. The simulation results are used to study the performance of
the solar-powered quadcopter under different solar insolation conditions.

There have been several previous studies on the use of solar power for small
unmanned aerial vehicles (UAVs), including solar-powered quadcopters. These stud-
ies have primarily focused on the use of photovoltaic cells to generate electricity for
the UAV’s motors and electronics. However, there have been few comprehensive
studies on the design and performance of a fully solar-powered quadcopter.

Many researchers proposed solar-powered quadcopters that use hybrid energy
sources to increase flight durations, such as integrating rotational energy harvesting,
laser power beaming, and solar energy [1–3] J. Meyer et al. [4] present a design for
sustained solar-powered electric flight on small scale Low Altitude Long Endurance
(LALE) UAVs. This model improved the airframe construction, energy storage
mediums, motor and propeller efficiency, and the availability of lightweight photo-
voltaic cells for UAV power generation. Goh et al. [5] used 148 solar cells to create a
fully solar-powered quadcopter. It weighed about 2.6 kg and reached a height of 10 m.
Even after building a massive working model, their quadcopter’s overall flight time
was only about 1 minute and 38 seconds. Kingry et al. [6] developed a solar-powered
quadcopter using an array of C60 solar cells with 22% efficiency. Because they wanted
to attain a very high-flying time, which requires using numerous solar cells, their
demonstrator weighed roughly 8.175 kg. The flight time of this solar-powered
quadcopter was approximately an hour. Verbeke et al. evidenced a modified configu-
ration for narrow corridors that results in up to 60% more endurance [7]. Pang et al.
recently incorporated variable pitch rotors into a gasoline engine to extend flight
duration to 2 to 3 hours [8].

Despite the development of small-scale solar-powered quadcopters in [9–12], there
aren’t many studies that address the modeling and control of a solar-powered
quadcopter problem. Proportional-integral-derivative (PID) control, model predictive
control, and PID-LQR integrated control are examples of effective control systems
that have been used to develop robust and effective controllers in various solar-
powered quadcopters. In this study, a 1.147 kg solar-powered quadcopter will be
modeled, simulated, and PID-controlled in MATLAB/Simulink. The main
contribution of this study is the building of a realistic MATLAB/Simulink model for a
solar-powered quadcopter in order to increase flying duration while taking into con-
sideration the issue of controlling and stabilizing the vehicle, which can serve as a
solid basis for designing an actual model.

This work is divided into the following sections: Section II includes the Model
Description, and Section III depicts the PID Controller Design for a solar-powered
quadcopter. Section IV discusses the Simulation Results. Section V covers the Conclu-
sion as well as future work.

2. Model description

The model of the solar-powered quadcopter consists of three main components: the
quadcopter dynamics, the solar panel power generation, and the energy storage system.

2.1 The quadcopter dynamics model

In this section, a mathematical model of quadcopter flight dynamics was devel-
oped. The quadcopter’s linear position is defined as (x, y, z), and the three Euler
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angles are defined as (ϕ, θ,ψ). The quadcopter has four motors, two of which spin
clockwise and the others counterclockwise, so the torque generated is negated.

A quadcopter’s altitude and attitude can be controlled by varying the speed of each
rotor (Ω1,Ω2,Ω3,Ω4).

The flight dynamics model of the solar-powered quadcopter is built on a number
of assumptions, such as the quadcopter’s rigid and symmetrical structure, the coinci-
dence of the center of gravity and the origin of the body fixed frame, and proportional
relationships between thrust/drag torques and the square of rotor speed, and rigid
propellers. The flight dynamics model of a quadcopter is derived from Newton-Euler
equations and Newton’s second law as follows:

€x ¼ 1
m

sinψsinϕ� cosψsinθsinϕð ÞU1 � Ax _xð Þ (1)

€y ¼ 1
m

cosψsinϕþ sinψsinθcosϕð ÞU1 � Ay _y
� �

(2)

€z ¼ g� 1
m

cosψcosϕU1 � Ay _y
� �

(3)

€ϕ ¼ Iyy � Izz
Ixx

� �
_ψ _θþ JrΩr

Ixx

� �
_θþ l

Ixx

� �
U2 � Aϕ _ϕ

Ixx
(4)

€θ ¼ Izz � Ixx
Iyy

� �
_ψ _ϕ� JrΩr

Iyy

� �
_ϕþ l

Iyy

� �
U3 � Aθ _θ

Iyy
(5)

€ψ ¼ Ixx � Iyy
Izz

� �
_θ _ϕþ l

Izz

� �
U4 � Aψ _ψ

Izz
(6)

The input signal U1 is the total thrust of the four rotors. And U2, U3, U4 are the
moments for pitch, roll, and yaw, respectively. Where m represents the mass of the
quadrotor, Jr is the inertia of the rotor, and Ixx, Iyy, and Izz are the inertia of the
quadrotor in x, y, and z, respectively. More information can be found about the
dynamics model in our previous works [13, 14].

2.2 The solar power system modeling and simulation

Instead of using just solar energy, a hybrid system of LiPo battery and solar energy
is designed to extend the entire flying duration of the quadrotor. This system consists
mostly of PV arrays, maximum power point tracking (MPPT), a buck converter, and a
battery. Because the modeling of such systems has been extensively studied in several
studies, our primary focus here will be the simulation of this system.

Maximum power point tracking (MPPT) is a solar charge controller that controls
the amount of power from the solar array feeding the battery. It prevents electricity
from running back to the solar panels overnight and prevents the deep cycle batteries
from being overloaded during the day. A DC-to-DC transformer, the MPPT charge
controller can convert power from a higher voltage to power at a lower voltage. Since
the quantity of power remains constant, if the output voltage is less than the input
voltage, the output current will be greater than the input current, maintaining the
constant value of the product P=VI. Therefore, a charge controller should be able to
select the ideal current-voltage point on the current-voltage curve to get the most out
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of a solar panel. Buck converter, the MPPT is built on a synchronous buck converter
circuit. It reduces the greater solar panel voltage to the battery’s charging voltage.
Additionally, it modifies the voltage of its input to capture the solar panel’s
maximum output before transforming that output to meet the battery’s fluctuating
voltage needs. Solar panels, the quadcopter’s solar power system’s key component is
the solar panel. There are several names for solar panels, including photovoltaic solar
modules, solar plates, solar PV modules, and solar power panels. PV arrays are made
up of 30 solar cells that create power to charge the battery. The most important
consideration when choosing a solar cell for a quadcopter is efficiency. As a result, it
was decided to employ SunPower C60 solar cells, irradiation 500 W/m2, 25C. Under
conventional testing settings, each cell possesses the electrical characteristics as shown
in Table 1 (STC). PV array voltage can be higher than battery voltage for MPPT.
Lithium-ion polymer (LiPo), the battery utilized in simulation is a 3200 mAh Li-Po
battery with configuration: 3S1P/11.1v/3Cell, constant discharge: 30C, and peak dis-
charge (10 sec): 60C. The simulation of the proposed solar-powered quadcopter
power system (solar cells, a Li-Po battery, an MPPT, and a boost converter) is shown
in Figure 1.

3. Quadcopter PID controller

PID is used in this investigation to obtain the desired altitude and attitude. The
proposed control law is developed by dividing the system model into two subsystems,

Parameter Symbol Value

Maximum power Pmpp 3.42 W

Voltage at maximum power Vmpp 0.582 V

Current at maximum power Impp 5.93A

Open-circuit voltage VOC 0.687 V

Short-circuit Current ISC 6.28I

Cell efficiency η 22.5%

Table 1.
SunPower C60 cell electrical characteristics.

Figure 1.
The Simulink of built solar-powered quadcopter battery circuit.
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a fully actuated subsystem and an under-actuated subsystem, as shown in Figure 2.
Unlike in the under-actuated subsystem, where the inputs U2 and U3 are smaller than
the number of outputs (x, y, ϕ, θ), in the fully actuated subsystem, there are two
outputs (z, ψ) for each of the inputs (U1, U4).

Many articles, including [15], have investigated the PID controller. The PID con-
troller has three different parameters: the proportional term, the integral term, and
the derivative term. The proportional term determines the direct action with regard to
the computed error, the integral term determines the response with respect to the sum
of recent mistakes, and the derivative term determines the reaction with respect to the
error’s rate of change. The controller equation is given by the following formula:

UX tð Þ ¼ Kpe tð Þ þ KI

ð
e tð Þ:dtþ KD

de tð Þ
dt

(7)

In Simulink, PID controllers may be represented as gains or as a continuous time
transfer function (Table 2).

4. Simulation results

The suggested PID design parameters have been tuned manually in MATLAB/
Simulink in order to track the trajectory smoothly. Table 3 lists the parameters of the
recommended controllers.

Figure 2.
UAV control system block diagram.

Parameter Symbol Value

Quad. mass m 1.147 kg

Arm length l 0.36 m

Gravity g 9.81 m=s2

Rotor inertia Jr 2.6e-06 kg:m2

Inertia constants Iyy, Ixx 9.5* 10�3 kg:m2

Izz 1.86* 10�2 kg:m2

Thrust coeff. b 1.4865e-07 N:s2

Drag coeffi. d 2.925e-09 N:m:s2

Table 2.
The parameters of the quadcopter.
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Figures 3–6 show the solar-powered quadcopter’s response to altitude, roll, pitch,
and yaw velocity. The system response is excellent, and the control procedure is
carried out with very minor overshoots. However, there is a noticeable overshoot in
the case of altitude and yaw velocity control, at 60 seconds for altitude and 66, and
71 seconds for yaw velocity.

A trajectory can be simulated to show that the simulation is appropriately con-
trolled and operating. A 3D trajectory may be created using the trajectory inputs and
states of altitude, roll, pitch, and yaw velocity. Figure 7 shows the three-dimensional
trajectory, whereas Figure 8 illustrates the sensor position output.

Controller Tuning PID

Roll Pitch Yaw Altitude

KP 1.99 1.99 0.12 1.8

KI 1.99 1.99 0.12 2.1

KD 0.11 0.11 0 1.9

Table 3.
PID design parameters tuning.

Figure 3.
The actual and desired altitude values.

Figure 4.
The actual and desired roll values.

Figure 5.
The actual and desired pitch values.

Figure 6.
The actual and desired yaw values.
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The RPM of the motors is also provided in Figure 7 for further controller demon-
stration. The aforementioned overshoot may also be seen in the RPM diagram at the
same time period (Figure 9).

The quadcopter’s voltage, current, and battery state of charge (SOC) are simulated
in both cases, with and without solar cells. The results are compared to show how
using solar cells improves flight duration. Figures 10–17 compare battery simulation
results with and without solar cells.

Figures 10 and 11 illustrate that when solar cells are used, the voltage is higher
than when they are not used.

Figures 12 and 13 show that when solar cells are employed, the current drawn is
lower than when they are not. When determining the quadcopter flying time, these
current values are critical.

Figure 7.
The quadcopter position sensor reading.

Figure 8.
The quadcopter trajectory.
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Figure 9.
The quadcopter RPM.

Figure 10.
The battery voltage vs. time when solar cells are used.

Figure 11.
The battery voltage vs. time when no solar cells are used.
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Figure 12.
The battery current vs. time when solar cells are used.

Figure 13.
The battery current vs. time when no solar cells are used.

Figure 14.
The battery SOC vs. time when solar cells are used.
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Figures 14 and 15 show that the SOC is lower when solar cells are employed than
when they are not used. This means that when solar cells are not employed, the
quadcopter discharges more quickly.

Figures 16 and 17 show that when solar cells are utilized, the battery power
gradually decreases because the quadcopter uses a part of the cell current, causing the
battery power to decrease due to the drop in battery current.

The flight time can be calculated in both situations using the following formula:

The quadcopter flight time ¼ The battery capacity� save discharge rate=AAD (8)

AAD ¼ AUW� P=V ¼ AUW� I (9)

where P is the power needed to lift one kilogram of equipment, expressed in watts
per kilogram, I is the current (in amps) needed to lift one kilogram into the air, and
AAD is the average amp draw, expressed in amperes. AUW is the all-up weight of
your drone, which is the total weight of the equipment that goes up in the air,

Figure 15.
The battery SOC vs. time when no solar cells are used.

Figure 16.
The battery power vs. time when solar cells are used.
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including the battery. Also, it can be calculated directly from Omni calculator website
[16] or using trigonometry.

Flight times are calculated using Eqs. (8) and (9).
Flight time is 34.37 minutes when no solar cells are used, and 2.18 hours when solar

cells are used.

5. Conclusion

This article discusses the modeling and control of a solar-powered quadcopter,
resulting in significantly longer flight duration. The quadcopter’s flight dynamics and
aerodynamics models are being developed. To simulate the model in MATLAB, a
mathematical model in Newton-Euler form was derived. An accurate plant model was
built using MATLAB/Simulink, and motor dynamics and battery dynamics were
integrated. The solar-powered quadcopter power system was modeled utilizing
SunPower C60 sun cells and an MPPT, Buck Converter. These parameters were added
to the plant model to make it more realistic for real-world application. The designed
solar-powered vehicle was controlled by PID controllers, and the system reaction was
recorded after the PID controllers had been tuned. The simulation results demonstrate
that the system is properly controlled and operated.

Furthermore, the results reveal that the solar-powered quadcopter performs well
under typical solar irradiation circumstances. While the nonsolar-powered
quadcopter can fly for 34.3 minutes, the solar-powered quadcopter can fly for
2.18 hours with the battery’s state of charge (SOC) maintaining over 20%. Although
the angle of the panels is greatly important on solar panel power output, this article
does not focus on this issue; thus, additional research on this topic may be done in
future works. A real model will be developed and tested outdoors in the future to
compare simulation results with real-world results.
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The battery power vs. time when no solar cells are used.
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Chapter 6

Implementation of a Hybrid Power 
Testbed Model of a Hybrid Electric 
Unmanned Aerial Vehicle
Lionel Fouellefack

Abstract

Testbeds form an essential aspect in the construction of a Hybrid – Electric 
Unmanned Aerial Vehicle (HE – UAV)/Aircraft. Such testbeds have never been 
developed before even though a model of the HE – UAV was developed. This article 
explores the feasibility of implementing a prototype of a (HE – UAV) testbed. Several 
research papers in the domain were thoroughly explored and the results were grouped 
based on similar research findings. The grouping was done in terms of the sizing 
result achieved by each author, the UAV class used, the hybrid powertrain specifica-
tions of the components, and the testbed equipment used to construct the HE – UAV 
testbed. The result from this research shows that a HE – UAV testbed can be achieved 
if stringent measures are done in determining the size of the component for a given 
drone size and a careful selection of the components from the sizing result for the 
testbed construction.

Keywords: unmanned aerial vehicle, unmanned aerial system, testbed,  
Hybrid – Electric, aircraft

1. Introduction

A MATLAB – Simulink model of a Hybrid – Electric Unmanned Aerial Vehicle 
(HE – UAV) was implemented in the previous research to analyze the fuel savings 
potential of the UAV for specific mission profiles Fouellefack et al. [1]. This research 
article explores the feasibility of constructing a prototype of a HE – UAV. Similar 
research studies have already been done by previous authors in the field, which are: 
sizing the components of the hybrid powertrain of the HE-UAV for specific mission 
profiles, developing a numerical simulation model through a control strategy to opti-
mize HE-UAV performance and constructing test beds to integrate the components of 
hybrid powertrain which formed the basis for the build-up of a flying UAV/Aircraft. 
These are explored in the relevant sections below.

1.1 Component sizing

One Aspect essential in the construction of a HE-UAV is to do component sizing 
of the hybrid powertrain components of the UAV/Aircraft. By component sizing, 
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the author refers to the specification of the components of the hybrid powertrain 
used to achieve a mission for a given UAV design. Several research studies have been 
attempted by previous researchers [2–8] to determine the size of each propulsive 
component of a hybrid powertrain as this is essential for the testbed construction, 
UAV size and range covered by the UAV. These include developing mythologies 
through various optimization functions to minimize specific design parameters to 
reduce fuel consumption and increase the UAV range and implementing multiple 
sizing functions to estimate the specification of each propulsive component to achieve 
a given UAV mission.

Using a non-dominated sorting genetic algorithm, Xie et al. [2] developed a sizing 
algorithm to size the Hybrid Electric Propulsion Systems (HEPS) for a small UAV 
for specific mission profiles. The algorithm developed considers two objectives; fuel 
consumption and flight during the UAV to estimate its range and fuel consumption 
which was compared to a prototype aircraft. The hybrid aircraft achieved a range of 
6 h compared to 5 h using the prototype aircraft resulting in a fuel economy of 17.6%. 
A similar study was done by Donateo et al. [3] Donateo et al. [4], where the authors 
developed a multi-objective optimization problem using a genetic algorithm to size 
the components of a HE – UAV for specific mission profiles. He developed scalable 
models to calculate the mass and space of each powertrain component (Propeller, 
gearbox, engine, battery and electric drive) and an optimization routine was run 
to maximize the endurance and minimize the fuel consumption of the UAV dur-
ing its mission profile. The optimization of the mission allowed an improvement in 
fuel consumption of 7% compared to the existing configuration. Pornet et al. [5] 
produced a similar performance methodology for sizing hybrid electric aircraft for 
specific mission profiles. His sizing algorithm was used to size the plane for some 
design variables, and an objective function was developed to minimize fuel consump-
tion during the aircraft’s mission. A fuel consumption of 16% was achieved compared 
to the conventional aircraft with a mix of fuel and electrical energy of 82%:18%.

Hiserote et al. [6] developed a sizing algorithm using MATLAB to size the pro-
pulsion system component of a HE – UAV. The code was designed such that it takes 
inputs such as the user-specific mission, i.e. airspeed, altitude, rate of climb, battery 
discharge and hybrid configuration to optimize the power required by the aircraft 
and perform various sizing calculations of the propulsion system, such as the ICE, 
EM mass, propeller mass, clutch mass, and battery mass. The author used a 3 h ISR 
baseline mission profile and compared the size of the propulsion system with the 
conventional case (ICE-powered) UAV. The hybrid UAV achieved a lesser fuel saving 
than the conventional UAV.

Schomann et al. [7] designed a sizing methodology to size the propulsion system 
of a HE-UAV. He developed surrogate models of the components of the hybrid propul-
sion system, i.e., the ICE, EM, Battery, Propeller and fuel system, such that it itera-
tively outputs specific parameters for a given input. A similar work is seen in Rippel 
[8] from the Air Force Institute of Technology, where he developed a sizing algorithm 
for the conceptual design of a HE-UAV. The sizing code iteratively outputs specific 
design parameters, such as the power required for flight, wingspan, wing area and 
propulsion system mass (ICE, EM, propeller mass and battery) for a given user input, 
such as the aircraft altitude, cruise condition and rate of climb.

Table 1 provides a comparative summary of the drone class used for the sizing 
calculations, Table 2 gives a comparative overview of the range, endurance and 
percentage of fuel improvement compared to the conventional case (ICE powered 
aircraft/UAV) obtained by different authors from their sizing results, and Table 3 
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compares the sizing results of the hybrid electric propulsion characteristics of the HE- 
UAV achieved by various authors.

1.2 Supervisory control and optimization

Another important aspect essential for the construction of the HE – UAV testbed 
is do a numerical simulation of a modeled UAV to predict UAV performance under 
varying mission profiles. This is usually done by employing a control strategy through 
an energy management strategy to optimize the power demand of the powertrain 
components of the UAV during its flight profile. Previous research has applied these 
control strategies as energy management strategies to optimize the fuel consumption 
of a HE – UAV during its mission profile. Examples include the usage of a rule base 
supervisory controller by Harmon et al. [9], Xie et al. [10], Hung et al. [11], where 

Paper Reference UAV/Aircraft class for sizing Take-off mass (kg) Wing span (m)

Xie [2] ERCO Ercoupe 415 603 9.1

Donateo [3] General Atomics Predator RQ 1020 14.8

Pornet [5] Airbus A320 or Boeing B737 78,990 36.0

Hiserote [6] Insitu’s ScanEagle
AAI’s Aerosonde

13.6 4.62

Schomann [7] Institution unmanned research aircraft 
IMPULLS

35.49 5.23

Rippel [8] Diamond Aircraft DA 20 873 10.9

Cessna 172 Skyhawk, 1114 11

General Atomics Predator 1190 11.5

Harmon [9] Aerosonde UAV 13.6 4.65

Table 1. 
Comparison of various drone classes for sizing calculation used by each author.

Mission altitude (m) Cruising velocity Range Endurance (h) Percentage of fuel 
improvement

230 m 157 km/h 600 km 6 17.6

4900 m 41 — 24 7

35,000 ft 250 K CAS 2770 nm 1.2 16

300 m 20.5 m/s — 12 30.5

900 m 20 — 12 —

4000 71 547 nm — —

4115 60 700 nm — —

4500 47 2000 nm — —

(1524)
5000 ft

23.2–28.3 — 3 38
22

Table 2. 
Comparison of range, endurance, and fuel improvement from sizing results of each HE-UAV achieved by various 
authors.
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the authors used this control strategy to optimize the fuel consumption of HE-UAVs. 
Simulations show that a HE – UAV could achieve a fuel-saving potential of 6.9, 7 and 
6.5%, respectively, compared to an Internal combustion Engine (ICE) -powered 
aircraft when using this control strategy.

Another controlled strategy used by researchers is the Fuzzy Logic Supervisory 
controlled strategy which is used as an energy management strategy to minimize 
the fuel consumption of HE-UAVs. Lei et al. [12], Xie et al. [13], and Bai et al. [14] 
employed a Fuzzy Logic supervisory controller to minimize the energy usage of 

Paper ICE EM Battery Propeller

Xie [2] ICE
Power (40 kW)

EM Power (30 kW) Battery
Mass
(10 kg)

—

Donateo [3] Engine
Power
(64 kW)

EM
Power
(3KW)

— —

Pornet [5] EM
Power
(5.1 MW)
EM Mass
(510 kg)

Battery
Mass
(8900 kg)

—

Hiserote [6]
Clutch-Start
Electric-Start
Centerline-
Thrust

Engine Power
(438.9 W)
Engine Mass
(0.356 kg)
Engine
Power
(429.9 W)
Engine
Mass
(0.349 kg)
Engine Power
(406.5 W)
Engine Mass
(0.330 kg)

Electric Motor Power
(155.2 W)
Electric Motor Mass
(0.047 kg)
Electric
Motor Power
(155.2 W)
Electric Motor
Mass
(0.047 kg)
Electric
Motor Power
(155.2 W)
Electric Motor
Mass
(0.047 kg)

Battery
Mass
(4.171 kg)
Battery
Mass
(4.173 kg)
Battery
Mass
(4.179 kg)

—

Schomann [7] Torque
(RC/MP)
(1.09/1.51)
Engine Mass
(0.77 kg)

Torque (EF/MP)
0.43/0.66
Electric Motor
Mass
(0.61 kg)

Battery
Mass
(3.89 kg)

Propeller
Mass
(0.18 kg)

Rippl [8] Engine
Mass
(62.25 kg)

Electric Motor Mass
(35.86 kg)

Battery
Mass
(84 kg)

—

Harmon [9] Engine
Power
(837 W)
Engine
Mass
(1.13 kg)

Electric Motor
Power
(114 W)
Electric Motor
Mass
(0.16 kg)

Battery
Mass
2.2 kg

Propeller 
Mass
(0.17 kg)

Table 3. 
Sizing comparison result of the hybrid propulsion characteristics of the HE – UAV achieved by various authors.
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a HE – UAV during its mission. Through Simulation, the authors showed that a 
HE – UAV could potentially achieve fuel savings of 5.9, 11, and 22%, respectively, 
compared to an ICE-powered UAV.

1.3 Hybrid: Electric UAV testbeds

After the sizing and modeled simulation of the UAV/Aircraft a final aspect in the 
construction of a HE-UAV is to build a testbed that seamlessly integrate the hybrid 
powertrain components of the HE – UAV. Various researchers has attempted to build 
such tested from the literature [15–25]. These were developed to validate the results 
obtained from the sizing of their HE-UAVs, and the results of numerical simula-
tion models developed through a control strategy (energy management strategy) to 
optimize HE – UAVs performance for given mission profiles. Aksland [15] created a 
hybrid powertrain tested to perform a validation study of his mathematical simula-
tion models and control algorithm which he developed for a HE – UAV. The testbed 
consists of an Energy Storage System (BMS, Battery Pack), Genset (Engine Starter/
Generator, Hybrid ESC), Braking System (Power Supply, LP Battery Pack, Brake 
Motor, Brake ESC, Filter Box and Load Bank), Drivetrain System (Hybrid ESC, 
Propeller Motor) and DCDC system (DCDC ESC, Filter Box, Electronic Load). Subs 
section of the testbed was constructed for each of the components to validate each of 
the components. The model predicted a good validation with experimental data from 
the testbed. Figure 1 shows the testbed constructed by the author.

Another study was done by Savvaris et al. [16], where he constructed a hybrid 
power testbed to test the control algorithms and mathematical simulation models, he 
developed for a HEPS for a light aircraft. The testbed consisted of an engine, motor/
generator, fuel tank, and auxiliary component. A good performance match was 
obtained between the simulation models developed and experimental results obtained 
from the hybrid power tested. Figure 2 shows the constructed hybrid power test bed.

Figure 1. 
Detailed labelling of HE – UAV powertrain testbed component [15].
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Glassock et al. [17] constructed a prototype aircraft of a hybrid powerplant to 
show the feasibility of a hybrid powerplant for a small Unmanned Aerial System 
(UAS). The author began by developing a sizing methodology for selecting the com-
ponents for building the hybrid power plant. The hybrid power plant was constructed 
and tested from the sizing results using a small UAS internal combustion engine (10cc 
methanol two-stroke) and a 600 W brushless direct current (BLDC) motor. Through 
his experiments, the author showed that a hybrid powerplant could improve the 
overall mission effectiveness and propulsive efficiency of a small UAS. Figure 3 shows 
the constructed testbed.

Ausserer et al. [18] integrated a hybrid propulsion system on a small remotely 
piloted aircraft to evaluate its effectiveness for extended flight durations. The author 
started by constructing a testbed hybrid power plant (consisting of the Honda GX25 
IC engine, starter motor, Maxon DC Motor and battery) of the propulsion system 
by performing a dynamometer test and wind tunnel test. The aircraft was retrofit-
ted with this new propulsion system to evaluate its effectiveness for extended flight 
duration. A similar study was done by Dehesa et al. [19] where he developed a serial 
hybrid power test bed to validate his control algorithm on a series – HE – UAV for 
given mission profiles. The constructed testbed consisted of (a starter motor, genera-
tor, a 3 W-28i engine, a motor, battery, battery management system and propeller 
arranged in a series configuration).

Molesworth [20] developed a hybrid–electric remotely piloted aircraft testbed for 
validating the hybrid–electric system and control procedures he developed for a small 
remotely piloted aircraft. The testbed was built using the commercially off-the-shelf 
components of the ICE, Electric Motor, battery and propeller. The testbed was used 
to verify the functionality of the RPA hybrid powertrain in ICE Mode, EM Mode, 
the transition from ICE Mode to EM Mode, EM Mode to ICE Mode and dual Mode. 

Figure 2. 
Completed testbed with the engine, motor/generator, fuel tank and all the auxiliary components installed [16].
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All modes functioned correctly, as predicted from Simulations of the hybrid–electric 
powertrain and control methodology.

Koster et al. [21] developed a testbed to validate a model of a hybrid powertrain 
configuration by integrating a hybrid powertrain propulsion system into the fuselage 
of the airframe of a HELIOS aircraft designed by the university. Modeling the hybrid 
powertrain configuration and constructing the hybrid powertrain testbed (Gearbox, 
ICE, EM and battery) was done. A helios aircraft was used as reference aircraft to 
retrofit the hybrid powertrain, and a flight test was performed. Another study was 
developed by Koster et al. [22] designed a testbed to validate the design of a UAS with 
Hybrid propulsion system (Hyperion aircraft). The testbed and aircraft were devel-
oped to validate the simulation results obtained using controllers. The authors did not 
display any conclusive result in the article.

Matlock et al. [23] developed a modular testbench of a hybrid propulsion sys-
tem to compare the theoretical results obtained from the simulation of the hybrid 
framework of a hybrid propulsion system which is used to simulate various mis-
sion profiles of an aircraft developed in MATLAB with experimental results. The 
components of the hybrid propulsion system were individually modeled (Propeller, 
lithium polymer batteries, electric motors and internal combustion engine). A hybrid 
power testbed was constructed, and experiments were done to validate the results 
obtained from the hybrid framework. A similar study was done by Boggero et al. [24] 
developed a virtual testbench model, a parallel hybrid electric propulsion system 
for UAV to select its components and construct a real test bench of the hybrid UAV. 
The author started by creating models of the sub-system of the hybrid propulsion 
system in a Matlab Simulink environment. i.e. Electric Motor, Propeller, Battery ICE. 
Simulations were then performed by considering a given mission profile. Another 
study was done by Sliwinski et al. [25] developed a methodology for retrofitting a 
hybrid electric propulsion system (HEPS) into an Unmanned Aerial Vehicle. The 
Aerosonde UAV was considered reference aircraft to retrofit the hybrid propulsion 

Figure 3. 
Detailed labelling of a hybrid power testbed [16].
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system. Its specifications were used to determine the flight dynamics and power 
requirement characteristics necessary to estimate the range and endurance of the 
retrofitted aircraft. Table 4 shows a comparison of the component’s specification 
used for the construction of the HE – UAV testbed selected from literature, Table 5 
shows a comparison of the different drone specification for the construction of the 
HE – UAV testbed and Table 6 shows a comparison of testbed equipment for the 
construction of the HE – UAV testbed.

Author IC engine Electric motor Converter Propeller Battery

Aksland 
[15]

19N1 Series 
Engine

Propulsion Motor 
Neu 8038-105(Test 
Motor)
Dynamometer Motor 
Neu 8038-105 (Drive 
Motor)
ZeroMax SC055R
(Coupling)
Hybrid ESC
(Speed Contoller)

DCDC 
ESC and 
Filter Box

— 16S7P Battery 
Pack
Samsung 
18,650 Cells
(Battery)
TI Evaluation
Board
Bq76PL455-Q1
(BMS)

Glassock 
et al. [17]

OS FX-61
Internal 
Combustion 
Engine

Plettenberg
Electric Motor

DC
Generation

APC 16 
x6
Propeller

Flight Power 
EV028

Ausserer 
[18]

Honda Motor 
Company

AXI Model Motors R/C Servo 
to Analog 
Converter

APC 
Propellers

Thunder Power 
RC

Dehesa 
et al. [19]

3W-28i
Single 
cylinder, 
2-stroke 
engine

KDE 7215XF-135 
brushless DC motor

AC power 
into DC 
power

APC 
20x10
propeller

Turnigy 
Graphene 
Panther 6 s 
22.2 V, 5 Ah 
LiPo battery

Molesworth 
[20]

Honda GX35 
Engine

AXI Electric Motor — 2 – bladed 
18x12 
APC 
propeller

Lithium 
Polymer 
Batteries

Koster et al. 
[21]

O.S. 0.46LA 
Engine
Traxxas TRX 
3.3 Engine

AXi 4120/20 Electric 
Motor

— — Two Max
Amps 22.2 V
10 Amp
Li-Po batteries

Matlock 
et al. [23]

4-stroke Saito 
FG36 gas 
engine

TG12-4 
thermoelectric 
generator

— — LiPo batteries

Boggero 
et al. [24]

8-cylinder 
Diesel engine

EM2 Electric Motor — — —

Sliwinski 
et al. [25]

Enya R120 4C 
Piston Engine

Plettenberg 
HP320/30 Electric 
Motor

— — Thunder Power 
Li-Po Air 
Battery

Table 4. 
Comparison of the specification of testbed components for the construction of the HE UAV testbed from different 
authors from literature.
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2. Conclusion

This paper attempted to explore the feasibility of constructing a prototype of 
hybrid power testbed of a HE-UAV. A number of technical papers in the research area 
were obtained from literature were selected which were addressed in the relevant sub 
sections of the paper; component sizing, numerical simulations and hybrid power 
testbed construction. A comparison between each author result was done by compar-
ing sizing results achieve by each author from a reference drone size. In addition, a 
comparison of the testbed component for constructing the HE – UAV and testbed 
equipment used by each author was done. The results from this research shows that a 
HE – UAV testbed can be achieve provided stringent measures are done in determin-
ing the size of the component for a given drone size, and a careful selection of the 
components from the sizing result for the testbed construction.

