Signals and Communication Technology

Martin Tomlinson
Cen JungTjhai

Marcel A. Ambroze .
Mohammed Ahmed QA
Mubarak Jibril |

—

Error-Corre‘cmt‘i'on‘ |
Coding and
Decoding

Bounds, Codes, Decoders, Analysis and
Applications

@ Springer Open

Signals and Communication Technology

More information about this series at http://www.springer.com/series/4748

Martin Tomlinson - Cen Jung Tjhai
Marcel A. Ambroze - Mohammed Ahmed
Mubarak Jibril

Error-Correction Coding
and Decoding

Bounds, Codes, Decoders, Analysis
and Applications

@ Springer Open

Martin Tomlinson Mohammed Ahmed

School of Computing, Electronics School of Computing, Electronics

and Mathematics and Mathematics
Plymouth University Plymouth University
Plymouth, Devon Plymouth, Devon
UK UK
Cen Jung Tjhai Mubarak Jibril
PQ Solutions Limited Satellite Applications and Development
London Nigeria Communications Satellite Limited
UK Abuja

Nigeria

Marcel A. Ambroze

School of Computing, Electronics
and Mathematics

Plymouth University

Plymouth, Devon

UK

ISSN 1860-4862 ISSN 1860-4870 (electronic)
Signals and Communication Technology
ISBN 978-3-319-51102-3 ISBN 978-3-319-51103-0 (eBook)

DOI 10.1007/978-3-319-51103-0
Library of Congress Control Number: 2016963415

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

This book is dedicated to our families
and loved ones.

Preface

The research work described in this book is some of the works carried out by the
authors whilst working in the Coding Group at the University of Plymouth, U.K.
The Coding Group consists of enthusiastic research students, research and teaching
staff members providing a very stimulating environment to work. Also being driven
by academic research, a significant number of studies were driven by the com-
munications industry with their many varying applications and requirements of
error-correcting codes. This partly explains the variety of topics covered in this

book.

Plymouth, UK
London, UK

Plymouth, UK
Plymouth, UK
Abuja, Nigeria

Martin Tomlinson
Cen Jung Tjhai
Marcel A. Ambroze
Mohammed Ahmed
Mubarak Jibril

vii

Acknowledgements

We would like to thank all of our past and present research students, our friends and
fellow researchers around the world who have helped our understanding of this
fascinating and sometimes tricky subject. Special thanks go to our research col-
laborators Des Taylor, Philippa Martin, Shu Lin, Marco Ferrari, Patrick Perry, Mark
Fossorier, Martin Bossert, Eirik Rosnes, Sergey Bezzateev, Markus Grassl,
Francisco Cercas and Carlos Salema. Thanks also go to Dan Costello, Bob
McEliece, Dick Blahut, David Forney, Ralf Johannason, Bahram Honary, Jim
Massey and Paddy Farrell for interesting and informed discussions. We would also
like to thank Licha Mued for spending long hours editing the manuscript.

ix

Contents

Part I Theoretical Performance of Error-Correcting Codes

1 Bounds on Error-Correction Coding Performance
1.1 Gallager’s Coding Theorem.
1.1.1 Linear Codes with a Binomial Weight Distribution . . .

1.1.2 Covering Radius of Codes

1.1.3 Usefulness of Bounds.

1.2 Bounds on the Construction of Error-Correcting Codes.
1.2.1 UpperBounds...............

122 LowerBounds

1.2.3 Lower Bounds from Code Tables.

1.3 Summary
References

2 Soft and Hard Decision Decoding Performance
2.1 Introduction
2.2 Hard Decision Performance
2.2.1 Complete and Bounded Distance Decoding

2.2.2 The Performance of Codes on the Binary Symmetric
Channel
2.3 Soft Decision Performance.

2.3.1 Performance Assuming a Binomial Weight

Distribution.
2.3.2 Performance of Self-dual Codes
24 Summary

References

3 Soft Decision and Quantised Soft Decision Decoding.
3.1 Imtroduction
3.2 Soft Decision Bounds

13
13
13
15
19
21
21
22

25
25
26
26

28
30

xi

xii

33 Examples.
3.4 A Hard Decision Dorsch Decoder and BCH Codes.
3.5 Summary
References

Part I Code Construction

4

Cyclotomic Cosets, the Mattson—Solomon Polynomial,

Idempotents and Cyclic Codes.
4.1 Introduction...............,
4.2 Cyclotomic COSEtS oottt e
4.3 The Mattson—Solomon Polynomial
4.4 Binary Cyclic Codes Derived from Idempotents

4.4.1 Non-Primitive Cyclic Codes Derived from

Idempotents
4.5 Binary Cyclic Codes of Odd Lengths from 129 to 189
4.6 SUMMATIYt

References

Good Binary Linear Codes
5.1 Introduction

5.2 Algorithms to Compute the Minimum Hamming Distance

of Binary Linear Codes

5.2.1 The First Approach to Minimum Distance

Evaluation. L.
5.2.2 Brouwer’s Algorithm for Linear Codes

5.2.3 Zimmermann’s Algorithm for Linear Codes

and Some Improvements.

5.2.4 Chen’s Algorithm for Cyclic Codes

5.2.5 Codeword Enumeration Algorithm..............

5.3 Binary Cyclic Codes of Lengths 129 <n < 189.........

5.4 Some New Binary Cyclic Codes Having Large Minimum

Distance.
5.5 Constructing New Codes from Existing Ones

5.5.1 New Binary Codes from Cyclic Codes

of Length 151.......

5.5.2 New Binary Codes from Cyclic Codes

of Length > 199
5.6 Concluding Observations on Producing New Binary Codes. . . .
57 Summary
AppendiX
References

Contents

.. 33
Y
.. 57

.. 61
.. 6l
.. 61
.. 69
.. 13

.. 106

Contents

6 Lagrange Codes
6.1 Introduction...........
6.2 Lagrange Interpolation.
6.3 Lagrange Error-Correcting Codes.
6.4 Error-Correcting Codes Derived from the Lagrange

Coefficients
6.5 GoppaCodes. i
6.6 BCH Codes as GoppaCodes.
6.7 Extended BCH Codes as Goppa Codes
6.8 Binary Codes from MDS Codes
6.9 Summary
References

7 Reed-Solomon Codes and Binary Transmission
7.1 Introduction
7.2 Reed—Solomon Codes Used with Binary Transmission-Hard

Decisionso
7.3 Reed-Solomon Codes and Binary Transmission Using Soft

DeciSionSot
T4 SUMMATYot
References

8 Algebraic Geometry Codes
8.1 Introduction...........
8.2 Motivation for Studying AG Codes.

8.2.1 Bounds Relevant to Algebraic Geometry Codes.
83 Curvesand Planes,
8.3.1 Important Theorems and Concepts
8.3.2 Construction of AGCodes
8.4 Generalised AG Codes.co i
8.4.1 Concept of Places of Higher Degree.
8.4.2 Generalised Construction
85 Summary
References

9 Algebraic Quasi Cyclic Codes
9.1 Introduction i
9.2 Background and Notation

9.2.1 Description of Double-Circulant Codes.
9.3 Good Double-Circulant Codes
9.3.1 Circulants Based Upon Prime Numbers Congruent
toE3Modulo 8.
9.3.2 Circulants Based Upon Prime Numbers Congruent
to £1 Modulo 8: Cyclic Codes.

9.4 Code ConstruCtionov vt

Xiv

10

11

Contents
9.4.1 Double-Circulant Codes from Extended Quadratic
Residue Codes 218
9.4.2 Pure Double-Circulant Codes for Primes £3
Modulo 8 220
9.4.3 Quadratic Double-Circulant Codes 222
9.5 Evaluation of the Number of Codewords of Given Weight
and the Minimum Distance: A More Efficient Approach. 227
9.6 Weight Distributions 230
9.6.1 The Number of Codewords of a Given Weight
in Quadratic Double-Circulant Codes 231
9.6.2 The Number of Codewords of a Given Weight
in Extended Quadratic Residue Codes 240
9.7 Minimum Distance Evaluation: A Probabilistic Approach. 244
9.8 Conclusions 247
9.9 Summary e 249
AppendiX 249
References 287
Historical Convolutional Codes as Tail-Biting Block Codes 289
10.1 Introductiono iiiiii.. 289
10.2 Convolutional Codes and Circulant Block Codes. 291
103 Summaryt 297
References 298
Analogue BCH Codes and Direct Reduced Echelon Parity
Check Matrix Construction 299
11.1 Introduction........... 299
11.2 Analogue BCH Codes and DFT Codes 299
11.3 Error-Correction of Bandlimited Data 304
11.4 Analogue BCH Codes Based on Arbitrary Field Elements 304
11.5 Examples. 306
11.5.1 Example of Simple (5,3,3) Analogue Code. 306
11.5.2 Example of Erasures Correction Using (15,10,4)
Binary BCHcode. 307

11.5.3 Example of (128, 112, 17) Analogue BCH Code
and Error-Correction of Audio Data (Music)

Subjected to Impulsive Noise 309
11.6 Conclusions and Future Research. 312
117 Summary 313

References 314

Contents

12 LDPC Codes. i

12.1

12.2

12.3

12.4

12.5

Background and Notation
12.1.1 Random Constructions
12.1.2 Algebraic Constructions
12.1.3 Non-binary Constructions.
Algebraic LDPC Codes,
12.2.1 Mattson—Solomon Domain Construction of Binary

Cyclic LDPC Codes
12.2.2 Non-Binary Extension of the Cyclotomic

Coset-Based LDPC Codes
Irregular LDPC Codes from Progressive Edge-Growth
Construction.
Quasi-cyclic LDPC Codes and Protographs.
12.4.1 Quasi-cyclic LDPC Codes
12.4.2 Construction of Quasi-cyclic Codes Using

aProtograph.
SUMMArY . ..o

References

Part III Analysis and Decoders

13 An Exhaustive Tree Search for Stopping Sets
of LDPC Codes.

14

13.1 Introduction and Preliminaries
13.2 An Efficient Tree Search Algorithm......................
13.2.1 An Efficient Lower Bound
13.2.2 Best Next Coordinate Position Selection.
133 Results.
13.3.1 WiMax LDPC Codes
134 ConClusions
135 Summary
References

Erasures and Error-Correcting Codes

14.1
14.2

14.3
14.4

14.5

Introduction
Derivation of the PDF of Correctable Erasures
14.2.1 Background and Definitions
14.2.2 The Correspondence Between Uncorrectable

Erasure Patterns and Low-Weight Codewords
Probability of Decoder Error
Codes Whose Weight Enumerator Coefficients Are
Approximately Binomial,
MDS Shortfall for Examples of Algebraic, LDPC
and Turbo Codes i

XV

377

XVi Contents

14.5.1 Turbo Codes with Dithered Relative Prime (DRP)
Interleavers.
14.5.2 Effects of Weight Spectral Components
14.6 Determination of the d,,; of Any Linear Code
147 Summaryo
References

15 The Modified Dorsch Decoder.
15.1 Introduction
15.2 The Incremental Correlation Dorsch Decoder
15.3 Number of Codewords that Need to Be Evaluated
to Achieve Maximum Likelihood Decoding
15.4 Results for Some Powerful Binary Codes
15.4.1 The (136, 68, 24) Double-Circulant Code.
15.4.2 The (255, 175, 17) Euclidean Geometry (EG)

15.4.3 The (513, 467, 12) Extended Binary Goppa Code
15.4.4 The (1023,983,9)BCH Code...................
15.5 Extension to Non-binary Codes
15.5.1 Results for the (63, 36, 13) GF(4) BCH Code.
156 ConClusionst
157 Summary
References

16 A Concatenated Error-Correction System Using
the |u|u+v| Code Construction
16.1 Introduction...............t
16.2 Description of the System
16.3 Concatenated Coding and Modulation Formats
16,4 Summary
References

Part IV Applications

17 Combined Error Detection and Error-Correction
17.1 Analysis of Undetected Error Probability.

17.2 Incremental-Redundancy Coding System.
17.2.1 Description of the System.

173 Summaryo
References

18 Password Correction and Confidential Information Access

18.1 Introduction and Background.
18.2 Details of the Password System.

Contents xvii

19

20

183 Summary 463
References 463
Variations on the McEliece Public Key Cryptoystem 465
19.1 Introduction and Background. 465
19.1.1 Outline of Different Variations of the Encryption
System 465
19.2 Details of the Encryption System. 468
19.3 Reducing the Public Key Size 487
19.4 Reducing the Cryptogram Length Without Loss of Security ... 498
19.5 Security of the Cryptosystem. 502
19.5.1 Probability of a k x k Random Matrix Being
FullRank 503
19.5.2 Practical Attack Algorithms 505
19.6 Applications. 506
197 Summary 508
References 509
Error-Correcting Codes and Dirty Paper Coding 511
20.1 Introduction and Background. 511
20.2 Description of the System 511
203 SUMMATLYttt 519
References 519

Acronyms

AG
ANSI
ARQ
AWGN
BCH
BCJR
BDD
BEC
BER
BP
BSC
CRC
dB
DFT
DRP
DVB
EG
FEC
FER
FSD
GF
HARQ
IR

IRA
LDPC
MDS
ML
MRRW
MS

NP

Algebraic Geometry

American National Standards Institute
Automatic Repeat Request
Additive White Gaussian Noise
Bose—Chaudhuri-Hocquenghem
Bahl-Cocke-Jelinek—Raviv
Bounded Distance Decoding
Binary Erasure Channel

Bit Error Rate

Belief Propagation

Binary Symmetric Channel

Cyclic Redundancy Check
Decibel

Discrete Fourier Transform
Dithered Relative Prime

Digital Video Broadcasting
Euclidean Geometry

Forward Error Correction

Frame Error Rate

Formally Self-Dual

Galois Field

Hybrid Automatic Repeat Request
Incremental Redundancy

Irregular Repeat Accumulate
Low-Density Parity-Check Codes
Maximum Distance Separable
Maximum Likelihood
McEliece—-Rodemich—Rumsey—Welch
Mattson—Solomon
Nondeterministic Polynomial

XiX

XX

PDF
PEG
PIN
QAM
QR
RS
SDD
SNR
WD

Probability Density Function
Progressive Edge Growth
Personal Identification Number
Quadrature Amplitude Modulation
Quadratic Residue

Reed-Solomon

Soft-Decision Decoding
Signal-to-Noise Ratio

Weight Distribution

Acronyms

Part 1
Theoretical Performance
of Error-Correcting Codes

This part of the book deals with the theoretical performance of error-correcting codes.
Upper and lower bounds are given for the achievable performance of error-correcting
codes for the additive white Gaussian noise (AWGN) channel. Also given are bounds
on constructions of error-correcting codes in terms of normalised minimum distance
and code rate. Differences between ideal soft decision decoding and hard decision
decoding are also explored. The results from the numerical evaluation of several
different code examples are compared to the theoretical bounds with some interesting
conclusions.

Chapter 1
Bounds on Error-Correction Coding
Performance

1.1 Gallager’s Coding Theorem

The sphere packing bound by Shannon [18] provides a lower bound to the frame
error rate (FER) achievable by an (n, k, d) code but is not directly applicable to
binary codes. Gallager [4] presented his coding theorem for the average FER for
the ensemble of all random binary (n, k, d) codes. There are 2" possible binary
combinations for each codeword which in terms of the n-dimensional signal space
hypercube corresponds to one vertex taken from 2" possible vertices. There are
2k codewords, and therefore 2% different possible random codes. The receiver is
considered to be composed of 2k matched filters, one for each codeword and a
decoder error occurs if any of the matched filter receivers has a larger output than
the matched filter receiver corresponding to the transmitted codeword. Consider this
matched filter receiver and another different matched filter receiver, and assume that
the two codewords differ in d bit positions. The Hamming distance between the two
codewords is d. The energy per transmitted bit is £, = %E », Where Ej, is the energy
per information bit. The noise variance per matched filtered received bit, o= %
where N is the single sided noise spectral density. In the absence of noise, the output
of the matched filter receiver for the transmitted codeword is n+/E; and the output
of the other codeword matched filter receiver is (n — 2d)+/E;. The noise voltage at
the output of the matched filter receiver for the transmitted codeword is denoted as
n. — ny, and the noise voltage at the output of the other matched filter receiver will
be n. + n;. The common noise voltage n, arises from correlation of the bits common
to both codewords with the received noise and the noise voltages —n; and n; arise,
respectively, from correlation of the other d bits with the received noise. A decoder
error occurs if

(n—2d)\/E;+n.+n; >nyE; +n. —n; (1.1)
that is, a decoder error occurs when 2n| > 2d/E;.
© The Author(s) 2017 3
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_1

4 1 Bounds on Error-Correction Coding Performance

The average noise power associated with n; is do? = d% and as the noise is
Gaussian distributed, the probability of decoder error, p,, is given by

el’No dx 1.2
Pa = —ndNo (1.2)

This may be expressed in terms of the complementary error function (erfc)

erfc(y) = 2—/ e dx (1.3)

Verte([a* Bt (1.4)
= —€ric - .
Pd 2 n No

Each of the other 2¥ — 2 codewords may also cause a decoder error but the weight
distribution of the code %; is usually unknown. However by averaging over all pos-
sible random codes, knowledge of the weight distribution of a particular code is not
required. The probability of two codewords of a randomly chosen code %;, differing
in d bit positions, p(d|6;) is given by the binomial distribution

(2)

and

(1.5)

where (“) e b),b, A given linear code %; cannot have codewords of arbitrary
weight, because the sum of a subset of codewords is also a codeword. However, for
non linear codes, p; may be averaged over all of the codes without this constraint.
Thus, we have

2”2k n 2”2
(%) k Ep
pe =2 pdEHp@) < oo » prerte| \[d o (1.6)

i=1 d=0 i=1

Rearranging the order of summation

i k E
b
P < 2,1% Z:‘dZ; 2n+lerfc(/d;ﬁo) (1.7)
| —— k Ej,
pc fe| Jd=—"). 1.8
pc < n+l ~ (d)er C(n NO) (1.8)

and

1.1 Gallager’s Coding Theorem 5

Remembering that any of the 2F — 1 matched filters may cause a decoder error, the
overall probability of decoder error averaged over all possible binary codes Poverall, 1S

Poveri = 1 — (1 = p0)* ™' < 2¢pc (1.9)

28 & (n | k Ep
Poverall < W ; (d)erfc(d;ﬁo) (1.10)

An analytic solution may be obtained by observing that %erfc(y) is upper bounded

and

by e and therefore,

2R () Lk
Poverall < 2_’12((1)3 4 (1.11)

d=0

and as observed in [21],

_kEpNT = (n _gk L
(1+e nNo) => () (1.12)
d=0
and

1 _kEp\T

m<—(1+e nNo) (1.13)
211

2k _kEp\"

Poverall < E (1 +e NO) (114)

Traditionally, a cut-off rate R is defined after observing that

n

k Ep
2k AN l+e "™
2—n(1+e M) — ok +CT (1.15)
with
2
2R — (1.16)

_kE
I+e "%

Bounds on Error-Correction Coding Performance

10° . .
\- B Gallager bound (128,64) +
AV Gallager bound (256,128)
1 A Gallager bound (512,256)
10 AW Gallager bound (128,64), approx g] g
Gallager bound (256,128), approx L]
Gallager bound (512,256), approx o
1072 ...
LY
103 L
LU SN
A
-4
e 1° R
= &i\ \\ Y
10° T
\ \
6 o \\
’ [N
-7 |
10 \\ "&\ 8
8 A
10 i §
b\
10° I m
0 1 2 3 4 5 6
Eb/No [dB]

Fig. 1.1 Approximate and exact Gallager bounds for (128, 26%), (256, 2128) and (512, 225°) non-
linear binary codes

then
Poverall < 2k2—nR0 = Zk_nRO = z—n(RU—f) (117)

This result may be interpreted as providing the number of information bits of the
code is less than the length of the code times the cut-off rate, then the probability
of decoder error will approach zero as the length of the code approaches infinity.
Alternatively, provided the rate of the code, S, is less than the cut-off rate, R, then the
probability of decoder error will approach zero as the length of the code approaches
infinity. The cut-off rate Ry, particularly in the period from the late 1950s to the 1970s
was used as a practical measure of the code rate of an achievable error-correction
system [11, 20-22]. However, plotting the exact expression for probability of decoder
error, Eq. (1.10), in comparison to the cut-off rate approximation Eq. (1.17), shows a
significant difference in performance, as shown in Fig. 1.1. The codes shown are the
(128, 2%%), (256, 2'%%) and (512, 22°%) code ensembles of nonlinear, random binary
codes. It is recommended that the exact expression, Eq. (1.10) be evaluated unless
the code in question is a long code. As a consequence, in the following sections we
shall only use the exact Gallager bound.
Shown in Fig. 1.2 is the sphere packing lower bound, offset by the loss attributable
to binary transmission and the Gallager upper bound for the (128, 2%%), (256, 2!2%)
and (512, 2%3%) nonlinear binary codes. For each code, the exact Gallager upper
bound given by (1.10), is shown. One reason why Gallager’s bound is some way

1.1 Gallager’s Coding Theorem

10° x : -
Gallager bound (128,64) +
binary sphere packing bound for (128,64) x
4 Gallager bound (256,128) %
10 binary sphere packing bound for (256,128) 8
Gallager bound (512,256) =
) . binary sphere packing bound for (612,256) o
’ i\
3 1.\
’ i\
4 hY [N
g R
L
10 % b\ X
\
6 Voi\
10] ¥ Y X
\& \\ \\ N
-7
10 X S
\\ *\ \\
-8 A
10 3 feey A
N X
10°)Y \
0 1 2 3 4 5 6
Eb/No [dB]

Fig. 1.2 Sphere packing and Gallager bounds for (128, 26%), (256, 2'28) and (512, 225¢) nonlinear
binary codes

from the sphere packing lower bound as shown in Fig. 1.2 is that the bound is based
on the union bound and counts all error events as if these are independent. Except for
orthogonal codes, this produces increasing inaccuracy as the 15—2 is reduced. Equiva-
lently expressed, double counting is taking place since some codewords include the
support of other codewords. It is shown in the next section that for linear codes the

Gallager bound may be improved by considering the erasure correcting capability
of codes, viz. no (n, k) code can correct more than n — k erasures.

1.1.1 Linear Codes with a Binomial Weight Distribution

The weight enumerator polynomial of a code is defined as A(z) which is given by

ARy =D A (1.18)
i=0

For many good and exceptional, linear, binary codes including algebraic and quasi-

cyclic codes, the weight distributions of the codes closely approximates to a binomial
distribution where,

8 1 Bounds on Error-Correction Coding Performance

- n! .
A(z) = ! 1.1
() T EO T (1.19)

with coefficients A; given by

1 n! 1 (n
2n=k (n — i)l 2n—k (z) ()

Tables of the best-known linear codes have been published from time to time [3, 10,
13, 16, 19] and a regularly updated database is maintained by Markus Grassl [5].
Remembering that for a linear code, the difference between any two codewords is
also a codeword, and hence the distribution of the Hamming distances between a
codeword and all other codewords is the same as the weight distribution of the code.
Accordingly, the overall probability of decoder error, for the same system as before
using a bank of 2¢ matched filters with each filter matched to a codeword is upper

bounded by
1 « | kE
Poverall < 5 ;Aderfc(d;Fz) (1.21)

For codes having a binomial weight distribution

I 1 (n k E
Poverall < E Z m(d)erfc(d;ﬁi) (1.22)

d=0

2k - n k Eb
Poverall < W g (d)erfc (‘ d;ﬁo) . (1.23)

It will be noticed that this equation is identical to Eq. (1.10). This leads to the some-
what surprising conclusion that the decoder error probability performance of some
of the best-known, linear, binary codes is the same as the average performance of the
ensemble of all randomly chosen, binary nonlinear codes having the same values for
n and k. Moreover, some of the nonlinear codes must have better performance than
their average, and hence some nonlinear codes must be better than the best-known
linear codes.

A tighter upper bound than the Gallager bound may be obtained by considering
the erasure correcting capability of the code. It is shown in Chap. 14 that for the
erasure channel, given a probability of erasure, p, the probability of decoder error,
Peoge(p), is bounded by

which becomes

http://dx.doi.org/10.1007/978-3-319-51103-0_14

1.1 Gallager’s Coding Theorem 9

\ — DL —s)! _ < _
Peode(p) < Z > A ﬁp Sa=pI4 DT pra—p.
s=dmin j=dmin s=n—k+1

(1.24)

In Eq. (1.24), the first term depends upon the weight distribution of the code while
the second term is independent of the code. The basic principle in the above equation
is that an erasure decoder error is caused if an erasure pattern includes the support
of a codeword. Since no erasure pattern can be corrected if it contains more than
n — k errors, only codewords with weight less than or equal to n — k are involved.
Consequently, a much tighter bound is obtained than a bound based on the union
bound as there is less likelihood of double counting error events.

Considering the maximum likelihood decoder consisting of a bank of correlators,
a decoder error occurs if one correlator has a higher output than the correlator corre-
sponding to the correct codeword where the two codewords differ in s bit positions.
To the decoder, it makes no difference if the decoder error event is due to erasures,
from the erasure channel, or Gaussian noise from the AWGN channel; the outcome is
the same. For the erasure channel, the probability of this error event due to erasures,

Perasure (p) is

Perasure(p) = PS (1.25)

E
The probability of this error event due to noise, Pyoise (Fb) is
0

E, 1 k E,
Proise | — | = —erfc §—— (1.26)
N() 2 n N()

Equating Eqgs. (1.25) to (1.26), for these probabilities gives a relationship between
the erasure probability, p and E” and the Hamming distance, s.

s = Lo k Ly (1.27)
© = —e€riIc - .
p 2 Sl’l N()

For many codes, the erasure decoding performance is determined by a narrow range
of Hamming distances and the variation m casa function of s is insignificant. This

is illustrated in Fig. 1.3 which shows the Varlatlon in % as a function of s and p.
Itis well known that the distance distribution for many linear, binary codes includ-
ing BCH codes, Goppa codes, self-dual codes [7, 8, 10, 14] approximates to a bino-

mial distribution. Accordingly,

n!

AR (1.28)

10 1 Bounds on Error-Correction Coding Performance

Es/No for erase‘ prob=0.4 +
Es/No for erase prob=0.35
Es/No for erase prob=0.3 *

EJ/N, dB

0 20 40 60 80 100
Hamming distance s

Fig. 1.3 % as a function of Hamming distance s and erasure probability p

Substituting this into Eq. (1.24) produces

n—k n
25 —1(n
Peode(p) < T (s)p‘v(l =P+ D pa-prY (129
s=1 s=n—k+1

With the assumption of a binomial weight distribution, an upper bound may be
determined for the erasure performance of any (n, k) code, and in turn, equating
Eq. (1.25) with Eq. (1.26) produces an upper bound for the AWGN channel. For
example, Fig. 1.4 shows an upper bound of the erasure decoding performance of a
(128, 64) code with a binomial weight distribution.

Using Eq. (1.27), the decoding performance may be expressed in terms of £z N
and Fig. 1.5 shows the upper bound of the decoding performance of the same code
against Gaussian noise, as a function of E”

The comparison of the sphere packlng bound and the Gallager bounds is shown
in Fig. 1.6. Also shown in Fig. 1.6 is the performance of the BCH (128, 64, 22) code
evaluated using the modified Dorsch decoder. It can be seen from Fig. 1.6 that the
erasure-based upper bound is very close to the sphere packing lower bound and
tighter than the Gallager bound.

Figure 1.7 gives the bounds for the (512, 256) and (256, 128) codes. It will be
noticed that the gap between the sphere packing bound and the erasure-based upper
bound increases with code length, but is tighter than the Gallager bound.

1.1 Gallager’s Coding Theorem 11

10°

Binomial (128,64) +

107

102

10° X

10 b\

FER

10° \

10° \
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

erasure probability

Fig. 1.4 Erasure decoding performance of a (128, 64) code with a binomial weight distribution

10°

/

inomial (128,64) code +

107"

102

10° A

FER
3

0 1 2 3 4 5 6
Eb/No [dB]

Fig.1.5 Decoding performance of a (128, 64) code with a binomial weight distribution for Gaussian
noise

12 1 Bounds on Error-Correction Coding Performance

10°
Fo Erasure bound (128,64,22) +
Gallager bound (128,64) x
BCH (128,64,22) ord soft
10" et binary sphere packing bound for (128,64) @ o
102 Y
10° SR
o
w -4 \n
- 10)

105 .

_\
o
3

P 7

\.
107 \n}

0 1 2 3 4 5 6
Eb/No [dB]

Fig. 1.6 Comparison of sphere packing and Gallager bounds to the upper bound based on erasure
performance for the (128, 64) code with a binomial weight distribution

10° - : : :
LN Erasure bound (256,128,38) +
Gallager bound (256,128) x
1 NS binary sphere packing bound for (256,128) %]
10 A W Erasure bound (512,256,62) @
\ Gallager bound (512,256)
2 N binary sphere packing bound for (512,256) o
10 N \ \
\ \ \
100 NG
\ \ \
\ Neooid
104 NN
x \ N\ \
i NN
10" DA% A VI
\ [VA
AN
10 U W VA W
\ \ \\\ \
A
7
10 iV G o
\\, }S' \\ \\
8
10 A
LS S\
10° G W
0 1 2 3 4 5 6
Eb/No [dB]

Fig. 1.7 Comparison of sphere packing and Gallager bounds to the upper bound based on erasure
performance for (256, 128) and (512, 256) codes with a binomial weight distribution

1.1 Gallager’s Coding Theorem 13

1.1.2 Covering Radius of Codes

The covering radius of a code, ¢, if it is known, together with the weight spectrum of
the low-weight codewords may be used to tighten the Union bound upper bound on
decoder performance given by Eq. (1.23). The covering radius of a code is defined as
the minimum radius which when placed around each codeword includes all possible
q" vectors. Equivalently, the covering radius is the maximum number of hard decision
errors that are correctable by the code. For a perfect code, such as the Hamming codes,
the covering radius is equal to % For the [2" — 1,2™ — m — 1, 3] Hamming
codes, the covering radius is equal to 1 and for the (23, 12, 7) Golay code the covering
radius is equal to 3. As a corollary, for any received vector in Euclidean space, there
is always a codeword within a Euclidean distance of ¢, 4+ 0.5. It follows that the
summation in Eq. (1.23) may be limited to codewords of weight 2¢, + 1 to produce

2k 2¢,+1 n kEb
Poverall < W ; (d)erfc d;ﬁo . (1.30)

1.1.3 Usefulness of Bounds

The usefulness of bounds may be realised from Fig. 1.8 which shows the performance
of optimised codes and decoders all (512, 256) codes for a turbo code, LDPC code
and a concatenated code.

1.2 Bounds on the Construction of Error-Correcting Codes

A code (linear or nonlinear), %, defined in a finite field of size ¢ can be described with
its length n, number of codewords' M and minimum distance d. We use (1, M, d)4 to
denote these four important parameters of a code. Given any number of codes defined
in a field of size g with the same length n and distance d, the code with the maximum
number of codewords M is the most desirable. Equivalently, one may choose to fix
n, M and g and maximise d or fix M, d and g and maximise n. As a result, it is of
interest in coding theory to determine the maximum number of codewords possible
of any code defined in a field of size g, with minimum distance d and length n. This
number is denoted by A, (n, d). Bounds on A, (n, d) are indicators to the maximum
performance achievable from any code with parameters (n, M, d),. As a result,
these bounds are especially useful when one constructs good error-correcting codes.
The tables in [5] contain the best-known upper and lower bounds on A, (n, d) for
linear codes. The tables in [9] contain bounds on A;(n, d) for nonlinear binary codes.

"'Where the code dimension k = log, M.

14 1 Bounds on Error-Correction Coding Performance

10° . . - : .
L Erasure bound (512,256,62) +
Gallager bound (512,256
I concatenated|cyclic (512,256,32)=2*(128,30,32) (256,196,16) =
10" E LDPC PEG (512,256,14) .
[Turbo (512,256,18) L]
binary sphere packing bound for (512,256) @
102 I \
. A\
10]
\
3 AN
w oqo* N VAN ¢
L \ A\
AW
10° Bk
\ ¥\ \
S
\ \\ \\\.
107 Kok \
A *
\ o
10 LY
0 1 2 3 4 5 6
Eb/No [dB]

Fig. 1.8 Comparison of sphere packing, Gallager and erasure-based bounds to the performance
realised fora (512, 256, 18) turbo code, (512, 256, 14) LDPC code and (512, 256, 32) concatenated
code

Lower bounds on A, (1, d) tend to be code specific; however, there are several generic
upper bounds. As an example, consider the best-known upper and lower bounds on
A, (128, d) obtained from the tables in [5]. These are shown in Fig. 1.9 for the range
1 <d < 128. Optimal codes of length n = 128 are codes whose lower and upper
bounds on A,(128, d) coincide. The two curves coincide when k is small and d is
large or vice versa. The gap between the upper and lower bounds that exists for other
values of k and d suggests that one can construct good codes with a larger number of
codewords and improve the lower bounds. An additional observation is that extended
BCH codes count as some of the known codes with the most number of codewords.

It is often useful to see the performance of codes as their code lengths become
arbitrarily large. We define the information rate

log, (A, (n, 8
@, (8) = lim log, {4y (n, 1)) n)),

n— 00 n

(1.31)

where § = % is called the relative distance. Since the dimension of the code is defined

ask = logq (A4 (n, én)), then a bound on the information rate e, (8) is a bound on f,
asn — oo.

1.2 Bounds on the Construction of Error-Correcting Codes 15

140 T I

T

Lower Bound
Upper Bound
Extended BCH Code + .

—t

120

100 Xik

80 t

60 K:-\

LT
—

log, (A q(n, d))

Minimum Distance, d

Fig. 1.9 Upper and lower bounds on A, (128, d)

1.2.1 Upper Bounds

1.2.1.1 Sphere Packing (Hamming) Bound

Let V,(n, t) represent the number of vectors in each sphere then,

t

V,(n. 1) =Z(?)(q— 1) (1.32)

i=0

Theorem 1.1 (Sphere Packing Bound) The maximum number of codewords A, (n, d)
is upper bounded by,

Agn,d) < —1

n i
;(l.)@—l)

Proof A code % is a subset of a vector space GF(g)". Each codeword of % has only
those vectors GF(¢)" but not in ¢’ lying at a hamming distance # = | 45! | from it
since codewords are spaced at least d places apart. In other words, no codewords lie
in a sphere of radius ¢ around any codeword of &. As such, for counting purposes,
these spheres can represent individual codewords. The Hamming bound counts the
number of such non-overlapping spheres in the vector space GF(g)".

16 1 Bounds on Error-Correction Coding Performance

Codes that meet this bound are called perfect codes. In order to state the asymptotic
sphere packing bound, we first define the gary entropy function, H, (x), for the values
O<x=r,

0 if x=0
xlog, (g —1) —xlog,x — (1 —x)log, (1 —x) if O0<x<r
(1.33)

Hq(x) = [

Theorem 1.2 (Asymptotic Sphere Packing Bound) The information rate of a code

a4 (8) is upper bounded by,
3
,(6) <1—-H, (—)
2
forthe range 0 < 8§ <1 —q~ .

1.2.1.2 Plotkin Bound

Theorem 1.3 (Plotkin Bound) Provided d > 6n, where 6 = 1 — q_l, then,

A d) < d
a(n.d) = Ld—@nJ

Proof LetS = > d(x,y) forall codewordsx,y € ¢, andx # y,and d(x, y) denotes
the hamming distance between codewords x and y. Assume that all the codewords
of & are arranged in an M X n matrix D. Since d(X,y) > d,

S > md = MM — 1)d. (1.34)

Let n; o be the number of times an element « in the defining field of the code GF(q)

occurs in the ith column of the matrix D. Then, Z n; o = M.For each n; o, there

aeGF(q)
are M — n; , entries of the matrix D in column i that have elements other than «.

These entries are a hamming distance 1 from the n; ,, entries and there are n possible
columns. Thus,

S=n i z nio(M —n;y)

i=1 aeGF(q)

:thi > nl, (1.35)

i=1 aeGF(q)

1.2 Bounds on the Construction of Error-Correcting Codes 17

From the Cauchy—Schwartz inequality,

D onia)| =q D nl, (1.36)

aeGF(q) aeGF(q)

Equation (1.35) becomes,

2

S <nM?*— Zn“q” Z Nig (1.37)

i=1 aeGF(q)

Letf =1—q!,

2

anMz—i:qf1 Z N«

i=1 aeGF(q)
<nM?*— g 'nM?
< noM?>. (1.38)

Thus from (1.34) and (1.38) we have,

MM — 1)d < S < noM> (1.39)

M < Lf —denJ (1.40)

and clearly d > 6n.

Corollary 1.1 (Asymptotic Plotkin Bound) The asymptotic Plotkin bound is given
by,

a,(8) =0 if 0<é6<1

8
aq(é)fl—g if 0<6<6.

1.2.1.3 Singleton Bound

Theorem 1.4 (Singleton Bound) The maximum number of codewords A,(n, d) is

upper bounded by,
Ay(n,d) < g,

18 1 Bounds on Error-Correction Coding Performance

Codes that meet this bound with equality, i.e. d =n —k + 1, are called maxi-
mum distance separable codes (MDS). The asymptotic Singleton bound is given
Theorem 1.5.

Theorem 1.5 (Asymptotic Singleton Bound) The information rate o (8) is upper
bounded by,
az(n,8) <1-4.

The asymptotic Singleton bound does not depend on the field size g and is a straight
line with a negative slope in a plot of o (§) against § for every field.

1.2.1.4 Elias Bound

Another upper bound is the Elias bound [17]. This bound was discovered by P. Elias
but was never published by the author. We only state the bound here as the proof is
beyond the scope of this text. For a complete treatment see [6, 10].

Theorem 1.6 (Elias Bound) A code € of length n with codewords having weight at
mostw, w < On with® =1 — g~ has,

d= M (o)
M—1 On

Theorem 1.7 (Asymptotic Elias Bound) The information rate o,(8) is upper

bounded by,
au(8) <1—-H (6 -0 —9))

provided 0 < § < 0 where =1 —q~ .

1.2.1.5 MRRW Bounds

The McEliece—-Rodemich—Rumsey—Welch (MRRW) bounds are asymptotic bounds
obtained using linear programming.

Theorem 1.8 (Asymptotic MRRW Bound I) Provided 0 <r <0, 6 =1 — c[1
then,
1
a,(8) < H, (;(61 —1-(g—2)¥8-2/8(1-68)(q — 1)))

The second MRRW bound applies to the case when g = 2.

Theorem 1.9 (MRRW Bound II) Provided 0 < § < % and g = 2 then,

() < min {1+ gu?) — g(u® + 28u + 28)}

1.2 Bounds on the Construction of Error-Correcting Codes 19

_ 1—41—x
gix) = H, —)

The MRRW bounds are the best-known upper bound on the information rate for the
binary case. The MRRW-II bound is better than the MRRW-I bound when § is small
and ¢ = 2. An in depth treatment and proofs of the bounds can be found in [12].

where

1.2.2 Lower Bounds

1.2.2.1 Gilbert-Varshamov Bound

Theorem 1.10 (Gilbert—Varshamov Bound) The maximum number of codewords
A, (n, d) is lower bounded by,

n

q" _ q
Aq(n.d) = Vod—1) a1 A
()(q—l)’

>

i=0

i

Proof We know that V,(n,d — 1) represents the volume of a sphere centred on a
codeword of ¢ of radius d — 1. Suppose ¢ has A, (n, d) codewords. Every vector
Ve]FZ lies within a sphere of volume V,(n,d — 1) centred at a codeword of ¢ as

such,
Ay(n,d)

U si|=1Fl

i=1

where S; is a set containing all vectors in a sphere of radius d — 1 centred on a
codeword of €. The spheres S; are not mutually disjoint. If we assume S; are mutually
disjoint then,

Ay(n, d)Vy(n,d — 1) = [F|.

Theorem 1.11 The information rate of a code is lower bounded by,
a,(8) > 1 — H,(3)

for058§6,9:1—q’1.

Figures 1.10 and 1.11 show the asymptotic upper and lower bounds for the cases
where ¢ = 2 and g = 32, respectively. Figure 1.11 shows that the MRRW bounds
are the best-known upper bounds when g = 2. Observe that the Plotkin bound is the
best upper bound for the case when g = 32.

20 1 Bounds on Error-Correction Coding Performance

GV bound ——
S Plotkin bound ~ ----%---- |4
g, MRRW-Ibound - T
o R o Singleton bound e .
. B, Hamming bound
i < = Elias bound 7
SN ‘.| MRRW-II bound
B o ’ X =}
= -
B N
04 \ R
0.3 \ < X\
02 \\ K
N :
o \o\ L
0 e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
S
Fig. 1.10 o, () against § for g =2
1 T T T
GV bound ——
0.9 Plotkin bound =~ ----%---- .4
MRRW-Ibound - Keooon
0.3 Singleton bound a ~
Hamming bound
0.7 Elias bound]
0.6
©
= 05
3
0.4
0.3
0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
)

Fig. 1.11 o, (8) against § for g = 32

1.2 Bounds on the Construction of Error-Correcting Codes 21

Table 1.1 Ranges for codes Finite field

Range
Fy 1<k<n<?256
F3 1<k<n<243
Fy 1<k=<n<256
Fs 1<k<n=<130
F; 1 <k<n=<100
Fg 1<k=<n<130
Foy 1<k<n<130

1.2.3 Lower Bounds from Code Tables

Tables of best-known codes are maintained such that if a code defined in a field ¢
is constructed with an evaluated and verifiable minimum Hamming distance d that
exceeds a previously best-known code with the same length n and dimension, the
dimension of the new code is a lower bound on A, (n, d). The first catalogue of best-
known codes was presented by Calabi and Myrvaagnes [2] containing binary codes
of length n and dimension k in the range | < k < n < 24. Brouwer and Verhoeff [1]
subsequently presented a comprehensive update to the tables which included codes
with finite fields up to size 9 with the ranges for k and n.

