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Preface

Interest in robotics has been steadily increasing. In recent years, multi-robot systems
have started to attract the attention of students, academics, and industry workers.
Recently, these systems have been used in many areas of industry, from load handling
to simulators. Multi-robot systems are considered a useful alternative to conventional
robot manipulators due to their better load-carrying capacity, high stiffness, better
accuracy, and higher velocities and accelerations. However, the complexity of these
systems presents some difficulties, such as end-effector positioning, control, and
programming. Despite these difficulties, researchers are investigating multi-robot
systems more and more every day.

Robotics technology is at a very interesting point, especially in terms of industrial
robots, military robots, medical robots, rehabilitation robots, and micro robots. As
aresult of the hard work of academics and industrial robot designers, a new multi-
robot design is developed almost daily.

This book explores the latest developments in multi-robot systems, with a focus on
current robotic systems and applications. I would like to thank all the authors who
contributed to this book with their valuable novel ideas and their knowledge of cur-
rent developments in robotics.

Serdar Kiigiik, Ph.D.

Full Professor,

Technology Faculty,

Department of Biomedical Engineering,
University of Kocaeli,

Turkey






Section 1

Introduction







Chapter 1

Introductory Chapter: Multi-Robot
Systems Changing the Human Life

Serdar Kiigiik

1. Introduction

People often do repetitive work in their daily lives, factories, schools, and hospi-
tals. Most people do not like repetitive work and also do not like working in closed
office environments. Especially, medical staff in hospitals perform thousands of
repetitive tasks such as drawing blood and measuring the human heart rate. Factory
workers also perform several never-ending repetitive tasks such as operating forklifts,
painting cars, removing defective products, monitoring and troubleshooting, assem-
bling products or components, operating machinery and tools, and packing products
or components. People are faced with a much more important problem beyond being
bored because of doing repetitive tasks. These repetitive jobs often cause work acci-
dents such as poisoning from painting a car, injury from falling heavy metal in a
factory, and hand cut from sharp knife. It is not an easy thing to make repairs under a
ten-ton car for fear of falling on it. Even being in a hospital is a very stressful situation
on its own. Working thousands of meters below in a coal mine is a frightening activity
in itself. Working in a factory where explosives are produced is not for everyone. It is
possible to multiply these examples.

At this very moment, multi-robot systems can find solutions to all these problems.
Multi-robot systems are the best candidates for carrying out repetitive, monotonous, and
dangerous tasks in the field without getting bored, tired, and overwhelmed. A medical
robot can take blood from hundreds of patients without getting bored. A factory robot
can nonstop paint cars for several days. A multi-robot system can tirelessly turn
hundreds of cars into a line.

2. Multi-robot systems converting the human life

Almost eight decades have passed since the development of the first single serial
robot manipulator. In the beginning, only serial robots were produced, but nowadays,
multi-robot systems are designed and produced intensively. Multi-robot systems have
recently started to be used safely in many areas. Today, multi-robot systems have
become equipped enough to work alone in a factory, armed for use in battlefields,
trusted to care for elderly people, skilled enough to participate in surgical operations
in a hospital, excellent in pick-and-place applications, and smart enough to bring a
selected product from a shopping mall. Especially as a result of the development and
inevitable rise of multi-robot systems, it has become an inevitable reality that robots
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replace employees. Today, robots and human workers work in the same office. It
seems inevitable that some people will leave their jobs entirely to robots in the future
[1, 2]. In this case, social scientists should seek answers to the following questions: (1)
How ready is humanity for this inevitable reality [3]? and (2) What solutions do social
scientists propose for this inevitable reality [4]?

The fact that multi-robot systems are advanced enough to perform surgery in the
hospital seems to benefit humanity as well as its bad consequences. Multi-robot
systems are cheaper than designing all the skills in a single robot and doing the work.
In particular, many robots can come together and do many things for the benefit of
humanity. Swarm robotics is a very good example of this type of multi-robot system.
Swarm robotics can be defined as the systematic management of a group consisting of
a large number of simple robots. According to the some researchers, the collective
behavior of robots in a robot swarm results from local interactions between robots [5].
This approach was inspired by other living things in nature, such as ants, where
swarm behavior occurs. The field of swarm robotics studies the design, physical
structures, and control behaviors of robots. There are several potential application
areas of swarm robotics such as search and rescue missions [6] and military robot
missions [7]. Autonomous robotic logistics is another multi-robot system that pro-
vides unmanned autonomous transfer of objects from one location to another with
minimal human intervention. Surveillance and search and rescue applications are
another application area of the multi robot systems. Surveillance practices are applied
in both indoor [8] areas and outdoor areas [9]. Exploration is another application type
of multi robot systems. In exploration, robots in a team are deployed to an unfamiliar
location to explore the area. Many problems such as disconnection and battery drain
are encountered in such applications [10].

3. Conclusion

The rapid improvement of technology causes robots to become more and more
capable. Thus, robots can now perform tasks that they could not before, easier, faster,
and with higher quality. In addition to these advantages, there are significant
decreases in robot costs and operations compared to the past. As a result of falling
robot costs, increasing skills, and working in cooperation, multi-robot systems have
started to become an alternative for almost every job that humankind performs.
Although multi-robot systems are increasingly working with people or alone in
offices, the social consequences of this situation have not yet been fully explored. If
people will work less in the future, how people will spend their free time is a fact that
social scientists should think about in advance.
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Chapter 2
Trajectory Planning

Junsong Lei, Zhaojiang Luo and Chaoqun Li

Abstract

This chapter discusses the trajectory planning of robot. First, the basic principle of
trajectory planning is described, which is mainly determined by the geometric path
and the motion law, and it is a motion law that defines time according to a given
geometric path. Second, the characteristics of the joint space and the operational space
are expounded. Then the trapezoidal trajectory and the trajectory with S velocity
profile commonly used in industrial practice are introduced. Finally, point-to-point
trajectories and multipoint trajectories are described. Point-to-point trajectories
include a point-to-point trajectory in the joint space and a straight-line and circle
trajectory in the operational space. Multipoint trajectories include Bezier and NURBS
curves functions.

Keywords: trajectory planning, the geometric path, the motion law, the joint space,
the operational space, point-to-point trajectories, multipoint trajectories

1. Introduction

Trajectory planning is a motion law that defines time according to a given geo-
metric path. Therefore, the purpose of trajectory planning is to meet the needs of the
tasks and generate the reference inputs required by the control system, so that the
robots can perform the movements in Ref. [1]. The inputs of any trajectory planning
algorithm are an expected motion path, kinematics, and dynamics system parameters
of the robots, and the outputs are the positions, velocities, and accelerations of the
interpolation points of each joint or the end effector in Refs. [2, 3]. This chapter will
introduce trajectory planning from the perspective of industrial practice, including
the basic principle of trajectory planning, the joint space and the operational space, the
motion laws, and point-to-point and multipoint trajectories.

2. The basic principle of trajectory planning

The desired trajectory can be fully determined by the geometric path and the motion
law. The geometry path is related to space, while the motion law is related to time.

2.1 The geometry of the trajectory

The geometric path p = p(s) expresses the path of the end effector from the start
point to the end point in Ref. [4]. The end point B can be reached in two different path
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forms from the start point A, see Figure 1. Depending on whether it is necessary to
specify the geometry of the trajectory, the planning of trajectory can be carried out in
the joint space or the operational space.

2.2 The motion law

The motion law s = s(¢) limits velocity, acceleration, and other parameters of the
end effector from the start point to the end point. The end point B can be reached
from the start point A according to two different motion laws, see Figure 2. Various
functions, such as linear trajectory function with constant velocity or trajectory
function with S velocity profile, can be selected to specify the motion law along the
geometric path.

Therefore, based on the geometric path p = p(s) and the motion law s = s(t), the
trajectory can be written as

p=p@) (1)

Pathl / Path?
B — -
0 > 0 >
Figure 1.
Two different path forms from the start point A to the end point B.
A A
A A
Velocityl Velocity2
B Y B Y
0 e >

Figure 2.
Two different motion laws from the start point A to the end point B.
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3. The joint space and the operational space

Trajectory planning is divided into the joint space and the operational space
according to the different description spaces. Trajectory planning in the joint space
has the characteristics of few constraints and fast calculation speed, while trajectory
planning in the operational space is mainly used for scenarios where users have
specified path requirements.

3.1 The joint space

Trajectory planning in the joint space is to describe the trajectory of the robot as a
function of joint position with respect to time, that is, the trajectory of the end effector
can be directly determined by joint variables, so it is easy and simple to carry out
trajectory planning in the joint space. Since there is no continuous corresponding
relationship between the joint space and the operational space, singularity, and
redundant degrees of freedom in motion can be avoided. In addition, the complexity
of its path depends on the specific kinematic characteristics of the robot, and the
path in the operational space cannot be predicted in Ref. [5]. Therefore, trajectory
planning in the joint space is only applicable to the operating scenarios without path
requirements.

3.2 The operational space

Trajectory planning in the operational space is based on a function of
position and orientation with respect to time to describe the trajectory of the
robot, and the corresponding joint position is obtained by the inverse kinematic
model.

Since the path planned in the operational space is determined, the trajectory
planning in the operational space is suitable for the operating scenarios with strict
requirements for the instantaneous change law of position and orientation. In addi-
tion, the planning of trajectory in the operational space is prone to problems such as
unreachable workspace or singularity, and they are generally avoided by specifying
the robots to pass through a set of intermediate points in Ref. [6].

4. The motion law

In order to ensure that the robots can operate efficiently and stably, it is
generally required that the motion profile meet at least the continuous first
derivative, and it needs to have the characteristics of fast acceleration and deceleration
and constant velocity. At present, the velocity control algorithms commonly used in
robot systems include the trapezoidal trajectory and the trajectory with S velocity
profile.

4.1 The trapezoidal trajectory

The trapezoidal trajectory means that the velocity profile is trapezoidal, and its
complete curves are shown in Figure 3. The complete trajectory consists of three
phases. In the first phase, the acceleration changes from zero to a fixed acceleration,

11
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Figure 3.

Position, velocity, and acceleration curves of a trapezoidal trajectory.

and the velocity increases linearly with a fixed acceleration from zero. In the second
phase, when the velocity reaches the desired value, it enters the constant velocity
phase. At this phase, the velocity is constant and the acceleration suddenly changes to
zero. In the third phase, the velocity begins to decrease with a fixed acceleration until
it reaches zero.

Piecewise acceleration equations are expressed as

amax  (0<2<8y)
at)=< 0 (t1<t<1) (2)
—amax (2 <E<13)
Piecewise velocity equations are expressed as
Amaxt (0<t<t)
v(t) =4 v2 (t1<t<t) (3)
V2 —Amax(t —t2) (L2 <t<t3)
Piecewise position equations are expressed as
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1
Eamaxt2 (0 Stﬁﬁ)
s(t) = q s1+02(t —t1) (1 <t<ty) (4)
1
53— samax(t —12)° (L <t<t3)

2

where the time instants ¢4, ¢, and ¢3 are specified. s1, s, and s3 are corresponding
position values, and v1, v, and v3 are corresponding velocity values. am.y is a maxi-
mum acceleration value.

4.2 The trajectory with S velocity profile

The trajectory with S velocity profile means that the velocity profile is S-shaped,
which presents that the jerk is constant during acceleration and deceleration, and a
smoother velocity curve is generated by controlling the duration of jerk to reduce the
impact on machinery. The complete trajectory with S velocity profile includes seven
phases: constant positive jerk phase T; in acceleration, constant zero jerk phase T in
acceleration, constant negative jerk phase T’ in acceleration, constant velocity phase
T4, constant negative jerk phase T'5 in deceleration, constant zero jerk phase T in
deceleration, and constant positive jerk phase T in deceleration, see Figure 4. In the
first three phases, the velocity increases smoothly, the acceleration presents trapezoi-
dal profile, and the jerk changes abruptly between the desired value and zero. In the
fourth phase, when the velocity is accelerated to the desired value, it enters the
constant velocity phase. When the end point is approaching, the deceleration phase
begins in the last phases. The transition of the entire velocity curve is smooth, and
there is a continuous acceleration.

Piecewise jerk equations are expressed as

Jmax  (05E<1)
0 (t1 <t<ty)
S (2 <E<13)
j&) =49 (t3<t<t4) (5)
Tmax (4 SEL5)
0 (ts <t <te)
Jmax (6 SE=17)
Piecewise acceleration equations are expressed as
Jmaxt (0<t<ty)
JmaxT1 (h<t<t)
Jmax L1~ Jmax(E — 1) (ty<t<t3)
at) =40 (13 ST <t4) (6)
Tmax(t — 14) (ta <t <ts)
T max L4 (ts <t <tg)
max L4 +imax —t6)  (t6 <t <t7)
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@)

(t1<t<ty)
(t) <t <t3)
(t3<t<t4)
(t4 <t <ts)

ot —16)° (t6 <t <17)

2

jmax(t - t2)2

2
1

(t —ta)?

2
Us _jmaxrlﬂv-':’(”L - t5)

maxt
1

1
V4 — Ejmax

v + i]
Vg _jmaxTS(t — ts) +

U1 +jmaxT1 (t - tl)
02+ [1(E —12) —

and acceleration curves of a trajectory with S velocity profile.

Piecewise velocity equations are expressed as

Position, velocity,

Figure 4.
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Piecewise position equations are expressed as

1

vft+gjmaxt3 (0<t<ty)
1.

510 01(8 = 12) F e T~ 11)” (<t<tr)
1, 2 1. 3

s2+va(t —12) + E]male(t 1) — g]max(t —1)° (2<t<t3)

s(t) =  s3+vs(t —13) (t3 <t <ts) (8)

1,

sS4+ 04t —t4) —g]max(f—fét)3 (t4 <t <ts)
1.

ss +vs(t —ts) —Ejmsz(f—fs)2 (ts <t <ts)
1, 2 1, 3

$6 +06(t = 16) = Sjmax T5(E = 16)" + Fmax(t —16)"  (te <t <17)

Where the time instants t1, ¢, ..., and ¢; are specified. s, s, ..., and s; are
corresponding position values, and v1, v5, ..., and vy are corresponding velocity values.
Amax and j,_. are maximum acceleration and jerk values.

5. Point-to-point trajectories and multipoint trajectories
5.1 Point-to-point trajectories

Point-to-point trajectories are mainly used for robotic tasks such as palletizing,
cutting, press tending, and other operations. Point-to-point control first ensures the
position and orientation of the teach-in points, and the geometric path between the
teach-in points, such as straight-lines and circles, can be specified when programming
the robot’s working program.

5.1.1 Point-to-point trajectory in the joint space

According to the requirements of the task, the end effector is required to move
linearly in the joint space between point A and point B (Figure 5).
Therefore, the position of each joint at the time instant ¢z + At can be expressed as

Oriar = (1 —u)0a +ubpg(0<u<1) 9)
5.1.2 Point-to-point trajectory in the operational space
5.1.2.1 A straight-line position trajectory

According to the requirements of the task, the position of the end effector needs to
be moved in a straight-line between point A and point B. Generally, the positions of
the start point A and the end point B in the operational space are known, and the
positions of a set of intermediate points on the trajectory AB are calculated, see
Figure 6.

The position length of the trajectory AB is Lap. The end effector is located at the
point P; and P ; on the trajectory AB, corresponding to the displacement s(¢) and
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“ A

v\:

Figure 5.
A point-to-point trajectory in the joint space.

Z A

Figure 6
A straight-line position trajectory in the operational space.
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s(t + At) = s(t) + As at the time instants ¢ and ¢ + At. At is a control period,
corresponding to the displacement As .
Length function in normalized form can be expressed as

t+ At
, o SEt A

o (0<us) (10)

Therefore, the position of the end effector at the time instant ¢ + At can be
expressed as

b, A, B,
Py|=(1-u)| A | +u|B, (11)
Py Az B;

5.1.2.2 A straight-line ovientation trajectory

According to the requirements of the task, the orientation of the end effector needs
to be moved continuously between point A and point B. Generally, the orientations of
the start point A and the end point B in the operational space are known, and the
orientations of a set of intermediate points on the trajectory AB are calculated, see
Figure 7. Since Euler angles and rotation matrices may have gimbal locking in rota-
tion, and quaternions do not have this problem. Therefore, quaternions can be used to
calculate the orientation.

Figure 7
A straight-line ovientation trajectory in the operational space.

17



Multi-Robot Systems — New Advances

The orientation unit vector of the start point A is 7 4, corresponding to the quater-
nion Q 4. The orientation unit vector of the end point B is 75, corresponding to the
quaternion Qp. The angle between two orientation unit vectors is 6. The end effector
is located at the point P; and Py, o; on the trajectory AB, corresponding to the angle 6(¢)
and 0(t + At) at the time instants ¢ and ¢ + At. Its orientation unit vector is 7p,,,,, and
the corresponding quaternion is Qp, , .

Angle function in normalized form can be expressed as

MZH(H—At)(O

7 <u< 1) (12)

The general linear interpolation will cause uneven changes in angular velocity,
while spherical linear interpolation can ensure a smooth curve between two quater-
nions. Therefore, the orientation of the end effector at the time instant ¢ + At can be
expressed as

sin[(1 —%)6]Q, + sin(u6)Qp

QP’*” B sin @ (13)
When the angle 6 is very small, it will result in a large value in the Eq. (13).
Therefore, the linear interpolation formula can be used
Qp,,, = (1—u)Qu +uQp (14)

5.1.2.3 A circle position trajectory
According to the requirements of the task, the position of the end effector needs to

be moved in a circle between points A, B, and C. Generally, the positions of the start
point A, the middle point B and the end point C in the operational space are known,

Z A

Figure 8
A circle position trajectory in the operational space.
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and the positions of a set of intermediate points on the trajectory ABC are calculated,
see Figure 8. Based on the position of the start point A, the middle point B, and the
end point C, the radius R and center M of the circle can be solved. Then the unit

normal vector # of the circle, the unit tangent vector ¢ of the start point, and the unit

vector wy from the center to the start point can be solved.
Length function in normalized form can be expressed as

t+ At
B Gt ))

T (0<u<1) (15)

ABC

Therefore, the position of the end effector at the time instant ¢ + At can be
expressed as

P, M, S S
Py | = |M, | +Recos (2) Wy + Resin (2) e (16)
P, M,

5.1.2.4 A circle orientation trajectory

According to the requirements of the task, the orientation of the end effector needs
to be moved continuously between points A, B, and C. Generally, the orientations of
the start point A, the middle point B and the end point C in the operational space are
known, and the orientations of a set of intermediate points on the trajectory ABC are
calculated, see Figure 9.

z A;:{ 529

Figure 9.
A circle orientation trajectory in the operational space.
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The orientation unit vector of the start point A is 7 4, corresponding to the quater-
nion Q4. The orientation unit vector of the middle point B is 7, corresponding to the
quaternion Q. The orientation unit vector of the end point C is 7 ¢, corresponding to
the quaternion Q. The angle of the orientation unit vectors between the start and the
middle point is a4p. The angle of the orientation unit vectors between the middle and
end point is agc. The angle of the orientation unit vectors between the start and end
point is a. The end effector is located at the point P, on the trajectory AB,
corresponding to the angle a(t 4+ At) at the time instant ¢ 4+ At. Its orientation unit
vector is 7th, and the corresponding quaternion is Qp,.p-

Middle angle function in normalized form can be expressed as

an
UMiddle = 73 (17)

Angle function in normalized form can be expressed as

" — At At (18)
a

If u <upgigq, the orientation of the end effector at the time instant ¢ + At can be
expressed as

sin[(l— U )aAB}QA—i— sin< 4 aAB)QB

UMiddle UMiddle

Qp,. = (19)

sin aAB

If upgiaz. <u, the orientation of the end effector at the time instant ¢ + At can be
expressed as

sin |: (1 _ u—uMiddle> aBC] QB + sin (u—uMidd/e aBC) QC

1—untidare 1—Unidate

QPt+At = (20)

sin aBC

5.2 Multipoint trajectories

Multipoint trajectories are often used for complex operations such as painting, arc
welding, or surface machining. The user teaches a series of points (such as start, end,
and intermediate points) on a continuous path, and the robots connect the path points
or multi-segment paths sequentially using polynomial functions, Bezier curve func-
tions, or spline functions.