Author(s) Drone size Powerplant Engine Cruise speed Wingspan

Savvaris et al. [16] 65 kg Aegis UAV
Berkut 360 Canard
Wing Light Aircraft

205 hp. (Maximum 
Engine powerplant)

50knots 26′8″

Ausserer [18] RPA build by AFIT Honda GX35 engine — 3.66 m

Dehesa et al. [19] 18 kg AAI Aerosonde UAV — — 2.89 m

Molesworth [20] RPA build by AFIT Honda GX35(35 cc) 
4-stroke gasoline 

engine

— 12 ft

Koster et al. [21] Aircraft Designed by
Daniel Webster College 

team

O.S.
0.46LA Engine

Traxxas
TRX 3.3 Engine

— 13 ft

Koster et al. [22] Hyperion Aircraft Gas Electric Engine 27 m/s 3 m

Sliwinski et al. [25] Aerosonde RPAS Enya R120 4C Piston 
Engine

— —

Table 5. 
Comparison of reference drone specification for the construction of the HE – UAV testbed by various authors from 
literature.

Author(s) Instruments for testbed construction Function

Glassock et al. [17] Reaction Type dynamometer
Yokogawa DL50 Strain

Measures the Torque produced by the 
hybrid
Powerplant

DL50 Strain Guage
Amplifier

Enables rebalance of the gauges at any 
time during the experiment

Ausserer [18] DYNOmite Mini Eddy
Dyno96V Dynamometer

Measures Torque, Speed and power 
produced
By the hybrid powerplant

Max Machinery 213 piston
helical flow meter

Measures Engine Fuel Flow

Table 6. 
Comparison of testbed equipment’s for the construction of the HE – UAV testbed from literature.
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Integrating Drones across the 
Curriculum at Stephen F. Austin 
State University
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Abstract

Faculty within the Arthur Temple College of Forestry and Agriculture at Stephen 
F. Austin State University are heavily involved with using drones to quantify and 
qualify forests and natural resources. Drones are involved across the entire curricu-
lum within the College of Forestry and Agriculture to enhance the educational experi-
ence of all students. Emphasis is placed on integrating drones, and their effective use 
in forest and natural resource management endeavors, within all three main focus 
areas of teaching, research, and service. In addition to the traditional three education 
focus areas, faculty within the College of Forestry and Agriculture also help train 
future drone pilots as part of their educational experience.

Keywords: drone, forest, natural resource management, education, drone pilot

1. Introduction

The use of drones is expanding in use within the natural resources community as a 
means to provide complex measurements of natural resources for teaching, research, 
and service activities. To produce foresters ready to be productive within society, they 
need to be effective at quantifying natural resources and have the ability to communi-
cate this information clearly.

Natural resource education within the twenty first century, and the foreseeable 
future, must be relevant to the goals of society [1]. For natural resource managers, 
drones provide a useful tool when integrated into geospatial technologies to measure 
and predict forest and natural resources at the stand, forest, and landscape levels. 
Increasing a student’s skill level and educational knowledge while integrating math 
and statistics to analysis real-world natural resource-based situations is paramount in 
today’s world. Bridging the gap between a dedication to lifelong learning with neces-
sary hands-on skills is of high importance.

Drones are relatively new to the process of acquiring data within the natural 
resources’ profession, and increased emphasis needs to focus on training students 
with this new technology. Upon graduation students need to be ready to engage 
with society and have the capacity to deal effectively with the complex economic, 
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political, ecological and social issues natural resource managers deal with every day. 
Natural resource graduates must be prepared to enhance the health of the natural 
resource environment through sustainable management, conservation, and protec-
tion of earth’s resources. As technology and drones continue to change and evolve, 
educators need to adjust and adapt their teaching methods to meet these new societal 
 challenges [2, 3].

Within the Arthur Temple College of Forestry and Agriculture (ATCOFA) at 
Stephen F. Austin State University (SFASU) there are four faculties dedicated to the 
integration of drone technology across the entire curriculum. The four faculties are 
collectively called the “Drone Squad” as they focus their teaching, research, and 
service activities on using drones to effectively quantify and qualify forests and 
natural resources. The goals of the faculty are to meet the college’s mission objectives 
of making a difference, work outdoors, while using high-end technology.

Drones, and the imagery they collect, are increasing in popularity and use and 
are the future of remotely sensed data acquisition. Drones allow you to acquire the 
imagery and videos of what you want and when you want it collected. In addition, one 
of the most appealing aspects of using a drone to acquire remotely sensed data is that 
the user controls the spatial, spectral, radiometric, and temporal resolution of any 
data collected for forest composition, structure, volume and growth [4, 5].

Historically foresters and natural resource managers have relied on satellite-based 
platforms for imagery. Although effective at the landscape level, satellite-based plat-
forms with their traditional poor spatial resolution have been ineffective in provid-
ing high spatial resolution data for visual interpretation at the individual tree level. 
Drones with their high spatial resolution controlled by the user can identify individ-
ual trees and plant species. In addition to providing a traditional nadir or 90-degree 
angle perspective, drones can be flown interactively and with a movable camera that 
can also provide the user with off-nadir or side perspectives of earth surface objects 
such as the side of a tree which can be very useful in tree stem assessments.

The objective of this chapter is to present the reader how drones can be integrated 
across a natural resource-based curriculum to increase a student’s skill set. Examples 
of how drones are integrated across the curriculum at SFASU are presented within 
the context of the three main focus areas of an academic institution being teaching, 
research, and service endeavors. Finally, a fourth focus area demonstrates that SFASU 
faculty are heavily involved with training current students to be Federal Aviation 
Administration (FAA) certified drone pilots.

2. Teaching–Integration within ATCOFA classes

Drones are integrated across the entire curriculum within ATCOFA with a focus on 
forests and natural resource management activities [4]. Specific examples are given 
that highlight how effective drones can be to quantify and qualify natural resources, 
which gives the reader a perspective on how broad the applications can be in the real 
world.

For example, drones can be used to fly a recreational hiking trail to visually 
highlight the trail for individuals not able to physically walk the trail themselves or to 
document the need for trail maintenance in the future (Figure 1, Video 1, https://bit.
ly/3tYlx3U).

In Figure 2, drones are used to capture and record the felling of a tree on the 
SFASU campus as an aid to help forestry students understand the complex nature 
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of felling a diseased tree within an urban forestry setting (Video 2, https://bit.
ly/3tYlx3U). In this particular example, a drone was used to record the felling of a 
limb as part of a classroom exercise.

Part of the goal of ACTOFA is to provide interactive outside demonstrations for 
students visiting the SFASU campus to get them excited about college and natural 
resource management as a future possibility. Figure 3 demonstrates the ATCOFA col-
lege dean talking with prospective students about the benefits of a natural resource-
based education. This drone video was taken for future recruitment of undergraduate 
students (Video 3, https://bit.ly/3tYlx3U).

An important component of curricula within ATCOFA is the wildlife major where 
students study wildlife science. Drones can be an effective tool in helping to quantify 

Figure 1. 
Example of a drone flying and recording a hiking trail in east Texas.

Figure 2. 
Drone capturing the felling of a diseased tree limb.
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and identify wildlife species from a distance that might not be approachable in 
person. Figure 4 demonstrated the use of drone imagery to quantify turtles within a 
local creek in Nacogdoches, Texas (Video 4, https://bit.ly/3tYlx3U).

An additional component of the education received by the students within 
ATCOFA, and highly praised by the faculty and future employers, is the ability of 
the faculty to introduce students to ecosystems and experiences they typically do not 
receive on campus. To that end, faculty travel the country and record drone imagery 
of different locations to enhance a student’s educational experience. In Figure 5, 
faculty recorded and embedded in course work an example of a beaver dam that 
was destroyed by early spring snow runoff in northern Utah (Video 5, https://bit.
ly/3tYlx3U).

For foresters, especially in their undergraduate education, it is important to not 
only understand trees but the conditions of the forest floor. Figure 6, a video of 
Kamiak Butte in eastern Washington state north of Pullman, Washington, shows the 

Figure 3. 
Drone video of an interactive outside natural resource demonstration.

Figure 4. 
Counting turtles in LaNana Creek, Nacogdoches, Texas.
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influence of the forest floor in an arid intermountain ecosystem (Video 6, https://bit.
ly/3tYlx3U).

In addition to wildlife majors within ATCOFA, the faculty also teach a number of 
outdoor recreation students involved with natural resource management activities. 
Figure 7 was collected by faculty to demonstrate the conditions of recreational sites 
across the United States to demonstrate not only how they vary from location to loca-
tion, but also their similarity (Video 7, https://bit.ly/3tYlx3U). Figure 7 demonstrates 
a recreation site within Scenic Beach State Park in western Washington about an hour 
west of Seattle.

For the traditional foresters with ATCOFA, it is paramount that they not only 
understand trees and forest ecosystems but that they also understand open range 

Figure 5. 
Beaver dam destroyed by snow run off in northern Utah.

Figure 6. 
Forest floor evaluation on Kamiak Butte, Washington.
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ecosystems typical of the western United States. Figure 8 was collected to demonstrate 
open range conditions and the sparseness of vegetation in the arid western United States 
that students cannot be introduced to on the campus of SFASU. Figure 8 demonstrates a 
video that displays the vegetation distribution of open range in the Unita-Wasatch-Cache 
National Forest in northern Utah (Video 8, https://bit.ly/3tYlx3U).

Figure 9 demonstrates a video obtained of the Hell Roaring Creek fire in central 
Idaho within the Sawtooth National Recreation Area. This particular imagery was 
flown to demonstrate to the ATCOFA forestry students the damaging effects of fire 
within a Lodgepole Pine ecosystem (Video 9, https://bit.ly/3tYlx3U).

Figure 10, also flown for our forestry undergraduate students, demonstrates the 
uniqueness of Aspen trees relative to other conifer trees within a forest ecosystem. 

Figure 7. 
Recreation site within Scenic Beach State Park, Washington.

Figure 8. 
Range assessment in northern Utah.
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Aspen trees grow in clumps relative to other trees within an ecosystem, which can 
be readily seen from a spatial perspective giving students a unique perspective when 
trying to identify individual tree species with a forested landscape (Video 10, https://
bit.ly/3tYlx3U).

While introducing our outdoor recreation majors to different recreation sites 
across the United States, it is important to capture imagery from different ecosys-
tems. Figure 11, in contrast to Figure 7, depicts a recreation site within the Sawtooth 
National Recreation Area in central Idaho. This area represents an arid intermoun-
tain location different from the recreation area depicted in Figure 7. This image 
represents a recreation site on the shore of Pettit Lake south of Stanley, Idaho in the 
Sawtooth National Forest (Video 11, https://bit.ly/3tYlx3U).

Figure 9. 
Fire damage within a Lodgepole Pine ecosystem.

Figure 10. 
Aspen trees with a forest landscape in northern Utah.
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Figure 12. 
Lodgepole pine beetle damage, Sawtooth National Forest.

Another important component of a forestry education in the United States is for 
students to understand the effect of beetle damage on a forest. Figure 12 depicts the 
effect of mountain pine beetle, Dendroctonus ponderosae, damage on Lodgepole Pine 
in the proximity to Little Redfish Lake in the Sawtooth National Forest in central 
Idaho (Video 12, https://bit.ly/3tYlx3U).

Figure 13 shows our undergraduate students a recreation site on the Snake River 
south of Jackson, Wyoming. The video shows a popular recreation activity in the 
western United States, river rafting, which our students cannot experience in east 
Texas (Video 13, https://bit.ly/3tYlx3U).

Our recreation students are also interested in historical artifacts and buildings 
scattered throughout our forests (Figure 14). Not only in their preservation, but in 

Figure 11. 
Recreation site on the shore of Pettit Lake, Sawtooth National Forest.
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their education as a means to help others understand the importance of historical 
artifacts. This video was flown to introduce our students to typical historical dwell-
ings found within forests of the United States, in this particular case an historical 
cabin, that exists within the Stanley Basin in central Idaho (Video 14, https://bit.
ly/3tYlx3U).

Figure 15 is an important video that was flown to introduce our spatial science 
students to the effects of light interaction on the landscape and its effect on vegeta-
tion distributions. This is a drone video of Spawn Creek within Logan Canyon of 
northern Utah. It was flown to demonstrate the effect of intense solar radiation by 
drying out one side of a southerly exposed hill side versus a more shaded hill side 
(Video 15, https://bit.ly/3tYlx3U), emphasizing the importance of aspect in plant 
growth.

Figure 13. 
River rafting on the Snake River south of Jackson, Wyoming.

Figure 14. 
Historic cabin deep within the Stanley Basin in central Idaho.
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Our last example of a drone video flown for teaching purposes depicts an image of 
the Sawtooth National Recreation Area (Figure 16). This was acquired to introduce our 
students to the effects of fire from a nadir or birds-eye perspective for the ease of quanti-
fying downed timber as a result of a recent forest fire (Video 16, https://bit.ly/3tYlx3U).

3. Research–Quantifying natural resources

In addition to integrating drones into the curriculum, faculty also are heavily 
involved in drone related research projects. Research has involved many facets of 
drones and their uses, with an emphasis on how to best use drones in quantifying 
forests and natural resources.

Figure 16. 
Forest floor post fire assessment.

Figure 15. 
Effects of solar radiation on vegetation distributions.



113

Integrating Drones across the Curriculum at Stephen F. Austin State University
DOI: http://dx.doi.org/10.5772/intechopen.1002705

Figure 17 shows the results of a research project utilizing drone imagery to 
produce a 3D model of the landscape [6]. The results of 3D modeling can be used to 
visually portray a landscape to aid in the visual assessment of natural resources.

Another factor our forestry students are concerned about is insect damage on a 
forest. Many research projects within ATCOFA have involved using the high spatial 
resolution of drone acquired imagery to assess insect damage at a level of detail not 
attainable by traditional satellite-based platforms. Figure 18 is an example of using 
drone imagery undertaken by faculty within ATCOFA to assess the impact of forest 
damage due to the Ips bark beetles.

In addition to using drone imagery to create 3D models of the landscape, drones 
can be used to research their effectiveness at creating 3D models of human cre-
ated earth surface features and their impact on the natural resource ecosystem. 
Figure 19 portrays ATCOFA research looking into the effects of human created 
surface features and building on the surrounding environment from a visual 
perspective.

Figure 20 portrays current research on the campus of SFASU involving the spatial 
distribution of litter on campus. High spatial resolution drone imagery was flown to 

Figure 17. 
Example of 3D landscape modeling.
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not only quantify litter on the SFASU campus, but to model the spatial distribution as 
an aid to increase awareness of the litter problem on campus in an effort to minimize 
its negative impact on the environment and to plan litter clean up.

One of the most important aspects of using drones is to combine individual drone 
images together to create an orthophoto mosaic of an area. By acquiring drone images 
over a study area with sufficient overlap and side lap, the individual drone images can 
be stitched together to create a highly accurate composite image or orthophoto mosaic. 
Considerable research has been undertaken by faculty within ATCOFA to assess the 

Figure 19. 
Using 3D terrain modeling to assess a natural resource environment.

Figure 18. 
Ips bark beetle forest damage assessment.
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accuracy of drone created orthophoto mosaics and have found that drone created 
orthophoto mosaics are highly accurate and can be used as base maps in geospatial sci-
ence related products with a high degree of accuracy and confidence (Figure 21) [7, 8].

Figure 22 depicts a research project assessing the utility of using drone imagery 
to hazard rate urban trees for disease and infestations. Traditionally this has been 
obtained from the ground using a visual assessment, but drone imagery allows the 
user to acquire imagery closer than obtainable from the ground and from angles not 
previously attained. ATCOFA research has shown that drones can provide accurate 
tree hazard rating equal to or better than traditional field assessments and in a timely 
and efficient manner (Figure 22) without significant differences [9].

The last research project presented in this chapter, which is portrayed in 
Figure 23, shows the use of change detection methodology employed to identify 
landscape change overtime. This particular project used current drone imagery 
compared to an historical creek in Nacogdoches, Texas digitized from 1939 historic 
aerial photographs to identify the location of current landscape features relative to 
the location of the historic creek bed locations. This drone research project shows 
how current high-end technology can be merged with historical data to provide new 
insights and implications for current natural resource management perspectives.

Figure 20. 
Hazard rating litter on the campus of SFASU.
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Figure 22. 
Assessing tree hazard with a drone.

Figure 21. 
Orthophoto mosaic created of the campus of SFASU.
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4. Service–Local, state, and the world

In additional to traditional teach and research activities, faculty within 
ATCOFA also integrated drone technology into service project benefiting local 
communities and society in general [6, 10]. Faculty in ATCOFA have found the 
use of drones to be a useful took in aiding local communities acquire useful and 
pertinent information.

Figure 24 depicts a local service project where the faculty flew a drone to create an 
orthophoto mosaic for a local park in Lufkin, Texas. The drone was flown to acquire 

Figure 23. 
Drone imagery merged with an historic creek river channel.
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individual drone images that were then utilized to create a highly accurate orthophoto 
mosaic for the city park. The city of Lufkin, Texas will use the created orthophoto 
mosaic in future planning activities for proposed expansion of an existing zoo 
adjacent to the city park [8, 11].

Figure 24. 
Orthophoto mosaic of a city park in Lufkin, Texas.

Figure 25. 
Hall 16 demolition on the campus of SFASU.
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The campus of SFASU has recently begun the demolition and construction of 
various buildings on campus. As an aid to the campus community, faculty and gradu-
ate students within ATCOFA have begun to fly the demolition and construction of 
various buildings on campus. Goals are to not only to provide visual documentation of 
the demolitions and reconstruction, but to demonstrate to students on campus of the 
utility of using drones to document urban change (Figure 25).

A recent service project undertaken by the faculty within ATCOFA was to partner 
with the ROTC program on the SFASU campus to demonstrate the utility of drone 
acquired imagery for use with tactical training of Army officers within the ROTC 
program. Faculty traveled with the ROTC staff to a recent training site and aided 
their training by providing real time imagery to officers in training to demonstrate 
the utility of real-time battle field imagery. Faculty were paired with individual ROTC 
cadets with a drone to provide them with real-time imagery of a battlefield to aid their 
preparation and battlefield assessments (Figure 26).

5. Training future drone pilots

The fourth focus area faculty are heavily involved with at SFASU involves 
training students in not only how to use drones to effectively quantify and qualify 
forests and natural resources, but to train individual students to be FAA certified 
drone pilots [4, 12]. Thereby, increasing their skill level and employment prospects 
upon graduation.

ATCOFA faculty closely follow FAA guidelines while training student drone pilots. 
Faculty merge the process of physically flying drones with traditional classroom edu-
cation on drone pilot rules and regulations. Our university recently added a course on 
drones and Geographic Information Systems (GIS) and the use of drones continues to 
be integrated across the curriculum. The faculty’s intent was to introduce students to 
the use of high-end technology within the natural-resource-based decision-making 
process [4, 12].

Figure 26. 
ROTC field exercise–hidden soldiers at base of trees.
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A drone’s unique ability to acquire remotely sensed aerial imagery and videos 
of natural resources at the time and place of the user’s control is one of the main 
advantages of using a drone in the field. The user, rather than relying on traditional 
satellite-based imagery which has been the mainstay of remote sensing since 1972, can 
now control the spatial, spectral, radiometric and temporal resolution of data needed 
for a particular natural resource.

By integrating multiple different digital images obtained with a drone, the user 
can now create their own orthophoto mosaic of a geographic area in a few hours 
while controlling the spatial environment of the mosaic product. To create a mosaic 
project, the drone is unpacked and assembled in a matter of minutes, then the project 
is defined with a user-controlled application following which the drone imagery are 
obtained with an app. The images are eventually downloaded using drone-specific 
software to create an orthophoto mosaic. For a geographic area encompassing 30 ha, 
the process can take less than 3 hours from start to completion [4].

Before students can fly a drone, a four-step process was developed as part of a 
Mentored Undergraduate Scholarship program at Stephen F. Austin State University [4]. 
Successful operation of a drone was based on a four-part process that included three 
intermediate steps culminating in a capstone focus at the end. The three intermediate 
steps represented first learning how to assemble a drone, second involved learning how 
to complete a controlled drone flight, and the third step involved learning how to use a 
drone to obtain three multiple points of measurements from both imagery and video. 
The culminating capstone at the end involved learning how to synthesize drone infor-
mation and knowledge to properly quantify and qualify natural resources ([4], p. 403).

For intermediate step 1, the operator has to assemble the drone ready for flying, 
then pass a safety inspection by the instructor. For intermediate step 2, the pilot needed 
to demonstrate how to pilot a drone and successfully record an image and video. For 
intermediate step 3, the drone operator needed to download images and videos into 
geospatial science software to effectively quantify natural resources. For the capstone 
assessment, the pilots needed to demonstrate the application and user of drone acquired 
imagery and video into specific natural resource assignments. As a final capstone assess-
ment, drone operators demonstrating proficiency in flying the drones were allowed to 
complete the FAA drone pilot examination to become a certified drone pilot [4].

With the ever-increasing use of more user-friendly drones, more compact size and 
lower prices, drone use in natural resource management will only continue to expo-
nentially increase. Early student exposure and instructor led hands-on use of drones 
will develop the skill sets defined by Bullard et al. requiring the integration of tech-
nology with a traditional education [2, 3]. Drones allow this integration by permitting 
the user to acquire accurate information on forest composition, structure, volume and 
growth [6]. To meet these society goals, emphasis within ATCOFA is being placed on 
expansion of drones across the entire curriculum [4, 6, 12].

With increased emphasis on hands-on use of drones within ATCOFA, increased focus 
is place on service-learning activities [13]. Focus areas include being attentive to the com-
munity partner’s mission and vision; understanding the human dimension of a commu-
nity’s work focus; being aware of a communities limited resources; accepting and sharing 
inefficiencies that limit productivity; considering the impact of lifelong agreements; and 
most importantly viewing the need to continue of progress as important [14].

These six focus areas were integrated into teaching, research and service with drones 
in the development of service-learning activities for the Port Jefferson History Center 
and Nature Center on use of drones in documenting the natural resource aspects of the 
site [6, 15]. In addition, a three-dimensional model of the Caddo House destroyed by a 
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tornado was recreated as a remembrance of the event for the Caddo Nation celebration 
(Figure 27) [16]. Hands-on activities which included the estimation of heights of trees, 
buildings and light poles using drones were constructed in multiple natural resource 
courses (Figure 28) [10, 12, 16]. The major finding was that the drone needed to land 
and be reset between individual drone flights to acquire more accurate measurements. 
Repeated drone measurements of the same area over time indicated positional accuracy 
was highest at the center of the orthophoto mosaic compared to edge effects with 
increased overlap (Figure 29) [7, 17]. Drone use has also been emphasized in citizen 
science communication incorporating natural resource management endeavors [18].

Figure 27. 
3D model of Caddo House destroyed by a tornado.

Figure 28. 
Using a drone to estimate height accuracy [10].
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6. Conclusions

The integration of hands-on training in the use of drones emphasizes the mission 
of the Arthur Temple College of Forestry and Agriculture to produce “society ready” 
natural resource managers while maintaining excellence in teaching, research and 
service to enhance the health and vitality of the environment through sustainable 
management, conservation and protection of our forests and natural resources to 
promote the production and economic vitality of natural resources. The land ethic of 
work outdoors, make a difference and use high-end technology is enhanced through 
the use of drones as the students must use safe techniques and follow FAA regulations 
of UAS operation. The four-step process of drone assembly; controlled flight using 
a Pilot in Command and a Visual Observer; preparation of an orthomosaic using 
the proper applications and training; and the synthesis of drone information across 
landscapes, prepares students for safe and productive drone missions. To date, 30 
students have taken and passed the FAA Unmanned Aerial System Pilot exam and 
taken the FAA TRUST test. The increase complexity and multitude of sensors of the 
drones means increased training and readiness for successful drone pilots.
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Chapter 8

Leveraging Programmable 
Educational Drones, Robots and  
AI for Learning STEM, 
Computational Thinking  
and Higher Order Thinking in 
Schools in Rural Villages
John-Thones Amenyo and Wolanyo Kpo

Abstract

TechViwoEDU Project is addressing the hypothesis that school age children in 
rural villages, throughout the world, can use advanced low-cost technologies, such as 
programmable drones, coding robots, and physical & digital manipulative tools for 
learning and knowledge acquisition. Specifically, they can use these low-cost tools, 
sometimes partly made from local materials, to acquire developmental skills such 
as higher-order thinking (problem-solving thinking, critical thinking, rule-based 
thinking, creative thinking), computational thinking, algorithms, digital and automa-
tion technologies, and STEM-based technologies, for future of work and future of 
jobs. Drones provide a gateway for engaging learners with mathematical topics such 
as geometric, spatial, topological structures; order structures, temporal structures; 
and algebraic structures. Drones are also a part of the toolset that enables the students 
and their coaches to collaborate in active learning involving exploration, discovery, 
creativity, ingenuity, innovation, competition, and cooperation. A challenge provides 
effective user interfaces for the comprehension of the huge amount of information 
that learners must assimilate and accommodate. The project has been launched for the 
rural community schools of Tsrukpe in the North Dayi District of the Volta Region of 
Ghana, West Africa, with a student population of about 600, and pilot program for 
about 60 students.

Keywords: programmable drones, educational drones, educational technology, 
higher-order thinking, critical thinking, problem-solving, heuristics, computational 
thinking, STEM, manipulatives, cognitive assistants, cognitive exoskeletons, tangible 
interfaces, learning virtual dashboard and canvas, educational multi-sided platform, 
virtual and digital manipulatives, chatbots, LLM, machine learning, AI for children 
learning, generative AI, digital virtual drones, digital virtual robots, digital twins 
for education, Ananse stories for education, Ananse stories for STEM learning, 
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Oware games, mancala games for STEM learning, human intelligence amplification, 
augmentation, exoskeleton, prostheses

1. Introduction

TechViwoEDU is an ongoing project, targeted at middle school, secondary 
school and high school age children in rural communities initially in West Africa, 
but subsequently to be scaled up to the rest of Africa, Asia, and the Americas. The 
aim of the project is to find and test ways of educating rural children in the context 
of fast-moving technological trends such as digital technology, automation, digital 
transformation, robotics, drones, artificial intelligence, cognitive digital assistants 
and intelligent chatbots.

The guiding vision of the project is that despite the reality of the existence of 
a digital divide between poor rural communities and urban communities (more 
realistically considered as digital gap, or even digital chasm), rural children must not 
be left behind, and do not have to be left behind. Our premise is that there are viable 
ways to provide for the rural children’s active engagement and active learning despite 
the acknowledged digital gulf between children from resource-limited and those from 
resource-rich populations and communities.

The chapter is organized as follows: Section 2 discusses the issues and concerns of 
education in rural village communities; Section 3 focuses on learning by rural village 
children; Section 4 addresses the educational technology tools and platforms being 
used in the project; and finally, Section 5 discusses the details of the project under 
development and implementation.

2. Challenges of STEM education in rural village communities

Rural village communities have the primary characteristic that they are low-
resourced, resource-poor communities or very resource challenged. Examples of 
these scarce resources pertain to modern technologies and include power, energy, 
Internet, Web, smartphones, and digital platforms. Educational projects can be 
started in the rural villages, typically using donations and largess of others, although 
reliance on donations from outside the local community, including members of their 
own diaspora, will be sporadic and therefore not sustainable.

3. Rural village children

Rural children live in poverty which unfortunately and unavoidably, impacts their 
preparedness for academic performance. The only minimal assumptions to be made in 
the development and execution of the project is that (a) they are kids by age; (b) they 
are growing up in low-resourced or limited-resource environments; (c) their learning 
deficits and deficiencies can be addressed using digital assistants, digital exoskel-
etons and learning prostheses, and digital intelligence amplifiers. In a nutshell, these 
children are deprived of amenities and resources that can help them to be educated 
about the changing world around them. Our mission is to provide Hope, Future and 
Promise to the kids through this project, starting with children in three rural schools 
in Tsrukpe in the North Dayi District of Volta Region in Ghana, West Africa.
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4.  Educational technology and resources for kids in rural village 
communities

Educational technology resources currently being incorporated into the 
TechViwoEDU project include field programmable educational drones, field pro-
grammable educational robots, wearables and fitness trackers, physical STEM kits, 
digital STEM kits, physical manipulatives, digital manipulatives, virtual drones, 
virtual robots using customization of Chatbot-LLM-Generative AI platforms, and the 
digital twins of drones and robots (LLM: Large Language Models).

5. The TechViwoEDU project

5.1 Governing principles, hypothesis, assumptions, theoretical foundations

Several theoretical principles underscore the project. The aim is to ensure that 
identified project goals are achieved. The project should be functionally effective - 
it is an educational technology in which curriculum and lesson sequences truly 
support rural village children in achieving their learning objectives and outcomes. 
A key issue that is being addressed by the project is how to use the educational 
technology resources effectively to accomplish learning goals and learning 
objectives. This usage must be Specific, Measurable, Actionable, Realistic, Time-
limited (SMART). Finally, the project should be ultra-low cost and sustainable 
over its operational life. The major underlying principles are briefly described as 
follows.

1. Make child learning habit forming: Build the educational resources and 
platforms, including curricular development and lesson plan designs to make 
learning habit forming for children. Here are examples under this principle: 
Use the MATI-ABI-ORIC framework of the Hook model [1] and the Persuasive 
technology model [2]. (MATI-ABI-ORIC: Motivation-Ability-Trigger-*-Action-
Behavior-Investment-*-Outcome-Result-Reward-Investment-Continuation). 
For the Motivation (M) and Trigger (T) components, we will use questions and 
problems as quests for knowledge acquisition. The Project expects to derive a lot 
of the quest problems from the ties of drone applications and robot applications 
to STEM topics, especially in the subject areas of mathematics. Figures 1 and 2 
indicate concrete areas of applications of flying robots (drones) and robotics, 
which in general can serve as sources of inspiration for student learner ques-
tions, problems, projects and quests for learning STEM.

2. Technology tools and platforms are safe and secure for children: Ensure 
that in the learning environment, the technology tools and platforms are safe 
and secure for children learners. One of the mottoes in the project is, “Every-
thing that we try to do should always be in the best interest of the children.” 
One way the project has chosen to institutionalize this motto is to specify and 
build multi-layer encapsulations surrounding the two major avenues by which 
children learners can access digitally available human knowledge, namely: 
(a) Internet/Online/Web/Social Media; and (b) Chatbots/LLM/ANN/ML/AI. 
(ANN: artificial neural-networks; ML: machine learning; AI: artificial intel-
ligence).
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The safety and security model is shown in Figure 3. The encapsulations are nested 
gateways, gatekeepers, firewalls, filters and guards. Some of the gateways will serve in 
roles of prompt engineering and domain specific self-tuning.

