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Preface

A seed is a living entity that contains the genetic information of the plant, ensuring 
reproduction and propagation. Notable progress has been made in seed development, 
dormancy, and germination. A fully formed seed that contains healthy embryonic 
tissue can produce a new plant with the right germination time and conditions.

For many higher plant species, both the starting and final material of the life cycle is 
the seed. Thanks to their structure, seeds can maintain their viability in temperature, 
humidity, and pressure environments that normal plants cannot withstand. In this 
way, seeds are of great importance for the survival and continuity of species and their 
populations.

All fully developed seeds contain an embryo, and in most plant species they have 
a seed coat and a nutrient reservoir that enables the embryo to develop. Seeds are 
stagnant during storage and will wake up and germinate when conditions of suffi-
cient humidity and temperature are created for their growth. Each species has unique 
needs for the storage, germination, and development of its seeds, and these depend 
on light, temperature, humidity, and oxygen demands.

This book discusses seed biology, including seed morphology, physiology, metabo-
lomics, ecology, dormancy, storage, germination, and viability. It is a useful resource 
for researchers as well as advanced undergraduate students and others seeking more 
basic knowledge on seed technology and biology.
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Chapter 1

Use of Low-dose Gamma Radiation 
to Promote the Germination  
and Early Development in Seeds
Daniel Villegas, Constanza Sepúlveda and Doris Ly

Abstract

The study of the effect of low doses of ionizing radiation on the germination and 
initial growth of different seeds is a recent area of research, with gamma rays and X-rays 
receiving the most attention. The use of this type of energy can generate an increase in 
germination percentages, an increase in germination speed, and changes in the length 
and area of roots and shoots, which will depend both on intrinsic factors of the nature of 
the energy (dose, dose rate, energy, etc.) as well as aspects of the irradiated seeds (water 
content, sensitivity, etc.). In addition to morphological effects, radio-stimulation due to 
low doses of ionizing radiation (a phenomenon also described as radio-hormesis) gener-
ates changes at physiological, biochemical, metabolic, and molecular levels. Despite the 
evidence that has been accumulating, it is still necessary to deepen the knowledge about 
these phenomena in order to establish the use of ionizing radiation with the aim of using 
radio-stimulation as a real impact tool in the agroforestry sector.

Keywords: radio-stimulation, hormesis, ionizing radiation, germination, plant 
development

1. Introduction

The mutagenic effect of ionizing energy has been widely studied, being the most 
commonly used physical agent to irradiate seeds (and other plant materials) in order 
to generate heritable mutations in plant breeding programs [1]. For this purpose, it 
is necessary to define the highest possible dose to induce high frequency mutations 
and, at the same time, the least negative effects dose, a concept named Lethal Dose 
50 (LD50) [2]. However, in recent years, the non-mutagenic effect related to low 
doses (below LD50) of ionizing radiation (IR) is an area that has attracted special 
attention, a phenomenon known as radio-stimulation or radio-hormesis (from the 
Greek “hormaein”, which means to stimulate) [3]. The vast majority of plant foods 
are produced by crops that are propagated by seeds, but the germination process is 
highly vulnerable to external conditions, which can cause delayed and/or uneven 
germination or even weak seedlings, which will inevitably end up affecting the 
yield and production quality [4]. In search of alternatives to reduce the difficulties 
associated with seed quality, low doses of IR have begun to be applied to speed up the 

XIV
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germination processes, increase seedling quality, and to improve tolerance to biotic 
and abiotic stressors [5].

Within the different types of IR (X-rays; alpha and beta particles; neutrons), the 
majority of research has been done using gamma radiation due to the safety and ease 
of operation of equipment such as Gammacell irradiators.

Gamma rays can engage with cell components like atoms or molecules. This 
interaction affects the structure and biochemical processes and, in this way, modifies 
the overall plant behavior. Seed germination, seedling growth, secondary metabolite 
synthesis, and biotic/abiotic stress responses are some of the main processes that are 
modified in response to gamma ray exposure [5, 6].

Considering the large amount of information accumulated to date on this topic, 
the purpose of this chapter is to summarize the most recent and more relevant results 
on the radio-stimulation of seeds.

2. Physical nature of IR and its interaction with plant tissues

To understand the stimulating effect of IR, it is necessary to recall basic aspects of 
atomic structure. All atoms are made up of protons and neutrons (forming the atomic 
nucleus) and electrons that “orbit” around the nucleus. When the nuclear forces that 
keep the protons and neutrons together are strong enough to overcome the electric 
repulsion between particles of the same charge (protons), the atom will remain 
stable. Conversely, an atom will be unstable when the number of neutrons exceeds a 
limit (z = 82), causing the excess energy to be released in the form of radioactivity to 
maintain the integrity of the nucleus [7]. The radioactivity emitted from the nucleus 
can be in the form of alpha particles, beta particles, gamma radiation, or a combina-
tion of the three. Alpha particles are composed of 2 protons and 2 neutrons (struc-
turally equivalent to a positively charged Helium nucleus), while beta particles are 
electrons that come from the nucleus (the product of the transformation of a neutron 
into a proton and an electron). The formed electron is released from the nucleus as 
a result of the decay [8]. Due to the release of alpha and beta particles, a rearrange-
ment occurs inside the nucleus, which in turn results in the release of electromagnetic 
energy or gamma radiation [9].

2.1 Interaction of IR with matter

Both alpha and beta particles, as well as gamma radiation, have the ability to inter-
act with matter and deposit enough energy to “knock out” an electron and thereby 
ionize the matter [10]. This ability to alter the atomic structure (ionization) is what 
differentiates the effect of alpha particles, beta particles, and gamma radiation from 
the effect of UV light and other electromagnetic radiations (visible light, infrared, 
microwaves, etc.), since the latter are capable of modifying the behavior of matter 
but do not have enough energy to alter its structure [7]. To understand the differences 
between alpha particles, beta particles, and gamma radiation, it is necessary to define 
two main components that largely determine the ability of each of these to interact 
with matter and, consequently, modify its behavior: Penetrability and Linear Energy 
Transfer (LET). Penetrability refers to the ability of radiation to pass through matter, 
which is directly related to the mass and electric charge of the radiation. Alpha par-
ticles have a mass (2 protons +2 neutrons) and an electric charge of +2, which means 
that they are highly reactive particles and therefore have very low penetrability (they 
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are blocked by a paper sheet) [8]. Beta particles, with a fraction of the mass of a proton 
and an electric charge of −1, penetrate material to a greater depth than alpha particles 
[9] and can be blocked by aluminum foil. Gamma radiation, due to its electromagnetic 
nature, does not have mass, and therefore it can penetrate deeply into matter. To block 
gamma radiation, dense materials such as concrete or lead are required [11]. Linear 
Energy Transfer (LET) refers to the energy dissipated per unit length along the tracks 
of the ionizing particles [12]. Gamma rays have low linear energy transfer (LET), 
while alpha particles have high linear energy transfer (LET) [13]. The radiation source, 
along with penetrability and linear energy transfer (LET), determines the amount of 
energy absorbed by matter or absorbed dose, which is expressed in Gy (gray), with 
1 Gy equivalent to 1 Joule of energy absorbed per kilogram [14].

At the level of plant tissues or cells, the interaction of IR can occur in two ways. 
When the energy of the radiation is deposited directly onto macromolecules (DNA, 
membranes, etc.) [15], it generates “damage” that, depending on the dose, can 
become lethal [16, 17]. However, the main effect of IR on plant cells occurs indirectly 
and it is mediated by the ionization of the water molecule (radiolysis), which results 
in the production of Reactive Oxygen Species (ROS) [18, 19]. Most of the responses 
described below, related to the stimulating effects of low doses of IR applied to seeds, 
are ultimately mediated by the accumulation of ROS.

For more detailed information on the physical, physicochemical, and chemical 
processes triggered by the interaction of IR with the water molecule, please refer 
to [20, 21].

3.  The effects of low doses of IR on germination, plant growth, and 
development

Before presenting reports on the effect of treating seeds with low doses of IR, it 
is important to emphasize that the range of what is called low doses of IR is species-
specific and depends not only on the particular radio-sensitivity of each species but 
also on the type of radiation (alpha particles, beta particles, gamma rays, X-rays, 
etc.), the rate of dose (acute or chronic irradiation), the pre-treatment of the material 
to be irradiated (moisture content), and the ontogenic state of the irradiated mate-
rial [22]. In this way, the stimulating dose of IR found in the literature can vary from 
less than 1 Gy to doses of more than 1 KGy [23, 24], which highlights the difficulty of 
establishing cross-sectional ranges of stimulating thresholds as these must be defined 
on a case-by-case basis. In view of the above, the data and results presented below aim 
only to compile the growing and recent information on radiation stimulation by IR 
in seeds and visualize the differential effect (stimulation or inhibition) that different 
IR treatments have on different plant species. A simplified scheme summarizing the 
overall seed radio-stimulation response to low doses of IR is presented in Figure 1.

3.1 IR and effect on germination

The effects of low doses of IR on plants have been studied for several decades. 
These studies have been conducted on different species and varieties, applying IR to 
different structures (seeds or vegetative structures), under different systems (in vivo 
or in vitro), on different ploidy levels and/or ages of the organ or tissues and using dif-
ferent dose and dose/rate combinations [25]. All of these parameters make it difficult 
to define a standard protocol to apply to a given species or situation.
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 Despite the above, in literature, some authors have made efforts to define low 
doses like the one that falls between 5 and 20 Gy for seeds and 1 to 5 Gy for vegeta-
tive material [ 26 ]. These authors mention only stimulatory effects of low doses, on 
seeds of several crops, like  Capsicum annuum ,  Arabidopsis thaliana ,  Phaseolus vulgaris , 
Cajanus cajan ,  Triticum sp . and in vegetative stages of  Arabidopsis thaliana . Another 
study on tomato seeds [ 27 ] defines 150 Gy as a low dose that stimulates parameters 
like germination, fruit number, and total production up to 86%. 

 Nevertheless, it has been observed that doses ranging from 5 to 800 Gy of gamma 
radiation have had stimulatory effects on growth of dry seeds [ 28 ]. This wide range of 
possibly stimulating doses is related to seed radio-sensitivity, which in terms depends 
on genetic characteristics and on seed moisture content.   Table 1   shows the latest 
works on the stimulation effect caused by IR.  

 It has been reported repeatedly that low dose rate and/or low total dose gamma 
irradiation impact germination yield and seedling performance, acting like an actual 
priming treatment [ 14 ]. Due to this well-documented effect, efforts have been 
made to investigate the molecular mechanism activated in seeds as a response to this 
physical treatment. Doses lower than 100 Gy of gamma rays positively stimulated 
the germination index, seedling growth, primary root length, and fresh weight on  A. 
thaliana  seeds. In that work, 50 Gy was the dose that showed the maximal positive 
effect on all growth parameters [ 43 ]. 

 Seed germination, vigor, and seedling growth in wild oat ( Avena fatua L .) [ 44 ], 
garden cress ( Lepidium sativum L .) [ 45 ], deadly nightshade ( Atropa belladonna L .) 
[ 46 ], okra ( Abelmoschus esculentus L . Monch.) [ 47 ], and rocket ( Eruca vesicaria L . 
subsp. sativa ) [ 48 ] have been stimulated by low-dose gamma rays. All these works 
provided cumulative evidence that small doses of γ-rays result in beneficial action in 
physically treated seeds. These works point to several mechanisms as responsible for 
the effect of low-dose gamma rays on seeds and early growth. Among the triggering 
factors of the response are the ROS produced, which act as signaling molecules to 

  Figure 1.
  Overall radio-stimulation response of seed treated with low doses of ionizing radiation. Created with 
BioRender.com.          
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respond under stress conditions; increased enzymatic activity; nucleic acids and pro-
tein synthesis in treated seeds. These changes in metabolism could explain the boost 
in germination, break of dormancy, and plant development. Conversely, exposing 
seed to high doses of gamma rays has been demonstrated to alter protein synthesis, 
hormonal equilibrium, enzyme activity, and leaf gas, and water exchange [49].

3.2 IR and its effect on growth

There are reports showing that low gamma irradiation doses led to positive effects 
on growth and plant yield in tomato hybrids [50]. Nevertheless, El-Sayed et al. [51] 
reported that 12 krad (equivalent to 120 Gy) gamma rays increased plant height, 
yield, chlorophyll a and b and carotenoids in tomato hybrids. Studies on Jerusalem 
artichoke (Helianthus tuberosus) show a stimulatory effect at 5 Gy dose on plant 
height, number of branches, fresh and dry shoot weight [52].

The effect of gamma rays on plant growth and development is explained by 
cytological, genetical, biochemical, physiological, and morphogenetic changes in cells 
and tissues [53]. These changes are commonly reported as more vigorous vegetative 
growth [54], early maturity [55], and higher yield [56].

While a definitive explanation regarding positive impacts of low-dose gamma radia-
tion remains elusive, researchers suggest a theory that these irradiation levels stimulate 
growth by altering the hormonal signaling network within plant cells. Besides, it is pro-
posed that increased cells’ antioxidative capacity could allow better performance over 
stressful fluctuations in light intensity and temperature conditions [57]. Conversely, the 
growth suppression due to high doses of irradiation has been linked to cell cycle altera-
tions in the G2/M phase, as well as several impairments across the entire genome [58].

Recent studies have shown that not only the dose is important but also the dose 
rate. Even when the final dose was the same, long-term exposure to gamma rays 
produced more free radicals than shorter exposure. When exposed for short periods, 

Plant species Stimulatory dose (Gy) Reference

Sugarcane 4.7–5.7 [29]

Datura innoxia 5 [30]

Eucalyptus nitens 10 [31]

Hordeum vulgare 4–20 [32–34]

Cucumis sativus 50 [35]

Abelmoschus esculentus (seeds, 
seedlings)

50 [35]

Chenopodium quinoa 50 [36]

Vicia faba <100 [37]

Lathyrus chrysanthus 50–150 [38]

Vigna unguiculata 100 [39]

Physalis peruviana 125–200 [40]

Abelmoschus esculentus 400 [41]

Sophora davidii 800 [42]

Table 1. 
Low-dose IR on some seeds.
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wheat shoot and root lengths showed minor decreases compared to control samples, 
however, longer periods resulted in substantial growth reduction. The expression of 
genes associated with antioxidants and DNA repair showed a reduction in response to 
long-term gamma ray exposure [59].

3.3 IR and seed priming

Seed priming corresponds to the induction of a particular physiological state 
through the application of treatments (physical, chemical, thermal, etc.) prior to 
germination, which allows the plant to better respond to the subsequent presence 
of abiotic and biotic stresses [60]. In recent years, priming (particularly at the seed 
level) has emerged as a strategy for stress management without significantly affecting 
plant development [61]. Many of the advances in understanding and elucidating the 
stimulatory effect of low doses of ionizing radiation have their origin in the study of 
priming through physical stimuli [14]. A study on the effect of low doses of gamma 
radiation and the induction of tolerance to stress caused by Cadmium and Lead in 
Arabidopsis seeds [43], reported that doses up to 100 Gy induced better germination 
rates and initial growth. It also demonstrated that doses of 50 Gy induced a bet-
ter response of tolerance to stress caused by these metals, such as a decrease in the 
presence of H2O2, higher activity of antioxidant enzymes, and greater accumulation 
of proline compared to non-irradiated seeds. Similar results were observed when 
irradiating Hordeum vulgare seeds with doses up to 300 Gy, where those seedlings 
derived from seeds irradiated with 50 Gy improved their tolerance to the presence of 
heavy metals (lower contents of H2O2 and improvement in the ultrastructure of chlo-
roplasts) [62]. Doses of 50 Gy applied to Arabidopsis seeds stimulated the tolerance of 
seedlings to thermal stress (improved growth rates, reduced ROS levels, higher anti-
oxidant enzyme activity, etc.) [63], while exposure to 100 Gy applied to Vicia sativa L. 
seedlings (alone or in combination with salt and drought stress) generated significant 
increases in dry matter accumulation, higher antioxidant enzyme activity (CAT, SOD 
and APX), higher proline contents, and decreases in relative water content [6]. Doses 
between 500 and 1000 Gy decreased the incidence of fungal diseases in Pennisetum 
glaucum grains, and despite the high doses applied, no effects on the germination 
percentage of these grains were observed [64].

3.4 IR and metabolic effects

Due to its penetrability and linear energy transfer, as gamma radiation passes 
through different plant structures and tissues, it generates a broad spectrum of modi-
fications affecting biochemical, physiological, and molecular processes. As the effect 
of IR is mainly mediated by the increase in ROS, a significant part of the literature 
focuses on describing the processes that are directly modified by these molecules, 
such as processes associated with photosynthesis or processes associated with the 
plant antioxidant system [26].

3.4.1 Effect on photosynthesis

IR affects various components of the photosynthetic apparatus, such as the 
content of pigments responsible for the absorption of visible radiation; enzymes 
responsible for CO2 reduction; thylakoids structure, etc. [26]. Regarding the chlo-
rophyll content, various studies show contradictory trends or dynamics. Studies in 
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Arabidopsis thaliana show that chlorophyll concentration remains stable up to doses 
of approximately 60 Gy [65], while similar doses (50 Gy) generated a significant 
increase in the total chlorophyll content in cowpea [66].

On the other hand, a recent study on soybean seeds and seedlings reported a 
positive relationship between the content of chlorophyll a, chlorophyll b, and carot-
enoids at a dose of 12 Gy when compared to non-irradiated seeds [67]. Another study 
suggests that, in general, the effect of IR on photosynthetic pigments follows a pattern 
of mild stimulation at low IR doses, while as the doses increase, the concentrations 
may initially increase but then drop in the long term [26]. The activity of the Rubisco 
enzyme, a central component of the CO2 fixation process, shows stimulation at low 
doses (5 and 25 Gy) in wheat seedlings [68], while higher doses decrease the specific 
activity of this enzyme in Arachis hypogaea L [69].

The radio-sensitivity studies of this enzyme are particularly complex since the 
different subunits that form this enzyme are encoded by both nuclear and plastidial 
genetic material [70]. However, despite the stimulatory effect of low doses of radia-
tion on Rubisco activity, the effect of radiation on the rate of CO2 assimilation 
appears to be negative even at doses as low as 0.12 Gy [71] and 1.2 Gy [72], while 
higher doses have resulted in prolonged inhibition of the CO2 assimilation rate [68].

3.4.2 Antioxidant metabolism

The increase of ROS after exposure to IR has been thoroughly discussed. Seeds 
and plants subjected to IR show high levels of ROS that remain elevated for times 
ranging from several hours to several days post-irradiation. Since ROS are short-lived 
compounds, the increase of these components observed in plant tissues days or hours 
post-irradiation would not be the product of the direct process of radiolysis of water 
but rather the result of an imbalance between the processes of generation and use 
of these compounds [26]. In this way, it is expected that IR affects the content and/
or activity of various enzymes involved in these processes. For example, irradiation 
with doses between 25 and 200 Gy stimulates the activity of ascorbate peroxidase and 
glutathione reductase enzymes in rice seeds [73], while peroxidase activity increased 
in orange seeds (doses of 10–50 Gy) [74] and in bean seeds (150 and 200 Gy) [75]. 
Irradiation of red pepper seeds with doses of 2 to 16 Gy resulted in an increase in 
superoxide dismutase activity but, at the same time, led to a decrease in glutathione 
reductase activity [57].

Several studies have established that ROS production mediated by IR is dose-
dependent and follows a trend close to linearity [73, 76–78]. However, the existence 
of multiple pathways for ROS production and utilization (in response to biotic and 
abiotic stimuli) makes it very complex to identify or describe a specific pathway of 
response to IR mediated by ROS in plants [18]. Besides, these pathways are being 
influenced or affected differentially depending on the radiation dose [79].