Atpresent, Grassl [5] maintains a significantly updated version of the tables in [1].
The tables now contain codes with k and # in ranges from Table 1.1. Finally, Schimd
and Shurer [15] provide an online database for optimal parameters of (¢, m, s)-
nets, (¢, s)-sequences, orthogonal arrays, linear codes and ordered orthogonal arrays.
These are relatively new tables and give the best-known codes up to finite fields of size
256. The search for codes whose dimension exceeds the best-known lower bounds
on A, (n,d) is an active area of research with the research community constantly
finding improvements.

1.3 Summary

In this chapter we discussed the theoretical performance of binary codes for the
additive white Gaussian noise (AWGN) channel. In particular the usefulness of Gal-
lager’s coding theorem for binary codes was explored. By assuming a binomial
weight distribution for linear codes, it was shown that the decoder error probability
performance of some of the best, known linear, binary codes is the same as the aver-
age performance of the ensemble of all randomly chosen, binary nonlinear codes
having the same length and dimension. Assuming a binomial weight distribution, an
upper bound was determined for the erasure performance of any code, and it was
shown that this can be translated into an upper bound for code performance in the
AWGN channel. Different theoretical bounds on the construction of error-correction
codes were discussed. For the purpose of constructing good error-correcting codes,

22

1 Bounds on Error-Correction Coding Performance

theoretical upper bounds provide fundamental limits beyond which no improvement
is possible.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Brouwer, A., Verhoeff, T.: An updated table of minimum-distance bounds for binary linear
codes. IEEE Trans. Inf. Theory 39(2), 662-677 (1993)

Calabi, L., Myrvaagnes, E.: On the minimal weight of binary group codes. IEEE Trans. Inf.
Theory 10(4), 385-387 (1964)

. Chen, C.L.: Computer results on the minimum distance of some binary cyclic codes. IEEE

Trans. Inf. Theory 16(3), 359-360 (1970)

Gallager, R.G.: A simple derivation of the coding theorem and some applications. IEEE Trans.
Inf. Theory 11(1), 459-470 (1960)

Grassl, M.: Code Tables: Bounds on the parameters of various types of codes, http://www.
codetables.de (2007)

Huffman, W.C., Pless, V.S.: Fundamentals of Error-Correcting Codes. Cambridge University
Press, Cambridge (2003). ISBN 0 521 78280 5

Krasikov, L., Litsyn, S.: On spectra of BCH codes. IEEE Trans. Inf. Theory 41(3), 786788
(1995)

Krasikov, L., Litsyn, S.: On the accuracy of the binomial approximation to the distance distri-
bution of codes. IEEE Trans. Inf. Theory 41(5), 1472-1474 (1995)

Litsyn, S.: Table of nonlinear binary codes, http://www2.research.att.com/~njas/codes/And/
(1999)

MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

Massey, J.: Coding and modulation in digital communication. In: Proceedings of International
Zurich Seminar on Digital Communication, pp. E2(1)-E2(24) (1974)

McEliece, R., Rodemich, E., Rumsey, H., Welch, L.: New upper bounds on the rate of a code
via the delsarte-macwilliams inequalities. IEEE Trans. Inf. Theory 23(2), 157-166 (1977)
Promhouse, G., Tavares, S.E.: The minimum distance of all binary cyclic codes of odd lengths
from 69 to 99. IEEE Trans. Inf. Theory 24(4), 438—442 (1978)

Roychowdhury, V.P., Vatan, F.: Bounds for the weight distribution of weakly self-dual codes.
IEEE Trans. Inf. Theory 47(1), 393-396 (2001)

Schimd, W., Shurer, R.: Mint: a database for optimal net parameters, http://mint.sbg.ac.at
(2004)

Schomaker, D., Wirtz, M.: On binary cyclic codes of odd lengths from 101 to 127. IEEE Trans.
Inf. Theory 38(2), 516-518 (1992)

Shannon, C., Gallager, R., Berlekamp, E.: Lower bounds to error probability for coding on
discrete memoryless channels, i. Inf. Control 10(1), 65-103 (1967)

Shannon, C.E.: Probability of error for optimal codes in a Gaussian channel. Bell Syst. Tech.
J. 38(3), 611-656 (1959)

Tjhai, C., Tomlinson, M.: Results on binary cyclic codes. Electron. Lett. 43(4), 234-235 (2007)
Wozencraft, J.: Sequential decoding for reliable communications. Technical Report No. 325
Research Laboratory of Electronics, MIT (1957)

http://www.codetables.de
http://www.codetables.de
http://www2.research.att.com/~njas/codes/And/
http://mint.sbg.ac.at

References 23

21. Wozencraft, J., Jacobs, I.: Principles of Communication Engineering. Wiley, New York (1965)
22. Wozencraft, J., Kennedy, R.: Modulation and demodulation for probabilistic coding. IEEE
Trans. Inf. Theory IT 12, 291-297 (1966)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Soft and Hard Decision Decoding
Performance

2.1 Introduction

This chapter is concerned with the performance of binary codes under maximum
likelihood soft decision decoding and maximum likelihood hard decision decoding.
Maximum likelihood decoding gives the best performance possible for a code and
is therefore used to assess the quality of the code. In practice, maximum likelihood
decoding of codes is computationally difficult, and as such, theoretical bounds on
the performance of codes are used instead. These bounds are in lower and upper
form and the expected performance of the code is within the region bounded by the
two. For hard decision decoding, lower and upper bounds on maximum likelihood
decoding are computed using information on the coset weight leader distribution.
For maximum likelihood soft decision decoding, the bounds are computed using the
weight distribution of the codes. The union bound is a simple and well-known bound
for the performance of codes under maximum likelihood soft decision decoding.
The union bound can be expressed as both an upper and lower bound. Using these
bounds, we see that as the SNR per bit becomes large the performance of the codes
can be completely determined by the lower bound. However, this is not the case with
the bounds on maximum likelihood hard decision decoding of codes. In general, soft
decision decoding has better performance than hard decision decoding and being
able to estimate the performance of codes under soft decision decoding is attractive.
Computation of the union bound requires the knowledge of the weight distribution of
the code. In Sect.2.3.1, we use a binomial approximation for the weight distribution
of codes for which the actual computation of the weight distribution is prohibitive.
As aresult, it possible to calculate within an acceptable degree of error the region in
which the performance of codes can be completely predicted.

© The Author(s) 2017 25
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_2

26 2 Soft and Hard Decision Decoding Performance

2.2 Hard Decision Performance

2.2.1 Complete and Bounded Distance Decoding

Hard decision decoding is concerned with decoding of the received sequence in
hamming space. Typically, the real-valued received sequence is quantised using a
threshold to a binary sequence. A bounded distance decoder is guaranteed to correct
all # errors or less, where ¢ is called the packing radius and is given by:

5]
t — _

2
and d is the minimum hamming distance of the code. Within a sphere centred
around a codeword in the hamming space of radius ¢ there is no other codeword,
and the received sequence in this sphere is closest to the codeword. Beyond the
packing radius, some error patterns may be corrected. A complete decoder exhaus-
tively matches all codewords to the received sequence and selects the codeword with
minimum hamming distance. A complete decoder is also called a minimum dis-
tance decoder or maximum likelihood decoder. Thus, a complete decoder corrects
some patterns of error beyond the packing radius. The complexity of implementing
a complete decoder is known to be NP-complete [3]. Complete decoding can be
accomplished using a standard array. In order to discuss standard array decoding, we
first need to define cosets and coset leaders.

Definition 2.1 A coset of a code ¥ is a set containing all the codewords of &
corrupted by a single sequence a € Fy \ ¢’ U {0}.

A coset of a binary code contains 2¢ sequences and there are 2" possible cosets.
Any sequence of minimum hamming weight in a coset can be chosen as a coset
leader. In order to use a standard array, the coset leaders of all the cosets of a code
must be known. We illustrate complete decoding with an example. Using a (7, 3)
dual Hamming code with the following generator matrix

This code has codewords

a

I
—_—0—=o0o—=O
—_Oom—O—00
—_——_——_—O OO O
O—O—=—=—=0O
OCO——=—O—=O
O —O O —=O
—OoOoO—==—=O

2.2 Hard Decision Performance 27

Coset Leaders ||
0000000 ” 1000111 0101011 0011101 1101100 0110110 1011010 1110001

0000001 1000110 0101010 0011100 1101101 0110111 1011011 1110000
0000010 1000101 0101001 0011111 1101110 0110100 1011000 1110011
0000100 1000011 0101111 0011001 1101000 0110010 1011110 1110101
0001000 1001111 0100011 0010101 1100100 0111110 1010010 1111001
0010000 1010111 0111011 0001101 1111100 0111110 1001010 1100001
0100000 1100111 0001011 0111101 1001100 0010110 1111010 1010001
1000000 0000111 1101011 1011101 0101100 1110110 0011010 0110001

0000011 1000100 0101000 0011110 1101111 0110101 1011001 1110010
0000110 1000001 0101101 0011011 1101010 0110000 1011100 1110111
0001100 1001011 0100111 0010001 1100000 0111010 1010110 1111101
0011000 1011111 0110011 0000101 1110100 0101110 1000010 1101001
0001010 1001101 0100001 0010111 1100110 0111100 1010000 1111011
0010100 1010011 0111111 0001001 1111000 0100010 1001110 1100101
0010010 1010101 0111001 0001111 1111110 0100100 1001000 1100011
0001110 1001001 0100101 0010011 1100010 0111000 1010100 1111111

Fig. 2.1 Standard array for the (7, 3, 4) binary code

Complete decoding can be accomplished using standard array decoding. The example
code is decoded using standard array decoding as follows, The top row of the array
in Fig.2.1 in bold contains the codewords of the (7, 3, 4) code.! Subsequent rows
contain all the other cosets of the code with the array arranged so that the coset
leaders are in the first column. The decoder finds the received sequence on a row
in the array and then subtracts the coset leader corresponding to that row from it to
obtain a decoded sequence. The standard array is partitioned based on the weight of
the coset leaders. Received sequences on rows with coset leaders of weight less than
or equal to t = % = 1 are all corrected. Some received sequences on rows with
coset leaders with weight greater than ¢ are also corrected. Examining the standard
array, it can be seen that the code can correct all single error sequences, some two

error sequences and one three error sequence. The coset weight C; distribution is

Co=1
C =7
C,=7
Cs=1

The covering radius of the code is the weight of the largest coset leader (in this
example it is 3).

1t is worth noting that a code itself can be considered as a coset with the sequence a an all zero
sequence.

28 2 Soft and Hard Decision Decoding Performance

2.2.2 The Performance of Codes on the Binary Symmetric
Channel

Consider a real-valued sequence received from a transmission through an AWGN
channel. If a demodulator makes hard decisions at the receiver, the channel may be
modelled as a binary symmetric channel. Assuming the probability of bit error for
the BSC is p, the probability of decoding error with a bounded distance decoder is
given by,

Pgpo(e) = 1= Cip'(1—p)"”! @1
i=0

where C; is the number of coset leaders with weight i. C; known for 0 < i < ¢ and
is given by,
(C,vz(’?) 0<i<rt.
1

However, C;, i > t need to be computed for individual codes. The probability of
error after full decoding is

Pru(e) = 1= > C;p'(1—p)"~". 22)
i=0

Figure2.2 shows the performance of the bounded distance decoder and the full
decoder for different codes. The bounds are computed using (2.1) and (2.2). As
expected, there is significant coding gain between unencoded and coded transmission
(bounded distance and full decoding) for all the cases. There is a small coding gain
between bounded distance and full decoders. This coding gain depends on the coset
leader weight distribution C; for i > ¢ of the individual codes. The balance between
complexity and performance for full and bounded distance decoders® ensures that
the latter are preferred in practice. Observe that in Fig. 2.2 that the complete decoder
consistently outperforms the bounded distance decoder as the probability of error
decreases and £ increases. We will see in Sect.2.3 that a similar setup using soft

L No = . .
decision decoding in Euclidean space produces different results.

2.2.2.1 Bounds on Decoding on the BSC Channel

Suppose s is such that C; is the maximum non-zero value for a code then s is the
covering radius of the code. If the covering radius s of a code is known and C;, i > ¢
are not known, then the probability of error after decoding can be bounded by

2Bounded distance decoders usually have polynomial complexity, e.g. the Berlekamp Massey
decoder for BCH codes has complexity o) [11.

2.2 Hard Decision Performance 29

(63,36) BCH Code Performance (63,39) BCH Code Performance
10° AR B wnat S 10° e A L A e
102 " Full Decoding —— 4 102 T Full Decoding —— 4
10 \de Distance Decoding ——] 10 \Bs%d Distance Decoding ——]
6 Unencoded (k=36) ——— -6 . (k=36).
107 107
10; 10;
10710 10710
0 0
10 10°
10—16 10—16
0 0
10-22 10-22
o 24 o 24
o102 3 \ w1070 \
w1020 w102
10° 10°
10% it 10% \
1034 A} \ 1034 A
10° \ 10"
0 | \ 0 \ \
1840 \ \ 1840 B \
Az \ \
1072 X \ 1072 \
0 %« \ 0 =
1070 \ 10 bt \
1050 \ \ 1050 \ \
012345678 910111213141516171819202122 012345678 910111213141516171819202122
EyN, Ey/No
(a) BCH Code (63,36) (b) BCH Code (63,39)
(128,100) Goppa Code Performance (127,92) BCH Code Performance
100 e 100 - e
102 5 Full Decoding —— 4 1072 ™ Full Decoding ——
104 ded Distance Decoding ———] 10 ded Distance Decoding ———]
6 Unencoded (k=100). —— 6 . (k=92) ——
10 10
102 10
107 107
10712 10712
107 107
10—18 10—18
10’2‘; 10’2‘;
o 1g—24 o 18—24
w s w s \
w102 w102
102 \ \ 102 \
10° 10° \
10’§f \ \ 10’33 \ \
10° { 10°
o | i o \
10° \ \ 10° \ \
-40 A} -40 A \
10-42 ‘\ 1042 qﬁ \\
109 \ 109 \
1056 b \ 1056 \
104 v \ 108 \ \
1050 \ \ 1050 ! \
10" 10°
012345678 910111213141516171819202122 012345678 910111213141516171819202122
EyN, Ep/No
(¢) Goppa Code (128,100) (d) BCH Code (127,92)

Fig. 2.2 BCH code BDD and full decoder performance, frame error rate (FER) against %

t
Poz1— > (M) pa-p e pa—py 2.3)
i=0 !
! n
<t—[D\)P a=p T+ Woptd = p)n 24)
i=0 !

assuming the code can correct ¢ errors and

30 2 Soft and Hard Decision Decoding Performance

The lower bound assumes that there is a single coset leader of weight s, and hence
the term p*(1 — p)"~* while the upper bound assumes that all the coset leaders of
weight greater than ¢ have weight equal to the covering radius s. For the lower bound
to hold, Wy > 1. The lower bound can be further tightened by assuming that the
W, — 1 cosets have weight of t + 1, ¢ + 2, ... until they can all be accounted for.3

2.3 Soft Decision Performance

The union bound for the probability of sequence error using maximum likelihood
soft decoding performance on binary codes with BPSK modulation in the AWGN

channel is given by [2],
1
P, < - Z erfc(/—Rj) (2.5)

where R is the code rate, A ; is the number of codewords of weight j and f,—z isthe SNR
per bit. The union bound is obtained by assuming that events in which the received
sequence is closer in euclidean distance to a codeword of weight j are independent
as such the probability of error is the sum of all these events. A drawback to the
exact computation of the union bound is the fact that the weight distribution A;,
0 < j < n of the code is required. Except for a small number of cases, the complete
weight distribution of many codes is not known due to complexity limitations. Since
A; =0forl < j < d where d is the minimum distance of the code we can express

(2.5) as,
Z A erfc(/—RJ) (2.6)
% Ay erfc([—) Z A,; erfc(/ —Rj) 2.7)
] =d+1

A lower bound on the probability of error can be obtained if it is assumed that error
events occur only when the received sequence is closer in euclidean distance to
codewords at a distance d from the correct codeword.

1 |E
P>~ Ay erfc(—"Rd) 2.8)
No

3This can be viewed as the code only has one term at the covering radius, and all other terms are at
t+1.

[\)

~
I/\

IA

[\

2.3 Soft Decision Performance 31
where

1 E, .
3 Z Aj erfc(N—()R]):O. (2.9)

j=d+1

—1 A f —b Rd <P, < —1 En A f —b R. (2 10)
eric i €TIC .
2 d N() - = 2 i—d ! NO !

Therefore, the practical soft decision performance of a binary code lies between
the upper and lower Union bound. It will be instructive to observe the union bound
performance for actual codes using their computed weight distributions as the SNR
per bit % increases. By allowing f,—f) to become large (and P; to decrease) simulations

As such,

for several codes suggest that at a certain intersection value of ﬁ—g the upper bound
equals the lower bound. Consider Figs.2.3, 2.4 and 2.5 which show the frame error
rate against the SNR per bit for three types of codes. The upper bounds in the figures
are obtained using the complete weight distribution of the codes with Eq. (2.5). The
lower bounds are obtained using only the number of codewords of minimum weight
of the codes with Eq. (2.8). It can be observed that as f,—f) becomes large, the upper
bound meets and equals the lower bound. The significance of this observation is that
for f,—i] values above the point where the two bounds intersect the performance of
the codes under soft decision can be completely determined by the lower bound (or
the upper bound). In this region where the bounds agree, when errors occur they
do so because the received sequence is closer to codewords a distance d away from
the correct codeword. The actual performance of the codes before this region is
somewhere between the upper and lower bounds. As we have seen earlier, the two
bounds agree when the sum in (2.9) approaches 0. It may be useful to consider an
approximation of the complementary error function (erfc),

erfc(x) < e

in which case the condition becomes
N ~ERi
3 Z Aje N~ 0. (2.11)
j=d+1
Clearly, the sum approximates to zero if each term in the sum also approximates to
zero. It is safe to assume that the term A erfc (%Rj decreases as j increases

since erfc (‘ / %Rj) reduces exponentially with j and A; increases in a binomial
(in most cases). The size of the gap between the lower and upper bounds is also

32 2 Soft and Hard Decision Decoding Performance
(128,29) eBCH Code Performance (128,64) eBCH Code Performance
0 0
10 " Full Weight Distribution 10 " Full Weight Distribution
Using dmin Terms Using dmin Terms
10—10 10—10
\
\\
10-20 \\ 10-20 \\
\ A\
o o
= \ & \
1090 \\ 1030 \\
\ \
\ \
10740 10740 \
\ \
\
\ \
100 \ 1050 \
0 5 10 15 20 0 5 10 15 20
Eb/NO Eb/NO
(a) Extended BCH Code (128,29) (b) Extended BCH Code (128,64)
(128,85) eBCH Code Performance (128,120) eBCH Code Performance
0 0
10) Full Weight If)islribution 10 ! Full Weight bislribution
Using dmin Terms Using dmin Terms
1070 10710
\
1020 \\ 1020 \\
\ \
o o
i \ i \
10°%0 \ 1030 \\
\ \
\\
1040 \\ 1040 \\
\ \
\\ \
1050 | 1050
0 5 10 15 20 0 5 10 15 20
EyNo E/N,

(¢) Extended BCH Code (128,85)

(d) Extended BCH Code (128,120)

Fig. 2.3 Extended BCH code lower and upper union bound performance, frame error rate (FER)
Ep

against N

_Enpi .
determined by these terms. Each term Aje ™ R becomes small if one or both of the
following conditions are met,

(a) Some of the A;, j > d are zero. This is common in low rate binary codes with
a small number of codewords.
(b) The product ﬁ—f)R j for j > d becomes very large.

Observing Fig. 2.3, 2.4 and 2.5, it can be seen that at small values of f,—z and for low

rate codes for which R =]’—‘l is small have some A; = 0, j > d and as such the gaps

2.3 Soft Decision Performance

10°

33
(127,22) BCH Code Performance (127,36) BCH Code Performance
0
Full Weight Distribution 10 Full Weight Distribution
Using dmin Terms Using dmin Terms
10710 N 10710
\\ N\
\
1020 \\ 10°20 \\
14 \ o \
W \ w A\
-)\ =)\
10730 A\ 1030 \\
\ \\
\
1040 \\ 1040 \\
\\ \\
\ \
10°%0 \ 10750 \
0 5 10 15 20 0 5 10 15 20
Eb/ND ED/NQ
(a) BCH Code (127,22) (b) BCH Code (127,36)
(127,50) BCH Code Performance (127,92) BCH Code Performance
(9 0
10 " Full Weight Distribution — 10 Full Weight Distribution
Using dmin Terms Using dmin Terms
10710 10710 \:
\\ \\
\\ \\
1020 1020
% \\\ % \\\
=)\ =)\
10730 \\ 1030 \
\
\ \
\ \
1040 \\ 1040 \\
\\
\ \
10750 \ 1050 \
5 10 15 20 0 5 10 15
Eb/ND
(¢) BCH Code (127,50)

20
Eb/ NQ

(d) BCH Code(127,92)
Fig. 2.4 BCH code lower and upper union bound performance, frame error rate (FER) against 1%

between the upper and lower bounds are small. As an example consider the low rate
(127, 22, 47) BCH code in Fig.2.4a which has,

A;j=0 jef{49...54)U(57...62} U{65...70} U{73...78} U{81...126}.

For the high rate codes, R is large so that the product f,—f)R j becomes very large
therefore the gaps between the upper and lower bounds are small.

Figure 2.6 compares bounded distance decoding and full decoding with maximum
likelihood soft decision decoding of the (63, 39) and (63, 36) BCH codes. It can be
seen from the figure that whilst the probability of error for maximum likelihood

34 2 Soft and Hard Decision Decoding Performance

(128,29) RM Code Performance

(128,99) RM Code Performance
10° T T T 10° T T
Full Weight Distribution Full Weight Distribution
Using dmin Terms Using dmin Terms
10710 10710
1020 1020 \\
i \ i \
s e
A\ A\
30 -30 \\
10 \\ 10 \\
\\ \\
40 \ 40 \
10 \\ 10 \\
\\ \\
1090 \ 1050 {
0 5 10 15 20 5 10 15 20
Ep/N, Ey/N,

(a) Reed-Muller Code(128,29) (b) Reed-Muller Code (128,99)

(256,37) RM Code Performance

(256,163) RM Code Performance
10° T T T 10° T T
Full Weight Distribution Full Weight Distribution
sing dmin Terms sing dmin Terms
1070 1070
1020 \ 1020 \\
& \ & A\
- \\\ - \\\
-30 -30
10 \ 10 \
\\ \\
\
1040 \ 1040
\\ \\
\ \
1050 \ 1050 |
0 5 10 15 20 0 5 10 15 20
Ep/N, Ey/N,

(¢) Reed—Muller Code (256,37) (d) Reed-Muller Code (256,163)

Fig. 2.5 Reed-Muller code lower and upper union bound performance, frame error rate (FER)
against ﬁ—’(’)

hard decision decoding is smaller than that of bounded distance decoding for all the
values of f,—g, the upper bound on the probability of error for maximum likelihood

soft decision decoding agrees with the lower bound from certain values of f,—z This
suggests that for soft decision decoding, the probability of error can be accurately
determined by the lower union bound from a certain value of % . Computing the lower
union bound from (2.10) requires only the knowledge of the minimum distance of
the code d and the multiplicity of the minimum weight terms A,. In practice, A, is
much easier to obtain than the complete weight distribution of the code.

2.3 Soft Decision Performance

10710

102

FER

1030

1040

10°%0

(63,39) BCH Code Performance

" Full Weight Distribution

Using dmin Terms

\
\
\
\
\
\

5 10 15
Eb/NO

20

(a) BCH Code (63,39) union bounds

10°

10710

102

FER

10°%

100

10°%°

(63,36) BCH Code Performance

" Full Weight Distribution

Using dmin Terms

20

(¢) BCH Code (63,36) union bounds

FER

FER

(63,39) BCH Code Performance

35

T T

T T

Full Decoding B
\Bsund\ed Distance Decoding
N Ur (k=36). =

1

\

A

\

Eb/ ND

full decoding

(63,36) BCH Code Performance

(b) BCH Code (63,39) BDD and

012345678 910111213141516171819202122

T

[——
Full Decoding

nded Distance Decoding
Ur

T

(k=36). s

1

¥

\

Eb/ ND

full decoding

Fig. 2.6 BCH code: Bounded distance, full and maximum likelihood soft decoding

(d) BCH Code (63,36) BDD and

2.3.1 Performance Assuming a Binomial Weight Distribution

012345678 910111213141516171819202122

Evaluating the performance of long codes with many codewords using the union
upper bound is difficult since one needs to compute the complete weight distribution
of the codes. For many good linear binary codes, the weight distributions of the codes
closely approximates to a binomial distribution. Computing the weight distribution

of a binary code is known to be NP-complete [3]. Let (fI—Z)s be defined as,

36 2 Soft and Hard Decision Decoding Performance

Best Known Code (127,30,37) Best Known Code (127,120,3)
10° T T — 10° T T e
- ' i ; i
100 10 : ;
102 102
o o
w w
w w
10% 10%
104 104
10% 10%
15 20 0 5 20
Eb/No (dB) Eb/No (dB)
(a) (127,30,37) binomial and actual weight (b) (127,120,3) binomial and actual weight
distributions distributions
Best Known Code (70,30,16) Best Known Code (255,235,6)
100 Upper binomial 100 Upper binomial ———
sty st
et el oo e
Uerer sl raatind
100 10
102 102
o e
w w
w w
10% 10%
104 100
10% 10
15 20 0 15 20
Eb/No (dB) Eb/No (dB)
(¢) (70,30,16) binomial and actual weight (d) (255,235,6) binomial and actual weight
distributions distributions

Fig. 2.7 Union bounds using binomial and actual weight distributions (WD) for best known codes

1 E,
5 Agerfe([2Rd 2.12)

No

!
(%), %

0/

Hence, (f,—g)é is the SNR per bit at which the difference between upper and lower
union bound for the code is very small. It is worth noting that equality is only possible

No
binary code (n, k, d) we simply assume a binomial weight distribution for the code

so that,
2k
A =—| . (2.13)
2n \ i

when f/—(‘; approaches infinity in (2.12) since lim erfc(x) = 0. To find (E”) for a
X—00 8

2.3 Soft Decision Performance 37

Best Known Code (255,120,40)

10° S B r— T T —
I N, e e Full Weight Distribution -
Using dmin Terms ------- N
Uncoded -------- -
I
) IO
o
L
100 f e
090 b
400 F e
0 5 10 15 20

Eb/No (dB)

Fig. 2.8 Union bounds using binomial and actual weight distributions (WD) for the (255, 120, 40)
best known code

and compute an value that satisfies (2.12). It must be noted that (0) obtained

using this approach is only an estimate. The accuracy of (f,—f)) depends on how
8

closely the weight distribution of the code approximates to a binomial and how small
the difference between the upper and lower union bounds Pypper — Plower 1. Consider
Fig.2.7 that show the upper and lower union bounds using binomial weight distrib-
utions and the actual weight distributions of the codes. From Fig.2.7a, it can be seen
that for the low rate code (127, 30, 37) the performance of the code using the binomial
approximation of the weight distribution does not agree with the performance using
the actual weight distribution at low values of ” . Interestingly Fig.2.7b—d show
that as the rate of the codes increases the actual welght distribution of the codes
approximates to a binomial. The difference in the performance of the codes using
the binomial approximation and actual weight distribution decreases as < increases.
Figure 2.8 shows the performance of the (255, 120, 40) using a b1n0m1a1 welght dis-

tribution. An estimate for (f,—i]) from the figure is 5.2 dB. Thus for E” > 5.2dB, we
)

can estimate the performance of the (255, 120, 40) code under maximum likelihood
soft decision decoding in the AWGN channel using the lower union bound.

2 Soft and Hard Decision Decoding Performance

38

(T19T8P) apoD YO papuxq ()
(gp) on/a3

ada

. papoousun

" emee |enjoe Jamo}

- enoe seddn
.

L : L

(vz'sy) @p0D as

(FT'89°9€T) 9p0D YO papuaixy (9)
(gp) on/a3

aas
 popoousun
-1 emoe somot
- emoe seddn
L

L L L

(89'9¢1) 9poD as

0504

0L

or-

0e:04

0z

o0

ok

050

o0

0e:04

020t

REE]

(91°0%°08) 20D YO PapuaIxXy (3)

(¥T'¥8°891) 2POD YO papuaIxg (p)

(gp) oN/a3 (ap) oN/q3
0o¢ br4 Sl 0¢ sz
r : 050} r :
L o0k b
[V]3 ﬂ
r og- bl I
L 020t k
L 00t F
aas aas
- 7 pepoousun v papoDUBUN
- 7 jenioe Jomoy - Leecsfenoe om0
. " |enpe Jaddny - —— lenjoe Jaddn
: H ; H o d i ;
(0¥'08) @P0D AS (¥8'891) @00 As
(0T°TSH0T) 90D YO papualxd (q) (TTH9°8TT) 9POD HOI papualxy (e)
(gp) oN/a3 (ap) oN/q3
0e 14 0z Sl ok S 0 0g 14
L : H 0s-0F L :
L [l L i
.
L 0e:04 ﬁ F
L 0204 8
L 3 F
aas
" paposueun
S ,ma_o,mbnn: : : : oL : :

(zs'v0L) @pod as

(v9'8eL) @pod as

00

o0k

00

020

oL

o

o

434

o34

Fig. 2.9 Performance of self-dual codes

2.3 Soft Decision Performance 39

2.3.2 Performance of Self-dual Codes

A self-dual code % has the property that it is its own dual such that,
€ =%€".

Self-dual codes are always half rate with parameters (n, %n, d). These codes are
known to meet the Gilbert—Varshamov bound and some of the best known codes are
self-dual codes. Self-dual codes form a subclass of formally self-dual codes which
have the property that,

W(€) = W(EH).

where W (%) means the weight distribution of €. The weight distribution of certain
types of formally self-dual codes can be computed without enumerating all the code-
words of the code. For this reason, these codes can readily be used for analytical
purposes. The fact that self-dual codes have the same code rate and good properties
makes them ideal for performance evaluation of codes of varying length. Consider
Fig.2.9 which shows the performance of binary self-dual (and formally self-dual)
codes of different lengths using the upper and lower union bounds with actual weight
distributions, bounded distance decoding and unencoded transmission. Figure2.10

12.00
11.50
11.00
10.50 (136168,24). (168,84,24)
(128,64,22)
10.00 (104,52;20) f
9.50 (80,4076 S S B
9.00 (48,24,12 im v
m 850 et
2 800 K B
£ =
0] 7.50 /l
3 7.00 T -
6.50
© 6.00 @4128) / / o
5.50)Z/ @@ ®
5.00
4.50 Rt
4.00 g
350 SDD code gain at FER 10e-20 —*—
-5 ot SDD code gain at FER 10e-10 B]
3.00 BDD code gain at FER 10e-20 ---&--- |
U BDD code gain at FER 10e-10 @
2.50 L . -
20 40 60 80 100 120 140 160 180 200

Code Length

Fig. 2.10 Coding gain against code length for self-dual codes at FER 107! and 1020

40 2 Soft and Hard Decision Decoding Performance

shows the coding gain of the self-dual codes at frame error rates (FER) 107! and
10~2° for soft decision decoding (SDD) and bounded distance decoding (BDD). The
coding gain represents the difference in dB between the SDD/BDD performance and
unencoded transmission. The coding gain is a measure of the power saving obtainable
from a coded system relative to an unencoded system in dB at a certain probability
of error. The SDD performance of codes with length 168, 136 and 128 at FER 100
are obtained from the union upper bound because the upper and lower bound do
not agree at this FER. Thus, the coding gain for these cases is a lower bound. It is
instructive to note that the difference between the coding gain for SDD and BDD at
the two values of FER increases as the length of the code increases. At FER of 10720
SDD gives 3.36 dB coding gain over BDD for the code of length 168 and 2.70 dB
for the code of length 24. At a FER of 10~'°, SDD gives 3.70 dB coding gain over
BDD for the code of length 168 and 2.44 dB for the code of length 24.

2.4 Summary

In this chapter, we discussed the performance of codes under hard and soft deci-
sion decoding. For hard decision decoding, the performance of codes in the binary
symmetric channel was discussed and numerically evaluated results for the bounded
distance decoder compared to the full decoder were presented for a range of codes
whose coset leader weight distribution is known. It was shown that as the SNR per
information bit increases there is still an observable difference between bounded
distance and full decoders. A lower and upper bound for decoding in the BSC was
also given for cases where the covering radius of the code is known. For soft decision
decoding, the performance of a wide range of specific codes was evaluated numer-
ically using the union bounds. The upper and lower union bounds were shown to
converge for all codes as the SN R per information bit increases. It was apparent that
for surprisingly low values of £& ¥ the performance of a linear code can be predicted
by only using knowledge of the multiplicity of codewords of minimum weight. It
was also shown for those codes whose weight distribution is difficult to compute, a
binomial weight distribution can be used instead.

References 41

References

1. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley, New
Jersey (2005)

2. Proakis, J.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)

3. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf.
Theory 43, 1759-1766 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Soft Decision and Quantised
Soft Decision Decoding

3.1 Introduction

The use of hard decision decoding results in a decoding loss compared to soft decision
decoding. There are several references that have quantified the loss which is a function
of the operating f,—z ratio, the error-correcting code and the quantisation of the soft
decisions. Wozencraft and Jacobs [6] give a detailed analysis of the effects of soft
decision quantisation on the probability of decoding error, P,., for the ensemble of
all binary codes of length n without restriction of the choice of code. Their analysis
follows from the Coding Theorem, presented by Gallager for the ensemble of random
binary codes [3].

3.2 Soft Decision Bounds

There are 2" possible binary combinations for each codeword, which in terms of
the n-dimensional signal space hypercube corresponds to one vertex taken from
2" possible vertices. There are 2 codewords and therefore 2 different possible
codes. The receiver is considered to be composed of 2k matched filters, one for each
codeword, and a decoder error occurs if any of the matched filter receivers has a larger
output than the matched filter receiver corresponding to the transmitted codeword.
Consider this matched filter receiver and another different matched filter receiver,
and consider that the two codewords differ in d bit positions. The Hamming distance
between the two codewords is d. The energy per transmitted bit is E; = %E;,, where
E}, is the energy per information bit. The noise variance per matched filtered received
bit, 02 = %, where Nj is the single sided noise spectral density. In the absence of
noise, the output of the matched filter receiver for the transmitted codeword is n/Ej,
and the output of the other codeword matched filter receiver is (n — 2d)+/E;. The
noise voltage at the output of the matched filter receiver for the transmitted codeword

© The Author(s) 2017 43
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_3

44 3 Soft Decision and Quantised Soft Decision Decoding

is denoted as n, — ny, and the noise voltage at the output of the other matched filter

receiver will be n. + n;. The common noise voltage n. arises from correlation of the

bits common to both codewords with the received noise, and the noise voltages —n

and n; arise respectively from correlation of the other d bits with the received noise.
A decoder error occurs if

(n=2d)\VE; +n.+n, >nEg +n.—ny, 3.1)
that is, a decoder error occurs when 2n > 2d+/E;.

The average noise power associated with n; is do? = d %, and as the noise is
Gaussian distributed, the probability of decoder error, p,, is given by

ef“\’f)dx 3.2
Pd = —ndNo - (3.2)

This may be expressed in terms of the complementary error function

erfc(y) = 2—/

(3.3)

and leads to

Lerte([a* B (3.4)
= —erfc -— .
pa 2 nN()

Each of the other 2¥ — 2 codewords may also cause a decoder error but the weight
distribution of the code C; is unknown. However, by averaging over all possible
codes, knowledge of the weight distribution of a particular code is not required. The
probability of two codewords of a code C;, differing in d bit positions, p(d|C;) is
given by the Binomial distribution

ol
1d!
pic;) = 0 (3.5)
2n
A given linear code C; cannot have codewords of arbitrary weight, because the sum
of a sub-set of codewords is also a codeword. However, for non linear codes, p; may
be averaged over all of the codes without this constraint.

2t | »* L E
Pc = d|C)p(C; (CUTIPY falials 3.6
pc gpu)p(><2,12k§i:l TER B (3.6)

3.2 Soft Decision Bounds 45

rearranging the order of summation

2"2k n n!

_ 1 —d)d! k Ep
Pc < 5ot Z — erfc(d——) 3.7

2 izl d=0 2 + n N()

and

1 < n! k E,
Dc fi d—— 3.8
pe = 2n+1;(n—d)!d!erc(nNo) 3-8)

Remembering that any of the 2 — 1 matched filters may cause a decoder error, the
overall probability of decoder error averaged over all possible binary codes poverall,
is

Povean = 1 — (1 = 50)* ™' < 2p¢ (3.9)

and

—V < eric - :
Poverall on+1 — (n—d)\d! n Ny

An analytic solution may be obtained by observing that %erfc(y) is upper bounded
by e,

P n! _gkE
Poverall < b dz me 4 (3.11
=0

and as observed by Wozencraft and Jacobs [6],

n

_kEp n! _gkEs
(I+emm)y =3 ————e i (3.12)
“(n—d)d!
and
o 1 _kEp
PC < 2—n(l +e " M)" (3.13)

2k _kE
Poverall < 2_”(1 +e W) (3.14)

46 3 Soft Decision and Quantised Soft Decision Decoding

Traditionally, a cut-off rate R is defined after observing that

n

k Ep
2k ik l+e "™
Ste PRyt = ok % (3.15)
with
2
2R = (—) (3.16)
l+e "%
then
Poveral < 2827R0 — gk=nRo — p=n(Ro—3) (3.17)

This result may be interpreted as, providing the number of information bits of the
code is less than the length of the code times the cut-off rate, then the probability
of decoder error will approach zero as the length of the code approaches infinity.
Alternatively, provided the rate of the code, ’;‘, is less than the cut-off rate, Ry,
then the probability of decoder error will approach zero as the length of the code
approaches infinity.

When s quantised soft decisions are used with integer levels 0 to 2s — 1, for s even
and integer levels O to s — 1 for s odd, the transmitted binary signal has levels 0 and
2(s — 1), for s even and levels 0 and s — 1, for s odd and the probability distribution
of the quantised signal (bit) plus noise, after matched filtering, has probability p;,
i =0tos — 1, represented as

s—1

p@) = Zpiz_zi, for s even (3.18)
i=0
and
s—1
p(z) = Z piz ™", for s odd (3.19)
i=0
A decoder error occurs if
s(n —2d) +n.+ny >sn+n, —n (3.20)

and occurs when

n > sd (3.21)

3.2 Soft Decision Bounds 47
and has probability 0.5 when
ny =sd (3.22)

The probability of decoder error may be determined from a summation of terms
from the overall probability distribution for the sum of d independent, quantised
noise samples, and is given by a polynomial g,(z) at z = 0, where ¢,(z) is given by

_ ps=Dd+1

1
q4(2) = p(2)? (- — O.SZ(S_W) , for s even (3.23)

The 0.5z~ term corresponds to n; = sd when the probability of decoder error is
0.5.