It is also intended that the children themselves play active roles in determining and 
specifying the requirements and characteristics of hygiene, sanitation, and immune 
system qualities of interfacing the gateway that is used to access and use the knowl-
edge, information, data and intelligence storehouses.

Figure 1. 
Application areas of flying robots, drones. [T: Technology → E: Engineering → S (PCB): Science (physics → 
chemistry, materials → biology) → M: Mathematics].

Figure 2. 
Application areas of robots, robotics.
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3. Construction-based approaches: Learning should occur via construction-based 
approaches including:

• Creativity for learning;

• Construction-driven learning, building, making, producing, programming, 
manipulating things;

• Exploration, touring, inspection touring, navigation, space and world travers-
als and navigation;

• Some learning is executed as epic heroic journeys and adventures, searching 
through problem spaces, problem-solving spaces (strategies and tactics), and 
solution spaces.

4. Augmented, mixed, hybrid reality: Use augmented, mixed, hybrid reality, 
superimposing and integrating, blending and mixing physical Edtech resources 
with digital virtual ones. The project embraces both physical educational drones 
and robots, as well as AI-based and AI-assisted virtual drones and digital drones, 
as well as digital twins.

5. Cognitive, emotional, motivational, and conation aspects: The Edtech plat-
forms adopted should play the role of being learning exoskeletons, prosthesis, 
and intelligence amplifying devices for children’s learning efforts, including the 
cognitive, emotional, motivational, and conation and volition aspects.

6. Active learning: Ensure that student learners are continuously and persistently 
immersed and engaged in active learning, instead of just being mere passive con-
sumers of the educational technology. The platform is to be structured and used 

Figure 3. 
Multi-layer security and safety filters strategically situated to guard children learners’ access of human knowledge 
storehouses.



Drones – Various Applications

132

so that the student learners are active participants throughout the life cycle of the 
Edtech platform - from initial functional and non-functional (iLities) specifica-
tions and requirements through all phases of evolution and adaptation.

7. Transition/transformation from novice-master-expert: Adopt the peda-
gogical strategy and tactics of regarding students as undergoing a multi-level 
transition or transformation from novice-master-expert knowledge acquisition, 
during their learning processes, journeys and engagements. The Games People 
play model of Child-Parent-Adult framework in [3] supports this strategy, as 
does the adopting models of learning as evolutionary computation, as well as the 
concept assimilation and accommodation model in [4] (Figure 4).

8. Rewards: In the rewards component of the Learning to Habit model, the learn-
ing performance assessment is to be based on categories of rewards for self, the 
hunt and tribe (social group), described in Ref. [1]. This is also related to catego-
rizations of power [5]: physical-coercive-condign-force; financial-monetary-
pecuniary, seductive-charismatic-persuasion-influence. Furthermore, some of 
the project effort is geared towards creating and producing learning materials 
and processes that can readily generate the DOSE neuro-chemicals in the learners, 
(DOSE: dopamine + oxytocin + serotonin + endorphins).

9. Implementation: Appendix A provides a drill down of more implementation 
strategies that are being incorporated and integrated into the project.

Figure 4. 
Learning as novice → master → expert transition life cycle spiral. [L/UI: Learning User Interface; L/UX: 
Learning User eXperience; Concrete: Focus on sensory-motor + emotion-driven actions, process, manipulations; 
Abstract: Focus on mental, intellectual, conceptual, theoretical + emotional symbolic processes and 
manipulations].
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5.2 Details of implementation and status

The project is currently in the initial launch-and-takeoff phase. All the relevant 
forces, resources, capital and stakeholders have been identified. All the requisite 
groundwork has been made regarding stakeholder awareness, buy-in/ownership, 
recruitment, persuasion, engagement, involvement, participation, contributions and 
investments of time, attention and effort.

Our stakeholders include, (a) the children learners or students (the ultimate target 
customers); (b) the schools, school administration, education staff and faculty; 
(c) the potential coaching pool, from the local community; (d) the parents, guard-
ians, caretakers and caregivers; (e) rural village community and public including 
traditional social and modern political leadership, organizations and social groups; 
(f) government at the national, regional, municipal and local rural village levels; (g) 
benefactors and friends of the children; and (h) corporate social responsibility actors 
and directorates.

Identified technology resources are being procured and acquired including: Internet 
and ICT infrastructure; power and energy from the public utility; educational tech-
nology (Edtech) equipment, tools, machines, and devices, including, smartphones, 
educational drones, educational robots, fitness and health trackers as educational IOT 
(Internet of Things) devices, STEM kits and manipulatives, origami for education, and 
access to AI (for education) platforms. Further details are provided in Appendix B.

Students in the initial cohort from three middle schools are learning to use the 
Scratch programming language [6], to get familiarized with computational thinking, 
programming, coding, and personal use of digital technology for learning and knowl-
edge acquisition. Scratch is a good choice for a starter computational and program-
ming language, since it is the foundation for many coding and end-user programming 
languages that are available for physical educational drones and educational robots. 
The programming platform is also being experimented with to implement some of the 
computer-based approaches to children’s learning that is advocated in [7]. The project 
sections are also being encouraged to use Origami for Education practices in preparation 
and anticipation of the drone and robot resources. Extensive work is being done on the 
development of suitable curricula and activity plans and protocols that can support the 
learning engagements, using the educational technology tools, vehicles and platforms.

5.3 Discussion

The project implementers are gaining experience, mastery and expertise on how 
the project can be successfully implemented to meet its vision, mission, and goals. An 
important consideration which is being addressed from project inception is identify-
ing the strategy that can be used to ensure sustainability of the project. So far, there 
has been a pleasant surprise, that the project can be potentially fashioned to become 
a drive or an engine for innovation, in the development and customization of local 
content for rural villages, that can be commercialized. This will render our project 
learning centers (PLC) to become sustainable, because they will become profit 
centers, instead of remaining cost or loss centers.

5.4 Future effort

A planned scaling of the project is to extend the technical, STEM, computational 
thinking, and higher order thinking project mission to primary school age learners 



Drones – Various Applications

134

(K-6/5–9 year olds). The near term future plans for the project also include expan-
sion of coverage to high school (secondary school) age learners, as well as to other 
regions in Ghana. At the strategic level, the focus will be on continuity, durability, 
scale, expansion, evolution and continuous improvement. As part of the long term 
future plans, senior high school (SHS) students in participating schools and clubs 
will be given the opportunity to become peer mentors to help assemble engineered 
Edtech resources such as drones and robots, for use by middle school or junior high 
school (JHS) and primary school (K-3) students. The new generation of Edtech 
devices can include low-cost local materials such as bamboo, fabrics, and weaving. 
The high school students will be intimately involved with how the modern AI plat-
forms are customized and specialized in STEM education and learning in rural village 
communities.

6. Conclusions

The TechViwoEDU initiative is an ongoing project to use educational drones and 
educational robots, both physical and virtual digital, to act as learning intelligent 
amplification, augmentation and assistants (IA*), that can support children in rural 
villages and towns to learn STEM + STEAM + Computational Thinking + Higher 
Order Thinking (Critical thinking, Problem Solving, Creative Thinking, Rule-guided 
thinking, + Intuitive thinking + Emotional Intelligence + Social Intelligence).
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A. Appendix

Some other learning approaches that the Project is incorporating into the curricu-
lum design and activity planning include the following ideas, especially for learning 
action and behavior investment (ABI) components.

a. Use the W*H* (Who, Whom, What, Which, Why, When, Where, How, How 
soon, How much, How often, etc.), as well as the 5 Whys model (ask why five 
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times in sequence about a topic), and the Thematic-semantic case model + 
Separation of Concerns, Challenges, Aspects and Roles (SOCAR).

b. Use game-like quest, models focusing on problems and questions for exploration, 
touring, inspection, problem solving, creativity (Create-Read-Update-Delete 
(CRUD), social cooperation and collaboration, competition, contests, epic heroic 
journeys in game-like models in [8, 9], as well as elaborated by [10].

c. Also, use the Bloom educational tasks taxonomy model [11].

d. Further, use the PDCA cycle and (CPI, Agile, Kaizen, Toyota Way) approach to 
learning [12].

e. Use Entity-Relationship-Attribute-Value-Domain (ER model, ERAVD model) 
[13], which provides and foundational compositional framework for the 
construction-based learning approaches of [4, 14–17], as well as for concept 
map, schema, frame based and case based reasoning models for learning and 
knowledge acquisition. It also provides a suitable medium for using the Algebra 
approach to learning: Algebra = Collections, (data) Structures+ Manipulations, 
Operations+Rules-Laws-Axioms-Identities. Examples of such algebras are 
abstract data types (ADTs) in CS.

f. Use Heuristic Problem-solving model in [18], the Decode-Encode-Solve-Check 
(DESC) model, and the continuation models described in [19–21].

g. Incorporate modern heuristic techniques inspired by AI and machine learn-
ing. These are techniques currently grouped under natural computing and soft 
computing, including, evolutionary computing (Generation-Of-Diversity (G.O.D)-
Evaluation-Selection), Darwinism and also as in [3]; search, tabu search, rule-
based (logical-crisp and fuzzy) techniques, probabilistic-statistical techniques.

B. Appendix

Initial resource items include, (new, used and refurbished versions of):
Educational drones
Educational robots
Coding drones, Coding robots
Coding toys
Fitness trackers & Health trackers
Batteries (AA and AAA)
Charging adaptors
Power strips
Smartphones
Tablets
MiFi cellular signal booster devices
Internet access equipment
Internet access subscriptions
 Access to Chatbots/LLM, including Claude/Anthropic, ChatGPT/OpenAI, Bard/
Google
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Access to Scratch App for Programming and Coding
Initial sequence of engagement, by educ resource types:
Stage-1: Origami in the Classroom, Origami clubs, Origami camps.
Stage-2: Educational blocks, educational kits, manipulatives, construction kits, 

Montessori kits, play kits, User eXperience (UX) card decks for storytelling, narra-
tive and story creation. Problem-solving via student creation of Ananse stories and 
storytelling whose themes are problem-solving quests, and concept learning using 
Oware and Mancala game boards.

Stage-3: Coding toys, STEM kits, STEAM kits.
Stage-4: Coding, programmable educational drones and robots.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Leveraging Programmable Educational Drones, Robots and AI for Learning STEM…
DOI: http://dx.doi.org/10.5772/intechopen.1002465

137

References

[1] Nir E. Hooked: How to Build Habit-
Forming Products. New York: Portfolio 
Penguin; 2014

[2] Fogg BJ. Persuasive Technology. 
Boston, MG: Morgan Kaufman 
Publishers; 2003

[3] Berne E. Games People Play: The 
Psychology of Human Relationships. 
New York: Grove Press; 1964

[4] Wadsworth BJ. Piaget’s Theory of 
Cognitive and Affective Development: 
Foundations of Constructivism. White 
Plains, NY: Longman Publishers; 1996

[5] Galbraith KJ. The Anatomy of Power. 
Boston, MA: Houghton Mifflin; 1983

[6] Resnick M, Maloney J, et al. Scratch: 
Programming for all. Communications of 
the ACM. 2009;52(11):60-67

[7] Schank RC, Cleary C. Engines for 
Education. Hillsdale, NJ: Lawrence 
Erlbaum; 1995

[8] Kim AJ. Game Thinking. Burlingame, 
CA: gamethinking.io; 2018

[9] Lazzaro N. Why We Play Games: Four 
Keys to More Emotion without Story. 
Oakland, CA: XEODesign, Inc.; 2004

[10] Campbell J. The Hero’s Journey. 
Novato, CA: New World Library; 2014

[11] Anderson LW, Krathwohl DR, 
Bloom BS. A Taxonomy for Learning, 
Teaching, and Assessing: A Revision 
of Bloom’s Taxonomy of Educational 
Objectives. Complete ed. London, UK: 
Pearson Longman; 2001

[12] Deming EW. Out of the Crisis. 
Boston, MA: MIT Press; 2000

[13] Chen PPS. The entity-relationship 
model-toward a unified view of data. 
ACM Transactions on Database Systems. 
1976;1(1):9-36

[14] Papert S. Mindstorms—Children, 
Computers and Powerful Ideas. New 
York: Basic Books; 1980

[15] Papert S. The children’s Machine: 
Rethinking School in the Age of the 
Computer. New York: Basic Books; 1993

[16] Gutek GL. The Montessori 
Method: The Origins of an Educational 
Innovation: Including an Abridged and 
Annotated Edition of Maria Montessori’s 
The Montessori Method. Lanham, MD: 
Rowman & Littlefield; 2004

[17] Froebel F. The Student’s Froebel 
Adapted from Die Erziehung Der 
Menschheit von F. Creative Media 
Partners: Fröbel; 2016

[18] Polya G. How to Solve It. Princeton, 
NJ: Princeton University Press; 2014

[19] Lakatos I. Proofs and Refutations, 
The Logic of Mathematical Discovery. 
Cambridge, UK: Cambridge University 
Press; 1976

[20] Popper KR. Conjectures and 
Refutations: The Growth of Scientific 
Knowledge. New York, NY: Basic Books; 
1962

[21] Poincaré H. Science and Method. 
Reprint. North Chelmsford, MA: Courier 
Corporation; 2013





139

Chapter 9

Aerial Drones for Fire Disaster 
Response
Ramasenderan Narendran, Thiruchelvam Vinesh,  
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Abstract

The significance of fire in human society encompasses essential functions like 
illumination, warmth, and cooking but also poses immense risk when uncontrolled, 
leading to catastrophic damage and loss of life. Traditional firefighting responses 
are often hindered by geographical and logistical challenges, resulting in delays 
that exacerbate the severity of fires. This research introduces an innovative solution 
through the use of an autonomous firefighting drone, designed for round-the-clock 
surveillance and rapid response to fire scenes. Utilizing image processing and neu-
ral networks, the drone can efficiently detect fire and smoke, serving as the first 
responder, and is equipped with fire extinguishing balls to initiate suppression. The 
work extends to explore the application of AI edge aerial drones in disaster response, 
not only to fires but also floods and landslides, particularly in Malaysia and Southeast 
Asia. By focusing on various urban, peri-urban, and rural contexts, the research 
delineates potential implementation strategies aimed at enhancing situational 
awareness for first responders and reducing response time to reach victims, thereby 
facilitating more effective disaster response operations. The study’s findings point to 
a considerable advancement in firefighting technology that could lead to decreased 
fire damage and saved lives, filling a critical gap in the disaster response playbook. 
This advancement in firefighting technology enhances response times, decreases fire 
damage, and ultimately, saves lives.

Keywords: fire, fire extinguishing ball, fire fighting, artificial intelligence, unmanned 
aerial vehicle

1. Introduction

The ongoing evolution of cities into the scientific, economic, administrative, and 
cultural epicenters of their respective nations has been a remarkable phenomenon of 
the twentieth century. This evolution, despite delivering substantial improvements in 
living conditions, also precipitates a host of challenges. These include increased traffic 
congestion, which stresses infrastructure while amplifying air and noise pollution, 
a housing crunch prompting cities to expand both horizontally and vertically, and 
issues such as water scarcity and waste management.
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Increasingly complex urban infrastructure has amplified concerns regarding 
safety and security. In response, communities have implemented various technical 
approaches to create a multidisciplinary emergency rescue team which comprises 
of first responders, paramedics, firefighting personnel who are ready to be called in 
upon request, for energy and communication systems.

The past century has witnessed the evolution of new building materials, construc-
tion styles, and methods of resource utilization in urban settings. However, despite 
significant progress in fire prevention, fire incidents in urban areas continue to grow 
more frequent, complex, and hazardous, posing major challenges to first responders.

The Department of Statistics Malaysia (DOSM) reported [1] 50,720 fire incidents 
in 2019, a 24.1% increase from 2015. Amidst the restrictions during Covid-19, the 
reporting of 15,393 fire incidents from March to August, saw nearly half of which 
were due to preventable open burning. The smoke from these fires not only harms the 
environment but also adversely impacts human respiratory systems. Structural fires, 
mainly ignited by electrical faults (49.1% of cases during the MCO), gas leaks (17%), 
sparks (14%), and flammable items such as lighters, candles, and matches (7–2%) 
contribute significantly to fire incidents [2].

While geography shields Malaysia from natural disasters like earthquakes and 
tsunamis, the most common threats stem from man-made incidents, including traffic 
accidents, fires, and floods. Fire, one of the essential elements from ancient times, 
represents power and intensity. However, when uncontrolled, fire can be deadly. The 
damage caused by fires in various settings, including residential buildings, vehicles, 
and even airplane engines, inspires fear and devastation from afar. Yet, the reality 
experienced by those at the centre of such incidents is vastly more distressing and 
often marked by terror, suffering, and tragically, fatal outcomes.

Fire spreads quickly, causing extensive damage and leaving lasting physical and 
psychological scars on its victims. Firefighting involves combating this relentless ele-
ment with the forceful application of water—a task carried out by brave fire brigades. 
However, their courage is accompanied by substantial risks. Firefighters often face 
unknown variables, such as the overall structural stability, fire origin, potential for 
collapse, building temperature, smoke density, and more. They plunge into hazard-
ous environments, sometimes blind or with minimal briefing, where unpredictable 
circumstances can lead to fatalities. The world [3] sees more than 50 firefighter deaths 
annually, excluding the tragic loss of 340 firefighters in the World Trade Centre 
disaster.

Efforts to reduce the risks faced by firefighters have been made worldwide, with 
technology taking the lead. Unmanned firefighting machines equipped with capabili-
ties for monitoring, inspecting, and extinguishing fires have been developed as a safer 
alternative. However, a vital yet often overlooked factor is the pre-evaluation of the 
fire environment. Information about fire intensity, smoke concentration, the number 
of trapped individuals, and the presence of explosive materials remains unknown 
until firefighters arrive at the scene. Hence, thorough pre-evaluation can enhance 
safety and efficiency in firefighting operations.

Unmanned Aerial Vehicles (UAVs) are now employed for surveillance in vari-
ous sectors, including wildlife management, fire behavior monitoring, and package 
delivery, in many [4] countries. However, in Malaysia, the adoption of UAVs in 
firefighting is minimal, primarily due to local humidity and high temperatures. 
Currently, drones require human operators for guidance and face constraints such 
as distance limitation and battery life. They also need precise navigation and rapid 
response to avoid obstacles. 3D area mapping could be a solution, allowing drones to 
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follow a predetermined path and provide valuable information about the fire’s exter-
nal environment. However, high-resolution 3D imagery necessitates sophisticated 
and expensive vision cameras, which can inflate costs when implemented in a drone 
swarm. Furthermore, the risk of damage to drones remains high due to various factors 
that can cause failure.

Despite advancements in technology, fire incidents and the associated fatalities 
continue to rise. The National Fire Protection Agency (NFPA) suggests an ideal 
response time of 9 minutes and 20 seconds, of which includes 14.3% of turnout time 
and 85.7% of travel time [5]. Kamarulzam Malik Abdullah, the director of the Sabah 
Fire and Rescue Department, cites factors such as a shortage of fire stations and 
geographical constraints for this delay.

The deployment of autonomous firefighting drones and fire extinguisher balls 
can reduce response time and help firefighters gain easier access to the incident 
scene.

The potential use case for UAVs remains high as the enable both accessibility and 
data collection for a multitude of analytics [6] which can be harnessed for timely and 
critical information which equips fire fighters with situational awareness to combat 
the disaster successfully with minimized human casualties and property damage.

2. Fire detection

An innovative approach [7] to fire detection systems through the use of 
 triboelectric nanogenerators (TENGs). These devices, proposed initially by Wang’s 
group in 2012, have the ability to harness energy from the wind, thus offering a poten-
tial solution for fire detection in power failure scenarios common in fire accidents.

TENGs offer certain distinct advantages over conventional methods. For one, 
they have a high sensitivity to the frequency of mechanical vibrations. They are also 
smaller in size compared to traditional turbines, allowing for greater space utilization.

In the event of a fire, power sources are often cut off to prevent further complica-
tions such as short circuits or power leakage. However, this also means that remote 
rescue electronic devices cease functioning. This is where TENGs come into play. 
They can serve as an intelligent fire alarm system that continues to operate during a 
fire accident.

TENGs can also harness wind energy even in low-speed regions and convert it to 
useful power. They offer a novel power source alternative to conventional ones like 
power plants and batteries, also reducing the length of wiring needed from these 
traditional sources. Additionally, the use of TENGs optimizes space utilization.

However, the previous iterations of TENGs relied on elastomers and wind, operat-
ing through fluid-induced vibration (FIV). This operation subjected the elastomer 
to complicated stress and continual fatigue fractures, thereby affecting the device’s 
efficiency. Since wind usually flows at slow speeds and in casual directions around 
the Earth’s surface, the device required low base wind velocity and multidimensional 
wind energy for efficient data collection in fire detection.

To overcome these issues, Zhang et al. proposed a TENG based on fluid-induced 
vibration, referred to as F-TENG. The F-TENG consists of six identical TENG units, 
spinning switches, and a low-cost lever mechanism. This design enables the device 
to persistently collect and analyze wind energy from any given direction. The incor-
poration of six identical TENG units and spinning switches facilitates gathering 
wind energy from multiple angles, lowers the starting speed, and reduces the risk 
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of deformation to the TENG. This approach offers a more efficient solution for fire 
detection compared to the conventional F-TENG that uses an elastomer.

Furthermore, the researchers have developed a methodology to detect fires based 
on the concentration of smoke. This involves using a capacitor and a rectifier bridge 
driven by the F-TENG. This not only facilitates the detection of fire but also allows for 
the calculation of the direction and speed of fire spread.

More impressively, the system can anticipate potential fire hazards by utilizing 
the data gathered by the F-TENG, such as humidity, temperature, wind speed, and 
wind direction. This predictive feature enhances the system’s potential as a robust fire 
prevention and safety mechanism.

In recent research, a blockchain technology is applied to develop [8] a novel 
fire detection system that incorporates image processing. The innovative approach 
involves the use of a “blockchain golden fox,” which consists of various intercon-
nected units. The fundamental unit within this system, known as the meta-network, 
is constructed from a blend of activation functions and connection methods.

In this unique setup, neurons are connected with protrusions, employing both 
linear and non-linear mapping as activation functions. These functions subsequently 
confine the neuron’s output to a specific range.

To activate the alarm system, a weight value derived from the blockchain is 
utilized. This is achieved using the term frequency-inverse document frequency 
(TF-IDF) algorithm, as the weight value resides between 0 and 1.

During the process of image processing, the image is first converted into grayscale. 
This is due to the fact that red color, which is associated with fire, has a higher wave-
length compared to green and blue color. By making the image grayscale, the red color 
or light is made more visible, thereby enabling faster and easier fire detection.

Following the grayscale conversion, the image then undergoes binarization to 
enhance the contrast of the video or image being inputted into the system. Turning 
the colored or grayscale image into binary is also beneficial in reducing pixel 
interference.

The image processing concludes with the morphological process, which serves to 
eliminate or reduce noise in the image. This includes the erosion and dilation process, 
further enhancing the efficiency and accuracy of the fire detection system.

In the research [8] conducted, a comprehensive image processing workflow, was 
used to detect fire based on blockchain technology. The process commences with 
image pre-processing, which reduces the quantity of image data and facilitates valu-
able data discovery. Subsequently, image segmentation takes place, partitioning the 
image into distinct segments, each with their unique properties, thereby highlighting 
areas of interest. The creation of a feature map, which assigns values and extracts vital 
data from the image, ensues. Image matching, the final step, entails comparing these 
extracted features with a mapping table for object or fire recognition.

Throughout the experimentation process, it was noted that high temperatures 
triggered a fire alarm response within 13.3 seconds, while high smoke density levels 
elicited a response in 18.1 seconds.

In a separate study [9] image processing involving color filtering and histograms 
was used for fire detection. An examination of RGB (red, green, and blue) and HSV 
(hue, saturation, and value) color spaces showed that filtering in RGB color spaces 
was more suitable for detecting fire in static light conditions, such as interiors, com-
pared to open areas. However, for image processing, the threshold technique in HSV 
color spaces was more advantageous, as demonstrated by their previous work [10]. 
This study also involved color filtering, beginning with an image conversion from 
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RGB to HSV. The HSV image was subsequently transformed into grayscale and binary 
formats for better visibility. Their experimental setup involved placing four different 
colors (yellow, blue, green, and red) next to the fire, which were not detected as the 
HSV value was set to detect fire color. The optimum parameters for detecting fire 
were established as hue ranging from 0–16 to 0–20, saturation from 74–164 to 74–168, 
and value from 200–228 to 200–232.

In the application of drones for fire detection, it was discovered that the onboard 
camera could only detect fire if the drone was flying at an altitude not exceeding 8 
meters above the fire.

A technique [7] used flame emission spectroscopy in conjunction with image 
processing for fire detection, noting the technique’s superior response time compared 
to gas sensors and thermal sensors. This method also allowed for a more nuanced 
understanding of the combustion process by tracking various oxidants. In terms 
of image processing, the YCbCr color space was used, with a temporal smoothing 
algorithm improving image quality and enhancing fire detection sensitivity.

Furthermore, it is recommended [11] the integration of the Internet of Things 
(IoT) with image processing for fire detection. While they acknowledged the wide-
spread use of the RGB color model due to its simplicity and applicability in various 
applications, they noted its limitations in color recognition and object description. 
Comparatively, the HSI color space was easier for humans to understand and bet-
ter at non-uniform illumination. However, this color space was unstable due to its 
angular nature. The YCbCr color space excelled in reducing image size and improving 
image quality but was dependent on the original RGB signal. A satellite network [11] 
and unmanned aerial vehicles (UAVs) is utilized to collect images for fire detection, 
supplemented by sensor nodes placed in smart cities to gather environmental data 
such as humidity, temperature, light intensity, and smoke.

2.1 Fire size detection

In their fire sizing study, a novel approach towards active fire detection (AFD) 
based on the interpretation of Landsat-8 Imagery via Deep Multiple Kernel Learning 
was explored. The research utilized a recent dataset developed by De Almeida et al., 
containing image patches of 256 × 256 pixels that illustrate wildfires occurring in 
various locations across all continents. The dataset thereby provides an opportunity to 
adapt the MultiScale-Net to a diverse set of geographical, climatic, atmospheric, and 
illumination conditions [12].

The method of Deep Multiple Kernel Learning is highlighted as being particu-
larly effective for spectral-spatial feature extraction from remote sensing images. 
To address the limited availability of training samples, the researchers employed a 
straightforward data augmentation technique, which led to the generation of 27 dif-
ferent configurations in this study [12].

The research group also introduced a novel indicator, the Active Fire Index (AFI), 
devised to enhance the accuracy of thermal and spectral band analysis. AFI draws its 
efficacy from the high sensitivity of the Landsat-8 sensor to fire radiation, and it is 
derived from the SWIR2 and Blue bands [12].

Active Fire Index (AFI):

 ρ
ρ

= 7

2

AFI  (1)
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where ρ7 and ρ2 represent the SWIR2 and Blue values in Landsat-8 images, 
respectively.

Eq. (1) can be used to calculate AFI, where ρ7 and ρ2 represent the SWIR2 and Blue 
values in Landsat-8 images, respectively. AFI’s utility lies in its ability to distinguish 
fires from their background owing to the high reflectance in the SWIR2 spectrum 
and the relatively low reflectance in the Blue spectrum [12]. It further proves effec-
tive in eliminating smoke and possible clouds present in the image scenes, which are 
frequent hurdles in active fire detection.

However, the AFI method does not come without its limitations, for instance, it 
can underperform when non-fire objects that are bright have a high reflectance in the 
SWIR2 and a low reflectance in the Blue spectra. Furthermore, the accuracy of fire 
detection can be compromised due to certain inherent characteristics of fire such as 
the limited spatial resolution of satellite images and the significant influence of the 
Earth’s dense atmosphere [12].

The independence of the proposed method from the thermal bands paves the way 
for future studies to explore the potential of Sentinel-2 data for AFD, which could 
offer higher spatial and temporal resolution. Moreover, the research team suggests 
that the processing time of the proposed method could be evaluated using cloud 
platforms like Google Earth Engine (GEE) [12].

Another novel approach to understand and model wildfires was using a method to 
isolate individual fires from the commonly used moderate resolution burned region 
data [13].

In their study, they acknowledge the necessity to separate individual fires from 
large clusters of burned area as these fires are produced by extensive burn patches. 
This comes as a challenge in current global fire systems, as the available satellite data 
products only identify active fire pixels. Hence, they developed the Global Fire Atlas, 
which outlines individual fires based on a fresh methodology that identifies the direc-
tion of fire spread, the position and timing of individual fire regions and calculates 
the size of the fire, its period, daily expansion, fire line length and speed [14].

This Global Fire Atlas algorithm was applied to the MCD64A1 Col.6 burned-area 
dataset [14], and it was found that the minimum detected fire size is one MODIS 
pixel, equivalent to approximately 250 m × 250 m. This result provides a very precise 
and promising avenue for future research.

In another research endeavor, a comprehensive study evaluating the influence of 
the loss function, architecture, and image type for Deep Learning-Based Wildfire 
Segmentation [5]. They processed two image types, namely the visible and the 
Fire-Gan fused, and evaluated 36 resultant combinations of the architectures and loss 
functions with reference to three different metrics—MCC, F1 Score, and HAF [15].

Their analysis demonstrated that the Akhloufi + Dice + Visible combination yields 
the best results for all metrics. Moreover, the Akhloufi architecture and the Focal 
Tversky loss function were found to be prevalent in the top five for all metrics. Thus, 
considering the performance evaluation and correlation analysis, the combination of 
Akhloufi + Focal Tversky + visible was recognized as the most robust performer due 
to its consistent results with minimal variance [15].

3. Fire fighting strategies

The firefighting drone functions as a first responder at the fire scene, capable of 
warning people in the area and notifying the fire department. Moreover, it comes 
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with a feature that enables it to extinguish parts of the fire, creating pathways for 
people to escape and providing clear paths for firefighters to enter [16].

A system [16] that can deploy a fire extinguishing ball to assist in wildfire fighting. 
The mechanism for payload deployment was constructed with components such as a 
motor, power supply, and receiver, allowing the drone to receive signals from the user 
to open the valve through the motor and release the fire extinguishing ball.

The researchers found that the 0.5 kg weight of the fire extinguishing ball was 
insufficient in extinguishing fires effectively. The choice of the 0.5 kg weight during 
the experiment was due to budget constraints, and it took approximately 3–4 sec-
onds to activate the fire extinguishing ball, covering an area of about a meter in 
diameter. However, the researchers believe that a larger fire extinguishing ball could 
extinguish fires over a larger area. According to the official webpage, the founder 
mentioned that the 1.3 kg weight of the fire extinguishing ball can cover an area up 
to 3 cubic meters [16].

The YOLOv4 algorithms [17] were improved by reducing the neural network’s 
weight using the Kernelized Correlation Filter (KCF) algorithm for tracking and 
adaptive learning rate template update when tracking fails. The results were obtained 
from a multi-rotor copter by testing the adaptive tracking strategy. KCF used a non-
linear kernel function to handle non-linearity and non-stationarity and adapted the 
threshold value for the Average Percentage of Correctly Estimated (APCE) metric to 
provide a more accurate evaluation of the tracking algorithm’s performance [17].

The use of YOLOv5 for object detection and combined it with the DeepSORT 
algorithm for tracking and positioning objects using UAVs. DeepSORT is a real-time 
object tracking algorithm that uses a deep neural network-based object detector and 
a simple online and real-time tracking algorithm, SORT (Simple Online and Realtime 
Tracking), to effectively track objects even in challenging situations [18].