3.4.3 Effect on secondary metabolism

One of the most widely studied processes is the stimulating effect of IR on second-
ary metabolism, and more specifically on metabolites with antioxidant capacity. It is 
postulated that the increase in antioxidant compounds would be triggered by the high 
concentration of ROS resulting from the radiolysis of water through two different 
pathways [80]. On one hand, the increase in ROS would stimulate the expression of 
genes that encode for key enzymes in the biosynthetic pathways of these compounds, 
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as demonstrated by the results in Rosmarinus officinalis [81] and Arabidopsis thaliana 
[82]. On the other hand, studies on different medicinal plants show that the presence 
of ROS would directly stimulate the activity of these enzymes and, even more inter-
estingly, demonstrate that the increase in activity of enzymes such as phenylalanine 
ammonia-lyase (PAL) and chalcone synthase (CHS) is dose-dependent [83]. Solanum 
melongena seeds treated with 50 Gy gamma rays showed increased growth that led to 
increased levels of flavonoid and tannin contents in pulp, peel, and whole fruits [84].

3.4.4 Molecular response to low doses of IR

As detailed in the previous sections, the radio-stimulative effect of gamma 
radiation on seeds encompasses a wide range of processes and responses, ranging 
from promoting germination to modifications in plant fruiting. This diversity of 
effects has led to the absence, to date, of a single or consensus mechanism that 
molecularly modulates these responses [28]. Apart from the damage (repairable 

Gen name Plant sp. Dose Function Reference

Apetala 1 (AP1) Arabidospis 
thaliana

3 cGy and 17 cGy 
(chronic exposure); 

15 Gy (acute 
exposure)

Promote floral 
meristem identity

[86]

Ascobate peroxide 
(APX), Catalase 
(CAT), and 
Glutathione 
Reductase (GR)

Oryza sativa 25, 50, 100, and 
200  Gy

Antioxidant defense [73]

Heat Shock Protein 
90 (HSP90)

Arabidopsis 
thaliana

100, 250, 500, and 
750 Gy

Signal transduction, 
cell cycle, DNA 

repair, and stress 
response

[87]

Lipid Transfer Protein 
(EARLI 1)

Hordeum 
vulgare

15, 20, and 25 Gy Germinability 
and early seedling 

development

[34]

Proliferating Cell 
Nuclear Antigen 
(PCNA)

Hordeum 
vulgare

1.6, 2.6, and 
4.2 μSv/h

Cell cycle regulation [77]

Superoxide 
Dismutase (SOD) and 
Guaiacol Peroxidase 
(GPOX)

Hordeum 
vulgare

2, 4, 6, 8, 10, 13, 16, 
20, 25, and 50 Gy

Antioxidant defense [33]

Suppressor of 
Gamma Response 1 
(SOG1)

Arabidopsis 
thaliana

1 to 540 mGy/h Master regulator 
of DNA damage 

response

[88]

Terpene Synthase 30 
(TPS30)

Oryza sativa 100, 200, 300, 400, 
and 500 Gy

Secondary 
metabolism

[89]

X-Ray Repair Cross-
Complementing 
Protein (XRCC)

Oryza sativa 100, 300, and 
500 Gy

DNA damage 
response

[59]

Table 2. 
Seed gene expression modified by IR.
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or unrepairable) that IR causes at the DNA level (associated with higher doses, 
which finally led to mutations), IR also causes modifications in the regulation of 
the genome in processes related to oxidative stress, signal transduction, transcrip-
tion factors, hormone response, metabolism transport, energy, development and 
morphogenesis, and cell cycle [26, 82, 85]. Due to the extensive nature of a section 
that would describe the background information available in the literature regard-
ing this topic (including plant species, radiation dose, acute vs. chronic exposure, 
etc.), Table 2 presents some relevant reports of genes that modify their expres-
sion in response to low doses of IR in seeds. For further information, the reader is 
encouraged to review [21, 26, 85, 90].

4. Effect on germination and growth of other physical agents

Much of the research on the effects of physical agents on seed growth and develop-
ment is carried out in self-shielded equipment with 60Co as a gamma radiation emit-
ting source (i.e., Gammacell 220R). However, there are other types of physical agents 
not necessarily derived from nuclear reactions that have also been used to study their 
possible radio-stimulating effect.

4.1 X-rays

X-rays correspond to a non-nuclear IR of electromagnetic nature (similar to 
gamma rays) that has also been used to modify the behavior and development of 
various plant species. Regarding their use as a radio-stimulant agent, shorter germi-
nation times have been reported in Hibiscus [91], increased vigor of coffee seedlings 
[92], increased leaf area in Phaseolus plants [93], and increased leaf and plant size in 
Tomato [25] in response to doses ranging from 0.1 Gy to doses greater than 100 Gy.

4.2 Protons

It corresponds to corpuscular radiation (hydrogen nuclei) typical of extrater-
restrial environments (part of solar particles). The study of the effect of protons on 
the growth and development of plant species is crucial to evaluating potential species 
to be used in space missions or settlements [94]. In this regard, there are reports 
of higher germination rates and increases in chlorophyll and ascorbate peroxidase 
(APX) contents in soybean plants irradiated with protons [95], as well as stimulation 
of seedling growth and greater plant height [96] and root elongation [97] in rice seeds 
irradiated with low doses of this type of ionizing energy.

4.3 Electron beam

Low-energy electron beam (LEEB) beta radiation consists of a beam of acceler-
ated electrons. This form of ionizing radiation operates within a range spanning 
from a few up to around 300 kGy. The accelerated electrons display enough energy 
to remove electrons from atoms or molecules producing ions [98]. LEEB application 
to lentil seeds accelerated seed germination, defined by the percentage of hypocotyl 
and leaf emergence at 3 days [99]. There are also reports that low doses of this type 
of radiation, applied to barley seeds, induced higher germination rates [100] while it 
improved the height and weight in wheat plants [101].
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4.4 Non-thermal plasma (NTP)

By increasing the internal energy of a material, it will go from solid to liquid to 
gas and finally to an ionized gas state (where electrons separate from the elements), 
giving rise to the fourth state of matter or “plasma”, which has unique properties [102]. 
Depending on the conditions (working pressure, type of energy, amount of energy) 
required for plasma formation, it will have different properties [103], with non-thermal 
plasma (NTP) being the most studied for inducing changes at the seed or seedling 
level because the low temperatures generated do not alter the behavior of the mate-
rial subjected to such plasma. Since the effect depends not only on the dose or energy 
imparted or absorbed by the irradiated material but also on the conditions under which 
the NTP state is induced or reached, it is complex to summarize the results obtained 
(and beyond the scope of this article). As an example, a report from 2005 studied the 
effect on the growth and development of tomato plants obtained from seeds irradiated 
with NTP [104], reporting higher seedling emergence, greater antioxidant enzyme 
activity, and a higher number of fruits and fruit biomass per plant. Stimulating effects 
of different doses and configurations of NTP have also been reported in cereals [105], 
legumes [106, 107], oilseeds [108], vegetable crops [109, 110], among others.

An alternative to the direct exposure of plant material (usually seeds) to NTP is 
the exposure of water to this type of energy, resulting in what is known as plasma-
activated water (PAW) or plasma-treated water (PTW), which induces several 
chemical and physical modifications resulting in different biological effects on plant 
material [111]. The response to PAW involves change in redox potential, conductivity, 
pH and ROS and reactive nitrogen species content [112]. By using this technology, 
Vigna radiata seeds exposed to different treatments with PAW (different time exposi-
tion of water to NTP) resulted in the maximization of parameters such as germination 
rate and growth parameters, as well as an increased content of flavonoids and total 
phenols in seedlings [113]. Wheat seeds treated with PAW resulted in better germina-
tion, faster seedling growth, higher photosynthetic pigments in leaves, and soluble 
protein content in roots [114].

5. Conclusions

According to statistics, 90% of edible crops are cultivated from seeds [5]. Low 
germination and poor seedling growth often result in huge crop losses and therefore, 
developing strategies aimed at improving processes related to seed germination and 
crop establishment is a primary way to ensure food security [4, 115]. The necessity to 
develop strategies applied to seeds that aim to improve these processes while being 
environmentally friendly has driven studies on the use of low doses of IR (mainly 
gamma radiation) as a stimulating agent, a phenomenon called radio-stimulation or 
radio-hormesis. In the last two decades, increasing evidence has accumulated of the 
radio-stimulatory effect of gamma radiation (a safe, non-polluting, and sustainable 
form of ionizing radiation) on seed germination and associated processes.

The range or dose limit in which the stimulatory effect of gamma radiation is 
observed depends on intrinsic factors of the applied energy (LET, dose, dose rate) as 
well as the irradiated material (species; tissue; state of development, etc.). This makes 
it difficult to use transversal concepts regarding dose limits, that can be called “low 
doses” and rather, the stimulatory effect must be studied and defined on a case-by-
case basis.
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In the same way, the physiological processes and metabolic responses that are 
modified as a result of the application of stimulating doses of IR are also diverse and 
include changes in hormonal balance, activation of antioxidant protection systems, 
modifications of parameters associated with photosynthesis, stimulation of second-
ary metabolites, etc. However, despite decades of research, the precise mechanism 
of beneficial plant response to IR remains elusive [28], although there seems to be a 
consensus that all responses are associated (directly or indirectly) with changes in the 
content of ROS species.

Recently, the use of new techniques such as ion beam and especially the use of 
NTP have emerged as cost-effective and non-polluting alternatives capable of stimu-
lating germination and modifying the development of some plant species [4].

Despite the advances and studies on the stimulating effect of gamma radiation on 
seed germination and eventually on the growth and development of plants, the use of 
this technique is still mostly associated with scientific studies and little progress has 
been made on its operational use. Therefore, it is necessary to continue researching to 
elucidate the response and molecular pathways that modulate the interaction between 
the ionizing radiation and plant development with the aim of making use of radio-
stimulation as a real impact tool in the agroforestry sector.
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Chapter 2

Influence of Seed Development  
and Maturation on the Physiological 
and Biochemical Seed Quality
Morish Obura and Jimmy Lamo

Abstract

Seed quality is one of the widely discussed topics in seed system and seed biology; 
thus, many countries with functional and vibrant seed system have invested heavily 
in seed quality assurance and quality control. Good quality seed is crucial for any 
cropping system, for without it, there is poor field establishment and wastage of other 
production inputs. Good quality seed responds well to added inputs, ensures uniform 
crop establishment, and has higher yield advantage to poor quality seed under the 
same management practice. It is, however, important to note that seed quality is influ-
enced greatly by seed development and maturation. Storage reserves are deposited in 
seed storage tissues during seed development and maturation, and these reserves are 
important in the early stages of germination and maintenance of seedling life when it 
has not yet developed good photosynthetic capacity. The development stage at which 
the seed is harvested has enormous influence on its performance either in the field or 
storage, in terms of germination behavior and vigor characteristics, and maintenance 
of viability. This chapter presents some of the current understandings and findings on 
seed development and maturation, with emphasis on the physiological and biochemi-
cal quality.

Keywords: seed development, seed maturation, physiological seed quality, biochemical 
seed quality, physiological maturity

1. Introduction

Seed quality, the standard of excellence in the seed characteristics is what deter-
mines its performance when sown or stored [1]. Seed quality has been recognized as 
a complex trait, and has therefore been described as the viability and vigor charac-
teristics of the seed that allows emergence and establishment of seedlings in diverse 
environmental conditions [2]. The fundamental and most important input in agricul-
ture is good quality seed [3]. The main objective of any seed system is to ensure that 
good quality seed is delivered to the end users who are farmers. Every country in the 
world has put in place regulatory measures which seed producers must adhere to, in 
order to reduce quality loss or adulteration of seed along the seed value chain. A case 
in point, Uganda through the Ministry of Agriculture, Animal Industry and Fisheries 
(MAAIF) enacted the national seed policy 2018 with the vision of a competitive, 
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profitable and sustainable seed sub-sector where farmers and all seed users have 
access to affordable quality seed”, and four strategic policy objectives of (i) strength-
ening research and development for the seed sector, (ii) strengthening capacity of the 
key players along the seed value chain to achieve an effective and efficient seed sector, 
(iii) strengthening the seed quality control system along the entire value chain and 
(iv) enhancing knowledge and information management for the seed sector [4]. Seed 
testing, certification, variety release and registration, phytosanitary measures and 
protection of plant breeders’ rights are some of key activities governed by a seed law, 
and the management of these activities either at a country, regional or continental 
level affects the outcome of seed production, availability, accessibility, and hence the 
design of agricultural system [5].

Four seed quality attributes commonly talked about are; physical quality, 
pathological quality, physiological quality and genetic quality [6, 7]. Biochemical 
seed quality is often put together with the physiological quality although the two 
are different. To attain maximum seed quality, it has been argued that seed should 
be harvested at physiological maturity (PM). However, controversies exist in the 
concept of physiological maturity as explained by [8]. Some crop species maintain 
high seed moisture content at PM that makes harvesting difficult due to mechanical 
damages to the seed, hence harvesting should be delayed for some days after PM. 
Harvesting of seeds which are produced in fleshy fruits can be done just before PM 
and fruits given a period of after ripening to complete seed maturation [9]. Three 
common concepts of PM have been presented [10] (i) stage of maximum seed 
dry matter accumulation, (ii) growth stage beyond which there is no significant 
increase in seed dry weight and (iii) growth stage when seed attains maximum 
dry weight, germination and vigor. Given the existing controversies in the use of 
PM concept, seed development should be traced during seed development and 
maturation. This should involve tagging flowers at anthesis, harvesting seed or fruit 
at different development stages and evaluating morphological, physiological and 
biochemical changes in the seed, as well as correlation between these attributes in 
order to give a concrete judgment on when maximum seed quality is attained during 
seed development. This book chapter therefore looks at studies that have been done 
in different crop species to evaluate physiological and biochemical seed quality 
during seed development and maturation.

2. Seed development and maturation

Seed development is the changes in structural and physiological events in the 
seed right from the time of ferritization until the seed reaches maturation. A viable 
pollen comes in contact with the stigma, followed by its germination to form pollen 
tube carrying two male nuclei. The pollen tube penetrates the embryo sac containing 
egg nucleus and polar nuclei. The first male nucleus fuses with the egg cell to form 
a diploid zygote and the second one fuses with the polar nuclei to form a triploid 
endosperm; this is referred to as double fertilization and it marks the process of 
successful seed development in angiosperms [11]. Seed development is characterized 
in three stages; Histodifferentiation and cell expansion (stage I), Reserve deposition, 
cell expansion and maturation (stage II), and Maturation drying (stage III) [12, 13]. 
Stage I is characterized by the formation of embryonic tissues and those encompass-
ing it, stage II is characterized by an increase in seed dry weight as a result of the 
accumulation of storage reserves, and physiological maturity is reached at the end 
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of this stage. Stage III exhibits a decrease in seed dry matter as the seed reaches its 
mature form [12, 13]. The very prominent attribute of stage III is the acquisition of 
desiccation tolerance, arrest of growth, and entry into dormancy [14]. In orthodox 
seeds, the seed loses about 10–15% of its moisture content to develop a desiccation 
tolerance and remain quiescent [12]. Embryogenesis in dicot and monocot occurs with 
similar pattern of events but the embryos formed are structurally different [13]. Seeds 
develop desiccation tolerance even before attaining a physiological maturity status. 
Physiological maturity is the development stage of the seed when the seed attains 
maximum dry weight [10]. Deposition and aggregation of storage compounds such as 
heat shock proteins, late embryonic abundants (LEAs) proteins and antioxidants of 
lower molecular weights in the seed embryo during seed development and maturation 
are associated with the desiccation tolerance in seed [15]. Seed development is regu-
lated by several hormones. Indole-3-acetic acid (IAA), is crucial in determination of 
embryo size and structure during embryogenesis [16, 17]. Abscisic acid (ABA) induces 
dormancy which prevents unwanted seed germination and also promotes deposition 
of storage reserves during seed development, and formation of late embryonic abun-
dants (LEAs) proteins which protect the seed from desiccation [18]. There is variation 
in ABA peaks during seed development, for example wheat has two peaks while rice 
has one peak during seed development [19, 20]. Cytokinins promotes cell division and 
differentiation and counteracts the negative effects of ABA during seed development 
[21]. Gibberellic acid is another hormone which is very critical during seed develop-
ment as it antagonizes the inhibitory effects of Abscisic acid, but complex relationship 
exist between the two hormones in different crop species during seed development. 
Other than hormones, several transcriptional factors form a complex network to 
regulate seed development and maturation events [22]. Such events are storage reserve 
accumulation, chlorophyll degradation, and the acquisition of primary dormancy, des-
iccation tolerance, and longevity [23, 24]. During seed development and maturation, 
physiological and biochemical changes related to seed germination, vigor, seed storage 
proteins, lipids, antioxidant enzymes, sugars occur in the seed, with marked variations 
among crop species and varieties of the same crop. When seed attains maximum dry 
weight, deposition of storage reserves ceases as the seed enters the late maturation 
phase during which seed vigor is developed and the seed builds a defensive mechanism 
to aid survival after dispersal from the mother plant [25–27]. Seed harvest maturity 
stage greatly impacts seed germination, vigor, viability, storability and longevity hence 
production of good quality seed is very dependent on this factor [28–30]. In an infor-
mal seed system where farmers exchange seed among themselves, no much attention is 
paid to the seed age at harvest because of limited knowledge on how this aspect affect 
seed quality. An example is the vegetable farmers who keep harvesting the fruits and 
extract seeds from last harvest or from those left from fruits sold in the market. This 
practice has resulted in marked variability in the seed quality in the informal system. 
Farmer training to help them understand seed development is very crucial in address-
ing seed quality issues that they encounter.