5.2.1 Bezier curve functions

In order to further improve the efficiency of the tasks, the robot end effector is
required to achieve continuous operation between multiple trajectories. That is to say,
the displacement and speed motion profiles are continuous. Due to the characteristics
of the geometric invariance and convex hull, high-order Bezier curves are often used
in industrial practice to connect multi-segment paths in Ref. [7]. Taking the connec-
tion of two straight-line trajectories as an example, the position of point A, point B and
point C of line 1 and line 2 is generally known, and the end point B of line 1 is used as
the start point of line 2, see Figure 10.
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A

B(P)

O

Figure 10.
A quartic Bezier curve trajectory.

A circle with B as center point and the given transition value R as radius can be
obtained, and it intersects the AB and BC trajectories at D and E points, respectively. A
quartic Bezier curve is used to connect the two trajectories, and five control points need
to be specified on the DB and BE segments. The center point B is the control point P,,
and the points D and E are the control points Py and P4, respectively. P; is taken
halfway through the DB segment and P; is taken halfway through the BE segment.

The quartic Bezier curve function can be written as

4
P(t) =Y P;Bi4(t),t€[0,1] (21)
i=0

The corresponding expansion in Eq. (21) is

P(t) = (1—1)*Po + 4t(1 —t)°Py + 6£2(1 — 1)*P,

(22)
+483(1 — t)P3 +t*P4,t€10,1]
Recursive equation is
P; k=0
P { ’ 23
! A-t)P L tP k=1,2, ...,4,i = 0,1, .., 4—k 23)

5.2.2 NURBS curve functions

For the complex trajectories of the end effector in the operation space, the NURBS
curve has been widely used because it can accurately and uniformly express standard
analytical curves and free curves and has the characteristic of flexible shape control in
Ref. [8]. Any k-th degree NURBS curve can be represented as a piecewise rational
polynomial function.

_ icodi@iNix(t)

PO = S o Na )

(24)
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where w; are the weight factors, d; are the curve control points, and N;;(t) are
B-spline basis functions determined by the node vectors ¢; .
Based on De Boor-Cox recursive function, the basis function can be written as

1,t€ [tiyti+l)
Nio =

0 , otherwise (25)

t—t Litk+1 — 1
Nij = Nig-1(t) + ————Nj140-1(2)
Ligk — i Litkr1 —tiva

where 3 = 0 is specified in Eq. (25).

Due to the computational complexity of the control points solved by the via-points
of the NURBS curve, the De Boor-Cox algorithm is often used to avoid repeated
iteration. More details on NURBS curve calculations can be found in Ref. [9].

6. Conclusions

This chapter discusses the trajectory planning of robots. First, the basic principle of
trajectory planning is described, which is mainly determined by the geometric path
and the motion law. Second, the characteristics of the joint space and the operational
space are expounded. Then the trapezoidal trajectory and the trajectory with S veloc-
ity profile commonly used in industrial practice are introduced. Finally, point-to-
point trajectories and multipoint trajectories are described. Point-to-point trajectories
include a point-to-point trajectory in the joint space and a straight-line and circle
trajectory in the operational space. Multipoint trajectories include Bezier and NURBS
curves functions.
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Chapter 3

A Multi-Layer, Multi-Robot
Control Architecture for
Long-Range, Dynamic
Communication Links

John Shepard and Christopher Kitts

Abstract

A unified motion control architecture is presented for dynamic, long-range multi-
robot communications networks, incorporating task abstraction that disassociates
goals from implementation. In the task space, communication link states are specified,
directly measured, and explicitly controlled yielding well-behaved task state trajecto-
ries. The control architecture uses task-level compensation to generate multi-robot
formation mobility commands, and a cluster space controller transforms those for-
mation commands to mobility commands for individual robots. The number of robots
are selected to meet communications requirements and controlled through a multi-
task coordination capability incorporated within the architecture. Robustness to per-
formance commands, system configuration parameters, and external disturbances is
demonstrated through a variety of simulations and experiments. These show how
robots are dynamically positioned and switched into or out of operation in order to
meet communications requirements.

Keywords: multi-robot systems, mobile robots, communication networks, robot
control, collaborative robots

1. Introduction

Robotic systems are an integral tool in modern society, extending the capability of
human operators, increasing their productivity and improving their quality of life.
Multi-robot systems are able to enhance quantity-sensitive performance metrics like
speed, coverage, throughput, and redundancy. In addition, their spatial diversity pro-
vides added capabilities for tasks like formation-keeping [1-3], escorting or guarding
[4, 5], surveillance and feature tracking [6-9], object manipulation [10], and more
specialized tasks such as automatic lighting [11] reconfigurable sparse antenna arrays
[12], and minimally invasive surgery [13, 14]. New research is developing techniques
for diverse task-oriented groups of robots to work together to perform broader and
more sophisticated missions [15, 16]; as the mission evolves, the tasks may be pre-
served even though the environment, the performance objectives, and the assignment
of robots may change.
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In this research, we examine the task of long-range and dynamic communication
link management due to its necessity as a supporting role in many applications and
missions. By “long-range” we refer to communication links that require a single series
of repeater stations to relay communication between remote end stations. As such,
mesh network approaches such as those described in [17, 18] which provide multiple
communication paths are not appropriate for the applications of interest. By
“dynamic” we refer to the need for robot relays to adjust their positions to compensate
for changing link conditions due to motion of the end stations, the attenuation envi-
ronment, communications equipment performance, etc.; as such, deploying static
relay stations, as is done in [19, 20], is not sufficient.

Model-based approaches to link management use a model of the link along with
information regarding relay robot positions in order to estimate quality of service.
These are typically well behaved due to smoothing simplifications [21] but can be
inaccurate. In [22], a simple binary model is used, where nodes are assumed to be
connected if within a fixed distance, leading to a strategy that evenly spaces robots
between end-stations. More sophisticated models may be used, incorporating path
models based on power, distance, and line-of- sight in order to identify a set of goal
positions for the robots [23-25].

Measurement-based approaches remove model inaccuracies, allowing for
improved performance and an expanded workspace [26], and are robust to complex-
ities of the link behavior like obstructions, directional antenna patterns, and multi-
path effects. For example, in [27], unmanned aircraft are used to establish a relay
network, with the airborne relays circling control points and measuring link gradients
to relocate to optimal locations. In [28], it was found that the use of measurement-
based approaches improved performance in maintaining a line of sight connection
between robots. In [29], optimization techniques exploited measurements to mini-
mize the path traveled by relay robots as they manuever to a fixed location to support
end-station communication. In [30], a centralized planner guides a multirobot team in
known indoor environments to establish a multihop network, with measurements
used to improve local positioning. Finally, in [31, 32], multi-robot mesh communica-
tions is achieved using a potential-function-based, decentralized control scheme and
measurements of communication bit error rate.

The work presented in this paper addresses repositioning of communication relay
nodes operating within a long-range, dynamic link in order to ensure that a measured
Quality of Service (QoS) level, signal strength, is maintained. Service is achieved and
maintained using a multi-layer control architecture. At the highest level, a task-ori-
ented operational space control approach produces well-behaved task state compen-
sations. These are converted to robot formation motion commands using a model-
based inverse Jacobian transform. Formation compensations are then converted to
individual robot drive commands to achieve the necessary level of position control. A
flexible number of robots is used to support the link, with robots being switched into
and out of service as necessary; to be more precise, unused robots are actually
switched to a benign position-control task that maintains their location in a ready
position for future use in maintaining the link. Formally, all robots, regardless of their
assigned task, are controlled through a single unified position control framework that
dynamically changes the transforms used to convert between control state spaces.

Each element of this control architecture is well-motivated and provides a useful
innovation compared to previous work in managing dynamic long-range communi-
cation links. First, direct sensing of and control implementation in the operational task
space improves application-oriented performance. Second, use of this space abstracts
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the specification of desired performance from implementation details such as the
number of robots used to achieve the task and the mobility characteristics of these
robots, thereby preventing the redesign of the specification process when these
implementation details are changed. Third, our approach flexibly engages an appro-
priate number of robots in the link management task, thereby conserving resources
when the full suite of robots is not required. Fourth, use of the intermediate cluster
space representation provides a critical layer of abstraction that reflects the geometric
nature of the application, thereby making the construction of task level transforms
simpler; furthermore, this control architecture provides an intuitive intermediate
layer for supervisory operators when specifying and monitoring performance as well
as for developers when incrementally designing, verifying and troubleshooting func-
tionality of the multi-robot system. Fifth, the architecture unifies motion control for
all robots within a single control architecture (whether the controller itself is central-
ized or decentralized) thereby facilitating development and performance analysis of
large-scale, multi-task missions. Overall, our approach provides enhanced perfor-
mance, minimizes the use of robot resources, promotes modular composition, and has
been verified experimentally; results show the technique to be robust to the dynamic
link environment based on moving end stations, local attenuation, and variation in the
state of the communication relays.

The article starts with a synopsis of the basic control architecture in Section 2,
discusses extension to the task space in Section 3, integrates multiple tasks in Section
4, describes the experimental test bed in Section 5, presents results of the experiments
and simulations in Sections 6, and considers future work in Section 7.

2. Cluster space control

The first layer of our control architecture addresses mobility control of the multi-
robot cluster. While a number of techniques exist for multi-robot formation control,
the Cluster Space control architecture abstracts the cluster as a virtual articulating
mechanism, allowing explicit control of all system states. The interested reader should
consult [33] for comparisons. The underlying goal of the Cluster Space technique is
simple motion specification and control of multi-robot systems. This is accomplished
by considering multiple robots as a single geometric entity. The pose of a cluster is
described by its location and shape, which are related to individual robot positions
through a set of kinematic transforms. For a system of # robots with ¢ total degrees of
freedom, the generalized cluster and robot pose vectors and their kinematic relation-
ships are:

K2 _gl(rl...rq)_

Ak gz(rl....rq) "
Cq | gq(”l ”q)_
71 'hl(cl cq)'

5o 2| _ hz(cl....cq) 2)
L7q ] _hq(cl . cq)_
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Figure 1.

The multilayer control architecturve. Layers exist for task-space, cluster space and robot space control, with inverse
Jacobian resolved rate controllers used within each space.

where 7; are robot pose states, c; are cluster pose states, g;( ... ) are kinematic
equations, and %;( ... ) are inverse kinematic equations [33, 34]. Cluster state velocities
are linearly mapped from robot velocities using a Jacobian matrix.

These mathematical transformations are the basis for the layered cluster space
control framework shown in Figure 1. On the right, in red, are the individual robots,
which accept platform-level velocity commands. The blue region is the cluster space
controller, shown in the form of a kinematic, resolved rate controller. This layer
accepts cluster-level commands regarding cluster mobility and geometry; its outputs
are robot velocity commands for each robot in order to achieve the cluster-level goals.
Forward kinematic equations are used to compute cluster states from estimated robot
states, and cluster control effort is transformed to robot velocity commands using the
inverse cluster Jacobian matrix. This control technique has been implemented
experimentally in a wide variety of multi-robot systems operating in land, sea, and air
[4,5,7, 35, 36]. The yellow region of the diagram is described in the next section.

3. Task space control

Just as operational space [37] kinematic transforms are used to allow control of
robots based on their actuator configuration, the cluster space methodology uses
kinematic transforms to establish the control task in terms of multirobot formation
mobility and geometry. Here, we add yet another operational space control later for
task-oriented specification of behavior. As shown in Figure 1, each control layer uses a
resolved rate controller that provides rate commands to an inverse Jacobian function,
which converts those commands to rate set-points for the next layer (full dynamic
controllers have been demonstrated in other works). Using this approach, operator
commands are issued and controlled at the task level, and compensation commands
are then successively transformed to cluster velocity, robot velocity and finally actu-
ator velocity set-point commands as the control architecture executes. Each successive
layer acts as an inner control loop for the preceding layer.

Given this, the long-range dynamic communication link management system
presented in this paper involves two interacting tasks. The first is a “communication
space” task that uses a measurement-based, link-balancing control strategy to space
robots along the inline dimension between the end stations (a model-based
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assumption that in-line positioning is best has been made, leading to the use of a
simple cross-track nulling controller for the second dimension); furthermore, a
measurement-based controller varies the number of robots required by the task to
minimally satisfy the desired aggregate communication quality set points. The second
task is a simple position control task to maintain unused robots in a ready state. While
the second task is trivial, we treat the management and interplay of these multiple
distinct tasks in a formal manner.

In total, we are using a multi-layer, multi-task controller. In [24] we develop the
conditions to ensure Lyapunov stability for each layer as well as the conditions for task
switching. Space limitations prevents their further discussion in this work.

The following subsections demonstrate use of the layered control methodology for
the communication and position control tasks. For each task, a formal definition of the
layered state spaces is provided, the kinematic and Jacobian transforms used to con-
vert between spaces are established, and controllers are provided for each layer. Both
tasks assume the use of planar robots given that this was the type of robot used in the
simulations and experiments described in Section VI.

3.1 Example task: long range communication

Consider the task of long-range communications between two exogenous nodes
using mobile relays. To maintain the link quality, 7, robotic relay nodes will move to
intermediate locations based on desired link characteristics.

3.1.1 Spaces and states

The relevant spaces for this scenario are the individual robot space, the cluster
space describing the geometry of the task-specific group of robots, and the communi-
cation task space. The robot space is defined by the pose of all robots, specified below
for quantity n. robots:

T
r £ |:x1ay1) 01, o ,xnc,ynca em (3)

where (x;,y,) is the Cartesian position and ; is the orientation of robot i, assuming
planar operation.

The cluster space pose vector describes the location and shape of the cluster. In this
case, the separation distances p; and chain angles o; define the geometry, as depicted
in Figure 2; although many other cluster definitions are possible, this choice is con-
venient due to the serial nature of the communications task.

Accordingly, the cluster state vector is defined:

A

¢ [xc,)’c; Ocs p1> 015 Py oo s Pn.—15 On.—15 ¢n6—l]T (4)

In the task space, the user is interested in maintaining sufficient communication
quality of service (QoS) between two end nodes, with signals being relayed as needed.
Quality of service proved impractical to quantify in real time, so the system measures
the link power between nodes using the received signal strength indicator (RSSI). For
line-of-sight, the RSSI may be modeled as inversely proportional to the square of the
distance between two points, hence:
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K _k (5)
(101 — ;)" + i1 _J’z')z &

§i =

where k is a constant associated with the antenna gain. It is important to note that
RSSI is measured directly but this model is used to compute the Jacobian, similar to a
model-based approach for gain scheduling.

As depicted in Figure 3, the quality of service between the end nodes is influenced
by both the crosstrack error, ey, and the angles of alignment, y;. Assuming a line of
sight model, the maximum total signal strength is achieved by minimizing the
crosstrack error and angles of alignment. The ratio or balance, B;, of the link power in
each segment is also important to avoid data rate bottlenecks or backup in homoge-
neous systems, or to allow for imbalanced transmission rates in nonhomogeneous

(6]

Figure 2.
Serial chain cluster diagram for an i-hop chain.

("') )i

Figure 3.
Long-range link diagram for a 4-hop link performed by 3 robots.
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systems. The first and last links are functions of the position of the end nodes being
connected (xEl s yE1> s (sz, yE2> which are uncontrolled states of the environment.

Lastly, the orientation of the robot, y;, is included to fully define all degrees freedom
of system. The communication “pose” vector is defined:

- T
t <XE1 ;)’El,sz;j/Ez) é [Blr )Bncrexh }/1> eeey 77,[71, l//la ) WJ (6)

Given these definitions, we define the desired states as follows. For a uniformly
balanced network, B; = 1. For minimum crosstrack error for maximum link quality,
ex = 0. For aligning the robots between end points, y; = 0. In this case, the robots have
a holonomic constraint and so the robot headings, y;, are controlled at the platform
level. Trajectory generation is a major topic of research for robotic communication
networks [38] but it is not our focus in this work. These commands remain constant
throughout each presented experiment, unless otherwise noted. It may be argued that
more sophisticated control algorithms require less sophisticated command trajectories.

3.1.2 Kinematic transformation equations

Robot states are transformed into the cluster states using kinematic equations
derived from formation geometry:
Cluster frame:

Xc éxl Y. éyl 0, £ 01 (7)
Chain length:
2
pi= \/(xiﬂ *xi)z + (}Vi+1 *J’i) (8)
Chain angle:
i—1
o; 2 atan? (yi+1 — Vi Xit1 — Xi) - o )
=1
Node orientation:
¢i =0, (10)
where atan2( ..., ...). is the two-argument function that calculates a four-quadrant

arc tangent with a range of [z, —7]
These cluster states are transformed into the task states using the measured link
states and system geometry:

Balance:
2
(51 = %c1)” + gy = Y1) ;
5 L fori=1
P1
A Si+l /)% .
B2 — = 3 - - sfori=mn, —1
Si (xg2 — xc + py cos(ay + @) + pycosar)” + (g, — ¥, + pysin(ar + a2) + pysinay)
2
p2, otherwise
Pit1

(11)
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Crosstrack error:

((sz —xEl)(J’El —}’C> — (B, — %) (J’Ez _yE1)>2

Cxt = 12
t (xg, —xg,)" + ()’E2 —J’El)z "
Angle of alignment
Vi =0 (13)
Orientation:
v =¢; (14)

where (xEl, yE1> and (sz, yEz) are the positions of the end stations that are being

connected by the multi-robot communication system.

3.1.3 Jacobian matrices

The Jacobian matrices are computed from the kinematic equations to map veloci-
ties between spaces. The solution is typically lengthy and so not shown here but easily
computed using (5) with (7-10) for the cluster Jacobian or with (11)-(14) for the task
Jacobian.

3.1.4 Control design and performance

In addition to determining the kinematic transforms, control laws must also be
formulated. For these experiments, simple linear controllers suffice as the testbed
platforms have well-behaved dynamics, but the system architecture can accommodate
any type of control algorithm within each space.

As many commercially available robotic platforms control their own local velocity,
a detailed discussion of platform control is not necessary. It is important to note that if
the robots are nonholonomic, orientation and global translation are coupled which
precludes independent control of all degrees of freedom. For details on our testbed
nonholonomic control, please see [36].

The following equations can be used to design controllers in higher spaces using
traditional techniques. The transfer functions at each layer can be approximated as
linear, time-invariant (LTI) with proper tuning, maintaining diagonal dominance, and
avoiding singularities. General system stability and performance is discussed in
Section III.C.

Cluster space response:

?' = (];1 + G,];lHC)ilG,J;lHC?. d= GC?. d (15)
Task space response:

t = (S +GJ; 'H,) 'GJ; ' Hi't = Gyt 4 (16)
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where G, represents a diagonal matrix of transfer functions in space x, H, repre-
sents a controller in space x. The system pose is represented by  in robot space, ¢ in
cluster space, and ¢ in task space. As subscripts, these letters associate the variable
with a space. Subscript d denotes desired states.

For these particular experiments, the cluster space control law utilizes proportional
feedforward and feedback, shown below, for response time and error rejection
respectively:

de=H(¢ 0t ) =Kyl atKe (a7 (17)

where u, denotes cluster space control effort, ¢ 4 denotes desired cluster velocity,
K., denotes proportional feedforward gain matrix, and K,, denotes proportional feed-
back gain matrix.

For these particular experiments, the communication task space uses proportional
feedback control, shown below:

4, —H, (?d, ?) — K, (?d _ ?) (18)

where K, is the feedback gain matrix and 74 is the desired state. These desired
states are discussed in Section III.A.1). While simplistic, these control laws yield
sufficient performance in this application and our prior work with different tasks
performed in land, sea, and aerial environments [4, 5, 7, 12, 39].

3.2 Example task: position control

In this task, 7, robots are tasked to go to and maintain a specified position. Since
the task is a direct specification of individual robot positions, the task is identical to
many one-robot clusters which is identical to control of individual robots. While this
degenerates into trivial task, we adhere to the layered control architecture in order to
provide unified control of all mission-related robots.

Space limitations prevent a complete description of this task. Given it’s simplicity,
key aspects of its implementation are reviewed here. To begin, the robot cluster and
task pose vectors are:

T
r £ |:x1’y1’ 61’ ’xnp ,ynp, gnpi| (19)
c= [xcl,yﬁﬁcl, s Xy, ,ycnp,ﬂc,,p} (20)
— A T
r= |:xt1)yt1) etp oo ’xtnp ;ytnp b} gtnp:| (21)

where (xl-, Vis 91-) is the robot i pose, (xci, Ve 601.) is the cluster pose for cluster i, and

(xt,, Vi 9t,-> is the task-level pose for robot i. For the position control task, the cluster

positions and the task positions are both equated to the robot positions. Accordingly,
the forward and inverse kinematic relationships are unity, and the Jacobians are the
unit matrix.
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For our experiments, the cluster space velocity control law utilizes proportional
feedforward and feedback, shown below, for response time and error rejection
respectively:

U =K, ¢ a+K, (? i—C ) (22)

where %, denotes cluster space control effort, ¢ 4 denotes the desired cluster
velocity, K., denotes a proportional feedforward gain matrix, and K., denotes a pro-
portional feedback gain matrix. Similarly, the task-space state controller utilizes pro-
portional feedback for error rejection:

iy =K, (fa—7) (23)

where #, denotes task space control effort, 7,,1 denotes the desired task state and
K, denotes a proportional feedback control gain.