The nearest neighbor (NN) method [19] to measure and track selected objects. 
They employed the nearly constant velocity (NCV) motion model for discrete-time 
kinematic modeling in object tracking. The NCV model assumed that the target’s 
velocity was constant over a short period, and the Kalman filter was used to predict 
and estimate the target’s position and velocity at each time step [19]. The nearly 
constant velocity (NCV) motion model is a common choice for the discrete-time 
kinematic model for a target in object tracking. This model assumes that the target’s 
velocity is constant over a short period of time, and that the position of the target at 
each time step is determined by its position and velocity at the previous time step. In 
the NCV model, the target’s position and velocity at time step k are represented by the 
state vector x_k = [x_k, y_k, vx_k, vy_k]^T, where x_k and y_k are the target’s posi-
tion coordinates, and vx_k and vy_k are its velocity components. The state transition 
function for the NCV model is given by:

Nearly constant velocity (NCV):

 = − + −_ _ 1 _ 1x k Fx k w k  (2)

where F is the state transition matrix, and w_k−1 is the process noise. The state 
transition matrix F is typically set to the identity matrix with the velocity components 
set to the time step between frames. The Kalman filter algorithm is then used to esti-
mate the target’s position and velocity at each time step by using the state transition 
function and the measurement function. The measurement function is used to relate 
the target’s state vector to its measured position in the current frame. The filter uses 
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the measurement and prediction to correct the estimate of the state vector. The NCV 
motion model is simple to implement and computationally efficient, making it well-
suited for real-time tracking applications. However, it does not consider the accelera-
tion of the target, which can lead to errors in the estimated position and velocity when 
the target’s motion is not truly constant.

A method for recognizing the self-location of a drone flying in an indoor environ-
ment using ultra-wide band communication module DWM1000 was proposed [20]. 
The self-localization algorithm uses trilateration and the gradient descent method to 
determine the drone’s position with an error of within 10–20 cm. Real-time 3D posi-
tion information of the drone can be obtained and used for autonomous flight control 
through a deep learning-based control scheme. This scheme improves upon a conven-
tional CNN algorithm by incorporating deeper layers and appropriate dropouts in the 
CNN structure, which uses input data from a single camera. When a drone experi-
ences drift, it may not move in a straight line but instead veer slightly to one side. In 
this situation, the real-time first-person view (FPV) of the drone is used as input data 
in the proposed CNN structure to predict the pulse-width modulation (PWM) value 
for the roll direction, which helps to correct the drift and keep the drone moving in 
the desired direction. The goal of this work was to create a drone that could safely 
navigate in environments where GPS signals are not available, such as tunnels and 
underground parking garages. To achieve this, a control board based on a digital 
signal processor and ultra-wideband modules were developed, along with control 
algorithms for stable flight. A 3D position estimation algorithm using a proposed 2D 
projection method was implemented to determine the drone’s position, which was 
then used for hovering motion control and way-point navigation.

4. 3D area mapping

There will be ways for performing 3D mapping using a 2D LiDAR instead of 3D 
LiDAR sensor. Using LiDAR Lite v2 sensor can be detecting objects up to 40 m. It was 
low cost and high performances. Due to its lightweight characteristic, it was suitable 
for UAV. Using the servo motor as the actuator module for turning the LiDAR sen-
sor. The Arduino UNO board was used as the microcontroller that moves the servo 
motors. Upon detection, a point cloud graph will be plotted since the ultrasonic 
sensor was a distance-based sensor. For turning it into a 3D scan, different step will be 
used. Different steps of the servo motors will provide different resolution of images. 
A chair was used in the research method. It concludes that, the smaller the steps 
needed, the longer the processed time needed which have more scanned points to be 
plotted.

There were many applications can be done using 3D mapping. In this case, it was 
used for urban analysis for both spatial distribution of population and residential 
buildings. These data called census data can be collected by urban area units of a 
dimension. Unfortunately, the geometry of these census tracts was found changing 
between two censuses, either on spatial aggregation or by spatial disaggregation. This 
happened due to new structures being built or when urban densification occurred. 
Using dasymetric mapping with different geometrical shapes and different types of 
information such as lost spaces, public spaces, proximity, and urban density become 
every useful. Dasymetric mapping was a spatial interpolation technique that allows 
the re-allocation of area data from source to targets geometries. In order to operates 
this condition for a lower cost, using a UAV will be a low-cost -friendly technology. 
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UAV offers great potential in operating airborne sensor system and computer vision 
for monitoring 3D buildings and spatial planning. Swinglet CAM was a fixed-system 
system that used for acquiring 3D point cloud over the region. With the help of few 
sensors such as RGB sensors for georeferenced images pair, capturing real time points 
using GNSS systems and internal measurement unit (IMU). Some of the parameters 
can be obtained like position of laser sensors based on one or more GNSS base station. 
IMU can provides parameters such as sensor’s altitude and heading angles (roll, pitch, 
or yaw) Moreover, LiDAR or satellite imagery can be the tools for extracting 3D points 
clouds. Information of the mapped building such as height, area, volumetric informa-
tion can be extracted using 3DEBP (3D extraction building parameters).

UAV point cloud can be obtained by multi-stereo image matching processing of 
eight ground control points allowing a set of 3D points being estimated through those 
stereo pair pixels. There will be millions of points being captured so these points have 
been filtered through clustering large applications (CLARA) algorithm. Large dataset 
such as point cloud will be suitable to use CLARA because due to its partitioning abil-
ity to divide these data into few sub-groups.

Even though there were mean error for the estimated building block volume when 
referencing from original dataset. In the early days, the monitoring method for fires 
event were using satellites system as it was high efficiency, accurate and automatic 
operations [21]. However, this method were not reliable and poor signals from the 
satellite if was in remote areas. There were many alternatives in terms of fire monitor-
ing which can be used which was the remote sensing which had advantage in large 
area monitoring and high spatial resolution images were efficient. Comparing to 
InSAR techniques that provides area surveying and mapping had an advantage since 
it can monitor day/night with different weather conditions but on the bad side, it was 
limited to its corresponding time as fire monitoring required continuous observa-
tions. With satellite imaging, the probability of false alarms was high as well as dense 
fog, cloudy and rainy images may affect its monitoring.

One of the methods was using UAVs as the replacement of satellite images since 
UAVs can provided real time monitoring at low altitude and fast acquisition of data. 
Its reliable and simple to operate. Attaching a digital camera will be ideal as it can 
captured basic surface model and regular images for analysis. Other options will be 
mounting a multiple lens camera for proper texture information of the mapped area. 
This can show the strength of UAVs in comparing against the traditional method of 
satellite imaging. By implementing image processing algorithm into the UAVs, drone 
mapping can be done with the help of data analytics called ThingSpeak cloud plat-
form. It utilized the platform and provided capabilities of accessing data both online 
and offline. Using Drone deploy software, it can be able to map drones which offers 
web and app-based platform. It can provide high resolution images and videos to 
target area.

With the help of 3D mapping with SLAM, even rover at mars and moon can esti-
mate its current positions and construct a map for surrounding. Some of the sample 
sensors that can used were RGB-D and LiDAR to provide high dense 3D point cloud 
but limited communication links, data storage, power supply could be a problem. 
Alternatives, a stereo camera, or monocular vision could work due to lightweight and 
lower power consumptions. The implementation of Visual SLAM mapping can be 
performing using a pair of stereo images used to train the deep learning model, the 
disparity map was estimated. This map was initially used to create 3D point cloud.

A good implementation of SLAM technique for terrain perceptions and mapping 
results were determines by the choice of sensors and sensor fusion. According to the 
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research paper [22], different methods were used. First, it uses monocular SLAM 
framework with extended Kalman filter (EKF) that able to track unconstrained 
motion of a rover but for this to work, those distinct feature must be well distributed. 
The biggest problem of this method will be scale ambiguity and measurement drift 
since there were no inertial and range sensor when using single camera. Alternatives, 
data from RGB-D SLAM will acquire both depth per-pixel and visual texture infor-
mation. However, lighting circumstances can have interferences causing noisy and 
homogenous point-clouds. Some of the researcher proposed LiDAR SLAM as it 
can solved the robustness problems as the research paper had mentioned the global 
terrain map was made with sparse-method and batch of alignment algorithm [22] 
LiDAR camera fusion with SLAM had great advantages since it can perfectly make use 
of these both sensors individually. Other than that, used of stereo SLAM was also one 
of the proposed methods because it can create a terrain map through sensor fusion 
and using the Gaussian-based Odometer error model, it can improve the accuracy by 
predicting the non-systematic error from wheel interaction.

To prove the concept, training dataset on earth was not practical since in this 
paper, the focus was on mars and moon. A self-supervised deep learning model 
was used and 2D and 3D convolution layer based on geometric-based CNN were 
trained using the images in the subset collected by the pairs of stereo cameras. The 
2D convolution layer will extract images features from each image and constructed a 
cost volume. Then, the 3D convolution layer will be aggregating to infer the dispar-
ity value using probability distribution for each pixel. Lastly, the disparity map was 
constructed as a regressed from the probability distribution.

According to the research done, SLAM mapping using combination of single-
scan Terrestrial Laser Scanning (TLS) point cloud and Mobile Laser Scanning (MLS) 
point cloud can addressed the consistency problem and maintained accuracy map-
ping without using the GNSS-IMU system. LiDAR Odometry and global optimiza-
tion will be the main key to solve the problem. The LiDAR odometry will estimate 
the motion of each detected frame of MLS point cloud relative to single-scan TLS 
data. Real and virtual features will be extracted as a part of tree stem mapping 
using NDT algorithm. Virtual features were sample that reconstructed the tree stem 
centrelines while real features were evenly sample the point cloud. Layer clustering 
method will be used to extracted virtual features where else Differences of Gaussian 
(DOG) method will be used to extract real features. In terms of global optimization, 
it mitigates the accumulative error and transforms all points cloud into common 
coordinate system. By adopting a method based on global map that does not consider 
loop closure and the adjustment of all data to address the global optimization of 
SLAM.

This research was done to present the optimization of SLAM using Gmapping 
algorithm Different SLAM algorithm had been used and invented such as Gmapping, 
Hector SLAM and Karto SLAM. Standards dataset and ground truth map the 
parameters from source code, C++ program were used to optimize the parameters in 
a different way. 2 ways were used which were optimizing parameters separately and 
see its results or the second optimization where parameters collectively and see its 
results [23].

First method will be optimizing the parameters separately by their functions. The 
parameters chosen will be editable which means user can provide new values and run 
the programmed again to conduct evaluation compared to dataset. The main param-
eters were changed uniformly in equity manner which was uniform optimization 
and second was references where time between successive recalculations of the map 
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which was the map update interval. Gmapping algorithm were used in this method. 
After optimizing, map results and necessary significant results were varying in each 
different parameters testing.

Optimizing parameters separately can led to a little bit of changes on the map 
relatively to the dataset. Although the results look similar to each other even though 
we optimize the parameters separately, but it does not mean that the result will be an 
uniform development as all it were changing were one single parameters [23].

In the journal article title “Mapping and 3D modeling using quadrotor drone and 
GIS software” currently the main obstacle in 3D mapping would be the cost of data 
acquisition for high resolution satellite imagery especially for mapping in weekly 
or daily basis. Researcher proposed an alternative will be using UAV which was low 
cost, had a high-resolution image and can acquire any time with limited restrictions 
that needed to comply [24]. In this journal article paper, it approached the problem 
with developing 3D models by photogrammetric data taken using drone quadcopters. 
In order to acquire high resolution images, it uses industrial drone, the DJI Inspire 2 
drone supported with high quality camera with dreadlocks so that images taken were 
stable and suitable for mapping activities. The industrial camera was professional 
as it was the first aerial camera that capable of recording lossless 4 K video in RAW 
with framerates up to 30 fps and average bitrate of 1.7 Gbps. With the use of powerful 
Micro Four Thirds Sensors (MFT), camera that have can achieved high image quality, 
light and compactness make it great for recording anywhere anytime. It also captures 
stunning 20MP images with details with stabilization dreadlocks integrated with 
3-axis guarding level. OF course, with such high specs’ camera recording, the speci-
fication of PC must be top notch as well. Software used was the AgiSoft Metashape, a 
software that performed photogrammetric processing of digital images and generates 
3D spatial data to be used in GIS applications.

SLAM can be used to create a map for an unknown terrain by estimating the 
positions of the obstacle from the created map. The Visual Simultaneous Localization 
and Mapping (VSLAM) method can be achieved by using a monocular camera. To 
achieve a comparison and had a better result, the two main method of VSLAM can 
be used which was the direct-based method and features-based method. These two 
methods can be done by extracting information from the images taken by the camera. 
From the journal, Large Scale Direct (LSD-SLAM) was preferred for the direct based 
method as when implementing the LSD-SLAM, it used the whole images as input and 
point cloud were built up based on the images pixel while for feature-based method, 
the preferred choice was the ORB-SLAM where data was extracted from a orb and the 
representation of pixels will be recorded [25]. In terms of accuracy, the direct-based 
method will be much more accurate as more points will be captured and recorded 
compared the feature-based method.

As mentioned in this section, 3D area mapping with SLAM would a very good way 
as it reconstructs the terrain and mapped unknown terrain. There were many differ-
ent types of SLAM but VSLAM was one of the famous types as it can directly acquire 
points from the images taken by monocular camera. Direct method and indirect 
method can be used to differentiate these two approaches to implement this SLAM. 
Direct method using the LSDO-SLAM can acquired better results as it uses the whole 
images as input and directly acquired different density pixel for map plotting. Direct 
method often be the better choice when the external surrounding had poor lighting 
and poor texture surfaced. Comparing to direct method, the indirect method, the 
ORB-SLAM were used and by extracting some of the features for the observations of 
the 3D map.
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5. Conclusion

The exploration of drone systems as detailed in this chapter presents a multifac-
eted analysis of contemporary technology with broad applications. While the capa-
bilities of these drone systems have been found to deliver numerous benefits in terms 
of safety and effectiveness, it has become evident that there are intrinsic limitations 
that present challenges to their optimal use.

1. Battery power: the first significant limitation is a shortage of battery power, 
resulting in limited flight time. This not only restricts the drone’s operational 
capabilities but also affects the overall efficiency. The constant need for battery 
replacement or recharging poses logistical challenges.

2. Payload capacity and motor power: linked to the issue of battery power is the 
drone’s limited payload capacity and insufficient motor power. These constraints 
have been found to restrict the ability to lift heavier objects or carry additional 
equipment, such as larger batteries. The consequent low lift capacity hampers 
the drone’s maneuverability, especially under adverse weather conditions or 
heavy payload.

3. System high temperature: the incorporation of 4G (LTE) cellular connectivity 
via Raspberry Pi, while enhancing communication, has resulted in high system 
temperatures due to the absence of a cooling mechanism. This heat issue threat-
ens the system’s stability and longevity, risking failures and reduced lifespan.

4. Camera performance: the last major limitation noted is the suboptimal per-
formance of the drone’s camera, delivering lower-resolution photos and video 
streams. This affects the drone’s efficiency in tasks requiring high-definition 
imagery, such as aerial surveillance or inspection.

However, these limitations are not insurmountable, and the chapter has also 
provided a pathway towards mitigating these challenges:

1. Improving battery configuration: investigating alternative power sources, 
including high-capacity batteries or solar charging, could substantially extend 
flight duration.

2. Enhancing motor power: a comprehensive analysis to identify suitable motor set-
tings could significantly improve lift capacity and maneuverability.

3. Addressing high-temperature issues: including efficient cooling mechanisms, 
such as heat sinks or cooling fans, would ensure system stability and longevity.

4. Upgrading camera module: investing in higher-quality cameras or gimbal- 
stabilized camera systems could lead to better-quality imagery.

The integration of these recommendations requires a systematic approach, includ-
ing in-depth research, extensive testing, and due consideration of compatibility and 
integration challenges. By addressing these limitations, the drone system could realize 
its full potential, becoming more versatile and efficient in various applications, such 
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as surveillance or inspection. This chapter’s insights and recommendations contribute 
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Chapter 10

Depth Learning Methods for
Bridges Inspection Using UAV
Hicham Sekkati and Jean-Francois Lapointe

Abstract

This paper is investigating learning methods using depth as a cue measurement
that can be used for bridge inspection. We investigate learning methods based on
mono, stereo, and multiview image input and discuss the constraints that allow some
methods to perform better than others in various scenarios. We go over the state-
of-the-art deep learning methods, including supervised and unsupervised methods.
These methods will be compared and evaluated, based on constraints, performance,
and accuracy, and how top methods should be selected for each scenario. The same
database should be used for fair comparison between all methods ensuring that eval-
uations are unbiased, replicable, and meaningful.

Keywords: depth, 3D reconstruction, deep learning, bridge inspection, UAV

1. Introduction

Tragedies such as the recent collapse of the Morandi bridge in Italy [1] remind us
of the importance of good and regular bridge inspections. Such inspections are
conducted mainly manually but the advent of new technologies such as drones and
depth estimation using deep learning paradigms has the potential to automate part of
the task. Depth map estimation for bridge inspection can provide valuable informa-
tion about the three-dimensional structure of the bridge. It allows for the identifica-
tion of surface irregularities, cracks, deformations, and overall conditions. This
process provides valuable information for analyzing the structural integrity and iden-
tifying potential issues. Several techniques can be used for depth map estimation in
bridge inspection, including Time-of-Flight (ToF) cameras, Structured Light scanning
(SL), Laser scanning or Light Detection and Ranging (LiDAR) systems, as well as
photogrammetry-based depth estimation. ToF cameras emit infrared light and mea-
sure the time it takes for the light to bounce back from the bridge surface. This
information is used to estimate the distance to each point on the surface, creating a
depth map. ToF cameras can provide real-time depth information, making them
suitable for dynamic inspections. SL scanning involves projecting a pattern of light
onto the bridge surface and capturing the deformed pattern using a camera. By
analyzing the distortions in the pattern, depth information can be calculated. This
technique is effective for capturing detailed depth maps of bridge surfaces and can be
performed using handheld devices or mounted on vehicles or drones. LiDAR
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technology can also be utilized for depth map estimation, by emitting laser pulses and
measuring their time of flight, LiDAR scanners can generate accurate depth informa-
tion of the bridge’s surface. High-resolution LiDAR scanners can capture detailed
depth maps, facilitating precise analysis of the bridge structure. In photogrammetry-
based techniques, and by employing computer vision algorithms, depth maps can be
estimated from regular images captured by Unmanned Aerial Vehicles (UAVs) or
drones during bridge inspections. Various techniques, such as depth from single
image, structure from motion (SfM), or multi-view stereo, can be employed to extract
depth information from the image data.

Each of the above techniques has its advantages and limitations, and the choice
depends on factors such as the desired level of accuracy, resolution, portability, and
budget. It is advisable to consult with experts in the field of bridge inspection or 3D
imaging to determine the most suitable depth estimation method for a specific bridge
inspection project. However, this paper focuses on photogrammetry-based methods
and specifically the last advances using deep learning techniques to generate depth
maps from images.

This paper first talks about depth perception and then discuss various ways of
obtaining depth, be it by using pictorial cues, from monocular video, or from stereo
and multi-view.

2. Depth perception

Perception refers to the ability to interpret and organize stimuli from the sur-
rounding environment, enabling effective understanding and behavior. The visual
system plays a crucial role as one of the primary sources of stimuli for human beings.
It comprises more than one million axons from each eye, responsible for capturing
light reflected by objects. Research on human perception suggests that the visual
system utilizes multiple sources of information to comprehend and infer the depth
structure of scenes. The human visual system relies on various monocular or binocular
cues present in two-dimensional retinal images to gather information that helps in
perceiving the depth of the scene. Monocular cues can be divided into two categories:
pictorial cues and motion-based cues.

Pictorial cues, or image cues, are derived from visual features observed in a static
view of a scene. The most common pictorial cues used in computer vision methods for
depth estimation from a single image are texture variations [2], shading [3], and
defocus [4]. Texture variations are translated such as objects that are closer to the
viewer tend to exhibit more detailed and distinct textures, while objects that are
farther away appear to have less detailed or blurred textures. This texture gradient
helps us infer depth. The distribution of the direction of edges or lines in a scene
changes as objects recede into the distance. The spacing between these lines becomes
smaller as objects get farther away, giving us a sense of depth. Depth from shading is a
technique used to estimate the depth or 3D structure of a scene based on the shading
or variations in brightness and contrast within an image. It relies on the principle that
the distribution of light and shadows on objects can provide valuable information
about their shape and depth. Depth from defocus is a depth estimation technique that
utilizes the blur or defocus information in an image to infer the distance of objects.
These algorithms take advantage of the fact that objects in the focus plane of a camera
appear sharper, while objects that are out of focus exhibit varying degrees of blur. By
analyzing the amount of blur in an image, these algorithms can infer the relative depth
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of different objects in the scene. A good survey on methods using depth from defocus
can be found in ref. [5]. Let us remind that depth from defocus technique is funda-
mentally different from depth from focus in the sense that the later uses a stack of
images to model the blur in image while the former technique uses a single image. The
stack of images can be obtained by varying the camera aperture like in ref. [6] or the
focal length like in refs. [7–11]. In the next section, we only review learning depth
from a single image.

On the other hand, motion-based cues make use of observer motion and leverage
motion parallax, that is, nearby objects appear to move faster in the retinal image
compared to distant objects. In contrast, binocular cues rely on the perception of
depth through disparities between two different viewpoints of the same scene. By
comparing the differences in the views from each eye, the brain can accurately
triangulate the distance to an object. Binocular cues offer a high level of precision in
estimating distances. The aim of the following sections is to go over the last advanced
research on deep learning techniques for each category to estimate depth.

3. Depth from pictorial cues

Deep learning methods have been successfully applied to estimate depth from a
single image, leveraging the power of neural networks to learn complex
mappings between image features and depth information. The first deep-learning
method to estimate depth from a single image was proposed in ref. [12]. Image
cues are learned as multi-scale features. The method uses two-step process
involving two deep neural networks to predict depth information for a given scene.
The first step is performed by a coarse-scale network. This network takes an input
image as its input and predicts the depth of the scene at a global level. The second step
involves a fine-scale network. This network takes the coarse depth map (output of the
coarse-scale network) and refines it within local regions. The method achieves state-
of-the-art results on both NYU Depth [13] and KITTI [14] datasets. The authors in ref.
[15] proposed a framework to model the conditional probability on depth with condi-
tional random field (CRF) and learn the probability distributions using deep
convolutional neural network (CNN). The method has outperformed the classical
methods on both indoor and outdoor scenes using both the public datasets NYU depth
and the Make3D range image [16]. In ref. [17], the method also uses two CNN to
capture both global and local scales while jointly estimating depth and semantic
segmentation from a single image. The method in ref. [18] has trained a CNN to learn
the relative depth ordering between pairs of points in the image. The same network
was trained to learn independently the reflectance and shading in the image, however,
no interaction between these metrics was taken into account. A better structural
relationship between points in the image was learned by a CNN in ref. [19]. This
method involves training a neural network to characterize the local geometry of a
scene by predicting depth derivatives of various orders, orientations, and scales at
every image location. In ref. [20], a method that combines a CNN and regression forest
was presented to regress depth in the continuous domain. In ref. [21], the authors
proposed a fully convolutional architecture (ResNet) for depth prediction enabling the
generation of dense output maps with higher resolution, while significantly reducing
the number of parameters required. Furthermore, the model can be trained using
one-tenth of the data compared to the previous state-of-the-art approaches. An
improvement of the previous method’s accuracy was presented in ref. [22] by applying

157

Depth Learning Methods for Bridges Inspection Using UAV
DOI: http://dx.doi.org/10.5772/intechopen.1002466



a post-processing via fully-connected conditional random fields (CRF). More
improvements using CRFs in cascades was presented in ref. [23]. In ref. [24], two
cascade-deep fully connected CNNs were proposed to learn both global and local
feature maps that are propagated to estimate depth. Most methods learn depth as a
regression model and code implicit structure of the scene with CNNs features, but in
ref. [25], a method was presented that explicitly modeled the defocus blur in an image
and link it to image depth. In ref. [26], a method was presented that learns depth from
defocus, unfortunately only qualitative results on NYU depth dataset were shown.
Quantitative comparisons with state-of-arts learning methods on this dataset were not
reported. Tables 1 and 2 summarize the evaluation of depth estimation from state-
of-the-art pictorial-based methods using both Make3D [16] and NYU Depth [13]
datasets, respectively.

Method Error (C1) Error (C2)

AbsRel log10 RMS AbsRel log10 RMS

Saxena et al. [2] — — — 0.370 — —

Roy et al. [20] — — — 0.260 0.119 12.400

Liu et al. [15] 0.314 0.119 8.600 0.307 0.125 12.890

Anwar et al. [24] 0.213 0.075 2.560 0.202 0.312 0.079

Laina et al. [21] 0.176 0.072 4.460 — — —

Xu et al. [23] 0.184 0.065 4.380 0.198 4.530 8.560

Table 1.
Result comparisons of depth evaluation from pictorial-based methods on the Make3D dataset. Best performance is
marked with bold fonts.

Method Error Accuracy

AbsRel log10 RMS δ< 1:25 δ< 1:252 δ< 1:253

Zoran et al. [18] 0.400 0.420 1.200 — — —

Liu et al. [15] 0.230 0.095 0.824 0.614 0.883 0.971

Wang et al. [17] 0.220 0.094 0.745 0.605 0.890 0.970

Eigen et al. [12] 0.215 0.285 0.907 0.611 0.887 0.971

Roy et al. [20] 0.187 0.078 0.744 — — —

Chakrabarti et al. [19] 0.149 0.205 0.620 0.806 0.958 0.987

Cao et al. [22] 0.141 0.060 0.540 0.819 0.965 0.992

Laina et al. [21] 0.127 0.055 0.573 0.811 0.953 0.988

Xu et al. [23] 0.121 0.052 0.586 0.811 0.954 0.987

Anwar et al. [24] 0.094 0.039 0.347 — — —

Carvalho et al. [25] 0.036 0.016 0.144 0.993 1.000 1.000

Table 2.
Result comparisons of depth evaluation from pictorial-based methods on the NYU depth dataset. Best performance
is marked with bold fonts.
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3.1 Loss functions

Learning depth from a single image is a challenging task due to the inherent
ambiguity. However, there are techniques that leverage deep learning models to
estimate depth from a single image. When training such models, a common choice for
the loss function is the depth regression loss, which measures the difference between
the predicted depth map and the ground truth depth map. One popular loss function
for depth regression is the mean squared error (MSE) loss, given by:

L1 ¼
X
x, y

Z x, yð Þ � Z⋆ x, yð Þð Þ2 (1)

where Z⋆ x, yð Þ is the depth map predicted by the model and Z x, yð Þ is the ground
truth depth map. The MSE loss penalizes large errors between the predicted and
ground truth depth values. Minimizing this loss helps the model learn to estimate
depth accurately. Alternatively, you can also use other variations of the loss function
such as the Huber loss or the smooth L1 loss, which provide a balance between the
absolute and square losses and can be less sensitive to outliers. These loss functions
can be advantageous when dealing with noisy or sparse depth measurements. When
training models to learn depth from a single image, additional constraints or regular-
ization terms might be necessary to improve the quality of the estimated depth. Some
common techniques include incorporating geometric or semantic information,
enforcing local smoothness, or using multi-scale depth supervision. Overall, the
choice of the loss function depends on the specific requirements and characteristics of
depth estimation task. Experimentation with different loss functions and regulariza-
tion techniques can help find the most suitable approach for different applications.

4. Depth from monocular video

Estimating 3D interpretation from a monocular video is a fundamental and chal-
lenging topic in visual perception. Two common techniques used for this purpose are
structure from motion (SfM) and simultaneous localization and mapping (SLAM). In
the context of monocular video, SfM involves jointly estimating the camera motion
and depth map of the scene, while SLAM involves jointly estimating the camera
trajectory and the 3D structure of the scene. Monocular depth prediction using pairs
of frames or more can be particularly challenging. This is because it requires reasoning
about the relative camera pose, as well as estimating the disparity or optical flow
between the frames. Furthermore, there is an inherent ambiguity in scale when using
only monocular input, unless additional information or a consistent SLAM recon-
struction pipeline is employed. The relative camera pose estimation is crucial for
understanding the spatial relationship between frames and is necessary to compute
accurate depth maps. Determining the camera motion accurately becomes more diffi-
cult when dealing with larger displacements, occlusions, or scene dynamics. Incor-
rectly estimated camera poses can lead to inaccurate depth predictions. Additionally,
estimating disparity or optical flow between frames is challenging due to factors such
as textureless regions, occlusions, and large displacements. These factors can intro-
duce errors and ambiguities in the depth estimation process. Moreover, when using
only monocular input, there is an inherent scale ambiguity. That is, without additional
information, it is challenging to determine the absolute scale of the scene, leading to
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depth maps that are only accurate up to an unknown scale factor. Despite the diffi-
culties, researchers continue to develop methods that leverage monocular depth pre-
diction using pairs of frames. These methods often combine deep learning techniques
with geometric constraints and SLAM-like approaches to improve the accuracy of
depth estimation and mitigate the inherent challenges. Ongoing research in this area
aims to push the boundaries of monocular depth prediction and address the inherent
limitations of single-camera input.

4.1 Supervised deep learning methods

Supervised deep learning methods have made significant progress in addressing
the problem of determining 3D interpretation from monocular video. By training
neural networks on large-scale annotated datasets, these methods can learn to esti-
mate depth, motion, and other geometric properties from single-camera input. One
popular approach to estimate depth is to use convolutional neural networks (CNNs)
applied independently at each frame of the video. These networks take an image as
input, as seen in the previous section, and output a depth map that represents the
scene’s 3D structure. By leveraging the large amounts of labeled data, CNNs can learn
to infer depth cues such as perspective, texture gradients, and occlusion patterns. A
common dataset used to compare methods in this category is KITTI [14]. In ref. [27],
given a pair of frames and camera intrinsics, a deep architecture, computes depth, 3D
camera motion, a set of 3D rotations and translations for the dynamic objects in the
scene, and corresponding pixel assignment masks. However, the method uses a single
image deep architecture for depth estimation.

Additionally, recurrent neural networks (RNNs) and particularly the
convolutional LSTM networks have been employed to capture temporal dependencies
and motion information in video sequences. By incorporating temporal context into
the learning process, these models can estimate not only depth but also camera
motion, object motion, and scene dynamics. In ref. [28], the proposed ConvLSTM
network learns depth maps from a set of N consecutive video frames in a depth-
supervised setting, allowing the ConvLSTM network to perform spatiotemporal rea-
soning about the image-depth map relationship.

To further enhance performance, supervised methods often make use of additional
cues, such as optical flow or semantic segmentation. Optical flow provides dense
pixel-level motion information [29], which can aid in-depth estimation and object
tracking. Semantic segmentation helps in understanding the scene’s layout and can
guide the depth estimation process by leveraging object boundaries and semantic
context.

However, it is important to note that despite the advancements, challenges remain
in accurately determining 3D interpretation from monocular video. Factors such as
occlusions, lighting variations, and scene complexity can still pose difficulties for
supervised methods. Nonetheless, ongoing research and the continuous development
of more sophisticated deep learning architectures hold promise for further improve-
ments in tackling this problem.