3. Seed development and maturation effects on physiological seed quality

Seed harvest maturity stage is one of the factors that affect physiological seed 
quality. Physiological maturity, often defined as a maturity stage at which the seed 
accumulates maximum dry matter, sometimes coincides with maximum seed germina-
tion, example in Solanum aethiopicum [31] and Okra [32] but in the case of species such 
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as tomato [33], soybean [34] and pepper [35], this scenario is not applicable. Botey et al. 
[36] studied seed development of two African eggplant cultivars; Oforiwa and Kpando 
at different seed development stages of 20, 34, 48, 62, 76 and 82 days after anthesis 
(DAA) and reported that maximum seed dry weight was attained at 48 and 76 DAA in 
Oforiwa and Kpando respectively under a characteristic tropical climate, and 62 and 76 
DAA respectively under a characteristic temperate oceanic climate, but maximum 
germination percentage only coincided with physiological maturity in cultivar Kpando. 
Another study in six eggplant cultivars; Dwomo and Kpando belonging to Solanum gilo 
group, GH 3870 and GH 3887 belonging to Solanum melongena group, GH 107 and GH 
4918 belonging to Solanum macrocarpon group showed that seed germination and vigor 
improved when seed were harvested from 4 weeks to 8 weeks after full maturity of the 
fruits [31]. This study tends to suggest that maturation of seeds in fleshy fruits may not 
coincide with that of the fruit itself as maturation of the seeds continue even after the 
fruit reaches full maturity. Kwankaew et al. [37] studied the seed quality of Upland Rice 
cultivar Dawk Pa-yawm at eight different maturity stages of 8, 12, 16, 20, 24, 28, 32, and 
36 days after flowering (DAF) and observed that seed physiological characteristics in 
terms of germination and vigor were all maximum at physiological maturity but all 
decreased after this stage. Accordingly, the authors reported maximum seed dry wright 
of 21.89 mg/seed, germination capacity (97%), soil emergenc3e (96.5%), and maxi-
mum seedling dry weight (7.51 mg/seedling), root length (13.3 cm) and shoot length 
(7.92 cm), and lowest electrical conductivity of 8.05 μS/cm/g at 28 DAF. Low electrical 
conductivity, high seedling dry weight, high root and shoot lengths are indicators of 
high seed vigor. In Okra cultivar Asontem, [32] studied five seed development stages of 
10, 20, 30, 40 and 50 DAA and reported no seed germination up to 20 DAA, and 
maximum seed germination of 77% at 50 DAA. Santos et al. [38] studied seed develop-
ment in Okra cultivar Santa Cruz 47 by tagging flowers and harvesting fruits from 5 
DAA to 65DAA and extracted seeds immediately or stored for 7 days, and reported 
maximum seed germination, seedling emergence and germination first count at 50DAA 
both for seeds extracted immediately after harvest and those extracted 7 days after 
harvest. They observed no germination and seedling emergence up to 25 DAA for seeds 
extracted immediately after harvest while those extracted after 7 days of storage started 
germinating at 20 DAA. Their result in an indication that seeds borne in fruits continue 
to develop during post-harvest period when detached from the mother plant, provided 
they are stored in suitable conditions. Evaluation of free space percentage and aspect 
ratio of Okra seed during seed development using X-ray imaging analysis showed that 
both free space and aspect ratio decreased during seed development, stabilizing around 
50DAA and were strongly linked to good germination and vigor of the seed [38]. By 
harvesting three soybean varieties Nangbaar, Anidaso, Jenguma at physiological matu-
rity (PM), one week after PM and two weeks after PM, [39] observed 85.25%, 85.25% 
and 66.75% in Nangbaar, Anidaso, Jenguma respectively at PM while the germination 
decreased to 67.33%, 60.92% and 58.83% in Nangbaar, Anidaso, Jenguma respectively 
when they were harvested two weeks after PM. The same study reported high seed 
vigor when seed was harvested at PM and low seed vigor at one week and two weeks 
after physiological maturity, as indicated by low electrical conductivity (EC) of seed at 
PM and high EC of seed one week and two weeks after PM. In cucumber seeds, [40] 
reported a maximum germination capacity of 80.84% when fruits grown under open 
field conditions were harvested at 40 days after flowering followed by 30 days posthar-
vest ripening. Seed vigor characteristics such as seedling dry weight, seedling vigor 
index I and II were also maximum at the same fruit harvest stage under the same 
environment. In Bell pepper (Capsicum annuum), [35] studied the effect of harvesting 
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time on seed quality of two cultivars Fyuco INTA and Lungo INTA by tagging flowers 
and harvesting at 4, 5, 6, 7, 8 and 9 weeks after anthesis (WAA). Their study reported 
very poor germination and low seed vigor in both cultivars for seeds harvested from 4 
to 7 WAA both in fresh seeds and those stored for one year, while maximal seed quality 
in terms of seed germination and vigor was only attained in the two cultivars when 
seeds were harvested at 9 WAA. In sweet pepper cultivar Amarela comprida, [41] tagged 
flowers and harvested fruits from 20 DAA to 75 DAA, and reported no seed germina-
tion up to 40DAA, with maximum seed germination and seed vigor coinciding with 
maximum dry matter at 75DAA. In a related study in Habanero pepper (Capsicum 
chinenses Jacq), [42] harvested the green, yellow and orange fruits corresponding to 30, 
38, and 42DAA and stored for 7 and 14 days and observed highest seed germination and 
vigor in seeds harvested from orange fruits followed by yellow while those extracted 
from green fruits had the least germination and vigor both under storage period of 0, 7 
and 14 days. In another study, [43] evaluated the physiological seed quality of Physalis 
angulata L. seeds under different harvesting periods of 15, 22, 29, 36 and 43 DAA, and 
observed 100% seed germination, and maximum field emergence of 70.5%, at 29DAA, 
while the seed attained maximum seed dry weight of 28 mg at 36DAA indicating that 
maximal seed quality was attained before physiological maturity. Tetteh et al. [44] 
studied seed development in two tomato cultivars GH 9207 and GH 9305 and classified 
the fruits as initially ripe, half ripe, fully ripe and rotten depending on the development 
stages, and observed good seed vigor and germination in fully ripe fruits but were not 
statistically different from germination of those harvested from half ripe and rotten 
fruits. Seed should be harvested at the maturity stage when germination and vigor are 
maximum [45, 46]. A study evaluated seed development in pumpkin by harvesting the 
seed at 30, 40, 50 and 60 DAA and observed less than 20% germination for seeds 
harvested at 30 and 40DAA, and more than 80% for seeds harvested at 60DAA in both 
round type and oval type pumpkin fruits in all the three locations [30]. It was asserted 
that seeds of most crops attain maximum germination and vigor at PM and declines 
after [47], but this concept of PM has been debated by many authors including [8, 10]. 
Crop species differ in their seed and fruit maturation characteristics, hence the matu-
rity stage at which seed attain maximum germination and vigor varies. This phenom-
enon has been demonstrated, for example maximum germination and vigor in tomato 
seeds were attained 15 days after PM [48] while [49] reported 20 days after PM in the 
same crop, and [50] reported 10 days after PM in pepper. Changes in fruit color, fruit 
weight, fruit diameter and length, seed dry weight and seed moisture content during 
seed development can be used as indicators for seed maturation and harvesting to attain 
good seed quality [36, 42, 44]. Seed vigor during seed development can be measured 
indirectly using electrical conductivity, with lower EC values indicating high seed vigor 
and vice versa. Seed vigor is low at initial stages of seed development, as indicated by 
very high electrical conductivity but increases as the seed matures due to strengthening 
of seed membrane integrity that reduces the leakages of electrolytes from the seed. This 
has been verified during seed development in Capsicum baccatum [51], onion [52], C. 
annuum [41] and faba bean [53]. No seedling emergence was observed in C. baccatum 
seeds until 30 DAA, but emergence increased from 39.5% at 40 DAA to 73.5% at 50 
DAA and remained statistically unchanged until last harvest at 80 DAA [51]. Several 
studies on seed development and maturation have revealed that seeds of some species 
attain germination potential very early just few days after anthesis but some requires 
sometime in order to attain the ability to germinate. This variation exists even within 
the same species as observed in two species of S. aethiopicum, Oforiwa and Kpando [36]. 
However, as discussed previously, it is also possible to harvest seeds one or two weeks 
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before physiological maturity and give them a period of after ripening to attain full 
maturity and hence good germination and vigor, particularly for those borne in fleshy 
fruits [54]. Seed development and maturation, and hence attaining of maximum seed 
quality is also influenced by environment and genotype, thus recommendations for 
seed production should capture genetic variations as well as conditions in the produc-
tion environment. In addition to that, morphological changes in the fruit and seed 
should be related to the seed quality in terms of seed germination and vigor so that seed 
producers can know the best time for harvesting seed with the highest quality.

4.  Changes in biochemical seed quality during seed development  
and maturation

A number of biochemical changes related to structural proteins, carbohydrates, 
lipids, antioxidant enzymes, phytic acid and tannins occur during occur in the seed 
during seed development and maturation. Changes in some of these compounds are 
related to acquisition of desiccation tolerance in the seeds and maintenance of cell 
membrane integrity which improves seed vigor and longevity [55, 56]. Maximum 
accumulation of seed proteins, and activity of alpha-amylase and dehydrogenase 
enzyme at 28DAA was observed in Prosso millet (Panicum miliaceum L) [57]. 
Antioxidant enzyme activity of sweet pepper (C. annuum L) cultivar Florinis NS 700 
increased during seed development from 410 μg/g FW at 10 DAA reaching a maxi-
mum of 1550 μg/g FW at 80 DAA, with total seed phenolics following the same trend 
[58]. Similar results were obtained by earlier study that reported higher antioxidant 
activity in sweet pepper seeds extracted from mature fruits in comparison to those 
extracted from immature fruits [59]. However, this seems to be affected by genotype 
as [60, 61] obtained contrasting results in antioxidant enzyme activity trends in the 
same crop. High antioxidant enzyme activity during early seed development has been 
reported in African eggplant [62] and Hevea brasiliensis L [63]. Both authors reported 
a decline after an early increase, and increase at the end of the seed maturation phase. 
Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxi-
dase (POX) and ascorbate peroxidase (APX) protect the seed cells from oxidative 
damage caused by reactive oxygen species [64]. Accumulation of structural proteins 
such as late embryonic abundants (LEAs) has been reported to be high at 60 DAA in 
sweet pepper [41]. A study in S. melongena revealed that the levels of CAT, SOD and 
POX antioxidant enzymes were high in seeds harvested at 40 DAA with a progressive 
decrease up to 60DAA (maturation stage) and an increase after this period [65]. A 
similar observation in the activity of CAT and SOD was made in sweet pepper, with 
a decrease in their activity until maturation and an increase thereafter [66]. High 
respiration in younger fruits results in the production of oxidative reactive oxygen 
species which triggers the antioxidant enzyme system to protect the cells, hence 
high levels and activity of the enzymes [67, 68]. Changes in tannins content during 
seed development has been reported as an indicator for attaining good quality seed, 
as [62] observed highest tannins content in seeds of solanum aethiopicum cultivar 
Oforiwa harvested at physiological maturity (62DAA) and was strongly correlated 
with germination percentage, germination index and mean daily germination. 
Tannins is an antioxidant and thus improves cell wall integrity and protects it from 
degradation. Condensed tannins, a group of flavonoids were observed to increase 
throughout seed development in common bean and decreased after seed matura-
tion [69]. A study in Magnolia zenii Cheng revealed a significant increase in soluble 
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sugar, protein and lipid content of seed between 30 to 165 DAF [70]. In capsicum 
baccatum, [51] observed that soluble protein content increased by 66% from 10 to 
40 DAA and remained unchanged until last harvest at 80DAA while neutral lipids 
content increased 14-fold between 10 and 30 DAA, reduced from 30 to 60 DAA and 
later increased until 80 DAA. The same authors reported that starch content was very 
high at the beginning of seed development, but decreased until 30DAA, and later 
increased until 60DAA, and remained unchanged thereafter until last harvest at 80 
DAA. Starch serves as a temporary carbon storage during early seed development and 
constitutes to seed reserve biosynthesis [71, 72]. Non reducing sugars were observed 
to increase throughout seed development until 60 DAA with a slight decline until 80 
DAA in capsicum baccatum seeds while total soluble sugars and total free amine acids 
showed opposite trend, but were very high at the beginning of seed development 
[51]. As seed undergoes desiccation during late maturation, a considerable amount 
of water is lost which has a potential to cause damage of cell membrane and thus 
affecting its stability. However, nonreducing sugars binds to the hydrophilic heads of 
the membrane lipids to replace the lost water and hence stabilize the cell membrane 
of the seed [73]. Biochemical changes during seed development have been used as 
markers for determination of physiological maturity and seed harvest maturity stage 
[51, 52, 74]. Antioxidant enzyme activity, electrical conductivity, accumulation of 
tannins, total sugars, total proteins and lipids have been widely used to characterize 
seed development and maturation in a number of crops. Using metabolites accumula-
tion, storage reserve and seed dry weight, and moisture loss during seed development 
of capsicum baccatum, [51] were able to recognize the three seed development stages 
of histodifferentiation, reserve deposition and maturation drying. A study evaluated 
three S. melongena L. varieties ie Serbian variety, Italian variety and Chinese variety, 
through seed ripening phases of commercial ripeness, semi ripeness and full ripe-
ness [75]. The authors reported increase in seed proteins during seed development 
with the highest protein accumulation at the full ripeness stage corresponding to 75, 
90 and 110 DAA in Serbian, Italian and Chinese variety respectively. The same seed 
development stage also had highest seed germination for the three varieties. Phytic 
acid, the seed storage reserve of phosphorus [76] is another important compound for 
early seedling growth. Phytic acid binds with metallic cations to form phytate which 
is hydrolyzed by phytase enzymes during germination to release inorganic phospho-
rus and other mineral elements [77–79]. About 30–80% of seed phosphorus reserve 
is stored in the form of phytate [80]. High seed phosphorus content is reported to 
have a strong positive and significant correlation with the seed vigor [81]. A slight 
decrease of inorganic phosphate (Pi) throughout seed development up to 30 DAA 
was observed in rice both in the endosperm and aleurone layers while phytic acid 
content showed an increasing trend particularly in the aleurone layers peaking at 30 
DAA [76], suggesting assimilation of Pi into phytic acid during seed development 
and maturation. In Bambara groundnut, [82] observed a gradual increase in seed 
phosphorus concentration from 14 DAA to 42 DAA and a sharp increase up to 62 
DAA in all the four landraces evaluated. The authors also reported a strong correla-
tion between seed phosphorus content and phytic acid. Similarly, a strong correlation 
between seed phosphorus concentration and phytic acid was reported in chickpea 
[83] and soybean [84]. Other studies have also shown that phytic acid accumulate 
in the seed during maturation phase in cowpea [85], chick pea [86] and mungbean 
[87]. Up to date, fewer studies have related biochemical markers to physiological seed 
quality. Accumulation of seed metabolites and storage reserves that constitute seed 
quality have not been well correlated with physiological state of the seed. Relating 
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biochemical markers with morphological and physiological markers is important to 
give a strong justification on the seed harvest maturity period when maximal seed 
quality can be attained. The seed storage reserves (phytochemicals) play very impor-
tant roles during seed germination when the seedling is not receiving any external 
input and has low photosynthetic capacity. These reserves are hydrolyzed upon 
reactivation of metabolic enzymes and are channeled to the growing regions of the 
seed during germination, thus constituting to seed vigor and establishment of strong 
and healthy seedlings.

5. Conclusion

Understanding of seed development and maturation is very important in produc-
ing good quality seeds in a seed system. Harvesting of seed before physiological 
maturity results in poor quality seeds due to immature embryo while very late har-
vesting results in seed aging and deterioration which lowers seed quality. However, 
controversies exist among several authors on the concept of physiological maturity. 
Some authors argued that seed harvesting at PM is not practical and economical in 
some species which maintain high seed moisture content at PM, thus they suggest 
that seed harvesting should be delayed for some time after PM to reduce seed damage 
especially for mechanical harvesting. For seeds borne in fleshy fruits, seed matura-
tion can continue during postharvest ripening which improves seed quality. Several 
markers of physiological maturity including maximum dry matter accumulation, 
fruit color, leaf color and seed moisture content have been identified. To effectively 
study seed development, flowers should be tagged at anthesis and fruit or seed should 
be harvested at different times to trace seed germination and vigor characteristics, 
and accumulation of seed storage compounds and phytochemicals during seed 
development stages. However, several other factors other than seed development and 
maturation affect seed quality. This includes after ripening, production environment 
and nutrition of the mother plant, post-harvest management related to storage, and 
drying. During seed production, good management is required to reduce stress on the 
mother plant especially during seed filling, as most metabolites and phytochemicals 
that contribute to seed quality are accumulated in the seed during this stage. After 
seed filling, no more accumulation of dry matter occurs in the seed, thus irrigation 
and fertilizer application are not necessary. Seed development and maturation is a 
complex process involving many phytohormones, genes as well as transcriptional 
factors that play various roles at every development stage right after pollination, to 
development of embryo and other essential seed structures, accumulation of storage 
reserves and attaining physiological maturity, maturation and development of desic-
cation tolerance.
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Chapter 3

Nitrogen Assimilation and 
Translocation in Arabidopsis Seeds
Rowshon A. Begam and Michael Deyholos

Abstract

In plants, assimilated nitrogen travels mostly as amino acids. Amino acids travel 
from sources to sink tissues through cellular and organelle membranes such as 
plasma membrane, chloroplast membrane, mitochondrial membrane, and tonoplast 
membrane via facilitated or active transport. Membrane transporter proteins such as 
amino acid transporters mediate the transport. These transporters, as they facilitate 
the movement of amino acids through membranes, also regulate the distribution of 
amino nitrogen. Understanding the organ and tissue-specific distribution of amino 
acid transporters, their substrate affinity, and transport mechanism can help us 
understand the source-sink distribution of amino nitrogen in plants. With advance-
ments in plant science research, we understand the amino acid distribution route in 
theory, but we have yet to identify many of the necessary amino acid transporters 
that enable this route. This chapter discusses the source-sink distribution of amino 
acids with a specific focus on seeds and lists the amino acid transporters in this route, 
characterized to date, in the model plant system, Arabidopsis thaliana.

Keywords: amino acids, amino nitrogen, seed nitrogen, amino acid distribution,  
seed nitrogen, seed storage nitrogen, Arabidopsis, amino acid transporter

1. Introduction

Plants take up organic nitrogen in the form of amino acids and peptides. However, 
the predominant forms of nitrogen taken up by plants are nitrate (NO3

−) and ammo-
nium (NH4

+). Nitrogen, taken up as nitrate or ammonium, is assimilated into amino 
acids glutamine or glutamate [1]. When nitrogen is taken up as nitrate, it is reduced to 
ammonium before being assimilated into amino acids. Assimilated nitrogen travels as 
amino acids from the source to sink tissues.

The movement of amino acids from sources and sinks requires them to cross 
cellular and organelle membranes such as plasma membrane, chloroplast membrane, 
mitochondrial membrane, tonoplast membrane, and peroxisome membrane. Amino 
acids do not cross membranes through passive diffusion. When crossing a mem-
brane, they require facilitated or active transport by membrane transporter proteins. 
These transporter proteins are known as amino acid transporters. Higher plants, or 
angiosperms, are complex organisms that have specialized organs and tissues for the 
uptake, transport, and storage of amino acids. This complex arrangement of sources 
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and sink tissues requires a complex transport system involving amino acid export, 
import, antiport, or homeostasis mechanisms.

Additionally, amino acid transporters exhibit a preference for some amino acids 
over others. We explain this preference with terminologies such as “substrate affin-
ity” and “substrate specificity.” Amino acids of various charges and sizes such as 
acidic, basic, small neutral, or large neutral may require amino acid transporters with 
substrate affinity and substrate specificity for each kind to transport them across 
membranes. There are 20 common amino acids that are found in both plants and 
animals. These amino acids mainly function as building blocks for protein synthesis. 
In addition to the 20 common amino acids, plants produce several other nonproteino-
genic amino acids for specialized functions.

The complexity of the amino acid transport process and the diversity in the types 
of amino acids require plants to have many amino acid transporters. Table 1 shows 
the number of annotated amino acid transporters identified to date in selected 
monocot and dicot plant species that are fully sequenced. These numbers continue to 
evolve as more plant genomes are sequenced and the tools for phylogenetic analysis of 
gene sequences advance.

Arabidopsis thaliana, a dicotyledonous model plant species, has 85 to over 100 
putative amino acid transporters [2, 3]. While these transporters facilitate the move-
ment of amino acids through membranes, they also regulate the distribution of amino 
acids and, thus the partitioning of amino nitrogen. Understanding the distribution of 
amino acids in plants requires understanding the organ and tissue-specific distribu-
tion of amino acid transporters with their substrate affinity, substrate specificity, and 
transport mechanism. With advancements in plant biology research, we understand 
the amino acid distribution route in theory, although many of the necessary amino 
acid transporters in this route are obscure. This chapter focused on the amino nitro-
gen translocation and distribution in Arabidopsis thaliana with a specific focus on 
amino acid translocation to seeds and specifies the amino acid transporters in this 
route that are functionally characterized to date.

Amino acids have diverse functions in plants beyond their role in protein 
synthesis, such as signaling molecules, osmolytes, antioxidants, precursors for 
secondary metabolites, and regulators of gene expression. This chapter will discuss 
translocation, storage, and distribution of amino acids in seeds regardless of the 
specific functions these amino acids may conduct. The number and classification 
of amino acid transporters in plants continue to evolve as genome sequencing and 
annotation technologies advance, and as new research is conducted in this area. 

Plant species Total number of annotated amino acid 
transporters

Reference(s)

Arabidopsis thaliana 85–100 [2, 3]

Wheat (Triticum aestivum) 283 [4]

Rice (Oryza sativa L.) 85 [5]

Soybean (Glycine max) 189 [6]

Tomato (Solanum lycopersicum) 88 [7]

Potato (Solanum tuberosum L) 72 [8]

Table 1. 
Annotated amino acid transporters in Arabidopsis thaliana and selected crop species.
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The scope of this chapter is limited to the functionally characterized or annotated 
amino acid transporters to date.

2. Source and sink tissues for amino acids in Arabidopsis thaliana

2.1 Amino acid sources and sinks in the whole plant

It is hard to distinguish organs or tissues as the sole source or sink of amino acids. 
Most tissues participate in both import and export of amino acids throughout their 
developmental stages. We call the tissues or organs that play as net exporters of amino 
acids “source tissues” and the tissues or organs that play as net importers of amino 
acids “sink tissues.” In general, photosynthetically active green tissues are sources of 
amino acids. Amino acids are produced primarily in photosynthetically active leaves 
and, to a lesser extent, in other green tissues such as stems and flowers, and in roots. 
Senescing leaves do not produce amino acids, but as they die and decay, they recycle 
the cellular components and become a source of amino acids. Once amino acids are 
synthesized or recycled in the source tissues, they are transported to various parts of 
the plant where they are needed. Sink tissues in plants include actively growing tissues 
such as shoot and root apex, developing seeds, and fruits. These tissues have a high 
demand for amino acids for protein synthesis and other metabolic processes, seeds 
being the final sink that stores amino acids as a storage protein.