1— Lld4 o~
34(2) = p(2)* (lz—_zz — 05274), whens is odd (3.24)

and the 0.5z ¢ term corresponds to n; = sd when the probability of decoder error
is 0.5.
The probability of decoder error is given by ¢,(z) when z = 0,

Pa = qa(0) (3.25)

The evaluation of the average probability of decoder error for quantised soft decisions,
Pc, is given, as before by averaging over all codes and rearranging the order of
summation

2”2 n

n— d d!
Pe < gy 2 (3.26)

i=1 d=0

Simplifying

Py < Z U Z‘ff < (3.27)

When hard decisions are used, the probability of each transmitted bit being

received in error is given by

nN()

kE
Py = O.Serfc(——b) (3.28)

48 3 Soft Decision and Quantised Soft Decision Decoding
Accordingly,
p@) =1~ py+ ppz” (3.29)

and ¢, (z) for hard decisions becomes

1 — Zd+]
qa(2) = (1 = py + ppz)" (1—_Z - 0.51‘1) (3.30)
giving
!
n nin. 1 _ d+1
Pog < D+ 2‘3”” (1—p, +pbzz)d(: < —0.5zd) forz=0 (3.31)
— 2
d=0

As before, any of the 2¥ — 1 matched filters may cause a decoder error, the overall
probability of decoder error averaged over all possible binary codes poyerairy, > 18

- _ Dk _ S
Poveraliy < 1 — (1= Dc)* 7' < 2%pe, (3.32)

and

- 2 n: 2.d 1 —Z 7
Pavelall(y < 2}’! z (’)‘ l‘ (1 Pb PbZ)] O~52 i fOI Z = O

When three-level quantisation is used for the received signal plus noise, a threshold,
Vinresh 18 defined, whereby, if the magnitude of the received signal plus noise is less
than v;j,.sn, an erasure is declared otherwise a hard decision is made. The probability
of an erasure, perase 1S given by

N EEy—Vinresn 2
e o dx (3.34)

2
Perase = \/?M)/()

The probability of a bit error for the hard decision, p;, is now given by

1 / o =2
Py = e M dx (3.35)
A/ 7 No & Eptvinresh
Accordingly, p(z) becomes
P(2) =1 — pp — Perase + perasez_l + pr_2 (3.36)

and ¢, (z) for three-level soft decisions is

3.2 Soft Decision Bounds 49

0.9
' optimdm threshold !at Es/No:SdlB +
optimum threshold at Es/No=0dB x
optimum threshold at Es/No=-3dB *
0.8
0.7
©
5
o VR
i X_/x""—/’
—
0.6 /
0.5 ‘//
0.4
0 5 10 15 20 25 30 35 40

d

min

Fig. 3.1 Optimum threshold v/ E; —y x o with y x o plotted as a function of % = %f,—g and d,,ip

1— d+1
L o.5zd) (3.37)

Qd(Z) = (1 — Pb — Derase + pera56271 + phziz)d (1—2

giving

2t n! _ _
Poverally < 2_11 Z(m(l — Pb — Derase + DeraseZ L+ Pl Z)d

d=0

1— Zd+1

(—1 - O.Szd)) forz =0 (3.38)
—Z

There is a best choice of vip,es; Which minimises Poyeran, and this is dependent
on the code parameters, (n, k), and % However, v, 1S not an unduly sensitive
parameter and best values typically range from 0.6 to 0.70. The value of 0.65¢ is
mentioned in Wozencraft and Jacobs [6]. Optimum values of v;j,..s;, are given in
Fig.3.1.

3.3 Examples

The overall probability of decoder error averaged over all possible binary codes
has been evaluated for S = % for soft decisions, using Eq. (3.10), the approxima-
tion given by Eq. (3.14) and for hard decisions, using Eq. (3.38), for various code

50 3 Soft Decision and Quantised Soft Decision Decoding

lengths. Results are shown in Fig.3.2 for the ensemble of (100, 50) binary codes.
The difference between the exact random coding bound, Eq. (3.10), and the orig-
inal, approximate, random coding bound, Eq. (3.14) is about 0.5dB for (100, 50)
codes. The loss due to hard decisions is around 2.1dB (at 1 x 107> itis 2.18 dB), and
for three-level quantisation is around 1dB (at 1 x 1073 it is 1.03dB). Also shown
in Fig.3.2 is the sphere packing bound offset by the loss associated with binary
transmission.

Results are shown in Fig.3.3 for the ensemble of (200, 100) binary codes. The
difference between the exact random coding bound, Eq. (3.10), and the original,
approximate, random coding bound, Eq. (3.14) is about 0.25 dB for (200, 100) codes.
The loss due to hard decisions is around 2.1dB, (at 1 x 107 it is 2.15dB) and for
three-level quantisation is around 1dB, (at 1 x 107 it is 0.999dB). Also shown
in Fig.3.3 is the sphere packing bound offset by the loss associated with binary
transmission. The exact random coding bound is now much closer to the sphere
packing bound, offset by the loss associated with binary transmission, with a gap of
about 0.2dB at 1078, It should be noted that the sphere packing bound is a lower
bound whilst the random binary code bound is an upper bound.

Instead of considering random codes, the effect of soft decision quantisation is
analysed for codes with a given weight spectrum. The analysis is restricted to two-
level and three-level quantisation because these are the most common. In other cases,
the quantisation is chosen such that near ideal soft decision decoding is realised. The

10°

’\\ :
1 \
10 \;) % \
- < X X
\
3 M \ \
10 X \;
& \\ \\
w104 \
t X C %
5 | \
10 L] \\ \\\
6 N \ \
10 A \\ \\
I random (100,50) bound hard + \
107 | random (100,50) bound 3 level \ \
L random binary (100,50) approx % \
random binary (100,50) soft \ \
10 blinary sphere7 packing (190,50) = U \
0 1 2 3 4 5 6 7 8
Eb/No [dB]

Fig. 3.2 Exact and approximate random coding bounds for [100, 50] binary codes and quantised
decisions

3.3 Examples 51

10°
A \
107 \\}“ * \\
10 hY \\\ \\ \\\
10 E‘E\ \ \\
; i\
w0 Mo \
w \\ X \\ \\
10° \-.\ \\\ \\ \\
5 Lo\ \
’ 1 \
I random (200,100) bound hard + \1 \ \
107 k random (200,100) bound 3-level Moy \
L random binary (200,100) approx * L\ \
random binary (200,100) soft @ U\ \
s b'inary spher@7 packing (290,100) = Uy \
10
-1 0 1 2 3 4 5 6 7

Eb/No [dB]

Fig. 3.3 Exact and approximate random coding bounds for [200, 100] binary codes and quantised
decisions

analysis starts with a hypothetical code in which the Hamming distance between all
codewords is the same, d,,;,. The probability of decoder error due to a single matched
filter having a greater output than the correct matched filter follows immediately
from Eq. (3.4) and the code parameters may be eliminated by considering ﬁ—; instead
of f,—f)

1 E;
Pa = zerfc(dm,-nﬁ‘o) (3.39)

For hard decisions and three-level quantisation, p, is given by
1 2 (1=t i
Pd = (11— Pb — Derase + DeraseZ + PpZ)min ﬁ —0.5z%min) forz =0

(3.40)

For hard decisions, pese 18 set equal to zero and pj, is given by Eq. (3.28). For three-
level quantisation, perse 1S expressed in terms of ETQO*', the ETQO‘ ratio required when
quantised soft decision decoding is used.

52 3 Soft Decision and Quantised Soft Decision Decoding

Egs—Vinresh _2

2 =2
Perase = \/?1\70/0 e dx (341

Similarly, the probability of a bit error for the hard decision, p,, is given by

1 o =2
Pr = —/ e N dx (3.42)
V7 No EQs+Vihresh

By equating Eq. (3.39) with Eq. (3.40), the Lo, required for the same decoder error

No
probability may be determined as a function of %{’;

soft decision quantisation may be defined as

and d,,;,. The loss, in dB, due to

E oy E,
Losso = 10 x log1o—2 — 10 x logjg— (3.43)
0 810 e

Figure 3.4 shows the soft decision quantisation loss, Loss, as a function of d,;, and
f,—; for hard decisions. For low d,,;,,, the loss is around 1.5dB but rises rapidly with
d,in to around 2dB. For f/—o = 3dB, practical systems operate with d,,;, less than 15
or so because the decoder error rate is so very low (at d,,;, = 15, the decoder error
rate is less than 1 x 10_5p). Most practical systems will operate where the loss is
around 2 dB. Low code rate systems (% or less) operate with negative % ratios with

dpin in the range 25 to 40 whereas % code rate systems with d,,;, in the range 20 to

hard éecision loss 'at Es/No=3d'B +
hard decision loss at Es/No=0dB x
hard decision loss at Es/No=-3dB *
25
f————
2 — X
Pt e
% %
2 7
8 1.5 /
8 7
1
0.5
0
0 5 10 15 20 25 30 35 40

d

'min

Fig. 3.4 Loss due to hard decisions as a function of f,—’(‘) and d,ip

3.3 Examples 53

1.4

'3-Ievel loss 'at Es/No=3d'B +
3-level loss at Es/No=0dB
3-level loss at Es/No=-3dB *

i
/
|

0.9

0.8

0 5 10 15 20 25 30 35 40
d

min

Fig. 3.5 Loss due to three-level soft decisions (erasures) as a function of and dnin

30 will typically operate at = around 0dB. Of course not all decoder error events
are d,,;, events, but the asymptotlc nature of the loss produces an average loss of
around 2 dB.

Figure 3.5 shows the soft decision quantisation loss, Loss, as a function of d,,;,
and for three-level soft decisions. An optimum threshold has been determined for

each Value of dyin and , and these threshold values are in terms of /E; — y X o
with y x o plotted agamst dm,n in Fig.3.1. Unlike the hard decision case, for three-
level quantisation the lowest loss occurs at high d,,;,, values. In common with hard
decisions, the lowest loss is for the smallest % values, which are negative when

expressed in dB. In absolute terms, the lowest loss is less than 1 dB for %0 = —-3dB

and high d,,;,,. This corresponds to low-rate codes with code rates of % or %. The loss
for three-level quantisation is so much better than hard decisions that it is somewhat
surprising that three-level quantisation is not found more often in practical systems.
The erasure channel is much underrated.

3.4 A Hard Decision Dorsch Decoder and BCH Codes

The effects of soft decision quantisation on the decoding performance of BCH codes
may be explored using the extended Dorsch decoder (see Chap. 15) and by a bounded
distance, hard decision decoder, first devised by Peterson [5], refined by Chien [2],
Berlekamp [1] and Massey [4]. The extended Dorsch decoder may be used directly

http://dx.doi.org/10.1007/978-3-319-51103-0_15

54 3 Soft Decision and Quantised Soft Decision Decoding

on the received three-level quantised soft decisions and of course, on the received
unquantised soft decisions. It may also be used on the received hard decisions, to
form a near maximum likelihood decoder which is a non bounded distance, hard
decision decoder, but requires some modification.

The first stage of the extended Dorsch decoder is to rank the received signal
samples in order of likelihood. For hard decisions, all signal samples have equal
likelihood and no ranking is possible. However, a random ranking of &, independent
bits may be substituted for the ranked k£ most reliable, independent bits. Provided
the number of bit errors contained in these k bits is within the search space of the
decoder, the most likely, or the correct codeword, will be found by the decoder. Given
the received hard decisions contain ¢ errors, and assuming the search space of the
decoder can accommodate m errors, the probability of finding the correct codeword,
or a more likely codeword, p is given by

i n! r\ "'
Pr=2. =it (E) (1 N Z) G40

i=0

This probability may be improved by repeatedly carrying out arandom ordering of
the received samples and running the decoder. With N such orderings, the probability
of finding the correct codeword, or a more likely codeword, py; becomes more likely
and is given by

. NN
m n! ! t\"

Increasing N gives
m | ¢ i ¢ n—i\ N
n.
1-— E — | - 1—— ~0 3.46
(—(n—0)!i! (n) (n)) (3.46)

Py 1 (3.47)

and

Of course there is a price to be paid because the complexity of the decoder increases
with N. The parity check matrix needs to be solved N times. On the other hand,
the size of the search space may be reduced because the repeated decoding allows
several chances for the correct codeword to be found.

The modified Dorsch decoder and a bounded distance hard decision BCH decoder
have been applied to the [63, 36, 11] BCH code and the simulation results are shown
in Fig.3.6. The decoder search space was set to search 1 x 10° codewords for each
received vector which ensures that quasi maximum likelihood decoding is obtained.
Also shown in Fig.3.6 is the sphere packing bound for a (63, 36) code offset by

3.4 A Hard Decision Dorsch Decoder and BCH Codes 55

0
10 T T T T T
BCH (63,36,11) Beriekamp hard ™+
BCH (63,36,11) ord hard
BCH (63,36,11) ord soft
107! - BCH (63,36,11) ord erasures @
Were packing bound for (63,36) m
102 NN
10° Lt
o
00 W
o 10
5 N
10 L}
N
]
10°® X
107
108
0 1 2 3 4 5 6 7 8

Eb/No [dB]

Fig. 3.6 Soft decision decoding of the (63, 36, 11) BCH code compared to hard decision decoding

the binary transmission loss. As can be seen, the unquantised soft decision decoder
produces a performance close to the offset sphere packing bound. The three-level
quantisation decoder results are offset approximately 0.9dB at 1 x 107> from the
unquantised soft decision performance. For hard decisions, the modified Dorsch
decoder has a performance approximately 2dB at 1 x 10~ from the unquantised
soft decision performance and approximately 2.2dB at 1 x 107>, Interestingly, this
hard decision performance is approximately 0.4 dB better than the bounded distance
BCH decoder correcting up to and including 5 errors.

The results for the BCH (127, 92, 11) code are shown in Fig.3.7. These results
are similar to those of the (63, 36, 11) BCH code. At 1 x 10~ Frame Error Rate
(FER), the unquantised soft decision decoder produces a performance nearly 0.2dB
from the offset sphere packing bound. The three-level quantisation decoder results
are offset approximately 1.1dB at 1 x 107> from the unquantised soft decision
performance This is a higher rate code than the (63, 36, 11) code, and at 1 x 1073
the == ratio is 4.1 dB. Figure 3.5 for a d,,;, of 11 and an ﬁ ratio of 3dB indicates a
loss of 1.1dB, giving good agreement to the simulation results. For hard dec1s10ns
the modified Dorsch decoder has a performance approximately 2dB at 1 x 10~ from
the unquantised soft decision performance, and approximately 2.1dB at 1 x 107>,
This is consistent with the theoretical hard decision losses shown in Fig.3.4. As
before, the hard decision performance obtained with the modified Dorsch decoder
is better than the bounded distance BCH decoder correcting up to and including five
errors, and shows almost 0.5 dB improvement.

56 3 Soft Decision and Quantised Soft Decision Decoding

10° :
C AN ~5

101 ’-\.. \

10?2 hY \

10 N

\ \
G 104 \-‘ XN
. \ N\
\ \
10 \ \E
\
10 \-=\

I BCH (127,92,11) Berlekamp hars\.

107 F BCH (127,92,11) ord hard x
L BCH (127,92,11) ord soft
BCH (127,92,11) ord erasures

) binary spt)ere packinq bound for (]27,92)

0 1 2 3 4
Eb/No [dB]

+

> e

Fig. 3.7 Soft decision decoding of the (127,92, 11) BCH code compared to hard decision decoding

10°
e
= .
-1
10
I
102 N
10 M N\ X
i \ N
w0 b
w N\
\ N\
10° ht X
\ N\ X ¥
\ \
10 \'"\
I BCH (127,64,21) Berlekarnp hard +
107 | BCH (127,64,21)ord hard X
L BCH (127,64,21)\ord soft
BCH (127,62,21) ord eyasures o
s binary spr?ere packinq bound for (127,64) -
107
0 1 2 3 4 5 6 7 8
Eb/No [dB]

Fig. 3.8 Soft decision decoding of the (127, 64, 21) BCH code compared to hard decision decoding

3.4 A Hard Decision Dorsch Decoder and BCH Codes 57

The results for the BCH (127, 64, 21) code are shown in Fig.3.8. This is an
outstanding code, and consequently the unquantised soft decision decoding perfor-
mance is very close to the offset sphere packing bound, being almost 0.1dB away
from the bound at 1 x 10~>. However, a list size of 107 codewords was used in order
to ensure that near maximum likelihood performance was obtained by the modified
Dorsch decoder. Similar to before the three-level quantisation decoder results are
offset approximately 1.1dB at 1 x 107> from the unquantised soft decision perfor-
mance. However, 3 x 107 codewords were necessary in order to obtain near maximum
likelihood performance was obtained by the modified Dorsch decoder operating on
the three-level quantised decisions. The BCH bounded distance decoder is approx-
imately 3dB offset from the unquantised soft decision decoding performance and
1dB from the modified Dorsch decoder operating on the quantised hard decisions.

These simulation results for the losses due to quantisation of the soft decisions
show a very close agreement to the losses anticipated from the theoretical analysis.

3.5 Summary

In this chapter, we derived both approximate and exact bounds on the performance
of soft decision decoding compared to hard decision decoding as a function of code
parameters. The effects of soft decision quantisation were explored showing the
decoding performance loss as a function of number of quantisation levels. Results
were presented for the ensembles of all (100, 50) and (200, 100) codes. It was shown
that the loss due to quantisation is a function of both d,,;, and SNR. Performance
graphs showing the relationship were presented.

It was shown that the near maximum likelihood decoder, the Dorsch decoder
described in Chap. 15, may be adapted for hard decision decoding in order to pro-
duce better performance than bounded distance decoding. Performance graphs were
presented for some BCH codes showing the performance achieved compared to
bounded distance decoding.

References

1. Berlekamp, E.: On decoding binary Bose-Chadhuri-Hocquenghem codes. IEEE Trans. Inf. The-
ory 11(4), 577-579 (1965)

2. Chien, R.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes. IEEE Trans.
Inf. Theory 10(4), 357-363 (1964)

3. Gallager, R.G.: A simple derivation of the coding theorem and some applications. IEEE Trans.
Inf. Theory 11(1), 459-470 (1960)

4. Massey, J.: Shift register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122—127
(1969)

5. Peterson, W.: Encoding and error-correction procedures for the Bose-Chaudhuri codes. IRE
Trans. Inf. Theory 6(4), 459—470 (1960)

6. Wozencraft, J., Jacobs, L.: Principles of Communication Engineering. Wiley, New York (1965)

http://dx.doi.org/10.1007/978-3-319-51103-0_15

58 3 Soft Decision and Quantised Soft Decision Decoding

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part 11
Code Construction

This part of the book deals with the construction of error-correcting codes having
good code properties. With an emphasis on binary codes, a wide range of different
code constructions are described including cyclic codes, double circulant codes,
quadratic residue codes, Goppa codes, Lagrange codes, BCH codes and Reed—
Solomon codes. Code combining constructions such as Construction X are also
included. For shorter codes, typically less than 512 symbols long, the emphasis is on
the highest minimum Hamming distance for a given length and code rate. The con-
struction of some outstanding codes is described in detail together with the derivation
of the weight distributions of the codes. For longer codes, the emphasis is on the best
code design for a given type of decoder, such as the iterative decoder. Binary convo-
Iutional codes are discussed from the point of view of their historical performance in
comparison to the performance realised with modern best decoding techniques. Con-
volutional codes, designed for space communications in the 1960s, are implemented
as tail-biting block codes. The performance realised with near maximum likelihood
decoding, featuring the modifed Dorsch decoder described in Chap. 15, is somewhat
surprising.

http://dx.doi.org/10.1007/978-3-319-51103-0_15

Chapter 4
Cyclotomic Cosets, the Mattson—-Solomon
Polynomial, Idempotents and Cyclic Codes

4.1 Introduction

Much of the pioneering research on cyclic codes was carried out by Prange [5] in the
1950s and considerably developed by Peterson [4] in terms of generator and parity-
check polynomials. MacWilliams and Sloane [2] showed that cyclic codes could be
generated from idempotents and the Mattson—Solomon polynomial, first introduced
by Mattson and Solomon in 1961 [3]. The binary idempotent polynomials follow
directly from cyclotomic cosets.

4.2 Cyclotomic Cosets

Consider the expansion of polynomial a(x) = Hf":_ol (x — a?). The coefficients of
a(x) are a cyclotomic coset of powers of o or a sum of cyclotomic cosets of powers
of «. For example, if m = 4

ax) = (x —a)(x —a®)(x —aH(x —) 4.1)
and expanding a(x) produces

a(x) = Xt — (a + o +at+ 018)163 + (ot3 +a®+a?++ + ozlo)x2

+ @ +a*+a® +aMHx+al. “4.2)

Definition 4.1 (Cyclotomic Coset) Let s be a positive integer, and the 2—cyclotomic
coset of s (mod n) is given by

© The Author(s) 2017 61
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_4

62 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...
C,={2's (modn)|0<i<t},

where s is the smallest element in the set C; and ¢ is the smallest positive integer
such that 2*!ls = s (mod n).

For convenience, we will use the term cyclotomic coset to refer to 2—cyclotomic
coset. If .4 is the set consisting of the smallest elements of all possible cyclotomic
cosets, then it follows that

c=|Jc=1{0.12...n-1}.
seN

Example 4.1 The entire cyclotomic cosets of 15 are as follows:

Co = {0}
Ci=1{1,2,4,8)
Cs = (3,6,12,9)
Cs = {5, 10}

C; = {7, 14,13, 11}

and 4/ ={0,1,3,5,7}.

It can be seen that for GF(2*) above, Eq. (4.2), the coefficients of a(x) are a cyclo-
tomic coset of powers of « or a sum of cyclotomic cosets of powers of «. For example,
the coefficient of x? is the sum of powers of « from cyclotomic coset C;.

In the next step of the argument we note that there is an important property of
Galois fields.

Theorem 4.1 For a Galois field GF (p™), then
(b(x) + c(x))p = b(x)” + c(x)’.
Proof Expanding (b(x) + c(x))” produces
(b() + c(x))” =b(x)? + (];)b(x)plc(x) n (12’)17@)1]%@)2 n 4.3)
L+ (pf l)b(x)c(x)l’l + e
As p modulo p = 0, then all of the binomial coefficients ("r’) =0and

(b(x) + c(x))p = b(x)” + c(x)’.

4.2 Cyclotomic Cosets 63

Another theorem follows.

Theorem 4.2 The sum of powers of a that are from a cyclotomic coset C; is equal
to either I or 0.

Proof The sum of powers of « that are from a cyclotomic coset C; must equal to a
field element, some power, j of a, &/ or 0. Also, from Theorem 1.1,

(Zac")z = Zac'.

If the sum of powers of « is non-zero then

2 . ;
(E otci) =ao¥ = E af =l

The only non-zero field element that satisfies a¥ = o/ is & = 1. Hence, the sum of
powers of « that are from a cyclotomic coset C; is equal to either 1 or 0.

In the example of C; from GF(2*) we have
@ttt ta’Y o+t +a® = +at +ab ta
and so
a4’ +at+at=0o0rl.

Returning to the expansion of polynomial a(x) = H?:OI (x — a?). Since the coeffi-
cients of a(x) are a cyclotomic coset of powers of « or a sum of cyclotomic cosets
of powers of «, the coefficients of a(x) must be 0 or 1 and a(x) must have binary
coefficients after noting that the coefficient of xis 1—[?1:—01 a? = o~ ! = 1, the max-
imum order of . Considering the previous example of m = 4 (GF(2*)), since a(x)

is constrained to have binary coefficients, we have the following possible identities:

a® =1
at+a’+at+ad=0o0r1
o +at+aP+a''=0o0r1
o +a+a?+a’ +a’+a®=0o0rl.
4.4
These identities are determined by the choice of primitive polynomial used to gen-

erate the extension field. This can be seen from the Trace function, T,,(x), defined
as

64 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...
m—1)
T, (x) = sz’ (4.5)
i=0

and expanding the product of 7, (x) (1 + T, (x)) produces the identity
T, () (1 + T, (x0)) = x(1 — x"). (4.6)

« is aroot of (1 — x™) and so « is a root of either 7}, (x) or (1 + T, (x)), and so either
Tu(e) =0 or (1 4 Tu()) = 0. For GF(2*)

3
T, (x) = szl =x+x>+x* 25 4.7
i=0
Factorising produces
x4+ 2+ =x(1+ 00 +x+ DA +x +xh, 4.8)
and
3 .
I+ T =14 & =1+x+x"+x +x° (4.9)
i=0
Factorising produces
l+x+2+x+ 3 =0+ +xH U +x+ 22 +2° +xY. (4.10)

It may be verified that

Tm(x)(l + Tm(x)) = (x +x% + 2 +x8)(1 +x4+x2+xt +x8)
=x(1+00+x+x)A+x+xH0 +2°+xH
(1 +x+x2 4+ +x4)

= x(1 —x").

Consequently, if 1 + x 4 x* is used to generate the extension field GF(16) then
o +a® +a* + o = 0andif 1 + x* + x* is used to generate the extension field
GF(16),then 1 + o + o> + o* +a® = 0.

Taking the case that a(x) = 1 4+ x + x* is used to generate the extension field
GF(16) by comparing the coefficients given by Eq. (4.2), we can solve the identities
of (4.4) after noting that &® + ' must equal 1 otherwise the order of « is equal to
5, contradicting « being a primitive root. All of the identities of the sum for each
cyclotomic coset of powers of « are denoted by S; ,, and these are

4.2 Cyclotomic Cosets 65

S04 = Olo =1

Sju=a+a’+at+ad=0

S34 =’ +a®+a?+a’ =1

Ssa=a’+a'=1

Su=a +a+aB 4ol =1

Sisa=a® =1. (4.11)
The lowest degree polynomial that has 8 as aroot is traditionally known as a minimal

polynomial [2], and is denoted as M;,, where 8 = af. With M;,, having binary
coefficients

m—1
M;,, = H(x —a'?), (4.12)
j=0

For GF(2*) and considering M3 4 for example,
Msy=(x—a))x—a®)(x—a?)(x —a?), (4.13)
and expanding leads to

M34=x4—(013 +a6+a12+a9)x3+(a9+a3 +a6+a12)x2
+ (ot6 +a?+a° —|—a3)x+ 1. 4.14)

It will be noticed that this is the same as Eq. (4.2) with « replaced with «®. Using the
identities of Eq.(4.11), it is found that

M34=x4+x3+x2+x+1. 4.15)

Similarly, it is found that for Ms4 substitution produces x* + x* 4+ 1 which is (x> +
X+ 1)2, and so

Msy=x*+x+1; (4.16)
similarly, it is found that

Mg =x"+x+1 (4.17)
for My4 with 8 = 15, and substitution produces x* + 1 = (1 + x)* and

M04=)C+1. (418)

66 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

It will be noticed that all of the minimal polynomials correspond to the factors of
1 + x'3 given above. Also, it was not necessary to generate a table of GF(2*) field
elements in order to determine all of the minimal polynomials once M| 4 was chosen.
A recurrence relation exists for the cyclotomic cosets with increasing m for

m—1

M) = ([Te- a"z’))x — o (4.19)
Jj=0
Form = 4,
Mg ="+ 8148 + (S34 + Ssa)x” + Syax + (4.20)
and so

Mis = (x4 + 8147 + (S34 + Ss)x” + Syax + Olls)(x +a'%)

4.21)
and
Mis =x" + (@' + S1)x* + (@'°S14 + (S34 + S52))x°
+ (@'(S34 + S52) + S74)0° + (@874 +aP)x + o (4.22)
and we find that
.5 4 3
Mis =x" 4+ S815x" + (S35 + Ss55)x
+ (875 + S115)x> + Sis5x + ol (4.23)

We have the following identities, linking the cyclotomic cosets of GF(2*) to GF(2°)

S35+ Ss55 = 'S4 4 S34 + Ss4
S75+ Siis = a'®(S34 + Ss54) + S74

Siss = a'%S74 +ab.

With 1 4 x? 4+ x° used to generate the extension field GF(32), then o + a? 4+ o* +
a® 4+ o'% = 0. Evaluating the cyclotomic cosets of powers of « produces

Sos =a’ =1
S15=a+a2+a4+a8+a16=0
Sss=a’ +aS+a?+a® +a'l=1
Sss=a’+a %+ +a’ +a'® =1
S;s=a’ +at+a®+a® +a¥ =0

4.2 Cyclotomic Cosets

Sus=a'+aP +aP+a¥ +a2 =1
Siss=a®+a®+a®+a” +aB =0.

Substituting for the minimal polynomials, M; 5 produces

Mys =x+1

Mis=x +x>+1

M;5 =+ +3+2+1
Ms5 = +x +x2+x+1
M5 =X+ +x>+x+1
Mys=x"4+x"+x>+x+1
Miss =x° +x° + 1.

67

(4.24)

(4.25)

For GF(2°), the order of a root of a primitive polynomial is 31, a prime number.
Moreover, 31 is a Mersenne prime (27 — 1) and the first 12 Mersenne primes cor-
respond to p = 2, 3,5,7,13,17, 19, 31, 61, 89, 107 and 127. Interestingly, only 49
Mersenne primes are known. The last known Mersenne prime being 274207281 _ 1,
discovered in January 2016. As (2° — 1) is prime, each of the minimal polynomials

in Eq. (4.25) is primitive.

If is aroot of T, (x) and m is even, then 1+ T,y (x) = 1+ T, (x) + (1 + Tu(x))”

2m 2m . . .
and (x% is a root of x2". For example, if o is aroot of 1 + x + x2, « is of order 3
and o is a root of x 4+ x? 4+ x* 4+ x®. Correspondingly, 1 + x + x? is a factor of 1 4 x*
and also a factor of 1 4+ x'3 and necessarily 22 — 1 cannot be prime. Similarly, if m

is not a prime and m = ab, then

221 e +2ba=2 4 gbla=d) 4
29 — 1
and so
M] = (2b=D 4 pba=2) 4 pbla=3) 4)4 .
Similarly

2m 1 = (200D 4 peb=D 4 pab=3 4)b .

As a consequence

M(2b(u—1)+2b(a—2)+2b(a—3) D xjm == Al] a

(4.26)

(4.27)

(4.28)

(4.29)

68 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...
for all minimal polynomials of x>*~! — 1, and
M(za(b—l)+2u(b—2)+2a(h—3) D xjm == j/, (430)

for all minimal polynomials of X2
For M| ¢, following the same procedure,

Mis=x°+S16x° + (S36+ Ss6 + So6)x* + (S76 + S116 + Si36 + S216)x°
+ (Sis6 + S236 + S276)x + Si56x% + S316x + a®. 4.31)

Substituting for the minimal polynomials, M; ¢ produces

My =x+ 1
Mig=x5+x+1
Myg=x+x*+x>+x+1
Mse =X+ +x>+x+1
Mg =x+x+1

My = +x2+1

Mg =X+ X+ +2+1
Miz¢ =xS+xr+ P +x+1
Mise =X+ +x* +x2+1
Mg =x>+x+1

M3 =X+ +x +x+1
Mye=x+x+1
Mse=x"+x° + 1. (4.32)

Notice that Mos = M34 because o® + o'® + &3 = 1 and My;4 = M, 4 because
o + a8+ a3 = 0. My ¢ = M, 5 because o?! + o*? = 1. The order of « is 63 which
factorises to 7 x 3 x 3 and so x% — 1 will have roots of order 7 («°) and roots of
order 3 (@?1). Another way of looking at this is the factorisation of x® — 1. x7 — 1
is a factor and x> — 1 is a factor

X 1= (7 = DA A7 x4
a8 x5 4 x2 x¥ - x6) (4.33)

also

x63—1:(x3—1)(1+x3+x6+x9+x12+x15+x18+x21
A N U R L L R A P A (4.34)
+ x4 17 4 x90)

4.3 The Mattson—Solomon Polynomial 69

and
P-1l=x+DE+x+1)
X =1=x+DEC+x+DE+22+1)
Bl =0+ D +x+ D +x+ DE+2+ DA +x+ 1D
OHxr 2 +x+D. xS+ +1). (4.35)
FOI"M17

M7 =x" 4 8178 + (S37 + S57 + So)x* + (S77 + S117 + S137+S197 + S217)x°
+(S157 + 8237 + S277 + S207)x% + (S157 + S317 + S437+S477 + S557)x°

+ Se37x +a'?.

(4.36)

Although the above procedure using the sums of powers of « from the cyclotomic
cosets may be used to generate the minimal polynomials M, ,, for any m, the procedure
becomes tedious with increasing m, and it is easier to use the Mattson Polynomial
or combinations of the idempotents as described in Sect.4.4.

4.3 The Mattson—-Solomon Polynomial

The Mattson—Solomon polynomial is very useful for it can be conveniently used to
generate minimal polynomials and idempotents. It also may be used to design cyclic
codes, RS codes and Goppa codes as well as determining the weight distribution
of codes. The Mattson—Solomon polynomial [2] of a polynomial a(x) is a linear
transformation of a(x) to A(z). The Mattson—Solomon polynomial is the same as the
inverse Discrete Fourier Transform over a finite field. The polynomial variables x
and z are used to distinguish the polynomials in either domain.

Let the splitting field of x* — 1 over F, be Fy», where n is an odd integer and
m > 1, and let a generator of F,» be o and an integer r = (2™ — 1) /n. Let a(x) be a
polynomial of degree at most n — 1 with coefficients over Fon.

Definition 4.2 (Mattson—Solomon polynomial) The Mattson—Solomon polynomial
of a(x) is the linear transformation of a(x) to A(z) and is defined by [2]

n—1
AR) =MS(aw) = > a7 (4.37)

J=0

The inverse Mattson—Solomon transformation or Fourier transform is

70 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

Table 4.1 GF(16) extension field defined by 1 + o + at=0
0
=1

S
|

R R R R

\ow\lc\mpum

ol
a1:a+a2+a3
a?=1+a+a®>+d>
aB=1+a2+d3
a*=14+ad3

n—1

a(x) =MS™'(A(z) = - ZA(oe”)x (4.38)

i=0

The integer r comes into play when 2" — 1 is not a prime, that is, 2" — 1 is not
a Mersenne prime, otherwise r = 1. As an example, we will consider [F,: and the
extension field table of non-zero elements is given in Table4.1 with 1 + o + at =0,
modulo 1 4 x13

Consider the polynomial a(x) denoted as

n—1
a(x) = Za,-x" =1+x +x% (4.39)
i=0

We will evaluate the Mattson—Solomon polynomial coefficient by coefficient:

AO)=ay+az+as=1+1+1=1

A =ay+aa +ae =1+ +a' =14+14a+’+ a4+’ +a>=0
A(2):a0+a3a76+a4a78:1+a9+a7 =l+a+a®+1l+a+a>=0
A(3):a0+a3a79+a4a712:1+a6+a3:1+a2+a3+a3 =ab
A(4):a0+a3a_12+a4a_16: 1+ +a =14 +1+a>=0

A(5) =a0+a3a_15+a4a_20= 1+1+a'9=a'"

A(6) :a0+a3a718+a4a724 =14+a?+a® =0

AN =ap+aa ! +aa™B =1+’ +a? =1+a+a’ +a? =a'?
A(8) :a0+a3a_24+a4a_32 =14+a%+a?=0

4.3 The Mattson—Solomon Polynomial 71

A9 =ag +a3oz_27 +a4a_36 =1+’ 4+ =14+a=0d"
A(10) = ap + a3oz_30 tae ™ =1+1+a>=0d>
A(ll) =ap + a3a_33 +a4a_44 =14+a?+a=0af

A(12) = ap + a3of36 +a4of48 =1+a+a'2 =02

A(13) = ap + a3tx739 + a4a752 =1+a’+ab=0d3

A4 =ag+ma ™ + a0 =1+ +a0* =0o°. (4.40)

It can be seen that A(z) is

A@) =1+ + ' + a2’ + 77 + o*2’ + o°210) + %2 + o?2"?
NI
A(z) has four zeros corresponding to the roots «~!, @2, @™ and o %, and these
are the roots of 1 + x> + x*. These are also 4 of the 15 roots of 1 + x'°. Factorising
1 + x'3 produces the identity

1+xP =0 4+00+x+)A+x+xH0 +5° +x4)(1 +x+x2+x° +x4).
(4.41)

It can be seen that 1 + x* + x* is one of the factors of 1 + x!°.

Another point to notice is that A(z) = A(z)? and A(z) is an idempotent. The reason
for this is that the inverse Mattson—Solomon polynomial of A(z) will produce a(x) a
polynomial that has binary coefficients. Let - denote the dot product of polynomials,
ie.

(ZAizi) . (ZBizi) => A7,

It follows from the Mattson—Solomon polynomial that with a(x)b(x) = c(x),
z C,'Zi = ZA,‘B,‘Zi.

This concept is analogous to multiplication and convolution in the time and fre-
quency domains, where the Fourier and inverse Fourier transforms correspond to the
inverse Mattson—Solomon and Mattson—Solomon polynomials, respectively. In the
above example, A(z) is an idempotent which leads to the following lemma.

Lemma 4.1 The Mattson—-Solomon polynomial of a polynomial having binary coef-
ficients is an idempotent.

Proof Let c(x) = a(x) - b(x). The Mattson—Solomon polynomial of c¢(x) is C(z) =
A(2)B(z). Setting b(x) = a(x) then C(z) = A(2)A(z) = A(2)%. If a(x) has binary
coefficients, then c(x) = a(x) - a(x) = a(x) and A(z)*> = A(z). Therefore A(z) is an
idempotent.

72 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

Of course the reverse is true.

Lemma 4.2 The Mattson—-Solomon polynomial of an idempotent is a polynomial
having binary coefficients.

Proof Let c(x) = a(x)b(x). The Mattson—Solomon polynomial of c(x) is C(z) =
A(z2)B(z). Setting b(x) = a(x) then C(z) = A(z) - A(z). If a(x) is an idempotent then
cx) = a(x)? =akx) and A(z) = A(z) - A(z). The only values for the coefficients of
A(z) that satisfy this constraint are the values 0 and 1. Hence, the Mattson Solomon
polynomial, A(z), has binary coefficients.

A polynomial that has binary coefficients and is an idempotent is a binary idem-
potent, and combining Lemmas4.1 and 4.2 produces the following lemma.

Lemma 4.3 The Mattson—Solomon polynomial of a binary idempotent is also a
binary idempotent.

Proof The proof follows immediately from the proofs of Lemmas4.1 and 4.2. As
a(x) is an idempotent, then from Lemma4.1, A(z) has binary coefficients. As a(x)
also has binary coefficients, then from Lemma4.2, A(z) is an idempotent. Hence,
A(z) is a binary idempotent.

As an example consider the binary idempotent a(x) from GF(16) listed in
Table4.1:
ax) =x+ x> +x° +xt 0+ 8+ 0+ x
The Mattson—Solomon polynomial A(z) is
AR =7+ +7 + 2,
which is also a binary idempotent.
Since the Mattson polynomial of a(x~!) is the same as the inverse Mattson poly-
nomial of a(x) consider the following example:
a(x) = x T B Y = 2
The Mattson—Solomon polynomial A(z) is the binary idempotent
AR =z+2+ 2+ + 2+ 82+ +

This is the reverse of the first example above.
The polynomial 1 + x + x* has no roots of 1 4+ x'> and so defining b(x)

b(x) = (1 +x+x)1+2° +x%) =1 +x+x" +2°+47. (4.42)
When the Mattson—Solomon polynomial is evaluated, B(z) is given by

B@)=14+z+22+5+7. (4.43)

4.4 Binary Cyclic Codes Derived from Idempotents 73

4.4 Binary Cyclic Codes Derived from Idempotents

In their book, MacWilliams and Sloane [2] describe the Mattson—Solomon polyno-
mial and show that cyclic codes may be constructed straightforwardly from idem-
potents. An idempotent is a polynomial 8(x) with coefficients from a base field
GF(p) that has the property that 87(x) = 6(x). The family of Bose—Chaudhuri—
Hocquenghem (BCH) cyclic codes may be constructed directly from the Mattson—
Solomon polynomial. From the idempotents, other cyclic codes may be constructed
which have low-weight dual-code codewords or equivalently sparseness of the parity-
check matrix (see Chap. 12).

Definition 4.3 (Binary Idempotent) Consider e(x) € T(x), e(x) is an idempotent if
the property of e(x) = €?(x) = e(x?) mod (x" — 1) is satisfied.

An (n, k) binary cyclic code may be described by the generator polynomial g(x) €
T (x) of degree n — k and the parity-check polynomial 4(x) € T (x) of degree k, such
that g(x)h(x) = x"* — 1. According to [2], as an alternative to g(x), an idempotent may
also be used to generate cyclic codes. Any binary cyclic code can be described by a
unique idempotent e, (x) € T (x) which consists of a sum of primitive idempotents.
The unique idempotent e, (x) is known as the generating idempotent and as the name
implies, g(x) is a divisor of e, (x), and to be more specific e, (x) = m(x)g(x), where
m(x) € T(x) contains repeated factors or non-factors of x* — 1.

Lemma 4.4 Ife(x) € T(x) is an idempotent, E(z) = MS(e(x)) € T(2).

Proof Since e(x) = e(x)? (mod x" — 1), from (4.37) it follows that e(a™) =
e(a™)? for j = {0,1,...,n — 1} and some integer r. Clearly e(a™7) € {0, 1}
implying that E(z) is a binary polynomial.

Definition 4.4 (Cyclotomic Coset) Let s be a positive integer, and the 2—cyclotomic
coset of s (mod n) is given by

C,={2's (modn)|0<i=<t},

where we shall always assume that the subscript s is the smallest element in the set
C, and ¢ is the smallest positive integer such that 2'*'s = s (mod n).

For convenience, we will use the term cyclotomic coset to refer to 2—cyclotomic
coset throughout this book. If .4 is the set consisting of the smallest elements of all
possible cyclotomic cosets, then it follows that

c=[Jc=1{012...n-1}.
seN

Definition 4.5 (Binary Cyclotomic Idempotent) Let the polynomial e;(x) € T (x) be
given by

http://dx.doi.org/10.1007/978-3-319-51103-0_12

74 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

)= D x%, (4.44)

0=i<|C—1

where |C,| is the number of elements in Cs and Cy; = 2s (mod n), the (i + 1)th
element of C;. The polynomial e,(x) is called a binary cyclotomic idempotent.

Example 4.2 The entire cyclotomic cosets of 63 and their corresponding binary
cyclotomic idempotents are as follows:

Co = {0} eo(x) =1
C,=1{1,2,4,8,16, 32} el(x):x—i—xz+x4—i—xg—i—)c16—i—x32
C; = {3, 6, 12,24, 48,33} e3(x) = x° 4+ 20 4 a2 4% 41 4

Cs = {5, 10, 20, 40, 17, 34} es(x) = x° 4+ x'0 4 x17 4 x20 4 3 4 xH0
Cr =1{7,14,28,56,49,35} e7(x) = x" +x" + 2% 4 x¥ 4 1% 4+ 1%
Co = {9, 18, 36} eo(x) = x" +x'® +x%°

Cy = {11,22,44,25,50,37} e (x) = x4+ 222 412 + 557 4 x¥ 4 0
Ci3 ={13,26,52,41,19,38) ej3(x) = x> 4+ 1" 4+ x% 438 4 x* 4 7

Cis = {15, 30,60,57,51,39} e15(x) =x + 20 + 2% + 1 47 + 1%
Gy = {21, 42} e (x) = x4+ 1%

Cyy = {23, 46,29, 58,53,43} exn(x) =13 +x%° + 4 4 x% 473 4 8
Cy7 = {27, 54, 45} err(x) = 2% 4P x>

Cy = {31,62,61,59,55,47} e31(x) = x> 4+ x*7 + x5 + x5 425 4 x62

and 4/ ={0,1,3,5,7,9,11, 13, 15, 21, 23, 27, 31}.