4.1.1 Supervised loss function

When learning supervised depth from motion, a common approach is to use a loss
function that compares the predicted depth map with the ground truth depth map.
One such loss function is the photometric loss, which measures the difference
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between the rendered image using the predicted depth map and the actual input
image. The photometric loss can be defined as follows:

L1 ¼
X
x, y

I1 x, yð Þ � I2 x, yð Þð Þ2 (2)

where I1 is the original input image and I2 is the image rendered using the
predicted depth map and camera parameters, which can be done using techniques
such as differentiable warping or inverse depth warping. In addition to the photo-
metric loss, you can also incorporate smoothness regularization to encourage smooth
depth predictions. The smoothness loss penalizes large depth gradients and helps
produce more visually coherent depth maps. One common smoothness regularization
term is the total variation loss, which can be defined as follows:

L2 ¼
X
x, y

∥∇Z∥ (3)

where ∣∇Z∥ is the gradient of the predicted depth map in the x and y directions.
The total loss for learning depth from motion can be a combination of the photometric
loss and the smoothness regularization term:

L ¼ L1 þ αL2 (4)

where α is a weighting factor that controls the relative importance of the photo-
metric loss and the smoothness regularization term. By minimizing this total loss using
techniques like gradient descent, you can train a model to learn depth from motion.
Keep in mind that this is just one possible approach, and depending on your specific
requirements and constraints, you may need to modify or customize the loss function
accordingly.

4.2 Unsupervised deep learning methods

While supervised deep learning methods have achieved notable progress in deter-
mining 3D interpretation from monocular video, unsupervised deep learning methods
have also shown promise in tackling this problem. Unsupervised approaches aim to
learn 3D representations from unlabeled or self-supervised data, eliminating the need
for costly manual annotations. One popular technique in unsupervised learning is based
on the concept of “self-supervision.” By leveraging the temporal coherence of consecu-
tive video frames, unsupervised methods can learn representations that capture the
underlying 3D structure of the scene. These methods often utilize techniques such as
photometric consistency, geometric consistency, or depth and ego-motion prediction.

In photometric consistency-based methods, the network learns to generate a synthe-
sized view of the input frame from a different viewpoint using estimated depth or
motion. The consistency between the synthesized view and the actual input frame is
maximized during training, encouraging the network to learn meaningful depth rep-
resentations. In ref. [30], the photometric consistency was achieved by training the
network in a manner analogous to an autoencoder.

Geometric consistency-based methods exploit the geometric relationship between
frames. They aim to minimize the disparity or reprojection error between multiple
views of the same scene. By leveraging geometric constraints, the network can learn to
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estimate depth and camera motion. The method in ref. [31] takes into account this
geometry by learning camera pose between each two frames.

Depth and ego-motion prediction methods train the network to directly predict depth
maps or motion vectors from single images or consecutive frames. These predictions are
compared to ground truth or photometrically warped frames, respectively, to supervise
the learning process. In ref. [32], photometric consistency was taken into account in
training step while 3D geometry consistency was achieved by reconstructing 3D points
cloud from depth and directly comparing the points cloud in a common reference
frame. Nonrigid motion of dynamic objects in the scene was taken into account in ref.
[33] by adding ResFlowNet architecture [34]. Photometric and geometric consistencies
were combined in ref. [35] in a way to minimize the discrepancy between the
reconstructed optical flow obtained from depth and egomotion, and the optical flow
generated using FlowNet [36]. Dynamic scenes were handled in ref. [37] by learning
objects motion independently from the egomotion without an explicit motion segmen-
tation. Likewise, the motion model of moving objects in the work [38] is tackled by
optical flow estimation using view synthesis objective as supervision, again with the
assumption of photometric consistency. In ref. [39], a method was presented by adding
another term that explicitly segments the scene into competing background and fore-
ground masks. In most unsupervised methods, including mono or stereo-SfM (Struc-
ture from Motion) approaches, photometric consistency is a crucial principle used to
guide the learning process. Photometric consistency is based on the assumption that the
appearance of the same point in different views should remain consistent under differ-
ent camera poses. In the context of monocular or stereo video, this consistency is
expressed using a warping function and is often referred to as the view-synthesis loss
[31]. In ref. [40], a generalization of the photometric loss was used by coupling the
spatiotemporal variations in image sequence to the scene geometry with the goal to
supervise both camera motion and depth in a new learning framework. Table 3 sum-
marizes the evaluation of depth estimation from state-of-the-art monocular motion-
based methods using KITTI [14] dataset.

Method Error Accuracy δ

AbsRel SqRel RMS RMSlog < 1:25 < 1:252 < 1:253

Supervised Vijayanarasimhan et al. [27] — 0.770 — — — — —

Kumar et al. [28] 0.137 1.019 5.187 0.218 0.809 0.928 0.971

Unsupervised Zhou et al. [31] 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [30] 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Mahjourian et al. [32] 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yin et al. [33] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Zou et al. [35] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Casser et al.(M) [37] 0.141 1.026 5.291 0.215 0.816 0.9452 0.979

Rajan et al. [39] 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Sekkati et al. [40] 0.137 0.947 5.019 0.216 0.838 0.933 0.970

Chen et al. [38] 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Table 3.
Result comparisons of depth evaluation from monocular motion-based methods on the KITTI dataset. Best
performance is marked with bold fonts.
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By training on vast amounts of unlabeled video data, unsupervised methods can
capture 3D cues and learn to interpret depth, motion, and other scene properties.
They can also handle challenging scenarios, such as dynamic scenes, textureless
regions, and varying lighting conditions. While unsupervised methods have shown
promising results, there are still challenges to overcome. The quality and accuracy of
the learned representations heavily depend on the design of the self-supervision tasks
and the data distribution. Additionally, the unsupervised learning process can be
computationally expensive and may require substantial computational resources.
Nevertheless, the development of unsupervised deep learning methods for 3D inter-
pretation from monocular video holds great potential for advancing our understand-
ing of the 3D world and enabling applications in robotics, augmented reality, and
autonomous systems.

4.2.1 Unsupervised loss functions

Let us consider two nonconsecutive frames from the image sequence I x, y, tð Þ at
time t1 and t2, denoted by I1 ¼ I x, y, t1ð Þ and I2 ¼ I x, y, t2ð Þ, respectively. The general
idea followed by a previous work [41], and subsequently by others, is to minimize the
photometric loss generated by the image difference:

L1 ¼
X
x, y

∣I1 x, yð Þ � I2 τ x, yð Þð Þ∣ (5)

where τ is the warping function that maps pixel from I2 to I1. Using image warping
and image similarity metrics to supervise learning frameworks has certain limitations,
particularly when dealing with large baseline views, occlusions, and image gradients.
While these approaches can be effective in many cases, they may not fully capture the
complexities of the scene geometry and structural edges, leading to some shortcom-
ings. Several methods have been proposed to address these limitations, but they may
not always be explicitly related to scene geometry. For example, image similarity
metrics can help guide the learning process, but they might not directly capture the
underlying scene geometry. Estimating depth and understanding the 3D structure of
the scene is inherently related to scene geometry, which involves estimating accurate
depths and surface orientations. Simple image similarity metrics may not fully encap-
sulate these geometric properties.

Now let us consider two consecutive frames of the image sequence I x, y, tð Þ at
times t and tþ 1. We denote the spatiotemporal derivatives of the image sequence by
Ix, Iy, It
� �

. Then, the 3D brightness constraint for rigid objects’ motion can be
expressed by ref. [42]

Γ T,ω,Zð Þ ¼ It þ s � T
Z
þ q � ω ¼ 0 (6)

where s and q are two quantities expressed in terms of image gradients and camera
intrinsic parameters. Then, the problem of learning jointly the depth Z and
egomotion, parameterized by translational and rotational motions T,ωð Þ, can be
stated as the following loss minimization

L2 ¼
X
x, y

∣Γ T,ω,Zð Þ∣þ μ∣∇Z∣ (7)

163

Depth Learning Methods for Bridges Inspection Using UAV
DOI: http://dx.doi.org/10.5772/intechopen.1002466



where the first term reduces the loss when the prediction deviates from the 3D
brightness constraint, and the second term stands for smoothing depth to avoid both
overfitting and the trivial null solution. Minimization of the loss L2 will overcome all
the above shortcomings related to minimizing L1 and by adding other constraints
instead.

5. Depth from stereo and multi-view

Deep learning methods have been widely employed for depth estimation from
stereo or multiview images. These methods leverage convolutional neural networks
(CNNs) to learn the mapping between input image pairs or sets and their
corresponding depth maps. DispNet is a popular deep-learning architecture specifi-
cally designed for stereo depth estimation. It consists of a CNN-based encoder-
decoder network that takes a stereo pair of images as input and predicts a dense
disparity map, which can be converted to depth. The network is trained using a
supervised learning framework with ground truth depth maps. Pyramid Stereo
Matching Network (PSMNet) is another deep learning architecture for stereo depth
estimation. It introduces a spatial pyramid pooling module to capture multi-scale
information and a stacked hourglass network structure to refine the disparity estima-
tion. PSMNet has demonstrated excellent performance in stereo depth estimation
tasks. MC-CNN is a deep learning method that takes advantage of multiple views of a
scene to estimate depth. It takes a set of calibrated images as input and processes them
through a shared CNN architecture to predict the depth map. MC-CNN exploits the
inter-view geometric relationships to improve depth estimation accuracy. Generative
Adversarial Networks (GANs) have also been utilized for depth estimation from
stereo or multiview images. GAN-based methods often involve training a generator
network to generate depth maps from input images and a discriminator network to
distinguish between real and synthesized depth maps. This adversarial training helps
improve the quality and realism of the predicted depth maps. The disparity estimation
method in [41] uses a CNN network for computing matching distances between
image patches followed by a cross-based aggregation to compute the disparity map. In
ref. [43], a CNN was trained in a supervised way to estimate disparity between stereo
images from stereo video datasets. An implementation in GPU was presented in ref.
[44] to learn feature correspondences faster. In ref. [45], stereo matching is enhanced
using conditional random fields (CRF) to improve the accuracy and coherence of the
depth estimates. CRF Is a pro”abil’stic graphical model that models the dependencies
between variables in a structured manner. In the context of Semi-Global Matching
(SGM) [46], the spatial-variant penalty parameters were learned by regularization
terms applied to the disparity map to enforce smoothness and coherence. SGM
employs a penalization approach where the disparity differences between neighboring
pixels are penalized and controlled by the penalty parameters. In ref. [47], a CNN
method with differentiable layers was presented that learns an end-to-end mapping
from an image pair to disparity map. A refinement by adding another CNN stage was
presented in ref. [48].

In ref. [49], a method was presented to train a CNN network that performs end-to-
end unsupervised depth estimation with a training loss that enforces left–right depth
consistency inside the network. Similarly, the method in ref. [50] learns self-
supervised stereo matching as finding the disparity map that best warps between the
stereo image pair. In ref. [51], CNN architecture was proposed to jointly unsupervise
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learning optical flow and stereo depth map. By jointly estimating optical flow and
stereo depth using unsupervised deep learning like in refs. [52, 53], the network can
exploit the shared features and dependencies between the two tasks, leading to
improved performance compared to separate estimation methods. Exploiting seg-
mentation in the context of stereo motion learning can lead to further improvements
in-depth estimation as in ref. [54]. Table 4 summarizes the evaluation of depth
estimation from state-of-the-art stereo-motion-based methods using KITTI [14]
dataset.

5.1 Loss function

When learning depth from stereo or multi-view images, we can use a loss function
that compares the predicted depth map with the ground truth depth map derived
from stereo or multi-view disparity information. One commonly used loss function is
the smooth L1 loss, which is defined as:

L1; smooth ¼
∣Z x, yð Þ � Z⋆ x, yð Þ∣� α

2
if ∣Z x, yð Þ � Z⋆ x, yð Þ∣> α

1
2α

Z x, yð Þ � Z⋆ x, yð Þð Þ2 otherwise

0
B@ (8)

where Z x, yð Þ is the depth map predicted by the model and Z⋆ x, yð Þ is the ground
truth depth map derived from stereo or multi-view disparity information. The smooth
L1 loss provides a balance between the L1 loss (absolute difference) and the L2 loss
(squared difference). It reduces the impact of outliers while still providing gradient
information for training. In stereo depth estimation, the ground truth depth map can

Method Error Accuracy δ

AbsRel SqRel RMS RMSlog D1all < 1:25 < 1:252 < 1:253

Supervised Mayer et al. [43] — — — — 4.34% — — —

Wang et al. [45] — — — — 4.32% — — —

Zbontar et al. [41] — — — — 3.89% — — —

Seki et al. [46] — — — — 3.09% — — —

Kendall et al. [47] — — — — 2.87% — — —

Luo et al. [43] — — — — 2.56% — — —

Pang et al. [48] — — — — 2.67% — — —

Unsupervised Zhong et al. [50] — — — — 3.57% — — —

Godard et al. [49] 0.148 1.344 5.927 0.247 — 0.803 0.922 0.964

Yang et al. [52] 0.109 1.004 6.232 0.203 — 0.853 0.937 0.975

Liu et al. [51] 0.051 0.532 3.780 0.126 — 0.957 0.982 0.991

Wang et al. [53] 0.049 0.515 3.404 0.121 5.943% 0.965 0.984 0.992

Jiao et al. [54] 0.049 0.522 3.461 0.120 — 0.961 0.984 0.992

Table 4.
Result comparisons of depth evaluation from stereo-based methods on the KITTI dataset. Best performance is
marked with bold fonts.
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be obtained by converting the disparity map (derived from stereo correspondence) to
depth using the camera parameters and baseline distance. The disparity map repre-
sents the horizontal pixel shifts between corresponding points in the stereo images.
For multi-view depth estimation, we can use multiple views (more than two) of the
same scene to derive the ground truth depth map by triangulation. By estimating the
disparity or correspondence between each view and a reference view, we can trian-
gulate the 3D points and obtain the ground truth depth map. Additionally, we can
incorporate other regularization terms or constraints into the loss function to further
improve the depth estimation. Some common techniques include incorporating geo-
metric consistency, enforcing smoothness or sparsity, or leveraging semantic infor-
mation. Remember that the choice of the loss function and additional constraints may
vary depending on the specific requirements and characteristics of stereo or multi-
view depth estimation task.

6. Conclusion

Deep learning methods have significantly advanced the field of depth estimation
by providing effective approaches for inferring depth from various types of input
data. They are highly data-driven and excel in learning complex patterns and repre-
sentations from large-scale datasets, enabling them to capture intricate depth cues and
generalize well to different scenes and scenarios. Deep learning allows for end-to-end
learning, where the model learns to directly predict depth from input data, such as
monocular images, stereo pairs, or multi-view images. This eliminates the need for
explicitly designing handcrafted features or intermediate steps in the depth estimation
pipeline. In the case of monocular case, learning models can estimate depth from a
single image, which is a challenging task due to the inherent ambiguity. Despite the
limitations, many approaches have achieved impressive results by leveraging large-
scale annotated datasets and incorporating various techniques like multi-scale
processing, context aggregation, and geometric constraints. Deep learning methods
have also shown remarkable success in-depth estimation from stereo and multi-view
images. By utilizing the correspondence or disparity information between multiple
views, deep models can leverage geometric constraints to provide accurate depth
estimation. The choice of loss functions and regularization techniques plays a crucial
role in training deep learning models for depth estimation. Common loss functions
include mean squared error (MSE) loss, smooth L1 loss, and photometric loss. Regu-
larization techniques like smoothness regularization, geometric consistency, and
semantic guidance can further enhance the quality of depth estimation. Pretrained
models on large-scale datasets, such as KITTI, have been successfully applied to depth
estimation tasks, while transfer learning allows leveraging the knowledge learned
from a source task to improve performance on a target depth estimation task with
limited data. The choice of deep learning methods for depth estimation depends on
the specific application requirements. Factors such as real-time performance, accu-
racy, robustness to noise and occlusions, and memory efficiency need to be considered
when selecting or designing deep learning models for depth estimation. Overall, deep
learning methods have revolutionized depth estimation by providing powerful tech-
niques that can learn depth from different input modalities, generalize well to diverse
scenes, and achieve state-of-the-art performance. Ongoing research continues to
refine and enhance these methods, making depth estimation an active and evolving
area of study.
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Chapter 11

Immune Neural Network Machine
Learning of Autonomous Drones
for Energy Efficiency and Collision
Prevention
Mikhail Gorobetz, Leonids Ribickis, Anna Beinarovica
and Aleksandrs Kornejevs

Abstract

The chapter is related to the safe and energy-efficient motion of autonomous
drones and describes the developed novel immune neural network-based machine
learning technology for its control. The technology is inspired by two biological
systems – immune system and neural networks and their artificial analogs and evolu-
tionary theory. The developed novel mathematical models and algorithms for this
technology allow skipping the preliminary supervised training step and adapted for
real-time continuous unsupervised self-learning of the drone to recognize the danger-
ous situation, to prevent the collision by making control decisions autonomously and
continuously learning to keep optimal energy consumption during the motion. The
chapter includes the study of existing neural network-based solutions for the recogni-
tion and prevention of dangerous situations and energy efficiency of drones, describes
the developed target function and algorithm for immune neural network machine
learning technology and simulation and experimental results proving the efficiency of
this technology.

Keywords:machine learning, neural networks, energy efficiency, safety, autonomous
vehicles, collision prevention, distributed system, immune memory

1. Introduction

Drones have already been integrated into numerous activities, including inspecting
hazardous objects, delivery services, people searching, fulfilling military objectives,
agriculture, etc. Furthermore, photographers worldwide are increasingly embracing
modern methods and technologies to enhance their photography during celebratory
events. An interesting highlight is that in Australia, drones come equipped with
sophisticated artificial intelligence-driven software, enabling them to distinguish
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boats and different marine life in real-time with an impressive 90% accuracy [1].
Amazon legally delivered its first Prime order in the United Kingdom in December
2016 [2]. And the use of drones still continues to spread to various areas.

Although most drones are currently controlled by human operators using remote
controls to dictate their speed and trajectory, this approach may not be the most
productive use of human time and effort in an era focused on automation and opti-
mization. Additionally, relying on human operators leaves room for potential mis-
takes, which could lead to undesirable consequences. That is why the use of
intelligence systems in drones is developing also.

For instance, the Patroller multi-sensor long endurance quadcopter was specifi-
cally designed to cater to the requirements of armed forces, intelligence operations,
operational support, and maritime surveillance. What sets it apart is its autonomous
launch system, enabling it to take off from airports without any need for adjustments
to ground facilities. With an impressive endurance of 20 hours and a payload capacity
of up to 250 kg, the Patroller is well-suited for prolonged missions [3].

There are bunches of areas where drones are used: military purposes; patrolling
and searching tasks; order delivery; mapping of landslides, hurricanes or other cata-
clysms affected area; infested crop damage assessment; 3-dimensioinal terrain model
construction, etc.

Such tasks as patrolling or searching require a team of drones working in the same
area. When dealing with tasks that involve multiple drones, there is an added risk of
potential collisions between them. For example, if multiple drones are assigned to
search for the same object, and each drone is programmed to reach its own specific
destination, there is a possibility that all drones may converge on nearly the same
coordinates, increasing the risk of a collision. Another problem with the use of auton-
omous drones is untimely battery discharge, which can lead to the loss of the drones.
That is why the problem of the safe and energy-efficient drive of autonomous drones
is important and needs to be well studied.

Analysis of the research base reveals that currently, the majority of energy-saving
solutions are related to route calculation and trajectory planning for unmanned vehi-
cles, as well as energy-saving algorithms for other equipment unrelated to electric
drive systems. Only a few studies focused on reducing energy consumption explore
the mechanical and electrical properties of power devices, but not connected with
autonomous drones and machine learning.

The scientific novelty of this research is the technology for the drone embedded
system, which is able to learn in real-time to avoid crashes and control the motion
with optimal energy consumption without any preliminary datasets, pretraining, and
a teacher.

Authors named it as immune neural network (INN). It is a symbiosis that uses the
best features of artificial neural networks (ANN) and artificial immune system (AIS).
Separately each of them has a bunch of disadvantages. ANN requires preliminary
training, may be overtrained, etc. AIS does not require training, but the optimization
requires time and may not be used for real-time control. Novel INN system combines
the possibilities of ANN and AIS is adapted for real-time safety and energy control.

The main hypothesis is that an immune neural network can make control decisions
to prevent drone collisions with better performance than a traditional neural network
in this task and is able to reduce the energy consumption of autonomous unmanned
vehicles – drones.

The first part of the chapter contains an analysis of the existing types of solutions
of the problem. The second part is devoted to the developing the novel system
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structure, which could help to make the proposed system cheaper, faster, and easier to
implement. The target function of the proposed novel INN is described in the third
part of the chapter. The fourth part is devoted to the proposed algorithm, based on the
novel INN machine learning technology. The last part of the chapter is devoted to the
results of testing the efficiency of the developed algorithm. The developed algorithm
was tested with the help of computer modeling.

2. Review of the scientific research and literature about autonomous
electric transport control

A research paper [4] previously proposed a method for real-time traffic flow
parameter estimation from unmanned aerial vehicle (UAV) video, which relied on an
ensemble classifier and optical flow. In contrast, the system presented in this study
eliminates the need for additional infrastructure embedded objects, or/and devices.
Two other articles [5, 6] also delve into motion control tasks for UAVs, both
referencing the Lyapunov method. Comparing the motion control of aerial vehicles
with surface transport allows concluding that of surface autonomous vehicles have a
higher probability of collision because there is no ability to change the altitude com-
ponent. A hierarchical collision-avoidance strategy is proposed as a theoretically
approach for high-speed self-driving vehicle collision-avoiding task solving [7]. Fuzzy
logic and FMCW radar (Frequency-Modulated Continuous Wave) usability for
motion control task solving are described in research [8], but this system also is not
provided with surrounding environment visual monitoring elements or sensors. The
author presented a doctoral thesis in ref. [9], that is devoted to knowledge extraction
from trained ANN. Research described in this research proposes a novel ANN, that
does not require previous training, the proposed system is unsupervised and does not
need a teacher.

In the research discussed in ref. [10], novel drone-following models are introduced
for effective drone management within the transportation management system. These
models operate on the fundamental premise that drones navigate by following a
leading drone. But in difference with this research, in ref. [10] several important
situations were not considered, like safe distance is measured not only in the drone
directly in front but also in two drones beside, or increasing the number of drones.
Intelligent electric vehicle motion and crossroad control using genetic algorithms is
proposed in paper [11].

The book published, that was devoted to the scientific results: “Unmanned Elec-
trical Vehicles and Autonomous System Simulation”. This book and its offshoots were
prepared to provide a comprehensive introduction to the domain of the autonomous
system [12]. The book was also mentioned artificial intelligence for autonomous
drives, but no specific solutions, like ANN, were mentioned there.

The conventional ANN requires adjustments or fine-tuning to adapt to individual
situations or tasks. In simpler terms, the traditional ANN uses the current weights as a
starting point for the next round of re-training. However, this process can be time-
consuming due to the wide variety of situations it needs to handle [13]. The INN
proposed in this study includes an immune memory (IM) that retains information
from past successfully prevented collision scenarios. By referencing this memory to
find similar situations and utilizing the stored weights as a foundation for re-training,
the INN can considerably minimize the time needed for self-tuning when dealing with
a similar problem. In ref. [14] a similar solution is proposed. The main idea of that
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research is a retraining of a static neural network, by using IM-based algorithm. In the
solution presented in ref. [14], the approach involves creating the initial population (a
set of chromosomes) by random means. This means that the population consists of
fuzzy weights for ANN, and these weights are assigned random values during the
generation process. In difference with that research, the main idea of this research is
that input data are stored in the IM together with weights, that was used previously
for solving this situation, that helps to reduce calculation time, which is very impor-
tant for real-time systems, thus to reduce energy consumption. Also, the proposed
novel algorithm allows retraining the neural network. In this research, no initial
population is needed. Training can start even with an empty IM. The found solutions
will be those that will be written in the IM and further adjusted.

3. System structure

3.1 General safety system structure for drone dangerous situation recognition and
prevention task

System models can be divided into centralized, decentralized, and distributed.
In a centralized system, all computing power may be allocated to one user when no

other users are attached to the system. Consequently, the execution time of all users’
applications will be increased if the mainframe serves many users [15].

In simpler terms, decentralization is a systemmodel where decision-making occurs
at different levels. In this approach, the larger system is subdivided into smaller
segments or groups, allowing for a more manageable assessment of the system’s
performance and the contributions of individuals within each group [16].

A distributed operating system is a unique type of operating system that spans
across multiple objects. The goal is to offer a useful range of services, making all the
machines appear and function as a unified single entity. These distributed operating
systems collaborate on all the machines they manage, which can either operate inde-
pendently or serve as resources within the broader distributed system [17].

Centralized, decentralized, and distributed system models were compared. The
results of the comparison show that a distributed system is preferable because it is
easier to implement and has less components, it is cheaper for infrastructure owners
and it is not connected to the specific area. It has also a decreased time for reaction and
decreased risk of system failure. That is why a distributed system was chosen for this
research.

Figure 1 illustrates the schematic representation of the distributed system’s struc-
ture. Where: SAT – satellite, is a component that serves to acquire the real-time
coordinates of an object’s position; Drone – autonomous drone; Dronen – other auton-
omous drones; MECH – mechanical part that is responsible for the drones moving;
IO – infrastructure objects; CO – control system; SEN – sensor; EC – proposed novel
immune neural network energy efficiency control module; SC – proposed novel
immune neural network safety module; ORM – object recognition module, is using
incoming video data for CNN to recognize other drones and drones that do not have
the proposed embedded device as well as other objects in the visibility range; LC –

different type of level crossings, if necessary; RS – signs, that limit the possible
movement parameters on the concrete road/way section, if necessary; TL – different
types of the traffic lights, if necessary; GNSS – GNSS receiver, is utilized to receive
and determine the precise coordinates of the drone’s current location; RFM – serves
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the purpose of communication with other devices embedded in different drones and
infrastructure objects; DS – distance sensor; CAM – camera is used to capture images
of the surrounding environment; MDS – movement direction sensor, to receive the
data of the drone movement direction; VS – voltage sensor; CS – current sensor;
SPS – speed sensor to receive the data of the drone speed and acceleration; MORA –

moving object recognition algorithm, to recognize moving objects such as human
being, animals, other drones in the visibility range, based on the convolutional neural
network (CNN); SORA – static object recognition algorithm, to recognize static
objects such as fallen tree or broken car on the way of motion, based on the CNN;
RRA – road recognition algorithm, to recognize the presence of turns and road profile,
based on the CNN; IMS – immune memory for safety control; AAS – affinity algo-
rithm for safety control; NNS – neural network as a part of the safety INN; DM –

decision making module is responsible for making decisions to minimize risks and
control the drone’s movement. It calculates appropriate curves and actions to achieve
the desired speed and reach the target point on the designated route; TF – target
function; CF – constraint formation to control signals; OS –optimal search algorithm
module; VC – validation of the control signals; IME – immune memory for energy
control; AAE – affinity algorithm for energy control; NNE – neural network as a part
of Energy INN; SFT – safety check to avoid conflicts between safety control and

Figure 1.
Scheme of the general safety system structure for drone dangerous situation recognition and prevention task.

177

Immune Neural Network Machine Learning of Autonomous Drones for Energy Efficiency…
DOI: http://dx.doi.org/10.5772/intechopen.1002533



energy control, where safety is a priority; DCS – drone control system, to control
actions of the driver. If the driver receives the indications on the information display
but does not react in time, then the driver control system sends the signal to the drone
control system, and the proposed system intervenes in the drone control; BS – drone
braking system, to control the stop of the drone, if applicable; ED – drone electric
drive; STS – drone steering system to control the trajectory of motion, if applicable.

Microcontrollers embedded in each drone are responsible for executing various
tasks. These tasks encompass object recognition, risk assessment, opportunity evalua-
tion, and decision-making concerning adjustments to movement parameters and con-
trol signals.

The suggested system’s structure is based on the:

• CNN-based subsystem for object recognition task;

• ANN-based subsystem for drone collision probability evaluation and
minimization task;

• INN-based technology of machine learning for unsupervised safe drone control.

CNN and ANN are already known methods and are not described in this study.

3.2 Novel immune neural network-based technology of machine learning of
autonomous drones for energy efficiency and collision prevention

Novel INN-based technology (Figure 2) can be used in distributed systems. It
obtains data, makes calculations and provides necessary solutions how to avoid colli-
sion in the context of one particular drone. It does not provide solutions for other
participants.

Figure 2.
Immune neural network system structure of the drone.
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3.2.1 Input data (X)

Data:

• vD – speed of the own drone;

• vDn – speed of other drones;

• τDn – horizontal movement direction of the other drone relative to one’s own
direction;

• φDn – vertical movement direction of the other drone relative to one’s own
direction;

• dDn – distance till the possible crossing point with the other drone.

Number of parameters in the input data (X) depends on the situation – the number
of other drones in the control area of own drone. There is one input parameter for own
drone: speed. There are four input parameters for other drones: speed, horizontal
movement direction in relation to the own drone, vertical movement direction in
relation to the own drone, and distance till possible crossing point.

Data is received from the drone-embedded electronic device and is sent to the
input layer of the immune neural network INN.

3.2.2 Input layer

The input layer of the INN receives input data (X).
Each drone takes into account only those drones, which are in its control area, in

case to minimize the number of necessary calculations.
Input data (X) is ordered for a more accurate recognition of the situation. The goal

is to order multiple drones in relation to the own drone to better understand their
position and relative movement. Three parameters are used for ordering the drones:
the horizontal movement direction τDn, the vertical movement direction φDn, and the
distance to the crossing point dDn. Ordering of other drones is done according to the
slope τDn to these objects, starting from 0°, clockwise. If multiple drones have the
same value of τDn, then the ordering of these drones is done according to the slope φDn
to these objects, starting from 0°, clockwise. If multiple drones have the same value of
φDn, then the ordering of these drones is done according to the distance to the crossing
point with these drone dDn. This method helps to describe the situation accurately.

Input data (X) are sent from the input layer to the affinity algorithm AA and
hidden layer.

3.2.3 Affinity algorithm (AA)

The affinity algorithm AA examines all analogous situations stored in the immune
memory IM and computes their errors (discrepancies) E. Situation with a smallest
error (discrepancy) E is chosen and its identification number α is distributed to all μ
neurons of the proposed INN. If there is no similar situation stored in IM immune
memory, then situation number α = 0 is sent to the μ neurons.

179

Immune Neural Network Machine Learning of Autonomous Drones for Energy Efficiency…
DOI: http://dx.doi.org/10.5772/intechopen.1002533



3.2.4 Immune memory (IM)

Database, that contains input data about previous situations that were solved. Each
situation has its’ number α.

To enhance the efficiency of the affinity algorithm (AA) and the storage of data in
the immune memory (IM), a clustering technique is implemented. This approach
avoids unnecessary searches for similar situations in scenarios with different numbers
of participants. This ensures that, for instance, if four drones are involved in a poten-
tial collision scenario, there is no need to search for a similar situation among cases
with only three participants. Clustering allows for faster and more efficient matching
processes in the system.

3.2.5 Hidden layer

The hidden layer consists of specialized μ neurons.
Input data of each μ neuron of the hidden layer is:

• input data (X);

• situation number α received from the affinity algorithm AA;

• signal β that indicates the need to recalculate the weights of μ neurons and is
received from the training algorithm TA.

In the μ neuron number of situation α is stored together with a set of weights Wμ,
that were used while solving the exact problem i.e. processing the similar input data.
After number of the situation α is received, weightsWμ are chosen and training can be
started. If there is no similar situation and α ¼ 0, then Wμ ¼ 0.

3.2.6 Output layer

Output layer consists of specialized μ neurons.
Input data of each μ neuron of the output layer is:

• output data of the μ neurons of the hidden layer;

• situation number α received from the affinity algorithm AA;

• signal β that indicates the need to recalculate the weights of μ neurons and is
received from the training algorithm TA.