2.2 Amino acid sources for seeds

At the postfertilization stage in Arabidopsis, green carpel cells in the fruit develop 
distinctive features with well-defined stomata in the epidermal cells for gas exchange 
and three layers of mesophyll tissue with photosynthetic capacity [9]. Due to the pro-
fusion of open stomata in green fruits, the transpiration pull of xylem sap can deliver 
amino acids from roots, green leaves, or senescing leaves to the green carpel cells. 
Fruit carpel cells, therefore, may play an important role in seed nutrition. However, 
as the stream of the xylem sap is stronger toward the leaves due to the higher rate of 
transpiration in the leaves, amino acids loaded in the xylem from the root are translo-
cated predominantly to the leaves, where they are temporarily stored or metabolized 
before being transported to the seeds [10]. Green leaves and roots serve as sources of 
amino acids for seeds during the early reproductive stages. However, most species, 
including Arabidopsis, accumulates seed storage compounds concomitantly with the 
acquisition of dormancy and desiccation tolerance [11]. During this stage, recycled 
amino acids in leaves derived from photorespiration and leaf senescence feed the 
reproductive sink tissues [12]. During seed maturation, up to 80 per cent of seed 
amino acids may come from leaves, especially from the senescing leaves [13, 14].

3. Amino acid transporters in Arabidopsis siliques and seeds

The most recent report suggests that there are more than 100 annotated amino 
acid transporters in Arabidopsis thaliana (Table 1), although the number varies in 
other published reports [3]. Based on expression analysis, 22 of these amino acid 
transporters are expressed in siliques and seeds (Table 2). These transporters mostly 
belong to the cationic amino acid transporter (CAT) family, and usually multiple 
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amino acids move in and out transporter (UMAMIT) family, followed by the amino 
acid permease (AAP) family. Acquisition of amino acids in seeds can be influenced 
by any amino acid transporter expressed in the source and sink tissues or along 
the vascular transport path. However, the CAT, UMAMIT, and AAP families, with 
notable members expressed in seeds and siliques, appear to have significant impor-
tance in amino acid transport to seeds. There was a gap in understanding the amino 
acid export process in plants until the recent identification of the UMAMIT family. 
Members of this family are capable of both importing and exporting amino acids and 
are localized in both plasma and organelle membranes [22–24].

Name(s) Gene ID/
Locus

Transporter 
family

Tissue 
expression

Subcellular 
localization

Possible 
transport type

AAP1/NAT2 AT1G58360 AAP Siliques PM Im

AAP2 AT5G09220 AAP Siliques – Im

AAP5 AT1G44100 AAP Siliques – Im

AAP8 AT1G10010 AAP Silique and seed PM Im

BAT1/GABP AT2G01170 ACT Silique MM Ex/Im

CAT1 AT4G21120 CAT Silique PM Im

CAT2 AT1G58030 CAT Silique TM –

CAT3 AT5G36940 CAT Silique ER Im

CAT4 AT3G03720 CAT Silique TM –

CAT5 AT2G34960 CAT Silique PM Im

CAT6 AT5G04770 CAT Silique and seed PM Im

CAT8 AT1G17120 CAT Silique TM and PM Im

LAT4/PUT2/
PAR1

AT1G31830 PHS/LAT Silique and seed GA Ex/Im

LAT5 AT3G19553 PHS/LAT Silique ER Ex/Im

LHT1 AT5G40780 LHT Silique PM Im

UMAMIT11 At2g40900 UMAMIT Silique PM Ex/Im

UMAMIT14 At2g39510 UMAMIT Silique PM Ex/Im

UMAMIT18/
SIAR1

At1g44800 UMAMIT Silique PM Ex/Im

UMAMIT24 At1g25270 UMAMIT Seed (coat) TM Ex/Im

UMAMIT25 At1g09380 UMAMIT Seed 
(endosperm)

PM Ex/Im

UMAMIT28 At1g01070 UMAMIT Silique (mature) PM Ex/Im

UMAMIT29 At4g01430 UMAMIT Silique (young) PM Ex/Im

AAP, amino acid permease; LHT, lysine histidine transporter; CAT, cationic amino acid transporter; ACT, amino 
acid choline transporter; PHS, polyamine H + —symporters; LAT, L-type amino acid transporter; UMAMIT, usually 
multiple amino acids move in and out transporter; PM, plasma membrane; ER, endoplasmic reticulum; GA, Golgi 
apparatus; MM, mitochondrion membrane; TM, tonoplast membrane; –, unknown; Ex, export; Im, import.
Source: [3, 15–21] and references therein.

Table 2. 
Annotated amino acid transporters expressed in Arabidopsis siliques and seeds. The transporters listed in this table 
may also express in other organs and tissues.
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4. Amino acid mobilization to seeds

Mobilization of amino acids from source tissues to sink tissues involves two steps: 
intracellular movement through organelle membranes and cell-to-cell or long-
distance movement through plasma membrane.

4.1 Intracellular movement of amino acids through organelle membrane

4.1.1 Chloroplast

Primary assimilation of inorganic nitrogen and reassimilation of recycled 
nitrogen into amino acids occur through a series of chemical reactions taking place 
in both cytosol and plastid or chloroplast [25, 26]. During primary assimilation, 
NO3

− taken up by plants is transported to plastids or chloroplast where it is reduced 
to NH4

+ and subsequently assimilated into glutamine via glutamate. Reassimilation 
of recycled NH4

+, derived from photorespiration or protein hydrolysis, also occurs in 
the chloroplast [25, 26]. During photorespiration in C3 plants, such as Arabidopsis, 
the 2-carbon compound produced through the oxygenase activity of Rubisco needs 
to be converted to a 3-carbon compound so that the photosynthetically fixed carbon 
can be rescued and fed back into the Calvin cycle (Figure 1). This occurs through a 
complex series of biochemical reactions taking place in the chloroplast, peroxisome, 
and mitochondria. The 2-carbon compound (2-phosphoglycolate) finally leads to the 
formation of glycine and a 3-carbon compound (3-phosphoglycerate) [27, 28]. During 
this process, both nitrogen and carbon are released in the forms of NH3 and CO2 in 
the mitochondria. This photorespiratory NH3 is recaptured by the GS2/Fdx-GOGAT 
pathway in the chloroplast. Thus, chloroplasts/plastids are vital organelles for nitro-
gen assimilation and remobilization [29, 30]. Nitrogen, stored in the forms of storage 
proteins, peptides, or amino acids, is mobilized primarily in the form of amino acids. 
Most amino acids required for protein synthesis are produced in the chloroplast/
plastid. Plants follow a basipetal growth pattern, where developing tissues depend 
on mature tissues for the supply of amino acids for protein synthesis. Amino acids, 
synthesized in the chloroplast/plastid in mature cells, are subject to both intracellular 
and long-distance transport. Amino acids biosynthesized in the chloroplast/plastid 
cannot cross the inner and outer membrane without a membrane transporter or a 
channel protein. Plants thus need both amino acid export- and import systems in the 
inner and outer membranes of chloroplast. In the outer membrane of the chloroplast, 
Outer Envelope Protein 16 and 24 (OEP16 & 24) facilitate amino acid transport. In 
Arabidopsis, several OEP16- and OEP24-family genes have been identified that may 
mediate amino acid transport through the outer membrane of the chloroplast/plastid 
[30–32]. Microarray analysis and in silico subcellular localization analysis have identi-
fied putative amino acid transporters that may be localized in the inner chloroplast 
membrane [33, 34]. A Glutamate/Malate antiporter (DiT2 coupled with DiT1) in the 
inner chloroplast membrane mediates glutamate export from the stroma in exchange 
for malate (Figure 1) [35–37]. Not many amino acid transporters, with a net export 
capacity, in the inner chloroplast membrane are known to date.

4.1.2 Mitochondria

Plant mitochondria are also important in intracellular nitrogen metabolism, 
including the synthesis and catabolism of amino acids [38, 39]. Mitochondria, 
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together with chloroplasts and peroxisomes, manage both photorespiration and 
photosynthesis along with many other metabolic pathways [40]. Mitochondria also 
play an important role in the remobilization of storage nitrogen during seed germi-
nation [41]. Characterization of transporter proteins involved in the transport of 
nitrogen compounds in the inner and outer mitochondrial membrane will contribute 
to a better understanding of the role of mitochondria in nitrogen metabolism and 
distribution. More than 50 genes in Arabidopsis have been annotated to encode 
mitochondrial carrier proteins, and several proteins have been speculated to encode 
amino acid transporters and localized in the inner and outer envelope of mitochon-
dria [41–43]. In the inner mitochondrial membrane, two basic amino acid carriers, 
BAC1 and BAC2, have been experimentally shown to be involved in amino acid 
transport [44, 45]. These carrier proteins mediate arginine/ornithine (or Citrulline) 
antiport in the inner mitochondrial membrane (Figure 1). To exchange glycine and 
serine with the peroxisome during photorespiration, there might be an exchanger 

Figure 1. 
A simplified model of intracellular amino acid transport shows the movement of amino acids in- and out of 
membrane-bound organelles in a plant cell. Based on the available information to date, amino acid transporters 
yet to be identified have been indicated with a ‘?’ mark within a circle. Nitrogen metabolism in chloroplast and 
plastid has been shown together in the same organelle. AA, amino acid; GS, glutamine synthetase; GOGAT, 
glutamate synthase; IM, inner membrane; OM, outer membrane; PM, plasma membrane. Primary assimilation 
of nitrate (NO3

-) takes place in the chloroplast or plastid. Amino acids derived from the primary assimilation of 
nitrogen that occurs through cytosolic GS/GOGAT are imported into the chloroplast or plastid for the biosynthesis 
of other amino acids. All amino acids synthesized in the chloroplast or plastid are exported into the cytosol for 
cellular use or translocation. Channel proteins OEP16 & 24 in the outer envelope mediate amino acid transport. 
In the inner membrane, glutamate/malate antiporter (DiT2) mediates glutamate export. No other amino acid 
transporters are known to mediate amino acid import or export through the inner membrane. Amino acids 
derived from protein hydrolysis are catabolized in the mitochondria. Reserve nitrogen enters uni-directionally 
into the mitochondria to be catabolized during seed germination. During photorespiration, glycine produced in 
the peroxisome enters mitochondria where it is converted to serine and exported back to peroxisome. In the outer 
envelope, porins mediate amino acid transport. In the inner membrane arginine/ornithine antiporter (BAC1, 2) 
and a bi-directional transporter (GABP) are known so far. In the tonoplast, temporary storage of amino acids 
and subsequent release requires amino acid transporters with both export and import capacity. Arabidopsis 
CAT2, 4, & 8, LHT4, AVT3, UMAMIT15 & 24 are localized in the tonoplast membrane and may function as 
vacuolar amino acid transporters. Three peptide transporters (PTR2, 4, 6) are also localized in the tonoplast 
membrane with unknown transport direction.



43

Nitrogen Assimilation and Translocation in Arabidopsis Seeds
DOI: http://dx.doi.org/10.5772/intechopen.1002410

or a glycine/serine antiporter in the inner mitochondrial membrane that is yet to be 
identified. A report has shown that the GABP (also known as BAT1) in Arabidopsis 
is localized in the mitochondrial membrane [46]. The transporter mediates both the 
import and export of amino acids, suggesting that it might be a bi-directional facilita-
tor [21]. The outer membrane of mitochondria is permeable to solutes up to a size of 
4–5 kDa through porins [47]. The average size of an amino acid is much smaller than 
5 kDa. The mitochondrial porins in the outer membrane, also called VDAC (Voltage 
Dependent Anion Channels), that were characterized as relatively nonspecific general 
diffusion pores may mediate amino acid transport through the outer envelope [48]. 
Movement of amino acids through porins in the outer envelope of mitochondria has 
yet to be studied in plants.

4.1.3 Tonoplast

Amino acids are temporarily stored in the vacuole and subsequently released into 
the cytoplasm. This process requires amino acid transporters in the tonoplast mem-
brane with export and import capacity. The Arabidopsis CAT2, 4, & 8, LHT4, AVT3, 
UMAMIT15 & 24 are localized to the tonoplast membrane and may function as vacu-
olar amino acid transporters (reviewed in [3, 15]). Arabidopsis PTR2, 4, & 6, mem-
bers of the PTR/NRT1 family, were shown to be localized in the tonoplast membrane 
and are candidates to mediate peptide transport in and out of the tonoplast [49].

4.2 Amino acid translocation from source tissues to seeds

4.2.1 Loading amino acids from leaf mesophyll cells into the phloem minor vein

Regardless of the source, amino acids travel to seeds via both xylem and phloem 
but are delivered into seed sink tissues via phloem minor veins [50, 51]. Loading amino 
acids from leaf mesophyll cells into the phloem minor vein may occur both symplasti-
cally and apoplastically. While symplastic loading via the plasmodesmata can be 
rate-limiting [52], it is improbable in some species since the solute concentration in 
sieve elements and companion cells in the phloem can be much greater than those in the 
surrounding source cells. High solute concentration enables the hydrostatic pressure 
in the phloem that drives long-distance transport of solutes [52–55]. Thus, in many 
species including Arabidopsis, loading assimilates into the phloem occurs apoplastically 
[52, 56]. In the apoplastic loading, amino acids are exported from mesophyll cells into 
the apoplasm, followed by active uptake into the sieve element-companion cell complex 
of the phloem [52, 57–60]. While amino acid exporters in leaf mesophyll cell plasma 
membrane are obscure, published reports suggest that Arabidopsis AAP2, 5, & 8, CAT6 
& 9, ProT1, and LAT5 are either expressed in the phloem or demonstrated to have a role 
in phloem loading [16, 19, 51, 61–66]. The LAT4 is expressed in green carpel cells in the 
silique with a possible role in mobilizing amino acids from these tissues toward seeds 
[20]. The recently identified UMAMIT facilitators (UMAMIT 14, 18, 28, &29) that are 
expressed in phloem may also have a role in phloem loading and unloading [15, 22]. 
Figure 2 shows the possible role of the amino acid transporters characterized to date.

4.2.2 Phloem-xylem-phloem exchange

Amino acids, loaded into the phloem from source tissues in the leaf, may 
undergo transfer from phloem to xylem for upward translocation. The importance 
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of this phloem-xylem exchange for amino acid distribution within plants has 
been demonstrated in several physiological studies [67–69]. However, at the end 
of the long-distance transport through the xylem, amino acids are loaded back 
to the phloem because in Arabidopsis, amino acids are delivered to seeds via the 
phloem [52]. Exchanges of amino acids from phloem to xylem or xylem to phloem 
are an exchange between symplasm and apoplasm, and thus require amino acid 
transporters in the plasma membrane of phloem companion cells with a net export 
or import capacity. In Arabidopsis, CAT1, 6, & 9, AAP2, 3, 5, 6, & 8, ProT1, 
UMAMIT14, 18, 28, 29 are either expressed in the vascular tissues or demonstrated 
to have a role in phloem-xylem-phloem exchange of amino acids. For example, the 
expression of the AAP2 [51, 70] along the vascular transport strand in the stem 
indicated its involvement in active exchange of amino acids between the xylem 
and phloem. The AAP2 is expressed in the phloem in the stem, and in funiculi in 
the silique [70]. It is an import transporter and, therefore, plays a potential role in 
xylem-to-phloem loading and delivering amino acids to the seed [51]. The AAP6 is 
expressed in the xylem parenchyma, mediating amino acid import in heterologous 
system [17]. An in-planta study showed that knocking out the AAP6 reduces total 
amino acid concentration in the phloem suggesting an indirect role in loading amino 
acids into the phloem [71].

Figure 2. 
A simplified model of amino acid transport from source to sink tissues in Arabidopsis thaliana. The 
dark circles show the positions of one or more amino acid transporters involved in the route with import, 
export, or bi-directional facilitator capacity. This figure represents the plasma membrane crossing between 
symplasm and apoplasm for amino acid translocation from source tissues to the seed embryo. The orange 
arrows indicate directions of amino acid transport. Transporters for other forms of nitrogen are not shown in 
this figure.
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4.2.3 Loading into the seeds

In Arabidopsis siliques, phloem terminates at the funiculus, and the seed 
outer integument cells work as a symplastic extension of the funicular phloem 
[72]. However, transferring amino acids from the outer integument to the inner 
integument, from the inner integument to the embryo, and from the embryo to 
the endosperm, may be apoplastic. The seed embryo is separated from the mother 
plant phloem by three apoplastic borders that require amino acid transporters with 
export and import capacity at each border to transfer amino acids from the funicular 
phloem into the embryo [72]. The recently identified UMAMIT 11, 14, 28, & 29 are 
expressed in siliques in tissues adjacent to phloem from which amino acids are usually 
exported. Knocking out these genes results in accumulating free amino acids in fruits 
and producing smaller seeds. These plasma membrane-localized facilitators are a 
good candidate to facilitate amino acid export and import in seeds [3, 15, 22]. The 
UMAMIT24 is expressed in the chalazal seed coat but is localized in the tonoplast 
membrane [23]. Its direct role is likely in the intracellular movement of amino acids. 
The UMAMIT25 is a plasma membrane-localized transporter expressed in the seed 
endosperm suggesting a possible role in amino acid transfer between embryo and 
endosperm [23]. The AAP8 plays a role in importing amino acids into the endosperm 
and supplying the developing embryo with amino acids during early embryogenesis 
[73]. The Arabidopsis AAP1 is expressed in the developing embryo during embryo 
morphogenesis and early maturation in the filial tissues and plays a role in importing 
amino acids into the embryo [70, 74–76]. Knocking out the AAP1 gene caused amino 
acids to accumulate in the seed coat/endosperm [76]. The CAT6 is expressed in the 
seed with a possible role in amino acid distribution within the seed [64]. The LAT5 is 
expressed in phloem and in siliques, and it possibly has a bi-directional amino acid 
transport capacity. However, knocking out this transporter caused increased nitrogen 
content in seeds [19]. It probably plays a role in amino acid homeostasis rather than 
importing amino acids into seeds. In Arabidopsis, the endosperm degenerates during 
early seed maturation, and the embryo becomes the final sink of storage protein, 
while in other species, the endosperm serves as the source of nutrients during seed 
germination [77]. Regardless, the transfer of amino acids from the endosperm into 
the embryo is important in terms of seed protein content and yield achievement. 
Identification of amino acid transporter with net export capacity in the inner and 
outer integument cells will allow a clearer understanding of amino acid distribution 
mechanism during seed maturity.

5. Conclusion

Crop improvement research strives to understand the amino nitrogen (i.e., amino 
acids) distribution process in plants primarily to improve crops’ nitrogen use effi-
ciency and grain nutritional quality by improving the protein content in seeds. With 
advancements in plant science research, we understand the amino acid distribution 
route in theory but many of the necessary amino acid transporters that enable this 
route are still unknown. Identification and characterization of amino acid transport-
ers in plants have advanced significantly in the recent decade, although many more 
are still unknown. In Arabidopsis, there are at least 100 annotated amino acid trans-
porters, with more than 20 expressed in the seeds and siliques alone. This suggests 
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a robust and complex process regulating plant amino acid distribution and protein 
storage in seeds. The process is further nuanced at various developmental stages or 
as plants respond to biotic and abiotic factors. We need to understand the organ and 
tissue-specific distribution of all amino acid transporters, their substrate affinity, and 
transport mechanism to understand the source-sink distribution of amino acids in 
plants fully.
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Abstract

The most significant food on earth is rice. The nutrients included in rice include 
thiamine, riboflavin, niacin and tocopherol, as well as protein, fat, crude fiber, car-
bohydrates and minerals. It contributes significantly to human health by preventing 
diseases like high blood pressure, cancer, Alzheimer’s, heart disease, skin conditions 
and dysentery. As a result, rice is an excellent option for natural sources of antioxi-
dants and other therapeutic characteristics, and it may have the capacity. The magical 
chemistry enlightens the insights of functional groups, which makes it a potent food. 
The review also discusses how the nutritional content of rice seed changes as it ages.