Definition 4.6 (Binary Parity-Check Idempotent) Let .44 C .4 and let the polyno-
mial u(x) € T(x) be defined by

u(x) = Y e(x), (4.45)

seM

where e;(x) is an idempotent. The polynomial u(x) is called a binary parity-check
idempotent.

The binary parity-check idempotent u(x) can be used to describe an [n, k] cyclic
code. Since GCD (u(x), x"—1) = h(x), the polynomial #(x) = xdeg@) gy x =1y and its
ncyclic shifts (mod x" — 1) can be used to define the parity-check matrix of a binary
cyclic code. In general, wty (u(x)) is much lower than wty (h(x)), and therefore a
sparse parity-check matrix can be derived from u(x). This is important for cyclic
codes designed to be used as low-density parity-check (LDPC) codes, see Chap. 12.

http://dx.doi.org/10.1007/978-3-319-51103-0_12

4.4 Binary Cyclic Codes Derived from Idempotents 75

4.4.1 Non-Primitive Cyclic Codes Derived from Idempotents

The factors of 2 — 1 dictate the degrees of the minimal polynomials through the
order of the cyclotomic cosets. Some relatively short non-primitive cyclic codes have
minimal polynomials of high degree which makes it tedious to derive the generator
polynomial or parity-check polynomial using the Mattson—Solomon polynomial. The
prime factors of 2" — 1 for m < 43 are tabulated below in Table4.2.

The Mersenne primes shown in Table4.2 are 23 — 1,25 — 1,27 — 1,213 — 1,
217 1,2 —1,2% — 1 and 2*' — 1, and cyclic codes of these lengths are primitive
cyclic codes. Non-primitive cyclic codes have lengths corresponding to factors of
2™ — 1 which are not Mersenne primes. Also it may be seen in Table4.2 that for m
even, 3 is a common factor. Where m is congruent to 5, withm = 5 x s, 3l is a
common factor and all M; s minimal polynomials will be contained in the set, M; 5
of minimal polynomials.

As an example of how useful Table4.2 can be, consider a code of length 113.
Table4.2 shows that 228 — 1 contains 113 as a factor. This means that there is a
polynomial of degree 28 that has a root 8 of order 113. In fact, 8 = «>*7>33%, where
a is a primitive root, because 228 — 1 = 2375535 x 113.

The cyclotomic cosets of 113 are as follows:

Co = {0}
C =1{1,2,4,8,16,32, 64, 15, 30, 60, 7, 14, 28, 56,

112,111, 109, 105, 97, 81, 49, 98, 83, 53, 106, 99, 85, 57}
C3 =1{3,6,12,24,48,96,79, 45,90, 67, 21, 42, 84,

55,110, 107, 101, 89, 65, 17, 34, 68, 23, 46, 92, 71, 29, 58}
Cs = {5, 10, 20, 40, 80, 47, 94, 75, 37,74, 35,70, 27,

54,108, 103, 93, 73, 33, 66, 19, 38, 76, 39, 78, 43, 86, 59}
C; =1{9,18,36,72,31,62, 11, 22, 44, 88, 63, 13, 26,

52,104,95,77,41, 82,51, 102, 91, 69, 25, 50, 100, 87, 61}.

Each coset apart from Cy may be used to define 28 roots from a polynomial
having binary coefficients and of degree 28. Alternatively, each cyclotomic coset
may be used to define the non-zero coefficients of a polynomial, a minimum weight
idempotent (see Sect.4.4). Adding together any combination of the 5 minimum
weight idempotents generates a cyclic code of length 113. Consequently, there are
only 2% — 2 = 30 non-trivial, different cyclic codes of length 113 and some of these
will be equivalent codes. Using Euclid’s algorithm, it is easy to find the common
factors of each idempotent combination and x!!'3 — 1. The resulting polynomial may
be used as the generator polynomial, or the parity-check polynomial of the cyclic
code.

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

76

€98660C X 61L6 X TeY LOTTTOE6096L8 94 €89 X 68 X €T X ¢ €0Ev61Y (44

6TYS X LEE X LTI X €F X L X L X € X ¢ €0TT1S9¥086EY (44 LEE X LTI X L X L 1S1L60T IC
€SETTSYIT X LIEET 1SSSSTET0661C 8% IPXTEXTIXEXEXE SLS8Y0T 0¢

I89T9 X IF X TE X LT X [T X G X ¢ X ¢ SLLLTITIS660T (04 L8TYTS L8TYTS 61
69€1TT X 1618 X 6L X L L8BETIBSSLOYS 6€ ELXOI X LXEXEXE ev129C 81
LBTYTS X €9LYLT X € €76906LL8YLT 8¢ TLOTET TLOTET LT
LLTBTET9 X €T [LYES68EYLET Le LETX LT X G X ¢ G€SS9 91

60T X €L X LEX QI X ET X L X EX gX¢X¢ SELILYOTLSY 9¢ IST X 1€ X L L9LTE ST
TTOTTT X LTIXTL X 1€ LIEBELOSEVE 53 LTI X €7 X € €891 14!

TLOTET X 169¢€Y X € €816986LILI 143 1618 1618 €l

6LY66S X 68 X €T X L 1657€66858 €€ EIXLXEXEXE S601 4!

LESSY X LSTX LT X ¢ X ¢ S6TLIGYOTY [43 68 X €T L¥0T T
LY9E8YLYIT LY9E8YLYIT Ie [EXTIX¢ €201 (U

TEEX TST X TEX TT X L X g X ¢ €T8IVLELOT 0¢ ELXL I1s 6
680T X €0TT X €€T TT60L89¢S 6¢ LTXGX¢ 6sT 8

LTT X CIT X ey X 60X 6 X ¢ SSrSEY89C 8¢ LTl LT1 L
LS9TIT X €L X L LTLLITYET LT LXgx¢g €9 9

1618 X TELT X € £€98801L9 9t £3 Ie S

T08T X 109 X I¢ [£35449%23 ST €XxX¢ S1 ¥

IPCX LT X EI X LXGXEXE STTLLLIT 14 L L €
1878LT X LY L0988¢E8 €T € € [4

10308, I — wl w 10308, I — wl w

I — i JO S10)08) QWL ¢'p dIqeL,

4.4 Binary Cyclic Codes Derived from Idempotents 71

For example, consider the GCD of C; + C3 = x + x> + x> +x* +x0+x3 + ... +
X109 4 10 1T 4 112 and x!'13 — 1. This is the polynomial, «(x), which turns out
to have degree 57

”(x)=1+x+x2+x3+x5+x6+x7+x10+x13

...+x51+x52+x54+x55+x56+x57.

Using u(x) as the parity-check polynomial of the cyclic code produces a (113, 57,
18) code. This is quite a good code as the very best (113, 57) code has a minimum
Hamming distance of 19.

As another example of using this method for non-primitive cyclic code construc-
tion, consider the factors of 23° — 1 in Table4.2. It will be seen that 79 is a factor
and so a cyclic code of length 79 may be constructed from polynomials of degree
39. The cyclotomic cosets of 79 are as follows:

Co = {0}
Cy =1{1,2,4,8,16,32,64,49, 19,38,76,73, ... 20, 40}
Cs =1{3,6,12,24,48, 17,34, 68,57, 35,70, ...60, 41}.

The GCD of the idempotent sum given by the cyclotomic cosets Cy+ C; and x7° — 1
is the polynomial, u(x), of degree 40:

u@x) =14+ x4+ 3>+ +28 + x4 x12 4410

.“+x28+x29+x34+x36+x37+x40.

Using u(x) as the parity-check polynomial of the cyclic code produces a (79, 40,
15) code. This is the quadratic residue cyclic code for the prime number 79 and is a
best-known code.

In a further example Table 4.2 shows that 237 — 1 has 223 as a factor. The GCD of the
idempotent given by the cyclotomic coset Cs x* +x0+4x'2 4 x24-x¥B 4 | x!98 45204
and x**3 — 1 is the polynomial, u(x), of degree 111

u@) =14+ 24+ 4+ +x8+ 22 + 2104 x12

+X92 +X93 +x95 + x103 +x107 +)Cl“

Using u(x) as the parity-check polynomial of the cyclic code produces a (223, 111,
32) cyclic code.

78 4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

4.5 Binary Cyclic Codes of Odd Lengths from 129 to 189

Since many of the best-known codes are cyclic codes, it is useful to have a table of
the best cyclic codes. The literature already contains tables of the best cyclic codes
up to length 127 and so the following table starts at 129. All possible binary cyclic
codes up to length 189 have been constructed and their minimum Hamming distance
has been evaluated.

The highest minimum distance attainable by all binary cyclic codes of odd lengths
129 < n < 189 is tabulated in Table4.3. The column “Roots of g(x)” in Table4.3
denotes the exponents of roots of the generator polynomial g(x), excluding the con-
jugate roots. All cyclic codes with generator polynomials 1 +x and (x* —1)/(1 +x),
since they are trivial codes, are excluded in Table4.3 and since primes n = 8m + 3
contain these trivial cyclic codes only, there is no entry in the table for these primes.
The number of permutation inequivalent and non-degenerate cyclic codes, excluding
the two trivial codes mentioned earlier, for each odd integer n is given by N¢. The
primitive polynomial m(x) defining the field is given in octal. Full details describing
the derivation of Table4.3 are provided in Sect.5.3.

In Table4.3, there is no cyclic code that improves the lower bound given by
Brouwer [1], but there are 134 cyclic codes that meet this lower bound and these
codes are printed in bold.

4.6 Summary

The important large family of binary cyclic codes has been explored in this chapter.
Starting with cyclotomic cosets, the minimal polynomials were introduced. The
Mattson—Solomon polynomial was described and it was shown to be an inverse
discrete Fourier transform based on a primitive root of unity. The usefulness of the
Mattson—Solomon polynomial in the design of cyclic codes was demonstrated. The
relationship between idempotents and the Mattson—Solomon polynomial of a poly-
nomial that has binary coefficients was described with examples given. It was shown
how binary cyclic codes may be easily derived from idempotents and the cyclotomic
cosets. In particular, a method was described based on cyclotomic cosets for the
design of high-degree non-primitive binary cyclic codes. Code examples using the
method were presented.

A table listing the complete set of the best binary cyclic codes, having the highest
minimum Hamming distance, has been included for all code lengths from 129 to 189
bits.

http://dx.doi.org/10.1007/978-3-319-51103-0_5

2 (penunuoo)

LSTESI'6°L'ST 0 4 1T 6°LET O 14 09 LS61°1°0 9 801
LSIEST6°L S T 144 C 1€6°LT 61 19 LS ‘611 9 601
I€6°LCET 0 8¢ 144 LSIE61 L°T°0 91 L LS‘1€°0 9 111
I1€°6°LS€ T 61 ST LS TE61 ‘L1 91 €L LS ‘1€ 9 (41
LSIE6T6°LCT 0 (43 9¢ LSIELTO 91 SL 1°0 14 148!
LSIE61 ‘6°L ST [43 LE LSIEL T 91 9L 1 € ST
LSIE6°LST O (4% 6€ 6GT°0 14! 8L LS ‘61 ‘0 (4 971
LSIE6°LS T (43 (14 1€L1 14! 6L LS ‘61 (4 LTT
I€E6°LST O 8¢ w LSIE61 ‘T 0 (0] 06 LS ‘0 (4 6C1
1€CT6°L T 61 194 LS 61 ‘LT 8 16 LS (4 0€1
861 = PN ‘STEPEET = (ML ‘¢g] = u
€6l ‘I 6 L€ 1 6¢ (34 ev 1T 61 ‘1 €l ¢8
GLIT6LETC0 0€ 144 IT6T°T°0 141 98
TT6LSTIT6 ‘L S‘E‘T ‘0 98 (4 6L IT6 ‘L E‘T 6C 14 TT€T ‘T €1 L8
€V 1T6L ‘€L TT6°LCT 0 S 14! P IT6T6°S‘T 0 (4 9¢ EPET 0 01 86
eV 1T 6l ‘ET‘TT'6°L ‘T 149 9! €6l ‘6°L c‘l C LS €6l 8 66
TT6T ‘ST IT 6 °LCT‘0 (45 91 6L 6°L€T 0 (44 8¢ €T (18 001
1261 ‘€I ‘I1‘6°L € 1 194 L1 6l ‘6°L€ 1 [44 6S 6°T 8 101
€V TTOL‘ET'TI L€ T°0 oy 8¢ €61 ‘L€ET 0 81 0L €PT0 9 (411
€V 1T 61 ‘€1 ‘11 ‘L€l LE 6C €v ‘61 ‘L€l L1 1L £ ‘c 14 (38!
B S A A] 8¢ 0€ 6L°6°LT 0 8T (4 1° 9 141!
1261 ‘€1 116 °L ‘1 (43 1€ 61 °L€’1 SI €L 1 € SITI
g 6T TT6°L°CT 0 0¢ 4% € TT6L T 0 14 8 £ 4 L1
m 88¢ = N LLTLL = (X)ui ‘671 = u
& (x)8 Jo sj00y p bl 7 (x)8 Jo sj00y 7 p bl 7 (x)8 Jo sj00y p bl
% 681 01 671 WOI} SYISU] Ppo JO SIPOJ JI[OAD ATeulq JO QOUBISIP WNWIUIW d[qeurente 1saysy oy, €' dqeL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

80

(panunuoo)

€9°SH 1T LS T 0 81 97 €9°61°6‘T°0 8 0L S¥S0 4 48!
€9°Sh 1T LS T 81 LT €9°6T ‘6“1 8 1L SP s 4 SI1
€9°ITLST 0 81 8T SPITET0 9 (7 €96t ‘120 4 911
€9°TIT LS T SI 6T SYITe T 9 €L €96t ‘12 4 LTT
SPITLSTO Tl 0¢ €9°Gh ‘10 9 YL €9°12°0 4 811
SPITLS T ! I€ €9°Gh ‘61 9 SL €9°1¢C 4 611

€9°Sh ST 'L'ST 0 ! 43 €9°6°T°0 9 9L SY 1T 0 4 0TI
€9°Ch ST ‘LS I Tl €€ €9°G°1 9 LL Sy 1T 4 14!
€9°GT“LS‘T0 ! e SYITSIT 0 9 8L €9 ‘St ‘ST °0 4 (44!
€9°CT LS T ! ¢ SPIT ST T 9 6L €9 ‘b “SI 4 €Cl
SPITLET 0 01 9¢ €9°SYIT°1°0 9 08 €9°G1 0 T 74!
SPITLE T 01 LE €96 1T ‘1 9 18 €9 61 4 STl

€9 °SY “TT ST L 1“0 01 8¢ €9°12°1°0 9 8 SPS1°0 4 9CI1
€9 SHIT ST LT 01 6¢ €9 °SP LT ST ‘1 9 €8 Sy ‘S1 T LTl
€9TTSTLT 0 01 o SYITT0 9 8 €9 ‘St ‘0 T 8TI
€9°1T ST L T o1 187 SPIT 1 9 8 €9 ‘s 4 621
SPITSILTC0 01 T €9 °SHST°1°0 9 98 €9 T o€t
SYIT ST L T o1 197 €9 G ST ‘T 9 L8 €9 4 €1
€9°SH 1T LT 0 01 24 €9°6T°T°0 9 88 S0 4 (4%
€9 IT LT 01 Sy €9°GI ‘T 9 68 St T €€l

786 = ZN ‘1001000000001 = ()ut ‘G¢T = u

LSTEST6°LSET0 9L € LS TE61°6°L 10 ¥C S LS IET 0 01 €6
LSTEST6°LSC T LS 14 LSTE 6T ‘6°L T ¥T S¢S LS TEL 8 6
LSTE6T‘6°LSET 0 14 81 LSIE6°L T ‘0 74 LS 1€°71°0 01 96
LSTE6T6°LS el 8% 61 LSTE6 L T 144 8S 1€ 1 L L6
()8 jo s100y p ¥ ()8 Jo s100y p ¥ ()8 Jo 5100y p ¥

(ponunuod) ¢'p AqeL

4.6 Summary

(panunuoo)

€9°1C°L 10 o1 9t €9°LT°T°0 9 06

€9°SY LT ST L T o1 Ly €9°LT T S 16

€9 ‘ShLTITSTLSET 0 (4 4 SYITLT0 or 8t €967 ‘10 9 6
€9°CH LT IT ST L S E'l €9 S SYPITL T o1 6 €9 G¥ ‘1 9 €6
€9°LTIT ST 'L'SET 0 143 9 €9°Sr ST LT 0 o1 0S €9°7°0 9 6
€9°LTIT ST LS € T 94 L €9 Gy ST L1 or IS €9°1 S $6
€9°SH IT ST L'SE°T 0 9¢ 8 €9°GT°LT0 o1 43 Y10 4 96
Sy LT TIT ST LS e T 9¢ 6 €9°GT L T o1 €S Sr T 4 L6
€9°IT ST L'SET 0 9¢ o1 SYITSET0 8 s €9°S¥ 1T S0 4 86
€9°Sr LT TIT LS E T 0¢ I SYIT S el 8 sS €9°SrITS 4 66
€9°LT ITL'SET 0 0¢ 4! €9°SrITST'ST°0 8 9 €9°12°6°0 4 001
€9°CH LT IT ST 6 LS 1 T €l €9 °CF 1T ST G 1 8 LS €9°1T°S 4 101
€9°SH IT LSET 0 0¢ 14! €9°ITSTST0 8 8S SYIT'S 0 4 201
SPLTIT LS e T 0¢ S1 €9°IT ST 1 8 6S SRS 14 €01
€9°1TLS€‘1°0 0¢ 91 SHITSI ST 0 8 09 €9°GF ‘ST °6°0 4 01

€9°SY LT TT ST L ST T L1 SYIT ST ST 8 19 €9°Sr ST S 4 o1
€9°LTIT ST L'ST 0 T 81 €9°SrITST°0 8 9 €9°61°6°0 4 901
€9°LTIT ST LS T 1T 61 €9°CH1TS ‘1 8 €9 €961 S 14 LOT
€9°SrIT ST LS T 0 T 0T €9°ITST°0 8 9 €9°LT°6°0 4 801

€9 Sy IT ST L S T T 1z €9 Sy LT ST ST 8 9 €9°LT°S 4 601
€9°TITSTLST0 T (44 SYITS 10 8 99 £€9°6¥ 50 4 011

€9°TT ST L ST ¥4 €T SYIT ST 8 L9 €96t s 4 48!
€9°LTITL'ST'0 81 T €9 Sy ST°S1°0 8 89 €9°G°0 4 A
€9°LTTIT L ST S1 T €9 ‘S ST 6“1 8 69 €9°6 4 €1l

(%) 8 Jo s100y p ¥ (¥)8 Jo s100y I4 ¥ (%)8 jo s100y p ¥

(ponunuod) €'y Qe

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

82

(panunuoo)

6T T1S‘€T°0 9 8¢ I1°6°1°0 ¥T 09 6T°T 0 1] 48!
6 T1°6°¢“1 9% 6T I1°6°1 ¥T 19 621 S €Il
TI‘s‘e“r‘o v 43 62610 ¥1 ¥8 ‘0 8 911
116’1 6T €¢ 6C°S°1 2t <8 I S L11
6C°T1°S1°0 9T 9¢ ST0 4! 88 670 4 1141
6C°T1 6“1 9T LS ST 4! 68 6C 4 641
O = &N “LIESHPTLSE = (Nui ‘Spl = u
11°7°0 81 0L €rI1°o v 0TI
117 ¢l L €111 4 121
ST°0 (44 (44 LT 91 [110 4 o€l
Sl 1 €T €1 1 €L 1 4 I€l
ELT1IT°0 T 09 10 4! 8 €10 4 (43
€LIL ‘T T 19 I 11 €8 ¢l z €l
91 = #N ‘190S0SYTELYS09LICTSHT = (Nut ‘cp] = u
SIET0 w 34 1°0 9 6
[(44 6 I € $6
LPSET0 9¢ € LY S€°0 74 69 LY ‘€0 v SIT
Ly ST €¢ T Ly S°¢ T 0L Ly € 4 911
S'eETo 9¢ ST S€E0 w IL €0 (4 LT1
Sel €¢ 9T Se 54 L € 4 811
LY ST€T°0 T 9F LY T°0 9 6 L0 4 8c1
Ly ‘ST €1 T Ly Ly ‘ST ¢ 14 €6 Ly 4 6€1
0€ = N ‘€101T€999LIYOVIT = (N)ut ‘Tp] = u
| | 1°0 | @ 89 | I 1z |
T= N ‘€L9SL9909L9TELEOEELSELY = (Dt ‘Lg] = u
(13 Jo sio0y P 1 | mspseow | p | 1 | 3pswow | p | 1

(ponunuod) €'y dqeL

o
oo}

4.6 Summary

(panunuoo)

67 ‘SETT6°L ST 0 4l T 67 ‘SE1T6°5 0 8 o 67126 0 ¥ 0zl
67 ‘SETT6°L ST 4l st 67 ‘SE“TT6°S 8 €L 6% 126 ¥ 1zt
SETT6 LS T 0 Al 9z SEIT6°5°0 8 L 12°6°0 z el
SETT6 LS T 4l i 6 °S€°6 ‘S 0 8 SL 6760 ¥ €l

€9 6 € 126 S 1 4l 8z €96 126 °S 8 9L 676 ¢ Tl
SE6°LSTO Al 6¢ SE6°5°0 8 LL €9 ‘6% S€ ‘1T °L ‘0 z 9zl

6 S€ 126 °S ‘10 4l 0€ 67 126 'S0 8 8L €96 € 1T L z L2l
67 €126 'S ‘1 z 13 67 12°6°S 8 6L 67 ‘SE1T°L°0 z 6C1
SEIT6°ST°0 Al € 12°6 6“0 9 08 67 ‘S€“1T L z 0€I

67 °S€°6 S 10 4l 33 67650 8 18 SEITL0 z 1€l
€961 126 S ‘I z e 676 S S 8 SEITL z €l
SE6°ST°0 Al s¢ €9 6% ‘S€ 1T LT 0 ¥ 8 €9 6 ‘S€ ‘Iz z €€l

67126 °S“1°0 4l o€ €96 ‘S€ 1T LT v S8 SEL°0 z el

67 1265 1 z L€ €9°GE 1T L T 0 v 98 se°L z Sel
12°6°6°T°0 01 8¢ 67 ‘SETTL T 0 ¥ L8 6 ‘S€ ‘Iz z 9€1
676510 4l 6¢ 67 ‘SETT L T v 88 12°L°0 z LET
67651 6 o SETTLTO ¥ 68 6% “S€ 0 z 8¢l

€9 6% ‘S€TT6°L ‘€10 8 o SETTLT ¥ 06 6F ‘s€ z 6€T
€96 ‘SE 1T 6°L € ‘T 8 £v €9 6 S€ 171 v 16 SE0 4 0¥t
€9°GETT6°LET 0 8 th SELT 0 v 6 s€ 4 wi
67 ‘SETT6°LET 0 8 St 67 ‘SE“TT T 0 ¥ €6 6b ‘Iz (4 wi
6F S€ 1T 6 L€ ‘1 8 9 6 ‘S 1T v 16 10 4 vl
SETT6 L ET 0 8 Ly SETT Y0 ¥ $6 6¥ 0 4 24!
SETT 6 LC T 8 8¥ 6 *S€“T°0 ¥ 96 6F (4 Srl

88 = 2N ‘10Z0¥0000200001 = (Xt Ly = u
(x)8 Jo 51009 P ¥ (Msjosioy | p |y | (M8jos0y | p |y

(ponunuod) ¢'p AqeL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

84

(panunuoo)

LEETSTTI'L'S T 1€ or LESIST | L 16 1 | s | e
TIT= 2N ‘190991 = (Du‘[g] = u

€961 ‘SE 126 € 1 8 6v €961 ‘121 ¥ L6

SE°6°L 10 8 0s €170 ¥ 86

6b “SE “IT 6 L ‘S ‘€ ‘T 0 v8 € SE'6°LCl 8 Is 6712170 ¥ 66
67 °SEIT6°L S € €9 ¥ 67 °SE 176 '€ ' 8 e 6v 1T ¥ 001
SEIT6L'S €10 oL s SEIT6'€ T 0 8 £§ 12°1°0 ¥ 101
£9°6% ‘SE 1T 65 '€ 170 9¢ 9 67 *S€'6 €10 8 vs 6710 ¥ 201
€9 6% ‘SE 176 S '€ 1 9¢ L 67 °S€°6 '€ 1 8 ss 66 ‘¢ ¥ €01
SE'6°L'S €10 w 8 SE%6°€°T°0 8 9g £9 6% *SE 176 “L "0 ¥ s01

67 1T'6°L"S €170 9¢ 6 SE°6°¢ 1 8 Ls €967 ‘SE 126 "L ¥ 901

67 1T'6°L S € 1 s€ o1 67126 € “1 8 8¢ €9°S€°12°6°L "0 ¥ L01
12°6°L'S*€"1°0 w 1 12°6°1°0 9 65 6V ‘SE1T'6°L°0 ¥ 801
12°6°L°S '€ g€ 4 67610 8 09 6V ‘SE 1T 6 'L ¥ 601

€9 °6% ‘126 ' '€ I 87 €1 67°6°¢ 1 8 19 SEIT6°L°0 ¥ o1t
SE°6°S°€ 10 87 bl £9°6% ‘SE12°6°L S 0 8 €9 SEIT 6L ¥ 1

67 12°6 'S €170 82 S1 €961 ‘SE 1T 6°L S 8 9 €961 ‘S€ 176 ¥ Al

6V ‘126 'S € °1 1T o1 £9°6€ 126 °L 'S0 8 9 S€%6°L°0 ¥ €1l
12°6°S°€°1°0 vl L1 67 *SE1T6°L 'S0 8 99 6V ‘SE€ 126 °0 ¥ Pl

67°6°S €170 Pl 81 67 SE 1T 6 L S 8 L9 67 *S€ 126 ¥ St

6765 €1 vl 61 SEIT6°L'S 0 8 89 €260 ¥ or1

£9°6% ‘SE 1T 6°L S 170 u 1z SEIT6L'S 8 69 6v *S€'6 ‘0 ¥ L11
€967 ‘SE1T°6°L S 1 4l @ €961 ‘S€ 126 °S 8 oL £9 ‘6% ‘126 ¥ 811
£9°S€ 126 °L°S ‘10 4 €2 SE°6°L*S 0 8 1L $€°6°0 ¥ 611
(%) 8 Jo s100y p ¥ (0)8 Jo s100y I4 Y (¥)8 Jo s100y p ¥

(PonuNUOd) €'y Qe

4.6 Summary

(panunuoo)

LS IS 61 ‘STT16°ST°0 0¢ 0¢ ISLTST6 ST 0 2! 8L IS°T°0 12 9CI1

LS IS ‘6T ‘ST I1‘6°S ‘1 0¢ € ISLT ST 6°S ‘1 71 6L 1S°1 4 L1

LS 6T ST IT6°S‘T°0 0¢ 43 LSISLT6°ST 0 91 08 IS LT LT 6°0 4 8T1

LS IS ‘€€ LT LT ‘ST IT ‘6 'S ‘1 T €¢ LS IS LT 6°S T 91 18 ISLT LT 6 12 6Cl1
LS€E LT LI ST TT 6 ST °0 T ¥e LSLT6°S‘T 0 91 8 LTLT6°0 12 o€l
LS CE LT LI ST IT‘6°S ‘1 61 ¢ LS LT 6°C°T SI €8 LTLL'6 12 1€l
IS 6T ST IT‘6°S‘T°0 81 8¢ LS IS6°S‘T 0 71 98 IS°LT°6°0 T vel

IS61 ST IT6°S 1 81 6¢ LSIS6°S ‘T 2t L8 1S°LT°6 4 Sel

IS‘CE LT LT ST TTI6°ST°0 T ov LS6°ST°0 1 88 ISL1°6°0 12 9¢1
ISCE LT LT ST TI6°S T T |87 LS6°S°T €l 68 IS°L1°6 12 LET
€ELT LT ST IT6°ST 0 T (47 LTSTST 0 01 06 LI6°0 14 8€T
CELT LI ST I 6°S ‘1 61 57 LTST ST 6 16 LT 6 v 6€1
IS€E LTSI TT'6°S 10 81 9t IS6°S°1°0 01 6 1S6°0 T (44!

IS € LT ST IT ‘6 T 81 Ly 1S°6°C°1 01 6 1S°6 4 54t
ISLT LTSI IT6°S 10 T 8% SIST 0 01 96 6°0 T 24!
ISLTLTSTTT6°S ‘1 T 6% SIG T 6 L6 6 T SP1
LTLTSTIT6CT 0 144 0s LTLTST6°T°0 8 86 IS0 (4 0ST
LTLT ST I 6°S 1 61 s LTLTST6°T 3 66 Is 4 IST

PIIT = 2N ‘100011011 = (N ‘¢G] = u

LESEECT LI ST TT L ST 0 09 Sl LESTITSE€T‘0 (4 09 SETO 141 SOT
LESEET LT ST TT ‘LS T 09 91 LESTTT'S ‘€T I€ 19 S€T €1 901
LECTLLSTIILST 0 14 0€ LESESTST 0 44 SL ST°0 3 (1741
LECT LI ST ITL ST Ly I€ LESEST ST €7 9L ST 8 K4
LECTSIITLSTC0 9¢ sy LESTSTC0 I 06 1 9 SET

(%) 8 Jo s100y p ¥ (¥)8 Jo s100y I4 ¥ (¥)8 Jo s100y p ¥

(PonuNUOd) €'y Qe

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

86

(panunuod)

SLSTETIT6°€°T0 8T 147 SLSSSESTIT T 0 o1 6 SL'ST0 4 44!
SL'STETIT6°E 1 ST St SL'GETIE'ST6 T 0 (4 S6 IE‘ST0 v 4
SLSSSETE ST ETTII S e T T 9t SLSETEST 6 1 Tl 96 I€ ‘ST v 91
GLGSSE ST ET IS €T 0 (44 6 SL'SEST6T 0 o1 66 ST0 4 6¥1
GL*GS SEIE ST ET6'E‘ T 0 T 0 SLIE'ST6T0 4 001 I€°0 4 0ST
SLSS‘SETE ‘ST €T 6 C "1 T IS SLIESTE T 4! 101 I€ 4 IST
89LT = PN ‘€TTHSTL = (N)ut ‘66T = u

LS TS €E LT 6T ‘ST IT6°S*€ ‘10 163 9 IS LTSTIT6°S‘T°0 81 143 IS LTSI 6°T 0 8 201
LS TS CE LT 6T ‘ST TT6°S ‘€ "1 e L ISLTSTIT6°S T 81 sS IS°LTST6°1 8 €01
LS TS “CELT 6T LTSI IT6°S°T 0 (4 8 LTSTIT6°S°T0 81 9 LTST6°T 0 8 70T
LS TS € LT 6T ‘LT ST IT 6“1 LS 6 LS IS LT IT 6T 81 LS LTST6°T 8 o1
LSEELT 6T LTSI TI6°S°T 0 148 01 LS LT TT6°S°T 0 81 8S LSLT6°T 0 8 901
LS EE LT 6T ‘LT ST T 6 ‘T Is 11 LSEE LT LT ST 6 T 91 6S LSLT6°T 8 LOT

LS IS € LT 6T ST IT6°S° T 0 e 14! LS IS IT6°6°T°0 81 9 ISLT6°T°0 8 oIt
LS TS ‘€€ LT 6T ‘ST T 6°S ‘T 143 ST LS IS 6T °6°S ‘T 81 €9 1S°LT°6°1 8 48!

LS TS LT 6T LT ST IT6°S‘T°0 8% 91 LSTT6°6°T 0 81 9 LS6°T°0 8 48
LS TS LT 6L LI ST IT6°S 1 8% L1 1S €€ LT LI ST ‘6°S ‘1 91 9 LS6°1 8 €11

LS LT6T LTSI IT6°S°T 0 w 81 EELTLIST6°ST0 91 99 LT6°T°0 9 141

LS LT 6T LT ST I 6T w 61 €ELT LT ST 6°S T 91 L9 LT6°T 9 SII

IS €€ LT 6L ST I1‘6°S 10 e (44 IS‘€E LT ST '6°ST°0 1 0L IS6°1°0 9 811

1S ‘€€ LT 6T ‘ST TT6°S ‘T 143 €T IS €€ LT ST 6°S T 14! L 1S°6°1 9 611

LS LT 6T ST IT 6610 1463 T IS LTLTST6°ST°0 91 L 6°1°0 9 0zt

LS TS ‘61 ‘LT ST TL ‘6 °S ‘1 0¢ T IS LT LI ST '6°S ‘1 91 €L 6°l S 121

LS 6T LTSTIT6°S°T 0 0¢ 9T LTLTST6°S°T 0 91 YL LTLT'ST6°0 4 (44!

LS 6T ‘LT ST TT1°6°S T LT LT LTLTST6°S ‘T 91 SL LTLI'ST 6 4 €zl

()8 Jo s100y p ¥ ()8 Jo s100y p ¥ (¥) Jo 100y p ¥

(ponunuod) ¢'p AqeL,

4.6 Summary

(panunuoo)

GL'SS‘CE'STET6°ET 0 (44 v SL'ST6T0 01 v01

SL‘SS‘SE‘TE‘STECTIT6°L'S‘€‘T 0 08 S SL'SETE'STET6°ET 0 vT s SL'STE T 01 o1
GL S CETE ST ET II'6°LSE’l SL 9 CL'SE‘1E ST €T 6 ¢l T 9 1€°6T 111 8 901
CL'SSCE'STETITI 6 L S'ET 0 29 6 SL'SE'ST'ET6'€T0 (44 6S STIIT 0 8 601
SLSSSETESTETII'6°L'ET 0 09 01 SL'SESTET 6 E T (44 09 SLSS'SETESTT O 8 011
SLSCCETE ST ECTIT‘6°LE T S¢S 11 SLIESTET6°C’l 0c 19 GLGSCE1E ST T 8 Il
GLSSGESTETII6°LET'0 09 vl SS'STETIT6°1°0 0T 9 I1°7°0 9 148
SLSETE ST ETTII'6°L €T 0 o Sl I€GTITI6€ 10 91 9 SL'SEIE'ST T 0 8 SI1
SL'SETE ST ETII ‘6 L €1 e 91 SL'SSSETESTIT6°C T 91 99 GLSETIE ST T 8 911
SL'SESTETII6°LET'0 o 61 STETIL'6°T0 91 69 SL'SESTT'O 9 611
CL'SSCETE ST ETSI I 6 €1 0 (43 0T CL'SSSETEST I 6 10 91 oL SLTIESTTO 8 ozl
GL'SSCETE ST ETSI I 6 C €l (43 1T CL S GETE ST IT 61 91 IL SLIEST T 8 1cl
SL'STETII6°LET 0 0¢ ¥T GL'SSGE'ST6ET0 4l vL SL'STT 0 9 14!
SLSS'SETE ST ETII‘6°S°€°1°0 (43 44 SL'SEIE'ST6ET0 91 SL 1€°6T°1°0 9 el
GL'SSCETE ST ET II'6°S €'l (43 9T SL'SEIE ST 6°E "1 91 9L 1€°6T°1 9 9z1
SL'SSCE'STETTII6°C €1 0 0¢ 6C SL'SEST'6'ET0 il 6L STT0 9 6C1
GL*SSSETE ST ETII'6°€‘10 (43 0€ SLIEST'6ET0 91 08 STl S 0€l
CL'SSCETE ST ETII'6°E 'l (43 1€ SLTIEST'6°E’T 91 18 1€°1 4 1€l
SL'SS'CE'STET I 610 0¢ vE SL'ST6'€T0 il 8 1°0 4 vel
SL'SETE ST ETTII 6 €10 (43 e SL'ST6°€1 il 8 SLSETIESTO 4 gel
SL'SETE ST ETIT6°E ‘1 1€ 9¢ 1€°CT €T IL’6 1 98 GL'SE ‘1€ ST 14 9¢1
SL'SE'ST'ETIT'6°E'T 0 0¢ 6€¢ STITET0 1 68 SL'SE'STO 4 6€1
SLTESTETII'6°E'T 0 0¢ o SL S GETIE ST ITT 0 1 06 SLIE‘ST0 v or1
SLTEST'ETII'6°E 1 ST 8% GL'SSGETE ST I 1 zl 16 SL‘I€ ‘ST 14 41

(%) 8 Jo s100y p ¥ ()8 Jo s100y p ¥ (%) 8 Jo s100y p ¥

(ponunuod) €'y Qe

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

88

(penunuoo)

I16°¢‘1°0 4! 8T SEETITE 0 81 08 69 ‘SE €T L0 4 (431
I1°6°¢"1 L 6T SEETIL’S 91 18 69 ‘S€ €T L 4 €€l
69 ‘SECTLGCECTO (43 €¢ SEST0 ! €8 SECT L0 4 Se1
69 ‘SECT LS T (43 ve SECT ! 8 ST L 4 9¢1
SECTLGET 0 43 9¢ 69 ‘€TS1°0 ! 88 SEL 0 4 8¢l
SECT LS T (43 LE 69 ‘€T ST L 68 SeL 4 6¢1
SELSET O 8T 6¢ €TCT0 ! 16 69 ‘S€€T0 4 54t
SELSET €T o €TCl L 6 69 ‘S€ ‘€T ¥ 24!
69 ‘SECTTITST 0 (43 44 ST°0 1 6 SE€T0 v 91
69 ‘SE €T I ‘ST (43 Sy Sl L 6 S€ ‘€T 4 Lb1
SECTUILSE 0 (43 Ly 69 ‘SECTLT0 8 66 Se0 4 671
SECTIT S ¢ (43 4 69 ‘SECTL T 8 001 S¢ 4 0ST
SETI'ST O 8C 0S SECTLS 0 8 201 69 ‘€70 (4 121
SETTS T €T IS SEETL'S 8 €01 69 ‘€T T SS1
69 ‘€TSCT0 ! S¢S SELT0 4 o1 €20 4 LST
69 ‘€T S e T L 9¢ SELl 4 901 €T 4 81
9GT = &N ‘19LESE9ES0ST = (M ‘191 = u
€7 0¢ S 10 9 901
€°l 0¢ S¢S I € LOT
€SCT0 (43 (49 €S°T°0 9 701 €50 4 951
€6°¢T (43 €S €5 ¢ 4 o1 €S 4 LST
91 = &N ‘T1H0SS0TSOTYLI9E0E = (X)ut ‘65T = U
€T 9T 49 ‘0 vI 171]8
€1 9 €S I ¢l 01
¥ = &N ‘LTITS9ETLETLSTITSE = (ui ‘LGT = u
(1)8 Jo 1004 p ¥ | ()8 o s100y P by | ()3 josiw00y P IEEE

(ponunuod) ¢'p AqeL,

(@)
[}

4.6 Summary

(panunuoo)

LL*SS ‘€€ ‘6T ST ST ‘6L ST 0 43 4 LL*SS ‘6T ST ‘60 (4 86 §S°6°0 (4 (49
LL*SS €€ ‘6T ST ST ‘6L S 1 43 94 SSUEE‘6T 61 4 66 S9N (4 391
LL*EE ‘6T ST ST 6°L ST 0 43 9% LL6T 6T 0 (4 001 §0 (4 149!
LL*EE 6T ST'ST 6L S T 43 Ly LL'6T'ST'6°S (4 101 S (4 491
LL*SS 6T 6 ‘L S€T 0 0€¢ 8¥ SS62°6°T°0 4 201 LL*EE0 C 9ST
LL*SS ‘6T STST6°L*S T 8T 6 LLEETT6°S T (4 €01 LL*€E (4 LST
LL*SS €€ 6T ST TT ‘6L ST 0 43 0 LL*SS ‘€€ ‘6T ‘6 ‘S 0 (4 70T LL*SS ‘0 4 8s1
LL*SS ‘€€ ‘6T ST IL ‘6L ‘S 1 43 IS LL*SS ‘€€ ‘6T 6 ‘S 4! o1 LLSS 4 6ST
LLUEE ‘6T ST TT6°L ST 0 (43 49 LL'€E‘6T°6°S°0 Tl 901 LLO 4 091
LLUEE 6T ST I 6L S T 43 €S LL*€E*6T6 S (4 LOT LL 4 191
LL*SS“€E“6T ST 6L S T 0 43 149 LL'SS‘6T°6°S°0 4! 801 SS ‘0 4 91
LL*SS ‘€€ 6T ST 6°L S T 43 S¢S LL'SS‘6T°6°S (4 601 SS T €91
0087 = &N ‘LTreTc9 = (u ‘g91 = u