In the μ neuron number of situation α is stored together with set of weights Wμ,
that were used while solving the exact problem, similar as in the μ neuron of the
hidden layer. After number of the situation α is received, weights Wμ are chosen and
training can be started. If there is no similar situation and α = 0, then Wμ ¼ 0.

Output data of the output layer:

• necessary horizontal movement direction change of the own drone ΔτD;
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• necessary vertical movement direction change of the own drone ΔφD;

• necessary speed change of the own drone ΔvD.

3.2.7 Target function (TF)

Input data of target function TF:

• necessary horizontal movement direction change of the own drone ΔτD;

• necessary vertical movement direction change of the own drone ΔφD;

• necessary speed change of the own drone ΔvD;

• input data obtained directly from drone-embedded electronic device:

◦ vD – actual speed of the drone;

◦ χD – latitude of the drone’s actual position;

◦ ψD – longitude of the drone’s actual position;

◦ ηD – altitude of the drone’s actual position;

◦ θD – actual horizontal movement direction of the drone;

◦ ωD – actual vertical movement direction of the drone.

In the present study, the crossing points’ locations are variable, which adds com-
plexity to the solution. The identified solution <ΔvD,ΔτD,ΔφD > is affected by the
distance to the crossing point. Thus, the evaluation of the target function TF requires
the additional inputs < vD, χD,ψD, ηD, θD,ωD > obtained directly from the drone to re-
calculate the crossing point, distance, and time to it.

Target function TF calculates the collision probability Pmax.
Output data of target function TF:

• collision probability Pmax;

• necessary horizontal movement direction change ΔτD;

• necessary vertical movement direction change ΔφD;

• necessary speed change ΔvD.

3.2.8 Decision module (DM)

Input data of decision module DM:

• collision probability Pmax, received from the target function TF;
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• necessary horizontal movement direction change ΔτD, received from the target
function TF;

• necessary vertical movement direction change ΔφD, received from the target
function TF;

• necessary speed change ΔvD, received from the target function TF.

Decision module (DM) evaluates the found solution.
If collision probability Pmax is greater than acceptable (safe) collision probability

Psafe and

• If number of training iterations t is less than maximal possible number of
iterations Tmax, that means the solution is not found yet and training must be
repeated. Decision making module (DM) sends signal to the training algorithm
(TA).

• If number of training iterations t is bigger or equal than maximal possible number
of iterations Tmax, that means that the situation can not be solved in the defined
time, so speed reduction is done. Decision-making module (DM) sends signal to
the drone-embedded electronic device to stop the drone vD ¼ 0.

If collision probability Pmax is less or equal than acceptable (safe) collision proba-
bility Psafe, then found solution <ΔvD,ΔτD,ΔφD > is sent to the drone-embedded
electronic device and match error εa between the current situation and situation
chosen from the immune memory IM in the beginning of training is calculated:

• if match error εa is bigger than maximal possible match error εlim, responsible for
creation new record in the immune memory IM or replacing the existing, then IM
saves the situation as a new record. Each μ neuron of the hidden and output
layers saves set of weights Wμ that was used for solving this situation together
with a number of this situation α.

• if match error εa is less or equal than maximal possible match error εlim, then the
record of the situation α is updated in the immune memory IM. Values of weights
Wμ of μ neurons of the hidden and output layers are updated according to the last
used.

3.2.9 Training algorithm (TA)

Input data of the training algorithm (TA):

• collision probability Pmax, received from the target function TF;

• necessary horizontal movement direction change ΔτD, received from the target
function TF;

• necessary vertical movement direction change ΔφD, received from the target
function TF;
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• necessary speed change ΔvD, received from the target function TF;

• signal to repeat training, received from the decision-making module DM.

The training algorithm is used instead of the traditional backpropagation algo-
rithm. Backpropagation is typically used in supervised learning where the network is
trained using labeled data, but the proposed novel INN is based on unsupervised
learning.

Training algorithm TA stores the last value of the Pmax, which was received while
solving this situation and compares this value to the new one. TA sends a signal β to all
μ neurons, that means that training must be repeated. Signal β differs according to the
result of the Pmax comparison.

If it is the first training iteration, TA does not have information about the previous
Pmax, so TA sends a signal β1 to all μ neurons of the hidden and output layer. Signal β1
means that the found solution does not solve the situation and training must continue.

The same happens if the result of the found solution is better or equal than
previous Pmax 2 ≤Pmax 1. TA sends a signal β1 to all μ neurons of the hidden and output
layer, which means the found solution is not worse than previous one and training
must continue.

If the result of the found solution is worse than the previous Pmax 2 >Pmax 1, then
TA sends a signal β2 to all μ neurons of the hidden and output layer. Signal β2 means
that the found solution does not solve the situation and the result of the last iteration is
worse than the result of the previous one. The values of the weights must be returned
to the previous before training continues.

3.2.10 Training of μ neurons

When receiving β1 new values of weightsWμj are randomly chosen from the range
Wμj � z≤Wμjþ1 ≤Wμj þ z
� �

, where z is a predefined range parameter (may be
adjustable).

When receiving β2 new values of weightsWμj rollback to the previous valuesWμj�1

and then are randomly chosen from the range Wμj�1 � z≤Wμj ≤Wμj�1 þ z
� �

, where z
is predefined range parameter (may be adjustable).

4. Target function for the immune neural network

The general target function with anti-collision criteria is shown in Eq. (1), where:
Pmax - maximal collision probability from the set of probabilities of collision for all

pairs of drones;
ΔΘ ¼ Δθ1, … ,Δθnð Þ, - set direction changes in the horizontal plane of all drones;
ΔΘ ¼ Δθ1, … ,Δθnð Þ, - set direction changes in the vertical plane of all drones;
ΔΦ ¼ Δφ1, … ,Δφnð Þ - set of speed changes of all drones;
DIST – safety criterion (Eq. (2)), where: DISTsafe is safety distance limit for each

pair of drones <UAVi,UAVj > , i ¼ 1::n, j ¼ 1::n, i 6¼ j;
PIJ = (P(<D1, D2>),… ,P(<Di, Dj>),… ,P(<Dn-1, Dn>)) - set of probabilities of

collision for all pairs of drones <Di, Dj>, i 6¼ j, i,j = 1..n.
Permissible changes of direction depend on the drone specifications and other

circumstances. Restrictions for the horizontal movement direction change Δτi,
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restrictions for the movement direction (in the vertical plane) change Δφi and restric-
tions for the speed change Δvi were also defined.

Pmax χDc ,ψ
D
c , η

D
c ,Δτ,Δφ,Δv

� � ¼ max PIJ
� �! min

ΔτΣ Δτð Þ ¼
Xn
i¼1

Δτi ! min

ΔφΣ Δφð Þ ¼
Xn
i¼1

Δφi ! min

ΔvΣ Δvð Þ ¼
Xn
i¼1

Δvi ! min

DIST ¼ DiDj
�� ��> S

Δτ1 <Δτi <Δτ2

Δφ1 <Δφi <Δφ2

Δv1 <Δvi <Δv2
i ¼ 1::n, j ¼ 1::n, i 6¼ j

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

DIST ¼ DiDj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χjc � χic
� �2

þ ψj
c � ψi

c

� �2
þ ηjc � ηic
� �2r

>DISTsafe (2)

In case of the distributed system, each i-th drone is looking for its own direction
and/or speed change solution <Δθi,Δφi > , according to the task. Additionally the
drone’s energy control system search for optimal control signals c1, c2, c3, c4 to
minimize energy consumption Ev and reach the destination point xM, yM, zM.

Thus, the target function for a single drone with energy control is the following:

Pmax χDc ,ψ
D
c , η

D
c ,Δτ0,Δφ0,Δv

� � ¼ max P0j
� �! min

Ev ¼
ð
I �U � dt ¼ f c1, c2, c3, c4, tð Þ ! min

Δτ0 ! min
Δφ0 ! min
Δv0 ! min

DIST ¼ D0Dj
�� ��> S

Δτ1 <Δτ0 <Δτ2

Δφ1 <Δφ0 <Δφ2

Δv1 <Δv0 <Δv2
j ¼ 1::n

xM � χ0c
�� ��≤ εX

yM � ψ0
c

�� ��≤ εY

zM � η0c
�� ��≤ εZ

c1min ≤ c1 ≤ c1max

c2min ≤ c2 ≤ c2max

c3min ≤ c3 ≤ c3max

c4min ≤ c4 ≤ c4max

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(3)
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where:
Pmax - represents the highest probability of collision between the own drone D0

and all other drones within the control area;
ΔΘ ¼ Δθ1, … ,Δθnð Þ, - direction change in the horizontal plane of the own drone

D0;
ΔΘ ¼ Δθ1, … ,Δθnð Þ, - direction change in the vertical plane of the own drone D0;
ΔΦ ¼ Δφ1, … ,Δφnð Þ - speed change of the own drone D0;
c1, c2, c3, c4 – control signals roll, pitch, throttle and yaw;
cimin, cimax - limits of i-th control signal;
εX, εY , εZ – acceptable precision of coordinates assumed the destination is reached.
DIST - safety criterion (Eq. (4)), where: DISTsafe is the safety distance limit for

own drone with all the other drones <UAVi, UAVj > , i ¼ 1::n, j ¼ 1::n, i 6¼ j;
P0j = (P(<D0, D1>),… ,P(<D0, Dj>),… ,P(<D0, Dn>)) - set of probabilities of

collision between the own drone D0 and all other drones within the control area, j = 1..n;
Restrictions of the own parameters change (Δτ0;Δφ0;Δv0) were also defined.

DIST ¼ D0Dj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χjc � χ0c
� �2

þ ψj
c � ψ0

c

� �2
þ ηjc � η0c
� �2r

>DISTsafe (4)

Function of the decision-making module FDM is represented as follows:

FDM ¼ TF Pmax,ΔvD,ΔτD,ΔφDð Þ ! min (5)

Thus, we can evaluate the result of training the INN without a teacher with the
help of the proposed target function and make a decision about accepting the solution
or continue training.

5. Algorithm for immune neural network of autonomous drones for
collision prevention task

The algorithm of INN consists of the following steps:
STEP 1. Receive input data DAT from n drones located in the area of visibility.

These data are locations <χDc ,ψD
c , ηDc >, speed vD, horizontal movement direction θD,

and vertical movement direction ωD of drones.
STEP 2. The proposed INN requires data about other drones’ location in relation to

the own drone location. Data DAT needs to be proceeded before it will enter the input
layer of the proposed INN.

STEP 2.1. Input data DAT contains coordinates of other drones position
<χDc ,ψD

c , ηDc > , own position is known also. Distances to the possible crossing points
with other drones DISTD are calculated.

STEP 2.2. The next step is to organize the drones for a more precise definition of
the situation. The first drone is always drone itself. The other drones are ordered
according to their horizontal movement direction τDn in relation to the own drone,
starting from 0 degrees and proceeding clockwise. If multiple drones have the same
value of τDn , they are then ordered according to their vertical movement direction φD

n
in relation to the own drone, starting from 0 degrees and proceeding clockwise. If
multiple drones have the same value of φD

n , they are then ordered according to the
distance to the crossing point with the own drone DISTD

n .
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Horizontal movement directions of other drones τn in relation to the own drone
direction and vertical movement directions of other drones φn in relation to the own
drone direction are calculated in this step. Actions, provided in STEP 2, transform
input data DAT to the input data X to be processed by the INN (Eq. 6).

X ¼ v0, v1, τ1,φ1, d1 … , vn, τn,φn, dnð Þ ¼ x0, x1, x2, x3, x4, … , x4n�3, x4n�2, x4n�1, x4nð Þ (6)

Where,
n – number of other drones, n = 0 – own drone, n > 0 – all others drones;
vn, x4n�3 – speed of n-th drone;
τn, x4n�2 – horizontal movement direction of the n-th drone. Direction of move-

ment of the another drone (n > 0) is relative to one’s own (n = 0) direction, but τ0 ¼ 0;
φn, x4n�1– vertical movement direction of the n-th drone. Direction of movement

of the another drone (n > 0) is relative to one’s own (n = 0) direction, but φ0 ¼ 0;
dn, x4n – distance till the possible crossing point of own drone with another drone’s

n > 0 trajectory. Thus d0 = 0.
STEP 3. The calculation of collision probability P is intended to determine whether

it is necessary to minimize the risk of collision. If no, end of the algorithm. If yes, then
go to the next step.

STEP 4. After input data X enters the input layer of INN, data X is sent to the
specialized μ neurons and affinity algorithm (AA). The AA (X, S) checks all situations
S stored in the IM S ¼ s1, s2, … , smf Þ, calculates the set of discrepancies
E ¼ ε1, … , εkð Þ, where

εj ¼
Xn
i¼0

X2

k¼1

Xik � Xj
ik

Xik

 !2

(7)

and finds the closest match εα, where εα ¼ min εð Þ.
STEP 5. When μ neuron receives input data X, it activates and increases iteration

counter t ¼ tþ 1. When situation number α is received, set of weightsWμ are selected
from the memory of the μ neuron. If there is no similar situation in the IM and α ¼ 0,
then Wμ ¼ 0.

STEP 6. Input data X, situation number α, received from the affinity algorithm AA,
and signal β, which indicates the need to recalculate the weights of μ neurons, are the
input data of each μ neuron of the hidden layer μHID. Feed forward input through the
NN is done. Outputs for own vertical movement direction change Oμp3 ¼ ΔφD, own
horizontal movement direction change Oμp2 ¼ ΔτD and own speed change Oμp1 ¼ ΔvD
are generated as a result.

STEP 7. The TF calculates the collision probability Pmax, that is maximal collision
probability from the set of probabilities of collision for all pairs of drones PIJ. TF uses
updated data, received directly from the drone embedded device DTR.

STEP 7.1. The TF function defines the directions τD and φD of each drone in
relation to the own drone.

STEP 7.2. Next step is to detect the crossing point (χp,ψp, ηpÞ in 3D space.
STEP 7.3. Involves checking if the crossing point (χp,ψp, ηpÞ is discovered and lies

along the path of motion. If it is, proceed to STEP 7.4. Otherwise, proceed to STEP 7.6.
STEP 7.4. To find the distance between the altitudes of the i-th drone and its own

drone at the point (χp,ψp, ηpÞ, the calculation involves Δη ¼ ηip � ηown
p .

STEP 7.5. If Δη≤DISTsafe then it is assumed that a potentially dangerous point
exists, and the probability of collision P is calculated.
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STEP 7.6. If the crossing point (χp,ψp, ηpÞ is not found, then the trajectories are
parallel and DISTsafe should be checked for safe passing.

STEP 8. If Pmax >Psafe, where Psafe is the maximal acceptable (safe) collision prob-
ability, then is checked either the solution is better than the previous or worse:

If t ¼ 1, then signal β is sent to all μ neurons and repeats from STEP 6.
If 1< t<Tmax and Pmax 2 >Pmax 1, then signal β is sent to all μ neurons. μ neurons

return the previous values of Wμ and repeat from STEP 6.
If 1< t<Tmax and Pmax 2 ≤Pmax 1, then signal β is sent to all μ neurons and repeat

from STEP 6.
If t≥Tmax, the situation cannot be resolved within the specified timeframe,

requiring a safe solution. In this research, the safe solution involves reducing the speed
to Δvi ¼ v and implementing the END algorithm. Otherwise, continue to STEP 9.

STEP 9. If Pmax ≤Psafe then:
The calculated speed ΔvD, horizontal and vertical movement directions ΔτD and

ΔφD changes are accepted as the solution and sent to the embedded electronic device
for the drone control.

Match error εa is compared with a maximal possible match error εlim, responsible
for creation new record in the immune memory IM or replacing the existing:

if εα > εlim, then each μ neuron saves new set of weights Wmþ1 that was used for
solving this situation and IM saves the situation X as Smþ1 ¼ X and m ¼ mþ 1;

else if εα ≤ εlim, then each μ neuron updates set of weights Wα and the record α in
the IM is updated sα ¼ X.

STEP 10. END of the algorithm.

6. Computer model and results of the experimental testing of the
proposed immune neural network machine learning of autonomous
drones for energy efficiency and collision prevention

A computer model was developed, to prove the efficiency of the proposed auton-
omous drone control system. The implementation takes place in a two-dimensional
(2D) plane, with the assumption that all drones are flying at a uniform altitude.

The model involves an autonomous drone team consisting of eight drones with
random sizes, assigned to patrol a specific area. Each drone follows a continuous path
between two target points, shuttling back and forth from the first to the second point.
Throughout the simulations, the number of drones remains constant.

The drones utilize input data such as their speed, trajectory, and distance to
anticipate potential collisions with other drones. Based on this information, each
drone calculates the movement direction of other drones relative to its own position
and identifies potential collision points.

Each drone specifically calculates the collision probability with other drones that
fall within its control area, primarily focusing on those located in front and on the
right side. This targeted approach reduces the number of computations needed, opti-
mizing the efficiency of the process.

Screenshots of the computer model working are shown in Figures 3 and 4.
In Figure 3, the drones operate without any motion control, simply taking the

shortest path from one point to another. During this movement, they do not perform
risk assessments or implement collision prevention strategies. Figure 4 employs the
INN immune neural network for motion control. The suggested unsupervised drone
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Figure 4.
Computer model during the simulation process with proposed novel INN.

Figure 3.
Computer model during the simulation process without any motion control.

Parameter Meaning

XYerr XY position error -XYerr < err < + +XYerr

Verr speed error -Verr < err < + +Verr

Rerr rotation error -Rerr < err < + +Rerr

TXdelay data transmission delay, ms

Sdelay own positioning data refresh delay, ms

AreaRate safety zone area rate proportional to the size
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control system calculates the collision probability and adjusts movement parameters
to minimize it. As a result, the paths of the drones in Figure 4 are not straight, as they
are modified to avoid potential collisions.

The database was developed to store parameters of simulation (Table 1) and to
save the results of the computer simulations (Table 2).

The summarized results of the simulations are presented in Figure 5. In the next
subsections, the description of results is done with reference to the simulation num-
bers. Better results with the higher number of trips done by drones.

7. Results of simulations without motion control

The first computer simulation was made without any motion control. All the
objects were moving straight from one point to another and back again during the
simulation.

Parameter Meaning

Ap the magnitude of movement parameter adjustments is determined by the collision
probability weight. A higher collision probability weight leads to smaller changes in the
movement parameters, while a lower weight results in larger adjustments

Av speed change weight Av = (1-Ap)/2

Ar trajectory change weight Ar = (1-Ap)/2

TrLim maximal number of iterations for the one decision-making process

Sens collision sensibility

Psens probability sensitivity

Vlim maximal speed

Anglim the maximal possible trajectory change refers to the maximum angle adjustment that can be
made to the drone’s flight path

Safedist the maximum distance to the other drone defines the threshold at which the drone begins
crash-prevention actions and calculates the collision probability

Table 1.
Parameters of the computer simulation.

Parameter Meaning

AvDur Average duration of one flight

SmDur The shortest duration of the flight

LngDur The longest duration of the flight

AvDist Average distance of one flight

SmDist The smallest distance of the flight

LngDist The biggest distance of the flight

Trips Number of complete trips/flights during simulation

Collisions Number of collisions during simulation

Table 2.
Computer simulation output data.
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The results of computer simulation without any motion control show that
8 drones did an average 419 trips and also 60 collisions are detected during 10 minutes
(Figure 5 simulations 1–5).

8. Results of simulations with traditional ANN and new proposed INN
without data transmission delays and errors

No data transmission delays and errors were used in these simulations. Other
parameters were the same during all simulations (Table 3). A description of the input
and output parameters is provided in the Tables 1 and 2.

The output data shows that the number of collisions was reduced to zero during
simulations with the ANN, compared to the simulations without any motion control
(Figure 5 simulations 6–10). However, the number of completed trips was much
lower (Table 4). For the simulations with the proposed INN, the same parameters
were used. As a result, no collisions were detected, and the number of trips increased
to an average of 92 trips per 10-minute simulation (Table 4).

Figure 5.
Comparison of the results of simulations.

Simulation Nr. System AvDur SmDur LngDur AvDist SmDist LngDist Trips Collisions

AVG 1–5 ANN 22 11 66 640 426 1331 54 0

AVG
1–5

INN 19 11 50 649 425 1397 92 0

Table 4.
Simulation results with the parameter set ID 1.

ID XYerr Verr Rerr Txdelay Sdelay AreaRate Ap Av Ar TrLim Sens Psens Vlim Anglim Safedist

1 0 0 0 0 0 1 0.8 0.1 0.1 50 6 0.1 70 90 150

Table 3.
Input set 1 of parameters for the computer simulation.
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9. Results of simulations with traditional ANN and new proposed INN
with data transmission delays and without errors

During these simulations, a data transmission delay of 2000 ms and an own
positioning data refresh delay of 500 ms were used (Figure 5 simulations 6–10).

On average, 12 trips were completed during simulations with a traditional ANN
(Table 5), which is half as many as during simulations with the proposed INN
(Table 6). However, collisions were detected in all simulations, indicating that
requirements need to be changed and other parameter values must be adjusted to
ensure safe driving.

10. Results of simulations with traditional ANN and new proposed INN
with data transmission delays, without errors, and with improved
parameters

An increased value of the parameter “maximal distance till other drone to start
crash prevention and to calculate collision probability” was used during these simula-
tions (Figure 5 simulations 11–15).

The output data shows that although the number of trips was reduced, they were
safer and without collisions. Moreover, the number of trips was twice as large during
simulations with the proposed INN (Tables 7 and 8).

11. Results of simulations with traditional ANN and new proposed INN
with data transmission delays and errors

During these simulations, data delays and errors were introduced to replicate the
real-time experiment’s conditions (Figure 5 simulations 15–20).

Simulation Nr. System AvDur SmDur LngDur AvDist SmDist LngDist Trips Collisions

AVG
6–10

ANN 18 11 61 628 437 1204 12 10

AVG
6–10

INN 42 12 134 761 450 1450 23 8

Table 6.
Simulation results with the parameter set ID 2.

ID XYerr Verr Rerr Txdelay Sdelay AreaRate Ap Av Ar TrLim Sens Psens Vlim Anglim Safedist

2 0 0 0 2000 500 1 0.8 0.1 0.1 50 6 0.1 70 90 150

Table 5.
Input set 2 of parameters for the computer simulation.

ID XYerr Verr Rerr Txdelay Sdelay AreaRate Ap Av Ar TrLim Sens Psens Vlim Anglim Safedist

3 0 0 0 2000 500 1 0.8 0.1 0.1 50 6 0.1 70 90 500

Table 7.
Input set 3 of parameters for the computer simulation.
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No collisions were detected in any of the simulations. Furthermore, the number of
trips completed was almost twice as high during simulations with the proposed INN
(Tables 9 and 10).

The example of results for energy efficiency control INN is presented in Figure 6.
Initially, the consumption per meter is higher, but during the self-learning of the

immune neural network for energy control the energy consumption per meter is
significantly reduced, by choosing the best values of control signals when no risks of
collisions are detected.

ID XYerr Verr Rerr Txdelay Sdelay AreaRate Ap Av Ar TrLim Sens Psens Vlim Anglim Safedist

4 10 1 1 100 100 1 0.8 0.1 0.1 100 6 0.5 70 90 500

Table 9.
Input set 4 of parameters for the computer simulation.

Simulation Nr. System AvDur SmDur LngDur AvDist SmDist LngDist Trips Collisions

AVG
16–20

ANN 84 14 398 2118 868 5609 17 0

AVG
16–20

INN 52 11 391 1186 432 6709 31 0

Table 10.
Simulation results with the parameter set ID 4.

Figure 6.
Example of energy consumption dE per meter dS during the motion.

Simulation Nr. System AvDur SmDur LngDur AvDist SmDist LngDist Trips Collisions

AVG
11–15

ANN 30 12 59 773 455 1311 7 0

AVG
11–15

INN 32 11 109 726 439 1569 14 0

Table 8.
Simulation results with the parameter set ID 3.
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12. Conclusions

• Centralized, decentralized, and distributed control system models were
compared. The results of the comparison show that a distributed system is
preferable than a centralized or decentralized one. Distributed models are easier
to implement, they have less components, they are cheaper for infrastructure
owner, and they are not connected to the specific area. They have also decreased
time for reaction and decreased risk at system failure. That is why a distributed
system structure was used in this research.

• The researchers developed and provided a description of the system structure
proposed in the study. The microcontroller or embedded computer in each drone
performs all the necessary functions. It handles tasks like object recognition, risk
assessment, opportunity evaluation, and decision-making regarding movement
parameter adjustments. Such a solution helps to minimize data processing time
because there is no need to transmit the data to the common center and
backward.

• In this research, the traditional neural network is included to compare its results
with those of the proposed novel INN immune neural network. The objective is
to draw conclusions on whether the novel network is better or worse than the
traditional one.

• A comparison of ANN- and INN- based algorithms was done, considering the
impact on traffic safety and necessary time for decision calculation, where INN
presents better results described below. Results approve the proposed hypothesis -
an immune neural network can make control decisions to prevent drone collisions
with better performance than a traditional neural network in this task.

• Novel immune neural network machine learning is a suitable method for energy
efficiency and collision prevention of autonomous drones. Proposed INN does
not need to be trained in advance. Collision probability minimization process can
be started even with empty immune memory.

• Proposed INN can be used for minimizing the collision probability, improving
unsupervised drone safety and faster data processing in real-time conditions with
minimal deviation from task performance.

• Proposed INN is better than traditional ANN in drone dangerous situation
recognition and prevention task, because of reduced calculation time, which
leads to the bigger number of safe trips. Results of computer simulations where
drones were able to change their speed and trajectory of motion: without data
transmission delays and errors, show that the use of INN helps to increase
number of trips by 70% compared to the use of traditional ANN; with data
transmission delays and inappropriate maximal distance till other drone to start
crash prevention show that the use of INN helps to increase number of trips by
92% compared to the use of traditional ANN and to decrease number of collisions
by 25% compared to the use of traditional ANN; with data transmission delays
and appropriate maximal distance till other drone to start crash prevention show
that the use of INN helps to increase number of trips by 100% compared to the
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use of traditional ANN; with data transmission delays and errors show that the
use of INN helps to increase number of trips by 82% compared to the use of
traditional ANN.

• The theme of cybersecurity and loss of signal or communication was not
considered in this research. It is considered as a prospect for future scientific
research.

• Results of simulations show that the INN reduces the number of iterations and
calculation time. It is necessary to analyze whether it will be sufficient for using
low-powered systems.
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Chapter 12

Comparison and Transferability of 
Nitrogen Content Prediction Model 
Based in Winter Wheat from UAV 
Multispectral Image Data
Yan Guo, Jia He, Jingyi Huang, Xiuzhong Yang, Zhou Shi, 
Laigang Wang and Guoqing Zheng

Abstract

Information about the nitrogen dynamic in wheat is important for improving 
in-season crop precision nutrient management and cultivated land sustainability. To 
develop unmanned aerial vehicle (UAV)-based spectral models for an accurate and 
effective assessment of the plant nitrogen content in the key stages (jointing, boot-
ing, and filling) of wheat growth, winter wheat experiment plots in Henan Province, 
China, were used in this study. Based on the K6 multichannel imager, 5-band (Red, 
Green, Blue, Red edge, and Near-infrared (Nir)) multispectral images were obtained 
from a UAV system and used to calculate 20 vegetation indices and 40 texture features 
from different band combinations. Combining the sensitive spectral features and tex-
ture features of the nitrogen content of winter wheat plants, BP neural network (BP), 
random forest (RF), Adaboost, and support vector machine (SVR) machine learning 
methods were used to construct plant nitrogen content models, and compared for the 
model performance and transferability. The results showed that the characteristics 
of different spectral features were different, but most of them had a partial normal 
distribution. Compared with spectral features, the distribution of texture features 
was more discrete. Based on Pearson’s correlation analysis, 51 spectral and texture 
features were selected to build four machine learning models. The estimates of plant 
nitrogen by the RF and Adaboost methods were relatively concentrated, mostly close 
to the 1:1 line; while the estimates of plant nitrogen from the BP and SVR methods 
were relatively scattered. The RF method was the best, with coefficient of determina-
tion (R2), root mean square error (RMSE), and mean absolute error (MAE) of 0.811, 
4.163, and 2.947 g/m2, respectively; the SVR method was the worst, with R2, RMSE, 
and MAE of 0.663, 5.348, and 3.956 g/m2, respectively. All models showed strong 
transferability, especially the RF and Adaboost methods, in predicting winter wheat 
nitrogen content under rainfed and irrigation water management.

Keywords: spectral feature, texture feature, machine learning, nitrogen, winter wheat, 
model transferability, UAV
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1. Introduction

Wheat is the largest sown area and the most widely distributed food crop in the 
world [1]. As a major wheat producer, China contributed to more than 17% of the 
world’s total wheat production in 2021 [1, 2]. Stable wheat production is essential to 
China and the global food supply. Nitrogen is a key and essential nutrient for wheat 
yield and quality, and accurate information about the nitrogen content of the wheat 
plant is important for in-season crop growth monitoring, precision fertilizer applica-
tion, and environmental quality [3–5].

Given the labor-intensive nature of field sampling and laboratory analysis, 
research has been conducted over the past decades to develop alternative methods for 
rapid monitoring, and accurate prediction of crop nitrogen content based on spectral 
imaging collected from near-ground, unmanned aerial vehicle (UAV), and satellite 
remote sensing systems [6–8]. Particularly, progress has been made in sensitive band 
screening, vegetation index construction, optimization of prediction and inversion 
methods, and accuracy improvement [7–10]. However, the efficiency of data collec-
tion and performance of various nitrogen prediction models vary with the sensing 
platforms.

In terms of near-ground sensors, Yang et al. [11] constructed a wheat leaf nitrogen 
content prediction model based on wheat canopy hyperspectral data collected from a 
handheld analytical spectral devices (ASD) spectrometer at different growth stages; 
using the 39 sensitive characteristic bands, the R2 of the prediction model was as high 
as 0.998. Similarly, Zhang et al. [12] used ASD wheat canopy hyperspectral data and 
constructed 14 different vegetation indices such as the Soil Adjusted Vegetation Index 
(SAVI) to retrieve the nitrogen content of wheat leaves based on the characteristic 
bands; they found that the combined use of multiple indices could significantly 
improve the model accuracy compared with a single vegetation index (R2 = 0.92 and 
0.83, respectively). With the progress of remote sensing technology, airborne imagers 
have also been widely used. For example, Li et al. [13] combined handheld canopy 
spectral data and airborne canopy hyperspectral images at different growth stages of 
wheat using the N-PROSAIL model to estimate the nitrogen content of wheat canopy 
and obtained a model R2 of 0.83; although there was a spectral difference between 
the handheld ASD and airborne spectrometers, the data fusion did not affect the 
N-PROSAIL model’s performance. The promising prediction results achieved with 
near-ground and airborne hyperspectral data attract researchers to use the lower-cost 
UAV remote sensing data for rapid monitoring and inversion of crop nitrogen, but 
the low spectral resolution of UAV multispectral data affects the prediction perfor-
mance of nitrogen models. In addition to spectral models based on spectral reflec-
tance, the rich texture information of the UAV multispectral images has not been 
widely used in constructing plant nitrogen models. Previous studies have shown that 
the texture feature can improve the identification of useful spatial features from the 
original images and enhance the inversion accuracy when retrieving crop parameters 
[14–16]. For example, Jia and Chen [14] established a model using principal compo-
nent regression analysis for predicting the nitrogen content of winter wheat using 
UAV image features at a spectral resolution of 0.06 m; the accuracy of the model 
established by fusing the spectral and texture features (R2 = 0.68) of UAV multi-
spectral images was improved by more than 10% compared with that established 
by a single vegetation index (R2 = 0.66) or texture feature (R2 = 0.65). Zheng et al. 
[17] evaluated the potential of integrating texture and spectral information from 
UAV-based multispectral imagery for improving the quantification of nitrogen status 
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in rice crops, indicating model vegetation indices (Vis) with a R2 of 0.14, texture 
features with a R2 of 0.41, and the combination of VIs and texture features with a R2 
of 0.68. The results revealed the potential of image textures derived from UAV images 
for estimation of winter wheat nitrogen status. Therefore, a comprehensive analysis 
of the sensitivity of spectral and texture features to crop nitrogen content, and the 
predictive model establishment using appropriate methods are of great significance 
to improve the accuracy of nitrogen content prediction, enhance the applicability of 
models, and reduce costs.