Keywords: rice seed, nutritional importance, chemistry and human health,  
bioactive compounds, antioxidants

1. Introduction

Over 50% of people on earth eat rice as their primary meal. In 17 Asian and Pacific 
island nations, 9 North and South American nations, and 8 African nations, it is the 
main dietary energy source. In comparison to wheat’s 19% and maize’s (corn’s) 5% 
contributions to the world’s dietary energy supply, rice contributes 20% [1]. The 
amount of total free phenolics and total free flavonoids in the growing rice grains is 
rather high, which is connected well with their reduced capacity. The growing rice 
grains would be a rich source of phytochemicals because they have significant levels 
of free and soluble-ester ferulic acids. For billions of people worldwide, rice is a staple 
diet. It is a valuable source of fiber, carbs and numerous other nutrients. Humans have 
been eating rice since the Stone Age. Chinese archeologists discovered the earliest rice 
in 10,000 BC [2]. A cereal grass with nodes and internodes, rice develops as upright 
stems. It has ovate-acuminate, parallel-vented leaves that are oriented lengthwise and 
have short petioles. Two bracts that are connected at their roots form a “keel” around 
the spikelets, which are surrounded by two bracts [2]. Endosperm, bran and germ are 
the three components of a rice grain [2]. The grain itself is high in starch but low in 
fat or protein, but it still has all of the essential amino acids that humans require for 
nourishment; The World Factbook 2018 [3].



Seed Biology – New Advances

54

Rice seeds are tiny, oval-shaped grains that sprout on many long-grass species of 
the Poaceae (or Gramineae) family of grasses, including Oryza sativa, Oryza nivara, 
Oryza rufipogon, etc. Today, around 125 types of rice are cultivated throughout the 
world, each with unique properties and applications depending on their botanical 
categorization. Jasmine rice, which is sourced from Asia, is the most popular type 
of rice consumed worldwide. Basmati rice is sourced from India, and arborio rice is 
sourced from Italy. Indica, vannarica, paragrass (Vaccinium), and other varieties of 
rice are also produced all over the world. About 40% of cooked rice’s weight is made 
up of rice bran, which is highly nutritious. Starch, protein, fat and dietary fiber are 
the main ingredients of rice bran [4]. Rice bran contains a wide range of antioxidants 
including phenolic compounds such as flavonoids and tannins which have antioxi-
dant properties [5]. Due to their ability to neutralize free radicals that harm cellular 
structures, phenolic compounds are regarded as potent antioxidants [6]. In addition 
to phenolics, rice bran also contains other types of antioxidants such as carotenoids 
which are responsible for providing yellow coloration in cooked rice products [7].

Rice seed is a very important part of the rice plant. It contains many essential 
nutrients for human consumption, and it also has many health benefits. Rice seed is 
composed of two major components: the endosperm and the bran. The bran con-
sists mainly of pectin, cellulose, hemicellulose, lignin and some proteins, while the 
endosperm consists mainly of starch but also contains other compounds such as oil 
globules, amylopectin and others.

Rice seeds contain three different types of chemical substances: phytochemicals 
(substances generated by plants), secondary metabolites (substances created by 
microbes) and xenobiotics (compounds not produced by plants or microorgan-
isms). Phytochemicals are seen as being more significant than secondary metabolites 
or xenobiotics since their positive effects on health outweigh their negative ones. 
Secondary metabolites can cause toxic effects if consumed in high amounts, but this is 
not true for phytochemicals since they have beneficial effects even when consumed in 
high amounts. Carotenoids have also been identified in rice seed (Oryza sativa). The 
primary carotenoid in rice is beta-carotene, which gives rice grains their orange hue. 
Beta-cryptoxanthin, gamma-carotene and alpha-carotene are other carotenoids that 
are present [8]. Beta-cryptoxanthin, which is abundant in carrots and is known for its 
capacity to absorb light energy, has been found to be a potent antioxidant [9]. Rice is a 
very nourishing food that is full of many vital nutrients like fiber, carbs, vitamins and 
minerals. More than half of the daily requirements of the most important nutrients 
for humans are provided by rice, which is also a fantastic source of energy [10]. It has 
been demonstrated that they possess antioxidant qualities, which may aid in shielding 
the body from harm brought on by free radicals. Highly reactive chemicals known 
as free radicals have the potential to harm biological tissues and cells. Antioxidants 
function as free radical scavengers, preventing cell damage and preserving the body’s 
health.

2. Health benefits of Rice

Rice is a very healthy food that can provide many health benefits for those who 
consume it regularly. Some of the health advantages of eating rice include the follow-
ing: lowering cholesterol fibre found in rice contributes to a reduction in blood choles-
terol levels. Enhanced Digestion Increased consumption of fibre-rich foods, such as 
brown rice, will help digestion since they will keep you fuller longer, causing you to 
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consume fewer calories than usual. This means that increasing your intake of whole 
grains will prevent your weight from rising as quickly because you will consume fewer 
calories than normal, which also lowers your risk of heart disease. The health benefits 
of rice and the avoidance of diseases including high blood pressure, cancer, skin care 
issues and dysentery are significant. Even tiny amounts of red rice can help you lose 
weight. It keeps us full. Figure 1 and Table 1 show the health benefits and nutrient 
content of rice per 100 g dry weight, respectively.

3. Chemistry of rice seeds

Starch, protein and fiber are all present in the rice grain on their own. The starch 
level, which has roughly 70% of its calories from carbohydrates, is the primary factor 
that makes rice so nutritious. When combined with other nutrients like protein and 
fiber as part of a balanced diet, this carbohydrate content gives the body energy. 
Additionally, rice contains significant amounts of manganese, which supports bone 
health by preserving strong bones and teeth. According to research, rice contains 
phenolic, polyphenolic, flavonoid, anthocyanin, anthocyanidin, tannin, vitamin E, 
tocopherol, tocotrienol, oryzanol, ferulate, phytic acid, phytate and other compounds 
that are crucial to the bioactivity of rice seeds [13].

The phenolic chemicals are present in the grain’s cell wall in both a free form and 
an insoluble form. Phenolic chemicals can be divided into mono- and polyphenolics 
based on their structural similarities. It has been demonstrated that phenols contain 
antioxidant capabilities that assist shield cells from damage brought on by free radi-
cals. Highly reactive chemicals known as free radicals have the potential to harm cells 
if they are not eliminated from the body. Antioxidants stop these dangerous chemicals 
from harming your body by removing them before they can cause any harm. Phenols 
have been demonstrated to lessen lipid peroxidation, which is what causes rancidity 
and is excellent for food preservation. The phenolic compounds gallic acid, protocat-
echuic acid (PCA) and vanillic acid are abundant in rice seed [13].

Rice seed growth is significantly influenced by flavonoids. There are a lot of 
phenolic substances in rice seeds, including tannins, phenolic acids, flavonoids and 
stilbenes [13]. Both antioxidant and anti-inflammatory properties are present in 
flavonoids. Because quercetin is one of the most prevalent phenolic chemicals in 
rice seed, we will concentrate on it in this study. It has been suggested that quercetin 
plays a role in the germination, maturation and production of endosperm in the 

Figure 1. 
Health benefits of different in rice seeds.
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development of rice seeds [14]. The relative orientation of different moieties in a 
molecule’s chemical structure determines the metabolic actions of flavonoids and 
their metabolites. Following absorption, flavonoids are converted to smaller phenolic 
compounds in the liver by a process of glucuronidation, sulfation and methylation 
[14]. Figures 2 and 3 enlighten the chemical structure of nutritional components and 
their health importance, respectively. The relative orientation of different moieties in 
a molecule’s chemical structure determines the metabolic actions of flavonoids and 
their metabolites. Following absorption, flavonoids are converted to smaller phenolic 

Nutrients White rice Brown rice Red rice

Water Content % 12.7 37.6 12.4

Energy (KJ) 1736 1548 1426

Protein (g) 8.1 10.4 10.49

Fat (g) 0.8 0.9 0.81

Carbohydrate (g) 91 77.24 70.19

Fiber (g) 1.5 3.2 2.71

Sugar (g) 0.1 0.85 1.25

Calcium (mg) 32 23 18.71

Iron (mg) 0.91 1.47 13.45

Magnesium (mg) 28 143 192.27

Phosphorus (mg) 131 333 297

Potassium (mg) 131 223 128

Sodium (mg) 6 7 4

Zinc (mg) 1.24 2.02 1.91

Copper (mg) 0.25 1.2 0.8

Manganese (mg) 1.24 3.74 1.77

Selenium (μg) 17.2 23.4 18.19

Vitamin C (mg) 0.0 0.0 0.0

Thiamine (mg) 0.08 0.40 0.21

Riboflavin (mg) 0.06 0.09 0.05

Niacin (mg) 1.82 5.09 4.22

Pantothenic acid (mg) 1.15 1.49 1.72

Vitamin A (IU) 0 0.3 0.5

Vitamin E (mg) 0.13 0.9 1.2

Beta-carotene (μg) 0.1 1.2 1.5

Folate (μg) 9 20 23

Saturated fatty acids (g) 0.20 0.2 0.21

Polyunsaturated fatty acids (g) 0.24 0.21 0.31

Here: KJ, Kilo Joule; g, gram; mg, milligram; μg, microgram; IU-International Unit.

Table 1. 
Nutrient content of rice per 100 g dry weight [11, 12].
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compounds in the liver by a process of glucuronidation, sulfation and methylation 
[15]. In addition, free radicals including super-oxide anion (NO) and peroxynitrite 
play important roles in the inflammatory process [16].

4. Changes in chemical properties of rice seeds during aging

Rice qualities like hydration, swelling, solubility, viscosity and pasting alter as it 
ages. The aging process has an impact on the physical and chemical characteristics of 
rice, primarily the physicochemical characteristics that affect cooking and pasting. 
Due to changes in the components and interactions between the components like 

Figure 2. 
Chemical structures of phenolic and flavonoids present different in rice seeds.

Figure 3. 
Health importance of nutrients present in different rice seeds.
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protein, lipid and starch, aging also has an impact on the quality and usefulness of 
rice. Although there is no change in the protein content during storage, the solubility 
of rice in water decreases as a result of the intrinsic albumin’s decreased solubility 
[17]. Contrarily, free amino acids in rice rise with storage [18]. Thus, the higher 
molecular weight peptides are increasing while the lower molecular weight peptides 
are decreasing [19].

The research stated that even after 13 weeks of storage, rice’s amylose and amylo-
pectin quantities do not appreciably change [20]. Some literature has been found that 
an increased water-insolubility of starch and protein in rice with aging, resulting in a 
slower rate of cooking as α-amylase and β-amylase in rough rice decrease significantly 
during storage [17]. Due to the hydrolysis of lipids to form free fatty acids and the oxi-
dation of lipids that may result in hydroperoxides, changes in the lipid profile of rice 
occurred during storage [17]. Free phenolic acids from the rice grain are released dur-
ing storage, resulting in the creation of free fatty acids (FFAs), which deplete impor-
tant antioxidants. It has been discovered that hydroperoxides, carbonyl compounds 
and amylase all interact with FFAs. These processes hasten the oxidation and conden-
sation of proteins, which results in the accumulation of volatile carbonyl chemicals in 
the grain [17]. As a result of aging, the texture of rice becomes harder and less sticky 
compared with fresh rice as it is a complicated process and involves physical, chemical 
and biological changes in rice. It is difficult to address the combined consequences, 
and it is difficult to determine the paddy grains’ nutritional value and food safety. 
The hydrolysis and oxidation of lipids to free fatty acids or peroxides, which cause the 
increase in acidity and have a substantial impact on the flavor of rice, are also linked 
to the corrosion of rice flavor [17]. Research has also shown that rice seeds stored 
at ambient temperature show a significant change in textural properties over those 
stored at cold temperature [21], and remarkably, Tananuwong and Malila; 2011 [22] 
observed that after 12 months of storage at ambient conditions, hardness of hulled 
rice, when cooked, increases.

5. Conclusion

Rice is a powerhouse of antioxidants, vitamins and minerals like zinc, calcium, 
magnesium, zinc and sodium, which contribute greatly to overall well-being. Rice is 
also low on glycaemic index, which means that it can control blood sugar. The coro-
navirus pandemic has made us realize the importance of lung health like never before. 
With the contagious infection still lurking around, people with a history of lung dis-
eases like asthma and respiratory problems are at high risk. Including rice in the daily 
diet improves lung capacity, with its copious amounts of magnesium and selenium. 
Rice not only improves and regulates breathing patterns but also improves oxygen 
consumption and circulation to each cell in the body. The aging impacts on rice seed 
quality enlighten future research and may further the investigation of techniques 
and alternatives to achieve high-quality rice seeds with minimal processing and for 
preservation of essential quality traits.
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Chapter 5

Seed Production and Handling
of Two Important Conifers Grown
in Kenya
Peter Murithi Angaine, Alice Adongo Onyango and Jesse Owino

Abstract

Pinus patula and Cupressus lusitanica are key commercial forestry plantation spe-
cies introduced in Kenya. There are many uses for these species in industry creating a
huge demand for their products. The demand has caused increased plantation estab-
lishment with seed as the major source of propagule. The many developments in the
forestry sector have led to the need for low energy rapid extraction technique that
improve seed quantity and quality from the available sources. There have been devel-
opments in improving extraction and quality which offer an opportunity for better
seed collection and handling techniques for these conifers. This chapter will focus on
improvement of seed production and handling of the two conifers that aids in the
design of low energy-intensive methods that reduce the duration for extraction,
optimize seed yield and enhance seed quality.

Keywords: Pinus patula, Cupressus lusitanica, cone and seed characteristics, seed
extraction, seed yield, germination

1. Introduction

Pinus patula Schiede & Deppe belongs to the Pinaceae family, but Cupressus
lusitanicaMill. belongs to the Cupressaceae family. Coniferous gymnosperms make up
both species [1–3]. Mexican cypress, also known as C. lusitanica, was brought to
Kenya in 1936, but it was not until the 1950s that it was widely planted to replace
Cupressus macrocarpa, which had been introduced earlier but had developed a sensi-
tivity to Cypress Canker [4, 5]. The two primary commercial forest plantation species
utilized to supply saw-wood to Kenyan forest industries for the manufacturing of
wood for furniture and construction, round wood for plywood, and fiber to produce
pulp and paper are C. lusitanica and P. patula [6–8].

Kenya Forest Service (KFS) is a corporate body that provides for the development
and sustainable management, including conservation and rational utilization of all
forest resources for the socioeconomic development of Kenya [9]. Gazetted forest
land consists of about two thirds of protected forest reserve that comprise indigenous
tree species, and about 150,000 ha of exotic softwood plantations [5, 10] (Figure 1).
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C. lusitanica is the most widely planted species occupying about 55% of the plantation
area, and P. patula taking 25% [12]. The agency that provides seeds for forest tree
species is Kenya Forestry Research Institute (KEFRI) [13].

Despite sourcing seeds of P. patula and C. lusitanica from selected seed stands and
seed orchards [14, 15], the demand for seed is not being met. Currently, the demand
for P. patula seed in Kenya stands at 1000 kg, of which KEFRI can only supply 600 kg,
while C. lusitanica seed is 1500 kg [16]. The bulk of this seed is taken by KFS for their
annual planting programme, with the remainder going to private commercial nurser-
ies and farmers. Taking into account the effects of climate change and the limited
number of seed sources, it is essential to review seed collection and processing prac-
tices, to ensure improved quality and quantity of seed [17, 18]. Consequently, there
are numerous opportunities to be explored in this regard. Therefore, opportunities

Figure 1.
Pine and cypress plantations fall under “Planted Forest” area [11].
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exist on quality improvement in terms of where to collect cones within the crown, the
size of cones to be collected and how to improve seed yield through seed processing
practices that will impact germination rate and packaging.

The gaps in the improvement of P. patula and C. lusitanica seed yield have been
identified as the need to understand the influences of: (i) crown morphometry on seed
production, (ii) cone characteristics on seed production, and (iii) extraction practices
on seed yield and germination. To address these gaps, this chapter focuses on recent
developments in collection and handling of P. patula and C. lusitanica seeds.

2. Materials and methods

2.1 Study site

The study materials were sourced from seed orchards in Londiani, Kenya. Londiani
area is at an elevation of 2308 m.a.s.l. with an average temperature of 15.7°C (mini-
mum of 8.6°C and maximum of 23.31°C). The area has two rainy seasons occurring in
the months of March to May with an average rainfall of 750 mm and in October to
December with average rainfall of 423 mm. The driest months are January to February
and August to September [7, 19–21].

2.2 Sampling frame

2.2.1 Pinus patula

Crown morphometry and seed production: the sampling procedure was
adopted from the method used by [21, 22]. The orchard was broken into three
equal segments and 10 trees were picked and measured for their diameter at 130 cm
(D130) and height from each area. One tree, which had produced the most fruit and
had the greatest diameter (D130), was then selected and marked for cone collection
from each of the three plots. Measurements were taken for D130 (cm), tree
height (m), crown height (m) and crown radius (m) = D(m)/2 for the chosen trees
(Figure 2). The crown of the tree was then divided into three equal parts; top (A),
middle (B) and bottom (C). It was further split into two sections based on the
distance from the stem (0–2 m = 1, >2 m = 2). Section 1 covered the part that was
2 m away from the stem (A1, B1, and C1), while Section 2 was made up of the part
greater than 2 m from the stem (A2, B2, and C2) [15, 21]. From each crown section,
15 ripe cones were taken, amounting to 90 cones per tree. The gathered cones were
put in individual bags for every section of the crown and then transported to the
laboratory.

P. patula cones were assigned a particular identity based on the tree and crown
sector they were taken from, with a maximum of 10 cones per sector. Before they
were extracted, the characteristics of each cone were observed, including shape
(straight or curved), length (in cm), diameter at the widest point (in cm), and weight
(in g). The cones were placed on glass petri dishes and heated in an oven at 65°C for
24 hours. The seeds were extracted by gently tapping the cones 15 times on a flat
wooden bench. The weight of the cones without the seeds and the total number of
seeds per cone were recorded. The percentage of cones that opened after heat treat-
ment for seed extraction was also measured.
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2.2.2 Cupressus lusitanica

The study materials were taken from a 14-year-old clonal seed orchard of Cupressus
lusitanica in the Londiani region. Thirty trees that were producing seeds were ran-
domly chosen and fifty mature cones were taken from each, giving a total of 1500
cones. Cones that were brown and shut at the time of collection were judged to be
mature [23]. The cones were bundled together and put in gunny bags before being
brought to the laboratory for seed extraction, screening and weighing.

2.3 Experimental design

2.3.1 Pinus patula

Cone characterization was based on the method described by [21]. This involves
categorizing mature cones according to their shape (straight or curved) (Figure 3),
length (L1) (cm), diameter at widest part (cm) and weight (g). The cones were then
placed on uncovered glass Petri dishes and heated in an oven (Yamato DS411) at 65°C
for 24 hours [19]. After drying, the cones were removed and seeds extracted by
tapping 15 times on a flat wooden bench. Measurements of the length of the part of
the cone that opened (L2) (cm) (Figure 4), the weight of the cone without seed (g)
and the total seed count from each cone were taken. The percentage of the cone that
opens after drying for seed extraction (p) was calculated using Eq. (1); this p is used to
compare the opening length of the cone in relation to its shape [19, 21, 24].

p ¼ L2 cmð Þ
L1 cmð Þ ∗ 100 (1)

Cone pretreatment and seed extraction: the cones were identified and measured
for length, diameter and weight, then put in hot (100°C) and room temperature

Figure 2.
Schematic diagram on crown compartmentalization for sampling area of Pinus patula cones.
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(25°C) water for 10 minutes, 24 hours and a control (not soaked) to examine the
impact of humidity [19, 25]. The cones were arranged in labeled glass Petri dishes with
sufficient distance between them to avoid cross-contamination of the seeds, and then
exposed to artificial heating for seed extraction. Eight temperatures (30, 40, 50, 65,
70, 75 and 85°C) [26] and a DB condition (drying bed to simulate real-life seed

Figure 3.
Pinus patula cones ranked based on shape (straight-top and curved-bottom, with a 30 cm ruler on the side showing
scale).