4. Multi-tasking missions

In the previous section, an approach for developing a layered task control archi-
tecture for the motion requirements of a multi-robot task is presented. Our interest,
however, is not only in task-oriented control of a robot group but also in conducting
activities that require multiple interacting tasks, each potentially implemented by a
multi-robot group. We term the conduct of such an activity a “mission.” Furthermore,
we are interested in collaborative multi-task missions, with “collaboration” implying
the ability for one task to support another and for tasks to share resources, such as
robots, in an appropriate manner.

To achieve this vision, Figure 4 shows a control architecture that integrates the
two tasks required for the communication relay mission. The architecture integrates
the operation of the tasks in two ways. First, on the “front end” of the architecture, a
mission-level specification interface provides a mechanism for defining mission-
oriented objectives and assigning them to the tasks. In addition, the tasks are allowed
to interact, providing a mechanism for tasks to issue commands to and to set con-
straints for each other. For the communication relay mission, the communication task
acts as a master task in order to determine the number of robots it requires; once this
determination is made, it specifies the number of remaining robots (to assign to a
position hold task) to the position task for position control. In ongoing work with
more complex missions, the robot allocation process is independent of any one task.
Second, on the “back end” of the architecture, unified motion control is enabled by
consolidating the control elements of multiple tasks as described in the following
subsection.

Multi-agent systems have the capacity for functional diversity which motivates the
ability to change roles during operation. As such, an additional focus of this work
investigates the process of reallocating autonomous agents within the given frame-
work. Doing so requires (A) a framework for supporting and transitioning multiple
clusters within the same architecture, (B) defining allocation policies to determine
when and how to reallocate resources between tasks, and (C) analytic methods to
safely transition between robot configurations.
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4.1 Representation framework

Simultaneously accomplishing multiple mobility tasks requires assigning different
tasks to different robots, which, in our framework, implies the use of multiple task-
specific robot clusters. While multiple instances of the control framework of Section
IIT could be run in parallel, this approach is static and unable to conveniently support
the reconfiguration of clusters as robots are reallocated. Instead, the single-task multi-
layered framework is extended to become a multi-task controller that operates on a
“federated” system state vector. At a given moment in time, given an assignment of a
specific number of robots to specific tasks as defined by the robot allocation vector in
(39), the federated kinematic equations and federated Jacobian matrices are com-
posed of the cluster-specific kinematic equations and Jacobian matrices, as shown in
(41) and (42).

Robot allocation vector:

[
n = [n1,m2, ..., n,) where n = Zni (24)
-1

Federated pose vectors:

#r2[Fo Fann o] (25)
Ge[andr,a)] (26)
I A (27)

Federated kinematic equations:

KIN, (?f> 2 [KINCl (71> ,KIN,, (72), .., KIN,, (?0)} ' (28)
KIN,, (?f) 2 {KINH (?1) ,KIN, (?2), .., KIN,, (?)} ! (29)
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Federated Jacobian matrices:

S o

J, 2 (30)
[0~ T,
S

J, 2 (31)
0 - 7|

where subscript f denotes federated elements; #; is the number of robots assigned
to task 7; 7;,¢; and £, are the robot space, cluster space, and task space pose vectors
for task 7; KIN,, (7}) and KIN,, (?,) are the cluster space and task space kinematic

equations for task i; ], and ], are the cluster space and task space Jacobian matrices for
task 7; and o is the number of tasks spanning the multi-robot system. The federated
pose vector is formulated by concatenating pose vectors, and similarly for the feder-
ated kinematic equations. The federated Jacobian matrix is block-diagonal, comprised
of uncoupled Jacobian matrices. As the agents shift between tasks, individual elements
change size, but the size of the federated elements and the overall structure of the
mission-level control system remain constant.

As a simple example of multitasking, consider combining the two previously
described tasks into the following two-task mission: maintain communication
between two end points or otherwise move to an idle parking position. A subset of the
federated elements are shown below for two configurations of a # = 3 robot system:
(1) one robot is allocated to the communications task and two robots are idle

(n = [nwm,nidle]T =1, Z]T) and (2) two robots are allocated to the communications
task and one robot is idle (7 = [, nidle]T =2, 1]T):
Federated cluster pose vector:

[[xc,yc, HC] [xh,yll, 05X, GIZH Tfor n =1, Z]T
M= (32)

T g
[[xc,yc,ﬁc,pl,ahtbl] [le,yh,ﬁzlﬂ forn = [2,1]"
4.2 Allocation policies

Given the general desire to accommodate multiple tasks and the ability to reassign
robots between tasks, we need to incorporate an allocation function for assigning
specific robotics to specific tasks. The allocation problem is well studied [38, 40, 41],
and we are not proposing any particular innovations in this area; rather, our interest is
in determining how any such allocation policy fits into the proposed architecture. To
date, we believe that the necessary interface consists of providing the allocation policy
with the commanded and actual task state vector such that it can compute 7, which is
consistent with the approaches discussed in [38]. This value is then provided to each
layer of the control architecture in order for controllers and kinematic transforms
with appropriate internal dimensions to be selected.
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To explore this set of interfaces, we have adopted a simple-but-common
state-machine based allocation policy for the communication-idle task allocation
process. In particular, we define an aggregate QoS metric known as the chain
capacity [27]:

52 % (33)
which we use for the transition function:
[m1+1 ny—1],if <k
[m1 m2) =< [m1—1 my +1),if 5>k, (34)

[n1  m,], otherwise

where k; and k; are performance thresholds that together provide switching hys-
teresis. For the communication systems and scenarios explored later in this paper, k;
and k, were set to values equivalent to the line-of-sight link power at 40 m and 10 m,
respectively. For example, if = [2 1] and the signal strength was measured
s=[-75 -76 778}TdBm giving § = —76.4dBm, and the thresholds were
k=[-52 —76]"dBm, then the next robot allocation would bez = [3 o].

To reiterate, this policy sets the number of robots to achieve a given link quality
while the task-level control provides link balance as stated in (11). This policy is
appropriate for the communication relay application and it is also consistent with the
general interface requirements hypothesized in the previous paragraph. Future
researchers can incorporate the allocation policy that is most appropriate for their
tasks, whether state of the art techniques (see [38]) or commonplace yet effective
techniques like state machines.

5. Experimental testbed

Experimental work used the proven [35] SCU multi-robot test bed, with a com-
munication relay payload. This student-developed system consists of several Pioneer
3-AT skid steered robots with a custom suite of avionics and a centralized off-board
control workstation. Wireless 28.8 kbps Ricochet modems are used to relay robot
drive commands and position data between the control workstation and the robots.
BasicX microcontrollers route drive commands to the robot’s built-in speed controller
and collect data from a Garmin GPS18 unit and a Devantech CMPS10 compass. Based
on experimental evaluation, robot velocity dynamics are approximated as a second-
order system with { =0.7 and @, = 220.25 rad/s; simulations used these speed
response characteristics for each robot.

Within the control workstation, an open source real-time data streaming server,
known as the DataTurbine, relays information between MATLAB/Simulink and
simple applications that handle serial port data flow to/from the wireless modems.
Controllers execute in real-time within Simulink; this promotes rapid, iterative
development in the field and supports rudimentary operator interfaces. Using a
dual-core laptop computer, the system maintains a 5 Hz servo loop rate.
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Figure 5.
Components in the multi-robot communications relay test bed.

Each robot carries a communications relay payload comprised of two Digi
International XBee Series 2 wireless transceivers connected by a BASIC Stamp micro-
controller, shown in Figure 5. The microcontroller appends the received signal
strength indicator (RSSI) value to each message prior to retransmission. When the
end station ultimately receives the message, it also obtains the RSSI state for the multi-
hop link. This state data is provided to the task layer controller in order to determine
how to adjust the position of the relay cluster. Messages and the associated RSSI
measurements were generally executed at 1 Hz, but dropouts due to the inexpensive
hardware often resulted in short periods of slower execution, adding a realistic
challenge to the experiment.

6. Experimental results

A number of simulations and experiments were executed to demonstrate func-
tionality of the system and to showcase particular advantages of the control architec-
ture. First, two scenarios were examined with the single communications task: (A) an
experiment showing the single robot system response to hardware configuration
changes such as reductions in transmission power, and (B) a simulation showing
multi-robot system response to a mobile end station and environmental attenuation.
Next, three scenarios were examined performing multiple tasks of communications
and idle position control, thereby allowing robots to be added or removed from the
communication task: (C) an experiment showing responses to desired link quality
commands that require robot reallocation, (D) a simulation showing system response
to a moving mobile end station in which robot reallocation is required, and (E) an
experiment showing the same capability as in D. Experimental work has demon-
strated that the architecture is tolerant of real-world phenomena such as sensor noise,
quantization, model mismatches, and communication delays. Simulations allowed
rapid exploration with higher numbers of robots, allowing clear demonstration of the
architecture behavior without hardware constraints.
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6.1 Experiment: single task single robot behavior with hardware configuration
change

This scenario examines the control system response to configuration changes such
as component degradation or a power reduction used to conserve energy. One robot is
used to relay communications between two fixed end stations. The system is
commanded to achieve unity link balance with null crosstrack error. In this experi-
ment, the system initially moves to an equilibrium position given a nominal commu-
nications configuration. Then, at t = 800 sec, the transmission power of end station E,
is reduced, and the relay robot moves to achieve link equilibrium.

An overhead view of robot position is shown in Figure 6 where each subplot
corresponds to a different time window; in the first, the robot moves to an equilib-
rium position, and in the second, the robot adjusts its position to balance the link
given the power reduction at station E,. In Figure 7 the RSSI values and the link
balance parameter (commanded to 1) are shown. In each phase, the systems moves to
achieve the commanded link balance, resulting in balanced RSSI values.

6.2 Simulation: single task multi-robot behavior with a mobile end station and
local attenuation

This scenario evaluates system behavior given local attenuation effects such as
obstructions, fog, or foliage. Three robots are used to relay communications between a
fixed base station and a mobile end-node. A comparison is made of the system’s
performance with and without measurement compensation for these effects to dem-
onstrate how our communications task improves performance compared to the use of
a simple link model.

A overhead view is shown in Figure 8 with robot trajectories plotted for both ideal
and attenuated scenarios. Messages are relayed between the base node, located at the
origin of the plot, and the mobile end-node, which has a quarter-circle trajectory
plotted in black and running from (60,0) to (0,60). A region of power attenuation
exists for y > 40, where any link involving a robot within this area is reduced by half.
As the remote end-node traverses its arc at a constant speed, a three-robot cluster
maintains link balance as described before. In the ideal case, the robots spread evenly
and follow the traverse in concentric arcs, consistent with a model-based approach. In

60 T T T T T T T T T | C - - T T T T
& E, a)1=[0:800], N=[1,0] GU.kE b) 1= [800:1593], N =[1,0]

o
o

o

o

S

o
s
o

R,

‘w\

Y Position [m]
©
=1

o}
Y Position [m]

N
(=]

_Rt

=)
m
=

o
L ]
o
L ]

%0 80 -70 60 -50 40 30 -20 -10 0 %0 80 -70 60 50 40 -30 20 -0 O
X Position [m] X Pasition [m]

Figure 6.
Overhead view of positions of robot R, and fixed end nodes E, and E, at specified times during hardware

configuration change experiment.
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the non-ideal case with attenuation, the multi robot system begins as before, but alters
its trajectory to rebalance the links when it senses a drop in signal strength as nodes
enters the region of attenuation.
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This example demonstrates the value of direct measurement of communication
states and high-level task-space control. Sensing the signal strength allows the system
to maintain the desired state despite unanticipated characteristics of the environment.
In contrast, an open-loop, model-based approach would evenly distribute the nodes as
shown, yielding lower performance in non-ideal environments.

6.3 Experiment: multi-task multi-robot behavior with configuration link quality
command response

This scenario demonstrates changing user requirements for better connectivity or
higher throughput thereby forcing a change in the cluster configuration. With fixed
communication endpoints and an increase in the commanded link quality, two robots
are sequentially reallocated from the idle task to the communication relay task. Each
newly incorporated robot moves from its idle position to a location determined
through execution of the communication task in order to achieve the commanded link
quality and link balance set-points while the other robots in the communication task
reposition themselves accordingly.

Figure 9 shows the fixed end nodes E; and E, and two mobile robots. In the top
plot, for time ¢ = [0 : 155], the commanded link quality is such that the two end

80 ) 1=[0:155], N=[0,2]

k——Eg -
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-90 -80 -70 -60 -50 -40 -30 -20 -10 O
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Figure 9.
Overhead view of positions of robots R in response to a link quality command between end nodes E.
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stations communicate directly with each either without the need for a relay node. As a

result, the configuration is # = [0, Z]T, with both robots assigned to an idle task and
holding their position. As seen in Figure 10, link quality is maintained within an
acceptable deadband; the link balance is not shown given the single hop.

For time ¢ = [155 : 501], the link quality setpoint is increased. As seen in
Figure 10b, the link quality deadband is violated, leading to a change in the assign-
ment of tasks such that # = [1, 1]T, shown in Figure 10a. This results in controlling B,,
the link balance between the two existing sub-links, by achieve balance as shown in
Figure 10c by the repositioning of robot 1, as shown in Figure 9b.

During time ¢ = [501 : 800], the system responds to another command to increase
link quality. Again, the link quality deadband is violated, leading the addition of robot
R, to the communication task. With two intermediate robots, two link balancing
operations take place in parallel, shown in Figure 10c. The initial position of the added
robot creates a large switching transient in the link balance. Accordingly, the robots
alter their positions, as shown in Figure 9c.

The plots in Figure 10 show that the sensed RSSI parameters were clearly not ideal,
exhibiting noise and quantization and the effects of a wide range on non-ideal char-
acteristics of the wireless links. Because of these non-ideal characteristics, the robots
do not move to the geometric center of the end points. These real-world phenomena
are challenging but the control architecture is sufficiently robust to tolerate these
unmodeled effects.

6.4 Simulation: multi-task multi-robot behavior with a mobile end station

This simulation demonstrates control of link quality and balance with a mobile
endpoint, gracefully adding and removing robots as appropriate for the task. The
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Time history of key states while evaluating the link quality commanded response, forcing configuration change.
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scenario starts with a mobile end station communicating directly with a fixed end
station and with five robots executing the idle position hold task. As the mobile end
station executes an elliptical trajectory that moves it away from and then closer to the
fixed end station, the five relay robots are sequentially added and then removed to the
communication task, maintaining the specified link quality and balance (Figure 11).
The evolution of the system’s state can be seen in Figure 12. For time t = [0,500],
the end station moves away from the fixed end station, lowering link quality, as
shown in Figure 12b. At times t = ~110 sec, 193 sec, 265 sec, ~340 sec and ~ 490 sec,
the link quality hits the threshold for acceptable link quality. At each of these times,
the controller re-assigns a new robot from the idle task to the communications task,

thereby causing 7 to change at these times, as seen if Figure 12a, and new robots
being added to the multi-hop link, as seen in Figure 12c; idle robots are controlled to
remain in their default position. These additions to sub-links in the communication
chain lead to new balance parameters to be controlled, B, through Bs.

As the mobile end station turns back towards the base node, the link quality
increases. Each time this value hits the high deadband, at times t = 845 sec, ~870 sec,
~890 sec, ~910 sec, and ~ 935 sec, an active communication task robot is returned to
the idle task. This reduces the number of link balance parameters, leading to a tran-
sient in link balance that is quickly controlled through the repositioning of the
remaining communication task robots. Interestingly, the deadband causes unequal
times between transitions as the robots are faster to move out due to the task state
definition and allocation policy and slower to move into the communication cluster.
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Figure 11.
Overhead view of robots R and end nodes E during specified times for mobile endpoint simulation.
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Time history of key system states for mobile endpoint simulation.

This demonstrates the ability of the control architecture to respond to motion of
the end node based on sensed link characteristics and to reallocate robots without any
additional commanding.

6.5 Experiment: Multi-task multi-robot behavior with a mobile end station

Like the simulation presented in Section VI.D, this experiment demonstrates the
control of link quality and balance with a mobile end node. The experiment starts with
the end stations near each other and directly communicating, with two relay robots in
an idle position. As the mobile end station moves away, relay robots are sequentially
added to maintain the specified level of link quality and balance.

Figure 13 shows the paths taken by the robots and endpoints, and Figure 14 shows
the corresponding state trajectories. In Figure 13a, for time ¢ = [0 : 148], the mobile
endpoint can be seen moving away from moving away from the stationary endpoint
while the link quality remains within the deadband. The communication relay robots
are allocated to idle, 7 = [0, Z]T, and can be seen parking themselves.

At time t = 148, the link quality exceeds the lower bounds of the deadband and the
allocation policy adds a robot to the communication relay task, changing the configu-
ration vector to 7 = [1,1]”. In Figure 13b, for time ¢ = [148 : 591], the new robot relay
moves to balance the communication links while the mobile end station continues
moving away from the stationary endpoint. Though there is not significant movement
of the relay robot, the measured link states, shown in Figure 14, indicate that the
balance setpoint is achieved during this time. This demonstrates the complexity and
non-intuitiveness of RF fields and the benefit of communication-space measurement
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and control, including the effects of the deadbands; alternatively locating the relay
robots in the geometric center of the two points would yield worse performance.

At time t = 591, the link quality again exceeds the lower bounds of the deadband
and the allocation policy adds the second robot to the communication relay task,
changing the configuration vector to 7 = [2, 0]".In Figure 13c, for time
t = [591 : 1062], both robots move to balance the communication links. The switching
transient can be seen in Figure 14 starting at t = ~600 sec and settling by t = ~950 sec.
The final overhead plot, Figure 13d, shows the mobile endpoint arcing back towards the
stationary endpoint and the relay robots mimic its motion to maintain link balance.

7. Future work and summary

In this article, we presented a multi-robot control architecture providing explicit
task control for improved performance yet with abstraction from implementation.
Direct sensing and operational task space control eliminate errors due to modeling and
implicit specification. In addition, controllers can compensate for non-ideal behavior
in the appropriate space of the layered architecture. Abstraction provides the flexibil-
ity to engage different types and quantities of robots to accomplish tasks. This segre-
gates individual task complexity in order to facilitate large-scale missions with many
tasks. We proposed a design methodology for composing new spatially-sensitive tasks
that includes conditions for stability and quantification of responsiveness. The archi-
tecture was demonstrated using the example task of communication. Experiments and
simulations exhibited explicit control of task states, compensating for the complex
behavior inherent in real-world communication networks. The system successfully
reacts to a dynamic environment, varying operator commands, and hardware config-
uration changes.

Ongoing work leverages this architecture for larger missions comprised of more
tasks with more complex interactions. This article is a step towards multi-task mis-
sions indicative of systems of systems. Continued development of this architecture
with new applications and new environments increases the utility of integrated
multi-agent systems.
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Chapter 4

Controlling a Fleet of Autonomous
LHD Vehicles in Mining Operation

Alexander Ferrein, Gjorgji Nikolovski, Nicolas Limpert,
Michael Reke, Stefan Schiffer and Ingrid Scholl

Abstract

In this chapter, we report on our activities to create and maintain a fleet of
autonomous load haul dump (LHD) vehicles for mining operations. The ever increas-
ing demand for sustainable solutions and economic pressure causes innovation in the
mining industry just like in any other branch. In this chapter, we present our approach
to create a fleet of autonomous special purpose vehicles and to control these vehicles
in mining operations. After an initial exploration of the site we deploy the fleet. Every
vehicle is running an instance of our ROS 2-based architecture. The fleet is then
controlled with a dedicated planning module. We also use continuous environment
monitoring to implement a life-long mapping approach. In our experiments, we show
that a combination of synthetic, augmented and real training data improves our
classifier based on the deep learning network Yolo v5 to detect our vehicles, persons
and navigation beacons. The classifier was successfully installed on the NVidia AGX-
Drive platform, so that the abovementioned objects can be recognised during the
dumper drive. The 3D poses of the detected beacons are assigned to lanelets and
transferred to an existing map.