€TCET0 4l 8¢ 69 ‘SE €TI0 8 01
€T°6eT L 6S 69 ‘S€ ‘€T ‘1 8 1
SECTAILSET O 76 € SET0 14! 19 SECTS 0 8 €Il
SECT UL LS e] 69 4 Sl L 29 SEeT’S 8 48
69 ‘SECTITSET 0 9 11 69 ‘SECTLSTO 8T 99 SET0 4 911
69 ‘SEETIT S €T 6 4 69 ‘SECTLST 14 L9 Sel 4 L11
SECTIL'SE 10 96 4! SEETLST0 T 69 69 ‘€T 10 9 121
SEETIT S el 6 S1 SECT LS T 1«4 oL 69 ‘€T ‘1 9 (44!
SETTCET0 9 L1 SELSTO T L €2°6°0 9 el
SETT S el €z 81 SELST €T €L €S 9 el
€TIT'SET0 14! ST 69 ‘SE €T ST 0 81 LL 1°0 4 LTl
A SN L 9T 69 ‘SE €T ST 81 8L I € 8zI1

()8 Jo s100y p ¥ ()8 Jo s100y p ¥ (¥) Jo 100y p ¥

(ponunuod) ¢'p AqeL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

90

(panunuoo)

LL*SS ‘€€ 6T ST ST TI‘6°L*S*€‘T 0 8t 0T LL*SS ‘€€ 6T ST6°S°T 0 T YL LL*SS ‘660 8 8TI
LL*SS*€E 6T ST ST TT ‘6L ST 8% | §4 LL*SS ‘€€ 6T ST 6 °S ‘T T SL SSUEE ST T 8 6C1
LLUEE 6T ST ST I 6°L S €T 0 8¥ (44 LL*€E 6T ST 6°S°T 0 T 9L LL*6°6°0 8 0€T
LL*EE 6T ST ST TT6°L S €T 8Y €z LLEE 6T ST 6°S ‘T T LL LL*S€E L 3
LL*SS €€ 6T ST ST 6°L S ‘€T 0 8% T LL*SS ST LSE‘T 0 T 8L LLEETT T O 9 (43
LL*SS €€ 6T ST ST 6L S €l 8% ST LL*GS ST LS e 1 €T 6L LLU€E T T S €€l
LL €€ ‘6T ST ST 6 L SE T 0 8t 9T LLSTLS‘ET0 174 08 LL'SS€ET0 9 vEl
LLAEE 6T ST ST 6°L S € T 8% LT LL6T ST 6°S ‘T ¥4 18 LL*SS ‘€€ T 9 ser
LL*SS ‘6T STSI 6 L S€T 0 4% 8T SS6TST16°6° 10 0T 8 LLUEET 0 9 9¢1
SSEE 6T ST 6T ‘ST6°L 'S T 4 6T SS6T ST 6°S°T L1 €8 LL€E 6T S LET
LL*6T STST 6L S ‘€T 0 4z 0¢ LL*SS*€€°6T°6 ST 0 0T 8 LL*SS*6T°0 9 €1
LL*SS €€ ‘6T ‘ST T1 ‘6 °L S C I 4% 1€ LL*SS€E ST L € 1 0T <8 SSee’l 9 6€1
LLEE 6T ST TT6°L S €T 0 4 43 LLEE‘6T6°S°T 0 0T 98 LL*6T0 9 or1
LLUEE 6T ST TT 6L S €T 4 €€ LL*EE 6T ST'ST 6 S 91 L8 €e 1 S 141
LL*SS ‘€€ 6T ST 6°LS€T 0 v e LL*SS‘6T°6°S‘T 0 0T 83 SS°T°0 v (44!
LL*SS €€ 6T ST 6°L S C ‘T 4 s¢ LL*SS ST L €T 61 68 $S°6 4 34!
LL*EE 6T 61 ‘ST 6°L S T 0 4 9¢ €€°62°6°6°T°0 81 06 1°0 4 1
LL'E€E 6T ST 6 LS E T o LE LL6T61°6°S 91 16 LL*SS'€E’S 4 Syl
LLSS ‘6T ST 6 LS‘€T 0 144 8¢ SS6T°6°6°T°0 91 6 LL*€E‘S 0 4 9p1
SSUEE 6T 61 ‘ST 6°L S I 6€ 6€ SSUL'S el 91 €6 LL*EE"S 4 Lyl
LL6T ST 6°LS€T 0 8¢ o LL*SS ‘€€ ‘6T ‘ST 6“0 91 6 LL*SS ‘S0 4 Y1
LL6T ST 6°L S € T €€ |82 LL*SS €€ 6T ST 6 S 91 $6 LL*SS ‘ST 14 6v1
LL€E ‘6T ST ST IT ‘6L ST 0 (43 w LL*EE 6T ST 660 91 96 LL'S‘0 v 0ST
LLUEE ‘6T ST ST TT6°L 'S T (43 (57 LL€E ‘6T ST 6 S 91 L6 LL ‘ST 14 IST
()3 Jo s100y p ¥ (¥)3 Jo s100y p ¥ (%) 3 Jo s100y p ¥

(ponunuod) €'y Qe

91

4.6 Summary

(panunuoo)

6r'er'6'L's'c’l | se | s | 6r'6'c1r [T |1 | is | T | e |
208 = #N ‘TL9L9TT = (i ‘TL] = u 7

7 7 7 1o |9t | w e | ¢ | st |

T = 2N *100020007000010002000¥00001000200070000 0002000700001 = (¥)us ‘691 = u |

| | | 10 vt | g8 | 1o lee |18
T= N ‘€TSTEVTYLSISTTILIYSTTITTIS = (i *L9] = U

LL€E6T°ST6°L ST 0 (43 9¢ LL6°L*S*0 4! 011
LLEE 6T ST 6°L S T (43 LS LL'6°L"S 11 1
LL ‘SS ‘€€ ‘6T ‘ST 6L ‘ST‘6 ‘L‘S‘€‘T“0 88 14 LLSS ‘6T ST 6°L ST 0 8T 86 LL'EETT 6T 0 01 48
LL“SS ‘€€ ‘6T ‘ST 61 ‘ST ‘6 LS ‘€1 LL S LL*SS ‘6T ST 6°L S T 8T 65 SSST 6T 8 €11
LL ‘€€ 6T ST 6T ‘ST6°LS‘C‘T 0 99 9 LL'6TST6°L ST 0 8T 09 LL“SS ‘€€ ‘6T 6 ‘0 01 48!
LL*€E ‘6T ST 61 ‘ST ‘6 °L‘S‘E 1 s L LL6T ST ‘6L S T LT 19 LL“SS ‘€€ ‘676 01 SII
LLSS 6T ST 61 ‘ST6°L‘S‘€°T0 44 8 LL€E 6T 61 ‘TT6°S°T°0 8T 79 LL €€ ‘6T°6 0 01 911
SS ‘€€ ‘6T ‘ST 6T ‘ST ‘6 °L‘S‘E T 4% 6 SS6T ST 6 °L S T T €9 LLEE ST S T 8 LT
LLSS ‘€€ ‘6T 61 ‘ST TT 6L ‘S ‘€10 09 01 LL*SS ‘€€ ‘6T 61 6°S‘T0 8T 9 LLSS‘6°L 0 01 811
LL“SS ‘€€ ‘6T ‘6T ‘ST TT ‘6 ‘LS ‘€1 [94s 11 LL ‘SS ‘€€ ‘6T ‘ST ST ‘6 ‘S ‘1 vT 9 LL*SS 6L 01 611
LL €€ 6T 6T ‘ST TT6°LSET0 0 4! LL*€E ‘6T 616 °S ‘T 0 9T 99 LL6°L"0 01 0c1
LLEE 6T 61 ST T1 6 °L S €1 0 €1 LLEE 6T ST ST 661 T L9 LLST6°S 8 Icl
LL ‘SS ‘€€ ‘6T ‘61 ‘ST 6 °LS‘€°T0 09 I LLSS‘6T°6°L ST 0 T 89 S$6°1°0 8 (44!
LL“SS ‘€€ ‘6T ‘61 ‘ST ‘6 LS ‘E T 4 SI LL*SS ‘6T ST 6 L T T 69 SS6°T 8 €zl
LL €€ 6T 61 ST 6°L‘S€T0 0 91 LL 6T ‘61 ‘L°S€0 vT 0L LLSS€EST 0 8 74!
LL€E ‘6T 61 ‘ST 6 L ST 0 LT LL*STST LS €T T 1L LL“SS ‘€€ ‘6T “S 8 4|
LL*SS ‘6T 61 ST 6 L S‘€‘T 0 4% 81 LLEE 6T ST IT6 ST 0 T L LLEES T 0 8 91
SS ‘€€ ‘6T 61 ‘ST 6°L S ‘l 44 61 LL €€ 6T ST T1 6 ‘S ‘1 vT €L LL €€ ‘6T °S 8 LT1
(%) 8 jo sjo0y p ¥ (%) 8 jo s100y p ¥ (%) 8 jo sj00y P ¥

(panunuoo) €'y AqEL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

92

(panunuoo)

THT = 2N ‘TH0T00000070T01+0001 = (X)ut ‘GL1 = u

LSSTLT6°SCT 0 (43 09 LS6°LT 0 4! 48!

LS STLT‘6°C € T 43 19 LS6°L T ! SIT

LSSTLT ST €16 LS ‘€ T 0 8¢ 9 STLI6SE T 0 43 9 SET0 v1 911
LS STLT ST ET‘6°L S T 8¢ L ST6LSE T 61 €9 6°C‘1 01 LT
LS 6L ‘LTI ‘STEL‘6°LS‘ET°0 89 81 LS6LLT'6°S€°1°0 8C L LS6LSTT0 4} 971
LS ‘6T ‘LI‘STEL 6 ‘LS ‘€T 89 61 LS 6T ‘L1°6°S E T 8¢ €L LS 616 °1 01 LT1
61 ‘LT ST ET 6 L S‘C‘T 0 ¥9 0T 6LLI‘6‘S‘ET 0 8T pL 61°€°1°0 01 8CI
61 ‘LT STEI‘6°L°S‘e‘l S IC 61 ‘LT 6°C el LT SL 61 ¢l 6 6Cl1
LS LY ST CT 6 L S‘€‘T 0 8¢ ¥T LS6°LSET 0 9 8L LSETF0 01 43!
LS LY ST €T 6L S ‘€1 8¢ ST LS LT 6°S*E ‘T €T 6L LSE°T 6 €e1
LTST'ET6°LS'€T 0 8¢ 9T 6LSET0 9 08 €T 1] 123
LTSSTCT‘6°L°S el 61 LT 6°LSc T 61 18 €1 6 Se1

LS 6T ‘LT ‘ST 6 L S‘C‘T 0 8% 9 LS6T6°S‘CET°0 w 06 LS61°T°0 9 24!
LSGLLIST6‘L°S‘€‘T (7 LE LS61°6°S E T 114 16 LS 61T 9 SP1

6L LIST6°LS‘ET0 8 8¢ 61 6°C€T°0 0T 76 61°T°0 9 991

61 ‘LIST6°LSE’l 47 6¢ 61 6°C¢’l 0T €6 61°6 4 L¥1
LSLTCT6°LS€T°0 8¢ w LSLS'ET 0 81 96 LST0 9 0ST

LS LY ST 6°LSC T 8¢ 157 LS €T 6 € ‘T 81 L6 LS°T S 16T
LTST6°LS‘€T 0 8¢ 2% €I6°€°T°0 81 86 1 9 ST
LTST6°L ST 61 S €r'6°¢’l 81 66 I € €61
LS6TCT6°LSCT 0 9¢ S LS6T°S€ T 0 91 801 LS61°0 4 791

LS 6T “CT6°L°SE’l 9¢ S LS 616 °€ ‘1 Tl 601 LS ‘61 4 €91
GLEL6LS‘ET 0 9¢ 95 6LSET0 91 1]41 LSO 4 891

(¥)3 Jo s100y p ¥ (%) 8 Jo s100y p ¥ (%) 8 Jo s100y p ¥

(ponunuod) €'y Qe

o

9

4.6 Summary

(panunuoo)

SESTSE T 14! 9T SL'SESTL T 8 S8 SLUSE'ST L O 4 4!
SECTLETO 0T LT SESIST 0 9 98 SL'SEST L 4 94!
SESTLET 0T 8T SESTLE D 8 L8 SESTL O 4 Ly1
SLST L E T o1 6T SLSTLT O 8 88 SL'STL 0 4 Y1
SISE 10 14! 0¢ SL'STL T 8 68 SL'ST L 4 6¥1
STLET0 01 £ SIS 10 9 06 SEL0 z 0S1
SLGESTSET 0 14! 43 STLE0 8 16 STLO 4 16T
SL'GE'ST S el 14! €€ STiLE L 6 STL 4 49!
SESTSET 0 4! s¢ SL'SE‘ST ST 9 €6 SLSE'ST'S (4 391
SLSTSET0 14! 9¢ SESTST 0 9 $6 SESTS 0 (4 491
SL'ST S el L LE SLST'ST 0 9 96 SL*ST'S 0 z 961
SECETO 14! 8¢ SL'ST'S'T 9 L6 SLST'S (4 LST
STSET0 4! 6¢ SEST0 9 86 SES0 (4 8S1
STsel L o STST0 9 66 STS0 z 681
SET0 14! w STST 9 00T sT'S (4 091
ST L 34 ST 9 201 S0 z 91
SL*SESTET 0 4l 4% Sl 9 €01 S z €91
SL'SESTE T 14! S SL'GESTT O 9 70T SL'SESTO (4 91
SESTET0 14! Ly SL'SEST I 9 o1 SLSE ST (4 91
SesTel 4l 8t §E°6T e 0 9 LOT §E6T°0 z L91
SLUSTE T L 6% SL'STT O 9 80T SL‘ST‘0 4 891
SEET0 o1 0S SL'ST I 9 601 SL‘ST 4 691
STET0 o1 IS SET0 4 011 SE0 4 oLT
sTe’l L 43 STe0 9 48! ST 4 1LY
SLUSE ST ST LS T 0 8 09 STe 9 48! ST 4 Ll
()3 Jo 5100y p ¥ (¥) Jo 100y p ¥ (%) Jo s100y p ¥

(ponunuod) ¢'p AIqeL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

94

(panunuoo)

€7 8T 09 1°0 9 811

€°1 8T 19 I € 611
65°€1°0 0€ 8¢ 65 ‘1°0 9 911 650 4 pLI
65 '€ ‘1 0€ 65 65 ‘¢ 14 L1 6S 4 SLY

[= &N ‘1L9TEETTHFSI0TTEEISET = (Nt “LLT = u

GLSE ST ST LS T 8 19 SLSE'ST G LSO 4 0cl

SESTSILSET 0 001 € SEST ST LS T 0 8 €9 SLSEST ST L'S 4 121
SECT ST LS e T SL 4 SE ST ST LS T 8 9 SESTSI LS 0 4 €zl
STSI'L'S'E 10 oL L SESTLSTO 8 99 SECTSI LS 4 vl
STSI LS el Se 8 STSTLST0 8 L9 SESILSO 4 921
SLLSET'0 0S o1 STSIL'S'T 8 89 STSILS 0 14 LTl
SIL'Ge’l ST 11 SILS‘T'0 8 oL STSIL'S 4 8C1
SLSE'STL'S'ET0 o 4! SIL*G"T 8 IL SIL*S0 4 0€1
SLSESTL S e T o €l SLSE'STLS T 0 8 (4 SIEL'S 14 €1
GESTLSET0 o SI SLSEST LS T 8 €L GL*SE'ST LS 0 4 (43
SECTLSET ge 91 SESTLSTO 8 SL SLSE'STL'S 4 €€l
SL*ST LS e T 0€¢ L1 SLSTLST'0 8 9L SESTLSO 4 Sel
SELCET'O 0T 81 SLST LS T 8 LL GL*ST'L*S 0 4 9¢1
STLGET'O 0€ 61 SELCTO 8 8L SLSTL'S 4 LET
STLSEl 0€ 0T STLST0 8 6L SELSO 4 8¢l

GLUSE ST ST GE’l 4! &4 STLG'T 8 08 STLS0 4 6€1
LS€T 0 0T (44 SL'SE'ST SIS T 9 I8 STL'S 4 or1

LGl S1 (%4 LST0 8 8 GL*SE ST SIS 4 84!
GLSEST'LET 0 0T T LT L €8 LSO 4 Tl
SL'SE'STLE"T 0T ST SLSESTLT O 8 8 LS 4 34!
() Jo s100y p ¥ ()8 Jo 5100y p ¥ (¥) Jo 100y p ¥

(ponunuod) ¢'p AqeL

4.6 Summary

(panunuoo)
€0°6°¢'T I LT €ETTE'T Ll 16 I S Lyl
€ELTTT6°€°T 0 8 o LI€T0 91 96 €ELTTTO v 091
€ELTTT6°E°T 8 It LLET I L6 €E LT T v 191
€E°LT6°€°T 0 8¢ 8 €E°€°T°0 w 86 €E°LT°0 v 891
€ELT 6T 8¢ 6 €6°E T Ll 66 €€ LT v 691
€ETT6°€°T 0 e 0S €10 Pl 901 €ET1°0 z 0LI
€ETT 6T Ll Is €1 I L01 €€ °T1 z ILT
LI'6°€T°0 w 95 CELTTTTO 4l 0zl L0 z 9L
LI6€°T I LS €ELT T z 1zl L z LLT
€€°€T €T 0 0€ 8$ €ELTE0 T 8TI €€°0 z 8LI
€66 €1 Ll 65 €L 'S al 6C1 33 z 6L1
8L = PN ‘€LF90LTEI0009€ = (X)ut L8] = U
LE'6T'SE°T 0 S 9¢ SET0 8T 9L LETCO 8 hl
LE'6I 'S €T L€ LE Sl 8T LL LET S Pl
61°S€T°0 8t o LESTO 91 801 1°0 8 81
61°S°€°T L€ It LE'S T 91 601 I S 61
LES'ET0 43 w $1°0 bl i LE‘O z 081
LE'SET € €L 1 bl €I LE (4 IST
OF = N ‘LLOSELLSSTOLT = (¥)ur‘G8] = u
€70 e 29 1°0 9 wl
€1 te €9 I € €Tl
19°€°T°0 9¢ 09 19°7°0 9 0zl 19°0 z 08T
19°¢ 1 9¢ 19 19°¢ ¥ 1z 9 (4 18T
91 = PN ‘LEITLSLEGTFPYSEOTOIE] = (V) ‘€8] = u
7 (%)8 Jo s100y P Y | (08 josi00y P R | (0§ josio0y r B

(panunuoo) €'y AqEL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

96

(ponunuoo)

1869 ‘€9 “6€ ‘LT ‘€T TT €1 ‘T1 ‘L S €l 43 6 1869 ‘€9 ‘6€ ‘I€ ‘S ‘€10 4! 11 1869 € ‘0 T €L
I8 ‘LT €T TT ST ET ‘TT 6L ‘S ‘€ ‘T 0 43 0S 18 ‘69 ‘€9 ‘6€ ‘T€ ‘S ‘€ 1 14! 48 69°€9°€°0 4 YL
18 ‘€9 ‘G¥ ‘6€ ‘€T TTET ‘TI LS €T 0 43 Is 18 69 ‘6€ ‘T€ ‘S ‘€ ‘T°0 14! €Il 69 ‘€9 ‘¢ T SLT
18 °€9 ‘St “6€ ‘€T “TT €1 “T1 L S ‘€1 43 43 €9°6€IE6°S €T 0 4! 141 69°€°0 (¢ 9L1
18 ‘SF ‘6€ ‘€T TTET ‘TI LS €10 43 €S €9°6€TE‘6°S €T 14! SII 69 ‘¢ 4 LLT
18 ‘St ‘6€ ‘€T TTET ‘TT L *S ‘€ ‘T I¢ 143 6€°1€°6°S€°T 0 ¥l 91T 18 °€9 ‘¢ T 8LI
€9°6€ ‘€T IT EI‘TL ‘6 °L S E 1 LT S 18 €9 “6€ ‘1€ ‘S ‘€10 4! LIT 18°€°0 4 6L1
ETTT ST ETTTI6°L'SE T 0 8T 9 18 €9 ‘6€ ‘TE€ ‘S ‘€ T 14! 811 €9°¢°0 T 081

ETTIT ST ET TT6°L S el LT LS 1869 °L°S‘€‘T°0 4 611 €9°¢ 4 181
1869 “€9 ‘1€ ‘TT CL ‘T ‘L S ‘€ 1 T 8¢ €9°6°L €T 0 4! 0cl £ 4 81
I8 TESTET ‘TT6°L°S‘€‘T 0 T 65 €9°6°L°S€T 4 K4 € 4 €81
€9°6ETEETTT6°LSET 0 T 09 6°LSET 0 4 (441 18 ‘€9 4 ¥8I1
18°€9 LT €T IT ELTI ‘L S E] T 19 18°€9°L°C€T 0 4! €zl 18°0 4 ST
TESTET TI 6 L S‘€°T 0 T 9 18 °€9°L ST 4 vl €90 4 981
18 €9 “6€ “I€ ‘€T “IT ‘L S‘€ ‘10 T €9 18 1€ ‘€10 4! (Y41 €9 4 L8T

98TSLT = &N ‘TI10011 = (Mu ‘681 =

6°€T°0 (44 99 €ETTT 0 o1 0€T

6°¢’l I L9 €e I T o1 1€l

€ECTLI6'ET 0 99 8 EELLTIIET 0 T 08 LTT°0 9 9¢1

€EETLI6°E"T S¢S 6 €ELTTT €T T 18 LT°T 9 LET

€EET6'ET0 e 81 EELTET 0 T 88 €€°€°0 o1 8¢l

€E°€T6°E"T L1 61 €L T T 68 gee 6 6€1

€T6°€T°0 (44 9T €ETTCT 0 (44 06 1°0 9 op1

(x)8 Jo s100y p ¥ (¥) Jo s100y p ¥ (%) Jo s100y p ¥

(ponunuoo) €'y QEL

o~

9

4.6 Summary

(panunuoo)

1869 ‘€9 ‘6€ ‘TE LT €T ITEITI‘6°L'S'€‘T'0 | 8 | ¥C €6°TECTTILET0 | 8T 98 18°¢9°¢°T |9 | 8¥I
18 ‘69 ‘€9 ‘6€ ‘1€ ‘LT €T ITCIII‘6°L*S‘€‘T | S¥ | ST SP6E TETTIT6°LET | 81 L8 I8G‘T°0 |9 | 6pl
69 ‘St 6€ ‘TECTITCI TI6°LS'C'T°0 | Th | 9T | 18°69°€9°6E IE€ 1T TI L el | 8I 88 €9°1€°T°0 |9 | 0SI

18 69 ‘€9 “S¥ ‘6€ ‘TE ‘€T ITCI TI'L'S'€‘T'0 | 8 | LT 1869 ‘6€ ‘T€ TCTT L€ T0 | 81 68 €9°1¢T |9 | 18T
1869 ‘€9 ‘St ‘6€ ‘1€ ‘€T ITCITILS‘€‘T | S | 8C €9°6€ TEITIT6°LE€T0 | 81 06 691210 |9 | TSI
1869 ‘S¥ ‘6€ ‘TE ‘€T ITCI TIL'S'€‘T'0 | v | 6C €96 TETTIT 6 LT | 81 16 69°CT6°c | 9 | €SI
1869 ‘St “6€ ‘T€ ‘€T ITCTTIL'S‘€T | 68 | O€ 6€ TETTIT6°LET0 | 81 6 18°69°€9°¢‘T | 9 | #SI
1869 ‘€9 ‘6€ ‘I€ ‘LT €T ITCLII L S‘€‘T | 9¢ | 1€ SP6EEL T 6°L'S'E | 81 €6 18°69°€‘T°0 |9 | SSI
69 ‘St ‘6€ ‘TE ‘€T TITETTI LS T0 | 9¢ | ¢ 18°€96€ ‘TETTIT LT | 81 6 69°€9°€T0 |9 | 9SI

18 ‘69 ‘€9 “S¥ ‘6€ ‘TE“CTCI‘IILS‘€‘T0 | 9¢ | €€ I8°6E‘TETTITL'ET0 | 8T 6 69°€O°CT |9 | LSI
1869 ‘€9 ‘S¥ ‘6€ ‘1€ ‘€T CI ‘TTLS'€‘T | €€ | ¥€ 1869 ‘6E“T€ LT ITLET0 | 81 96 69°€CT'0 |9 | 8SI
€618 ‘69 ‘St TE“CTCT TI'L'S'€‘T'0 | 9¢ | ¢¢ 18°€9 ‘6€ ‘TE LT T LT | 81 L6 €1°6°¢ |9 | 68T

I8 ‘Sb ‘6€ ‘TE ‘€T ITETTILS€‘T | €€ | 9¢ I8 ‘6E ‘TELTITLET0 | 8I 86 I8°€9°€‘T |9 | 091

1869 ‘€9 ‘6€ ‘LT ‘CTIT ST 'CI‘TII‘6°L'S'€‘l | Te | LE 18°6€ ‘T LTI LE T | LI 66 18¢‘1°0 |9 | 191
69 ‘S¥ ‘6€ ‘€T ITST'ETTT6°L°S'€‘T'0 | ¢e | 8¢ I8°€9“TTITLS€‘T | 9T | 001 €9°¢‘1'0 |9 | 791

I8 ‘69 ‘€9 ‘S ‘6€ ‘€T ITET‘TI6°L‘S‘€‘T°0 | TE | 6€ I8ITITLS€‘T'0 |91 | 101 €9¢T |9 | €91
1869 ‘€9 ‘S¥ ‘6€ ‘€T ITCI ‘TT6°L*S‘€‘T | T€ | OF I8TCI1°L*SeT | ST | 2ol €10 |9 | 91
1869 ‘St “6€ ‘€T TTCTIT'6°LS'€‘T0 | 2C€ | It €9°TT6°LS€‘T | ¥T | €01 €T | S | s9t

69 ‘€9 ‘St ‘6€ ‘€T ITEITI6°L'S'€‘T0 | ¢e | T IL6°LS€T0 |1 | %01 18°€9°T |+ | 991
1869 ‘€9 ‘6€ ‘LT €T ITCT TI6°L°S‘€‘T | te | ¢ SP6ETTETTI 6T | vI | SOI 18°T°0 |+ | L91

69 ‘SY‘6E ‘€T ITETTI6°L'S'€T0 | ¢€ | b 1869 ‘€9 ‘6€ ‘TT €T TT‘€‘T | ¥T | 901 €9°T°0 | ¥ |89l

18 ‘69 ‘€9 ‘S¥ ‘6€ ‘€T ITCI‘TIL*S‘€‘T'0 | TE | SP 1869 ‘6€ ‘TTCIIL'€‘T0 | #I | LOI €97 | ¥ | 691
1869 ‘€9 ‘St ‘6€ ‘€T ITCTTI°L'S‘€‘T | ¢e | 9 69 ‘€9 ‘6E°TE6°SE€T0 | ¥T | 801 69°1C°€0 | T | OLI

18 69 ‘St “6€ ‘€T TTETTILS'€‘T'0 | T | Lb 69 ‘€9 ‘6E°TE6°SCT | ¥I | 601 69°1Cc | T | 1L

1869 ‘€9 ‘6€ ‘LT ‘CTITCI ‘TI°L‘S‘€‘T‘0 | T¢ | 8F 69 ‘6 1€6°CET0 | ¥I | OI1 1869°¢9°c | T | TLI
(%) 8 Jo s100y p ¥ ()8 Jo s100y p ¥ ()8 josiooy | p ¥

(ponunuod) ¢'p AIqeL

4 Cyclotomic Cosets, the Mattson—Solomon Polynomial ...

98

1869 €9 ‘6€ ‘TTETTT6°L°S€‘T |vT |$9 €9°LSeT'0 |01 |9Tl

€6 ‘I8 ‘69 ‘€9 ‘Sh ‘6€ ‘€€ TE ‘CTUITSICIIL‘6°LS‘ET0 80T | € 1869 ‘6€ “ITCIIT6°LS'€T°0 |¥T |S9 €9°L¢e T |01 |LTl
€618 °69 ‘€9 ‘S ‘6€ ‘€€ ‘1€ ‘€T IT ST ‘€I ‘T1 ‘6L ‘S ‘€ ‘1 18 14 69 °€9°6€ ‘TTCLTI'6°L°S'€‘T'0 |¥T |99 L'S€T'0 |01 |8zl
€6 1869 ‘St “6€ ‘€€ ‘1€ ‘€T ITSI‘CI‘TI‘6°L‘S‘€‘T‘0 | 06 S 69°€9°6€ ‘TTCLTI'6°L'S‘€‘T |+T |L9 SPIEIT6ET |0l | 6Tl
18 ‘69 ‘€9 ‘S ‘6€ ‘€€ ‘T€ ‘LT ‘€T ITSTETTL6°LS‘E‘T0 | 96 9 69 6ETTELTT6°LSET0 |¥T |89 |18%69°€9‘6E I€CT |01 |O€El
18 °69 ‘€9 ‘S ‘6€ ‘€€ ‘1€ LT €T IT ST EITT‘6°LS'€‘T | €6 L SP6ETETCEL I 6 LE'T |vT |69 1869 ‘6€TE€T0 |01 |I€l
18 69 ‘St “6€ ‘€€ “TE LT CTTT ST I TI6°L'S‘€‘T°0 | 8L 8 1869 €9 ‘6€ ‘TTETTT°L'S‘€°T |¥T |OL 69°€9°6€TECT0 |01 |TEl
18 69 ‘€9 St ‘6 ‘€€ “TE“CTITSTCITI6°L°S‘€°T°0 | 8 6 I8 TTSTEITI6°LSCET0 |vT |1IL 69 €96 TECT |01 | €€l
€618 69 ‘€9 ‘St ‘6€ ‘1€ ‘€T TT ‘ST ‘€1 “T1 ‘6 ‘LS ‘€ ‘1 18 |01 €96 TTCLIT6°LS€'T0 |¥T |TL 696€IECT0 |0l | ¥ET
1869 ‘St “6€ ‘€€ “TE ‘€T IT ST CITI6°L°S‘c°T‘0 | 8L | II €96 TTCIII6°L°S'€‘T |¥T |€L 6£°T1€6°c‘T |01 | S¢El
1869 ‘€9 6€ ‘€€ “T€ LT CTITSTCIIT'6°L'S‘€‘ 10 | L |Tl ITSTEITT6°LS€ 10 |+vT |¥L 18°€9°6€°L €T |01 |9¢l
€6 1869 ‘€9 “6€ ‘1€ LT €T ITSI'CI‘TI‘6°L°S‘€‘T | TL |€I I8°€9‘6EITCIITLS€T0 |¥T |SL I8°6€°L€°T°0 |0l |LET
1869 ‘St “6€ ‘1€ LT €T ITSI'CI ‘T ‘6°L°S‘€‘T'0 | 99 |+ 18°€9°6€ “ITCL ‘TL°LS€‘T |¥T |9L €9°6E€LET0 |01 |8¢€I

18 °69 ‘€9 ‘S¥ ‘6€ ‘T€ ‘€T IT ST CIIT‘6°LS‘€‘T°0 | TL |SI I8SICITII'6°LS'€‘T0 |cT |LL €9°6E°LET |0l | 6ET

18 °69 ‘€9 ‘S¥ ‘6€ ‘T€ ‘€T ITSTEITT‘6°LS€T | 69 |91 €9°6ECIIT6°LS'€'T0 |CT |8L 6€°LET0O 0T | ObT

18 69 ‘St ‘6€ ‘TE ‘€T IT ST ETTT6°LS'€T0 | 99 |LI €9°6E ‘CTIT6°L°S€T |IT |6L 6e°LET |8 |Ivl

18 °69 ‘St ‘6€ ‘TE ‘€T ITSTETTT6°LS€‘T | €9 |81 SIETII6°LS‘e'T'0 |Tc |08 18°¢9°6°¢‘T |8 [Tyl

€6 1869 ‘€9 “T€ LT €T ITST'CI ‘T 6°L°S‘€‘T | LS |6l ST II6°L°S‘eT |IT |18 186°¢‘1°0 |8 |¢evl

€669 ‘S IE €T ITSICI T 6°L°S‘€T0 | ¥S |0T 18°€9°6E €T “TT°L°S‘cT |0T |T8 €9°CET0 |8 |vpI

€618 °€9 ‘SP6€ ‘1€ €T ITEI T '6°L'S'€‘T'0 | ¥S |1IC I8 TEITEITISE‘T'0 |81 |¢€8 €9°6eT |8 Skl

1869 ‘€9 'SP I€ ‘€T IT ST CI‘II‘6°LS*'e€‘l | 8 |TC €9°6ETECIIILCT0 |81 |¥8 S'€'1'0 |8 |ovl

1869 ‘S¥ ‘6€ ‘1€ ‘€T ITEI ‘T ‘6°L‘S‘€‘T'0 | 8% |¢€C 69 ‘€9 ‘6€ ‘TEIT I ‘6Ll |81 |[S8 ST | L | Ll

()8 Jo s100y p bl (v)8josooy | p bl (x)8josio0q | p bl

(ponuNUd) €'y Qe

References 99
References

1. Brouwer, A.E.: Bounds on the size of linear codes. In: Pless, V.S., Huffman, W.C. (eds.) Hand-
book of Coding Theory, pp. 295-461. Elsevier, North Holland (1998)

2. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

3. Mattson, H.F,, Solomon, G.: A new treatment of Bose-Chaudhuri codes. J. Soc. Ind. Appl. Math.
9(4), 654-669 (1961). doi:10.1137/0109055

4. Peterson, W.W.: Error-Correcting Codes. MIT Press, Cambridge (1961)

5. Prange, E.: Cyclic error-correcting codes in two symbols. Technical Report TN-58-103, Air
Force Cambridge Research Labs, Bedford, Massachusetts, USA (1957)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://dx.doi.org/10.1137/0109055
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Good Binary Linear Codes

5.1 Introduction

Two of the important performance indicators for a linear code are the minimum
Hamming distance and the weight distribution. Efficient algorithms for computing
the minimum distance and weight distribution of linear codes are explored below.
Using these methods, the minimum distances of all binary cyclic codes of length 129—
189 have been enumerated. The results are presented in Chap. 4. Many improvements
to the database of best-known codes are described below. In addition, methods of
combining known codes to produce good codes are explored in detail. These methods
are applied to cyclic codes, and many new binary codes have been found and are
given below.

The quest of achieving Shannon’s limit for the AWGN channel has been
approached in a number of different ways. Here we consider the problem formu-
lated by Shannon of the construction of good codes which maximise the difference
between the error rate performance for uncoded transmission and coded transmis-
sion. For uncoded, bipolar transmission with matched filtered reception, it is well
known (see for example Proakis [20]) that the bit error rate, p;, is given by

1 E
Py = zerfc(V’;) (5.1)

Comparing this equation with the equation for the probability of error when using
coding, viz. the probability of deciding on one codeword rather than another, Eq. (1.4)
given in Chap. 1, it can be seen that the improvement due to coding, the coding
gain is indicated by the term dmm.%, the product of the minimum distance between
codewords and the code rate. This is not the end of the story in calculating the overall
probability of decoder error because this error probability needs to be multiplied by
the number of codewords distance d,,;, apart.

For a linear binary code, the Hamming distance between two codewords is equal
to the Hamming weight of the codeword formed by adding the two codewords
together. Moreover, as the probability of decoder error at high % values depends
on the minimum Hamming distance between codewords, for a linear binary code,

© The Author(s) 2017 101
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_5

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_1

102 5 Good Binary Linear Codes

the performance of the code depends on the minimum Hamming weight codewords
of the code, the d,;, of the code and the number of codewords with this weight
(the multiplicity). For a given code rate (%) and length n, the higher the weight of
the minimum Hamming weight codewords of the code, the better the performance,
assuming the multiplicity is not too high. It is for this reason that a great deal of
research effort has been extended, around the world in determining codes with the
highest minimum Hamming weight for a given code rate (’,—i) and length n. These
codes are called the best-known codes with parameters (n, k, d), where d is under-
stood to be the d,,;,, of the code, and the codes are tabulated in a database available
online [12] with sometimes a brief description or reference to their method of con-
struction.!

In this approach, it is assumed that a decoding algorithm either exists or will be
invented which realises the full performance of a best-known code. For binary codes
of length less than 200 bits the Dorsch decoder described in Chap. 15 does realise
the full performance of the code.

Computing the minimum Hamming weight codewords of a linear code is, in
general, a Nondeterministic Polynomial-time (NP) hard problem, as conjectured by
[2] and later proved by [24]. Nowadays, it is a common practice to use a multi-
threaded algorithm which runs on multiple parallel computers (grid computing) for
minimum Hamming distance evaluation. Even then, it is not always possible to
evaluate the exact minimum Hamming distance for large codes. For some algebraic
codes, however, there are some shortcuts that make it possible to obtain the lower
and upper bounds on this distance. But knowing these bounds are not sufficient
as the whole idea is to know explicitly the exact minimum Hamming distance of a
specific constructed code. As a consequence, algorithms for evaluating the minimum
Hamming distance of a code are very important in this subject area and these are
described in the following section.

It is worth mentioning that a more accurate benchmark of how good a code is,
in fact its Hamming weight distribution. Whilst computing the minimum Hamming
distance of a code is in general NP-hard, computing the Hamming weight distribution
of a code is even more complex. In general, for two codes of the same length and
dimension but of different minimum Hamming distance, we can be reasonably certain
that the code with the higher distance is the superior code. Unless we are required to
decide between two codes with the same parameters, including minimum Hamming
distance, it is not necessary to go down the route of evaluating the Hamming weight
distribution of both codes.

"Multiplicities are ignored in the compiling of the best, known code Tables with the result that
sometimes the best, known code from the Tables is not the code that has the best performance.

http://dx.doi.org/10.1007/978-3-319-51103-0_15

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 103

5.2 Algorithms to Compute the Minimum Hamming
Distance of Binary Linear Codes

5.2.1 The First Approach to Minimum Distance Evaluation

For a [n, k, d] linear code over I, with a reduced-echelon generator matrix Gy, =
[1+|P], where I, and P are k x k identity and k x (n — k) matrices respectively,
a codeword of this linear code can be generated by taking a linear combination of
some rows of Ggy,. Since the minimum Hamming distance of a linear code is the
minimum non-zero weight among all of the 2¢ codewords, a brute-force method to
compute the minimum distance is to generate codewords by taking

(1))G (20) =)

linear combinations of the rows in Gy, noting the weight of each codeword gener-
ated and returning the minimum weight codeword of all 2¥ — 1 non-zero codewords.
This method gives not only the minimum distance, but also the weight distribution of
acode. It is obvious that as k grows larger this method becomes infeasible. However,
if n — k is not too large, the minimum distance can still be obtained by evaluating
the weight distribution of the [n, n — k, d'] dual code and using the MacWilliams
Identities to compute the weight distribution of the code. It should be noted that the
whole weight distribution of the [n, n — k, d’] dual code has to be obtained, not just
the minimum distance of the dual code.

In direct codeword evaluation, it is clear that there are too many unnecessary
codeword enumerations involved. A better approach which avoids enumerating large
numbers of unnecessary codewords can be devised. Let

c=(i|p) = (co,c1, ..., Ch—tlCks ..., Cnoz, Cn=1)

be a codeword of a binary linear code of minimum distance d. Let ¢’ = (i’|p’) be a
codeword of weightd, thenif wty (i) = wforsomeintegerw < d, wty (p') = d—w.

This means that at most
min{d—1,k}
k
> () (5.2)
w

w=1

codewords are required to be enumerated.

In practice, d is unknown and an upper bound d,;, on the minimum distance is
required during the evaluation and the minimum Hamming weight found thus far can
be used for this purpose. It is clear that once all >, _, (J:) codewords of information
weight w' are enumerated,

e we know that we have considered all possibilities of d < w; and
e if w < d,;, we also know that the minimum distance of the code is at least w + 1.

104 5 Good Binary Linear Codes

Therefore, having an upper bound, a lower bound d;, = w + 1 on the minimum
distance can also be obtained. The evaluation continues until the condition d;, > d,,;
is met and in this event, d,; is the minimum Hamming distance.

5.2.2 Brouwer’s Algorithm for Linear Codes

There is an apparent drawback of the above approach. In general, the minimum
distance of a low-rate linear code is greater than its dimension. This implies that
va:l (f;) codewords would need to be enumerated. A more efficient algorithm was
attributed to Brouwer? and the idea behind this approach is to use a collection of

generator matrices of mutually disjoint information sets [11].

Definition 5.1 (Information Set) Let the set S = {0, 1,2, ..., n—} be the coordi-
nates of an [n, k, d] binary linear code with generator matrix G. The set .# C S of
k elements is an information set if the corresponding coordinates in the generator
matrix is linearly independent and the submatrix corresponding to the coordinates in
has rank k, hence, it can be transformed into a k x k identity matrix.

In other words, we can say, in relation to a codeword, the k symbols user message
is contained at the coordinates specified by .# and the redundant symbols are stored
in the remaining n — k positions.

An information set corresponds to a reduced-echelon generator matrix and it
may be obtained as follows. Starting with a reduced-echelon generator matrix
Gglv)x = G,y; = [I«|P], Gaussian elimination is applied to submatrix P so that
it is transformed to reduced-echelon form.