The methods for prediction and inversion of plant nitrogen content mainly include 
statistical and physical methods. Statistical methods used univariate and multiple 
regression to establish linear, logarithmic, and power function models [14, 18]. 
Physical models are mainly radiative transfer models and geometric optical models, 
and the crop nitrogen content predicted by screening feature bands through sensitive 
parameter analysis, using lookup table method and artificial neural network (ANN) 
method [8, 13, 19]. In recent years, with the advancement of data mining techniques, 
various programs, such as artificial neural networks (ANN), genetic algorithms 
(GA), random forest (RF), and other hybrid methods, have been increasingly applied 
to the prediction of crop nitrogen content, which outperform traditional models 
in terms of accuracy [9, 20, 21]. For example, Chlingaryan et al. [20] compared the 
analysis of traditional statistical analysis methods and machine learning methods 
in crop nitrogen content and yield prediction. They found that machine learning 
regression methods, such as least squares support vector machines (LS-SVR) and 
back-propagation neural networks (BPNN), have promised a higher accuracy. In 
addition, different machine learning methods differ in prediction accuracy [22, 23]. 
For example, Yang et al. [11] used backward transmission neural network (BP), 
SVR, and radial basis neural network (RBF) methods for the prediction of canopy 
nitrogen in winter wheat with model R2 of 0.82 (SVR) to 0.98 (RBF); Qiu et al. [22] 
used Adaboost, ANN, K-neighborhood (KNN), partial least squares (PLSR), RF, and 
SVR machine learning regression methods for the prediction of rice nitrogen nutrient 
index, and found that the RF achieved the highest model accuracy with a R2 of 0.98 
during the filling stage. Although machine learning methods are proven to be superior 
to traditional statistical analysis methods, few studies investigated the transferability 
of the models when applied to UAV images. To explore the model prediction effects 
and transferability of general machine learning methods (BP and SVR) and ensemble 
learning methods (RF and Adaboost) for constructing plant nitrogen content models, 
especially in agricultural applications, this study aims to compare the performance 
of different machine learning models in predicting the wheat nitrogen content with 
a combination of spectral and texture features and provide insights for future model 
deployment to support the rapid in-season assessment of nitrogen nutrition and 
precision fertilization across large extents. Specifically, our study will focus on the 
following aspects:

1. Extracting spectral and texture features of UAV images based on the acquired 
multispectral images at key growth stages of winter wheat.

2. Feature optimization by Pearson’s correlation analysis using the extracted 
spectral and texture features.

3. Comparing the model accuracy for estimating wheat canopy nitrogen content 
using different machine learning methods (BP, RF, Adaboost, and SVR).
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4. Evaluation of the computation efficiency and transferability of different 
 machine learning methods under rainfed and irrigation water management.

2. Materials and methods

2.1 Study area and experimental design

The study area is located in Shangshui County, Henan, China, as shown in Figure 1. 
The study area is flat and belongs to the temperate continental monsoon climate 
with cold and dry winters and high temperatures and rainy summers. Winter wheat, 
maize, cotton, and other crops are mainly cultivated. The growth cycle of winter 
wheat is 8 months. Generally, it is sown in October and harvested at the end of May 
and early June of the following year. The experiment was conducted in the jointing, 
booting, and filling stages of winter wheat, and the field cover did not change much 
during these three phenological periods. Field activities affecting the ground surface, 
such as plowing and sowing, were avoided in the experimental plots. The soil type in 
the study area is sandy ginger black soil (Chinese Soil Taxonomy Classification).

Five nitrogen application levels were set using a randomized block experiment 
design, which were N0 (0), N6 (60 kg/hm2), N12 (120 kg/hm2), N18 (180 kg/hm2), 
and N24 (240 kg/hm2), and of which 50% was applied as base fertilizer and the 
remaining 50% was applied at the jointing stage. All treatments had 150 and 90 kg/hm2 

Figure 1. 
Location of the study area and the spatial distribution of the experimental design.
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of phosphorus and potassium fertilizer, all of which were applied as base fertilizer. 
Two levels of water set were: rainfed only (W0) and normal irrigation (W1). Each 
nitrogen level treatment was repeated three times, so a total of 30 plots. The spatial 
distribution of the experimental design is shown in Figure 1.

2.2 Data acquisition and processing

2.2.1 UAV-based multispectral image acquisition and preprocessing

This study employed a UAV system consisting of a six-rotor DJI M600 UAV and 
a K6 multichannel multispectral imager (Anzhou Technology, Beijing, Co., Ltd.) to 
acquire multispectral images. The K6 multispectral imager mounted onboard the UAV 
had an incident light sensor and five spectral bands with center wavelengths at Blue 
(450 nm), Green (550 nm), Red (685 nm), Red edge (725 nm), and Near-infrared 
(780 nm, Nir). During the growth period of winter wheat from 2020 to 2022, the 
multispectral images of the winter wheat canopy were acquired at the jointing, boot-
ing, and filling stages with a flight height of 50 m. When the aircraft flew, the lens was 
vertically downward with a field angle of 30° and a heading overlap of 70%, and a 
lateral overlap of 75%. The canopy reflectance data of winter wheat were extracted by 
format conversion, image mosaicing, geographic information correction, and radio-
metric calibration. The digital number (DN) values of the images were transformed 
into reflectance values per band by applying the empirical line model derived from 
the measured reflectance values and DN values of the five calibration canvases.

2.2.2 Ground data acquisition and processing

The acquisition of ground-truth data is synchronized with the acquisition of the 
UAV multispectral images. The area with uniform growth is selected in every plot, 
and 20 of the single stem samples were taken in sealed bags by fixing the total number 
of stems in a 1-meter double row. The plant organs were separated into leaves, stems, 
and ears in the laboratory and placed in paper bags respectively. They were killed 
at 105°C and dried to a constant weight at 80°C. After the organs were crushed, the 
nitrogen content was determined by the Kjeldahl method. Finally, 360 measured 
nitrogen values of winter wheat plant nitrogen content were obtained for the three 
growth stages. The samples were divided into training and test datasets according to 
the 1:1 ratio, and the models were trained using cross-validation.

2.3 Methods

2.3.1 Feature extraction

1. Spectral vegetation index calculation

Since the launch of the Earth Resources Satellite, scientists have begun to study the 
relationship between spectral response and vegetation [24–27]. Crops with nitrogen 
deficiency will show obvious apparent characteristics such as reduced coverage and 
yellowing of leaves [28, 29]. This study selected 20 common vegetation indices used 
for nitrogen content prediction, and the formulas are shown in Table 1.

2. Texture feature extraction
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Vegetation indices Abbreviation Calculation formulas References

Green Normalized 
Vegetation Index

GNDVI (Rnir-Rgreen)/(Rnir + Rgreen) [30]

Green Optimized Soil 
Adjusted Vegetation 
Index

GOSAVI 1.16 × ((Rnir-Rgreen)/(Rnir + Rgreen + 0.16)) [31]

Normalized Difference 
Vegetation Index

NDVI (Rnir-Rred)/(Rnir + Rred) [32]

Modified Simple Ratio 
Index

MSR ((Rnir/Rred)-1)/(((Rnir/Rred) + 1)0.5) [33]

Rededge Optimized Soil 
Adjusted Vegetation 
Index

REOSAVI 1.16 × ((Rnir-Rred)/(Rnir + Rred + 0.16)) [34]

Rededge Renormalized 
Difference Vegetation 
Index

RERDVI (Rnir-Rred edge)/(Rnir + Rrededge)0.5 [30]

Chlorophyll Absorption 
Ratio Index

CARI (Rred edge-Rred)-0.2 × (Rrededge + Rred) [35]

Optimized Soil Adjusted 
Vegetation Index

OSAVI (Rnir-Rred)/(Rnir + Rred + 0.16) [35]

Normalized Green-Blue 
Difference Index

NGBDI (Rgreen-Rblue)/(Rgreen + Rblue) [36]

Enhanced Vegetation 
Index

EVI 2.5 × ((Rnir-Rred)/(Rnir + 6 × Rred-7.5 × Rblue+1)) [37]

Triangular Vegetation 
Index

TVI 0.5 × (120 × (Rnir-Rgreen)-200 × (Rred-Rgreen)) [38]

Atmospherically 
Resistant Vegetation 
Index

ARVI (Rgreen-Rred)/(Rgreen + Rred-Rblue) [39]

Excess Green Index EXG 2 × Rgreen-Rred-Rblue [40]

Ratio Vegetation Index RVI Rnir/Rred [41]

Modified Triangular 
Vegetation Index

MTVI (1.5 × (1.2 × (Rnir-Rgreen)-2.5 × (Rred-Rgreen)))/
(((2 × Rnir + 1)2–6 × Rnir-5 × (Rred)0.5–0.5)0.5)

[42]

Soil Adjusted Vegetation 
Index

SAVI 1.5 × (Rnir-Rred)/(Rnir + Rred + 0.5) [43]

Normalized Blue-Green 
Difference Vegetation 
Index

GBNDVI Rnir-(Rgreen + Rblue)/(Rnir + (Rgreen + Rblue)) [30]

Renormalized 
Difference Vegetation 
Index

RDVI (Rnir-Rred)(Rnir + Rred)0.5 [42]

Difference Vegetation 
Index

DVI Rnir-Rred [44]

Optimized Vegetation 
Index

VIplot 1.45 × (R2
nir + 1)(Rred + 0.45) [45]

Table 1. 
Vegetation indices and the calculation formulas.
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Texture feature extraction methods mainly include statistical methods, such as 
gray level cooccurrence matrix (GLCM), texture spectrum and geometric methods; 
model methods of random field model and fractal model methods; signal processing 
methods and structural analysis methods [46, 47]. Among these methods, the GLCM 
method is an image recognition technology currently recognized by the academic 
community as an image recognition technique with strong robustness and adapta-
tion characteristics, which can effectively achieve the classification and retrieval of 
images and maximize the accuracy of remote sensing image classification processing 
[16, 26]. In this study, the texture features from five bands in multispectral images are 
extracted through the GLCM method, and the extracted texture feature information 
mainly includes eight indicators of con, cor, dis, ent, hom, mean, sm, and var. The 
specific calculation method is described in Zhou et al. [26].

2.3.2 Machine learning regression method

1. Back-propagation neural network

Back-propagation neural network (BP) is a multilayer feedforward network using 
error back-propagation for model training, which is one of the most widely used 
neural network models [48, 49]. This study uses identity as the plant nitrogen content 
training activation function of the model. Also, to prevent overfitting, parameters 
such as learning rate and regularization are often introduced to optimize the model 
[50]. In this study, a 3-layer network structure was used, and a quasi-Newtonian 
method family optimizer (lbfgs) was used to improve the running speed. In this 
study, the detailed parameters for BP are shown in Table 2.

2. Random forest

Random forest is a typical representative of ensemble learning with bagging idea, 
a supervised machine learning method constructed by integration with decision tree 
as the base learner, and it introduces randomness in the training process of decision 
trees to make it have excellent resistance to overfitting as well as noise resistance; 
moreover, RF can be trained in parallel during model training to improve the effi-
ciency of training, while feature importance can be obtained [51, 52]. RF reflects its 
randomness from two aspects: sample selection and feature selection. Combined with 
the study of Liepe et al. [53], the parameters of RF node splitting evaluation criterion 
and maximum depth of the tree in this study are set in Table 2 after several runs and 
the algorithm steps are as follows:

① Draw the training dataset from the original sample dataset. In each round, n train-
ing samples (with put-back sampling) are drawn from the original sample dataset using 
the Bootstrap method. A total of k rounds are performed and k training sets are obtained.

② Each time a training dataset is used to get a model, k training datasets get a total 
of k models.

③ For the classification problem: the k models obtained in the previous step are 
voted to obtain the classification results, and the mean value of the above models is 
calculated as the final result.

3. Adaboost

Adaboost is the abbreviation of “adaptive boosting,” which was proposed by 
Yoav Freund and Robert Schapire in 1995. It is a typical representative of the idea of 
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ensemble learning with boosting idea, and the operation is performed by continuous 
iterations, adding a new weak learner in each round until some predefined suf-
ficiently small error rate is reached. Adaboost method is very sensitive to noisy and 
abnormal data and is less prone to overfitting than most other learning algorithms. 
The Adaboost method operates by iterating continuously, adding a new weak clas-
sifier in each round, until a predetermined small enough error rate is reached. Each 
training sample is given a weight indicating the probability of being selected by a 
classifier into the training set, and the weights are continuously adjusted so that 
the Adaboost method can “focus” on those samples that are difficult to distinguish 
[54–56]. The detailed parameters for Adaboost are shown in Table 2.

4. Support vector machine regression

Support vector machine regression (SVR) characterizes data into a high-dimensional 
data feature space using a nonlinear mapping, so that the independent and dependent 
variables have good linear regression characteristics in the high-dimensional data 
feature space, which is fitted in that feature space and then returned to the original 
space [57, 58]. The details can be shown in the Figure 2. Given the training sample 
D = {(x1,y1),(x2,y2),…,(xn,yn)}, it is desired to learn an f(x) such that it is as close as 
possible to y. w and b are the parameters to be determined. In this model, the loss is 
zero only when f(x) is identical to y. The SVR method assumes that we can tolerate 
a deviation of at most ε between f(x) and y. The loss is calculated when and only 
when the absolute value of the difference between f(x) and y is greater than ε. This is 
equivalent to constructing an interval band of width 2ε centered on f(x), and if the 
training sample falls into this interval band, it is considered to be predicted correctly.

In regard to the kernel functions, linear, polynomial, radial basis, sigmoid, etc., 
are commonly used [50, 59]. Among them, the linear kernel function has the advan-
tages of high efficiency and wide range of applications, combined with the study of 
Yi et al. [60], the linear kernel function was selected in this study to meet the demand 
and also improve efficiency, and other parameter settings are shown in Table 2.

2.3.3 Model evaluation metrics

Root mean square error (RMSE), mean absolute error (MAE), and coefficient of 
determination (R2) are used to measure the prediction effect of nitrogen content in 

Figure 2. 
Schematic diagram of support vector machine (SVM) regression.
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winter wheat plants. The smaller the values of RMSE and MAE, the more accurate the 
model is. R2 compares the predicted values with the case where only the mean value 
is used. The closer the result is to 1, the more accurate the model is. The RMSE, MAE, 
and R2 are calculated according to Bellis et al. [61].

3. Results

3.1 Statistical analysis of UAV multispectral image data features

3.1.1 Spectral features

The physiological and biochemical parameters of winter wheat plants differed 
across the spectral features as shown in Figure 3. The skewness and kurtosis of the 
Nir band reflectance were smaller than zero, showing a left-skewed and flat broad 
peaks distribution; while the skewness coefficient and kurtosis coefficient of the Red 
edge, Red and Blue bands’ reflectance were larger than zero, showing a right-skewed 
and sharp peaks distribution. The skewness of the Green band reflectance was less 
than zero and the kurtosis coefficient was greater than zero, showing a left-skewed 
and flat broad peaks distribution. Combined with the magnitude of the kurtosis coef-
ficient and skewness coefficient values, there were differences in the distribution of 
reflectance data in different bands, indicating the different nitrogen content or other 
growth parameters of winter wheat plants.

The 20 vegetation indices constructed based on spectral reflectance, the mean, 
standard deviation (SD), skewness coefficient, and kurtosis coefficient of TVI, RVI 
and MSR were greater than the others, and the coefficient of variation (the ratio of 
SD to mean) values were mostly around 0.20. From the data distribution character-
istics, the skewness coefficient and kurtosis coefficient of VIplot, DVI, GOSAVI, and 

Figure 3. 
Statistical analysis of spectral features.
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GNDVI were all greater than zero, showing a right-skewed and sharp peaks distribu-
tion; the skewness coefficient and kurtosis coefficients of RDVI, SAVI, MTVI, RVI, 
EXG, CARI, RERDVI, and MSR were less than zero, showing a left-skewed and flat 
broad peak; the skewness coefficients and kurtosis coefficients of GBNDVI, VARI, 
TVI, EVI, NGBDI, OSAVI, REOSAVI, and NDVI were less than zero and the kurtosis 
coefficients were greater than zero, showing the distribution of left-skewed and sharp 
peaks. In summary, different spectral features had different numerical magnitudes 
and distributions, but most of them show close to skew-normal distributions, indicat-
ing the similarities and dissimilarities in the response of these spectral features to 
wheat nitrogen content, which can provide a basis for the construction of nitrogen 
content model using vegetation indices.

3.1.2 Texture features

Texture features are inherent attributes of remote sensing images, especially for 
the high spatial resolution UAV data. The basic characteristics of these 40 texture 
features were analyzed and are shown in Figure 4.

The texture features of con, dis, ent, mean, and var. increased with increasing 
wavelength, while hom and sm decreased with increasing wavelength. Compared 
with the spectral feature values, the difference between the maximum, minimum, 
and median values of texture features was larger, which had a differential amplifica-
tion effect on the construction of the nitrogen content model for winter wheat. From 
the perspective of data distribution characteristics, the skewness coefficient and 
kurtosis coefficient of 12 texture feature values, including var_780, var_685, var_550, 
var_450, sm_780, sm_725, hom_780, dis_685, cor_685, con_685, con_550, and 
con_450, were all greater than zero, showing a right-skewed and sharp peaks distri-
bution; the skewness coefficient and kurtosis coefficient of sm_685, ent_725, ent_550, 
ent_450, hom_550, dis_450, cor_780, and mean_780 were less than zero, showing a 
left-skewed and flat broad peaks distribution; hom_725, mean_725, dis_725, sm_450, 
cor_450, mean_685, mean_450, hom_450, dis_780, sm_550, var_725, con_725, 
dis_550, ent_685, cor_725, cor_550, and con_780 texture eigenvalues had skewness 
coefficients larger than zero and kurtosis coefficients smaller than zero, showing a 
right-skewed and flat broad peaks distribution; 685hom and 780ent had skewness 
coefficients smaller than zero and kurtosis coefficients larger than zero, showing a 
left-skewed and sharp peaks distribution. Compared with the spectral features, the 
texture eigenvalues were more discrete and the coefficient of variation (CV) was also 
larger. This dispersion provides a basis for the construction of an accurate nitrogen 
content model for winter wheat.

3.2 Sensitive analysis of the feature responses to the nitrogen content

To screen out the sensitive characteristics of plant nitrogen content, Pearson’s 
 correlation analysis was conducted between 25 spectral features and 40 texture 
features and the measured nitrogen content, and the results are shown in Figure 5. 
For spectral features, 25 features passed the 0.01 extremely significant level test, 
except for three features of 550-nm band reflectance, GNDVI, and GOSAVI; for 
texture features, except for 11 features, mean_450, var_725, sm_725, mean_725, 
hom_725, ent_725, dis_725, con_725, cor_685, and dis_780, whereas the other 29 
texture features passed the 0.01 extremely significant level test. Specifically, some 
correlation coefficients (r) had absolute values greater than 0.5, such as 17 species 
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including spectral reflectance of 450-nm, 685-nm, 780-nm bands and vegetation 
indices of TVI, VARI, REOSAVI, OSAVI, NDRGI, RVI, MSR, NDVI, VARI, CARI, 
RDVI, SAVI, MTVI, RERDVI, and 4 texture features, including cor_550, cor_725, 
cor_725, and mean_780. Moreover, there was a positive correlation between 
spectral features and wheat nitrogen content, and a negative correlation between 
texture features and plant nitrogen content. Therefore, to retain the sensitive char-
acteristics of plant nitrogen content as much as possible, the 51 spectral features 
and texture features that passed the 0.01 extremely significant level test were taken 
as input variables for the construction of the plant nitrogen content prediction 
model in the next step.

Figure 4. 
Statistical analysis of texture features.
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3.3  Prediction of nitrogen content in winter wheat plant based on machine 
learning methods

Based on the 51 spectral features and texture features, BP, RF, Adaboost, and SVR 
regression methods were used to predict the nitrogen content in winter wheat plants. 
The model was first trained based on the training dataset and then evaluated using 
the test dataset. The measured and predicted nitrogen for the test dataset are shown 
in Figure 6. The machine learning models had different effects on the prediction of 
winter wheat plant content. From the 95% confidence interval (CI), the confidence 
interval span between the measured and predicted nitrogen values of BP and SVR 
methods was larger than that of RF and Adaboost methods, and the data distribution 
was more scattered, while the measured and predicted nitrogen values of RF and 
Adaboost methods were more close to the 1:1 line.

4. Discussion

4.1 Training efficiency of different machine learning methods

Under the same environmental conditions such as data segmentation, shuffling 
methods, cross validation, etc., as shown in Table 2, the training time of the model 
varies greatly. Using a computer with Intel Core i7-9700K CPU and 64 GB RAM, 
the SVR method takes the shortest time of 0.022 s, the RF and Adaboost methods 
take time of 0.778 s and 0.831 s, respectively, and the longest time is the BP method 
(3.122 s), which is 142 times longer than that of the SVR method. This is consistent 
with the results obtained in other studies, such as in Jeung et al. [51], Du et al. [48], 
Fernández Habas et al. [52], and Lin and Liu [62], on the prediction of flow scouring 
efficiency, thermal efficiency, pasture quality, and soil total nitrogen using these 
machine learning methods.

Figure 5. 
Correlation coefficients between spectral and texture features and nitrogen content in winter wheat plants.
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4.2  Effects of different machine learning methods on the nitrogen content 
prediction models

The model evaluation metrics for the training and test datasets from the four 
methods are shown in Table 3. In terms of the training dataset, the R2 of the differ-
ent models follow the order of Adaboost (0.988), RF (0.964), BP (0.837), and SVR 
(0.703); the values of RMSE and MAE were similar to that of the R2. However, this 
is not the case for the test dataset. For R2, the best model is RF (0.811), followed by 
Adaboost (0.791), BP (0.712), and SVR (0.663). This indicates that the Adaboost 
model has been overfitted compared to RF, BP, and SVR.

Furthermore, the model evaluation was conducted using the test datasets for 
the constructed model, and the relationship between the measured and predicted 
nitrogen values of test dataset was shown as per sample given in Figure 7. The local 
fitting effects of the four methods have good performance, which were mainly related 
to the distribution of plant nitrogen content data characteristics. In this study, the 
nitrogen content values were mainly concentrated in the range of 12–28 g/m2, and 
the trained model had better prediction ability for the local values in this range, so the 
agreement between the measured and predicted nitrogen is high for the test datasets; 
overall, there was a trend of underestimation in the high nitrogen content area, while 
the estimation was relatively good in the low nitrogen content area. Along with the 
over−/−underprediction of different models demonstrated earlier, the results indicate 

Figure 6. 
Relationship between the predicted and measured nitrogen content in a winter wheat plant with the four different 
machine learning methods.
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that the efficiency and accuracy of the prediction models constructed by the RF and 
Adaboost methods are outstanding, which is inextricably linked to the principles of 
the algorithms.

4.3  Transferability of the prediction model of nitrogen content in winter wheat 
plants

In this study, BP, RF, Adaboost, and SVR machine learning methods were used 
to construct the nitrogen prediction model for winter wheat, and good prediction 
results were achieved when both water management (rainfed and irrigation) treat-
ments were combined. How about the transferability of the established model across 
different water treatments? This is an important issue regarding the generalizability 

Methods Datasets RMSE (g/m2) MAE (g/m2) R2

BP Training dataset 3.955 3.040 0.837

Test dataset 4.808 3.684 0.712

RF Training dataset 1.749 1.299 0.964

Test dataset 4.163 2.947 0.811

Adaboost Training dataset 0.202 0.067 0.988

Test dataset 4.437 3.207 0.791

SVR Training dataset 5.210 4.047 0.703

Test dataset 5.348 3.956 0.663

Table 3. 
Evaluation of the models constructed by random forest (RF), Adaboost, and support vector machine (SVR) 
methods.

Figure 7. 
Curve fitting effects of the test datasets.
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of the model [63], which has practical implications for researchers who want to apply 
the models developed from one water management regime to another. To answer 
this question, the models constructed by different machine learning methods using 
datasets under W0 or W1 water treatments were evaluated. For example, models 
were first fitted using datasets from W1 treatment only and predicted onto the W0 
treatment plots and vice versa (Figures 8 and 9). The prediction effects of the four 
methods on the nitrogen content of W0 and W1 treatments trained using W1 and W0 
treatments were the same as those trained using both W0 and W1 datasets, both of 
which were closer to the 1:1 line for the RF and Adaboost methods. The R2 of transfer 
prediction results for the models constructed by BP, RF, Adaboost, and SVR methods 
were 0.751, 0.723, 0.720, and 0.660 for the prediction of nitrogen content in W0 
treatment and 0.512, 0.693, 0.612 (trained using data from W1 treatment) and 0.452 

Figure 9. 
Comparison of the transferability of models constructed by the four machine learning methods for rainfed (W0) 
and irrigation (W1) treatments.

Figure 8. 
Transferability of models constructed by the four machine learning methods under rainfed (W0) and irrigation 
(W1) treatments.



213

Comparison and Transferability of Nitrogen Content Prediction Model Based in Winter Wheat…
DOI: http://dx.doi.org/10.5772/intechopen.1002212

for the prediction of nitrogen content in W1 treatment (trained using data from W0 
treatment), respectively. This is also the case for the RMSE and MAE. As a result, the 
transfer prediction ability of the plant nitrogen content prediction model constructed 
by RF and Adaboost methods was better than that of BP and SVR methods. Although 
the nitrogen content prediction model constructed in this study has good local trans-
ferability, future research is needed to test whether such models could be transferred 
to other wheat production areas or even to other crops.

4.4  Mechanism analysis of the four machine learning methods for nitrogen 
content prediction

Machine learning is a data-driven method, which can achieve accurate prediction 
by fully mining the information in the dataset. Machine learning has become a research 
hotspot for prediction in many disciplines [48, 51, 52, 62–66]. However, there are dif-
ferences in the design of the machine learning methods, and this study focuses on the 
influence of BP, RF, Adaboost, and SVR models on the prediction of nitrogen content 
in winter wheat. The BP method has a relatively strong learning ability, but it requires 
more parameters to be fitted; the model training also takes a long time, and different 
solvers and activation functions may affect the efficiency of the model. The training 
of RF and Adaboost methods is adjustable with relatively simple parameters and fast 
fitting speed. The SVR method can solve high-dimensional problems with strong gen-
eralization ability and relatively low dependence on the overall data, but it is difficult to 
determine the appropriate kernel function. Therefore, there is a tradeoff between the 
efficiency and accuracy of the machine learning models.

In the study, the RF and Adaboost methods are more prominent with the R2 above 
0.8, mainly because both methods belong to ensemble learning based on the idea of 
bagging and boosting, respectively. During processing of the models’ construction, 
a number of learners are combined to get a new learner, so as to achieve a better 
learning effect, which fully reflects the “group wisdom” of machine learning. In 
addition, both methods are extracted from the original dataset using the Bootstrap 
strategy and reorganized to form a subset as large as the original dataset. This means 
that samples inside the same subset can be recurring, and samples in different subsets 
can also be recurring. Moreover, unlike a single decision tree that selects an optimal 
feature to segment nodes after considering all features in the segmentation process, 
the RF method selects the optimal feature variable among these features by randomly 
examining certain feature variables in the base learner, similar to “democratic voting,” 
and this randomness makes the generalization ability and learning ability of the RF 
model superior to those of the individual learner. This performance has also been 
verified in the literature [49, 52, 53, 64]. The Adaboost method takes into account the 
weights of each classifier in the sampling process, similar to “elite selection,” but if 
the data are not balanced, the model accuracy decreases [57]. Comprehensively, the 
RF and Adaboost methods are more effective for plant nitrogen content prediction 
models when considered together.

5. Conclusions

Based on the 5-band multispectral reflectance acquired by the K6 multichannel 
multispectral imager, 20 vegetation indices and 40 texture features were obtained 
by computational analysis. Different spectral features had different numerical 



Drones – Various Applications

214

magnitudes and distribution characteristics with an approximate skew-normal 
distribution, while the texture features were more discrete compared with the spec-
tral features. In total, 51 spectral features and texture features that passed the 0.01 
significant level test were selected to construct models using the BP, RF, Adaboost, 
and SVR methods with validation R2 of 0.712, 0.811, 0.791, and 0.663, respectively. 
The RF and SVR methods tend to underestimate the wheat nitrogen content, while 
BP and Adaboost slightly overestimated the wheat nitrogen content. When predicting 
the nitrogen content in winter wheat under different water treatments, the model 
shows a strong transferability, especially the RF and Adaboost methods. Combining 
R2, RMSE, and MAE, the RF and Adaboost methods have better computation time, 
accuracy, and transferability for nitrogen content prediction in winter wheat.

However, it is undeniable that this study has limitations in exploring the trans-
ferability of the model based only on data from different irrigation treatments at 
the same sampling sites. Regarding the transferability of the model, the applicabil-
ity between different regions, species, and years will be the next direction of our 
research.
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Chapter 13

Using Unmanned Aerial Systems
and Deep Learning for Agriculture
Mapping in Dubai Emirate
Lala El Hoummaidi, Abdelkader Larabi and Khan Alam

Abstract

Dubai’s ‘Sustainable Future’ vision prioritizes Sustainable Agriculture as a key
pillar of its ‘Food Security Strategies’. To boost productivity and efficiency, Dubai
Emirate has adopted advanced technologies. Accurate land monitoring is crucial for
effective food security control and support measures. However, traditional methods
relying on costly and time-consuming field surveys conducted by experts are limited
in scope. To address this, affordable and efficient agriculture mapping relies on
remote sensing through drone surveys. Dubai Municipality utilizes Unmanned Aerial
Vehicles (UAVs) to map farming areas across the Emirate, identify cultivable lands,
and establish a precise agriculture database. A study conducted over 6 months used
Trimble UX5 (HP) drones for high-resolution imaging in 12 Dubai communities. It
employed novel object detection methods and geospatial analysis. Deep learning
models achieved 85.4% accuracy in vegetation cover and F1-scores of 96.03% and
94.54% for date palms and GHAF trees, respectively, compared to ground truth data.
This research highlights the potential of UAVs and deep learning algorithms for large-
scale sustainable agricultural mapping. By providing specialists with an integrated
solution to measure and assess live green vegetation cover derived from processed
images, it contributes to the advancement of sustainable agriculture practices.