Keywords: autonomous vehicles, fleet control, planning, mining, computer vision,
machine learning

1. Introduction

Along the lines of digitalisation and transforming industries towards Industry 4.0,
also the mining industry as being a rather conservative industry is moving into this
direction. For instance, in [1] the authors envision Mining 4.0 as a future concept of
mining operations. The labour of a future mine worker will be smarter, more collab-
orative, more connected including augmented/virtual reality (AR/VR) technologies.
In that sense, technology will also transform this sector into the Industry 4.0 direction.
This has also an impact on the degree of automation deployed in future mines. In [2],
mining is connected with key technologies such as intelligent systems, machine learn-
ing, and AR/VR. Additionally, there is a trend of the European raw materials industry
towards changing from open pit mining to underground mining to reduce the envi-
ronmental footprint of the mine. Digitalisation and automation are key technologies
for further transforming mining operations into a decarbonised and more sustainable
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operations (see, e.g. [3-5]). This leads to hybrid mines, where parts of the mine are
still open pit and parts are underground mines. This poses, in particular, additional
challenges for the automation process. Whilst in the open pit part of the mine,
methods from autonomous driving using GPS etc. can be deployed, in the under-
ground part, methods from mobile robotics need to be used in an ever-changing
environment with the need to continuously monitor and track the changes in the
robots’ maps.

Under certain limitations such as loaders following a prerecorded path, automated
LHD vehicles are already commercially available [6]. However, the problem of fully
automated guided load-haul dumpers remains a challenging problem. This results in a
large body of related works that focus on the core problems like navigating and
localising LHD vehicles. Some recent works are, for instance, [7], [8], or [9]. The
former proposes topological navigation for underground haulage vehicles. The basic
idea is that in underground mines with many tunnels, a highly precise localisation
pose in the tunnel is not of importance, the LHD vehicle could localise at crossings or
other important waypoints of a topological map. In our work, we also follow the idea
of using topological maps, specifically in the Lanelet2 format [10], which is a common
map format in autonomous driving.

In [8], a robust localisation system integrating cameras, LiDARs, and odometry
information for underground LHD vehicles is proposed. The system is tested on mining
datasets and shows good accuracy with mean errors below 1 meter. The methods
deployed in this work are very similar to our approach. An interesting addition to
common sensor cues is proposed in [9], where IMU data are used to record ground
ripples as an additional localisation information. For measuring similarities and dissimi-
larities in the recorded data in order to recognise ground patterns, the dynamic time
warping algorithm is deployed. The basic idea behind this approach is not to rely on visual
landmarks such as visual tags to keep the extra infrastructure required in the mine as little
as possible. On the other hand, extending the infrastructure in mines such as installing
Wi-Fi at least in parts of the mine is no longer out of question. Some approaches make use
of vehicle-to-vehicle (V2V) communication for establishing communication networks in
underground mines [11]. The purpose of this work is to localise other vehicles under-
ground deploying V2V communication. But localising other vehicles underground is not
the only interest for mining operations as tracking mine workers underground is manda-
tory in many countries. Seguel et al. [12] overviews relevant positioning technologies to
track mine workers underground. Finally, fleet control is one of the tasks that needs to be
solved for automated haulage and artificial intelligence (AI) approaches are being
deployed. Bnouachir et al. [13] overviews some approaches to intelligent fleet manage-
ment in mining operations, whilst [14] proposes a real-time scheduling algorithm based
on flow-achieving scheduling trees to overcome shortcoming of off-the-shelf software
which often is based on myopic heuristics. In our case of fleet management, we make use
of a planning approach which is based on hierarchical task networks [15].

Many related works concentrate on particular open problems in automating min-
ing operations focusing mainly on localisation and navigation challenges or fleet-level
planning focusing either on underground or open pit mines. Hybrid mines, which
combine underground and open pit mine operations, pose a particular challenge for
autonomous vehicles.

In this chapter, we report on the current state of affairs in our endeavour to
automate hauling operations in hybrid mines. This work is based in part on our
previous works [16-22]. In particular, we report on (1) the hardware setup of our fleet
of robot vehicles including the LHD vehicles and a tracked exploration robot, (2) the
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overall ROS 2-based system architecture, (3) a model-based predictive control
approach for controlling the articulated LHD vehicles, (4) an HTN-based approach to
the tour planning of the fleet of vehicles.

The rest of this chapter is organised as follows. We present the hardware and
sensor setup of the articulated LHD vehicles as well as of our exploration vehicle in
Section 2 before we show the overall ROS 2-based software architecture (Section 3).
Section 4 addresses the low-level navigation approach for controlling the articulated
LHD vehicles. In Section 5, we outline the fleet and mission control system. Then,
Section 6 reports on our approach to classifying drive ways in the mine and to
mapping the changing mining environment. In Section 7, we show some experimental
results. Then we conclude.

2. Hardware setup

In our mining automation projects, we are using two different platforms. One
platform has been deployed for exploring and mapping the mine environment (Sec-
tion 2.1), the other one is smaller-scale articulated dumping vehicle from Wacker
Neuson that we turned into autonomous vehicle (Section 2.2).

2.1 Exploration vehicle

As mining environments are constantly changing, also the maps required for
autonomous LHD vehicles need to be updated constantly. In our previous work
[19, 23], we developed an exploration vehicle for mapping underground mines with
dense 3D point clouds. As we can only give a brief overview of this work here, we
refer to our previous work for further details.

The exploration vehicle is shown in Figure 1a and b. It is a skid-steered tracked
robot based on a platform similar to a mini excavator but using a suspended under-
carriage. It is equipped with a number of different sensors used for navigation,
localisation, and mapping. The robot reaches speeds of up to 3 m s~! and is controlled
via the ROS [24] Movebase. For navigation, collision avoidance, and terrain classifi-
cation, two Velodyne VLP-16 Puck LiDARS are mounted at the front. For mapping,
we equipped the exploration vehicle with a custom-built rotating sensor platform
shown in Figure 1c and d. It allows to acquire a (nearly) complete sphere around the
vehicle. A Velodyne VLP-16 PUCK LiDAR with 16 scan lines, a vertical opening angle
of 30°, and a horizontal range of 360° is mounted with a 14° inclination to the vertical
axis. For short-range measurements, we additionally equipped the device with a 2D
Hokuyo UTM-30LX-EW range scanner mounted in a 90° angle to the rotation plane.
For teleoperation during mapping missions, an Allied Vision GT6600C high-
resolution camera with a wide-angle lens is mounted at the front of the robot. As a
safety feature, we mounted a FLIR A315 thermal camera at the front of the robot in
order to be able to detect persons even when not sufficient light is available. Addi-
tionally, an IMU for providing the orientation of the platform with respect to the
ground is mounted on the vehicle.

For registering the 3D point clouds from the scanning device, we deploy the
Iterative Closest Point (ICP) method [25] based on the Point Cloud Library imple-
mentation [26]. To minimise the errors of pairwise registration of many point clouds,
all point clouds are registered globally making use of the GraphSLAM [27] algorithm
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Figure 1.
Exploration robot developed for mapping underground mining sites (from [23]).

after Lu and Milios [28]. It creates a graph of the connections between all point clouds
with overlaps and minimises the alignment errors of all connections simultaneously.
Finally, for an internal representation of the 3D map, Octomap [29] is used. This
offers the advantage of being able to query the information in various resolutions and
to map the distinctions that are important for navigation between free, occupied, and
unknown cells.

We present an example map from an underground mine in Krélpa, Germany, in
Section 7.

2.2 LHD vehicles

The base vehicle we use is an articulated haul-dumper from Wacker Neuson
(Model 1501).! Our fleet consists of three of those vehicles. Figure 2 shows an exem-
plary prototype. This chapter is based on a paper that has been previously published.
We refer to [18] for further details.

The dumper is an off-the-shelf model that can handle loads of up to 1500 kg. The
control of the brakes and the angle of the articulated joint of the vehicle is realised by a
hydraulic system, which depends on the hydraulic pressure generated by a diesel
engine. In order to automate the vehicle, we installed electric linear actuators with our

" https://www.wackerneuson.de/produkte/dumper/raddumper/raddumper-1501/
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Figure 2.
Picture of one of the articulated haul-dumpers at the test site.

project partner Fritz Rensmann GmbH & Co. KG to control the brake and the throttle.
Additionally, we attached a rotational servo motor to the steering axis and replaced
the manual valves by electromagnetic valves to control the skip. We also installed hall
sensors on each wheel to obtain information on the vehicle’s state.

The control system comprises the different components shown in Figure 3. These
parts are presented in the following. The software architecture of the vehicle will be
discussed in the next section. As can be seen in the figure, each dumper can be
controlled via our high-level control stack, where the tasks for the individual
vehicles are generated by the overall mission planner for the whole mine to fulfil
the daily production goals. The high-level control system is described in Section 5.
Additionally, each vehicle can be controlled via remote control. In particular, this
comes in handy when the vehicle needs to be steered onto a low loader trailer for
transport.

Real-time Controller. The low-level real-time controller runs on a programmable
logic controller by Beckhoff. To communicate with the motors and the PLC, we make
use of a CAN interface. The PLC serves as a message filter, that prevents unsafe
commands to be propagated to the motors, and as a kill-switch manager for control-
ling a number of kill-switches, which are installed on the vehicle including a radio kill-
switch. The PLC runs a PID controller regulating the angle of the articulated joint and
the engine speed by properly actuating the motor moving the steering axis and the
motor opening and closing the throttle valve. For more detail, we refer to [30].

Compute Nodes. As described below (Section 4), we implemented a GPU-based
model-predictive path-follower, a high-level control system, and various computer
vision algorithms. All the software modules run on two dedicated compute devices.
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Figure 3.
System architecture of haul-dumper control system (From: [18]).

We make use of a Zotac ZBOX Magnus One including an NVIDIA GPU to run

the path-follower, the high-level control, and semantic and life-long mapping algo-
rithms. In addition, the computer vision tasks are deployed on an NVIDIA Drive AGX
Xavier. All high-bandwidth sensors such as the cameras are interfaced to the AGX
unit, which directly processes the data. Both compute devices run Linux as its operat-
ing system.

Sensors. In the open pit part of the hybrid mine, GPS localisation is possible. For
this task, we deployed an OxTS RT3000v3 dGPS on one vehicle and equipped the
two remaining vehicles with two OxTS xNav650 from Oxford Technical Solutions.
The RT3000 shares its correction data via the XNAV650 devices. Each dGPS
contains an IMU. Especially, in the underground part of the hybrid mine, where no
GPS is available, we scanned the environment and made use of two VLP-16 Lidars
and six cameras for localising and navigation. A mesh network spanning over
multiple local stations in the testing area is used for vehicle interaction within the
fleet and vehicle interaction with loading and unloading stations (V2X in Figure 4).
Local access points are available on each of the vehicles that are connected to the
mesh. For identification of the vehicles and direct addressing, we make use of ROS2
namespacing.
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Diagram of the software avchitecture (From: [18]).

3. Software architecture

In [21], we proposed a ROS 2-based architecture for self-driving cars. For
our LHD vehicle, we adopted the architecture to fit the needs of the vehicle.
Figure shows an overview of our architecture. The architecture also allows for
using some common ROS packages such as Navigation2 [31] and robot_loca-
lisation [32]. In the following, we give an overview of the different parts of the
architecture.

Centralised Mission Management Block. At the top-most level in the hierarchy of
decision-making and control of the fleet is the high-level control block (leftmost
block in Figure 4). In the LHD context, it means that a certain tonnage that should be
hauled is defined and the high-level system is to find a plan for all the vehicles in the
fleet to reach the tonnage. We deploy a SHOP3 [33] planning system for high-level
planning. An additional fleet manager distributes the plans and dispatches the
actions to the vehicles. Whilst the vehicles execute these actions, they continuously
update their current positions and these of their locked resources. The world model
gets information of the actual status of all agents and the hauled tonnage. If needed, in
case of bigger differences to the original plan, a re-planning for the whole fleet is
initiated.

Vehicle Unspecific Block. The vehicle unspecific section of the architecture
consists of mid-tier functionalities, that are similar to three-tier robotics
architectures with modules for localisation or path planning. A global route is planned
via a free-space planner like smac or map-based planner using a Lanelet2 HD map.
The vehicle follows this path utilising a path-following module, including a
feedback loop [34, 35]. As path-following algorithm, we use a model-predictive con-
troller (MPC) which uses a GPU-based grid-search on a set of predicted trajectories
achievable by the vehicle’s kinematic model. We introduce the details of the MPC in
Section 4.

Vehicle Specific Block. The vehicle specific block (rightmost block in Figure 4)
mostly consists of drivers and vehicle communication modules such as drivers for
cameras, IMUs, GPS units, LIDARs, or the wheel encoders. For object detection, we
have implemented an object detection with cameras using YOLOVS5 to aid in the
semantic and life-long mapping that is being presented in Section 6. We also
implemented a modular way of integrating state-of-the-art deep neural networks for
3D object detection in point clouds. The detailed presentation of the latter is part of

59



Multi-Robot Systems — New Advances

previous work presented in [36]. Our presented architecture is implemented using
ROS 2 and deployed to each vehicle of the fleet. The underlying DDS network of ROS
2 is also used for the communication with the centralised high-level control system.

Next, we address the model-predictive controller used on the vehicle, before we
discuss the high-level control software in Section 5.

4. Model-predictive control

In this section, we show the low-level control system based on a model-predictive
control approach. We first introduce the kinematic model of the dumper, before
we discuss the software implementation. Further details of the approach can be
found in [17].

The kinematic model that has been used to model the haul-dumper in the MPC is
described in [37] and shown in Figure 5a. This model has been chosen, as it models a
centre-articulated platform and steering is done by changing the angle of the active
joint. This model fits our haul-dumper well. The model is continuous and therefore
the equations need to be discretised for our use case. The equations in the discrete
form are as follows:

Xer1 =X + A7 (veosy)
Yer1 =Y+ A" (vsiny)

sin ¢ - I »
I +11cos¢p I +1icos¢

Vit =y, + 47 (

The constant /; describes the length of the front part, I, the rear part of the
vehicle, x and y are the current position values within the Cartesian coordinate
system, and v the current velocity of the vehicle. The current steering angle is ¢, ®
denotes the angular velocity of the joint, and y is the heading of the front part
within the Cartesian coordinate system as shown in Figure 5a. A, represents the time
interval between two control steps within the prediction process. These equations are
used to predict the travel of the vehicle given the different inputs for each iteration of
the optimisation.
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Figure 5.
Dumper kinematics and model-predictive control approach (From: [17]).
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Figure 5b shows the MPC control cycle. Based on the actual pose and the articu-
lated haul-dumper model (Figure 5a), a predicted path is calculated for a set of
steering angle sequences. Subsequently, for each predicted path, the costs are esti-
mated by three weights:

1.the lateral error, which weighs the difference in the vehicle’s heading on the
predicted path in contrast to the target trajectory;

2.the orientation error, which weighs the difference in the vehicle’s lateral position
on the predicted path in contrast to the target trajectory;

3.the joint angle change, which weighs the needed change of the joint angle from
step to step.

Finally, in a grid-search optimisation, the output is determined as the first
steering angle from the sequence of the steering angles for which the lowest cost was
estimated.

The control result of this approach is very good, however, the calculation costs are
very high. We therefore chose a GPU-based implementation of the controller based on
our experiences described in [38]. The advantage of this approach is that the predicted
paths and their individual costs can be calculated for all steering angle sequences in
parallel in one step of the GPU. This leads to an improved control result at efficient
calculation costs as we showed in [38].

Algorithm 1: MPC algorithm
Input :target trajectory wy, = {wy..... wy }, current vehicle pose p
Output: control command u
Data: n length of prediction horizon, m number of angle sequences

D, . — initial_set ; /* set of steering angle sequences x*/
Sum < 0; /+ set of predicted paths =/
Cm—0; /+ set of cost evaluations /
T — 0 ; /* trajectory index with least cost =*/

Perform grid search to find optimal trajectories:

for each steering angle resolution do

Copy @y, and current vehicle pose p to GPU memory;

for each steering angle sequence ¢, € ®,,, calculate in parallel on GPU
Sy« Haul Dumper Model(p, ¢n);
¢ « Cost_Function(S,,w,);

end

Tie « Index of(si!.m(r\'ﬁ”(cm)”F

New steering angle sequence set for next iteration:

D, — Sequence set around ©y; y (770);

end
Output first steering angle of optimal steering angle sequence:
i — Py (0, 71);

The algorithm of the controller is shown in Algorithm 1, where the separation of
GPU and CPU calculations is shown. To get an optimal trajectory resolution, multiple
iterations are executed. The whole algorithm is calculated at a period of 20 ms. To
adapt the original algorithm from [38] to the here-used long-haul-dumpers, we only
had to change the kinematic model of vehicle and had to re-calibrate the control
parameters (cf also to [17] for details).

61



Multi-Robot Systems — New Advances

5. High-level fleet planning

For larger-scale mining scenarios, several vehicles need to work together in a fleet.
Such a fleet then needs to be coordinated for the work to be organised and distributed
amongst the different vehicles in an optimised fashion. To realise the high-level
fleet coordination system, we implemented a planning server embedding of
SHOP 3 [33]. SHOP 3 is a domain-independent planning system based on ordered
task decomposition. Ordered task decomposition is a modified version of
hierarchical task network (HTN) planning [39] in which the planning order
respects the actual order of execution of each task [33]. The interaction between
the embedding sever and our vehicles is done by first communicating or loading a
world model into the planner. Afterwards, a query for a day plan can be sent to the
planner as a string, which the planner then processes. The query is a problem state-
ment describing the resource allocation, available agents, and goals. As a result, the
planner produces a string containing the day plan for all vehicles. This plan can then
be distributed to the fleet. Each agent can then parse the plan and start executing the
assigned actions.

As an example, Figure 6 visualises a resource assignment. The blue circles in
the figure represent resource sources. Above each source, we show the type of
resource which can be loaded from that source and its quantity (rounded corners
rectangles). The resource quantities of ores are modelled as infinite. The waste
resource is constrained to 500 tons. The white circle represents a stockpiling point,
which would be used to store resources if direct hauling to the unloading points would
lead to congestion. In black, we colour the waste dumping points which can be used to
unload waste from sources S1 and S2. The circles in yellow are fuel stations, that
agents need to drive to fill their fuel tanks. Each agent in the problem statement is
defined with a fuel state which is being used up when the agents transport resources.
The arrows in the visualisation show possible direct load/unload relations. For exam-
ple, the arrow from S1&2 to G13 means that the agent loads from S1 or S2 and unloads
at the goal G13.

_ @ Source

o0 | [ 00 | @ Goal
S1 2 S3 O Stock
A . @ Waste
\ OFilling

lﬁ
wn

(0 Waste

() Ore Type 1
Ore Type 2
@ Ore Type 3

v
w1 Gl G2 G3

.. @00 OO"

Figure 6.
Schematic of one of the problem statements evaluated in our research.
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Module KPIs
Model Mean lateral error in curves Mean lateral error on straight section
Predictive
Control 0.9 (m) 0.1 (m)
System Mean steering delay Mean engine RPM delay
Del
clays 200 (ms) 100 (ms)
Mission Idle-time (min) of fleet after 8 h in simulation
Planni
anning Scenario Number of Strategy 1 Strategy 2 Strategy 3 Strategy 4
(SHOP3) .
Name vehicles
simulated
Simulation 75 25,782 26,096 26,046 25,938
Scenario 1
Simulation 40 2093 5343 3512 3084
Scenario 2

Overall hauled resources (t)

Scenario Number of Strategy 1 Strategy 2 Strategy 3 Strategy 4
Name vehicles
simulated
Simulation 75 18,550 18,550 18,550 18,550
Scenario 1
Simulation 40 13,865 12,685 13,080 10,305
Scenario 2
Object Model mAP@0.5 mAP@0.5 mAP@0.5 mAP@0.5 Detection Frequency
Detection Person Wheel-dumper Car Beacon [hz]
PointPillar 0.34 0.4 0.4 — 20
(3D)*
YOLOv5m 0.994 0.978 — 0.966 30
(2D)

“The results exclude performance for beacons, because the LiDAR sensor did not measure many points on the target
beacons. Detection of beacons was, therefore, unreliable with the given hardware.