The resulting generator matrix now becomes Gg)s = [A|I|P'], where P’ is
a k x (n — 2k) matrix. Next, submatrix P’ is put into reduced-echelon form and
the process continues until there exists a k x (n — [k) submatrix of rank less than
k, for some integer /. Note that column permutations may be necessary during the
transformation to maximise the number of disjoint information sets.

Let ¢ be a collection of m reduced-echelon generator matrices of disjoint infor-

mation sets, 4 = {G(l) G?® , G™

sys? sys? sys J*
Using these m matrices means that after >\, _, (5) enumerations
e all possibilities of d < mw have been considered; and
o if mw < d,;, the minimum distance of the code is at least m(w + 1), i.e. dj, =

m(w + 1).

We can see that the lower bound has been increased by a factor of m, instead of 1
compared to the previous approach. For w < k/2, we know that (fv) > (wlil) and
this lower bound increment reduces the bulk of computations significantly.

If d is the minimum distance of the code, the total number of enumerations required
is given by

2Zimmermann attributed this algorithm to Brouwer in [25].

105

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes

min{[d/m]—1,k}

(5.3)

0
2

Example 5.1 (Disjoint Information Sets) Consider the [55, 15, 20], optimal binary

linear, a shortened code of the Goppa code discovered by [15]. The reduced-echelon

generator matrices of disjoint information sets are given by

I 1
CO—~O—O— OO i
COO—O—~—OO—O—O——
COOO————O0O—O—OD
OCOO———OOO0OO——O—
O—OO0O—OO—OO——OO—
OO OO i = OO — O
CO—~O—OO0—~O O —— O
OO0 O == O OO —— O
—OO0O0O—OO0O0O———OO—O
O——OO—OO—=—OO—OD
—_OOo—OO0——O—O—OOO
COCOOOO— == O—O
et et et et O et O et et e e e et et
Ot A Ot et O A A D et e = D D
O~ OO0 —O— OO0
CO—~OO—~—O—O——OOD
O A O O et O et A O et it
Ot A A O OO = = OO O
OO — i A OO —
OO A et A O O O et e i O
O At O O O OO D
O A D OO D O et
O OO OO OO ——
Ot A et e O A O O et = Dt
OO OO0 — = D
O A O A O et e D e = O D
OO O A O O—O— D
— et et e A D O D et et O et O et
OO O A DO D D it
O A A et e A A D A O O D
—,— T O O OO et A O O —
O OO OO—= OO
OO A A OO OO
O O O OO — = OO —
O—OO—OO0O—OOO—O—
B T o T Y B N T)
OO et A A D O e A O et
OO~ OO~ == OO —
—HOOOO—=OOOO——O—O
Ot A OO e et et A O O O

[clelelelelelelelelelelele el
[clelelelololelelelelelelel el
COOCOOOOOOOOO—OO
COOCOOOOOOOO—OOO
COOCOOOOOOO—OOOO
COOCOOOOOO—OOOOO
COOCOOOOO—OOOOOO
[clelelelelelelolelelelelelele]
[clelelelelellislelelolelelele]
[elelelelel ielelelelelelelele)
[elelele) lelelelelelelelelelel
[lelel o lelelelelelelelelelolel
[l i il elelelelelelelelolel
[il leleleleleleleleleie]
lpl=lslslelolelalelelelelelele)
L |

(¢))
Gum

I 1
OO O A A et e O O O — O
O—O—OO0O0O0O——O——O
OO Dt O et vt et et ek O
O~ O—OO0—O—O—O—O—
et et O et O et ek et et et D O e vt v
O OO OO Ot et e O
O—OO—OO0O0O—O—r—O—
—OO—OO0O0O0O—O—r——O
O et e e e et D O O e = O
et O e e et et e et et e et ek ek D
O O A Dt OO OO
et et O e et e e O et et O et D D
OC—OOCO—O——OO———O
= O O OO OO OO
—OO0O0O—O——O———OOO
————— D O O Ol O et e 7
——OOO0O—OO— OO —ri—
OO At O et et = D = D
CO———OOOOO—=OOOO
—O0O0—O—O—OO——OO
—O——=OOO0OO——O—OO—
—_— O OO0 —OOO——OO
O O O OO OO ——
OO OO it et et et e =t ©
OO~ OO————O—OOO

[mlelelelelelelelolelelelelel
[ielelelelelolololelelele i

[clelelelelslelelelelolelelele]
[slelelelelelolelelololelelele)
[slelelelelelele ielelelelele)
COOOOOO—OOOOOOO
COOOOO—OOOOOOOO
COOO0O—OOOOOOOOO
[clelelelolelelelelelelelelelel
[slelsloislelelelelelelelelelel
[=lelolslelolelolelelelelelele)
(=i ielelelelelelelelolelelel
ipl=ielelelelelelelelelolelele)

S S
e OO~ O e = O
O O O et D e et e O
OO O A e A O O e O i = D
—OO OO~ OO0 ——O—
OO~ — OO~ —O——O—
OO — OO ———
C—OOO—O0CO—oO——O
SO — OO —— == OO —
OO OO O e e O e = O
OO~ OO ——— OO
O A A A A A O O OO — O i
—O—HO———~ OO —~OO—OD
SO~~~ OO —O—OO—
OO~ A OO OO ——
L |

2
Gmu

and

| |
et et O et et e e e D e O e e D
O OO il O O vt v v et et vt
Ot A O O OO — OO i —
COO—O——O——OOO——
O OO OO e = O
O—OO0OO— OO ——O—r—r—O
CO—O—=O— O OO
COO————OO——OOOO
O A Ot O e et et et O e = O
OO OO OO O

[mlelelelelelelelolelelelele)
[lelelelelelololololele e i
[lelelelelelelelelele e il
[clelelelelelelelelelel ielele]
[clelelelelelelelelellelelele)
[slelololelelelelelololelelele)
[slelelelelelele ielelelelele)
COOOOOO—OOOOOOO
COOOOO—OOOOOOOO
COOOO—OO0OOOOOOO
[clelelelolelelelelelelelelele)
[clelslolelolelelelelelelelele)
[=lelolslelelelelolelelelelele]
(=il ielelelelelololelolelelel
—HOOOOOOOOOOOOOO

OO~ —OOOO—— OO ——
et OOt O et et Ot e e ©S OO
O OO OO e = —
OO O o et O et et
O OO0 ——O—O—O
[) Y o PN N e Y T}
e O e e et o e et et O et
—O—OOCO—=—O———OO
e O e D et e D Ot =
OO~ OO O — = OO —
O OO0 ——O—O—
e OO0 ——— OO0
C—OO—=—O——— OO~
O~ —OOO—~—OOOO——
COCO—=OO——OO——O—
OO OO O~ OO —
OO~ OO —— = — OO
R = L] o L PR S o P}
[Py Y Y o L
C— OO~ ———
Sy S i SN
O A OO A O O = O
—OOO—~—O0oO—OO—O
[T P N Sy T P}
OO —OOO——O—OO
OO~ OO ———
O~ OO~ —O——OO—
L |

~©
N~
NS
Qo

Brouwer’s algorithm requires 9948 codewords to be evaluated to prove the minimum

distance of this code is 20. In contrast, for the same proof, 32767 codewords would

need to be evaluated if only one generator matrix is employed.

106 5 Good Binary Linear Codes

5.2.3 Zimmermann’s Algorithm for Linear Codes and Some
Improvements

A further refinement to the minimum distance algorithm is due to Zimmermann
[25]. Similar to Brouwer’s approach, a set of reduced-echelon generator matrices
are required. While in Brouwer’s approach the procedure is stopped once a non-
full-rank submatrix is reached; Zimmermann’s approach proceeds further to obtain
submatrices with overlapping information sets. Let GE’;‘Y) = [A, | 1| B,,11] be the last
generator matrix which contains a disjoint information set. To obtain matrices with
overlapping information sets, Gaussian elimination is performed on the submatrix

B, and this yields
A 0 (I
(m+1) _ Tm+1
Gsys - |:Am Ik—rmH 0

where r,+; = Rank (B,,;+). Next, GE?:F 2 is produced by carrying out Gaussian
elimination on the submatrix B,,, and so on.

From Gg;)x of Example 5.1, we can see that the last 10 coordinates do not form an
information set since the rank of this submatrix is clearly less than k. Nonetheless, a

“partial” reduced-echelon generator matrix can be obtained from GS)A,

Bm+2i| s

m0111111001011010010100110001100101010000 | 00000 | 10000000007
1100110000010110000010111110000110101110 | 00000 | 0100000000
1010010000110001011100111001110100001110 | 00000 | 0010000000
0010010010001100001001001001111011101111 | 00000 | 0001000000
1011110010101000101110010011100001100010 | 00000 | 0000100000
1010001011011101111000001000101101010100 | 00000 | 0000010000

@ 01000001000110T1101T1T011T11110010001111 | 00000 | 0000001000
G = 1011101011001011101101001111111100111011 | 00000 | 0000000100
5ys 0111010111111100010011111101000111110111 | 00000 | 0000000010
0101101011111001000001100100100110101010 | 00000 | 0000000001
1100001101000000101011001011001001111101 | 10000 | 0000000000
1001001100000111011010111010001110010001 | 01000 | 0000000000
0111000001101001110100010110011000101110 | 00100 | 0000000000
0001001111000011011101000010101011001110 | 00010 | 0000000000
LiTT1111100111111110000011110110100010111 | 00001 | 0000000000
From GS’S, we can see that the last k columns is also an information set, but k —
Rank (Gg)s) coordinates of which overlap with those in G©). The generator matrix

GE‘& then may be used to enumerate codewords with condition that the effect of
overlapping information set has to be taken into account.

Assuming that all codewords with information weight < w have been enumerated,

we know that

e for all va)s of full-rank, say there are m of these matrices, all cases of d < mw
have been considered and each contributes to the lower bound.

As a result, the lower bound becomes dj;, = m(w + 1).

e for each Gg"y)s that do not have full-rank, we can join Ggiy)s with column subsets
of Gg)x, for j < i, so that we have an information set .#;, which of course
overlaps with information set .#;. Therefore, for all of these matrices, say M,
all cases of d < Mw have been considered, but some of which are attributed

to other information sets, and considering these would result in double counting.

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 107

According to Zimmermann [25], for each matrix Gg,’gjj) with an overlapping

information set unless w > k — Rank (BmJr j) for which the lower bound becomes
dip = djp, + {w — (k — Rank (B,,4,)) + 1}, there is no contribution to the lower
bound.

Let the collection of full rank-reduced echelon matrices be denoted by, as before,
= {G_E;?v, Gg?v, el GE;"Y) } and let ¢’ denote the collection of M rank matri-
ces with overlapping information sets &' = {GU\D, G . GEHY. All
m + M generator matrices are needed by the [25] algorithm. Clearly, if the con-
dition w > k — Rank (Bm+ j) is never satisfied throughout the enumeration, the
corresponding generator matrix contributes nothing to the lower bound and, hence,
can be excluded [11]. In order to accommodate this improvement, we need to know
Wmay the maximum information weight that would need to be enumerated before the
minimum distance is found. This can be accomplished as follows: Say at information
weight w, alower weight codeword is found, i.e. new d,,;,, starting fromw’ = w, we let
X =9, setd;, = m(w'+1) and then increment it by (W' — (k —Rank(B,,+;)) +1)
for each matrix in ¢’ that satisfies w’ > k — Rank (B,H j). Each matrix that satisfies
this condition is also excluded from 2. The weight w' is incremented, dj, is recom-
puted and at the point when dj;, > d,;,, we have w,,,, and all matrices in 2" are those
to be excluded from codeword enumeration.

In some cases, it has been observed that while enumerating codewords of informa-
tion weight w, a codeword, whose weight coincides with the lower bound obtained at
enumeration step w — 1, appears. Clearly, this implies that the newly found codeword
is indeed a minimum weight codeword; any other codeword of lower weight, if they
exist, would have been found in the earlier enumeration steps. This suggests that the
enumeration at step w may be terminated immediately. Since the bulk of computation
time increases exponentially as the information weight is increased, this termination
may result in a considerable saving of time.

Without loss of generality, we can assume that Rank(B,,;.;) > Rank(B,,1;4+1).
With this consideration, we can implement the Zimmermann approach to minimum
distance evaluation of linear code over F,—with the improvements, in Algorithm5.1.
The procedure to update w,,,, and 2" is given in Algorithm5.2.

If there is additional code structure, the computation time required by Algo-
rithm 5.1 can be reduced. For example, in some cases it is known that the binary
code considered has even weight codewords only, then at the end of codeword enu-
meration at each step, the lower bound dj;, that we obtained may be rounded down
to the next multiple of 2. Similarly, for codes where the weight of every codeword
is divisible by 4, the lower bound may be rounded down to the next multiple of 4.

5.2.4 Chen’s Algorithm for Cyclic Codes

Binary cyclic codes, which were introduced by Prange [19], form an important
class of block codes over F,. Cyclic codes constitute many well-known error-

108 5 Good Binary Linear Codes

Algorithm 5.1 Minimum distance algorithm: improved Zimmermann’s approach

Input: ¥ = {GS)Y Gﬁ%l Gg;’?} where |4| = m

mnput: &' = (G0, GUF?, L GO where 9] = M
Output: d (minimum distance)
1: d' <~ dyp < Whax < k
2:dp <—w <1
32 =0
4: repeat
5: M« M—|Z|
6: foralli € F§ where wty (i) = w do
7 for1 < j <mdo
8: d' <~ wtg(i-G))
9: if d' < d,; then

10: dyp < d’

11: if d,, < djp then

12: Goto Step 36

13: end if

14: Winax, & < Update Wpax and 2 (dup, k, m, ¥')
15: end if

16: end for

17: for] < j<Mdo

18: d' —wig(i-GU5)

19: if ' < d,; then

20: dyp < d’

21: if d,;, < dj;, then

22: Goto Step 36

23: end if

24: Winax, 2 < Update Wyay and 2 (dup, k, m, &)
25: end if

26: end for

27: end for

28: dip < m(w+1)
20: for1 < j<Mdo

30: if w> {k — Rank (B,,H_j)} then

31 dip = dyp + {w — (k — Rank (B,4,)) + 1}
32: end if

33: end for

34: w<—w+1
35: until djp, > d,, ORw > k
36: d < dyp

correcting codes, such as the quadratic-residue codes and the commonly used in
practice Bose—Chaudhuri-Hocquenghem (BCH) and Reed—Solomon (RS) codes. A
binary cyclic code of length n, where n is necessarily odd, has the property that
if c(x) = "7, cix’, where ¢; € F, is a codeword of the cyclic code, then x/¢(x)
(mod x" —1), for some integer j, is also a codeword of that cyclic code. That is to say
that the automorphism group of a cyclic code contains the coordinate permutation
i > i+ 1 (mod n).

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 109

Algorithm 5.2 .y, 2° = Update wyqx and 2 (dup, k, m, 4")
Input: d,p, k, m
Input: ¢’ {G%”, GUFY. . GuM >}
Output: wy,,, and 2
1: & «~9
2: Wipax < 1
3: repeat
dip <= m(Wiax + 1)
for1 <j <19 do
if Wyax > {k — Rank (B, ;)} then
Remove Ggr.';”) from 2 if Gg';';” dea
dip = djp + {Wmax — (k — Rank (Bm+j)) + 1}
9: end if
10: end for
11: Wmax < Whnax + 1
12: until dj, > d,;p OR wyay > k
13: return w,,,, and 2~

XN Nk

An[n, k, d] binary cyclic code is defined by a generator polynomial g (x) of degree
n — k, and a parity-check polynomial 4 (x) of degree k, such that g(x)h(x) = 0
(mod x™ —1). Any codeword of this cyclic code is a multiple of g(x), thatis c(x) =
u(x)g(x), where u(x) is any polynomial of degree less than k. The generator matrix
G can be simply formed from the cyclic shifts of g(x), i.e.

g(x) (mod x™ —1)
xg(x) (mod x" —1)
. 5.4

x*lg(x) (mod x" —1)

Since for some integer i, x' = q; (x)g(x) +r;(x) where r;(x) = x’ (mod g(x)), we
can write

(T = i (0) = xF g () g (x)

and based on this, a reduced-echelon generator matrix G, of a cyclic code is
obtained:

—x"* (mod g(x))
—x"* (mod g(x))
Gsys — I, —x" k2 (mod g(x))) (5.5)

" (mod g(x))

110 5 Good Binary Linear Codes

The matrix Gy, in (5.5) may contain several mutually disjoint information sets.
But because each codeword is invariant under a cyclic shift, a codeword generated
by information set .#; can be obtained from information set .#; by means of a
simple cyclic shift. For an [n, k, d] cyclic code, there always exists |n/ k] mutually
disjoint information sets. As a consequence of this, using a single information set is
sufficient to improve the lower bound to [n/k](w 4+ 1) at the end of enumeration
step w. However, Chen [7] showed that this lower bound could be further improved
by noting that the average number of non-zeros of a weight wy codeword in an
information set is wok/n. After enumerating)| (If) codewords, we know that the
weight of a codeword restricted to the coordinates specified by an information set is
at least w + 1. Relating this to the average weight of codeword in an information set,
we have an improved lower bound of dj;, = [(w+1)n/k]. Algorithm 5.3 summarises
Chen’s [7] approach to minimum distance evaluation of a binary cyclic code. Note
that Algorithm 5.3 takes into account the early termination condition suggested in
Sect.5.2.3.

Algorithm 5.3 Minimum distance algorithm for cyclic codes: Chen’s approach
Input: Gy = [1|P] {see (5.5)}
Output: d (minimum distance)

1:dyy < k

2: dpp < 1

3:w<1

4: repeat

5: d <~k

6: foralli IF’; where wty (i) = w do
7. d' < wtg(i - Gyys)
8: if d’ < d,; then

9: duh <« d/
10: if d,, < dj, then
11: Goto Step 18
12: end if
13: end if
14: end for

5. dyp < (%(er 1)}
16: w<«—w+1

17: until djp, > d,p, ORw > k
18: d < dyp

It is worth noting that both minimum distance evaluation algorithms of Zimmer-
mann [25] for linear codes and that of Chen [7] for cyclic codes may be used to
compute the number of codewords of a given weight. In evaluating the minimum
distance d, we stop the algorithm after enumerating all codewords having informa-
tion weight i to w, where w is the smallest integer at which the condition dj;, > d is
reached. To compute the number of codewords of weight d, in addition to enumer-
ating all codewords of weight i to w in their information set, all codewords having
weight w1 in their information set, also need to be enumerated. For Zimmermann’s

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 111

method, we use all of the available information sets, including those that overlap,
and store all codewords whose weight matches d. In contrast to Chen’s algorithm,
we use only a single information set but for each codeword of weight d found, we
accumulate this codeword and all of the n — 1 cyclic shifts. In both approaches, it
is necessary to remove the doubly-counted codewords at the end of the enumeration
stage.

5.2.5 Codeword Enumeration Algorithm

The core of all minimum distance evaluation and codeword counting algorithms lies
in the codeword enumeration. Given a reduced-echelon generator matrix, codewords
can be enumerated by taking linear combinations of the rows in the generator matrix.
This suggests the need for an efficient algorithm to generate combinations.

One of the most efficient algorithm for this purpose is the revolving-door algo-
rithm, see [4, 13, 17]. The efficiency of the revolving-door algorithm arises from
the property that in going from one combination pattern to the next, there is only
one element that is exchanged. An efficient implementation of the revolving-door
algorithm is given in [13], called Algorithm R, which is attributed to [18].3

In many cases, using a single-threaded program to either compute the minimum
distance, or count the number of codewords of a given weight, of a linear code may
take a considerable amount of computer time and can take several weeks.

For these long codes, we may resort to a multi-threaded approach by splitting
the codeword enumeration task between multiple computers. The revolving-door
algorithm has a nice property that allows such splitting to be neatly realised. Let
a;a;_1 ...axa;, where a;, > a;,_; > ... > a, > a; be a pattern of an ¢ out of
s combinations—C;. A pattern is said to have rank i if this pattern appears as the
(i 4+ 1)th element in the list of all C; combinations.* Let Rank (a;a,_; . . .a»a,) be
the rank of pattern a;a,_; . ..aza;, the revolving-door algorithm has the property
that [13]

a; +1

Rank(a;a;—1 ... apay) = |:(;

) — 1:| — Rank(a;_; ...axa;) (5.6)

and, for each integer N, where 0 < N < (:) — 1, we can represent it uniquely
with an ordered pattern a,a,_; ...aza;. As an implication of this and (5.6), if all

(’[‘) codewords need to be enumerated, we can split the enumeration into {(/;) /M —‘
blocks, where in each block only at most M codewords need to be generated. In

3This is the version that the authors implemented to compute the minimum distance and to count
the number of codewords of a given weight of a binary linear code.

4Here it is assume that the first element in the list of all C 7 combinations has rank 0.

112 5 Good Binary Linear Codes

C5
Rank |a5 a4 as as aq
0 (43210 5
Cq 1 [54210 Cs
Rank (a4 a3 as a4 2 54320 06
0 (3210 C 3 (543821 5
1 (4310 4 |54310
2 4321 CY 5 (53210
3 (4320 6 (65210
4 4210 7 165320
5 |5410 8 65321
6 |5421 9 65310
7 5420 +§ 10 |6 5430 +57
8 |5432 11 65431
9 |5431 12 65432
10 |5430 13 65420
11 |5310 14 (65421
12 5321 15 65410
13 |5320 16 (64210
14 5210/ 17 164320
18 64321
19 (64310
20 63210/

Fig. 5.1 C‘? and C57 revolving-door combination patterns

this way, we can do the enumeration of each block on a separate computer and this
allows a parallelisation of the minimum distance evaluation, as well as the counting
of the number of codewords of a given weight. We know that at the ith block, the
enumeration would start from rank (i — 1) M, and the corresponding pattern can be
easily obtained following (5.6) and Lemma 5.1 below.

All a;a,_; . ..aza; revolving-door patterns of C; satisfy the property that if the
values in position a, grow in an increasing order, then for fixed a,, the values in
position a,_; grow in a decreasing order, moreover for fixed a;a,;_; the values in
position a,_, grow in an increasing order, and so on in an alternating order. This
behaviour is evident by observing all revolving-door patterns of Cf (left) and C57
(right) shown in Fig.5.1.

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 113
From this figure, we can also observe that
coc 'y oct o, (5.7)

and this suggests the following lemma.

Lemma 5.1 (Maximum and Minimum Ranks) Consider the a,a,_;...axa;
revolving-door combination pattern, if we consider patterns with fixed a,, the maxi-
mum and minimum ranks of such pattern are respectively given by

1
(a, +) -1 and (at) .
t t
Example 5.2 (Maximum and Minimum Ranks) Say, if we consider all C$ revolving-
door combination patterns (left portion of Fig.5.1) where a4 = 4. From Lemma 5.1,
5

we have a maximum rank of (4) — 1 = 4, and a minimum rank of (Z) = 1. We can
see that these rank values are correct from Fig.5.1.

Example 5.3 (The Revolving-Door Algorithm) Consider combinations C57 generated
by the revolving-door algorithm, we would like to determine the rank of combina-
tion pattern 17. We know that the combination pattern takes the ordered form of
asasazapa, where a; > a;_. Starting from as, which can takes values from 0 to
6, we need to find as such that the inequality (“5‘) <17 < (“5; 1) — 1 is satisfied
(Lemma 5.1). It follows that as = 6 and using (5.6), we have

17 = Rank(6a4a3a2a1)

— [(6—; 1) — 1] — Rank(asasazay)

Rank(asazaya;) =20 —17=3.

Next, we consider a4 and as before, we need to find a4 € {5, 4, 3, 2, 1, 0} such
that the inequality (%) < Rank(asazaza;) < ("4;“) — 1 is satisfied. It follows that
a4 = 4 and from (5.6), we have

3 = Rank(4azara;)

= [(4: 1) — 1] — Rank(azaza,)

Rank(azara;)) =4—-3=1.

Next, we need to find a3, which can only take a value less than 4, such that the

inequality (”;) < Rank(azaza;) < (“3; 1) — 1 is satisfied. It follows that a3 = 3 and

from (5.6), Rank (aya;) = [(3;1) - 1] —1=2

114 5 Good Binary Linear Codes

So far we have 643a,a;, only a, and a; are unknown. Since a; = 3, a, can only
take a value less than 3. The inequality (“22) < Rank(aya;) < (“2;’ 1) — 1 is satisfied

if a; = 2 and correspondingly, Rank(a;) = [(2;1) — l] —-2=0.

For the last case, the inequality (“1‘) < Rank(a;) < (“‘f’l) — 1 is true if and
only if @; = 0. Thus, we have 64320 as the rank 17 C revolving-door pattern.

Cross-checking this with Fig. 5.1, we can see that 64320 is indeed of rank 17.

From (5.6) and Example 5.3, we can see that given a rank N, where 0 < N <
(;) — 1, we can construct an ordered pattern of C; revolving-door combinations
a,a;— . .. apay, recursively. A software realisation of this recursive approach is given

in Algorithm 5.4.

Algorithm 5.4 Recursively Compute a; (Rank(a;a;_1 ...aza1),1i)
Input: { and Rank(a;ja;_; ...azar)
Output: g;

: Find a;, where 0 < a; < aj41, such that () < Rank(a;a;i— ...aa1) < [(“"f') — l]

1

2: if i > i then

3 Compute Rank(a;_1 ...aza;) = [(”irl) — 1:| — Rank(a;a;i—1 ...axay)
4: RecursiveCompute a; (Rank(a;—1 ...axay),i — 1)

5: end if

6: return g;

5.3 Binary Cyclic Codes of Lengths 129 < n < 189

The minimum distance of all binary cyclic codes of lengths less than or equal to 99
has been determined by Chen [7, 8] and Promhouse et al. [21].

This was later extended to longer codes with the evaluation of the minimum
distance of binary cyclic codes of lengths from 101 to 127 by Schomaker et al.
[22]. We extend this work to include all cyclic codes of odd lengths from 129 to
189 in this book. The aim was to produce a Table of codes as a reference source
for the highest minimum distance, with the corresponding roots of the generator
polynomial, attainable by all cyclic codes over F, of odd lengths from 129 to 189.
It is well known that the coordinate permutation o : i — i, where p is an integer
relatively prime to n, produces equivalent cyclic codes [3, p. 141f]. With respect to
this property, we construct a list of generator polynomials g (x) of all inequivalent and
non-degenerate [16, p. 223f] cyclic codes of 129 < n < 189 by taking products of the
irreducible factors of x" — 1. Two trivial cases are excluded, namely g(x) = x + 1
and g(x) = (x" — 1)/(x + 1), since these codes have trivial minimum distance
and exist for any odd integer n. The idea is for each g(x) of cyclic codes of odd
length n; the systematic generator matrix is formed and the minimum distance of
the code is determined using Chen’s algorithm (Algorithm 5.3). However, due to
the large number of cyclic codes and the fact that we are only interested in those of

5.3 Binary Cyclic Codes of Lengths 129 < n < 189 115

largest minimum distance for given n and k, we include a threshold distance d;;, in
Algorithm 5.3. Say, for given n and k, we have a list of generator polynomials g (x) of
all inequivalent cyclic codes. Starting from the top of the list, the minimum distance of
the corresponding cyclic code is evaluated. If a codeword of weight less than or equal
to d,;, is found during the enumeration, the computation is terminated immediately
and the next g(x) is then processed. The threshold d,j, which is initialised with 0, is
updated with the largest minimum distance found so far for given n and k.

Table4.3 in Sect. 4.5 shows the highest attainable minimum distance of all binary
cyclic codes of odd lengths from 129 to 189. The number of inequivalent and non-
degenerate cyclic codes for a given odd integer n, excluding the two trivial cases
mentioned above, is denoted by Ne.

Note that Table 4.3 does not contain entries for primes n = 8m %3. This is because
for these primes, 2 is not a quadratic residue modulo n and hence, ord,(n) = n — 1.
As aconsequence, x" — 1 factors into two irreducible polynomials only, namely x + 1
and (x" — 1)/(x + 1) which generate trivial codes. Let 8 be a primitive nth root of
unity, the roots of g(x) of a cyclic code (excluding the conjugate roots) are given
in terms of the exponents of 8. The polynomial m(x) is the minimal polynomial of
B and it is represented in octal format with most significant bit on the left. That is,
m(x) = 166761, as in the case for n = 151, represents x4 x4 By
x0T x4+

5.4 Some New Binary Cyclic Codes Having Large
Minimum Distance

Constructing an [n, k] linear code possessing the largest minimum distance is one of
the main problems in coding theory. There exists a database containing the lower and
upper bounds of minimum distance of binary linear codes of lengths 1 < n < 256.
This database appears in [6] and the updated version is accessible online.?

The lower bound corresponds to the largest minimum distance for a given [n, k],
code that has been found to date. Constructing codes which improves Brouwer’s
lower bounds is an on-going research activity in coding theory. Recently, Tables of
lower- and upper-bounds of not only codes over finite-fields, but also quantum error-
correcting codes, have been published by Grassl [12]. These bounds for codes over
finite-fields, which are derived from MAGMA [5], appear to be more up-to-date than
those of Brouwer.

We have presented in Sect. 5.3, the highest minimum distance attainable by all
binary cyclic codes of odd lengths from 129 to 189 and found none of these cyclic
codes has larger minimum distance than the corresponding Brouwer’s lower bound
for the same 7 and k. The next step is to consider longer length cyclic codes, 191 <

5The database is available at http://www.win.tue.nl/~aeb/voorlincod.html.
Note that, since 12" March 2007, A. Brouwer has stopped maintaining his database and hence
it is no longer accessible. This database is now superseded by the one maintained by Grassl [12].

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://www.win.tue.nl/~aeb/voorlincod.html

116 5 Good Binary Linear Codes

n < 255. For these lengths, unfortunately, we have not been able to repeat the
exhaustive approach of Sect.5.3 in a reasonable amount of time. This is due to the
computation time to determine the minimum distance of these cyclic codes and also,
for some lengths (e.g. 195 and 255), there are a tremendous number of inequivalent
cyclic codes. Having said that, we can still search for improvements from lower rate
cyclic codes of these lengths for which the minimum distance computation can be
completed in a reasonable time. We have found many new cyclic codes that improve
Brouwer’s lower bound and before we present these codes, we should first consider
the evaluation procedure.

As before, let 8 be a primitive nth root of unity and let A be a set containing
all distinct (excluding the conjugates) exponents of 8. The polynomial x” — 1 can
be factorised into irreducible polynomials f;(x) over o, x" — 1 = [],., fi(x).
For notational purposes, we denote the irreducible polynomial f;(x) as the minimal
polynomial of 8. The generator and parity-check polynomials, denoted by g(x) and
h(x) respectively, are products of f;(x). Given a set I" C A, a cyclic code € which
has B/, i € I', as the non-zeros can be constructed. This means the parity-check
polynomial A (x) is given by

he) =[] i

iel’

and the dimension k of this cyclic codeis D ;- deg(fi (x)), where deg(f (x)) denotes
the degree of f(x).Let I'" € A\{0}, h'(x) = [[;c,~ fi(x) and h(x) = (1 +x)h'(x).
Given % with parity-check polynomial 4 (x), there exists an [, k — 1, d’] expurgated
cyclic code, ¢, which has parity-check polynomial A’(x). For this cyclic code,
wty(c) = 0 (mod 2) for all ¢ € ¢”. For convenience, we call ¢ the augmented
code of .

Consider an [n, k — 1, d'] expurgated cyclic code 7, let the set I' = {I, I,
..., Y where, for 1 < j <r, I'; € A\ {0} and Zierj deg(fi(x)) = k — 1. For
each I'; € I', we compute A’(x) and construct ”. Having constructed the expurgated
code, the augmented code can be easily obtained as shown below. Let G be a generator
matrix of the augmented code %', and without loss of generality, it can be written as

G = G (5.8)

v

where G’ is a generator matrix of 4" and the vector v is a coset of 4" in %. Using
the arrangement in (5.8), we evaluate d’ by enumerating codewords ¢ € ¢’ from G'.
The minimum distance of %, denoted by d, is simply min.c{d’, wty (¢ + v)} for
all codewords ¢ enumerated. We follow Algorithm 5.3 to evaluate d’. Let dp,ouyer

5.4 Some New Binary Cyclic Codes Having Large Minimum Distance 117
and dj, ..., denote the lower bounds of [6] for linear codes of the same length and
dimension as those of 4" and €” respectively. During the enumerations, as soon as
d < dprouwer and d’ < dj, . ., the evaluation is terminated and the next I'; in I"
is then processed. However, if d < dgrouwer and d’ > dy, ..., only the evaluation
for ¢ is discarded. Nothing is discarded if both d’ > dj, ..., and d > dpouwer-
This procedure continues until an improvement is obtained; or the set in I' has been
exhausted, which means that there does not exist [n, kK — 1] and [n, k] cyclic codes
which are improvements to Brouwer’s lower bounds. In cases where the minimum
distance computation is not feasible using a single computer, we switch to a parallel
version using grid computers.

Table 5.1 presents the results of the search for new binary cyclic codes having
lengths 195 < n < 255. The cyclic codes in this table are expressed in terms of the
parity-check polynomial (x), which is given in the last column by the exponents of
B (excluding the conjugates). Note that the polynomial m (x), which is given in octal
with the most significant bit on the left, is the minimal polynomial of 8. In many
cases, the entries of € and ¢” are combined in a single row and this is indicated by
“a/b” where the parameters a and b are for ¢’ and €, respectively. The notation
“[0]” indicates that the polynomial (1 4 x) is to be excluded from the parity-check
polynomial of €.

Some of these tabulated cyclic codes have a minimum Hamming distance which
coincides with the lower bounds given in [12]. These are presented in Table 5.1 with
the indicative mark “{”.

In the late 1970s, computing the minimum distance of extended Quadratic Residue
(QR) codes was posed as an open research problem by MacWilliams and Sloane [16].
Since then, the minimum distance of the extended QR code for the prime 199 has
remained an open question. For this code, the bounds of the minimum distance were
given as 16 — 32 in [16] and the lower bound was improved to 24 in [9]. Since
199 = —1 (mod 8), the extended code is a doubly even self-dual code and its
automorphism group contains a projective special linear group, which is known to
be doubly transitive [16]. As a result, the minimum distance of the binary [199, 100]
QR codeisodd, i.e. d =3 (mod 4), and hence, d = 23, 27 or 31. Due to the cyclic
property and the rate of this QR code [7], we can safely assume that a codeword
of weight d has maximum information weight of |d/2]. If a weight d codeword
does not satisfy this property, there must exist one of its cyclic shifts that does. After
enumerating all codewords up to (and including) information weight 13 using grid
computers, no codeword of weight less than 31 was found, implying that d of this
binary [199, 100] QR code is indeed 31.

Without exploiting the property that d = 3 (mod 4), an additional ('}) + ('¥)
codewords (88,373,885,354,647,200 codewords) would need to be enumerated in
order to establish the same result and beyond available computer resources. Accord-
ingly, we now know that there exists the [199, 99, 32] expurgated QR code and the
[200, 100, 32] extended QR code.

It is interesting to note that many of the code improvements are contributed by
low-rate cyclic codes of length 255 and there are 16 cases of this. Furthermore, it is
also interesting that Table 5.1 includes a [255, 55, 70] cyclic code and a [255, 63, 65]

118

Table 5.1 New binary cyclic codes

5 Good Binary Linear Codes

[m(x)]g n k d dBrouwer h(x)

17277 195 66/67 42/41 40/40 [0],3,5,9, 19,39, 65, 67
T 68/69 40/39 39/38 [0], 1,3,13, 19, 35,67, 91
73 38 37 0,3,7,19,33,35,47
7475 38/37 36/36 [0],3,7,19, 33, 35, 47, 65
78 36 35 3,7,9,11,19, 35,39, 65

13237042705~ 199 99/100 32/31 28/28 [o1, 1

30057231362-

555070452551

6727273 205 60 48 46 511,31
61 46 44 0,3, 11,31

3346667657 215 70/71 46/46 44/44 [0],3, 13,35

3705317547055 223 74/75 48/47 46/45 [0],5,9

3460425444467- 229 76 48 46 1

7544446504147

6704436621 233 T 58/59 60/60 56/56 [0], 3,29

150153013 241 T 49 68 65 0,1,21
73 54 53 0,1,3,25

435 255 48/49 76/75 75/72 [0], 47,55,91,95, 111, 127
50/51 74/74 72/72 [01,9, 13,23, 47, 61, 85, 127
52/53 72/72 71/68 [01,7,9,17,47,55, 111, 127
54/55 70/70 68,68 [0],3,7,23,47, 55,85, 119, 127
56/57 68/68 67/65 [01,7,27,31, 45,47, 55, 127
58 66 64 7,39,43,45,47,55, 85, 127
60 66 64 7,17,23, 39, 45,47, 55, 127
62/63 66/65 64/63 [0], 11,21,47, 55,61, 85,87, 119, 127
64/65 64/63 62/62 [0], 19, 31, 39,47, 55, 63,91, 127

cyclic code, which are superior to the BCH codes of the same length and dimension.
Both of these BCH codes have minimum distance 63 only.

5.5 Constructing New Codes from Existing Ones

It is difficult to explicitly construct a new code with large minimum distance. How-
ever, the alternative approach, which starts from a known code which already has large
minimum distance, seems to be more fruitful. Some of these methods are described
below and in the following subsections, we present some new binary codes con-
structed using these methods, which improve on Brouwer’s lower bound.

Theorem 5.1 (Construction X) Let &, and %, be [n, k1, d,] and [n, ky, d] linear
codes over ¥, respectively, where 8\, D B, (%, is a subcode of %,). Let o/

5.5 Constructing New Codes from Existing Ones 119

be an [n', ks = k| — ko, d'] auxiliary code over the same field. There exists an
(n+n', ki, min{d,, d + d'}] code €x over F,.

Construction X is due to Sloane et al. [23] and it basically adds a tail, which is a
codeword of the auxiliary code <7, to % so that the minimum distance is increased.
The effect of Construction X can be visualised as follows. Let G be the generator
matrix of code €. Since A, O %,, we may express Gz, as

where V is a (k| — k») x n matrix which contains the cosets of %, in %;. We can see
that the code generated by G 5, has minimum distance d,, and the set of codewords
{v 4+ ¢2}, for all v € V and all codewords ¢, generated by G 5,, have minimum
weight of d;. By appending non-zero weight codewords of .7 to the set {v + ¢;},
and all zeros codeword to each codeword of %,, we have a lengthened code of larger
minimum distance, €, whose generator matrix is given by

|
Gy, = G o (5.9)
|

\4 G

We can see that, for binary cyclic linear codes of odd minimum distance, code
extension by annexing an overall parity-check bit is an instance of Construction X.
In this case, %, is the even-weight subcode of %, and the auxiliary code <7 is the
trivial [1, 1, 1], code.

Construction X given in Theorem 5.1 considers a chain of two codes only. There
also exists a variant of Construction X, called Construction XX, which makes use of
Construction X twice and it was introduced by Alltop [1].

Theorem 5.2 (Construction XX) Consider three linear codes of the same length,
By = [n,k,d), B> = [n, ko, dy] and B3 = [n, k3, d3] where B, C P, and
By C By. Let By be an [n, ky, d4] linear code which is the intersection code of
By and B, i.e. By = FBy N B3. Using auxiliary codes o) = [ny, ky — ko, dj] and
gt = [ng, ki — k3, di], there exists an [n + ny + na, ki, d] linear code €xx, where
d = min{dy, d; + di, d, + dé, d) + di + dé}

The relationship among %, B>, B3 and HB, can be illustrated as a lattice shown
below [11].

120 5 Good Binary Linear Codes
)
ST
B> /@3
HBs
Since B D By, B1 D $Bs, By C P, and B, C PBs, the generator matrices of
P>, B3 and A, can be written as

G4
Gz, = Z , Gz =

V2 V3

Gz,

Gz,

and Gg = A

V3
\ %

respectively, where V;, i = 2,3, is the coset of %4 in %;, and V contains the
cosets of %, and %5 in %;. Construction XX starts by applying Construction X to
the pair of codes #; D %, using < as the auxiliary code. The resulting code is
x = [n + ny, ki, min{d, d| + d{}], whose generator matrix is given by

Gs | 0
GC@”X = V2
V3
Gy,
.V _

This generator matrix can be rearranged such that the codewords formed from the
first n coordinates are cosets of %3 in 4. This rearrangement results in the following
generator matrix of €y,

G, | 0

Geo =" v, [|
V3 Gﬂl
V, 0

| V65

5.5 Constructing New Codes from Existing Ones 121

G(l)
where G o, = G_g; . Next, using .o% as the auxiliary code, applying Construction
o\

X tothe pair & D %5 with the rearrangement above, we obtain €y x whose generator
matrix is

Gs, 0|0
G%XX = V3 G'Q{]
V2 0
- = ! Gd
2) 2
LV 6L

While Constructions X and XX result in a code with increased length, there also
exists a technique to obtain a shorter code with known minimum distance lower
bounded from a longer code whose minimum distance and also that of its dual code
are known explicitly. This technique is due to Sloane et al. [23] and it is called
Construction Y1.

Theorem 5.3 (Construction Y1) Given an [n, k, d] linear code €, which has an
[n,n —k,d*] €+ as its dual, an [n — d+,k — d*+ + 1,> d] code €' can be
constructed.