Figure 4.
Pinus patula cones showing stages of cone opening.
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extraction with a temperature of 44.8 � 6.00°C) were tested for 4, 24 and 48 hours
together with the control (no soaking).

2.3.2 Cupressus lusitanica

Cone and seed characterization: the cones were divided into two categories, large
(CB) and small (CS), based on sieving with a 20 mm sieve. After assessing for
maturity and any defects, 240 defect-free mature cones were chosen from each
category. The diameter and weight of each cone was measured. Then, the cones were
heated artificially at 65°C for 48 hours to extract the seeds [19]. The seeds were then
sorted by sieving using a 2 mm sieve to create small (SS) and large (BS) category. To
further categorize the seeds, they were floated in water for 5 minutes, and divided into
floaters (FF) and sinkers (SS) (Figure 5). Finally, the seeds were germinated
according to their categorization.

Cone pretreatment and seed extraction: In order to conduct an experiment, 540
cones were randomly divided into three groups of 180 cones each. The first group
acted as the control and was not soaked in any liquid. The second and third groups
were submerged in cold and hot water, respectively, for 10 minutes [19, 25, 27]. The
three groups were further broken down into 6 different temperature categories (GH,
DB, 40, 50, 65, and 85°C) of 30 cones each and labeled. The categories of ‘greenhouse’
(GH) and ‘seed drying bed’ (DB) refer to two infrastructures used for seed extraction
in Londiani, Kenya.

Observations for seed release and seed counts per cone were done at 24 hours and
at 48 hours. Seeds that had not been released from open cones were forcefully
removed manually using forceps to account for seeds that were retained in a cone and
labeled as 48F (48 hours forced).

Germination tests were conducted based on the extraction treatments. Radicle
emergence was taken as the criterion for germinability [28].

Figure 5.
Experimental layout for Cupressus lusitanica cones and seed categorization [20].
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3. Results and discussion

3.1 Pinus patula

The different sections of the crown had varied seed yield, with compartment A2
missing from the crown due to the conical shape of P. patula crown. Compartment A1
had the highest number of seeds (33.3 � 4.91) from the cones, while C2 had the lowest
(14.4 � 2.76). This is in agreement with research done on another species, Pinus
densiflora [29]. Compartment C2 had the highest percentage of opening
(46.6 � 1.98%), yet this did not result in a high seed yield (Figure 6). This study
found that neither cone shape nor percent opening had an effect on seed yield [21].
Mathematical modeling was used to analyze the results, which showed that the length
of the cone had the greatest influence on seed yield [24].

Research has indicated that cone soaking does not have a major influence on cone
opening. Temperature of extraction was seen to have a major effect on cone opening
and the subsequent seed yield, with higher temperatures favoring both cone opening

Figure 6.
a) Seed yield by cone shape and crown compartment and b) Cumulative mean seed yield by compartment.
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and seed yield [19]. Soaking of cones increases the moisture content of the cone,
which can hinder the swift opening of the cones [19, 30, 31].

3.2 Cupressus lusitanica

Sieving of cones and seeds was found to be a helpful tool when it comes to
predicting seed yield and quality. It was observed that bigger seeds from both small
and big cones had better germination performance. Floatation was found to be an
effective method of predicting germination, where denser (sinkers) seeds yielded
better results than floaters. Big seeds yielded 95,000–105,000 seeds per kilogram,
with a germination rate of 51%. This is a big improvement from the previous rate of
25% and 160,000–290,000 seeds per kilogram [20, 32, 33]. Different from pines,
soaking cones in cold water prior to seed extraction was found to have a significant
effect on cone opening and seed release, with 77% of seeds released within the first
24 hours, 90% within 48 hours and 10% having to be forced out [2, 34]. Temperature
was also seen to affect seed release, with higher temperatures leading to higher seed
yield than lower temperatures [35, 36]. After 30 days of assessment, it was observed
that germination performance was highest for seeds extracted from cones that had
been soaked in cold water. Several studies have been conducted on the effects of
soaking media on seed germination, with the present study focusing on soaking
cypress cones in cold and hot water and their influences on germination [37–40].

4. Conclusions

The upper sections of P. patula, crown should be targeted during seed collection
for higher seed yield. Larger cones for both P. patula and C. lusitanica have highest
seed yield. Combined effect of soaking and higher temperature exposure of P. patula
and C. lusitanica cones have a positive effect on seed yield without adverse effects on
seed germination.
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Chapter 6

The Influence of Planting Time 
on the Seed Yield and Quality 
Millet/Panicum miliaceum. L
Khishigbuyan Turbat, Gungaanyam Galkhvv  
and Namjilsuren Jamiyan

Abstract

Millet has been cultivated in Mongolia since ancient times, and some historians 
believe that this cultivation may be the first crop of nomadic people. Academician 
P.M. Zhukovsky noted that multiline varieties of millet were found in the mountain-
ous regions of Central Asia and Mongolia. Therefore, one of the regions of millet is 
Mongolia. There are records that Mongolians cultivated small rice in the 8th–12th 
centuries and called it Mongolian grain, cron, black rice, and millet, used it for food, 
and sold it to traders in China and other countries. The research study was conducted 
in the research area of the Research Institute of Plant and Agriculture in the area of 
Khongor Sum, Darkhan-Uul Province, Mongolia, in 2017–2020. The millet variety 
of Saratovskaya-853 was planted for seeds on May 20, 30, and June 10 at the rate of 
3 million seed/ha and with 3 repetitions each. According to our research, the 20th 
of May is the most profitable time for planting, with a yield of 23.7 tons/ha. During 
this period, the number of weeds in the field was not much, the amount of protein 
contained in the seeds is 0.9–1.6% more than other versions, the seeds were mature, 
they are not affected by cold shocks and frosts, and they form a good seed casting 
protection against the cold. Spacing between 0.5 m and 15 cm between plants/total 9 
stages. According to our research, the 20th of May is the most profitable time for sow-
ing, with a yield of 23.7 cents/ha. During this period, the number of weeds in the field 
is low, the amount of protein in the seeds is 0.9–1.6% higher than other options, the 
seed yield is good, and the conditions are not affected by cold shock. The conditions 
for an increase in the yield of the version of May 20 have been established.

Keywords: cultivation, field, version, repetition, protein

1. Introduction

Millets (Panicum miliaceum. L) are a highly varied group of small-seeded grasses, 
widely grown around the world as cereal crops or grains for fodder and human food 
[1]. Most species generally referred to as millets belong to the tribe Paniceae around 
the world, millet has been grown for food and fodder. Panicum miliaceum is a tetra-
ploid species with a base chromosome number of 18, within the genus Panicum [2].
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The millet is an annual food and annual plant. It is one of the ancient crops culti-
vated in the world more than 7000 years ago [3].

It is suitable for growing in regions with low fertility, especially India, the Sahara 
desert, and West Africa, where the average rainfall is usually less than 500 mm, and 
where the soil is sandy and slightly acidic [4].

The cultivation of millet worldwide is decreasing year by year. According to the 
World Food and Agriculture Organization (FAO), as of 2019, a total of 718 million 
hectares were planted in the world and 863 million tons of crops were harvested. As of 
2020, the world’s total millet crop is 30.5 million tons, of which India (42%), Nigeria 
(20%), China (6%), Niger (12%), Mali (5%), and Ethiopia (3%) occupying [2].

The cultivation of millet/Panicum miliaceum. L/worldwide is decreasing year by 
year. For example, India is the leading country in the production of small rice, and in 
1970, the total harvest in the country met 100% of domestic needs, while in the late 
1970s, this consumption decreased to 50–75% [5].

However, since 2005, small rice has become less of a staple food, and it is mainly 
cultivated for animal feed and alcoholic beverages. The United Nations General 
Assembly at its 75th session in March 2021 declared 2023 the International Year of 
Millets [2]. Millets can grow on arid lands with minimal inputs and are resilient 
to changes in climate. As a result of the International Year of Small Rice, it will be 
possible to use the resistant qualities of the grain to increase its nutritional value, to 
introduce this grain to future generations for better production, better nutrition, and 
to produce more food and feed [2].

Mongolia is located in the central part of Asia between 41031I-52009I north lati-
tude, the average height above sea level is 1580 m, the lowest point is 560 m, and the 
highest point is 4347 m. It has an extreme climate, arid and arid, and it has unique 
features indicating the characteristics of a temperate region. Due to its elevation 
above sea level, it has a cool climate and annual precipitation is 250–350 mm.

The first cold shock of spring occurs in the middle ten days of May, and the first 
cold shock of autumn occurs in the first 10 days of September. Seasonal and daily 
temperature fluctuations are large, reaching +40°C in July and −40°C in January. The 
average daily temperature during plant growth is 16.5°C, suitable temperature for 
plant growth is 2274.716.5°C. Crops with a short growing season and suitable for high 
altitude and cool regions are usually cultivated.

An average of 400,000–600,000 hectares of land will be cultivated annually, and 
about 70% of it will be cultivated only with grain plants, mainly wheat. Dark chestnut 
and chestnut soils with sandy and mechanical compositions are prevalent. The soil 
climate is suitable for growing wheat and other grains, potatoes, and vegetables.

2. The purpose of the study

In the conditions of the central cultivation region of Mongolia, the following 
objectives have been proposed in order to detect the possible period of harvesting of 
millet seeds

1. To study the effect of planting time on field germination

2. Choosing the right time to harvest millet seeds

3. To study the effect of planting time on the biochemical quality of millet seeds



77

The Influence of Planting Time on the Seed Yield and Quality Millet/Panicum miliaceum. L
DOI: http://dx.doi.org/10.5772/intechopen.1002323

3. Methodology

In the pilot study shall be carried out that thinned before planting such 
as Saratovskaya-853, an introduced variety from the Saratov Institute of Russia, 
was planted at a rate of 3 million sh/ha between May 20 and June 10 in a field. The size 
of one pad was 3 m2, and each pad was planted in 9 pads with 3  repetitions. The fol-
lowing observational research was carried out during the study. It includes:

Field germination: Field germination was counted as percentages of sprouts in 
an 83.3 cm long field in 2 rows of the center of the field when the first leaves were 
completely uniform in the field.

Growth period: The stage of growth and development of millet was marked as 
beginning at 15% and as smoothed out at 75%.

Seed yield: The yield was determined by harvesting when the middle part of the 
millet plant entered the panicle stage.

Biochemical analysis: The quality of millet seeds was determined and expressed 
as a percentage by the standard of protein (MNS6548:2015) in the Biochemistry 
Laboratory of the Institute of Plant and Agricultural Sciences.

Quantitative processing: The analysis of variance of research mathematical 
processing was calculated using R statistical program, and the correlation of factors 
affecting yield was calculated using the Excell program.

4. Research results

4.1 The effect of the time of planting of field germination

Millet is one of the crops with poor germination shock. According to this feature, 
small rice can be made when the heat is sufficient. One of the important qualities of 
the plant’s thermal regime is heat supply, which is evaluated by its ability to pass half 
an hour without changing the temperature. A major determinant of crop yield is field 
germination. In addition to seed quality and biological characteristics, the yield of the 
field depends on parameters such as the temperature and moisture regime of the soil 
of the given year.

Plant seeds grow and absorb moisture depending on their biological characteris-
tics. For example, 45–52% of the weight of the wheat seed is moisture [6, 7] 60–65% 
of the millet, and 50–55% moisture of the bare oat [8] begins to grow.

According to our research study, in the years of millet field research (2017–2020), 
it was between 43.1–70.7% in the version of May 20, 46.2–68% in the version of May 
30, and 48.9–71.1% in the version of June 10. which means that during the planting 
period, the climatic parameters of the years are suitable for the growth of warm 
plants, but the amount of precipitation varies.

In 2017, field protrusions were 43.160.4% in research versions. Out of these, 60.4% 
of field crops in the scenario of June 30 are 17.3–14.2% higher than other scenarios, 
respectively. The soil moisture at the time of planting in this period was 19.9 mm at 
the depth of 0–20 cm, which is 2.6 mm more than the mid-term version and 1.3 mm 
less than the first time version, but the soil temperature was 30.6°C, which was 
15.8–5°C more than the other scenarios. Created the conditions for the increase of 
protrusions [9, 10].

The differences between the experimental variants were analyzed by factorial 
analysis of variance in R software. In order to confirm this result, when considering 
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the Tukey T-test in the statistical program R, the version of the time period of June 10 
is Pr > 0.000409 from the version of the time period of May 20, and the version of the 
time period of May 30 is Pr > 0.000797 confirmed to be. The 2018 field germination 
ranged from 56.0 to 50.7%. As the time of sowing is delayed, the field germination 
tends to decrease In May-June of this year’s planting period, the average daily tem-
perature was 14–20.1°C, which was 0.9–1.1°C higher than the long-term average, and 
the amount of precipitation fell by 3.7–7.8 mm, which was 16.4–12.3 mm lower than 
the long-term average, so it was a very dry/arid year.

In the version of May 20, 56% of field germination is 4–5.3% more than in other 
versions. The temperature of the soil in the first period of planting was 21.8°C, which 
was 7.1°C lower than the mid-term version and 3.8°C lower than the last version, but it 
was suitable for plant growth and the amount of soil moisture was 0.9–1.4 mm higher, 
which caused an increase in field protrusion. Using T-test in R to confirm that the 
field outliers for the May 20 scenario are better than the other scenarios, the May 20 
scenario is significantly different from the May 30 scenario by Pr > 0.022986, and the 
June 10- Pr > 0.00611 is very different from the time of.

In 2019, the average daily temperature in May-June was 10.7–19.9°C, the sum 
of active heat was 225-598°C, the heat supply was high enough, and the amount of 
precipitation was 4.1–48.2 mm which means it was a month lacking in moisture with 
17.1–6 mm less precipitation than the average for many years.

The May 20 version is 4.5 to 13.8 higher than the other possible versions, with field 
germination of 62.7%. The warm soil of this period was suitable for the growth of 
plants, the amount of soil moisture (0–20 cm depth) at the time of sowing is 19.2 mm, 
and in the first 10 days of June after sowing, 11.5 mm of precipitation fell, which 
coincided with the leveling stage of the field germination of the first period, and then 
created conditions for the increase of protrusions.

An analysis of variance was performed in R to detect differences between the 
experimental variants, and the variants were different (P > 0.00184). In order to 
confirm this result, when T-test is also considered in the program, the period of May 
20 is higher than the period of May 30 (P > 0.0174614), than the period of June 10 
(P > 0.001635), and the period of June 10 It is confirmed that the period is signifi-
cantly different from the period of May 30 (P > 0.011503) and the field protrusions 
of the first period of inoculation are better than other versions. According to the 
2020 field germination study conducted by us, it was 71.1% in of June 10, which was 
0.4–3.1% higher than the scenarios of other periods, respectively. The soil moisture 
during the planting period is suitable for plant growth. 16.8 mm of precipitation falls 
in the middle ten days of May and 16.8 mm in the middle ten days of June.

The amount of moisture is sufficient for the plants. However, the average daily 
temperature was 12.7°C and the soil temperature (V/20–30) at the time of planting 
was cooler at 15.3–16.8°C, which created the conditions for a decrease in field germi-
nation during the first planting period of this year (Table 1).

According to our research, the field germination of the May 20 version is 58.1%, 
which is 2.3–0.6% higher than other versions. The amount of heat at the time of 
planting increased as the time was delayed, and the amount of soil moisture was 
more (22 mm) in the scenario of the first time of planting, which affects the field 
germination. Under the conditions of our country, heat is sufficient for the shoots 
of millet field germination of the research years, but the size of the shoots varies 
depending on the amount of soil moisture and the amount of precipitation in that 
period (Table 1).
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4.2 Effect of planting time on the survival rate of millet

It is the main indicator of the biological properties of plants. Survival or biological 
resistance is calculated by comparing the number of plants counted in the field with 
the number of plants’ endurance at harvest. In the conditions of our country, the 
survival rate expectancy of grain plants is about 65–80%. According to the research of 
J. Namjilsuren [8], it is 62.1–90.8%of the survival rate of oat and 80–90% in the life of 
wheat.

According to our research, the average survival rate of millet was 87.1–80.5% in 
years. According to the life expectancy of the research years 2017–2020, 2017 has a 
higher life expectancy than other years of 88.3–95.2%. According to the survival rate 
years, the version of May 20 had an average of 87.1%, which was a 4.2–3.4% survival 
rate than the other versions (Figure 1).

To confirm the results of the planting time variants, analysis of variance in 
R software showed that the field yield among years was significantly different 
(P > 0.00000001870), but the mean field yield between the variants was not differ-
ent, P > 0.64 (Table 2).

Indicators Year Version

V/20 V/30 VI/10

Field germination, % 2017 43.1 46.2 60.4

2018 56 52 50.7

2019 62.7 58.2 48.9

2020 70.7 68 71.1

average 58.1 56.1 57.8

Soil heat, °C 2017 14.8 25.6 30.6

2018 21.8 28.9 25.6

2019 22.8 25.4 27.2

2020 15.3 16.8 21

average 18.7 24.2 26.1

Soil moisture, mm 2017 21.2 17.3 19.9

2018 17.4 16.5 16

2019 19.2 16 21.1

2020 30 27.5 23

average 22 19.3 20

Air temperature, °C 2017 9.1 18.2 22.5

2018 14 22 19.4

2019 12.4 13.8 24.4

2020 13.5 9 13.6

average 12.3 15.8 20.0

Table 1. 
Effect of planting time on field germination of millet (2017–2020).



Seed Biology – New Advances

80

4.3 Effect of planting time on growth period

Millet can grow in different soils, but the yield varies depending on the climate 
and soil fertility. Setting the right planting time is important not only to increase the 
yield but also to choose the optimal planting technology according to the soil and 
climate of the region.

The growing season of any crop may vary due to the biological characteristics of 
the crop and the soil and climatic conditions of the region. The Saratovskaya-853 
variety of millet matures in 84–95 days from the growing period.

Between 1949 and 1957, M. Ölzii carried out research on millet varieties and 
selected 12 varieties based on the growing period. Also, the Dzungharaa Agricultural 
Research Institute conducted a comparative study of millet varieties and selected and 
studied varieties with short growth periods that could yield more under the given 
research conditions [3].

According to the results of the research, there was a conclusion from many years 
of research that it is correct to calculate the growing days by including early varieties, 
reaching 80 days, medium early fruiting 80–90 days, and late fruiting 90–100 days. 
However, according to the results of research conducted by Researcher J. Serjmaa 
(1964–1967), the growing days of millet varieties matured in 78–89 days [11].

Figure 1. 
Effect of millet planting time on the survival rate (2017–2020).

Df Sum Sq Mean Sq F value Pr(>F)

Version 2 28 14 0.441 0.6474

Year 1 1827.2 1827.2 57.472 0.0000000187

Version:year 2 275.7 137.9 4.337 0.0222

Residuals 30 953.8 31.8

Table 2. 
Effect of planting time on field germination of millet (2017–2020).
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In addition to factors such as the amount of rainfall and temperature during the 
planting period, factors such as the quality of the seeds at the time of planting and 
the characteristics of the variety also affect the time to harvest from the planting 
of millet. The Saratovskaya-853 variety of millet has 84–95 days from the time of 
germination to seed maturity. According to the research of J. Serjmaa (1964–1966), 
it took 26–35 days from cultivation to germination, and 23–28 days from tillering to 
sprouting of millet varieties [11].

However, according to J. Tsend, the time from germination to threshing of millet 
varieties was 14–21 days on average, and the development stage of the Saratovskaya 
−853 variety was uniform in 21 days [6].

Millet starts to be crushed 15–20 days after it starts to be crushed when it has 
5–6 leaves. Crushing takes place very well in conditions with an average active heat 
sum of 270-300°C and an average daily temperature of not less than 17 degrees 
Celsius.

According to our research, the stages of development of millet from sprouting 
to crushing were different on May 20, 8–15 days, on May 30, 9–16 days, and on 
June 10, 9–18 days. Of these, the May 20 version is 12 days earlier than May 30 and 
3 days earlier than June 10. In this version of the planting period, the time from 
the outcrop to the crushing is largely dependent on the amount and distribution of 
precipitation during this period, which took place in the first 10 days of the end of 
June and July.