Table 1.
Table on the quantified key performance indices for some of our modules we have vesearched by now (From: [18]).

Another problem statement we defined for the evaluation of the high-level control
is less complex with only 5 sources with infinite resources and 2 goals. The meaning of
sources and goals is the same as for Figure 6. The evaluation presented as an aggre-
gation of key performance indicators in Table 1 in Section 7 shows the results when
different criteria are imposed on a plan. A plan can be made to take into consideration
waiting times of the vehicles in a fleet, the time a vehicle needs to fulfil a load-unload
cycle accumulated for a whole fleet, or idle time of the fleet as a whole. For compar-
ison, we show the results for a plan that is created by generating plans randomly and
selecting the first valid plan for a problem. This is the fourth strategy as presented in
the evaluation. The plan that takes into consideration the waiting time of the agents is
strategy 1. Strategy 2 takes the accumulated cycle time for all agents into account and
tries to minimise it. The last strategy, strategy 3, minimises the time the vehicles in the

fleet spend idling.
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In our scenario, SHOP 3 instructs the navigation system to execute an action called
DRIVE_TO. The action’s main argument is an ID to a lanelet [10] in a map representing
the routing graph. Lanelet is an HD map format which is an extension of OSM. With
its integrated extensions for routing, it can support the execution of many tasks in
navigation. Obstructions in the global map are represented within the routing graph
and can be derived from an occupancy grid, which is implemented in the costmap
ROS package. Given the goal, the action server runs a behaviour-tree [40] which
computes the centre line of a route calculated by the lanelet_planner. This centre
line is referenced to a world-fixed frame (i.e. the entrance of the mine) which is in
turn passed on to our MPC to follow the path. Regular actuation commands are
calculated by the MPC by calling its respective action server from within the
behaviour-tree at a certain frequency.

6. Life-long mapping

With life-long mapping, we refer to the concept of mapping the environment and
ensuring that changes in the environment can be detected and processed into a map
update. To achieve this, we identified two approaches. First, one can use representa-
tions of a traffic network as maps and use static delimiting objects in the environment
as markers that one can infer a change in the environment. Secondly, one can use
shape representations of the environment (such as a point cloud) to extract a traffic
network representation of the environment from the shape. To accommodate for
changes in the environment, one can simply repeat the process of generating the
traffic network from the environment.

For the first approach, three major components are needed: the object
detection and classification of static and dynamic objects, the localisation of
static object in a unified coordinate frame, and the integration of the information
from the 2 previous components into an HD map. In the following, we explain this in
more detail:

Object Detection. The artificial intelligence framework known as YOLOvS5 was
used for object recognition. The focus was on the recognition of humans,
navigation aids such as beacons marking the way, and different types of vehicles
commonly used in mining. To facilitate the recognition of previously unknown
objects using this YOLOv5 mechanism, a three-part training methodology was
devised:

Firstly, a solution using synthetic data was developed to automate the annotation
process for training deep learning networks. By creating a realistic 3D mining world
with Unreal Engine and capturing annotated images from virtual cameras on
dumpers, see Figure 7, these synthetic datasets serve as cost-effective training data for
the YOLOvS5 network, addressing the challenges of manual annotation for new objects
and environments.

As second stage, synthetically generated data for neural network training often
lacks impurities found in real-world images, such as noise or blur. To address this, we
developed an image augmentation tool. This tool introduces variations into the train-
ing images by adding noise, modifying lighting, saturation, image resolution, and
horizontal alignment. By incorporating these variations, the synthetic training data
becomes more realistic and better aligns with real-world conditions. Thirdly, the
training data is supplemented by data from real journeys which are manually anno-
tated and augmented.
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(b) Simulated image (c) Labeled image

Figure 7.
Virtual reality world with 3D models created with unreal engine 5 to get annotated training data from simulated
driving.

The classifier, trained with a blend of synthetic and real images over 299 epochs,
attains 0.9835 mAP@0.5 and 0.9836 mAP@0.95 with YOLOv5m and effectively
detects partially obscured objects. After converting from PyTorch to ONNX, then to
TensorRT, it is deployed on Nvidia AGX Drive, with an inference time near 35
milliseconds.

Lane detection. Beacons serve as static boundary markers for navigable roads. We
calculate the 3D position of these beacons by projecting the midpoint of the lower
boundary box onto a ground plane, considering the camera’s extrinsic parameters
relative to the vehicle centre point. Finally, we derive the global UTM coordinates
from the estimated vehicle-relative positions.

Boundary Matching and Map Correction. In order to correlate the positions of the
beacons with a lane boundary, a filtration procedure is implemented. A binning filter
reduces measurement noise by averaging close positions. A logical constraint filter
ensures feasible interpolation of the lane boundary. Positions are then re-indexed
based on their medial distance from the lane boundary segments. The updated lane
boundary state is shown in Figures 8 and 9.

LiDAR Map To HD Map. Our approach for generating an HD map from a
LiDAR map involves segmenting the navigable ground segment from the point
cloud, calculating the concave hull, creating a Voronoi graph [41], finding the
longest chain of vertices in the graph, smoothing the vertices, and converting
the trajectory into a lane. The process includes steps such as elevation map
creation, filtering of sample points based on a simple morphological filter from [42],
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(a) Initial state of the estimate for the beacon (b) State after filtering the positions of

positions (circles with infill) next to the lane the beacons. Dotted line denotes the

boundary points (circles without infill). proposition for the new lane boundary
at this point.
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(c) State after re-indexing the beacon- (d) In the final stage, outdated lane
position groups. boundary points are discarded to form a

new lane boundary.

Figure 8.
State of the lane boundary throughout the four stages of the lane boundary adjustment process.

(a) Snapshot of the 3D pose  (b) Representation of (¢) Representation of

estimation. In blue one can  untracked and unfiltered filtered / grouped 3D-Poses
see the bounding box of the 3D-Poses rendered overan rendered over an image of
object. image of the lane. the lane.

(d) Update proposal (e) Image of the updated (f) Updated and valid lane
rendered on top of image lane. rendered with the editing
of the lane with changed tool JOSM.

centre-line.

Figure 9.
Visualisation of the update process and its result.

calculating a spanning polygon, applying Delaunay triangulation, and
constructing a lane with a consistent width. Figures 10 and 11 show a visualisation
of each step.
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(b) (c)

Figure 10.
Processed point cloud map after each step of the conversion from point cloud map to HD map.

ed by
__one vehicle

Figure 11.
Visualisation of the integration scenario, which was presented at a demonstration day.

7. Real-world experiments

In this section, we show some experimental results of our work.

3D Mapping. Regarding underground mapping with the exploration vehicle
described in Section 2.1, we show maps from the MAXIT underground anhydrite mine
in Krélpa, Germany in Figure 12. The map was recorded by exploration vehicle in a
stop-and-scan fashion taking a full spherical 3D scan every 10 m. The recording of the
map took place in a teleoperated manner, the point cloud data and the odometry data
were stored in a rosbag file and were processed offline following the procedure
described in detail in [19, 20]. Figure 12a shows a 2D occupancy grid of the mapped
part of the mine. Figure 12b visualises the point clouds themselves and Figure 12¢c a
3D Octomap from the point clouds. Whilst the results show that precise 3D maps of
the underground mining environment can be produced with the exploration vehicle,
one has to admit, on the downside, that the process is not fully automated and human
expertise is required to avoid errors in registering the different point clouds into a
consistent map. The overall map size of the map is about 800 m.

Vehicle Automation. The haul-dumper’s hardware setup has proved reliable
throughout our project, with hundreds of testing hours and no system-wide failures.
The most frequent issue involves power supply to the vehicle’s components. The
installed PLC and sluggish system caused by the hydraulic mechanism lead to an
average latency of 200 ms from command issuance to actuators. There is also latency
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Figure 12.
Parts of the MAXIT anhydride mine in Krélpa, Germany.

in emergency stops, taking 1.5 seconds to fully halt after triggering the switch. The
path-following feature shows a mean lateral deviation of 0.1 m on straight sections
and 0.9 m on curves.

Fleet-level Planning. Fleet-level planning was tested through coarse simulations that
mimic mining processes and through integration in the lower modules of the archi-
tecture. Two simulation scenarios were created with different levels of complexity:
one with simple targets and resources, the other emulating a hybrid mine with multi-
ple resource types. In each scenario, four strategies were analysed, each examining a
different heuristic: Minimising the idle time of all vehicles in the fleet, minimising the
average duration of loading and unloading the dump truck, minimising the idle time
of the dump truck without moving loads, and maximising the haulage mass from
randomly generated plans. Idle time and total haulage mass were observed in an 8-h
simulation. The results are shown in Table 1.

Long-term Mapping. We carried out a functional test on live map correction by
manually altering the map and monitoring the global route planner and vehicle
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response. This often involved tweaking the lane sections leading to the loading station,
as demonstrated in the integration scenario Figure 11.

Integration Scenario. In an integration test, we utilised loading and unloading sta-
tions to handle pick-up and unload payloads. The unloading heap has two access
points, whereas the loading station has only one. There are two bidirectional lanes to
the unloading sites and a single bidirectional lane to the loading site.

The daily transport schedule of fleet management includes repeated loading and
unloading operations for the vehicle fleet, with only one vehicle having access to the
loading point. The high-level controller coordinates resource access to avoid
conflicts. Resource blocking is implemented by the operations scheduling system.
The first vehicle to reach the fork in the middle of the traffic network whilst the
loading resource is free secures the lock and blocks the lane to the resource.
Following vehicles must wait for fleet management to release the resource. This
mechanism proved robust in an 8-h operation and successfully implemented the

daily schedule.

8. Conclusion

In this chapter, we present our results from automating load-haul-dump (LHD)
operations in hybrid mines. Hybrid mining operations are mines where mining in part
is done in an open pit fashion, and parts are underground. As for the autonomous
vehicles deployed in such a mine, it means that the vehicles cannot simply rely on GPS
data for localising themselves over ground, but also need classical approaches to
mapping the environment. We reported on our exploration vehicle that is equipped
with a rotating LiDAR scanner to produce detailed 3D point clouds which then are
integrated into Octree maps that the LHD vehicles could use for localising themselves
in the mine.

The haul-dumpers that we deploy are modified off-the-shelf articulated dumpers
which were turned into autonomous vehicle. The vehicles are equipped with GPS,
LiDAR, and camera sensors. The software architecture is based on ROS2 and was also
deployed in similar projects related to autonomous driving including a modified
version of a model-predictive control (MPC) algorithm. It had to be adapted to the
articulated kinematics of the dumper. Further, to control a fleet of LHD vehicles
(three in our case), we made use of the HTN-based planner SHOP3, which generates a
global mission plan for the vehicles based on the required haulage capacities. Each
vehicle is following this global plan for generating their local missions. As another
important contribution, we introduced Lanelet2-based maps for navigating the LHD
vehicles, including dedicated drive ways and right of way rules. Lanelet maps are
commonly used for self-driving cars and not so much in robotics applications. Using
this approach facilitates the coordination of a fleet of vehicles to a great extend.
Finally, we showed our approach to object and drive-way detection including the
automatic generation of the aforementioned Lanelet drive ways.

The presented approach has been tested in real-world scenarios underground and
in open pit mines under controlled conditions. We showed how mapping successfully
took place with our exploration vehicle in the Krélpa mine in Germany. The fleet of
dumpers was tested in an open gravel pit in Buir, Germany. We could show that the
low-level control such as MPC works well also on the dumpers with their articulated
kinematics and how the fleet of dumpers could be coordinated on a mission level.
Whilst the tests and experimental results show that the overall approach is working,
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next steps would be to deploy this work in real mining operations under the realistic
hard mining environment conditions with limited communication means.
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Chapter 5

Geometric Control of
Robotic Systems

Anis Bousclet

Abstract

In this chapter, we’ll present geometrical methods to control robotic systems, we’ll
start by presenting the classical approach and its benefits, as well as its limits, and we
will explain how the geometric approach allow us to get rid of these limits.

Keywords: robotic systems, Riemannian geometry, geometric control, optimal
control, regulation under constraints

1. Introduction

Robotic systems are powerful tools that allow us to gain time, money and enery,
they had revolutionized several fields as industry, medicine, agriculture and many
other fields.

The main difficulty caused by robotic systems is the nonlinearity of the dynamics.
The classical approach modelise the configuration space by an Euclidean space, and
applies the principle of least action to derive the equation of motion, and applies
Lyapunov and Lasalle’s techniques to control the robot [1, 2].

However, this elegent approach do not fit well with regulation under constraints
problem or optimal regulation, the goal here is to illustrate these limits, and to show
how the geometric method allow us to get ride of these limits.

2. The classical approach and its limits

The configuration space of the robot is R” where # is the number of degrees of
liberty (DOF) of the robot, the principle of least action gives the dynamics

! 1 / N/
Gl9)g" +5G(q) +S(g:9)q +2(q) == 1

This allow us to ensure locally the regulation to a configuration ¢* € R" with the
control

1(9,9") =g(q) — Kp(q — ') — Kug' 2
which is a PD controller.
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Figure 1.
Insufficiency of Luenberger observer.

The classical approach with all its benefits [1, 2], do not fit well with the problem
of regulation under constraints or optimal regulation.

For the optimal control problem, the general formula which gives the angular
velocity in function of the configuration of a Rigid body that minimizes the cost [3]

@) = [ [ - &R+ 10 s )

for the kinematic R' = RQ and ensure regulation R — R,

. RTR —RTR
Q*(R) = ——4= =4 (4)
1+ er(RJR)

which has not the form of a proportional controller, so this prevents to get an
optimal PD regulator for robotic systems.

For the regulation under constaints problem (tool of the robot must stay in a
security surface S), the set of admissibles configurations is N = x~(S) where x is the
function which gives the position of the tool in function of the configuration. The set
N has no reason to be a linear subspace of R since x is a nonlinear function, the set N
will be a curved space in R” and we arrive to a formalism naturally adapted to the
resolution of the problem of regulation under constraints.

Sensitivity with respect to initial conditions remains one of the main problems in
conceptions of efficients observers.

For example, for a rigid body which dynamics are™

R =RQ (5)
o =I"Io x 0) — 21 '[Skew(R)]" (6)

" [Q]* is the unique vector ® such that @ x x = Q.x, and j is its inverse.

’ Skew(R) = %.

76



Geometric Control of Robotic Systems
DOI: http://dx.doi.org/10.5772 /intechopen.110895

where I = [2,2, 8] and R(0) = exp([0.82,0.21, 0.73]°) »(0) = [0.8, 0.5, 0.6}, the
Luenberger observer [4] is

R =R(©—9(1 " [Skew(RTR)] ")) (7)
& = I"Y(Io x @) — 21 "[Skew(R)]* — 21 [Skew (RR)]" (8)

where R(0) = exp([0.8,0.5,0.6]*) and &(0) = [0, 0, 0], the simulations shows that
the Luennberger observer is not efficient when real and observed configuration and
velocity are lightly different (Figure 1).

3. The geometric formalism

The idea of the geometric formalism is to pass the complexity of the equation to
the configuration space, thus in the geometric formalism, the configuration space is
not an Euclidean space, but a curved space that we call manifold.

Manifolds [5] are objects that looks like Euclidean space locally, we can always
reduce the local study of manifolds to computations in R”, it is exactly what we do
when we parametrize the configuration of a rigid body with Euler angles.

The configuration space of a rigid body [6] which has a fixed point is the space of
Euclidean rotations SO(3), when all its points moves freely the configuration space
becomes SO(3) x R?, the possible translations of a point cover R3.

A robot is an assembly of s rigid bodies, which are related from there extremeties
by articulations, those links are called holonomic constraints.

The configuration space of the robot is M a submanifold of dimension # of
(SO(3) x ]R3)S, the holonomic constraints are related to the local coordinates by the
following result.

Proposition 1 Let M be a subset of (SO(3) x R3)', there is equivalence between

* Holonomic constraints: for each q € M, there exists V, a neighborhood of q in
(SO(3) x R®) and a submersion® f : V; — R*" such that MN\V, =f(0).

* Local coovdinates: for each q in M, there exists a neighborhood V, of q and an
immersion* 0 : 0 € U — V,nM is a homeomorphism.®

M is said to be a manifold of dimension n, the number n is the degree of freedom of the
robot, and the number v is the number of constraints, we have the well known formula
n==6s—r.

Once we know that we are dealing with curved objects, it may seems more com-
plicated to do computations. Thanks to the tangent space T, M, which is the set of
virtual velocities 7(0) of curves y(¢) that pass throught y(0) = ¢ € M and stay in
y(¢) € M, this space is linear and of dimension z (Figure 2).

* A submersion is a smooth function for which the differential is everywhere onto.
" An immersion is a smooth function for which the differential is everywhere one to one.

5 . . . . .
Invertible continuous map with continuous inverse.
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y(t)

Figure 2.
Tangent space.

When we do parametrization with holonomic constraints, the tangent space is
T,M = Ker (df q> , if we parametrize our manifold with local coordinates, then

TyM = Range(dfo), the basis adapted to the coordinates is 0; = df(e;) where ¢; is the
canonical basis of R”.
The tangent linear map between two manifolds ¢ : M — N is the linear map

Ty : TyM — Tyq)N ©)
defined by
Ty¢(v) = (¢7)'(0) (10)

where y(0) = ¢, y(t) €M and y'(0) = v (Figure 3).

A vector field is the data of a tangent vector in T;M for each g € M which a smooth
way, the set of vector fields is I'(TM).

To each vector field corresponds a motion of diffeomorphisms® by solving the
following ODE (Figure 4)

%ty (q) = X (¢5(9)) (11)

¢ (q) =9 (12)

When we have two vector fields X, Y, a natural question is to ask when we have
#rod) = b b (13)

the obstruction of the commutation between the flows is measured by the Lie
bracket [X, Y] which is defined by

¢ Diffeomorphism is an invertible smooth mapping with smooth inverse
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Figure 3.
Linear tangent map.

7 s

Vector field and its flow.

Figure 4.

d
[XaY] :6E

t

T¢*, (Yogy). (14)
=0

The Lie derivative is related to the derivation of functions by
X, Yf=X.(Yf)-Y.(Xf) (15)
where X f = Tf (X).

Now that we have introduced all necessary tools, we will talk about Riemannian
geometry. The idea behind Riemannian geometry is to consider a scalar product
that is dependent of the position, this will simplify the formalism, provided that
we know how to manipulate the covariant differential calculus, which we will
present right now.
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Figure 5.
The rigid body.

The kinetic energy of a ball that is constrained to stay in a surface S is independant
of the position. In the general case, when we compute the kinetic energy of a rigid
body or two link robot, this energy will depend of the configuration, this gives a
Riemannian metric that is inherited from the inertia of the robot.

The innovative viewpoint of Arnold [6] is to see the motion of a rigid body fixed
on one point as a curve in SO(3), the kinetic energy depends only on the left angular
velocity” and thus we say that the Riemannian metric is left invariant (Figure 5).

Return to our ball in a surface, in the absence of forces and potential, the principle
of least action postulates that the real trajectory is a critical point of the kinetic energy,
this means that the acceleration of the ball must be orthogonal to the surface, such
trajectories are called geodesic, remark that if the ball was not constrained in S, this
condition would give that the acceleration is 0, and thus the motion is a straightline,
let us do the calculation

the kinetic energy for a ball with mass m is
1
2
B(r) = | Smlitofar (16)
0

since y(t) €S, the authorized perturbations are y,(t) €S such that y,(¢) = y(2),

7:(0) = r(0) and r,(1) = r(1).
The postulate is that

E(y) =0 (17)

this gives

"Q=RR

80



Geometric Control of Robotic Systems
DOI: http://dx.doi.org/10.5772 /intechopen.110895

JlmV(t)y(t)dt =0 (18)
0

where V() = %Lzoﬂ(t) € T, ys after integrating by parts we get

JIV(t).y’/(t)dt =0 (19)

0

since V(t) € T, S, we get that
Y (t)LT,S. (20)

The most important step in these calculations is the following one

iX(t).Y(t) _ X Y(t) + X(t)'il_lt/

dt T odt (21)

where X, Y are tangent vector field to y(¢) €S, that is X(¢), Y () € T, »S. In
this case the kinetic energy which is the Euclidean scalar product does not depend on
the position, for our applications, the kinetic energy depends on the position so we
need to construct a “good derivative” that allow us to derive scalar products by
computing the product of derivative only without computing the derivative of
the metric.