Given an [n, k, d] code, with standard code shortening, we obtain an [n — i, k — i,
> d] code where i indicates the number of coordinates to shorten. With Construction
Y1, however, we can gain an additional dimension in the resulting shortened code.
This can be explained as follows. Without loss of generality, we can assume the
parity-check matrix of ¢, which is also the generator matrix of ¥+, H contains
a codeword ¢ of weight d*. If we delete the coordinates which form the support
of ¢+ from H, now H becomes an (n — k) X n — d* matrix and there is a row
which contains all zeros among these n — k rows. Removing this all zeros row, we
have an (n — k — 1) x (n — d*) matrix H’', which is the parity-check matrix of an
m—d-n—dt—m—-k—1,>dl=[n—d" k—d-+1,>d]code €.

5.5.1 New Binary Codes from Cyclic Codes of Length 151

Amongst all of the cyclic codes in Table4.3, those of length 151 have minimum
distances that were found to have the highest number of matches against Brouwer’s
[6] lower bounds. This shows that binary cyclic codes of length 151 are indeed good
codes. Since 151 is a prime, cyclic codes of this length are special as all of the
irreducible factors of x'>! — 1, apart from 1 + x, have a fixed degree of 15. Having
a fixed degree implies that duadic codes [14], which includes the quadratic residue
codes, also exist for this length. Due to their large minimum distance, they are good
candidate component codes for Constructions X and XX.

http://dx.doi.org/10.1007/978-3-319-51103-0_4

122 5 Good Binary Linear Codes

Table 5.2 Order of 8 in an optimum chain of [151, &;, d;] cyclic codes

ki d; Roots of g(x), excluding conjugate roots
1502 p°

1356 p° B!

1208 g p! B3

105 14 B0 g1 g3 g3

90 18 B0 p! B3 B3 gl

75 24 g0 g B3 g5 gl p1s

60 32 '30 ﬂl ﬁ3 ,65 ﬁll /315 ﬂ37
45 36 g0 gl B3 g5 pll pls g23 g3
30 48 g0 gl B3 B3 pll 15 g23 p35 g37
1015 60 g0 ! g3 g5 7 gl gI5 g23 g35 g%

N I o N R N O N s

Definition 5.2 (Chain of Cyclic Codes) A pair of cyclic codes, € = [n, ki, d;]
and 6> = [n, ko, d>] where k; > k», is nested, denoted €, D %>, if all roots of
%) are contained in %>. Here, the roots refer to those of the generator polynomial.
By appropriate arrangement of their roots, cyclic codes of the same length may be
partitioned into a sequence of cyclic codes 6] D %2 D ... D %;. This sequence of
codes is termed a chain of cyclic codes.

Given all cyclic codes of the same length, it is important to order the roots of
these cyclic codes so that an optimum chain can be obtained. For all cyclic codes of
length 151 given in Table 4.3, whose generator polynomial contains 1+ x as a factor,
an ordering of roots (excluding the conjugate roots) shown in Table5.2 results in
an optimum chain arrangement. Here § is a primitive 1518 root of unity. Similarly,
a chain which contains cyclic codes, whose generator polynomial does not divide
1 + x, can also be obtained.

All the constituent codes in the chain 6] D %, D ... D %} of Table 5.2 are cyclic.
Following Grassl [10], a chain of non-cyclic subcodes may also be constructed from
a chain of cyclic codes. This is because for a given generator matrix of an [n, k, d]
cyclic code (not necessarily in row-echelon form), removing the last i rows of this
matrix will produce an [n, k — i, > d] code which will no longer be cyclic. As
a consequence, with respect to Table 5.2, there exists [151, k, d] linear codes, for
15 < k < 150.

Each combination of pairs of codes in the [151, k, d] chain is a nested pair which
can be used as component codes for Construction X to produce another linear code
with increased distance. There is a chance that the minimum distance of the resulting
linear code is larger than that of the best-known codes for the same length and
dimension. In order to find the existence of such cases, the following exhaustive
approach has been taken. There are (*°7°*") = ('3°) distinct pair of codes in the
above chain of linear codes, and each pair say €1 = [n, k1, d\] D 6, = [n, ka, d1], is
combined using Construction X with an auxiliary code <, whichis an [n’, k| —k», d']
best-known linear code. The minimum distance of the resulting code @ is then

http://dx.doi.org/10.1007/978-3-319-51103-0_4

5.5 Constructing New Codes from Existing Ones 123

compared to that of the best-known linear code for the same length and dimension
to check for a possible improvement. Two improvements were obtained and they are
tabulated in in the top half of Table5.3.

In the case where ki — k, is small, the minimum distance of 4], i.e. d;, obtained
from a chain of linear codes, can be unsatisfactory. We can improve d; by augmenting
%, withavector v of length n,i.e. add v as an additional row in G, . In finding a vector
v that can maximise the minimum distance of the enlarged code, we have adopted
the following procedure. Choose a code 4> = [n, k», d»] that has sufficiently high
minimum distance.

Assuming that G, is in reduced-echelon format, generate a vector v which sat-
isfies the following conditions:

1. v =0for0 <i <k — 1 where v; is the ith element of v,

2. wty(v) > d;, and

3. wtg(v+G,) > d, forallr € {0, 1, ..., kp — 1} where G, , denotes the rth row
of Gcgz.

The vector v is then appended to G, as an additional row. The minimum distance
of the resulting code is computed using Algorithm 5.1. A threshold is applied during
the minimum distance evaluation and a termination is called whenever: d,;, < d;, in
which case a different v is chosen and Algorithm 5.1 is restarted; or d| < d,, < dj
which means that an improvement has been found.

Using this approach, we found two new linear codes, [151,77,20] and
[151, 62, 27], which have higher minimum distance than the corresponding codes
obtained from a chain of nested cyclic codes. These two codes are obtained start-
ing from the cyclic code [151, 76, 23]-which has roots {8, ,35, ,315, ﬂ35, /337} and the
cycliccode [151, 61, 31]-whichhasroots {8, 82, B>, B!, B3, B37}, respectively and
therefore

[151,77,20] D [151, 76, 23]

and
[151,62,27] D [151, 61, 31].

The second half of Table 5.3 shows the foundation codes for these new codes.

Note that when searching for the [151, 62, 27] code, we exploited the property
that the [152, 61, 32] code obtained by extending the [151, 61, 31] cyclic code is
doubly even. We chose the additional vector v such that extending the enlarged
code [151, 62, d;] yields again a doubly even code. This implies the congruence
d; = 0, 3 mod 4 for the minimum distance of the enlarged code. Hence, itis sufficient
to establish a lower bound dj;, = 25 using Algorithm 5.1 to show that d; > 27.

Furthermore, we also derived two different codes, 4, = [151,62,27] C €,
and ¢; = [151,62,27] C %), where 4| = [151,63,23] and €4 = 6> N6 =
[151, 61, 31]. Using Construction XX, a[159, 63, 31] code is obtained, see Table 5.4.

124 5 Good Binary Linear Codes

Table 5.3 New binary codes from Construction X and cyclic codes of length 151

%1 %72 o CKX
Using chain of linear codes
[151,72,24] [151,60,32] [23,12,7] [174,72,31]
[151,60,32] [151,45,36] [20,15,3] [171,60,35]
Using an improved subcode
[151,77,20] [151,76,23] [3,1,3] [154,77,23]
[151,62,27] [151,61,31] [4,1,4] [155,62,31]

Table 5.4 New binary code from Construction XX and cyclic codes of length 151
61 6> 63 G = 6 NG3 o afy Exx
[151,63,23] [I51,62,27] [151,62,27] [I51,61,31] [4,1,4] [4,1,4] [159,63,31]

5.5.2 New Binary Codes from Cyclic Codes of Length > 199

We know from Table5.1 that there exists an outstanding [199, 100, 31] cyclic
code. The extended code, obtained by annexing an overall parity-check bit, is a
[200, 100, 32] doubly even self-dual code. As the name implies, being self-dual
we know that the dual code has minimum distance 32. By using Construction Y1
(Theorem 5.3), a [168, 69, 32] new, improved binary code is obtained. The minimum
distance of the [168, 69] previously considered best-known binary linear code is 30.

Considering cyclic codes of length 205, in addition to a [205, 61, 46] cyclic
code (see Table5.1), there also exists a [205, 61, 45] cyclic code which contains
a [205, 60, 48] cyclic code as its even-weight subcode. Applying Construction X
(Theorem 5.1) to the [205, 61, 45] D [205, 60, 48] pair of cyclic codes with a repe-
tition code of length 3 as the auxiliary code, a [208, 61, 48] new binary linear code
is constructed, which improves Brouwer’s lower bound distance by 2.

Furthermore, by analysing the dual codes of the [255, 65, 63] cyclic code in
Table 5.1 and its [255, 64, 64] even weight subcode it was found that both have
minimum distance of 8. Applying Construction Y1 (Theorem 5.3), we obtain the
[247,57, 64] and the [247, 58, 63] new binary linear codes, which improves on
Brouwer’s lower bound distances by 2 and 1, respectively.

5.6 Concluding Observations on Producing New Binary
Codes

In the search for error-correcting codes with large minimum distance, having a fast,
efficient algorithm to compute the exact minimum distance of a linear code is impor-
tant. The evolution of various algorithms to evaluate the minimum distance of a binary

5.6 Concluding Observations on Producing New Binary Codes 125

linear code, from the naive approach to Zimmermann’s efficient approach, have been
explored in detail. In addition to these algorithms, Chen’s approach in computing
the minimum distance of binary cyclic codes is a significant breakthrough.

The core basis of a minimum distance evaluation algorithm is codeword enumer-
ation. As we increase the weight of the information vector, the number of codewords
grows exponentially. Zimmermann’s very useful algorithm may be improved by
omitting generator matrices with overlapping information sets that never contribute
to the lower bound throughout the enumeration. Early termination is important in
the event that a new minimum distance is found that meets the lower bound value of
the previous enumeration step. In addition, if the code under consideration has the
property that every codeword weight is divisible by 2 or 4, the number of codewords
that need to be enumerated can be considerably reduced.

With some simple modifications, these algorithms can also be used to collect and
hence, count all codewords of a given weight to determine all or part of the weight
spectrum of a code.

Given a generator matrix, codewords may be efficiently generated by taking linear
combinations of rows of this matrix. This implies the faster we can generate the
combinations, the less time the minimum distance evaluation algorithm will take.
One such efficient algorithm to generate these combinations is called the revolving-
door algorithm. The revolving-door algorithm has a nice property that allows the
problem of generating combinations to be readily implemented in parallel. Having
an efficient minimum distance computation algorithm, which can be computed in
parallel on multiple computers has allowed us to extend earlier research results [8,
21, 22] in the evaluation of the minimum distance of cyclic codes. In this way, we
obtained the highest minimum distance attainable by all binary cyclic codes of odd
lengths from 129 to 189. We found that none of these cyclic codes has a minimum
distance that exceeds the minimum distance of the best-known linear codes of the
same length and dimension, which are given as lower bounds in [6]. However there
are 134 cyclic codes that meet the lower bounds, see Sect.5.3 and encoders and
decoders may be easier to implement for the cyclic codes.

Having an efficient, multiple computer based, minimum distance computation
algorithm also allowed us to search for the existence of binary cyclic codes of length
longer than 189 which are improvements to Brouwer’s lower bounds. We found 35
of these cyclic codes, namely

[195, 66, 42], [195, 67, 41], [195, 68, 40], [195, 69, 39], [195, 73, 38], [195, 74, 38],
[195, 75, 37], [195, 78, 36], [199, 99, 32], [199, 100, 32], [205, 60, 48], [205, 61, 46],
[215, 70, 46], [215, 71, 46], [223, 74, 48], [223,75,47], [229, 76, 48], [233, 58, 60],
[233, 59, 60], [255, 48, 76], [255, 49, 75], [255, 50, 74], [255, 51, 74], [255, 52, 72],
[255, 53, 72], [255, 54, 70], [255, 55, 70], [255, 56, 68], [255, 57, 68], [255, 58, 66],
[255, 60, 66], [255, 62, 66], [255, 63, 65], [255, 64, 64], [255, 65, 63].

From the cyclic codes above, using Construction X to lengthen the code or Con-
struction Y1 to shorten the code, four additional improvements to [6] lower bound
are found, namely

8

3

S WLl g6 0 gIE | gTE ¢TE ¢TE TE TE € T€ e TE e | vE vE Y€ 9€ 9€ | 9€ 9 |bLI

oLl 8T 6T 0S |gIE TE (T TE 4T € Te TE TE €€ | vE vE ¥E S€ 9€ | 9€ 9¢ €Ll

& wi 8T 8T 6T 0S8 IE (TE TE GTE | gT€ TE TE T TE | €€ ¥E vE vE 9 | 9¢ 9¢ |TLI

R 8T 8T 8T 6T 0€ I TE GTE | g€ 4T€ TE TE TE | TE €€ VE VE ySE€ |49 9¢ |ILI

S oLl 8 8T 8T | 8T 6T 0 g€ TE | g€ GTE 4T€ TE TE | TE TE €€ YE ¥E |SE€ z9¢ |OLI

w691 LT 8T 8T | 8T 8T 6T ¢0€ gIE | 4T€ GTE ¢TE L€ TE | TE TE TE YE ¥E | ¥E SE€ 691
891 9z 8T 8T | 8T 8T 8T (6T Of | 4T€ T€ € € TE | TE TE TE YE ¥E | ¥E vE 891
L91 9¢ Lz 8T | 8T 8T 8T 8T 6T | 4I€ ¢I€ € GTE TE | TE TE TE YE ¥E | ¥E vE L9
991 9¢ 9z Lz |8t 8T 8T 8T 8¢ 06 I€ §T€ g€ TE | TE TE TE YE ¥E | ¥E vE 991
s91 9z 9z 9z | LT 8T 8T 8T 8¢ 0€ 0f I€ € TE | TE TE T €€ ¥E | ¥E vE |91
91 9¢ 9z 9t |9t Lt 8T 8T 8¢ 60 0 0 l€ gT€ | TE TE TE TE €€ | ¥ vE |9l
€91 ST 9T 9T | 9T 9T Lz ST 8¢ 8¢ 6T 0 0f gl€ |gT€ TE TE TE T | €€ ¥ |e9l
91 v 9z 9T | 9T 9T 9T LT §C 8¢ 8T 6T 0 0f |gl€ g€ TE Te T | e €€ |1
191 v¢ ST 9t |9t 9T 9T 9T LT 8¢ 8T 8T 6T 0f | 0 4T€ L€ T€ T | Te Te |191
091 ve ve ST | 9T 9T 9T 9T 9T 8C 8T 8T 8T 0f | 0 4T€ g€ T€ T | e Te |09l
651 vC ve vC | ST 9T 9T 9T 9T LT 8T 8T 8T 6T | 0f yyl€ 426 T€ T€ | T€ TE |6SI
81 e vz vT | ¥T ST 9T 9T 9T 9¢ 8¢ 8T 8T 8T | 6T 0f 4I€ T€ T€ | TE TE |8SI
LST |gvT v v | ¥T ¥T 9T 9T 9T 9¢ 8¢ 8T 8T 8T | 8T 6T i€ € T€ | TE TE LS
951 |4¥C YT v | ¥T ¥ ST 9T 9T 9¢ Lt 8T 8T 8T | 8T 8T g€ TE TE | TE TE |9SI
SS1 |4bC vT vt | vt vT ¥T ST 9T 9¢ 9z LT 8T 8T | 8T 8T xIf T€ T€« | TE TE |SSI
vS1 |y€T YT v | T ¥T T vT 9T 9¢ 9z 9T LT 8T | 8T 8T 40 T€ TE | TE TE |HSI
€1 W YT YT | vT ¥ T v ST 92 9z 9T 9T LT | 8T 8T 46T T€ TE | TE TE €SI
uly | LL 9L SL | bL €L TL 1L OL 69 8 L9 99 S9 | t9 €9 79 19 09 | 65 8 | y\u

126

LL>Y>8GPUe /] > US> ¢G] I0J [¥ ‘U] = 9 S9pOd Ieaul] JO SPUNOQ JOMO] 20oue)sIp wnwiuiw pajepd) §°S IqeL,

127

5.6 Concluding Observations on Producing New Binary Codes

(panunuoo)
661 9 9¢ 9¢ 8¢ 8¢ 8¢ 8¢ 8¢ OF oy OF 4TF ¥ T (224 A A ¢ A 44 vro vh St 9v | 661
861 9¢ 9¢ 9¢ 8¢ 8¢ 8¢ 8¢ 8¢ OF (Uig oy 4oV g T oo v v 42 4 A 4 A 4 861
L61 9¢ 9¢ 9t 48¢ 8¢ 8¢ 8¢ 8¢ 6¢ (Uig oy 4oV v T (42 24 A 4 A 44 W v v Sy L61
961 9¢ 9¢ 9¢ 8¢ [48€ 8¢ 8¢ 8¢ 8¢ |00 OV I b T W W v v YooY v v 961
S61 |59€ 9€ 9¢ L€ |86 8¢ 8¢ 8€ 8¢ |68 00 ,lv I T woow W v v vboovr vr ¥ [S6l
YOI | 4S€ ¢9€ 9¢ 9¢ | LE ¢8€ (8¢ 8¢ 8¢ 8¢ 468 4OV 4I¥ (TP W W W b AN < A A 7
€61 € ¢S€ 9€ 9¢ 9¢ GLE (8¢ (8¢ 8¢ 8¢ 8¢ 466 LOF (¥ (b T W T T & v vy vb €6l
61 ve e ¢S¢E 9¢ 9¢ 9¢ gLE ¢8E 8¢ 8¢ 8¢ 8¢ 468 O sl gV v W W (4720 N 4 A 4 4 61
161 ve ve vE 33 9¢ 9¢ 9¢ gLE 8¢ 8¢ 8¢ 8¢ 8¢ 6¢ oy Iy v W Y oo e v 161
061 LA < T £ N, 4% s¢ 9 9¢ 9¢ LE 8¢ 8¢ 8¢ 8¢ 8¢ oy oF Iy gTF T oo o vr 061
681 €€ e ve ¥e ¥€ S 9¢ 9¢ 9¢ LE 8¢ 8¢ 8¢ 8¢ 6e OoF OV gl TP o o oev |681
881 (4 S ¥€ ve S¢ 9¢ 9¢ 9¢ L& 8¢ 8¢ 8¢ 8¢ 6€ OV Oy gIv |gTv TP Tv Th |881
L8IT [4T4 T ¥€ ve ve S€ 9¢ 9 9¢ L& 8¢ 8¢ 8¢ 8¢ 68 OF OV |gIv TP Tv Th |L81
981 [4 4 49 123 e 143 143 ve 9¢ 9¢ 9¢ 9¢ Le 8¢ 8¢ 8¢ 8¢ 6¢ OF oy gy b ¥ 981
¢8I [4 4 49 23 e 123 123 123 133 9¢ 9¢ 9¢ 9¢ Lt 8¢ 8¢ 8¢ 8¢ 0P o or v T S81
81 [4 4 4 [43 139 123 123 ve ve S 9¢ 9¢ 9¢ 9¢ LE 8¢ 8¢ 8¢ 6¢ or o Oor 1I¥ P81
€81 gc€ CE T [43 [43 € 123 ve ve 123 ge 9¢ 9¢ 9¢ 9¢ L& 8¢ 8¢ 8¢ 6e Or O O €81
[4]! sC€ gCE TE € [44SR 3 N N ¢ ve ve S 9¢ 9¢ 9 9¢ L 8¢ 8¢ 8 6¢ Ov Oy |T8I
181 sCE gTE TE TE (44 S 4 S S N 4 ve ve ve S€ 9¢ 9 9¢ 9t LE 8¢ 8¢ 8¢ 66 Oy |I8I
081 gC€ gCE gCE € (44 S 4 T 4 ve ve ve vE 9¢ 9¢ 9¢ 9¢ 9¢ 8¢ 8¢ 8¢ 8¢ Oy |08l
6LT sCE gTE GTE ¢TE w e Te e gg ve ve ve e G€ 9 9¢ 9¢ 9¢ LE 8¢ 8¢ 8¢ 6¢ |6LI
8LI sCE gTE GTE ¢TE sC€ T TE T TE [¢ S < T € 4 g€ 9¢ 9¢ 9¢ 9¢ Le 8¢ 8¢ 8¢ |8LI
LLT sl€ ¢CE ¢CTE T sCt ¢CE [43 (44 [43 23 123 ve ve ve S¢ 9¢ 9t 9¢ 9¢ LE 8¢ 8¢ LLT
9L1 s0€ ¢I€ ¢CTE CE gt ¢Ct 4CE [44% [43 (43 23 ve vE ve ve g€ 9¢ 9¢ 9¢ 9¢ LE 8¢ 9L1
SLT s6C 0€ ¢l€ (CE gC€ ¢CE zCE€ 4CE TE [43 [43 [43 [. 4% ¥e ve vE 9¢ 9¢ 9¢ 9¢ 9¢ 8¢ SLT
u/y 8L LL 9L SL vL €L TL 1L OL 69 8 L9 99 <9 9 €9 9 19 09 6S 85 LS 9S |A\u

8L > ¥ > 9Gpue gz > U > G/ 10} [¥ ‘U] = 9 SOPOJ IeaUI| JO SPUNOQ JIMO[doUL)SIP wnwrurw pajepd) 9°G I[qe],

s
.m
O ¥ |vb PSP 487 48 8 8F 8y 8 8 6 05 0S 0S IS I T TS €S vS ¥S S S§ |vee
S € (v b vb Hlb | o8F 8F 8y (87 8P 8 8 6y 0 0S 0S IS T TS TS € ¥ ¥ vs |€te
O TWT v b WP 49 | 4Lb ¢8Y (8 (8P (8P 8 8¢ 8y 6y 0S 0S 05 1S T§ TS €S vS ¥ |
m, 1CC ¥ bbb St |49 b 8¢ 8¢ 8 |8 8¢ 8 8 6 | 0OS 0S 0S IS TS T €S ¥ |Iee
& 0T |vb v vb vb |4St OF oLb 8P (8v |8 8y 8 8 8 | 0S 0S 0S 0S TS T w6 ¥ |oce
.m 61c |vv vb bbb vy oSt (OF oLb (8 |¢8Y ¢8v Sy Sb 8 6/ 05 0S 0 IS T W €S |ele
O 8Ic |&v vb bbb v vb (Sb g9% oLb |¢8Y ¢St ¢8b Sb 8 8 6 05 05 0§ IS T T T |sIc
w o LI |t sy bbb v vb b g9 g9 |glv ¢St ¢8b ¢8b 8 8y 8 6 05 0§ 0S 1S T TS LT
91z |Iv w €& b v vb b g9 g9 |9v gLt g8t g8 g8 8y 8 8¢ 6y 0§ 0S 05 1S T |9IC
iz |ov T T ¥ v vb bb 9 9% |9v 9v gt g8 8P 8y 8 8y 8y 0§ 0S 05 05 T |SIt
vic |ov 1w T T € Wb W gSh OF |9F OF 9 b 8% |¢8F Sy S 8¢ 6y |05 05 0S IS |vIT
€Iz |ov or v T W b b Sb | Ov v OF 9F b |8v (8F 8F 8% 8F | 6F 0S 0S 0§ |€IT
2z |ov o ov I T S W W St OF OF (OF 9 |glb (8P (8P 8 8 8 6 0S 0S |TIT
e |or or or Ob v T T sk v | v S Ov Ov OF | O olb ¢Sb g8v Sb 8 8% 6y 0S |1IT
oz |6s ov oy OF O T W W | v vb P OF O | 9v 9F b g8 8 8 8¢ 8F 0S |0IC
60C |8 6€ Ov OF o0 1w W W W Wr b OF |9F 9% 9% 8% g8 8 8¢ $F 6v |60C
80T |8 8¢ 66 OF ov O ¥ T T | T € wb ¥b b |Ov OF 9% 8y 8% |8 Sy 8y 8y |80C
L0T |8 8¢ 8¢ OF ov Or OF ¥ TH | T T € bb Wb |Sb OF O 4Lb 487 |8t ¢St 8v 8 |LOT
90T [8¢ 8¢ 8¢ 6¢ ov Or OF OF ¥ | T T T € Wy | vb ¢St OF 9% 48F |8t ¢St ¢8F 8 |90T
S0T |8€ 8¢ 8¢ 8¢ 66 Or OF OF OF W v | v v St 59v 8t |¢8F 8% 8P 8t |SOCT
Y0z [8¢ 8¢ 8¢ 8¢ 8 66 O OF OF |OF ¥ Th Th € | W W v SP 4L | (8P (8% (8P 8P |40
€0 |8 8¢ 8¢ 8¢ 8¢ 8 66 OF OF | OF OF b Th TP W W WP 49 |glb ¢8b (8F (8% |€0C
Wz |Le 8 8¢ s8¢ 8¢ 8 8¢ 66 OF |OF OF b T T | T S W W 4Sh | OF b S 8P |T0C
10c |9¢ LE 8¢ s8¢ 8¢ 8 8¢ 8 OF |OF OF b T W | T W W W v |Sh OF b 8P |10C
00c |9¢ 9¢ LE s8¢ 8 8 8¢ 8 OF | OF OF b b W | T W W W W | bb SF OF oLb |00C
u/y 8L LL 9L SL vL €L TL 1L OL 69 89 L9 99 €9 Y9 €9 T 19 09 65 8§ LS 9§ |y\u

128

(ponunuod) 9° AqeL

129

5.6 Concluding Observations on Producing New Binary Codes

(panunuoo)
661 ol€ o€ gTE GTE TE TE sC€ gTE g€ TE TE (44 S A T 4 ¢ ¥e ve ¥e vE 9¢ 9¢ | 661
861 40¢€ J1€ gTE GTE gTE TE sC€ gTE gC€ TE TE (44 4 S 3 . ¢ ¥e ve ¥e ve 9¢ 9¢ 861
Lo61 46¢ 406 gI€ §TE€ ¢TE TE sC€ gTE 4CE gTE TE (4 A S 4 S A S,) ¥e ve ¥e ve S¢ 9¢ L61
961 a8¢ 460 §0€ gIE€ ¢TE TE sCE gTE §CE€ TE TE w e e te e €€ ¥E ¥ e ¥E se |96l
S61 JLt 48T 6T 0€ gIE TE sCE gTE g€ gTE TE sC€ T € Te e (A S £ SN 4 S ¢ ve S61
Y61 9T | 4LT 8T 6T 0€ gIE |gTE GTE GTE GTE g€ |TE€ TE TE € € (4 4 T X S SR 5 e |v6l
€61 9T 9T LT ¢8T 6T 0€ |gI€ ¢TE GTE (TE GTE |gTE€ gTE gT€E TE TE (4 4 T S X SR 5 e |g6l
261 9 9T 9T LT 8T 6T |0 € TE€ ¢TE gTE |gT€ gTE gT€ TE TE € Te Te Te ¥E e |z6l
16l 9C 9¢ 9T 9T LT 8T 6T 0€ gl gTE TE §C€ §TE TE ¢TE TE e e e e gg e 161
061 SC 9¢ 9 9T 9T LT 8C 6T 0€ glE TE §CE §TE TE€ ¢TE TE (4 A 4 S .) €€ |061
681 ¥C ¢ 9t 9 9t 9T LT 8T 6T 0 IE sCE §TE CE€ ¢TE TE sC€ T TE Te Tt e 681
881 ¥C ¢ S¢ 9t 9T 9C 9¢ LT 8T 6T 0¢ sI€ ¢TE TE€ ¢TE TE sC€ gCE TE Te Tt [43 881
L81 ¥T ¥ ¥T ST 9T 9T 9 9T LT 8T 6T |0€ IE GTE GTE GTE |gT€ gTE g€ TE € e |L81
981 ¥T ¥ YT YT 9T 9T 9z 9T 9T 8T 8T |6C 0€ IE € GTE |gTE GTE GTE g€ TE e |981
681 ¥T ¥ YT YT ST 9T 9 9T 9T LT ST 8C (6T 0 IE TE |gTE GTE gTE TE ¢CE e |ss1
¥81 vT Yo vT YT ¥ ST 9 9T 9T 9T LT 8C 8T 6T (0 IE |gTE (TE TE GTE gTE |gTE€ |81
€81 €C (2 (A (A (A (¢ ¢ 9t 9 9T 9T LT 8T 8T 46T 0€ sl€ §TE TE€ ¢TE 4TE §CE €81
[4]! [« € ¥T v ¥T ¥T ¥¢ S¢ 9t 9T 9C 9¢ LTt 8T 8T 6T s0€ ¢I€ T€ ¢TE TE sC€ T8I
181 @ w € ¥t YT ¥T ¥ ¥T ST 9T 9 9C 9T LT 8T 8T |¢6C 0€ IE gT€ ¢TE |gTE |I8I
081 44 [A AR <A 4 ¥ ¥C ¥T 9T 9 9 9C 9T 8¢ 8¢ 8¢ (6T ¢0€ ¢IE T€ |gT€ 08I
6L1 (44 [44 C (44 €C vC C T vC Y4 9T 9T 9¢ 9¢ LT 8¢ 8¢ 8C 6T 0€ gI€ 43 6L1
8LI (44 [44 (44 [44 (44 €C vC T vC ¥C 94 9C 9C 9C 9C LT 8¢C 8¢ 8C 6T 0¢ sl€ 8LI
LLT (44 (44 (44 [44 (44 [44 £C ¥C vC 14 ¥C 4 9C 9C 9C 9C LT 8¢ 8¢ 8C 46T s0€ LLT
9L1 (44 [44 (44 [44 (44 [44 [44 €C T ¥C ¥C T 94 9C 9T 9T 9C LT 8T 8¢C 8¢ 56¢ 9L1
SLT 1C [44 (44 [44 (44 [44 [44 (44 €C YT T T YT 94 9C 9T 9T 9C LT 8¢C 8¢ 8¢ SLT
u/y 001 66 8 L6 96 S6 ¥6 €6 T6 16 06 68 88 L8 98 8 ¥8 €8 T8 I8 08 6L |A\u

001 > ¥ > 6LPUBHTZ > U= GL] J0) [¥ ‘U] = 9 SOPOJ JeaUl] JO SPUNOQ JIMO[doUL)SIP wnwrur pajepd) £°S d[qe],

s
<
S LE 8¢ 8 8 8¢ 8¢ 8 8 66 Oy OF |OF OF O v T |€F b b vb vb |¥F | ¥eC
PR ¢ 9¢ L£ 8 8 8¢ 8¢ 8 8 8 6 Or |OF OF O O I¥ |TW € b v vb |¥b €T
3 e N3 9¢ L& 8 8 8¢ 8 8 8 8 6 |OF O Or Or OF |Ib T € v v |¥b |TeC
m 1ee e ¢ 9¢ LE 8¢ 8¢ 8 8 8 8 8 |66 Ov O Ov O OV b T € v |¥b |IcC
& 0w €€ v S€ 9¢ LE 8¢ 8 8 8 8 8 (8¢ 66 Or Oy Ov |OF OF b T € |¥b 0T
.m 617 € € v Ss& 9 LS 8 8 8 8 8 (8¢ 8¢ 66 Oy OF (O OF Oy v T |€F |6IC
O Iz 73 € €€ ¥E s€ 9 L& 8 8 8 8 (8¢ 8¢ 8 66 Or |OF OF Oy Ov Iv |Th |8IC
w LT 3 /S /S SR 7 S <) 9¢ L& 8 8¢ 8 8¢ 8 8 8 6£ |0v OF OF Oy OF |Iv |LICT
91T 3 /I /S /SR 7 S € 96 L 8 8 (8¢ 8 8 8 8 |6€ Ov Or Oy O |OF 91T
1T 3 /S /S /SN 3 S vE S€ 9¢ L£ 8 |8 8 8 8 8 |8 66 OF OF OF |Ob |SICT
vIT | ge€ € T T T €€ vE ¥ S€ 9¢ L& |8 8 8 8 8 |8 8 6 OF OF |Ov |PIC
T A 4 S O /S S 4 S 45 €€ ¥E ¥E S€ 9¢ |LE 8 8 8¢ 8 |8¢ 8 8 66 O |OF |€IC
T |gTe gt e Te e € € €€ vE ¥E oS¢ |96 L 8 8¢ 8¢ |8 8¢ 8 8 6 |0v |TIT
R A I 4 3 € Te €€ ¥E ¥E |S€ 9 L€ 8¢ 8¢ |8 8¢ 8 8 8¢ |66 |IIT
012 |gT€ g2 st T€ Te € € Te TE ¥E ¥E |vE S€ 9 LE 8¢ |8 8¢ 8 8 8¢ (8¢ |0ICT
60T |gT€ |gT€ g€ T€ TE € € Te T Y€ ¥E v ¥E S€ 9¢ L& |8 8€ 8¢ 8 8¢ |8€ |60CT
80T |gT€ |4T€ gT€ gT€ T€ T € TE TE ¥E ¥E v ¥E ¥E 9€ 9¢ L 8€ 8¢ 8¢ 8¢ (8¢ [80C
0T |gTe |gTe gTe gTe Te T € TE T €€ ¥E |¥E ¥E ¥E S€ 9¢ |9€ LE 8¢ 8¢ 8¢ 8¢ |LOT
90T |zT€ |gT€ sT€ gTE gTE TE € Te T TE €€ ¥ ¥E ¥E ¥E S€ |9 9¢ LE 8¢ 8¢ 8¢ |90C
S0T |gT€ | gt gTE GTE sTE TE € Te T TE TE (€€ ¥E ¥E ¥E PE |SE 9¢ 9¢ L 8 |8 |S0CT
YOT |gT€ |gqT€ T€ gTE TE € |ste Te Te Te Te |te €€ ¥e e ve |ve s€ 9¢ 9¢ LE (8¢ |t0C
€0T |gT€ |4T€ §TE gTE TE gTE |gTE T TE TE TE |TE TE €€ ¥E ¥E v vE S€ 9€ 9¢ |LE |€0CT
WT |47 |qT€ TE GTE € € |sT€ gTE€ gT€ TE TE |te Te e ve ve |ve ¥e we 9¢ 9¢ |9 |zoT
10 |40 |26 §T€ §TE gTE GTE |sT€ gTE gTE TE TE |te Te Te ¥e e |ve ¥e ¥e 9¢ 9¢ |9 |10
00T |4T€ |28 §T€ §TE GTE GTE |sT€ gTE gTE TE TE |te Te Te ve e |ve ¥e ¥e se 9¢ |9 |ooT
u/y | oot 66 8 L6 96 S6 6 € <6 16 06 |68 88 L8 98 S8 |¥8 €8 8 I8 08 |6, |Y\u

130

(ponunuod) L' dqeL

131

5.6 Concluding Observations on Producing New Binary Codes

(panunuoo)
LyC 9 9 9 9 14€9 1479 s¥9 sS9 §99 §99 L9 89 89 89 1L LyT
ovC 19 9 9 9 9 499 s¥9 s¥9 s$9 §99 99 L9 89 89 0L 9rC
74 09 19 29 29 a9 9 €9 s¥9 s¥9 sS9 99 99 L9 89 0L YT
1444 6S 09 19 9 9 9 9 s€9 s¥9 9 S9 99 99 89 69 e
eve 86 6S 09 19 9 29 29 9 €9 s¥9 9 SY 99 789 89 v
e 86 86 6S 09 19 9 9 29 9 s€9 9 9 S 789 89 e
844 LS 8¢ 8¢ 09 09 19 9 9 9 9 ¥9 9 9 589 89 844
ove 9¢ 86 8¢ 09 09 09 19 9 29 9 9 9 9 JL9 89 ()44
6¢¢C 9¢ LS 8¢ 709 09 09 09 19 9 29 €9 9 9 499 L9 6¢C
8¢C 9¢ 9¢ LS 709 709 09 09 09 19 9 9 €9 9 459 99 8¢C
LET SS 9¢ 9¢ 709 709 509 09 09 09 19 29 9 €9 9 99 LET
9¢€¢ 123 9¢ 9¢ 709 709 509 09 09 09 09 19 29 9 9 <9 9¢¢
See 123 gs 96 709 709 509 509 s09 09 09 09 19 9 €9 9 SeC
1454 123 123 98 709 709 509 09 09 09 09 09 09 19 29 9 yec
244 123 123 123 209 509 509 09 09 09 s09 09 09 09 a9 9 £eT
[4%4 123 125 125 465 509 509 509 s09 509 s09 09 09 09 9 9 [4%4
1€¢ 123 123 123 485 56S 509 09 09 09 09 509 09 09 19 €9 1€¢
0€¢ N 123 123 JLS 58S 565 s09 s09 509 s09 509 509 09 09 9 0¢€e
6CC s€S S 125 495 sLS 58S 565 s09 509 s09 509 509 509 09 9 6CC
8¢¢C 49 s€S 123 4SS §9¢ sLS 86 s6S 09 09 509 509 09 09 19 8¢CC
LTT [43 [43 123 129 sSS §9S sLS s8S 5608 s09 509 509 509 09 09 LTT
9¢C [43 143 125 123 123 sSS 9¢ sLS s8S 568 509 509 509 09 09 9CC
44 49 (49 123 123 123 123 9¢ 9¢ gLS s8S 56S 09 09 s09 09 §CC
u/y 29 19 09 6S 8¢S LS 9¢ Y 123 1Y (49 1S 0S 6% 87 \u

79> ¥ > 8y PUBQGT > U = GZ7 10) [¥ ‘U] = 9, SOpPOD IBAUI] JO SPUNOQ JOMO] 9oUB)SIp wnwirurwt pajyepdn) §°S d[qeL,

5 Good Binary Linear Codes

132

95T 299 99 599 99 299 489 89 40L 0L 4Tl WL gvL gL 29L 9L 95T
§sT 599 99 599 99 599 589 589 0L 0L 5TL 5Tl WL bl SSL 9L SsT
ST 4S9 99 99 99 99 49 489 469 OL Il gTL 4L bl L 4SL ST
€5T 9 59 99 99 99 499 L9 489 69 4OL gIL 4Tl €L WL L €5T
1454 469 P9 59 99 99 99 99 L9 89 469 0L 4IL Tl €L L ST
1154 9 €9 49 9 99 99 99 ;99 L9 489 69 LOL IL sTL €L 15t
0ST 9 9 49 9 ¢§9 99 99 99 99 4L 89 469 (OL sIL w 0ST
6+C 9) 29 €9 P9 4S9 99 99 99 499 89 89 469 0L w 61T
85T 9) 9 9 gP9 g9 9 99 99 99 89 89 89 §69 w 8KT
u/y 9 19 09 65 8 LS 9g NS S € s Is 0S 6 8t Y\u

(ponunuod) g°g AqeL

5.6 Concluding Observations on Producing New Binary Codes

133

Table 5.9 Updated minimum distance lower bounds of linear codes ¢ = [n, k] for 225 < n < 256
and 63 <k <76

n\k| 63 64 | 65 66 67 68 69 | 70 71 72 73 T4 | 15 76 | k/n
225 52 52 | 50 50 50 50 48 | 48 48 48 485 48E| 48EF 46 | 225
226/ 52 52 | 50 50 50 50 48 | 48 48 48 485 48F| 48F 46 | 226
227| 52 52 | 50 50 50 50 48 | 48 48 48 485 48F| 48F 46 | 227
228/ 52 52 | 50 50 50 50 48 | 48 48 48 48 48F| 48F 47P| 228
229| 52 52 | 51 50 50 50 49 | 48 48 48 48 48F| 48F 48¢| 229
230| 535 52 | 52 51 50 50 50 | 48 48 48 48 48F| 48F 48E| 230
231| 545 535| 52 52 51 50 50 | 48 48 48 48 48 | 48F 48F| 231
232| 54 545| 535 52 52 51 50 | 49 48 48 48 48 | 48 48F| 232
233 54 54 | 545 535 52 52 51| 50 49 48 48 48 | 48 48 | 233
234| 54 54 | 54 545 535 52 52| 51 50 49 48 48 | 48 48 | 234
235 54 54 | 54 54 545 535 52| 52 51 50 49 48 | 48 48 | 235
236| 54 54 | 54 54 54 545 535 52 52 51 50 49 | 48 48 | 236
237| 54 54 | 54 54 54 54 545 535 52 52 51 50 | 49 48 | 237
238 55 54 | 54 54 54 54 54| 545 535 52 52 51 | 50 49 | 238
239| 56 55 | 54 54 54 54 54| 54 545 535 52 52 | 51 50 | 239
240/ 56 56 | 54 54 54 54 54 | 54 54 545 53 50 | 52 51 | 240
241| 56 56 | 55 54 54 54 54 | 54 54 54 54€ 52 | 52 52 | 241
242 57 56 | 56 55 54 54 54| 54 54 54 54 53 | 52 52 | 242
243 58 57 | 56 56 55 54 54| 54 54 54 54 54 | 53 52 | 243
244 58 58 | 56 56 56 55 54 | 54 54 54 54 54 | 54 53 | 244
245/ 59 58 | 57 56 56 56 55 | 54 54 54 54 54 | 54 54 | 245
246| 60 59 | 58 57 56 56 56 | 55 54 54 54 54 | 54 54 | 246
247 61 60 | 59 58 57 56 56 | 56 55 54 54 54 | 54 54 | 247
248/ 62 61 | 60 59 58 57 56 | 56 56 55 54 54 | 54 54 | 248
249 62 62 | 61 60 59 58 57| 56 56 56 55 54 | 54 54 | 249
250 62 62 | 62 61 60 59 58| 57 56 56 56 55 | 54 54 | 250
251 62 62 | 62 62 61 60 59 | 58 57 56 56 56 | 55 54 | 251
252 62 62 | 62 62 62 61 60| 59 58 56 56 56 | 56 55 | 252
253 63F 62 | 62 62 62 62 61| 60 59 56 56 56 | 56 56 | 253
254 64P 63F| 62 62 62 62 62| 61 60 57 56 56 | 56 56 | 254
255 65¢ 64€| 63¢ 62 62 62 62 | 62 61 58 57 56 | 56 56 | 255
256| 66F 64F| 64F 62 62 62 62| 62 62 58 58 56 | 56 56 | 256

134 5 Good Binary Linear Codes
[168, 69, 32], [208, 61, 48], [247, 57, 64], [247, 58, 63].