It took 30 days from inoculation to emergence on May 20 and 25 days on May 30. 
In May, the average daily temperature was 12.8°C, total active heat was 339°C, and 
precipitation was 23.8 mm. However, in the version planted on June 10, the daily 
average temperature was 0.8°C higher than the long-term average, 6.95°C higher than 
the previous month, 22.0 mm higher than the previous month’s average, and 8.37 mm 
higher than the previous month (V). 8.5 days and 5 days earlier than the 2nd-period 
version, affected by the protrusion.

During the research years (2017–2020), the 5-month daily average temperature 
of the planting period was 12.85°C, close to the long-term average, the total active 
heat was 339°C, 34°C more than the long-term average, and the rainfall was 23.8 mm, 
which was 2.6 mm more than the long-term average had a positive effect.

It takes 32–24 days from the planting of millet to germination. In the scenario of 
May 20, the germination was uniform for the longest time, but depending on the 
temperature and moisture of the soil, as the planting time is delayed, the number of 
days for the protrusions to be uniform is getting shorter. According to our research, 
the total growing period is 89.5 days for the May 20 version, 85.5 days for the May 30 
version, and 80.7 days for the June 10 version. As the growing period is delayed, the 
growing days become shorter.

The version of the first time of planting was the version of millet that matured in 
90 days. On the other hand, the growth period of the June 10 version was 80.7 days, 
8.8 days shorter than the May 20 version, and 4.7 days shorter than the May 30 ver-
sion. Also, during this period, the seed yield is low, the quality is poor, and the crop is 
formed (Figure 2).

4.4 The effect of planting time on yield structural parameters

The of plant yields main factor that determines a particular crop is the yield 
structure indicator. These vary from crop to crop. Although millet has smaller seeds 
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compared to other cereal crops, it has similar yield structure parameters. According to 
J. Namjilsuren’s (2003–2004) study, the yield structure measurements made on a total 
of 62 variety research samples showed that the plant height was 54–104 cm, 3 short 
samples of 50–80 cm or 3 scores, 81–110 cm medium samples were 19 or 5 scores, and 
110- There were 35 samples with a height of 140 cm or 7 points and 5 samples with a 
height above 140 cm or 9 scores.

The leading indicators of yield structure were plant height, number of seeds per 
panicle, the weight of 1000 seeds, and length of the panicle. The weight of 1000 seeds 
of the experimental version is 5.4–5.2 g, the plant height is 86.5–79.5 cm, the number 
of seeds per panicle is 255.3–306.8 sh/m2, the weight of seeds per panicle is 1.4–1.6 g/
m2, and panicle length is 14.0–12.3 cm (Table 3).

When calculating the relationship between these parameters, the seed yield has 
a strong direct correlation with the weight of 1000 seeds r = (0.94) and the length 
of the panicle r = (0.91). However, the yield was moderately correlated with the 
number of seeds per panicle r = (0.59), and the weight of seeds per panicle r = (0.58). 
According to the parameters of the structure of the crop, which is highly related to the 
yield, the weight of 1000 seeds in the version of May 20 was 5.4 g, close to the mid-
term version, 0.2 g more than the latest version, and the length of the panicle was 
14 cm, which was 0.5 cm more than the first version and 1.7 cm more than the latest 
version. The plant height was 86.5 cm, which is 7–6 cm higher than in other periods 
(Table 2).

In the analysis of factorial variance in terms of yield structure, P > (0.00008) is 
very different between plant height variants, (Table 4) P > (0.02) difference between 

Figure 2. 
Effect of millet planting time during the growing period (2017–2020).

Version Plant 
height, 

cm

Length of 
panicle 

cm

Number of 
stems with 
panicle, sh

Number of 
seeds per 

panicle, sh

Seed 
weight per 
panicle, g

Weight 
of 1000 
seeds, g

V/20 86.5 14 218 255 1.4 5.4

V/30 79.5 14 192 307 1.6 5.4

VI/10 80.6 12 185 256 1.4 5.3

Table 3. 
The effect of planting time on millet yield structural parameters (2017–2020).
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time variants in terms of the number of seeds per plant. However, the weight of 1000 
seeds was P > (0.06) and the weight of seeds per plant was P > (0.07) and there was 
no difference between the variants. According to the Tukey T-test, which has a high 
difference between the versions, there is a significant difference between the May 20 
version and the May 30 version P > (0.00001) and the June 10 version P > (0.0001) 
in terms of plant height., it is confirmed that the May 30 period is better than the May 
20 period by P > (0.011) and the June 10 period by P > (0.012).

4.5 Effect of planting time on seed yield

The yield of that crop depends on the precipitation and temperature for 
5–6 months of that year. Seed yield varied depending on the growing season of millet. 
According to research conducted by researcher J. Serjmaa in 1965–1967, the yield of 
seeds was 16.2–22.2 t/ha [11].

However, according to the research conducted by J. Tsend in 2010–2012, the seed 
yield of Saratovskaya-853 variety of 17.5 kg/ha [6].

Because comman millet is a crop that matures in succession, it is important to 
choose the right time to harvest the seeds. Harvesting is done when the upper part of 
millet ears ripens and starts to turn yellow, because millet/Panicum miliaceum. L/seeds 
ripen in series and also have a lot of spillage. Nesterov.I.M (2018–2020) According to 
research, the seed yield of millet was 29.6–35.5 t/ha [12].

The 4-year average yield of small rice seeds is 23.7 t/ha in the version planted 
on May 20, 24.1 t/ha in the version planted on May 30, and 20.9 t/ha in the version 
planted on June 10. Of these, the version planted on May 30 has a yield of 0.4 t/ha 
more than the version of May 20, and 3.2 t/ha than the version of June 10 (Figure 3).

There was a significant difference in seed yield P > (0.002**) between the years 
of inoculation, but a small difference P > (0.04249*) between the inoculation time 
variants. Considering the T-test whether the version of May 30, which has the 
highest seed yield, is different from other time versions, it is confirmed that the 
version of this time has a greater difference in yield than the version of June 10 with 
P > (0.044755*). However, there is no difference between the yields in the version of 
May 20 P > (0.983759).

We have considered the most beneficial time to sow the millet seed crop to be May 
20. During this period, due to the tillage superficial of the soil before planting, the 
number of weeds in the field was small, and it was not affected by the late spring and 
early autumn shocks cold. At the germination stage of small rice, the total precipita-
tion was 83.0 mm, which was 15 mm higher than the long-term average, the average 
daily temperature was 21.2°C, which was 0.3°C higher than the long-term average, 
and the sum of active heat was 29.4°C, which had a favorable effect on seed yield and 
quality.

Although the seed yield in the mid-sowing period (May 30) is better than the 
other options, the main parameters of the field germination, yield structure (plant 

Df Sum Sq Mean Sq F value Pr(>F)

Version 2 340.7 170.36 16.89 0.0000089

Residuals 33 332.9 10.09

Table 4. 
Differences between height variants of millet plants, (R program).
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height, panicle length), and seed quality are lower than in the first period. Also, due 
to the climatic characteristics of some years, the sowing period is not suitable due 
to the fact that after planting in the spring, there were negative consequences such 
as excessive drying of field germination, drying and death of germination, late seed 
development, and spot.

On the other hand, the June 10 seed harvest was delayed due to the late sow-
ing and less than the first two periods in yield of parameters, and because it was 
hit by the autumn frost, it produced seeds with poor germination. Therefore, it 
is not suitable to plant millet for seed in the central cultivation area after June 10 
(Figure 3 and Table 5).

4.6 Effect of planting time on biochemical characteristics

Cereal plants are a source of protein and starch for the world’s population. Proteins 
are unique in that they are not added to other substances when used in human and 
animal feed. Cereal plants are a source of protein and starch for the world’s food, and 
increasing plant-derived protein is an important issue in meeting the protein needs 
of the population, so it has become one of the problems facing the world. The protein 
content varies depending on the type of crop, variety, soil, and climate of the region. 
Phytochemical composition of grain plants (V.L. Kretovich) wheat seed contains 15% 
protein, barley 12%, rye 13%, and sorghum 12%. Percent, small rice contains 12%, 
respectively.

Researcher J. Serjmaa conducted research on small rice varieties from 1964 to 
1966, and the three-year average was 751 g of green mass, 16.3% of the weight of seed 
coat, 6.4% of oil content, 13.3% of acid content, and 48.2% of starch content [13].

Figure 3. 
Effect of planting time on seed yield of millet (2017–2020).

Df Sum Sq Mean Sq F value Pr(>F)

Year 1 433.7 433.7 11.1 0.00209

Residuals 34 1328.6 39.1

Table 5. 
Differences between millet seed yields (R program).
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Looking at the chemical composition of plants of the Panicum genus, ordinary 
millet (P. miliaceum. L) contains 12.5 g of protein, 70.4 g of carbohydrates, 2.2 g of 
fiber, 1.1 g of oil, and 341 kcal of energy contains 60.9-72 g of carbohydrates and 
307–341 kcal of energy [14].

According to Lorenz and Dilsaver’s [15] research on the milling characteristics, 
composition, and nutritional quality of millet flour, millet flour had higher ash, fat, 
and protein content than wheat flour. According to Obilana and Manyasa [16] and 
Young [17], millet has many nutritional and therapeutic roles and is rich in health-
promoting phytochemicals, and is considered a functional food [4].

In our study, the protein content of small rice seeds was between 12.3 and 10.4% in 
the inoculation variants. On the average of the research years, the protein content of 
the version planted on May 20 was 12.3%, which was 0.9% higher than the  mid-term 
version and 1.6% more than the late version. When calculating the correlation between 
the parameters of biochemical characteristics, yield, and protein have a strong correla-
tion of r = 0.74 or 74%. The protein content in the seeds of the time variants decreases 
as the time is delayed, and the quality changes depending on the climatic parameters 
of the period from germination to maturity, on the average of the years of the study, 
when the seed condition is mottled and has poor casting (Figure 4).

4.7  To compare with the materials of other researchers and to explain the 
advantages of own research work

Millet is one of the milk-producing crops that have high food and nutritional 
value, require relatively low moisture, and are resistant to drought.

Research on millet varieties and seed yield was conducted by J. Serjmaa in 
1965–1967, and the seed yield was 16.2–22.2 t/ha [13]. And researcher according to 
J. Tsend’s research in 2010–2012, the seed yield of the Saratovskaya-853 variety was 
17.5 t/ha [3].

Researcher A.I. According to Baraev’s (2015–2017) research in Kazakhstan, the 
seed yield of millet varieties was between 24.7–33.3 c/ha, which is similar to the 
results of our study [18, 19].

Figure 4. 
Effect of planting time on the biochemical quality of millet (2017–2020).
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When millet was planted between V/20–30, the seed yield was 23.7–24.1 t/ha. The 
results of our research on seed yield are higher than those of previous researchers, 
which means that in today’s climate change, heat supply has a favorable effect on plant 
growth and is the basis for increasing yield. The cultivation of millet in the conditions 
of the central cultivation area is an innovative and superior study suitable for the 
conditions of our country, which is the main cause of climate change, the reduction 
of crop yield, the production of healthy and safe food, and the production of healthy 
and safe food due to climate change.

5. Conclusion

1. In millet field germination the version planted on May 20 had 58.1% of shoots, 
which was 2–0.3% more than the other time versions. The amount of soil mois-
ture in this scenario was 2–1.7 mm higher than that of the other scenarios, which 
created the conditions for the increase of the field germination, and the moisture 
field germination at the time of planting has a correlation of r = 0.7.

2. In the May 20 time version, the growing period was 90 days, which was the most 
suitable time for seed ripening, which was 5–9 days longer than the other versions.

3. It is confirmed that the version of May 20 is 12.3% of the protein content in the 
seeds and is better than other versions in terms of quality content. Nutrient 
quality indicators of millet decrease as the time is delayed, which is largely 
dependent on the condition of the seed.

4. According to the 24.1 t/ha in the version planted on May 30 although seed yield 
was 0.4–3.2 t/ha higher than the other versions, it did not reach the  version 
of May 20 in terms of seed quality, field germination, and yield structure 
 parameters.

5. May 20 is considered the most suitable time for sowing millet seeds. The seed 
yield of this version is 23.7 t/ha, which is no different from the version of May 30 
(P > (0.983759)), and 11.8% higher quality and uniform seeds than the version 
of June 10.
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Chapter 7

Seeds of Resilience: Physiology and 
Mechanisms of Hardseededness
Sıtkı Ermis, Eren Özden and Ertan Yildirim

Abstract

Physical dormancy, also known as hardseededness or seed coat impermeability, is 
a condition that occurs when a seed’s coat becomes impermeable, preventing the entry 
of water, gases, and other external factors. This impermeability serves as a protective 
mechanism, delaying germination until suitable conditions are met. Factors influ-
encing hard seed formation fall into two categories: internal and external. Internal 
factors pertain to plant-specific traits, such as species and seed morphology. Genetic 
variations and seed coat characteristics play a role in shaping hard seed formation. 
External factors, based on environmental conditions, also influence seed develop-
ment. Soil nutrient availability, water supply, humidity, temperature, and light 
conditions impact seed coat permeability and germination. Additionally, the timing 
of seed maturity, drying, and storage conditions can contribute to hard seed forma-
tion. The interplay of these factors determines a plant’s tendency to produce hard 
seeds. Overcoming dormancy caused by seed coat impermeability involves various 
methods, including physical, chemical, and mechanical approaches. These methods 
enhance water and gas permeability, facilitating germination. The choice of method 
depends on seed characteristics and desired outcomes in breaking dormancy. This 
section emphasizes the impact of hardseededness on seed quality and the application 
of methods to enhance germination, underscoring its significance in seed science.

Keywords: hardseededness, seed coat, germination, breaking hardseededness, factors 
responsible for physical dormancy

1. Introduction

Seeds, a remarkable wonder of nature, are the cornerstone of plant life. However, 
they are not just the beginning of a plant’s life; they also encompass many valuable 
lessons about the resilience of the natural world. This phenomenon, known as “Seed 
Resilience,” represents the fascinating story of how seeds possess the ability to protect 
themselves and adapt to environmental challenges.

Seed dormancy is a natural process in which seeds delay their germination, even 
when the environment is suitable for it. During the dormancy period, seeds typically 
remain in a dormant state, often protected by mechanisms that prevent early germi-
nation. Dormancy permits seeds to germinate when favorable conditions arise, and 
the diverse levels of dormancy within a population of seeds contribute to a gradual 
and staggered germination process over an extended period. This chronological 
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variation in germination timing plays a critical role in ensuring the species’ survival, 
especially in demanding environmental circumstances [1].

While seed dormancy is generally viewed as an unfavorable trait in agriculture, 
where the primary objective is to promote rapid seed germination and growth, how-
ever, there are situations where seed dormancy can offer significant advantages, 
particularly during the seed development stage. This advantage is particularly 
noteworthy in the case of cereal crops. Cereals possess a dormancy mechanism that 
prevents germination while the grains are still attached to the parent plant’s ear. This 
mechanism acts as a crucial safeguard, especially when there is a period of rainfall 
during harvest (known as preharvest sprouting), as it prevents premature germina-
tion of cereal crops and helps avoid substantial losses in the agricultural sector [2].

Conversely, weed seeds often maintain their inherent dormancy mechanisms 
as they mature. This allows some weed seeds to persist in the soil for many years, 
patiently awaiting the right conditions for germination. This poses a threat to crop 
cultivation, as these seeds can rapidly multiply when favorable conditions finally 
occur. In summary, seed dormancy is a vital consideration in agriculture and crop 
cultivation, playing a significant role in the survival strategies of plant species [3].

Seed dormancy is not a single, straightforward trait; rather, it is a complex 
phenomenon influenced by various factors. Its complexity arises from the intricate 
interactions between these factors, and it is shaped by multiple elements. Among the 
numerous factors affecting seed dormancy, hardseededness stands out prominently 
[4]. Also known as physical dormancy or seed coat impermeability, hardseededness is 
a fascinating botanical phenomenon that has intrigued researchers and environmen-
tal scientists for a long time.

This distinctive feature, present in many plant species, serves as a crucial 
adaptation strategy. It allows seeds to postpone germination until favorable condi-
tions emerge, bolstering the seed’s ability to withstand challenging environmental 
conditions [5]. It is a phenomenon that is an integral part of a seed’s life cycle and 
is a product of the natural selection process. Unlike seeds that readily sprout under 
suitable conditions, hard seeds boast a robust protective seed coat, serving as a 
formidable barrier that prevents premature germination, ensuring the seed’s survival 
until optimal conditions prevail.

In this chapter, we focus on defining seed resilience, understanding why it is 
important, and exploring the different types of hard-seededness. Additionally, exam-
ines the techniques used to overcome physical dormancy and discusses the factors 
responsible for the formation and maintenance of this dormancy, aiming to explore 
various aspects of seed resilience.

2. Seeds of resilience

2.1 Definition of physical dormancy

Physical dormancy trait is an inherited characteristic that originates from both the 
outer and inner structures of the seed during its development [6]. Physical dormancy 
is recognized in 18 plant families that span a wide range of taxonomic groups and 
geographical locations worldwide [7–10]. Studies have suggested that physical 
dormancy is often inherited as a Mendelian trait, with specific genes controlling the 
development of impermeable seed coats. The heritability of this trait varies among 
plant species, indicating a complex genetic basis influenced by both dominant and 
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recessive alleles [11, 12]. When it comes to the genetic basis of hardseededness, two 
types of alleles come into play: dominant and recessive. Dominant alleles are the ones 
responsible for the formation of impermeable seed coats. Even a single dominant 
allele for hardseededness is sufficient to yield seeds adorned with impermeable seed 
coats. These robust seed coats serve as formidable shields, thwarting the intrusion of 
external elements [13]. On the other hand, recessive alleles lead to the formation of 
permeable seed coats. However, for a plant to produce permeable seeds, it must carry 
two recessive alleles, one from each parent. In other words, if both parent plants con-
tribute a recessive allele for hardseededness, the resulting seeds will have permeable 
seed coats. This genetic interplay between dominant and recessive alleles determines 
whether a seed’s coat will be impermeable or permeable, ultimately influencing its 
ability to withstand external environmental conditions [14].

The degree of physical dormancy is influenced not only by genetics but also by 
several environmental factors. The primary factor influencing hardseededness in 
seeds is their moisture content. The level of moisture within seeds plays a critical 
role in determining their ability to germinate. Seeds with low moisture content 
frequently display hardseededness because the limited availability of moisture 
impedes the essential biochemical processes required for germination. In simpler 
terms, when seeds lack sufficient moisture, they tend to become hard and resistant 
to germination. It is widely accepted that hardseededness is typically a permanent 
trait. Once a seed coat becomes impermeable, it is considered unlikely to return to a 
permeable state unless there is damage to the seed coat or a specific structure within 
it, known as the “water gap” opens to enable water to reach the internal structures 
and rehydrate them [5, 15]. Many studies on seed development have demonstrated 
that the transition from a permeable to an impermeable seed coat coincides with the 
decrease in moisture content during the maturation drying phase of seed develop-
ment [16–18].

Temperature is also undeniably the primary environmental factor influencing 
physical dormancy in seeds as a key element in synchronizing plant growth with 
changes in climate conditions. Many studies have investigated the relationship 
between temperature during seed maturation and the permeability of the resulting 
seeds [19–21]. These studies have consistently shown that seeds that mature at higher 
temperatures tend to produce a higher proportion of impermeable seeds compared 
to those that mature at lower temperatures. It is important to note that measuring 
temperature throughout the seed maturation period can be challenging, and seasonal 
or location-specific temperature variations around the parent plant may also play a 
role in determining the permeability of seeds. For example, seeds maturing at higher 
temperatures are likely to experience more water loss, leading to a higher proportion 
of seeds with physical dormancy.