The parallel transport [7] of a vector v € T,M along a curve y(t) € M is defined by
the following way: the point at the origin of the vector follows the curve and the
vector evolves continuously by preserving its length and the angle with y(t).

This process defines a mapping P(y(1),7(0)) : TyyM — T,1)M which is a linear
isometry (preserving angle and length) (Figure 6).

The convariant derivative of two vector fields is

V¥lg) = 5l Pl dl@)Y(#e) @)

this covariant derivative satisfies
Vg=0 (23)
which means that
Xg(Y,Z)=g(VxY,Z) +g(Y, VxZ), (24)

we say that this connexion kills the metric, in addition of that, this connexion is
without torsion, that is we can close locally the parallelogram by doing parallel trans-
port along geodesics by two different paths, the mathematical formula is

T(X,Y) = Vx¥ — VyX — [X,Y] = 0 (25)

for the computations in coordinates, we defines

Vo0 = rﬁ;ak (26)
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Figure 6.
Parallel transport.

the previous identities are®

I =r% T=0 7
1

we construct a covariant derivative £ : I'(y) — I'(y) along curves y(¢) € M that
satisfies

o DX+¥V _ DX | DY
Dt

i —f X+ f X for scalar function f
« Vo V(r(t) =25 for X e I(TM).
In coordinates we get by setting X (¢) = Xi(t)aﬂy(z)

DX (d . d
Dt (dt (X ) + Fk dt (qk)Xl)aih’(t)' (29)

This covariant derivative satisfies

D W). (30)

d DV
e W= (pw) e (v 5

8 . . .
The component of the metric in local coordinates are & (q) = gq( ig> ]\q)
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Now we suppose that our robot must evolves from ¢, to g, in M by minimizing the
kinetic energy, we consider the real trajectory ¢(¢) and its admissible variations g, (¢),
by deriving we obtain

d it ! Dl . ..
7 =0E() =3 Jog%(t) (4,(2),4,(0)dt = Lgm (55 Kz (£),4(2))dr (31)
using the Schwarz lemma
Do Do
Ds o Dt a (32)
we get
! D :
J £ (ﬁ V(t»q(t))dt —0 (33)
which gives by integration by parts that
D .
pd=0 (34)

which is the geodesic equation which are curves that are parallel along themselves.

Now we will talk about curvature, curvature is the opposite of flatness, in an
Euclidean space, when we look at the parallel transport along closed curves, the
obtained linear map is always identity, in a sphere, the set of obtained linear mappings
cover all SO(2), because of the curvature of the sphere.

So the curvature is the change of a vector by parallel transport along the parallel-
ogram obtained by geodesics and parallel transport, the mathematical formula is

R(X,Y)Z = VxVyZ — VyVxZ — Vix y/Z (35)

the curvature is a tensor, that is we can compute R(u, v)w for u,v,w € T,M without
needing any extention.
The sectional curvature is

K(u,v) = &R, vjo,u) (36)

Pl - gu,0)’

and it is the Gaussian curvature of the geodesic surface generated by («,v).
Curvature is also a factor in the sensitivity with respect to initial conditions, the
geodesic deviation is related to the sign of curvature by the following formula

2

D
—+R(J,q)g =0
o2t J,9)q (37)

where ] is a virtual motion that represents a local variation of geodesic (Figure 7).

When curvature is 0, the sensitivity is linear, which allow the Luenberger observer
to be performant, when the curvature is negative, the geodesic instabillity is
exponential [7], which explains that the Luenberger observer diverges (Figure 8).
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Figure 7.
Geodesic variation.

Figure 8.

Negative curvature and sensitivity of the geodesic flow.

The exponential map corresponds to a tangent vector the range by the geodesic
after a unitary time, we denote it exp  : V, CTyM — M, the exponential is a local
diffeomorphism, so around a configuration, each configuration can be joined by a
unique geodesic, the parallel transport along this geodesic is denoted by P (Figure 9).

when the exponential map is defined on T,M, we say the (M, g) is complete, it is
the fact when M is compact.

The geodesic distance is a natural distance induced by the Riemannian metric

1
Aana) = i | e @@ a0 (38)

curves in M joiningq, toq,. ) o

Thanks to Cauchy-Schwarz inequality, we can show that

1
inf J 2,00 (), q(t)dt. (39)

2 curves inM joiningq, toq,. J o

1
idg(%’%)z
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Figure 9.
Exponential map.

The gradient of a function f is the unique vector field Vf that satisfies
df (X) = g(Vf,X) (40)
The gradient of the function U(g,.) = %d; (g,.) s

VU(p) = —exp,(q)- (41)

The configuration space of the robot is a # dimensional compact manifold
equipped with a Riemannian metric g that is the kinetic energy. In the presence of
potential, the claculus of variations must applies to the Lagrangian L(q,v) = 1¢g(v,v) —
W (g) and this gives the equation

Dq
—=-VW 42
2 @ “2)

in robotics, we have a control law that allow us to enslave the robot, so the
equation becomes [8, 9]
Dq
o =~ VWiq) +u (43)
We recover a Newton-like equation, the left term quantifies an obstruction of
parallelism, and the right hand term an exterior force, as well as the Newton funda-
mental law “The trajectory of an object remains parallel along itself as long as there are
no forces applying to it” (Figure 10).
The kinetic energy theorem gives the variation of the mechanical energy in func-
tion of the applied forces, this will be useful to compute feedback law to ensure
regulation (Figure 11)

In some applications, especially those concerning the motion of a rigid body, the
configuration space is a Lie group G, which is a group furnished with a manifold structure
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Figure 10.
Inverse of the exponential.

Figure 11.
Two link manipulator and its configuration space.

such that multiplication and inverse are smooth, the consideration of a Riemannian
metric that is left invariant allow us simplificate the geodesic equation [9], the curvature
tensor and the parallel transport, and thus simplificate the practical implementation of the
optimal regulator [10, 11] and the Riemannian observer [12].

4. Regulation under constraints

In this section, we will propose a method to ensure regulation under constraints,
before going further, lets see the case of regulation without constraints.
Let fix some reference configuration ¢* € M, and consider W = 0, by taking
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u(t) = exp ;(1) (q7) —kq(¥) (45)

we get

d (1 1
o GUOR, +5860.07)) = ka0, (46)

which ensure regulation ¢(t) — ¢ * by Lasalle’s invariance principle, this result is
very classical, but what we will prove in Section 6, is that this Riemannian PD-
regulator is optimal for a natural cost.

Now we are interested by the regulation of the tool of a robot [13], the tool is the
terminal organ of the robot, the control of the tool of a robot is frequent tackled
problem in industry (Figure 12).

The position of the tool is modelised by a function x : M — R?, we call the
workspace W, = x(M) the range of x, that is the set of all possible positions that can be
tooken by the tool.

A singular configuration is a configuration where the tool can not moves locally in
all directions, that is a configuration 4 € M where T;x is not onto.

We have the following result that relates absence of singularities to the possibility

of regulation of the tool [10].
Proposition 2 Suppose that the tool function is without singularities, take x; € W

and

u=-VV—ko (47)

where V(q) =3 |x(q) — x|, this controle stabilize the tool to x4 whith 0 velocity.

O(Jo)

Figure 12.
Regulation of the tool.
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Proof E: quilibrium configurations of this dynamics are critical points of V, which
are ¢ € M such that

T,V(v) = (x(q) — xa).dxg(v) =0 (48)

since ¢ is not singular, we must have g €x(x).
Since the function 3 |v|§ + V(q) satisfies Lasalle’s invariance principle
hypethesis ans

d 1. .
o (V) + 308, ) = k0, <0 (49)

The large subset invariant subset M x 0 is Q = x 1(x;) x 0. W

Now we turn to the regulation under constraints [13], if one wants to ensure
regulation of the robot that leaves the tool in a safety area S = ®~(0) where
® : R? — R is a submersion on x(M) (Figure 13).

We reduce the problem x(¢(¢)) €S to q(t) € N where N = x1(S) is a hypersurface
of M, the same calculus of variations done in the previous section allow us to see that

%+ VU(q) = CeT,N* (50)
t

C can be seen as a contact force which force the configuration to stay in N
(Figure 14)

Thanks to an inverse calculation [10] one can show that the expression of the
unique orthogonal component that allow the tool to remain in s is given by

—<D,V¥(q),v>
IV¥(q)*

u(q,v) = V¥(g), (51)
where ¥ = xo®.

In some papers, the problem of tracking is tackled, and the most useful result is
this one [14].

Figure 13.
Regulation under constraints.
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Figure 14.
Contact force.

Proposition 3 For the dynamic %—Z = u, let a smooth trajectory reference on M, the
regulator u = upr + upp decreases the function

t€R — 242 (4,5(0),4(0)) + 2 ]o(0) ~ PO g Oog @] (52

where
urr(,v) = %P(q,qwf(t))vmf(t) + DuP(4 9,5 )Orps (53)
Upp = exp;l (qu(t)> — k. (v - P(q,qu>vmc). (54)

5. The Riemannian observer

Another application of this formalism is the conception of observers of velocity.
We want to get an estimation ¢ — 9(t) of the velocity with the only data of the
configuration ¢q(z).

We have explained in the second section that negative curvature is closely related to
the sensitivity to the initial conditions of the geodesic flow. So for free systems, if we do
not take into account the curvature, the observer will diverge if the observed initial
velocity is far from the initial real velocity, even if the two configurations are very close.

The idea [15] is to copy the dynamic of the system and add a correction that cancel
the curvature term that appears naturally in the derivation of the linearized equation
around the real trajectory (Jacobi equation when absence of external forces). The
observer of the dynamic

Dq'
is

dq _ . -1
L= o+ krexp, (q0),

DY — P(3,q)(S((0) + R (0, exp;(g(0)))o + kaexp; (g(0)).

Dt
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Figure 15.
Convergence of the Riemannian observer.

We can compute the form of this observer in the case of a Lie group furnished with
a left invariant metric [12], this will give for a rigid body dynamic9

R=R.(Q-2(0), (55)

IUIe) x o — Iox E+IEx &) +¢x o —20 — 2R R,

0= (56)
I Y[skew(R)]* + R(®,{)d,

with ¢ =171 [log (RTﬁ)] "
With the same conditions as the Luenberger observer of the first section, we get
for the Riemannian observer the following simulations (Figure 15).

6. Optimal regulation and tracking

In this section we are concerned by the optimal control of robots, we consider the
dynamics

Dié
S=u (57)
and we consider the cost
“11, 1 )2 p -
J@) = | |Sloal"| +5dg(q,(6).q7)" + lulle "ds (58)
0 g

where (g,,,v,) is the unique solution to the dynamics (after fixing an initial posi-
tion and velocity).

5 log(R) = %skew(m, with ¢(R) = arccos(zr(Rz)ﬂ)
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The HJB theory gives that the feedback control [10]
urp = kexp;t(q*) — Ko (59)

where k, k' solves an appropriate Riccati equation, is the unique that solves the
previous problem.

For the tracking problem, we have the following result [10].

Proposition 4 Let a smooth reference trajectory q,,¢ - [0, T| — M, the tracking regula-

tor that minimizes the cost
2 1
| 5 (e, q,0) | de,

10 = || 2 (15 ©0,00) + 3000 = P00, g 0

(60)
is a PD + Feed forward regulator # = upp + upp where
d
1Y = % >Dref 7 v >Dref 7 b
p(£,4,0) = 5P (44, (8) )0 () + DuP (4,4, (8) ) ) () (61)
upp(t,q,v) = k1(t) exp ;1 <q%f(t)) — ke (2) [v — P(q, qr#)”fef(t)} , (62)
avec (k1, k) solves an appropriate Riccati equation.
For the applications to a rigid body motion [11, 16]
R =RQ, (63)
o =I"(Io x ®) + 7. (64)
We have the following PD that ensures optimal regulation to R
Tpp = —kp [lOg(R;R)] L kD(D. (65)
For the optimal tracking problem, the PD + FF regulator is
top = —kp|log (RIGR) | = k. (0 = R™Rep 1), (66)

(0 X (R"TRuf- @) — I (LR Ry o) X @ + (I.0) X (RTRy 1)) (67)

N =

TFF =

7. Conclusion

Classical robots allow us to ensure local regulation of the configuration and optimal
control of kinematics of rigid body. However, some observations shows that it do not
fit well with regulation under constraints and optimal regulation of the dynamics. We
cannot explain the origin of the sensitivity with respect to initial conditions, which is
present in most robotic systems and prevent us to design performant observers.

We have introduced the geometric formalism with a comprehensive way, and we
explained the origin of the sensitivity with respect to initial conditions by the notion
of curvature, that we avoid by the Riemannian observer.
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We have exposed how to ensure regulation under constraints under a hypothesis
of absence of singularities, and we showed how to ensure optimal regulation and
tracking by algorithmic methods.

However, this method requires fastidious computations and sometimes difficult,
approximations are quiete often used, and by doing that we see that we recover
regulators that are proposed by the Euclidean approach.

We can see the classical robotics as an approximation of the geometric robotics, a
bit like newtonian mechanics is the approximation of general relativity.

Geometric robotics is a field active in research, and most of recent results are
presented in this chapter. Open problems remains in soft robotics, where we control a
quasilinear hyperbolic PDE written in the Lie algebra of the group of Euclidean
isometries, for this purpose one can see the work of [17] and the reference within.
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Challenges and Trends of Machine
Learning in the Myoelectric Control
System for Upper Limb
Exoskeletons and Exosuits

Jirui Fu, Zubadiah Al-Mashhadani, Keith Currier,
Al-Muthanna Al-Ani and Joon-Hyuk Park

Abstract

Myoelectric control systems as the emerging control strategies for upper limb
wearable robots have shown their efficacy and applicability to effectively provide
motion assistance and/or restore motor functions in people with impairment or dis-
abilities, as well as augment physical performance in able-bodied individuals. In
myoelectric control, electromyographic (EMG) signals from muscles are utilized,
improving adaptability and human-robot interactions during various motion tasks.
Machine learning has been widely applied in myoelectric control systems due to its
advantages in detecting and classifying various human motions and motion inten-
tions. This chapter illustrates the challenges and trends in recent machine learning
algorithms implemented on myoelectric control systems designed for upper limb
wearable robots, and highlights the key focus areas for future research directions.
Different modalities of recent machine learning-based myoelectric control systems are
described in detail, and their advantages and disadvantages are summarized. Further-
more, key design aspects and the type of experiments conducted to validate the
efficacy of the proposed myoelectric controllers are explained. Finally, the challenges
and limitations of current myoelectric control systems using machine learning
algorithms are analyzed, from which future research directions are suggested.

Keywords: myoelectric control, upper limb exoskeleton, upper limb exosuit, pattern
recognition, machine learning, reinforcement learning

1. Introduction

In the past few decades, the demand for upper limb exoskeletons and exosuits has
grown substantially due to their promising applications across industry, medical and
military sectors. The exoskeletons consists of rigid links and joints attached to the
human body, whereas the exosuits use soft and flexible materials (such as fabric or
soft polymer) to interact with the user’s body [1]. The applications of exoskeletons and
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exosuits include: (i) power augmentation to enhance physical performance or the
capabilities of able-boded individuals during strenuous physical tasks [2], and
(ii) assisting individuals with disabilities in performing activities of daily living
(ADLs) [3].

The exoskeletons and exosuits can be controlled by many different schemes, such
as the kinematics control based on the inertia measurement unit sensor (IMU) or
encoder [4, 5], the force control based on load cell or torque sensor [6, 7], and the
myoelectric control based on the electromyographic sensor (EMG) [8]. Among these
control schemes, the myoelectric control systems have gained increasing attention
over recent years [9-11]. The myoelectric control systems of the upper limb exoskel-
etons and exosuits use surface electromyography (EMG) signals, the electric poten-
tials directly measured from the skeletal muscle as input of the control system for
exoskeletons and exosuits (Figure 1). The surface EMG signals are generated from the
motor unit activation, controlled by the human brain, and regulated by the motor
neurons in the spinal cord. The mechanism for generating surface EMG signals offers
surface EMG signals to detect human movement intention [12]. The critical advantage
of a myoelectric control system over other control systems is its timely detection of
the user’s motion intention leveraging electromechanical delay (EMD); the onset of
motion can be detected about 50-100 ms earlier than the physical motion [13, 14].
Moreover, the exoskeletons and exosuits equip with myoelectric control systems have
a more adaptive and intelligent interface with the users as the exoskeleton and
exosuits can timely and proactively engage assistance through detecting the users’
movement intention [15].

Myoelectric control systems for upper limb exoskeletons and exosuits initially used
on-off/finite state control and proportional control, as described in Refs. [16, 17].
Although these methods are simple and easy to implement, their ability to accommo-
date a wide range of different movements is limited, as noted in Ref. [18]. Conse-
quently, their primary use have been limited to a single joint function such as elbow
flexion/extension or hand grip. To allow for more complex movements across multi-
ple degrees of freedom (DOFs), machine learning (ML) and deep learning (DL)
algorithms have been utilized in the myoelectric control systems. However, the myo-
electric control systems with ML or DL algorithms generally require considerable
computational power, which imposes practical limitations on the portability of exo-
skeletons and exosuits [19]. In recent years, with the advancements in more powerful
and compact embedded computers, myoelectric control systems with ML or DL
algorithms became feasible to implement on upper limb exoskeletons and exosuits.
Compared to the early staged myoelectric control modalities, the ML or DL-based
myoelectric control systems have shown superior performance and better results in
complex, multi-DOF upper limb motions; yet, there still exist challenges and limita-
tions which will be discussed in detail in the subsequent sections.

Given the growing interest in machine learning and deep learning-based myoelec-
tric control systems for upper limb exoskeletons and exosuits, the number of publica-
tions in the relevant field has rapidly increased over the past decade. Therefore, it is
imperative to understand the latest trend and challenges in machine learning and deep
learning-based myoelectric control system for upper limb exoskeletons and exosutis.
A systematic review that provides a comprehensive overview of the myoelectric
control system for upper limb exoskeletons and exosuits [8] was published by the
authors. However, the focus of that review was not specifically machine learning and
deep learning-based myoelectric control system of upper limb exoskeletons and
exosuits, and it does not discuss current challenges and future directions. This chapter
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The generation of electromyography signal and the workflow of myoelectric control systems on upper limb
exoskeletons and exosuits.

is designed to share the extensive review of the machine learning-based myoelectric
control system for upper limb exoskeletons and exosuits, particularly from scientific
articles published between 2011 and 2023. The identified challenges in implementing
machine learning algorithms in the myoelectric control system and future directions
are suggested. In the following section, the process of machine learning-based myo-
electric control system is summarized (Section 2), and the state-of-the-art implemen-
tation of machine learning algorithms in upper limb exoskeletons and exosuits is
presented (Section 3). Finally, the remaining unaddressed research questions and
tasks are discussed as future research directions (Section 4).

2. The procedure of machine learning-based myoelectric control system

Similar to any other types of myoelectric control systems, machine learning-based
myoelectric control systems include key procedural steps: signal acquisition, pre-
processing, feature extraction, and motion intention detection through the trained
machine learning model (Figure 2). In this section, the process of a machine learning-
based myoelectric control system will be presented in detail.

2.1 Data acquisition and signal processing

The acquisition of the EMG signal is critical to the myoelectric control system of
the upper limb exoskeleton, as the accuracy of the myoelectric controller primarily
depends on the quality of the EMG signal. It is, therefore, important to acquire quality
and accurate EMG signals. Three essential components of EMG data acquisition sys-
tems are the electrodes for EMG, the sampling rate and signal filtering.
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The process of machine learning based myoelectric control system.
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EMG electrodes — The electrodes of the EMG sensors include surface and
intramuscular, in which the surface EMG electrode uses an insulative sticker to
place the electrode on the skin overlying a muscle to detect the electrical activity
of the muscle [20]. On the other hand, the intramuscular EMG electrodes utilize
the needles or wires that are inserted into the muscles [21]. Compared to the
surface electrode, the intramuscular EMG electrodes can minimize the crosstalk
from neighboring muscle segments; however, the operation of intramuscular
EMG electrodes requires trained medical expertise, and it is more difficult to use
in the research environment. Thus, the surface EMGs are more commonly and
widely used in myoelectric control systems of upper limb exoskeletons and
exosuits.