Keywords: precision agriculture, multispectral imaging, UAV, remote sensing,
machine learning, deep learning

1. Introduction

Undoubtedly, agriculture plays a pivotal role in ensuring the sustainability of
economies [1, 2]. Its significance, however, may vary across different countries [3–6].
While agriculture was traditionally limited to food and crop production, it has now
expanded in numerous countries to encompass processing, marketing, and distribu-
tion of agricultural products. Agricultural activities not only serve as a primary source
of livelihood and contribute to GDP growth [7], but also drive national trade, reduce
unemployment, provide raw materials for other industries, and contribute to overall
economic development [8–10].
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Remote sensing techniques, including soil property mapping, crop type
classification, crop water stress detection, disease monitoring, and crop yield
mapping, have gained widespread adoption in both governmental and private
sectors [11, 12]. Leveraging sensors and geospatial analysis tools, remote sensing
brings together data from multiple sources to support decision-making in
agriculture. Unmanned Aerial Systems (UAS) or drones, with their flexible spatial
and spectral resolution, have become a preferred platform for collecting such data
[13]. Additionally, remote sensing-based land cover classification has found applica-
tions in change detection monitoring, agricultural management, green vegetation
classification, biodiversity conservation, land use planning, and urban planning
[14, 15]. Vegetation detection stands out as a significant application of land cover
classification. Consequently, researchers and experts have explored various
methods, including digital photo interpretation, supervised and unsupervised
classification, classification and regression trees (CART), and Deep Learning Object
Detection [16–20].

Deep learning techniques have gained prominence in land cover classification
since 2012, furthermore, due to remarkable progress in computer vision applications
like image classification, object detection, tracking, and semantic segmentation,
researchers have been able to explore various methodologies. Snehal et al. [21] utilized
convolutional networks to tackle the challenge of multispectral image classification. In
a separate study, Zhang et al. [22] conducted an in-depth analysis of different tech-
niques for object detection in land cover classification, particularly focusing on the
utilization of high-resolution multispectral imagery. Their study compared deep
learning models with traditional methods, concluding that deep learning-based
approaches leveraging both spatial and spectral information outperformed conven-
tional pixel-based methods. Other studies have also demonstrated the potential of
artificial intelligence and deep learning methods for land cover classification and
vegetation detection [23–25].

Amidst all-time low commodity prices and increasing pressure for enhanced
product quality, the modern farming industry faces challenges that necessitate
improved resource management. Dubai Emirate shares this need, as it aims to lever-
age its re-export hub and global gateway status in the fresh food sales sector. Notably,
organic farms in Dubai witnessed a 53% increase in 2019, with production rising by
89% from 1240 tons to 2356 tons [26]. To support an efficient workflow for assessing
crop health, making informed decisions, and mitigating losses due to disease out-
breaks or extreme weather events, Dubai Municipality has initiated projects utilizing
drones and connected analytics for surveying and mapping agricultural areas. High-
resolution multispectral drones enable growers, service providers, and researchers to
efficiently scout crops, identify stress, track plant growth, and access real-time quality
data, ultimately reducing costs and improving yields. Moreover, multispectral data
reveals field variability invisible to the naked eye, aiding in early disease detection and
response.

This chapter focuses on evaluating the suitability of UAS-based remote sensing,
using a novel object-based vegetation detection method that combines NDVI and deep
learning techniques, for monitoring crops in Dubai. The contributions of this study
include the introduction of a superior object-based vegetation and tree detection
method using NDVI and deep learning, highlighting the potential use of NDVI imag-
ery as an alternative to standard RGB images, and discussing the reasons behind the
superior performance of our deep learning model compared to other methods, along
with potential strategies for its further application.
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2. Materials and methods

2.1 Study area

Dubai Emirate, the second largest among the seven emirates comprising the
United Arab Emirates, is strategically located along the southeastern coast of the
Arabian Gulf, spanning from coordinates 55°18014.8188″ East to 25°160 17.4564”North.
Encompassing a combined expanse of 3900 square kilometers, the emirate extends for
about 72 kilometers along the coastline of the Arabian Gulf. In terms of its geograph-
ical location, Dubai is positioned adjacent to Sharjah in the northeast, the capital city
of Abu Dhabi to the south, and the Sultanate of Oman to the southeast. The adminis-
trative boundaries of the Dubai Emirate define its territorial extent, depicted in
Figure 1, delineate its territorial extent, accounting for approximately 5% of the total
area of the United Arab Emirates.

The diverse landscape of Dubai encompasses shallow shores, sandy deserts, and
coral reefs. With over 300 species of fish inhabiting its waters, the rich marine life of
Dubai has served as a significant source of income for its residents for thousands of
years. Date palms dominate much of Dubai’s cultivated land, primarily found in the
arc of small oases that make up the Hatta Area. Dubai Municipality supports farmers
through various incentives, such as a 50% subsidy on fertilizers, seeds, and pesticides.
Additionally, it offers loans for machinery and provides technical assistance [27, 28].

According to the data presented in Table 1, vegetable cultivation accounts for 13%
of the total cultivated land in Dubai Emirate, while fruit crops occupy 32%, feed crops
cover 14%, and the remaining 43% is allocated for various other uses. Notably, the

Figure 1.
Dubai emirate and major cities within the United Arab Emirates.
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region of Hatta demonstrates high productivity due to its access to underground water
sources from the nearby mountains of Oman, benefiting from abundant rainfall. In
this region, the main crops cultivated include tomatoes, melons, and dates. Despite
the challenges posed by the desert environment, vegetable production in Dubai has
successfully overcome obstacles, resulting in a noteworthy production of over 27 tons
in 2019, as depicted in Table 2.

Tomatoes, cabbage, eggplant, squash, and cauliflower serve as the primary vege-
table crops that fulfill a significant portion of the Emirate’s demand during the
respective growing season. Furthermore, citrus fruits and mangoes are the main fruit
crops cultivated in addition to dates [29].

Dubai has successfully addressed significant challenges, including harsh environ-
mental conditions, limited water resources, and soil salinity, through innovative solu-
tions. These solutions often involve tapping into underground aquifers or accessing
water supplies from the mountains. As indicated in Table 3, agriculture in Dubai is
practiced on approximately 8000 dunums of cultivable land, with a significant por-
tion dedicated to Couch grass and Alfalfa.

Years Forest trees
(dūnum)

Vegetables
(dūnum)

Fruit trees
(dūnum)

Feed crops
(dūnum)

Temporary
fallow

(dūnum)

Other lands
(dūnum)

Total
(dūnum)

2017 760 1765 15,810 3177 1725 21,645 44,882

2018 784 1660 15,903 3218 1664 18,464 41,693

2019 784 7529 20,409 8108 1917 23,168 61,914

Area
%

1% 13% 32% 14% 3% 37% 100%

Table 1.
Land use distribution in Dubai, area in donums (dūnum) - 2017–2019.

Crop Value Average of production Quantity Area

(000 AED) (Tons/Dūnum) (Tons) (Dūnum)

Tomatoes 18,030.9 6.2 6297.9 1010.8

Cucumber 8166.9 9.4 2946.7 313.9

Pepper 1637.1 4.9 403.3 82.5

Squash 8517.3 2.3 2793.9 1219.8

Eggplants 4575.6 3.3 2333.8 716.6

Cauliflower 7216.0 3.5 2590.3 740.1

Cabbage 7488.8 6.0 4082.0 680.3

Water melon 474.9 3.0 391.9 130.3

Leafy vegetables 1740.7 1.3 579.9 447.1

Other 10,567.6 2.3 4970.5 2187.3

Total 68,415.8 3.6 27,390.3 7528.8

Table 2.
Vegetables by crop in Dubai – 2019.
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2.2 Overall study workflow

The workflow, illustrated in Figure 2, consists of multiple steps: acquiring multi-
spectral imagery, labeling, dataset preparation, model training, object detection, result
analysis, and field validation. The ArcGIS API for Python was used to export training
data and train deep learning models within the study area. PyTorch and fast.ai librar-
ies were utilized for data preparation, augmentation, and model training. The object
detection models employed the PASCAL_VOC_rectangles format for training sam-
ples. Data preparation involved organizing and formatting training labels, splitting
data, applying augmentation, and creating data structures. ArcGIS Pro facilitated
these tasks, allowing direct reading of training samples and creating a suitable
DataBunch with specified parameters.

2.3 Drone data

Figure 3 depicts the various elements comprising the Trimble UX5 HP Unmanned
Aircraft System (UAS), which serves as the primary tool for field data capture. This
UAS device is user-friendly, fully automated, and capable of capturing high-resolution
aerial photography with resolutions as fine as 1 cm. It offers an intuitive workflow that
facilitates the efficient creation of top-quality ortho-mosaics and 3 Advanced three-
dimensional (3D) models have been developed for a variety of applications within the
realm of agriculture. These applications encompass agriculture mapping, field level-
ing, progress monitoring, and asset mapping [30].

Crop Value Average of production Quantity Area

(000 AED) (Tons/Dūnum) (Tons) (Dūnum)

Alfalfa 20,056.8 6.0 12,535.5 2089.2

Rhode grass 32,362.3 6.0 21,574.9 3595.8

Sorghum 11,953.0 6.0 7470.6 1245.1

Maize 2059.4 2.8 2059.4 748.9

Other 3343.1 6.0 2571.6 428.6

Total 69,774.6 5.7 46,212.0 8107.6

Table 3.
Total and area of field crops by crop in Dubai – 2019.

Figure 2.
Complete workflow illustration, encompassing the transformation of raw imagery into structured information
about vegetation cover feature layers.
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In Dubai Emirate, the team operating in the field utilizes the capabilities of high-
resolution multispectral drone imagery to effectively capture valuable data for their
operations, enabling the generation of Normalized Difference Vegetation Index
(NDVI) maps. These maps are instrumental in distinguishing between soil, forests,
and grass, as well as identifying different crop stages and detecting plants under
stress. Significant research findings have firmly established robust associations
between crop yield and specifically measured NDVI (Normalized Difference Vegeta-
tion Index) data at distinct stages of crop growth. Consequently, monitoring crop
growth at key stages enables precise crop yield estimation and early identification and
resolution of issues [31, 32]. For specific details regarding the acquisition performance
levels of the Trimble UX5 Drone, please refer to Table 4.

Dubai Municipality employs a drone equipped with state-of-the-art photogram-
metric and navigation equipment, granting it a ground resolution capacity of up to 3
centimeters. Its programming allows for the detection of crucial details such as NDVI,
water stress, and specific nutrient deficiencies in crops. The Geographic Information
Systems Centre (GISC) in Dubai Emirate seamlessly integrates drone-based mapping
efforts into disaster risk reduction and management (DRRM) and climate change
adaptation (CCA) strategies. The Trimble UX5 HP drone, equipped with a modified
color-infrared (CIR) Sony NEX5R camera and a 16 mm lens, was employed during
field surveys. Each flight day involved gathering around 100 ground-based

Figure 3.
Utilization of Trimble drones for data collection in Dubai emirate.

Resolution (GSD) 1 cm to 25 cm (4 to 99 in)

Height above take-off location (AGL) 75 m to 750 m (246 to 2460 feet)

Absolute accuracy XY/Z (no ground control points) down to 2–5 cm

Relative Ortho-mosaic/3D model accuracy (1�2x/1�5x GSD)

Resolution (GSD) 1 cm to 25 cm (4 to 99 in)

Table 4.
Acquisition performance parameters for Trimble UX5 drone.
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normalized difference vegetation index (NDVI) measurements using the Trimble
Green Seeker Handheld device, consistently maintaining a height of 80 cm above the
target. The georeferencing process ensured a geospatial accuracy of 2 cm using a
Trimble R8RTK GNSS system [33]. Figure 4 showcases sample outputs from the
drone, including an ortho-rectified image with elevation contours, a three-
dimensional surface generated from collected point clouds, and a three-dimensional
surface created using processed contour lines.

Aerial surveys are crucial, operating in real airspace alongside other aircraft. The
process involves creating a flight plan, estimating Ground Control Points (GCP), and
conducting a risk assessment. Figure 5 illustrates capturing aerial data with multi-
spectral cameras and LIDAR using Trimble UX5. Surveys cover areas like Hatta in 4
days, while processing takes 1 day for DEM and Ortho-Photo generation.

In this study, a total area of 770 square kilometers across 12 areas was comprehen-
sively surveyed using five teams over the course of 139 days. The subsequent data
processing phase took around 78 days to complete. Some areas, like AL WOHOOCH
and SAIH SHUAIB, were easier to survey due to their uniform flat sand dune surfaces.
Please refer to Table 5 for a detailed breakdown of flying time, processing time,
number of flights, and repetitions for each community in 2019.

The modified Sony NEX5R camera captures 3-band R-G-NIR imagery, with blue-
filtered pixels receiving NIR and green/red filters capturing visible light along with
red edge and NIR wavelengths. It stored both 14-bit per band linear lossy compressed
RAW files (35 MB each) and 8-bit per band gamma-compressed JPEG files (15 MB
each) [34]. See Figure 6 for the Trimble UX5 device’s true color (RGB) spectral
responses.

2.4 Processing and analysis

The methodology developed for processing in this study involved four main steps:
photogrammetric pre-processing, deep learning-based object detection, data analysis,

Figure 4.
Outputs of drone mapping: (a) rectified image with contours, (b) 3D surface created from point clouds, (c) 3D
surface constructed from contour lines.
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and result evaluation. The initial step focused on pre-processing the imagery obtained
from the Unmanned Aerial System (UAS) using digital photogrammetry techniques.
Next, deep learning algorithms were carefully selected and implemented to detect

Figure 5.
Process of drone mapping field Mission in Hatta region.

Community SQKM Flying time
in days

Processing time
in days

Number of
flights

Repetitions per
year (2019)

Saih Shuaib 41.61 5 4 5 1

Hadaeq Sheikh
Mohammed bin Rashid

38.68 19 3 38 2

Aleyas 10.52 5 8 5 1

Al Kheeran 7.33 4 6 12 3

Al Lesaily 112.69 13 10 13 1

Margham 152.59 25 12 25 1

Al Wohoosh 26.51 3 2 3 1

Al Maha 41.73 21 4 42 2

Remah 82.87 5 7 5 1

Grayteesah 91.83 12 8 12 1

Al Fagaa 140.53 15 13 15 1

Hessyan 23.85 12 1 12 1

Total 770.75 139 78 187

Table 5.
Details of unmanned aerial system (UAS) missions for the designated study areas.
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vegetation cover, identify diseases, and perform template matching for segmenting
the main crop area and detecting individual crops on the orthophoto mosaic. Subse-
quently, advanced geoprocessing tools were employed for data analysis. Finally, the
detection accuracy threshold was established, and a comprehensive comparison was
conducted between crop volume, estimated crop pests, and field samples [35].

2.4.1 Pre-processing

Data layers, including ground measurements, were aligned and registered using
ArcGIS software. UAS-based NDVI values and spectral profiles were evaluated for
multitemporal monitoring. Point features were interpolated using natural neighbor
interpolation. A digital terrain model was generated for crop height calculation.

The use of topographic maps is crucial for agriculture and vegetation mapping
[36], as certain species thrive at specific elevation levels. Therefore, data captured
using drones and aligned through aerial triangulation, ortho-rectification, and
georeferencing using ground control point (GCP) information is essential. Figure 7
illustrates the final Digital Elevation Model (DEM) and contour lines generated for the
Hatta Region using ortho-rectified drone imagery.

2.4.2 Object detection algorithms (deep learning)

Deep learning models were evaluated in ArcGIS for classifying tree points in
geospatial datasets. Two models, “Tree Point Classification” and “Landcover Classifica-
tion,” were modified for the arid environment of Dubai using Python scripts. These
models successfully detected vegetation cover and individual trees with TensorFlow. The
workflow, shown in Figure 8, involved data preparation, training with ArcGIS.learn
module, and deployment as deep learning packages. All algorithms were implemented in
Python, and experiments were conducted on a high-performance workstation.

The most challenging aspect of the work involved data preparation, training sam-
ple creation, and model training to extract features from the imagery. These steps
have been completed, and a trained model is now utilized to detect various types of

Figure 6.
Spectral response of the Trimble UX5 HP Sony NEX-5 N.
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crops in the processed drone imagery. Achieving optimal results in object detection
requires thorough testing and adjustment of parameters. The model’s performance
was fine-tuned by testing it on a small section of the image until satisfactory results
were obtained. Subsequently, the detection tools were extended to cover the entire
drone-captured areas [37]. Within Figure 9, a selection of labeled training samples
depicting palm trees is displayed, illustrating the outcomes produced by the object
detection algorithm employed in the present investigation.

The creation of high-quality training samples plays a crucial role in training deep
learning or image classification models. This step is often challenging and time-
consuming. In order to equip our deep learning model with the necessary information
to accurately identify various crop types in the images, we generated training samples
that encompassed different palm trees and other field crops. These samples helped
train the model to recognize the size, shape, and spectral signature of these objects.
Specifically, the training samples utilized small subimages, referred to as image chips,

Figure 8.
Usage workflow of the General Deep Learning Packages (DLPKs).

Figure 7.
Generated contour map for Hatta region.
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that focused on the specific features or classes of focus. Figure 10 exhibits a subset of
the image chips employed within the context of this study [38, 39].

For the chosen workflows (U-net) in this study, the ArcGIS.learn module in the
ArcGIS API for Python was utilized. The U-net architecture consists of an encoder
network followed by a decoder network. Unlike classification, semantic segmentation
requires pixel-level discrimination and feature projection from the encoder [40, 41]. The
encoder, shown in Figure 11, uses pre-trained classification networks like VGG/ResNet
for encoding. The decoder, on the other hand, projects features from the encoder onto
higher-resolution pixel space for dense classification using convolution and upsampling.

Tree detection in machine vision relies on human expertise rather than a purely
mathematical definition. Deep learning-based object detection differs from other
methods by extracting features iteratively, enabling the capture of contextual and
global image features for robustness and high accuracy. In this study, a Convolutional
Neural Network (CNN) is employed to extract information from high-resolution
imagery. The CNN model, depicted in Figure 12, includes input, convolution,
pooling, fully connected, and output layers. Our ArcGIS Pro model incorporates

Figure 9.
(a): Recorded training samples for palm trees, (b): Results generated for a larger area utilizing Object Detection
Algorithm.

Figure 10.
Recorded training samples for field crops.

233

Using Unmanned Aerial Systems and Deep Learning for Agriculture Mapping in Dubai Emirate
DOI: http://dx.doi.org/10.5772/intechopen.1002436



pooling and convolution layers iteratively. CNN’s advanced feature extraction handles
the challenges of recognizing diverse characteristics in real-world environments,
making it a common choice for vegetation cover detection [42].

2.4.3 Data analysis

The main analysis in this study revolves around estimating vegetation health,
utilizing the same images employed for deep learning extraction. The assessment of
vegetation health involves the calculation of a vegetation health index, specifically the
Visible Atmospherically Resistant Index (VARI) [43]. The Vegetation Area Ratio
Index (VARI) is employed as an indirect measure of leaf area index (LAI) and vege-
tation fraction (VF), relying solely on reflectance values within the visible wavelength
range.

Rg � Rrð Þ= Rg þ Rr� R Rg � Rbð Þð Þ (1)

Figure 11.
U-net architecture: Blue boxes represent multi-channel features, white boxes indicate copied feature maps, and
colored arrows denote various operations.

Figure 12.
CNN network layers.
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The calculation of the Visible Atmospherically Resistant Index (VARI) involves
using reflectance values from the red (Rr), green (Rg), and blue (Rb) bands [43].
Additionally, the estimation of vegetation health utilizes reflectance values from both
the visible and near-infrared (NIR) wavelength bands, similar to the normalized
difference vegetation index (NDVI). Figure 13 presents the resulting NDVI for the
Hessyan and Jabal Ali communities.

2.4.4 Data evaluation (QA/QC)

To assess the outcomes of vegetation cover extraction and the detection of plant
diseases and pests in multispectral drone imagery across Dubai Emirate, several eval-
uation metrics were employed. These metrics included false negatives (omission
errors), false positives (commission errors), detection rate, and an accuracy index
(AI) [44]. The AI, which quantifies the balance between omission and commission
errors, was computed using the following formula:

AI ¼ 100 1� FPþ FNð Þ=REF (2)

The terms false positives (FP) and false negatives (FN) represent specific types of
errors. FP refers to the instances where a result is falsely identified as positive, while
FN pertains to the cases where a positive result is mistakenly classified as negative. In
this study, additional evaluation indices were computed, namely Precision, mean
Average Precision (mAP), Recall, and the harmonic Mean F1 score. The F1 score is
derived from the combination of Precision and Recall defined as follows:

Precision ¼ TP= TPþ FPð Þ100% (3)

Recall ¼ TP= TPþ FNð Þ100% (4)

In Formulas (3) and (4), TP (True Positives) refers to correctly predicted positive
instances, indicating the number of accurately identified lesions by the algorithm. FP
(False Positives) represents incorrectly predicted positive instances, indicating the

Figure 13.
NDVI results generated from drone imagery (Jabal Ali & Hessyan).
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number of lesions inaccurately identified by the algorithm. Conversely, FN (False
Negatives) corresponds to incorrectly predicted negative instances that are actually
positive. FN represents the count of unacknowledged lesions. The evaluation of
detection accuracy is measured by employing the mean Average Precision (mAP) as
defined in Formula (6). Initially, the average accuracy for each category within the
dataset is computed following the procedure described in Formula (5).

Paverage ¼
XN Classð Þ

j¼0

Precision jð Þ:Recall jð Þ:100% (5)

mAP ¼ Paverage=N classð Þ (6)

In the provided formula, N(class) corresponds to the total count of categories.
Precision(j) and Recall(j) refer to the precision and recall values specifically associated
with class j. The mean Average Precision (mAP) is defined as the average accuracy
across all categories. A higher mAP value indicates greater recognition accuracy of the
algorithm, while a lower value suggests reduced accuracy. Additionally, the F1 score,
which is a significant metric, is employed to assess the accuracy of the deep learning
model. The F1 score combines both accuracy and recall, as described in Formula (7).

F1 ¼ 2 ∗Precision ∗Recallð Þ= Precisionþ Recallð Þð Þ ∗ 100% (7)

Frames per second (FPS) serves as a metric employed to evaluate the speed at
which the deep learning model recognizes information. A greater FPS value indicates
a swifter recognition speed of the algorithm, while a lower value suggests a slower
recognition speed.

3. Results

In this section, we present the experimental results using real data from
12 communities in Dubai Emirate, encompassing a total area of 770.75 square
kilometers. The deep learning models discussed in this paper demonstrated excellent
coverage of all crop types, achieving an impressive overall accuracy of 85.4%.
Moreover, the detection performance for date palms and GHAF trees was highly
promising, with F1-scores of 96.03% and 94.54% respectively.

3.1 Vegetation cover

The results demonstrate that the deep learning models exhibited superior perfor-
mance compared to the machine learning technique. Specifically, when using RGB color
images alone, the deep learning models outperformed the machine learning technique
by a minimum of 11%. Moreover, when utilizing NDVI source images, the deep learn-
ing models surpassed the machine learning technique by over 28%. Significantly,
around 43% of the outcomes obtained from supervised classification were consistent
with the deep learning outputs utilizing NDVI. Moreover, there was a notable agree-
ment of 96% between the deep learning results and the photo interpretation method.

During the evaluation of the deep learning model with NDVI, it exhibited margin-
ally better outcomes in comparison to both the deep learning models employing RGB
and manual digitization. Subsequent field visits provided further evidence that these
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additional positive results corresponded to plants impacted by prolonged drought,
which proved to be difficult to classify solely through photo-interpretation.

Table 6 provides a summary of the confusion matrix results, presenting an overall
average for 12 communities and offering an overview of the predicted vegetation
cover outcomes using deep learning (with NDVI and Standard RGB), as well as the
machine learning (supervised classification) technique. The sensitivity (SN), also
known as recall (REC) or true positive rate (TPR), achieved a value of 0.89 for deep
learning using NDVI, indicating its suitability for the designated area. The ultimate
sensitivity score is 1.0, whereas the worst is 0.0. Conversely, specificity (SP), also
referred to as the true negative rate (TNR), quantifies the number of accurate nega-
tive predictions, reached an overall value of 0.95 for the deep learning model using
NDVI, indicating a relatively high level of accuracy.

The land use classification and object-detection deep learning algorithms achieved
high accuracy, with 89.7% for NDVI and 72.8% for RGB. The commission error was
minimal, with few instances of including bare soil or grass. Each crop was accurately
represented as an individual object. In the Hessyan community, the overall accuracy
index reached 87.8%. Table 7 provides detailed results [45, 46].

Within Table 8, a comprehensive compilation of the deep learning outcomes
derived from NDVI extraction is presented. The table encompasses essential informa-
tion such as the count of identified crops, the respective area covered in square
kilometers, and the overall Accuracy Index for the chosen communities under

Accuracy criteria Deep learning using
NDVI

Deep learning using
RGB

Supervised
classification

Sensitivity (Recall) 0.89 0.73 0.54

Specificity 0.95 0.82 0.61

Positive predicted
value

0.9 0.83 0.7

Negative predicted
value

0.6 0.5 0.3

Prevalence 0.7 0.7 0.5

Detection rate 0.982 0.7 0.6

Detection prevalence 0.9 0.8 0.4

Balanced accuracy 0.897 0.7283 0.6154

Table 6.
Confusion matrix results- overall results for 12 communities.

Metric Deep learning algorithm using NDVI Reference data (Manual digitization)

True positives 3520 crops 3521 crops

False positives 6 crops 1 crop

False negatives 12 crops 6 crops

Detection rate 98.2% 99.9%

Accuracy index 87.8% 99.9%

Table 7.
Results of vegetation cover area generated by deep learning using NDVI.

237

Using Unmanned Aerial Systems and Deep Learning for Agriculture Mapping in Dubai Emirate
DOI: http://dx.doi.org/10.5772/intechopen.1002436



investigation. Notably, the communities of Al Lesaily, Margham, and Remah
exhibited the highest prevalence of recorded crops, indicating their significant vege-
tation presence across Dubai Emirate.

Figure 14 showcases sample outcomes obtained through the deep learning-based
land use classification model using NDVI images. Thorough preparation of every
source image was diligently carried out, as extensively discussed in this paper. The
creation of a vector layer representing vegetation cover was achieved through a

Community Number of crops Area SQ KM Accuracy AI

Saih Shuaib 3117 0.31 97.80%

Hadaeq Sheikh Mohammed Bin Rashid 4841 1.28 89.70%

Aleyas 17,435 1.19 86.60%

Al Kheeran 3007 1.33 83.90%

Al Lesaily 44,433 2.06 97.40%

Margham 32,379 1.33 85.90%

Al Wohoosh 4667 0.03 93.80%

Al Maha 8674 0.84 88.90%

Remah 27,770 0.47 87.50%

Grayteesah 16,049 0.69 84.80%

Al Fagaa 10,298 0.39 92.70%

Hessyan 3520 0.60 87.80%

Total/Overall 176,190 10.53 89.73%

Table 8.
Outcomes of deep learning utilizing NDVI extracted from drone imagery.

Figure 14.
Results of NDVI based deep learning model for vegetation extraction from UAS multispectral imagery.
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comprehensive methodology that incorporated advanced geospatial analysis and deep
learning techniques. The results showcased in this study portray trees, shrubs, or grass
through green pixels, barren land through silver color, and urban areas depicted in
various shades of blue. Notably, Seih Shuaib exhibits the highest accuracy index at
97.8%, attributed to the utilization of hydroponic technology for cultivating in-
demand micro-greens and herbs in several farms. Conversely, Al Kheeran demon-
strates the lowest accuracy index at 83.9%. The overall average accuracy index for all
communities within the study’s scope is calculated to be 89.73%.

3.2 Date palms and GHAF trees detection

The tree detection model’s accuracy was evaluated by comparing it with photo-
interpreted drone images. The deep learning algorithm outperformed the machine
learning method in detecting date palms and GHAF trees. The deep learning model
accurately predicted 336 trees, while the supervised classification predicted 289 trees.
Overall, the deep learning model showed superior performance, as evidenced by F1
scores. Figure 15 provides an example of detected trees in different locations [47].

Both methods demonstrated satisfactory classification results for GHAF trees and
date palms, achieving accuracies of over 79%. However, the deep learning object-
based method outperformed in accurately detecting the target trees, with overall
accuracies surpassing 95% for GHAF trees and 97% for date palms. Figure 16 provides
a visual representation showcasing the disparities observed in the detection proce-
dures, emphasizing a higher precision of approximately 16% for GHAF trees and 13%
for date palms.

The initial assessment revealed that errors in tree detection occurred primarily
when palm trees were obscured by other tree canopies or when trees with similar
physical characteristics to palm trees were present, particularly coconut trees. These
errors were relatively minor and mainly observed in areas where coconut trees were
planted. Additionally, the detectability of palm trees was affected in cases where the
trees were located at the image edges, resulting in some parts of the crown area
extending across two images. Detection errors also arose from the size of the crown,
particularly in young palms with smaller crown sizes. This discrepancy can be attrib-
uted to the limited inclusion of young palm samples with small crowns, as the study

Figure 15.
(a): Detected date palm trees in Al KIFAF road; (b): Detected GHAF trees in Hadaeq Sheikh Mohammed Bin
Rashid.
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primarily focused on mature palms prevalent within the study area. However,
addressing the challenges associated with crown size errors could be accomplished by
incorporating a greater number of young palm samples with small crowns into the
training data, thereby improving the model’s performance.

3.3 Performance comparisons

Tables 6 and 9 summarize the performance of deep learning models using NDVI
and RGB imagery, compared to supervised classification. The NDVI-based deep
learning model outperforms the RGB-based model. Both deep learning models
outperform supervised classification in vegetation cover classification and tree object
detection. The NDVI-based model shows slightly better results. Deep learning is more
accurate but requires longer training time. In areas with low vegetation cover, super-
vised classification is acceptable. For simplicity and reduced hardware dependency,
use supervised classification when complex features are absent.

4. Conclusions

The combination of Unmanned Aircraft Systems (UAS) and deep learning object
detection methods enables accurate crop identification and productivity analysis,
achieving an overall accuracy of 89.7%. Specifically, the detection rates for date palm
trees and GHAF trees reach 96.03% and 94.54%, respectively. The implementation of
this approach in Dubai Municipality has demonstrated its potential in addressing

Metric Date palms
(Deep learning)

Date palms (Supervised
classification)

GHAF trees
(Deep learning)

GHAF trees (Supervised
classification)

True
positives

10,663 9238 9592 7983

Precision 97.3% 84.3% 95.4% 79.4%

Recall 94.8% 86.8% 93.7% 77.2%

F1 score 96.03% 85.5% 94.54% 78.28%

Table 9.
Comparison of detected trees by method and type.

Figure 16.
Confusion matrix for date palm trees and GHAF trees under different scenarios:(a) deep learning, (b) supervised
classification.
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agricultural challenges by providing up-to-date, high-quality data for informed
decision-making.

Precision farming, which integrates sensor data, imaging, and real-time analytics,
plays a crucial role in enhancing farm productivity through the mapping of spatial
variability in fields. The data collected through drones during this work serves as a
valuable resource for activating analytical models in agriculture. By supporting preci-
sion farming practices, UAS facilitate soil health analysis, irrigation planning, yield
estimation, fertilizer application, and weather analysis. The combination of spatial
data from drones with other data sources and analytic solutions generates actionable
information for agricultural management.

The Normalized Difference Vegetation Index (NDVI) measured at different crop
stages exhibits a robust correlation with crop yield. Monitoring crop growth at critical
stages using NDVI maps, alongside other indexes like the Crop-Water Stress Index
(CWSI) and Canopy-Chlorophyll Content Index (CCCI), enables accurate estimation
of crop yield and early identification of issues. Multispectral drone imagery, equipped
with sensors such as infrared and hyperspectral, proves to be an effective method for
detecting plants under stress, differentiating between crops, and assessing crop health
in agricultural mapping tools.
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