2.2 Physical dormancy and germination

Determining when genetic and physiological differences emerge is a challenging 
endeavor, primarily because seed dormancy is intricately regulated at different stages 
of development, often influenced by environmental factors [22]. A dormant seed is 
essentially incapable of initiating germination, even when presented with favorable 
environmental conditions and a suitable habitat. This incapacity can be attributed to 
various factors, such as non-viability, the absence of an embryo, or the presence of 
dormancy. The impermeability of seed coats in physically dormant seeds is the result 
of complex structural and chemical adaptations (Figure 1).
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Germination encompasses a series of events that start with the absorption of water 
by a resting, desiccated seed and concludes with the elongation of the embryonic 
axis, ultimately resulting in the emergence of the radicle [23]. Water uptake by a seed 
occurs in three distinct phases. The first phase, known as Phase I, is characterized by 
a rapid and initial uptake of water. This phase typically occurs within 1–8 h. Water 
uptake occurs in all seeds, whether dormant or non-dormant, and even in non-viable 
seeds. In fact, non-viable seeds tend to absorb more water compared to viable seeds 
because the turgor pressure in the cells of viable seeds restricts excessive water 
uptake. Phase II, also referred to as the lag phase, marks a stage where water uptake 
becomes limited. However, during this phase, essential enzymes like amylase, endox-
ylanase, and phytase are produced. These enzymes are responsible for synthesizing 
new proteins required for germination. Additionally, the conversion of stored materi-
als for germination, mRNA synthesis, and the initiation of energy production through 
sugar metabolism degradation also begin during this phase. Consequently, this phase 
facilitates the transfer of nutrients from storage areas in the endosperm to the growth 
points. Phase II can span from several hours to a few days and typically concludes 
when the radicle emerges from the seed coat. The third phase, Phase III, signifies the 
first visible sign of germination, with the emergence of the radicle. This emergence is 
primarily a result of cell enlargement rather than cell division. Shortly thereafter, cell 
division occurs at the tip of the radicle, initiating its elongation [24–28].

Physical germination is an event that occurs through a two-stage process involving 
the rupturing of the seed coat. The first stage involves the rupture of the seed’s outer 
covering, known as the testa. This protective layer shields the embryo within the seed, 
and its removal is necessary to initiate germination. The second stage involves the 
rupture of an inner layer called the endosperm. This inner layer serves as a storage 

Figure 1. 
Physical dormancy in hardseed formulations.
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site for nutrients within the seed and provides the essential nutrients for the initial 
growth of the embryo [22, 29].

Germination is completed, specifically the emergence of the radicle (the embryonic 
root) becomes visible. This marks a clear indicator of seed vitality and the beginning 
of germination. However, in seeds with physical dormancy, the seed coat is tough, 
which can limit water uptake. As a result, germination may either not occur at all or 
be restricted when water uptake is insufficient. Physical dormancy is an evolutionary 
strategy that prevents seeds from germinating until environmental conditions are 
favorable, and water uptake is a crucial component of this process. Most of the time, 
the seed coat limits germination by either preventing water and/or oxygen from passing 
through or by resisting the emergence of the radicle with its mechanical properties [30]. 
In this process, the seed coat serves as a vital organ involved in nourishing the embryo 
and subsequently safeguarding it against harmful environmental factors [31, 32].

Dormancy caused by seed coat impermeability can be overcome through various 
methods, including physical, chemical, and mechanical approaches. These meth-
ods aim to enhance water and gas permeability in hard seeds, facilitating moisture 
absorption and initiating germination. The choice of method depends on specific 
seed characteristics and desired outcomes in breaking dormancy.

3. Methods of breaking physical dormancy

Breaking physical dormancy involves various methods to weaken or remove this 
barrier, allowing water and oxygen to penetrate the seed and initiate germination. 
Physical dormancy may require different scarification methods involving either 
physical or chemical agents to overcome seed dormancy.

3.1 Effect of seed scarification

Seed scarification is a crucial technique used in agriculture and horticulture to 
p romote germination by weakening the seed coat. This process involves various 
methods to facilitate water absorption and oxygen penetration into the seed, ulti-
mately kickstarting the germination process. Various methods can be employed for 
seed scarification, including chemical, thermal, electro-physical, and mechanical 
approaches [33].

The predominant form of scarification is mechanical scarification, wherein the 
testa, or seed coat, undergoes physical manipulation to enable the ingress of moisture 
and air. Various approaches are utilized in this process, encompassing the abrasion of 
seed coats with tools such as metal files, sandpaper, knives for nicking, gentle ham-
mering for cracking, or any method that weakens or opens the seed coat [34–39]. 
This technique finds extensive application within the realms of horticulture and 
agriculture, serving as a fundamental method to facilitate the germination of seeds 
encased in rigid or impermeable seed coats. Its primary function lies in enabling seeds 
to surmount physical dormancy, thereby instigating the pivotal processes of water 
absorption and germination. Mechanical scarification stands as a pragmatic and 
efficacious method, widely adopted to unlock the growth potential of numerous plant 
species reliant on this mechanism for breaking their dormancy and flourishing within 
diverse ecological contexts.

Chemical scarification is a seed treatment method that employs various chemical 
substances, including potent acids such as H2SO4 (sulfuric acid), HCl (hydrochloric 



Seed Biology – New Advances

96

acid), NaHClO3 (sodium hypochlorite), and hydrogen peroxide (H2O2). Also, organic 
solvents such as alcohol and acetone are used to eliminate seed dormancy. These 
chemicals have been the subject of extensive research, revealing their capability to 
effectively disrupt and overcome the dormancy mechanisms present in specific types 
of seeds. Through the application of these chemicals, the hard or impermeable seed 
coats of certain plant species can be altered or weakened, allowing for enhanced 
water penetration and subsequent germination. In recent studies, chemical scarifica-
tion with H2SO4 has been particularly effective in enhancing seed germination and 
seedling growth in various plant species. For instance, in okra [40, 41], strelitzia 
[42], muscari [43], and raspberry seeds [44], H2SO4 treatment has been found to 
break physical dormancy barriers and promote successful germination. Breaking 
physical dormancy can also take place as seeds pass through an animal’s digestive 
system. Unlike conventional approaches to dormancy relief, exposure to hydrochloric 
acid (HCl) within the digestive tract gradually erodes the impermeable seed layers 
[45, 46]. As well as the scarification treatment involving HCl acid is recognized for 
its high effectiveness in promoting germination for species with hard seed coats. 
This method involves the use of HCl to weaken or modify the tough outer seed coat, 
allowing water to penetrate and initiate germination more easily. Various methods 
have been employed to overcome physical dormancy, and they have proven effective 
in breaking seed dormancy and enhancing germination success in a range of plants, 
including guava [47], sunflower seeds [48], Indian siris [49], as well as certain forest 
tree seeds [50]. Sodium hypochlorite scarification is one such method that has proven 
highly efficient in breaking physical seed dormancy. Recent studies [51, 52] have 
reported significant improvements in seed germination, notably in Andrographis 
paniculata and Vanilla planifolia, following NaHClO3 scarifications. In some cases, 
this scarification is combined with ethanol pre-treatment, with ethanol concentra-
tions ranging from 50 to 96% [53, 54], further enhancing the dormancy breakage 
process. Hydrogen peroxide has also shown promise in releasing physical seed 
dormancy; for instance, Kindinger [55] reported encouraging results when soaking 
Tripsacum dactyloides (eastern gamagrass) seeds in a 30% hydrogen peroxide solution 
for 2 hours. Additionally, organic solvents like alcohol (typically ethanol) and acetone 
are employed for seed scarification, which is aimed at breaking dormancy. This 
process involves soaking seeds in the chosen organic solvent for a specific duration, 
which varies based on the seed type and its dormancy characteristics. Prior studies 
have consistently demonstrated the highest germination percentages using acetone 
and ethanol in various seeds such as tomato, lettuce, sunflower, and grass [56–58]. 
These methods play a crucial role in improving germination rates and enhancing 
plant propagation.

3.2 Effect of temperature treatment

The impacts of wet heat, dry heat, and the alternating use of wet heat and ice 
water on the alleviation of seed dormancy play crucial roles in the process of seed 
germination and propagation.

3.2.1 Hot water/air treatment

The process of hot water or air treatment entails immersing seeds in hot water 
or exposing them to high-temperature air. This procedure serves to soften the seed 
coat, eliminate any wax or grease present, and facilitate the penetration of water into 
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the seed under natural conditions. These treatments hold the potential to physically 
disrupt or soften the macrosclerid layer, with a specific focus on the strophiolar plug. 
This may lead to the creation of cracks, a softer plug, or alterations that enhance water 
absorption and other germination-related processes [59, 60].

The presence of cracks or fissures in the seed coat plays a critical role in initiating 
the germination process. These openings act as conduits through which water can 
enter the seed. Once water infiltrates the seed, it sets off a series of vital biochemical 
processes necessary for germination. This mechanism has been extensively docu-
mented in the research conducted by Baskin and Baskin in [61]. Furthermore, the use 
of hot air or water as a treatment for seed germination can have additional conse-
quences beyond facilitating water entry. It may expose the embryo to thermal shock, 
characterized by a sudden temperature change that can affect its metabolic processes. 
The impact of this thermal shock can vary among different species, potentially 
either promoting or inhibiting germination, contingent on a species’ adaptability to 
temperature fluctuations [62]. The efficacy of dry heat treatment, on the other hand, 
is contingent on the extent and duration of exposure. Therefore, determining the 
optimal combination of temperature and duration that yields a high germination rate 
necessitates empirical research tailored to each specific species [63].

This method is also proficiently employed to break seed dormancy in rice [64], 
okra [65, 66], black mimosa (Mimosa bimucronata) [67], and sponge gourd [68], 
resulting in higher seed germination rates compared to control groups. In a distinct 
study conducted by Taghizadeh and Sajadi in [69], the most effective seed germi-
nation treatment for Spanish broom (Spartium junceum L.) was introduced. This 
involved immersing the seeds in boiling water, subsequently reducing the mean 
germination time.

Another method employed to overcome hard seed dormancy is a combination of 
temperature and moisture, often referred to as after-ripening. It is utilized to break 
hard seed dormancy, particularly in seeds with physical or physiological dormancy. 
It involves subjecting seeds to specific temperature and moisture conditions, which 
trigger a series of biochemical and physiological changes that ultimately promote 
germination [70]. After-ripening takes place in a broad spectrum of warm and dry 
environmental settings, and the particular combinations of temperature and rela-
tive humidity (RH) significantly impact the after-ripening rate of different species. 
Numerous investigations into after-ripening have been conducted, during which 
the moisture content (MC) of seeds was assessed, and the seeds were subsequently 
stored at defined temperatures while being observed until their dormancy was 
disrupted. Heat and moisture combination treatments were discovered to be effec-
tive in overcoming seed dormancy in Malvaceae species, as reported by Demir [66] 
and Ellis et al. [71]. Furthermore, physical dormancy in seeds of Ipomoea spp. [72], 
Geoffroea decorticans [73], and Pittocaulon praecox [74] are broken when exposed to 
heat temperatures. During these studies, seeds were stored at specific temperatures, 
and the impact of these temperatures on the after-ripening process was observed. 
The seeds were regularly monitored at these temperatures until their dormancy was 
broken.

The well-documented role of fire in aiding the germination of species naturally 
found in fire-prone regions is significant. The process of vegetation combustion, 
as seen in forest fires, releases a variety of factors that actively promote seed ger-
mination and facilitate the breaking of seed coats, allowing water to penetrate for 
germination. Due to the heat shock from the fire, the specialized, heat-sensitive 
tissues within the seed coat are either broken or displaced, leading to the creation of 
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‘water gaps’ [17, 75, 76]. This allows the seed to become capable of absorbing water 
and oxygen, which in turn aids in the ongoing process of germination. Several studies 
have presented compelling evidence that smoke and its components can initiate seed 
germination and promote growth after germination [77–80]. The nature and extent 
of the temperature required to break seed dormancy and the response to temperature 
can vary depending on several factors. These factors encompass the characteristics of 
the seed coat, such as the thickness and structure of the cuticle, epidermis, palisade, 
parenchyma, and the type of water gap [81]. Seed size is also a significant consid-
eration, as smaller seeds tend to exhibit higher temperature tolerance and lower 
temperature thresholds [82]. Additionally, it has been observed that the age of the 
seed can influence its response to temperature [83]. Finally, whether the temperature 
conditions are moist or dry can also shape the seed’s response [84].

3.2.2 Exposing seeds to fluctuating temperatures and lights

Physiological dormancy can be alleviated not only through the process of 
 after-ripening in dry storage conditions but also by subjecting seeds to variable 
temperature conditions. The specific temperature exposure required for this process 
can vary depending on the needs and germination characteristics of different plant 
species. The choice of temperature ranges and the duration of exposure may vary 
based on the species of seeds and their sources. In 1916 [85], Harrington’s research 
demonstrated that seeds of Trifolium and Melilotus underwent a softening process 
when exposed to temperature fluctuations, alternating between 10°C or lower and 
20°C or higher. This softening effect was significantly enhanced when the seeds had 
previously experienced cooler temperatures below 10°C. In another study, exposure 
to specific temperature conditions, such as warm stratification (WS) and cold 
stratification (CS), increased the germination rate to over 80% [86]. However, it has 
been shown that seed germination behavior is often associated with factors such as 
habitat, seed mass, and life cycle type. For instance, many plants in moist habitats like 
wetlands tend to have their seed germination promoted by temperature fluctuations, 
while forest plants typically do not respond positively to temperature fluctuations 
[87]. Fenner and Thompson [88] suggested that small-seeded plant species may be 
more stimulated by temperature fluctuations compared to larger-seeded species.

While all seeds require water, oxygen, and appropriate temperature conditions 
for germination, some species also need light to germinate. It has been observed that 
light filters through the seed coat, and specific wavelengths of light can penetrate the 
embryo [89]. Generally, larger-seeded species do not require light during germination 
because they have enough nutrients to grow in the dark. On the other hand, smaller-
seeded species need light to germinate. In fact, these seeds remain dormant even if 
they have absorbed water when planted at a depth where they cannot access light. 
Light requirement is a dormancy factor and may not prevent germination in vegetable 
species except under extreme conditions. However, wild species in nature and tree 
seeds in forests generally have a greater requirement for light. The effect of light 
on seeds varies depending on genotype and environmental conditions during seed 
maturation, dormancy breaking, and germination [23]. Light and gibberellins (GA) 
are also two key factors that can help overcome this type of dormancy. It has been 
suggested that as a photoreceptor, phytohormone can contribute to the regulation of 
light in initiating or terminating the processes of seed dormancy [90]. Some seeds 
have light-sensitive pigments in their seed coats, and exposure to specific wavelengths 
of light (usually red or far-red light) can trigger biochemical changes in the seed 
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coat. This can lead to the degradation of inhibitory compounds and the softening of 
the seed coat, allowing water and oxygen to penetrate the seed, which is essential for 
germination [91–93]. However, the mechanism by which light promotes or inhibits 
seed germination has not yet been fully understood [94].

Gibberellins, a class of plant hormones, play a crucial role in regulating vari-
ous growth and developmental processes within plants, including the germination 
of seeds. One of the primary functions of gibberellins in seed germination is their 
ability to stimulate the production of specific enzymes, such as α-amylase [95]. 
These enzymes are responsible for breaking down stored starches present in the 
endosperm of the seed, which provides the energy for the growth of roots and shoots 
[96]. During the early stages of seed germination, the embryo relies on these stored 
starches as a source of energy and essential nutrients. The breakdown of starches by 
alpha-amylase leads to the formation of soluble sugars, which serve as a vital energy 
source for the developing embryo [97]. This energy is necessary to support the growth 
and emergence of the embryonic shoot and root from within the seed. In addition to 
their role in providing energy, gibberellins also contribute to alleviating dormancy 
in seeds. Dormancy is a state of inhibited growth and development that some seeds 
enter to ensure their survival until favorable conditions for germination are met. 
Gibberellins promote dormancy release, effectively signaling to the seed that it is time 
to initiate the germination process. Moreover, gibberellins can influence the physical 
properties of the seed coat. They have the capacity to soften the seed coat, making it 
more permeable to water and gases. The function of gibberellins in dormancy allevia-
tion is combined with the necessity for light [98]. This softening of the seed coat is 
particularly important for the emerging radicle, which is the embryonic root of the 
plant. The softening of the seed coat facilitates the penetration of the radicle through 
the seed coat, allowing it to emerge more easily and initiate the germination process.

The increase in GA levels occurs with the release of seed dormancy, for example, 
during imbibition and stratification. In some dormant seeds, treatment with 
exogenous GA can take advantage of this opportunity to break dormancy, thereby 
facilitating faster seedling production [99]. Many previous studies have utilized GA 
to facilitate the breakage of dormancy in various plant species, including Solanum 
torvum [100], Chinese ryegrass (Leymus chinensis) [101], Amsonia elliptica [99], 
Cinnamomum migao [102], and Araticum (Annona sylvatica) [103]. However, it is 
important to note that the responses to GA treatment have displayed variability 
depending on factors such as the specific plant species, dormancy type, GA forms, 
concentration, and duration of treatment.

4. Bibliometric analysis

To gain a comprehensive insight into the research landscape concerning physical 
dormancy and hardseededness within the agricultural domain, a thorough bibliomet-
ric analysis was undertaken (Figure 2).

In the bibliometric analysis conducted based on the content indexed in Web of 
Science, all agricultural fields were selected with the keywords “Physical Dormancy” 
and “Hardseededness” 675 results were obtained in English documents. According to 
years, the oldest being 1990 and the newest being 2023, accessed 629 articles, 25 pro-
ceeding papers, 21 review articles, 7 early access, 4 editorial materials, 3 book chap-
ters, 2 meeting abstracts and 1 research note from 31 different disciplines. As seen in 
Figure 2, it is divided into 6 different clusters according to the author’s keywords, and 
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in the red cluster, the term physical dormancy is included in 167 works, germination is 
136, seed dormancy is 113, dormancy is 103, seed dormancy is 60 works and hard-
seededness is 49 works. In physical dormancy studies, 1836 different authors were 
found, 24.74% of which were multinational studies. Considering the topicality of the 
research topic, it was observed that the document average age was 10.1 years, and the 
average number of citations per document was 17.07.

5. Conclusions

In summary, seeds represent a remarkable natural wonder, serving as the  bedrock 
of plant life and imparting valuable lessons about the resilience of the natural world, 
a concept known as “Seed Resilience.” Seed dormancy, a natural process that delays 
germination even in optimal conditions, plays a vital role in ensuring the survival 
of plant species by enabling staggered germination to adapt to challenging envi-
ronments. Physical dormancy, or hardseededness, is a specific type of dormancy 
characterized by an impermeable seed coat, acting as a protective shield to prevent 
premature germination and safeguard the seed until favorable germination condi-
tions prevail. The factors influencing the formation of hard seeds can be categorized 
into internal (plant-specific) and external (environmental) factors, encompassing 
genetic differences among plant species, morphological seed features, and environ-
mental conditions like soil quality, temperature, humidity, and light exposure.

The breaking of dormancy in hard seeds can be accomplished through various 
methods, including mechanical abrasion, chemical treatments, temperature fluctua-
tions, and cycles of drying and rehydration, all aimed at improving water and gas per-
meability for successful germination. Understanding physical dormancy is of utmost 
importance for researchers, ecologists, and horticulturists, as it significantly impacts 
seed germination timing and success, with broad implications for plant populations, 
crop production, and ecosystem restoration efforts.

Furthermore, the role of light in regulating dormancy and germination remains 
a topic of ongoing debate. Light has been recognized both as a stimulant for germi-
nation and as a dormancy terminator, contingent upon the perspective taken. It is 
considered the final step in the dormancy-breaking process, allowing seeds to ger-
minate even in darkness. Particularly, red light, mediated through phytochrome, can 

Figure 2. 
Visual representation of keywords based on co-word (co-occurrence) using RStudio.
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reverse dormancy and promote germination. In seeds with coat dormancy, both light 
and gibberellins (GA) are believed to release dormancy and facilitate germination.

In the field of bibliometrics, an extensive body of research in this area is evident, 
with numerous authors contributing to the understanding of physical dormancy, 
including a significant portion of multinational studies. The research is current and 
well-cited, underscoring the significance of this topic. In conclusion, the intricate 
interplay of factors that influence seed dormancy and germination is a complex 
subject under ongoing research and debate. A comprehensive understanding of 
these mechanisms is vital for effective seed management and ecosystem restoration 
practices.
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