Sampling rate — Because the acquisition of EMG signal involves converting the
analog signal (voltage generated by muscular activation) to the digital signal
(EMG signal used in the myoelectric control systems), which a computer can
process, selecting an optimal sampling rate is critical to avoid under-sampling or
oversampling. The choice of sampling rate varies between muscle segments. For
example, [22] investigates the selection of sampling rate for EMG, and [23]
explores the effect of sampling rate for machine learning-based myoelectric
control system accuracy

Filtering and rectification — The acquisition of surface EMG measures a
combination of the activation of all recruited motor units within the muscle.
Therefore, the collected surface EMG signal contains the drift and artifacts which
affect the accuracy of the surface EMG signal. The Butterworth filters have been
widely used to remove the drift and artifact from collected surface EMG signals.
Usually, filtering the raw surface EMG signal includes using a high-pass
Butterworth filter to remove the drift and artifact from the raw surface EMG
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signal, then using a low-pass Butterworth filter to acquire an envelope indicating
the magnitude of the surface EMG signal as it changes over time. However, the
selection of the order and cut-off frequency of the Butterworth filter could be
optimized for different muscle segments; for example, [24] presents the filter
selection for surface EMG signal to remove the drift and artifacts. After high and
low pass (or band pass) filters, the EMG signals need full wave rectification then
a low pass filter for further processing and feature extraction.

2.2 Feature extraction

The pre-processed surface EMG signal is presented as a time sequence that

includes a large number of randomness. Therefore, directly feeding the pre-processed
surface EMG signal to the machine learning model is impractical. To feed the pre-
processed surface EMG signal to the machine learning model, the sequence of pre-
processed surface EMG signals must be mapped into a smaller dimension vector called
a feature vector [25]. The process of extracting feature vectors from the pre-processed
surface EMG signal is called feature extraction. In applying a myoelectric control
system for upper limb exoskeletons and exosuits, feature extraction includes two
types of methods: feature selection and dimensionality reduction algorithms.
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¢ Feature selection — The feature selection uses the statistic formulas to convert the

pre-processed surface EMG signal to low-dimensional feature vectors. The
feature selection methods are categorized as time-domain and frequency-domain
features. However, according to the literature review, only the time-domain
features are utilized in the myoelectric control systems for upper limb
exoskeletons and exosuits because the time-domain features are computationally
simple compared to the frequency-domain features. The time-domain features
use the time sequence of surface EMG signal, and there are many types of
time-domain features used such as integrated EMG (IEMG), mean absolute
value (MAV), root mean square (RMS) and auto-regressive coefficient (AR).
Among these, the root mean square and auto-regressive coefficient features are
the most widely used time-domain EMG features in myoelectric control systems
for upper limb exoskeletons and exosuits, according to our literature survey.
Because each feature has different statistical meanings and implications, the
effect of selecting different features for the machine learning model could vary.
For example, [26] investigated the effect of different features on hand motion
classification.

Dimensionality reduction — Similar to the statistical features, the dimensionality
reduction also maps the pre-processed surface EMG signal to the low-
dimensional feature vectors. However, the statistical formulas used in feature
selection do not change the data, while the dimensionality reduction maps the
data to the lower dimension. The dimensionality reduction uses linear or
nonlinear algorithms to map the data to a low dimension, such as the Principle
Component Analysis (PCA) and Linear Discriminate Analysis (LDA). In [27], the
performance of dimensionality reduction in classifying the object’s weight using a
machine learning model from the surface EMG signal was studied. The
dimensionality reduction algorithms are less frequently used in myoelectric
control systems for upper limb exoskeletons and exosuits due to their comparably
heavy computational process as compared to feature selection process.
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3. Taxonomy of machine learning-based myoelectric control systems

The previous section presents an overview of the process of machine learning-
based myoelectric control system. This section will summarize the machine learning
algorithms used in the reviewed research articles. These algorithms are categorized
into three: (1) classification-based models, which are used to detect the type of
movement from the surface EMG features, (2) regression-based models, which can
make a continuous prediction of the human subject’ joint kinematics or torques, and
(3) the reinforcement learning models which optimize the model through the inter-
action of human subjects and machine learning model. As shown in Figure 3, among
the included research articles, the regression-based models and classification models
are the most widely used modalities in the machine learning-based myoelectric con-
trol systems, while not much work has been done in the implementation and valida-
tion of reinforcement learning models.

3.1 Classification-based myoelectric control system

The classification-based Myoelectric Control System uses the classification model
to detect the movement from the statistical features of the human subject’s surface
EMG signal. In the classification-based myoelectric control, the labels are pre-defined
by the human subjects, which includes types of upper limb movement such as elbow
flexion/extension (diversified labels), and the onset of upper limb movement such as
in motion or still (binary labels). To train the classification models, surface EMG data
corresponding to the labeled motion must be collected from human subject. Then, the
classification model can be trained by various machine learning algorithms such as the
Support Vector Machine (SVM) [28], Linear Discriminant Analysis (LDA) [29], K-
nearest neighbors (KNN) [30], etc. According to our literature review, the support
vector machine algorithm is the most popular choice in the classification models of
machine learning-based myoelectric control systems. Compared to other machine
learning algorithms, the support vector machine algorithm provides better computa-
tional efficiency that makes it feasible to run on embedded computers than other
types of machine learning algorithms. The support vector machine algorithm can train
classification models with either diversified or binary labels. For example, [31] trained

I

I Regression Model

Reinforcement Learning Model

I Ciassification Model

Figure 3.
Different types of machine learning models used in the reviewed research articles.
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a SVM model to classify if the human subject’s finger is in motion or not. In [31], a
classification-based myoelectric control system trained by the SVM algorithm was
proposed for a (#DOF) finger exoskeleton using binary labels. Additionally, [32]
compared the accuracy of the classification-based myoelectric control systems for a
hand exoskeleton trained by different machine learning algorithms, i.e., SVM, artifi-
cial neural network with backpropagation algorithm (ANN), and K-nearest neighbors
(KNN). The classification model in [32] includes five labels that correspond to five
different types of hand motion, then used the classification output to trigger the
predefined assistive mode in the hand exoskeleton. According to [32], the classifica-
tion model trained by SVM showed the best accuracy among those compared. More-
over, Cheon et al. proposed a myoelectric interface based on the musculotendinous
junctions (MTJs) of the flexor digitorum superficialis (FDS) for reliable control of a
robotic glove with a single EMG sensor by identifying power grasp intentions [33] and
the support vector machine (SVM) algorithm was used to optimize the classification
model. Other machine learning algorithms have also been utilized to train the classi-
fication model in the machine learning-based myoelectric control systems. For exam-
ple, [34] utilized the MCLPBoost — a type of decision-tree algorithm to classify the
flexion and extension of elbow and wrist joints. Compared to the SVM algorithm, they
showed that the MCLPBoost had better robustness against the noised training data.

Many research articles reviewed targeted to improve the performance of classifi-
cation models. For instance, [16, 35] studied the impact of feature extraction on the
accuracy of classification model where two types of feature extraction techniques
were explored. The type 1 feature extraction technique converted the single-channel
EMG signal to 14 different statistical features; the type 2 feature extraction technique
converted five channel EMG signal to a single statistical feature. Both type 1 and 2
feature extraction techniques were designed for the same upper limb exoskeleton and
the classification models were trained by the same machine learning algorithm. The
experimental result indicated the type 1 feature extraction technique outperformed
the type 2 feature extraction from which they suggested that when training the
classification-based myoelectric control systems, higher dimensional training set gives
better performance. Moreover, [36, 37] implemented the sensor fusion method by
combining the EMG and electroencephalography (EEG) signal to improve the accu-
racy of the classification-based myoelectric control system trained by the artificial
neural network with a backpropagation algorithm. Additionally, to prevent the
misclassification caused by the unfiltered noise in EMG signals such as crosstalk and
motion artifacts, [38] utilized a threshold method in which the amplitude of filtered
EMG signal must be greater than a specific value to be an input to the classification
model. Twardowski et al. used the machine learning algorithm to convert the motor
unit firings from the sEMG signals into biomechanically informed signals that drive
the actuation [39]. The resulting signal provides a smoother control scheme with less
delay versus using the MAV and RMS response to modulate the actuation. The EMG
signal in the study [31, 32, 34, 39] used the root mean square (RMS) as statistical
features, while [40] used integrated EMG (iEMG) to train the classification model.
Compared to the RMS feature, the iEMG feature requires less computational power.
The classification model presented in [40] plotted the output data onto a 2D Cartesian
plane that can be distinguished in real-time using a Point-in Polygon algorithm com-
monly used in computer graphics. This algorithm determines whether the sample in
the plane belongs in or out of a given polygonal area which is the area of each given
label. Among the tested classifiers, this method provided the highest classification
accuracy (94%) when classifying hand grasp motions.
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The abovementioned articles utilized the statistical features of EMG data as input
for the classification-based myoelectric control systems. However, the raw EMG sig-
nal can also be used as input for the classification-based myoelectric control system, as
demonstrated by [41], which successfully implemented a vision transformer model to
classify two datasets using raw multichannel EMG data. The transformer model is
commonly used in natural language processing, but the encoder-decoder network can
be applied to determine the underlying characteristics of the input data without
manual feature extraction or signal pre-processing. The resulting model achieved a
higher classification accuracy versus a convolution neural network model and an
LSTM network.

3.2 Regression-based myoelectric control system

The regression-based myoelectric control system implements regression analysis
techniques. In statistics, regression analysis estimates the relationship between a
dependent variable (output of regression-based myoelectric control system) and an
independent variable (usually the EMG features in the regression-based myoelectric
control system) by using a regression model. Compared to the classification-based
myoelectric control system, the regression model can output continuous variables
such as joint torque and joint angle. The regression model can be trained by various
machine learning algorithms. However, there are two regression models found in our
literature review, artificial neural network with backpropagation algorithm and
Kalman Filters.

Among the research articles reviewed, the artificial neural network was the most
widely used method to train the regression model. For example, [42] implemented a
regression model to estimate the joint angle from the statistical feature of the human
subject’s EMG signal. The regression model is trained by artificial neural network with
a back propagation algorithm, and the results showed that the regression model could
accurately estimate the joint angle of human. Additionally, the regression-based myo-
electric control systems have also been widely used in the bilateral training of hand
exoskeletons. Because the bilateral training focuses on using the unimpaired hand to
help the impaired hand restore its motor control capability, the myoelectric control
scheme must accurately estimate the joint kinematics or joint torque of the
unimpaired hand which complies with the characteristics of regression-based myo-
electric control systems. For example, [38, 43-48] implemented the regression model
to estimate the joint angle or joint torque from the unimpaired hand to help the
impaired hand to restore its motor control capability. On the other hand, Kalman
Filter is another approach used in the regression model for myoelectric control of
upper limb wearable robots. Compared to the artificial neural network with
backpropagation method, Kalman filter does not need much time and extensive
datasets to train the model. Moreover, tuning Kalman filter requires less computa-
tional power than tuning the artificial neural network which makes it easier to run on
an embedded computer. The studies [49, 50] utilized the Kalman filter to compute the
joint torque based on the EMG signal whose regression models offered better accuracy
when compared to the regression model trained by artificial neural network with
backpropagation algorithm. Another method proposed by Kopke et al. used 6 DOF
loadcells and EMG sensors to acquire the training data and the linear discriminate
analysis (LDA) algorithm to train the regression model [51]. The experiment demon-
strated a 92% accuracy in estimating the joint torque of human subjects’ shoulder and
elbow joint.

104



Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper...
DOI: http://dx.doi.org/10.5772/intechopen.111901

Furthermore, some studies focused on improving the accuracy of regression
models. For example, Sierotowice et al. [52] utilized a ridge regression algorithm and a
feature selection algorithm called Random Fourier Features to improve the accuracy
of the regression model to estimate the hand-grasping force. The regression algorithm
of the controller achieved a higher classification accuracy when determining the target
forces versus the random Fourier features algorithm (80% versus 73%, respectively).
Moreover, the work by Meattini et al. used a soft dynamic time warping (soft-DTW)
method to improve the accuracy of the neural network based regression model [53]
and the result of this study shows comparable performance to the conventional neural
network regression model.

3.3 Reinforcement learning based myoelectric control system

The reinforcement learning algorithm is another type of machine learning algo-
rithm which are used as a machine learning based myoelectric control system. Differ-
ent from the classification and regression models, the reinforcement learning model
trains an agent to choose the optimal action under a specific state in an environment.
The process of reinforcement learning can be divided into several steps; in each step,
the smart agent executes an action based on a specific state and receive a reward signal
as feedback. The objective of the smart agent is to find the optimal action to maximize
the accumulative reward.

Compared to the other two types of machine learning myoelectric control systems,
only a few included research literature implemented the reinforcement learning algo-
rithm. Hamaya et al. [54] utilized an elbow exoskeleton and applied the Probabilistic
Inference for Learning Control (PILCO) reinforcement learning algorithm. The state
vector included elbow joint kinematics and EMG signals, and the reward was based on
the deviation between the intended and actual trajectory. PILCO employed the
Gaussian process to learn the probabilistic dynamic model of the interface between
the human and the exoskeleton. The learned model was then used to assess the control
policy, which was optimized using the policy gradient method [55]. This approach
proved to be more efficient than other machine learning myoelectric control systems,
leading to a shorter training period.

4. Discussion

This section outlines several research questions and tasks that need to be addressed
in future studies, including the robustness of machine learning-based myoelectric
control system, the incorporation of safety requirements in machine learning-based
myoelectric control systems, and the clinical assessment of assistive and rehabilitative
upper limb exoskeletons and exosuits with machine learning-based myoelectric con-
trol systems. These research questions point out crucial barriers to the effective use of
machine learning-based myoelectric control systems in upper limb exoskeletons and
exosuits which warrant further investigations.

4.1 Robustness of machine learning-based myoelectric control systems

The myoelectric control system’s ability to withstand disturbance from both inter-
nal and external sources within the environment, as measured by its resistance to
electromyography signals [56], is referred to as its robustness. This type of
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disturbance is typically caused by muscle fatigue [57], electrode displacement [58],
and changes in EMG patterns over time [59]. Over the past decade, there has been a
significant increase in studies employing machine learning-based myoelectric control
systems, which have shown promising results in preliminary or pilot testing in labo-
ratory settings. However, none of these systems have explored methods to enhance
their robustness. To bridge the gap between experimental research and commercial or
clinical applications, machine learning-based myoelectric control systems should
concentrate on creating a precise control scheme under well-controlled laboratory
conditions while also improving robustness in real-world scenarios.

The review of research articles that utilized machine learning-based myoelectric
control systems found that these systems face common issues, such as varying char-
acteristics of SEMG signals in different physiological conditions, noise/artifacts, mus-
cle fatigue that causes variance in sEMG signals, and electrode shift during or between
sessions. However, none of the studies focused mainly on addressing these issues.
Existing studies have investigated these issues in the context of myoelectric control of
prosthetics, teleoperate robotic arms, and pattern recognition of sEMG signals.
Potential approaches to improve the robustness of machine learning-based myoelec-
tric control systems include using more efficient features, reducing the impact of
EMBG electrode shift, and improving the data collection protocol or signal processing
method. However, these methods have not been studied in the included research
articles. Therefore, further investigations are needed to evaluate the performance of
machine learning-based myoelectric control systems with these robustness-improving
methods and their performance on the upper limb exoskeleton.

In future studies, it is suggested to investigate the performance of upper limb
exoskeletons with machine learning-based myoelectric control systems using different
time-domain and frequency-domain features. The selection of EMG features should
be expanded to account for larger time-domain and frequency-domain features, and
the performance of the human-exoskeleton system with the improved myoelectric
control system should be evaluated. Additionally, during laboratory research, the
causes of error, such as EMG electrode shift and muscle fatigue that could affect the
robustness of machine learning-based myoelectric control systems in clinical applica-
tions, should be emulated. Novel training protocols should also be investigated
because using the EMG signal collected within a short period to train the machine
learning-based myoelectric control system will affect its robustness. Therefore, future
studies of machine learning myoelectric control systems of upper limb exoskeletons
should focus on developing novel control schemes, investigating effective training
protocols, and evaluating them on the upper limb exoskeletons. In the research arti-
cles reviewed, there were several common issues that were reported. These issues
included differences in the characteristics of EMG signals across various physiological
conditions, the presence of noise and artifacts, muscle fatigue leading to variations in
EMG signals, and electrode movement during or between sessions. However, none of
the included research articles specifically addressed these issues by focusing on
improving the robustness of machine learning-based myoelectric control systems.

Furthermore, one of our studies explored the implementation of a variational
autoencoder to improve the robustness of the classification model in using the EMG
signal to recognize the motion performed by the human subject. An autoencoder is a
neural network model that is trained to compress and uncompress inputted data while
reducing the error between the input data and the reconstructed output data as much
as possible [60]. The restrictive architecture of the autoencoder creates a model that
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can act as a dimensionality reduction method to perform unsupervised feature learn-
ing. Implementing autoencoder networks or more advanced encoder-decoder net-
works can further reduce the complexity of input myoelectric signal data or
multimodal sensor data at the compressed latent layer while learning the hidden
characteristics that define the system. Autoencoder networks can effectively denoise
incoming EMG signal data [61], and the encoder-decoder model framework can be
reused using a transfer learning-based model approach [56]. Once the model is trained
offline using collected experimental data, the myoelectric control scheme can be
readily implemented with little calibration time for the end user. Autoencoder models
have already been implemented in research to improve the pattern recognition of
myoelectric control schemes in the presence of electrode shift [62], but more research
is needed to test the viability of using encoder-decoder networks in myoelectric
control schemes.

4.2 Safety requirements in machine learning based myoelectric control systems

The active and powered upper limb exoskeletons and exosuits require high levels
of safety to ensure that they do not pose any risks to human users for assistive or
rehabilitative purposes. Previous research has primarily focused on incorporating
safety measures in the mechanical design of exoskeletons by implementing mechani-
cal stops, rotation limits, and force limits to prevent any excessive range of motion or
force from being applied to the user [3]. However, these mechanisms may not always
guarantee the user’s safety when there are unknown parameter variances, hardware
failures, or actuator malfunctions [63]. Therefore, control strategies that can com-
pensate for various uncertainties and external load disturbances may significantly
enhance user safety when wearing the robotic exoskeleton during tasks and move-
ments. According to state-of-the-art research articles, one potential approach to
improve safety is to apply data fusion techniques to EMG signals, considering their
inherent variability arising from changes in arm posture, electrode repositing, fatigue,
etc. [64]. By fusing EMG data, potential errors in motion estimation can be mini-
mized. In [64], two data-fusing algorithms, Variance Weighted Average (VWA) and
Decentralized Kalman Filter, were presented as potential methods to improve safety
in robotic exoskeletons.

Additionally, other works also utilize the deep reinforcement learning-controlled
neuromusculoskeletal simulator (NMMS) to validate the machine learning-based
myoelectric control system. The neuromusculoskeletal simulation modulates a wide
range of control schemes and parameters to test the efficacy and performance of
different control methods while observing model outcomes, such as muscle force,
joint kinematics and power using EMG signals [65]. Compared to the conventional
control schemes of the NMMS which are broadly classified as forward-type or inverse-
type. The deep reinforcement learning (DRL) based NMMS controller learns the
neuromusculoskeletal system dynamics by interacting with its environment without
the experimental data collected from big samples with varying anthropometrics and
biomechanics characteristics. For example, [66] implemented a lower limb NMMS
with DRL-based locomotion controller to validate a reinforcement learning-based
myoelectric control system for a lower limb orthosis. In this work, a deep reinforce-
ment algorithm called Soft-Actor-Critic (SAC) was used to learn the dynamics of the
lower-limb NMMS and served as its locomotion controller; meanwhile, a myoelectric
control scheme was trained by imitation learning through interacting with the
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lower-limb NMMS. Compared to validating the novel myoelectric control scheme on
the human body, using the RL-based NMMS can guarantee safety while maximumly
emulating the feedback from real human. However, the abovementioned research
only deals with the lower-limb neuromusculoskeletal simulator, while the reinforce-
ment learning-based neuromusculoskeletal simulator for upper limb is still exten-
sively unexplored. To address this gap, one of our recent studies utilized the MyoSuite
— a Mujoco-based neuromusculoskeletal simulation kit [67] - to simulate the flexion/
extension of human’s elbow joint controlled by the deep deterministic policy gradient
algorithms (DDPG) - a variant of deep reinforcement learning algorithms [68]. In
that work, we compared the performance between two types of action spaces — the
PD-based internal model of the central neuron system, and the direct muscular acti-
vation output. The result indicated the PD-based internal model has better learning
performance than the direct muscular activation output. Additionally, we also simu-
lated the proportional myoelectric control [17] in the NMMS to validate its feasibility
in validating the myoelectric control system. However, the result of muscle activation
is different from the result in [17]. Therefore, further studies should focus on making
the NMMS become more human-like.

4.3 Implementation of reinforcement learning algorithms

Only 3 percent of the research articles from our survey utilized the reinforcement
learning algorithms for the machine learning-based myoelectric control system
(Figure 3). However, as a branch of machine learning, reinforcement learning has
some exclusive advantages if implemented in a control system. For example, rein-
forcement learning can inherently reflect how humans learn a skill in the real world,
which is actively exploring the unknown environment and finding the long-term
optimal solutions [69]. More importantly, the reinforcement learning algorithm
can learn the optimal solution without the predefined knowledge about the
dynamics of environment [70]. Due to these advantages, an increasing number of
biomechanical studies implemented reinforcement learning, such as using reinforce-
ment learning to control a lower-limb musculoskeletal model for obstacle avoidance
[71], to control a functional electrical stimulation to assist movement [72], and to
control an upper limb prothesis [73]. One literature implemented Probabilistic
Inference for Learning Control Algorithm (PILCO) - a reinforcement learning
algorithm to train a myoelectric control system — on an elbow exoskeleton and
achieved a satisfactory result [54]. However, the PILCO algorithm depends on the
dynamic model of the environment which increases the difficulty of computation
and restricts the usage of trained myoelectric controllers in a single task. Different
from [54], the reinforcement learning algorithm used in [72, 73] does not require
the dynamic model of the environment, which called model-free reinforcement
learning algorithms. The model-free reinforcement learning algorithms have the
advantage of less computational difficulty, and wider applicability. There are many
model-free reinforcement learning algorithms, for example, the Asynchronous
Advantage Actor-Critic (A3C) algorithm [74] which was used to estimate the elbow
joint torque from the surface EMG signal [75]. To explore the application of rein-
forcement learning algorithms in myoelectric control systems, further research is
needed to validate these reinforcement learning algorithms (e.g., deep deterministic
policy gradient (DDPG), proximal policy optimization (PPO), and asynchronous
advantage actor critic (A3C)) used in the field of myoelectric control systems for
upper limb wearable robots.
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5. Conclusion

This chapter shares a review of the recent implementation of machine learning
algorithms in the myoelectric control systems for upper limb exoskeletons and
exosuits. The types of machine learning algorithms used in the myoelectric control
systems include classification model, regression model and reinforcement learning
model. Also, this chapter provides information on the methods, performance, and
limitations of each myoelectric control modality. The machine learning algorithms in
the myoelectric control systems have shown promising outcomes, including improved
human-robot interactions, robot intelligence, and adaptiveness to the user, task and
environment compared to traditional myoelectric control systems that did not use
learning-based controls. Several challenges and limitations are identified which need
to be addressed in future studies related to machine learning -based myoelectric
control system for upper limb exoskeletons and exosuits, particularly in narrowing the
gap between laboratory studies and clinical applications.
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Chapter 7

The Use of Machine Vision in the
Diagnosis of Ripening Strawberries

Tamara Oleshko, Dmytro Kvashuk and Iryna Heiets

Abstract

The problem of image recognition using methods based on statistical solutions can
be divided into two classes: parametric and nonparametric. In the first case there is a
set of data on the selection of image criteria, in the second such criteria must be found.
Taking into account, the possibilities of obtaining initial data for the identification of
agricultural objects, the first option is considered in the article. Possibilities of
diagnostics of strawberry growth at a stage of its cultivation in hothouse conditions
are presented. Several image classifiers that can be used to solve such problems are
investigated. An experiment was performed, which has shown the accuracy of the
applied algorithms for diagnosis and recognition of berries, which allowed to set
thresholds for the detection of ripe berries. A number of berry recognition methods
were compared in order to study the accuracy of berry recognition and response to
berry growth.

Keywords: image recognition, strawberries, machine vision, ripening, cultivation

1. Introduction

Image processing is an effective tool in the process of studying crops, the care of
which largely depends on the observations that are made at all stages of the plant life
cycle. However, when part of the crop is in the process of ripening and part is already
ripe, especially in greenhouses, there is a need to control this process. Remontant
strawberries, which can yield continuously throughout the year, are among the types
of crops that need to be identified for ripening. Therefore, you can use machine vision
to control the cultivation of such a crop. The use of such systems in agricultural work
has a huge potential for accounting automation and harvesting control. Therefore, an
important aspect of such tasks is the development of algorithms for recognizing the
characteristics of plants and their classification, as well as the choice of existing
methods.

Research in this area shows that the most common methods of machine learning
for image classification include neural networks and other methods of machine learn-
ing [1-3]. However, due to the high demand for computing power, machine vision
systems require both energy and time consumption for image processing. Therefore,
depending on the tasks, the identification algorithm should be maximally adapted,
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because the criteria for selecting the quality of image recognition differ depending on
the applicability to different subject areas.

Thus, to solve the narrow problems of identifying the number of ripe berries,
approaches such as identifying an object by color, contour, and shape, which require
only matrix calculations, can give a quite acceptable result. Taking into account that,
obstacles such as brightness and image scale also play an important role, stationary
camcorder installation, and artificial lighting can alleviate these problems.

The main stages, in this case, can be considered as follows:

defining separate image contours which can be further investigated as a result of
special filters application;

* determining coordinates of the selected arrays on the established color;

* determining the area of selected objects;

setting the number of selected revolutions in order to ratio the appropriate
number after a certain period of time.

Increasing the number of selected objects will be an indicator of the beginning of
the harvest.

Thus, it is necessary:

* to set the number of strawberries and their area in the image for each individual
area of plantings;

* to identify a separate area where video recording will take place;
* enter the number of identified ripe berries and their area together with the area
identifier of individual plantations in the database in order to further verify their

growth.

* video recording to implement on the basis of a moving video camera (Figure 1).

Figure 1.
Movable platform for video vecording of plantings (created using Google SketchUp).
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As a result, it is possible to diagnose the right time for harvesting, which will
allow farmers to harvest ripe berries in time, without losses. Popular algorithms are
used for image analysis: SURF; ORB; FAST; SIFT. In order to store data for further
comparison, you can use a simple Sqlite database.

2. Literature analysis and problem statement

The image recognition algorithms in the field of agriculture have become very
popular, which have differences and certain classifications [4], a large part of which is
implemented using a number of methods of machine learning and neural networks.
However, the use of neural networks requires huge arrays of data for training, which
cannot always be obtained. In addition, the significant capacity for training and the time
spent on processing such arrays is quite significant. It is difficult to determine the logic
of the distribution of the weights rate. All this and many other requirements for big data
processing impose certain restrictions on the choice of computing tools, obtaining
training data, and the difficulty of understanding how the algorithm itself works.
However, depending on the image identification tasks, the algorithm for determining
the desired image can be simplified in some way. In particular, if you use color detectors
in combination with contour detectors, for example, which allow under certain condi-
tions to obtain image descriptors, you can identify the object with high accuracy.

There is a considerable amount of work devoted to the identification of objects in
agriculture by color and geometric shapes. Thus, the recognition is performed [5] on
the basis of statistical characteristics and signs of the set of obtained ranges of
descriptor values with the help of the minimum distance classifier. The results of
experiments on a database containing about 2635 fruits, made it possible to establish
15 different classes, which has confirmed the effectiveness of the proposed approach.

A similar study to that proposed in the article aims to analyze automated
harvesting methods based on fruit categorization. It in turn offers a new approach that
separates the fruit in the foreground from the background, which in addition to color
spectrum characteristics also takes into account the identification of texture images.
The classification model is built using reference vectors (SVM) and learns using
function descriptors taken from the training data set. The proposed approach allows
the use of small computing power and can run on single-board computers, such as
RaspberryPi [6].

Some works describe the possibility of identifying fruits and vegetables by such
criteria as the characteristics of the plant color [7], as well as the structure of their
leaves [8]. Thus, the combination of these two approaches gives certain results.
However, simple ways to identify images have a number of disadvantages, in partic-
ular noise generated by shadows or changes in light. Due to the use of a number of
filters, the use of neural networks in this case gives a more accurate result [9].
Therefore, such filters are carefully selected. For example, the Otsu method is often
used to reduce noise by low-pass filters [10].

Median filters are used to smooth inconspicuous spots [11]. Spectral analysis is
used to obtain a clear identification by color. For example, researchers at the
University of Oklahoma studied the use of hyper-spectral methods of image analysis
to assess the quality, safety, and classification of fruits and vegetables, which resulted
in determining the most effective approaches to estimating the color spectrum in the
image [12]. Typically, to highlight RGB color saturation, the image classification is
converted to HSV or YCbCr. To ensure image clarity, anti-aliasing filters are used,
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such as the Gaussian filter [13]. The step-by-step selection of individual image
contours can be represented using the OpenCV image recognition library, which
contains the possibilities of software implementation of the respective stages. Thus, to
identify strawberries, by means of this library, you can select separate pixels by color.
In other words, you can create a mask that characterizes only the berries of straw-
berries. Then you can reduce the noise by smoothing with the help of the Gaussian
filter [13].

To determine the area of a selected object, you can count its pixel IDs, which
characterize such a selection. To do this, you can use the threshold method of the
OpenCV library, which turns the image, where all the pixels that are darker (less)
than 127 are replaced by 0, and everything that is brighter (more) than 127 - by 255.

In this case, it is possible to set criteria for strawberry growth by comparing the
specific gravity of the selected color spectrum at different times. To do this, strict
conditions must be met. Photo fixation should be performed each time in the same
position of the photo recorder and in the same lighting.

In this case, it is possible to observe changes in the size of the strawberry and
changes in its color, which during ripening begins to correspond to the established
range of identification. In Figure 2 the corresponding range in the HSV format was
set within the following limits: lower threshold—(0,50,20)—-(5,255,255); upper
threshold—(175,50,20) —(180,255,255).

Taking into account that the photos were taken in different conditions if error and
noise in the images a3-d3 are minimal, this approach can be used to assess the growth

a b c d
1
2
3
4 63551
5 276077 279386 267907 296449
Figure 2.

The process of identifying strawberries by color.
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of strawberries. In addition, if one of the most complex image processing processes is
the Gaussian filter, the corresponding tasks can be solved using single-board com-
puters such as RaspberryPi [14].

The stages of identification presented in Figure 2 are highlighted in the following
sequence:

* obtaining the original raster image from the photo-capture (.jpg or other similar
format);

* color filtering;

* smoothing with a Gaussian filter and converting the selected area to black and
white;

* counting the pixels that characterize the selection of strawberries (white color);
* counting other pixels (black color).

The OpenCV library was used to solve them. In the Python programming lan-
guage, it looks like this:

import cv2

import os

im = cv2.imread('image.jpg’)

im = cv2.resize(im, (400, 300))

img_hsv = cv2.cvtColor(im, cv2. COLOR_BGR2HSV)

m1 = cv2.inRange(img_hsv, (0,50,20), (5,255,255))

m2 = cv2.inRange(img_hsv, (175,50,20), (180,255,255))

mask = cv2.bitwise_or(ml, m2 )

cr = cv2.bitwise_and (im, im, mask=mask)

ml = cv2.GaussianBlur (mask, (7,7), 3)

crl = cv2.GaussianBlur(cr, (3,3), 0)

print (len(crlfcr1==0]), 'black’)

print (len(crifcr1>0]), 'white')

cv2.imshow ("msk", m1)

cv2.imshow ("cr", crl)

cv2.waitKey()

Thus, the ability to assess the growth of strawberries using machine vision, with-
out using complex algorithms for deep learning and neural networks, puts forward the
admissibility of our hypothesis. Is it possible to create a strawberry harvest indicator
with a low-power computer and simple image operations? The main idea of this
hypothesis is, taking into account the studied approaches, to obtain a growth curve of
strawberries, based on a simple comparative method. Such a comparison can charac-
terize the dynamics of changes in the area of selected objects in the images, as relative
indicators of the specific weight of selected objects in the image. For example, for
images a3-d3, presented in Figure 2, this ratio will have the following characteristics
(Figure 3).

However, the difficulty lies in the video recording itself, as it must be carried out
under certain conditions of image periodicity and with the same angle and lighting,
which requires further adjustment (namely, data acquisition, storage, and subsequent
processing).
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Figure 3.
Percentage of color-coded objects in images a1-d1 Figure 2.

3. Ways to identify the growth of strawberries based on singular
point detectors

In order to timely diagnose the yield of strawberries, in addition to identifiers by
color, you should pay attention to other methods of pattern recognition. In the
framework of the task, detecting the increase in strawberries, you can consider detec-
tors of special points in the image, the number of which can also serve as an indicator
of growth. The most common are SIFT and SURF.

The use of the SIFT detector is more efficient but requires a significant amount of
computation. Its advantages are that it is possible to identify special points in the
image regardless of scale and offset, as well as changes in brightness. However, the
invariance of the last three transformations cannot be fully obtained. Basis for his
work is the construction of the Gaussian pyramid and the differences of the
Gaussians (Difference of Gaussian, DoG). Gaussian is an image that is blurred by a
Gaussian filter.

L(x,y,0) = L(x,y,0) *L(x,y), (1)

where:

L - the Gaussian value at a point with coordinates (x, y);

6 - blur radius;

G - Gaussian core;

I - the value of the original image,

* - convolution operation.

In this case, the Gaussian difference is the image obtained by subtracting each
pixel of one Gaussian source image from Gaussian with a different blur radius.

D(x,y,o) = (G(x, VA ko) — G(X, VA a)) wl(x,y) =

=L(x,v,ke) — L(x,y,0), @

To determine a singular point, together with the construction of the Gaussians
pyramid, a pyramid of Gaussians differences is constructed, consisting of the differ-
ences of adjacent images in the Gaussians pyramid. Accordingly, the number of
images in this pyramid will be N + 1.
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Figure 4.
Pyramid of Gaussians and their differences.

Figure 5.
Defining a singular point among the differences between Gaussians.

Figure 4 shows the Gaussians pyramid, which displays their differences, formed on
the basis of two neighboring Gaussians. The number of such differences is always one
less than the number of Gaussians, because when you move to the next octave, the size
of the images is halved. The point that is the local extremum of the Gaussian difference
is then determined. If the value of the Gaussians difference at a certain point is bigger or
less than all the values of the neighboring Gaussians differences, such a point is consid-
ered an extremum point. In Figure 5 this point is represented in shaded.

Such points are refined using an approximation of the Gaussian difference func-
tion using a second-order Taylor polynomial, which is taken at the point of a definite
extremum.
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Then, based on the neighborhood of the singular point, a descriptor is constructed,
which is presented in the form of a gradient matrix in accordance with the pixels that
are around the singular point.

Then a histogram of the descriptor is created, which is used for further correlation
of the image with others. Therefore, SIFT detectors need to increase the computa-
tional speed, because the image scaling process takes some time. For greater speed,
SUREF detectors are used which, in order to find singular points, use the Hesse matrix,
the determinant of which reaches the extremum at the points of maximum change of
the brightness gradient. Thus, if the original image is given by the intensity matrix I,
then the current pixel, which is analyzed for changes in color intensity, can be
denoted by X = (x, y) and the scale of the filter ¢. In this case, the Hesse matrix will
look like this:

- Lix(X,0) Ly(X,0)
H(x,0) = Ly(X,0) Ly(X,0))’ 3)

where: L, (x, 6), Ly (X, 6), Ly, (x, 0) - approximation convolution of the second
derivative of the Gaussian cores.

The determinant of the Hesse matrix reaches its extremum at the points of maxi-
mum change of the brightness gradient. In turn, the SURF method uses a filter with a
Gaussian core throughout the image, while finding singular points at which the max-
imum value of the determinant of the Hesse matrix is achieved. Thanks to this search,
both dark spots on a white background and vice versa stand out. Unlike SIFT, the
SURF method does not have a mechanism for refining points, but immediately forms
descriptors. Like SIFT, SURF is invariant to rotation and scale. Using the capabilities
of these detectors, you can use them to establish singular points on the structure of the
image of strawberries and with the help of their number observe the yield. This
statement is due to the fact that the shape of the strawberry has some common
features (Figure 6), the identification of which with these detectors can lead to a
positive result.

In order to do this, we will determine the training image, which will help to obtain
descriptors of singular points (Figure 6B). We will also compare the number of
singular points for a number of test images, which will establish which method to
identify ripening strawberries is more effective, identify color changes, or identify
changes in singular points. The following assumption is based on the fact that during
the strawberries growth, their structure will expand, which has singular points.

Comparing these two approaches, it should be noted that the use of the SIFT
detector will not allow to assess the ripening by color change, but only by size, so it has
some limitations.

Figure 6.
Common features in the structure of the shape of strawberries.
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According to the results of testing the training sample of descriptors of singular
points, which were obtained from the image (Figure 6b), a small number of matches
were identified on the original images using SIFT and SURF detectors (Figure 7). In
addition, as you can see in Figure 6, there is a fairly large error, which indicates the
inexpediency of using such detectors in the process of strawberries ripening
identification.

It is presented in Figure 7:

1. Original test images.
2.Visual characteristics of the definition of singular points on the training image.

3.Number of singular point descriptors that coincided with the training image
using the SIFT detector.

4.The total number of singular points using the SUFR detector.

5.Number of singular point descriptors that matched the training image using the
SUFR detector.

6.The total number of singular points using the SUFR detector (Figure 8).

1

2

3 37 45 47 60

4 761 520 624 1464

5 27 35 17 32

6 652 421 549 994
Figure 7.

Visualizations and comparison of the received singular points with the training (Figure 6b) and test images.
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Figure 8.
Comparison of the effectiveness of strawberry recognition methods using color filters and SIFT and SURF detectors
on samples of test images (Figure 7a1-d1), (%).

Figure 9.
Position of the infraved distance sensor (created using Google SketchUp).

4. Identification of strawberry ripening processes by color

Detection of changes in strawberry images can be implemented on the basis of a
mobile platform, which is controlled by a single-board computer RaspberryPi.
Infrared proximity sensors can be used to identify shooting locations, which can be
used to obtain a signal to stop a moving platform at the necessary location for photo
fixing of strawberries. Standard infrared distance sensors allow you to respond to
approximations at a distance of up to 30 cm, which is enough to identify the stopping
point of the platform. The placement of such sensors can be carried out according to
the scheme in Figure 9.

After that, at the set time, the platform will start moving again for the next video
recording.

The implementation of the software algorithm can be performed on the basis of
Python interpreter and libraries: OpenCV, image processing, sqlite3, database, RPi,
RaspberryPi COM port, which will be used to provide a control signal to drive the
transport platform. Thus, the algorithm will be as follows (Figure 9).
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Figure 10.
Algorithm of mobile platform operation for photo-fixation of the strawberry ripening process.

By implementing this algorithm in Python [15] and using it for a test sample of
strawberry images, you can get the following result (Figure 10). Thus, you can see
how strawberries grow in Figure 10.

The sequence of sampling images in the order of ripening (a1, b1, ¢1,d1, a3, b3, ¢3,d3)
and the number of obtained points, respectively (a2, b2, ¢2,d2, a4,b4,c4,d4). The
growth dynamics of strawberries can be obtained in the form of the ratio of identified
points by color to unidentified ones (Figure 12). However, a small percentage of
errors can be observed in Figures 11 and 12, which are caused by the concentration of
light on strawberries.
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Figure 11.

Identification of strawberries by color during ripening.
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Figure 12.

The dynamics of ripening strawberries is obtained as a vesult of the ratio of selected points by color to the total
quantity for a conditional period of time.

5. Conclusion

The most important criterion for strawberry growth is its color and size. Recogni-
tion of changes in these criteria in the images can be obtained using conventional color

filters, with the specified parameters of the color range. This approach is easy to
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implement in practice because it does not use complex computational algorithms,
which is quite important for use in agriculture.

To identify the ripening of strawberries, it is enough to use an inexpensive single-
chamber computer and a mobile platform with a photo recorder, which at a given
time can capture changes in the image of strawberries.

Taking into account the slight error due to the formation of the light concentration
on strawberries, the experiment resulted in growth dynamics, which characterizes
such an approach on the positive side. However, a number of conditions must be met
for its application. In particular, detailed images require the use of means of moving
the photo-fixator and the invariability of the angle of photo-fixation. This method, in
contrast to the detection of singular points in the image using SIFT and SUFR detec-
tors, has shown higher efficiency, because the most important criterion for ripening
strawberries is the change of its color.
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