Five new linear codes, which are derived from cyclic codes of length 151, have
also been constructed. These new codes, which are produced by Constructions X
and XX, are

[154,77, 23], [155, 62, 31], [159, 63, 31], [171, 60, 35], [174, 72, 31] .

Given an [n, k, d] code €, where d is larger than the minimum distance of the
best-known linear code of the same n and k, it is possible to obtain more codes,
whose minimum distance is still larger than that of the corresponding best-known
linear code, by recursively extending (annexing parity-checks), puncturing and/or
shortening . For example, consider the new code [168, 69, 32] as a starting point.
New codes can be obtained by annexing parity-check bits [168 + i, 69, 32], for
1 < i < 3. With puncturing by one bit a [167, 69, 31] new code is obtained by
shortening [168 — i, 69 — i,32], for 1 < i < 5, 5 new codes are obtained with a
minimum distance of 32. More improvements are also obtained by shortening these
extended and punctured codes. Overall, with all of the new codes described and
presented in this chapter, there are some 901 new binary linear codes which improve
on Brouwer’s lower bounds. The updated lower bounds are tabulated in Tables 5.5,
5.6,5.7,5.8 and 5.9 in Appendix “Improved Lower Bounds of the Minimum Distance
of Binary Linear Codes”.

5.7 Summary

Methods have been described and presented which may be used to determine the
minimum Hamming distance and weight distribution of a linear code. These are
the main tools for testing new codes which are candidates for improvements to
currently known, best codes. Several efficient algorithms for computing the minimum
distance and weight distribution of linear codes have been explored in detail. The
many different methods of constructing codes have been described, particularly those
based on using known good or outstanding codes as a construction basis. Using such
methods, several hundred new codes have been presented or described which are
improvements to the public database of best, known codes.

For cyclic codes, which have implementation advantages over other codes, many
new outstanding codes have been presented including the determination of a table
giving the code designs and highest attainable minimum distance of all binary cyclic
codes of odd lengths from 129 to 189. It has been shown that outstanding cyclic
codes may be used as code components to produce new codes that are better than
the previously thought best codes, for the same code length and code rate.

Appendix 135

Appendix

Improved Lower Bounds of the Minimum Distance
of Binary Linear Codes

The following tables list the updated lower bounds of minimum distance of linear
codes over F,. These improvements—there are 901 of them in total—are due to
the new binary linear codes described above. In the tables, entries marked with C
refer to cyclic codes, those marked with X, XX and Y1 refer to codes obtained
from Constructions X, XX and Y1, respectively. Similarly, entries marked with E,
P and S denote [n, k, d] codes obtained by extending (annexing an overall parity-
check bit) to (n — 1, k, d") codes, puncturing (n + 1, k, d 4+ 1) codes and shortening
(n+1, k+1, d) codes, respectively. Unmarked entries are the original lower bounds
of Brouwer [6].

References

10.

11.

. Alltop, W.O.: A method of extending binary linear codes. IEEE Trans. Inf. Theory 30(6),

871-872 (1984)
Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding
problems. IEEE Trans. Inf. Theory 24, 384-386 (1978)

. Berlekamp, E.R.: Algebraic Coding Theory. Aegean Park Press, Laguna Hills (1984). ISBN 0

894 12063 8

Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary reflected gray code
and its applications. Commun. ACM 19(9), 517-521 (1976)

Bosma, W., Cannon, J.J., Playoust, C.P.: Magma Algebra Syst. User Lang. 24, 235-266 (1997)
Brouwer, A.E.: Bounds on the size of linear codes. In: Pless, V.S., Huffman, W.C. (eds.)
Handbook of Coding Theory, pp. 295-461. Elsevier, North Holland (1998)

Chen C.L. (1969) Some results on algebraically structured error-correcting codes. Ph.D Dis-
sertation, University of Hawaii, USA

Chen, C.L.: Computer results on the minimum distance of some binary cyclic codes. IEEE
Trans. Inf. Theory 16(3), 359-360 (1970)

Grassl, M.: On the minimum distance of some quadratic residue codes. In: Proceedings of the
IEEE International Symposium on Information and Theory, Sorento, Italy, p. 253 (2000)
Grassl, M.: New binary codes from a chain of cyclic codes. IEEE Trans. Inf. Theory 47(3),
1178-1181 (2001)

Grassl, M.: Searching for linear codes with large minimum distance. In: Bosma, W., Cannon,
J. (eds.) Discovering Mathematics with MAGMA - Reducing the Abstract to the Concrete,
pp. 287-313. Springer, Heidelberg (2006)

. Grassl M.: Code tables: bounds on the parameters of various types of codes. http://www.

codetables.de

. Knuth D.E. (2005) The Art of Computer Programming, Vol. 4: Fascicle 3: Generating All

Combinations and Partitions, 3rd edn. Addison-Wesley, ISBN 0 201 85394 9
Leon, J.S., Masley, J.M., Pless, V.: Duadic codes. IEEE Trans. Inf. Theory 30(5), 709-713
(1984)

. Loeloeian, M., Conan, J.: A [55,16,19] binary Goppa code. IEEE Trans. Inf. Theory 30, 773

(1984)

http://www.codetables.de
http://www.codetables.de

136 5 Good Binary Linear Codes

16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

17. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators, 2nd edn.
Academic Press, London (1978)

18. Payne, W.H., Ives, EM.: Combination generators. ACM Trans. Math. Softw. 5(2), 163-172
(1979)

19. Prange E.: Cyclic error-correcting codes in two symbols. Technical report TN-58-103, Air
Force Cambridge Research Labs, Bedford, Massachusetts, USA (1957)

20. Proakis, J.G.: Digital Communications, 3rd edn. McGraw-Hill, New York (1995)

21. Promhouse, G., Tavares, S.E.: The minimum distance of all binary cyclic codes of odd lengths
from 69 to 99. IEEE Trans. Inf. Theory 24(4), 438—442 (1978)

22. Schomaker, D., Wirtz, M.: On binary cyclic codes of odd lengths from 101 to 127. IEEE Trans.
Inf. Theory 38(2), 516-518 (1992)

23. Sloane, N.J., Reddy, S.M., Chen, C.L.: New binary codes. IEEE Trans. Inf. Theory IT-18,
503-510 (1972)

24. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf.
Theory 43, 1759-1766 (1997)

25. Zimmermann, K.H.: Integral hecke modules, integral generalized reed-muller codes, and linear
codes. Technical report 3-96, Technische Universitit Hamburg-Harburg, Hamburg, Germany
(1996)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Lagrange Codes

6.1 Introduction

Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [1]
credited with minimum degree polynomial interpolation amongst his many other
achievements. Polynomial interpolation may be applied straightforwardly using
Galois Fields and provides the basis for an extensive family of error-correcting codes.
For a Galois Field GF(2™), the maximum code length is 2"*!, consisting of 2" data
symbols and 2™ parity symbols. Many of the different types of codes originated by
Goppa [3, 4] may be linked to Lagrange codes.

6.2 Lagrange Interpolation

The interpolation polynomial, p(z), is constructed such that the value of the poly-
nomial for each element of GF(2™) is equal to a data symbol x; also from GF (2").
Thus,

p0) = x
p) = x
pe@) = x
p@®) = x
p@*) = xpm_
| p(@® %) = xpny |

Using the method of Lagrange, the interpolation polynomial is constructed as a
summation of 2" polynomials, each of degree 2 — 1. Thus,

© The Author(s) 2017 137
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_6

138 6 Lagrange Codes

Table 6.1 GF(8) extension

¥ =1
field defined by -
I+a'+a®=0 « =«
o? = o2
P =1+a
ot = o +o?
o =1+a+d?
o =1+ a?
]
P@ = > pi (6.1)
i=0
where
. j=ama o
pi@=xi— [——— for i#0 (6.2)
j=0.j#i
and
e
Po(z) =X A (6.3)
1=

The idea is that each of the p;(z) polynomials has a value of zero for z equal to
each element of GF (2"™), except for the one element corresponding to i (namely o'~
except for i = 0).

A simpler form for the polynomials p;(z) is given by

i -1 _
P C il Il R (6.4)
a(al —1) z—ol
and
po@) = —xo(z> ' = 1) (6.5)

In an example using GF(2*), where all the nonzero field elements may express as a
power of a primitive root « of the primitive polynomial 1 + x 4 x>, modulo 1 + x7.
The nonzero field elements are tabulated in Table6.1.

6.2 Lagrange Interpolation 139
All of the 8 polynomials p;(z) are given below

po@) = xo(@" +1)

@ =xGE" +5 +7° +# +2 +2 42

P2(2) = x2(2’ +az® +a?7 +a’7t 4ot +a’2 +abz)
P3(2) = x3(27 +a?2® +a*?® +abt +ad +a’? +a’z)
Pa(2) = x4(77 +32° +ab7° +a?7t +a° +a? +atz)
ps(2) = x5(z7 +a*z® +azd +ad7t +a? +ab? +a’z)
P6(2) = x6(z7 +a°78 +07° +azt +ab7® +atz? +a’z)
p71(2) = x7(7 +ab2® +a°2 4otz +07 4o’ +az)

These polynomials are simply summed to produce the Lagrange interpolation poly-
nomial p(z)

p() = Z(xo +xi +x2 Hx3 +xg +xs +xe +x7)

+ 2P@ax; +a*x; +odxy +atxs +adxs +alxs +x7)
+ 22 (a%x; +atxy +abx; +axs +axs +adxg +x7)
+ 24 (0Px; +abx +atxs +aPxs +axs +atxg +x7)
+ Z(atx taxy +odx; +alxy +abxs +adxs +x7)
+ 22(@x; 3%y Fax; +abx +atxs +atxs +x7)
+ z(a®x +axy +atxs +adxs +alxs +oaxs +x7)
+ X0

(6.6)

This can be easily verified by evaluating p(z) for each element of GR(2*) to produce

p0) = xo
p(1) =x
pla@) =x
p(@?) = x3
pla’) =x4
P(Ol4) = X5
p(’) = xo
p(@®) = x;

6.3 Lagrange Error-Correcting Codes

The interpolation polynomial p(z) may be expressed in terms of its coefficients and
used as a basis for defining error-correcting codes.

2m—1

p@) =D w 6.7)
i=0

140 6 Lagrange Codes

It is clear that an interpolation equation and a parity check equation are equivalent,
and for the 8 identities given by the interpolation polynomial we may define 8 parity
check equations:

xo+p@0) =0
x+p) =0
X2 +p(oz2) =0
X3 +pla”) =0
x4+ p@) =0 (68)
X5 +p(a4) =0
Xg +p(a5) =0
x7+p@®) =0

The 8 parity check equations become

Xo+ Mo =0
X1+ i+ pot+ a3t pet ust et pg =0
n+ ap+ Puat st atpat o ps+ st pg =0

v+ o+ oot efust apat s+ odpet pg =0 6.9)
2 .
5

xat o+ aCuot st @ pat aps+ atpet pg =0
xs+ o+ apot o pst alpat+ ous+ o pet g =0
xo+ @i+ ot apst alpat ot s+ o’pet g =0
x4 @S+ @ po+ atus+ @l pat s+ apet g =0

A number of different codes may be derived from these equations. Using the first
4 equations, apart from the first, and setting x, and x3 equal to 0, the following parity
check matrix is obtained, producing a (9, 5) code:

101 1 1 1111
Ho < — 00 a >’ a’l
9571 00atata® @ 3’1
0Oladalo?a’ a a*l

Rearranging the order of the columns produces a parity check matrix, H identical to
the MDS (9, 5, 5) code based on the doubly extended Reed—Solomon code [7].

1
A 1
Hoss =)
1

Correspondingly, we know that the code with parity check matrix, Hg s derived
from the Lagrange interpolating polynomial is MDS and has a minimum Hamming
distance of 5. Useful, longer codes can also be obtained. Adding the first row of (6.9)
to the second equation of the above example and setting xy equal to x, a parity check
matrix for a (10, 6) code is obtained:

6.3 Lagrange Error-Correcting Codes 141

It is straightforward to map any code with GF(2™) symbols into a binary code by
simply mapping each GF(2™) symbol into a m x m binary matrix using the GF'(2")
table of field elements. If the codeword coordinate is ', the coordinate is replaced
with the matrix, where each column is the binary representation of the GF(2")
symbol:

. ai+m—l]

As an example for GF(23), if the codeword coordinate is o>, the symbol is replaced
with the binary matrix whose columns are the binary values of &, a*, and & using
Table6.1.

101
111
011

In another example the symbol «® produces the identity matrix

100
010
001

The (10, 6) GF(8) code above forms a (30, 18) binary code with parity check
matrix

[0001000001001001001001001001007]
000010000010010010010010010010
000001000001001001001001001001

100100000001010101011111110100
010010000101011111110100001010
001001000010101011111110100001
Ha3o,18 =
000000000010011110001101111T1O0O0
000000000011110001101111100010
000000000101111100010011110001

000000100101110010111001011100
000000010111001011100101110010
0L000000001011100101110010110001]

142 6 Lagrange Codes
The minimum Hamming distance of this code has been evaluated and it turns out
to be 4. Methods for evaluating the minimum Hamming distance are described in
Chap. 5. Consequently, extending the length of the code by one symbol has reduced
the d,;, by 1. The d,,;; may be increased by 2 by adding an overall parity bit to the
first two symbols plus an overall parity bit to all bits to produce a (32, 18, 6) code
with parity check matrix

r000100000100100100100100100100007
00001000001001001001001001001000
00000100000100100100100100100100
10010000000101010101111111010000
01001000010101111111010000101000
00100100001010101111111010000100
11111100000000000000000000000010

His 18 =

00000000001001111000110111110000
00000000001111000110111110001000
00000000010111110001001111000100
00000010010111001011100101110000
00000001011100101110010111001000
00000000101110010111001011000100

1111111111111 111111111111111111°1

This is a good code as weight spectrum analysis shows that it has the same
minimum Hamming distance as the best known (32, 18, 6) code [5]. It is interesting
to note that in extending the length of the code beyond the MDS length of 9 symbols
for GF (2%), two weak symbols are produced but these are counterbalanced by adding
an overall parity bit to these two symbols.

6.4 Error-Correcting Codes Derived from the Lagrange
Coefficients

In another approach, we may set some of the equations defining the Lagrange poly-
nomial coefficients to zero, and then use these equations to define parity checks for
the code. As an example, using GF(2°), from Eq. (6.6) we may set coefficients 117,
We»> Us, g and w3 equal to zero. The parity check equations become

X0 +x +x Axz Axs +xs +xg +x7 =0
ax +a2x2 ~|—oz3x3 ~|—oz4x4 +a5x5 +a6x6 —+x7 =0
o?x; +atxy +abxy axs +adxs +adxg +x7 =0 (6.10)
ot3x1 +ot6x2 +OtZX3 +O[SX4 “+axs +ot4x6 —+x7 =0
a4x1 “+ax, +aSX3 +a2x4 +a6xs +ot3x6 —+x7 =0

http://dx.doi.org/10.1007/978-3-319-51103-0_5

6.4 Error-Correcting Codes Derived from the Lagrange Coefficients 143

and the corresponding parity check matrix is

1

1

1 (6.11)
1

1

As a GF(2%) code, this code is MDS with a d,,,;, of 6 and equivalent to the extended
Reed-Solomon code. As a binary code with the following parity check matrix a
(24, 9, 8) code is obtained. This is a good code as it has the same minimum Hamming
distance as the best known (24, 9, 8) code [5].

[100100100100100100100100]
010010010010010010010010
001001001001001001001001

0000010101010111111101060
000101011111110100001010
000010101011111110100001

000010011110001101111100
Hys9o=|1000011110001101111100010
000101111100010011110001

000101110010111001011100
000111001011100101110010
000011100101110010110001

0000110011110101101011060
000110101100011001111010
1000111010110101100011001 |

6.5 Goppa Codes

So far codes have been constructed using the Lagrange interpolating polynomial
in a rather ad hoc manner. Goppa defined a family of codes [3] in terms of
the Lagrange interpolating polynomial, where the coordinates of each codeword
{co, c1, €2, ... com_1} With {co = xp,] = x1, 0 = X2, ... Com_] = Xxpm_1} satisfy the
congruence p(z) modulo g(z) = 0 where g(z) is known as the Goppa polynomial.
Goppa codes have coefficients from GF (2") and provided g(z) has no roots which
are elements of GF(2™) (which is straightforward to achieve) the Goppa codes have
parameters (2", k, 2™ —k+1). These codes are MDS codes and satisfy the Singleton

144 6 Lagrange Codes

bound [8]. Goppa codes as binary codes, provided that g(z) has no roots which are
elements of GF(2™) and has no repeated roots, have parameters (2", 2" — mt, d,in)
where d;, > 2t + 1, the Goppa code bound on minimum Hamming distance. Most
binary Goppa codes have equality for the bound and ¢ is the number of correctable
errors for hard decision, bounded distance decoding. Primitive binary BCH codes
have parameters (2" —1, 2™ —mt — 1, d,;in), Where d,,;, > 2t+ 1 and so binary Goppa
codes usually have the advantage over binary BCH codes of an additional information
bit for the same minimum Hamming distance. However, depending on the cyclotomic
cosets, many cases of BCH codes can be found having either k > 2™ —mt — 1 for a
given ¢, or dy,;, > 2t + 1, giving BCH codes the advantage for these cases.

For a Goppa polynomial of degree r, there are r parity check equations derived
from the congruence p(z) modulo g(z) = 0. Denoting g(z) by

gD =g7 +g 17 " e 2P+ Faizt g (6.12)

om_|
Ci

=0 modulo g(z) (6.13)
: —q;

=0

Since (6.13) is modulo g(z) then g(z) is equivalent to 0, and we can add g(z) to the
numerator. Noting that

g(@) =z —a)qi(z) +1u (6.14)

where r,, is the remainder, an element of GF(2™) after dividing g(z) by z — «;.
Dividing each term z — «; into 1 + g(z) produces the following:

g(x) +1 m + 1
— =4qi@)+

77— Z— 0o

(6.15)

As ry, is a scalar, we may simply pre-weight g(z) by ri so that the remainder
cancels with the other numerator term which is 1.

€+ 1 _qi(z)+%+1 g2
— 0o Ym =0 Ym

(6.16)

As a result of

8(@) = (z— a)qi(2) +rn

when z = o4, 1, = gl;)

6.5 Goppa Codes 145

Substituting for r,, in (6.16) produces

8(2)
ey 1 ai@) (6.17)
- glay)
Since ;t)) modulo g(z) =0
I _ 4@ (6.18)
z—a; gl ‘

The quotient polynomial ¢;(z) is a polynomial of degree r — 1, with coefficients
which are a function of «; and the Goppa polynomial coefficients. Denoting g;(z) as

4i(2) = qio+ g1z + qind® + gz + -+ Gz (6.19)

Since the coefficients of each power of z sum to zero, the r parity check equations
are given by

S _0 for j=0 to r—1 (6.20)

If the Goppa polynomial has any roots which are elements of GF'(2™), say «;, then the
codeword coordinate ¢; has to be permanently set to zero in order to satisfy the parity
check equations. Effectively, the code length is shortened by the number of roots
of g(z) which are elements of GF(2™). Usually, the Goppa polynomial is chosen to
have distinct roots which are not in GF (2™).

Consider an example of a Goppa (32, 28, 5) code. There are 4 parity check sym-
bols defined by the 4 parity check equations and the Goppa polynomial has degree 4.
Choosing somewhat arbitrarily the polynomial 1+ z+ z* which has roots in GF (16)
but not in GF'(32), we determine g;(z) by dividing by z — «;.

() =2 ta +aiz+ (1 +a)) 6.21)

The 4 parity check equations are

31

S0 (6.22)

— gla)
31 ciats
> —=0 (6.23)
— gla)
31 C[(X-z
> —L=0 (6.24)

146 6 Lagrange Codes
31

‘ 3
> C(;(%) —0 (6.25)
i=0 !

Using Table 6.2 to evaluate the different terms for GF (2°), the parity check matrix is

1 10[14 0[20 0525 al()
H 01laba?2a®. .. o 626)
32,28,5) = .
¢) 01aae® 1 cad
01a7a? o3 ... d

To implement the Goppa code as a binary code, the symbols in the parity check
matrix are replaced with their m-bit binary column representations of each respective
GF(2™) symbol. For the (32, 28, 5) Goppa code above, each of the 4 parity symbols
will be represented as a 5 bit symbol from Table 6.2. The parity check matrix will
now have 20 rows for the binary code. The minimum Hamming distance of the binary
Goppa code is improved from r + 1 to 2r 4 1, namely from 5 to 9. Correspondingly,
the binary Goppa code becomes a (32, 12, 9) code with parity check matrix

Table _6.2 GF(32) nonzero o0 =1 d®=1+a+a+a*
extension field elements
defined by 1 + o2 + &> =0 o' =a a7=1+a+at
o? =a? a®=1+a
o =a’ a® =a+a?
a4:a4 azo:()tz-i-a:;
o5 =1+a2 o2l = od 4ot
(X6=O(+Ol3 0[22=1+Ol2+0t4
a7:a2+a4 0123=1+0l+(12+013
ad=14a%+ad? e =+’ +ad+at
o =a+aod+aot P =1+a3+a*
a0 =1+a* ¥ =1+a+a?+a*
el =1+ a+a? o =14+a+d>
a2 =q+a+ad o® =g +a?+ o
a13:az+oe3+ot4 a29:1+053
o =1+a2+ad+at 00 =q +at

P =1+a+a?+a®+a*

6.5 Goppa Codes 147

11101 ...
00000...
00110...
00111...
00101...
01110...
0010T1...
0011T1...
00100...
Hovmo=| o1 101
00110...
00010...
00110...
00110...
01110...
00110...
00010...
0000T1...
[00110...

(6.27)

—_ O = O OO = O = = O = O = OO0 ==

6.6 BCH Codes as Goppa Codes

Surprisingly, the family of Goppa codes includes as a subset the family of BCH codes
with codeword coefficients from GF(2") and parameters (2" —1,2" — 1 —t,t+41).
As binary codes, using codeword coefficients {0, 1}, the BCH codes have parameters
" —-1,2"—1—mt, 2t +1).

For a nonbinary BCH code to correspond to a Goppa code, the Goppa polynomial,
g(2), is given by

g =17 (6.28)
There are ¢ parity check equations relating to the codeword coordinates
{co, c1, €2, ..., com_p} and these are given by
r2
> —— =0 moduloz’ (6.29)
z—o

i=0
Dividing 1 by z — «' starting with produces

oDzt

: a4 b T 2 (6.30)
z—o 7 —of

148 6 Lagrange Codes

As o~ *Dizt modulo ¥ = 0, the ¢ parity check equations are given by

om_p
Z Ci(ofi +a72iZ +a73iZ2 +a74iz3 4. +a7!izt71) — 0 (631)
i=0

Every coefficient of z¥ through to z'~! is equated to zero, producing ¢ parity check
equations. The corresponding parity check matrix is

lat a2 g3 ot ... @2
la?a* a®a?d . o202
Hem_ g m_¢ 41 = | 1 a3 a0 g? g2 30D (6.32)

— — — . — m__
t 2t 3t 4t L a t(2"-2)

To obtain the binary BCH code, as before, the GF(2™) symbols are replaced with
their m-bit binary column representations for each corresponding GF(2"™) value for
each symbol. As a result, only half of the parity check equations are independent and
the dependent equations may be deleted. To keep the same number of independent
parity check equations as before, the degree of the Goppa polynomial is doubled.
The Goppa polynomial is now given by

g2) =7 (6.33)

The parity check matrix for the binary Goppa BCH code is

1 ol a2 a3 at . @D

1 a3 a® a™? a2 gD

-5 -10 -15 —20 —50m—2

H(Zm_l, 2m_mt, 2t+1) = 1l o o o o con o ()
1 =21 2Qi=1) o=3Qi=1) o—4Qi=1) —@-DQ2"-2)

For binary codes, any parity check equation may be squared and the resulting
parity check equation will still be satisfied. As a consequence, only one parity check
equation is needed for each representative from each respective cyclotomic coset.
This is clearer with an example.

The cyclotomic cosets of 31, expressed as negative integers for convenience, are
as follows

6.6 BCH Codes as Goppa Codes 149

To construct the GF(32) nonbinary (31, 27) BCH code, the Goppa polynomial is
g(z) = z* and there are 4 parity check equations with parity check matrix:

lala? a3 ot =30
la2a*a® ol ... a?

Hii275 = la3a® o a2 o2 (6.34)
Lot a8 a2 g6 -2

As abinary code with binary codeword coefficients, the parity check matrix has only
two independent rows. To construct the binary parity check matrix, each GF(32)
symbol is replaced with its 5-bit column vector so that each parity symbol will require
5 rows of the binary parity check matrix. The code becomes a (31, 21, 5) binary code.
The parity check matrix for the binary code after removing the dependent rows is
given by

(6.35)

lata2a 3 g .. a0
H3zi15 =

laaba?a?.. . a?®
To maintain 4 independent parity check equations for the binary code, the Goppa
polynomial is doubled in degree to become g(z) = z®. Replacing each GF(32)
symbol with its 5-bit column vector will produce a (31, 11) binary code. The parity
check matrix for the binary code is given by:

la « o o .o
la3 a6 a9 a2 o8

Hii 1,9 = La—S q-10 =15 g=20 426 (6.36)
a7 a4 a2 g8 o2

Looking at the cyclotomic cosets for 31, it will be noticed that &~ is in the same
coset as @, and for codewords with binary coefficients, we may use the Goppa
polynomial g(z) = z'° with the corresponding parity check matrix

leta? a3 gt e ab .. .0
la3 a a2 a2 a B a8 o8

Hai 1) = laT a4 g2 g2 gt g1 o2 (6.37)
laaBa? a5 a¥ gD o2

Alternatively, we may use Goppa polynomial g(z) = z® with parity check matrix
given by (6.36). The result is the same code. From this analysis we can see why the
dpin of this BCH code is greater by 2 than the BCH code bound because the degree
of the Goppa polynomial is 10.

To find other exceptional BCH codes we need to look at the cyclotomic cosets to
find similar cases where a row of the parity check matrix is equivalent to a higher
degree row. Consider the construction of the (31, 6, 27 + 1) BCH code which will

150 6 Lagrange Codes

have 5 parity check equations. From the cyclotomic cosets for 31, it will be noticed
that &~'3 is in the same coset as «~!!, and so we may use the Goppa polynomial
g(z) = z'* and obtain a (31, 6, 15) binary BCH code. The BCH bound indicates a
minimum Hamming distance of 11. Another example is evident from the cyclotomic
cosets of 127 where a~!7 is in the same coset as o ~°. Setting the Goppa polynomial
g(z) = 7°° produces the (127, 71, 19) BCH code, whilst the BCH bound indicates a
minimum Hamming distance of 17.

To see the details in the construction of the parity check matrix for the binary
BCH code, we will consider the (31, 11, 11) code with parity check matrix given by
matrix (6.37). Each GF(32) symbol is replaced with the binary representation given
by Table 6.2, as a 5-bit column vector, where « is a primitive root of the polynomial
1+ x> 4.

The binary parity check matrix that is obtained is given by matrix (6.38).
[1010111...0]
0101110...
0001010...
0010101...
0101011...

S oo~ O

1011010...
0100110...
0101101...
0010011...
0111011...
Hgi 1y = (6.38)
1101100...
0101111...
0100100...
0011010...
0111000...

=N el eNe]

SO = O~

1100111...
0000110...
0110101 ...
0010001 ...
0111110...

—_—— O = O

Evaluating the minimum Hamming distance of this code confirms that it is 11, an
increase of 2 over the BCH bound for the minimum Hamming distance.

6.7 Extended BCH Codes as Goppa Codes 151

6.7 Extended BCH Codes as Goppa Codes

In a short paper in 1971 [4], Goppa showed how a binary Goppa code could be
constructed with parameters (2" + (m — 1)t,2™ — t,2t + 1). Each parity check
symbol, m bits long has a Forney concatenation [2], i.e. an overall parity bit on each
symbol. In a completely novel approach by Goppa, each parity symbol, apart from
1 bit in each symbol, is external to the code as if these are additional parity symbols.
These symbols are also independent of each other extending the length of the code
and, importantly, increasing the d,,;, of the code. Sugiyama et al. [9, 10] described a
construction technique mixing the standard Goppa code construction with the Goppa
external parity check construction. We give below a simpler construction method
applicable to BCH codes and to more general Goppa codes.

Consider a binary BCH code constructed as a Goppa code with Goppa polynomial
g(z) = 7% but extended by including an additional root oy, an element of GF(2"™).
The Goppa polynomial is now g(z) = (z**! + apz?). The parity check equations
are given by

2m-2

> S —0 modulog(z) o #aq (6.39)
z—ao
i=0

Substituting for r,,, and g(z), as in Sect.6.5

. modulog(z) = S& 8@ (6.40)
- gla)(z —ah)

For the extended binary BCH code with Goppa polynomial g(z) = (z*!' + az?)

the parity check equations are given by

2t-2 2-3

22 ¢) 2 221 E £ 1
2 o = 2ol Ci(—+w+m+om+"'+y

i=1 z—af a (o +ap)

6.41)
- 0

Equating each coefficient of powers of z to zero and using only the independent
parity check equations (as it is a binary code) produces ¢ 4 1 independent parity
check equations with parity check matrix

! a2 a”d . @D
a3 a a™? ... @D
a5 o0 O)
Hon 2 m 2 me—m) = (6.42)

— — — — — — — m__
Q-2+ 221 3=~ -2)
a—zz 01_4’ a—(\t
a+ao a?+ag ey T a?"2+aq

oM —
2" -2)

152 6 Lagrange Codes

The last row may be simplified by noting that

) —1 -2 -3 2141
L T % R - (6.43)
(ag + o) o2l Q22 o203 o :
Rearranging produces
1 ao—zz o2 %—1 %—2 %—3 %—2:+1
= e 6.44
(ao + a)Oth (ao + a)aZZ + O[thl + a2172 + a2t73 + + o ()
and
- -2 —1 -2 -3 2141
a2 _ oy o o % L% o (6.45)
(g + @) (g + @) o2t—1 o2t—2 o2t=3 o :

The point here is because of the above equality, the last parity check equation in
(6.42) may be replaced with a simpler equation to produce the same Cauchy style
parity check given by Goppa in his 1971 paper [4]. The parity check matrix becomes

a”! a2 a3 ce. @D
o3 a® a? LoD
a=s 10 a5 gD
Hon 2 2m 3 mt—m) = (6.46)

Q2 2Q-1) 32—l —(-1@"-2)
1 1 1 1
atap a2+ag Brag T @ 24

The justification for this is that from (6.45), the last row of (6.42) is equal to a scalar
weighted linear combination of the rows of the parity check matrix(6.46), so that these
rows will produce the same code as the parity check matrix (6.42). By induction,
other roots of GF(2™) may be used to produce similar parity check equations to
increase the distance of the code producing parity check matrices of the form:

ot a? a3 ot o@D T
0[73 0676 Ol79 01712 . 0[73(2”’72)
0[75 a*lO 05715 05720 . a75(2m72)
—2r+1 ,,—22t-1) ,,—3Q2r-1) ,—4Q2t—1) —Q2r—-1)(2"-2)
H=| ¢% o o o Lo 6.47
1 1 1 1 1 ()
0“*{0‘0 0‘2‘15‘0‘0 013‘{-010 014-{-010 T azm‘lerao
ata a?+ta o’ +ay ot T a2 tq
1 1 1 1 1
L ot a1 @dtag e T o 2

The parity symbols given by the last sy rows of this matrix are in the Cauchy matrix
style [7] and will necessarily reduce the length of the code for each root of the

6.7 Extended BCH Codes as Goppa Codes 153

Goppa polynomial which is an element of GF(2™). However, Goppa was the first
to show [4] that the parity symbols may be optionally placed external to the code,
without decreasing the length of the code. For binary codes the length of the code
increases as will be shown below. Accordingly, with external parity symbols, the
parity check matrix becomes

B CY_] 06_2 (X—3 Ol_4 e a_(2m_2) 00 0 O 7
a3 a~t a”? a2 .. 2D 0000
C(_S C(_IO 05_15 Ol_20 a—s(zm—z) 00 0 O
H— o2t 2D 3R =42l —@=D@"-D) o 0 0 0
- 1 1 1 1 1
OhLlan aZJlra() a3J1ra0 01471L010 T m 1000
a+ta o?+a o3 +a atta; T @4 0100
1 1 1 1 1
L atasgy—1 o?Fagy-1r @dtagg-1 oty T o P 0001 i
(6.48)

As an example of the procedure, consider the (31, 11, 11) binary BCH code described
in Sect.6.6. We shall add one external parity symbol to this code according to the
parity check matrix in (6.48) and eventually produce a (36, 10, 13) binary BCH code.
Arbitrarily, we shall choose ¢y = 1. This means that the first column of the parity
check matrix for the (31, 11, 11) code given in (6.38) is deleted and there is one
additional parity check row. The parity check matrix for this (35, 10, 12) extended
BCH code is given below. Note we will add later an additional parity bit in a Forney
concatenation of the external parity symbol to produce the (36, 10, 13) code as a last
step.

ala?2 a3 a*a® a®...a®0
0573 (){76 (179 0(712 O{715 05718 L 06728 0
Hoswom=| e aPaBa0a g ¢ 20 (6.49)
a79 a718 a727 (X75 a714 a723 . (1722 0
ot 1 1 1 1 1
a+l o241 a3+l o*+1 a5+1 af+1 """ a?+1

Evaluating the last row by carrying out the additions, and inversions, referring to the
table of GF(32) symbols in Table 6.2 produces the resulting parity check matrix

ol a2 a3 ot e ab . a0
05_3 05_6 Ol_9 05_12 a—lS a—lS L. (){_28 0
H(357 10,12) = P a0 B0 B0 w20 (6.50)
0579 (1718 a727 0175 0[714 a723 . 0[722 0
a713 a726 Ol72 a*Zl Ol729 Ol74 . a714 1

The next step is to determine the binary parity check matrix for the code by replacing
each GF(32) symbol by its corresponding 5-bit representation using Table 6.2, but as

154 6 Lagrange Codes

a 5-bit column vector. Also we will add an additional parity check row to implement
the Forney concatenation of the external parity symbol. The resulting binary parity
check matrix in (6.51) is obtained. Evaluating the minimum Hamming distance of
this code using one of the methods described in Chap. 5 verifies that it is indeed 13.

Adding the external parity symbol has increased the minimum Hamming distance
by 2, but at the cost of one data symbol. Instead of choosing ¢y = 1, a good idea
is to choose ap = 0, since 0 is a multiple root of the Goppa polynomial g(z) = z'°
which caused the BCH code to be shortened from length 2™ to 2" — 1 in the first
place. (The length of a Goppa code with Goppa polynomial g(z) having no roots in
GF(2™) is 2™). The resulting parity check matrix is given in (6.52).

[010111...00000007]
101110...1000000
001010...0000000
010101...0000000
101011...0000000
011010...0000000
100110...0000000
101101...0000000
010011...1000000
111011...0000000
101100...1000000
101111...0000000

Hoo =1 011010 0000000 631
111000...0000000
100111...0000000
000110...1000000
110101...0000000
010001...1000000
111110...1000000
111101...1100000
100001...1010000
010010...0001000
001001...0000100
000100...1000010
1000000...01 11111 |

http://dx.doi.org/10.1007/978-3-319-51103-0_5

6.7 Extended BCH Codes as Goppa Codes 155

leta?2 a3 ot a® af...a70
laB3 a® g a7 Rg BB, . a20
-5 —10 ,—15 ,—20 —25 _—30 —26
Has,in=|la” o "o Yo" o~ « . 0 (6.52)
laaBa a5 a a2 a20
la'a?2 o3 ot o’ o .0F301

The problem with this is that the minimum Hamming distance is still 11 because
the last row of the parity check matrix is the same as the first row, apart from the
external parity symbol because 0 is a root of the Goppa polynomial. The solution
is to increase the degree of the Goppa polynomial but still retain the external parity
symbol. Referring to the cyclotomic cosets of 31, see (6.35), we should use g(z) = z'?
to produce the parity check matrix

la ! a? a3 a* a3 af...a70
la3 a® a® aa B a8 . o280
Hae 1y = 1 a a0 g0 B 30 g2 (6.53)
la aBa? a5 a a3 a20
la"a 2 a2 aBaa?* . o201

As before, the next step is to determine the binary parity check matrix for the code
from this matrix by replacing each GF(32) symbol by its corresponding 5 bit rep-
resentation using Table 6.2 as a 5 bit column vector. Also we will add an additional
parity check row to implement the Forney concatenation of the external parity sym-
bol. The resulting binary parity check matrix is obtained

[1010111...00000007]
0101110...1000000
0001010...0000000
0010101...0000000
0101011...0000000
1011010...0000000
0100110...0000000
0101101...0000000
0010011...1000000
0111011...0000000
1101100...1000000
0101111...0000000
0100100...1000000
0011010...0000000

[0111000...0000000 |

156 6 Lagrange Codes

"1100111...00000007
0000110...1000000
0110101...0000000
0010001...1000000
0111110...1000000

Hoy =11 601101...1100000 6.54)
0010101...1010000
0100010...1001000
0111001...0000100
0010010...0000010

L 0000000...01 11111

Weight spectrum analysis of this code confirms that the d;, is indeed 13. One or
more Cauchy style parity check equations may be added to this code to increase the
din of the code. For example, with one more parity check equation again with the
choice of g = 1, the parity check matrix for the (42,10) code is

alta?2 a3 gt a?at...aP00
a3 a® a? ala B e 42800
- _ a3 a10 15 420 =25 =30 42600 (6.55)
(42, 10) ad a8 g ¢S a3 a7 2200 :
o N a2 a2aBaXat a010
B S e 2a 0 g2 0 2 V01

Replacing each GF(32) symbol by its corresponding 5 bit representation using
Table 6.2 as a 5-bit column vector and adding an additional parity check row to
each external parity symbol produces the binary parity check matrix for the (42, 10,
15) code.

010111...0000000000000 |
101110...1000000000000
001010...0000000000000
010101...0000000000000
101011...0000000000000
011010...0000000000000
100110...0000000000000
101101...0000000000000
010011...1000000000000
111011...0000000000000
101100...1000000000000
101111...0000000000000
100100...1000000000000
011010...0000000000000
1111000...0000000000000 |

6.7 Extended BCH Codes as Goppa Codes

157

7100111...00000000000007]
000110...1000000000000
110101...0000000000000
010001...1000000000000
111110...1000000000000
001101...1100000000000
010101...1010000000000
100010...1001000000000

Huz1015=|111001...0000100000000 (6.56)
010010...0000010000000
000000...0111111000000
010010...1000000100000
010000...0000000010000
111000...1000000001000
100110...1000000000100
110101...1000000000010
1000000...00000001 11111 |

Weight spectrum analysis of this code confirms that the d,,,;;, is indeed 15. In this con-
struction the information bit coordinate corresponding to oy = 1 is deleted, reducing
the dimension of the code by 1. This is conventional practice when the Goppa poly-
nomial g(z) contains a root that is in GF(2™). However, on reflection, this is not
essential. Certainly, in the parity check symbol equations of the constructed code,
there will be one parity check equation where the coordinate is missing, but additional
parity check equations may be used to compensate for the missing coordinate(s).

Consider the (42, 10) code above, given by parity check matrix (6.55) without
the deletion of the first coordinate. The parity check matrix for the (42, 11) code
becomes

73000

| o o o o a® ..o
la3 g a®ag2aBg 8 ¢2800
Han =] L0 s 00 e
’ la” « o o «o o Y 00
la a2 a2 aBa?a? . a2010
OB g aPe0g2eg?2 . a7701

It will be noticed that the first coordinate is not in the last parity check equation.
Constructing the binary code as before by replacing each GF'(32) symbol by its cor-
responding 5-bit representation using Table 6.2 as a 5-bit column vector and adding
an additional parity check row to each external parity symbol produces a (42, 11,
13) binary code. There is no improvement in the d,,;, of the (42, 11, 13) binary
code compared to the (37, 11, 13) binary code despite the 5 additional parity bits.
However, weight spectrum analysis of the (42, 11, 13) binary code shows that there

158

6 Lagrange Codes

is only 1 codeword of weight 13 and only 3 codewords of weight 14. All of these
low weight codewords contain the first coordinate which is not surprising. Two more
parity check equations containing the first coordinate need to be added to the parity
check matrix to compensate for the coordinate not being in the last equation of the
parity check symbol matrix (6.57).

It turns out that the coordinate in question can always be inserted into the overall
parity check equation to each external parity symbol without any loss, so that only one
additional parity check equation is required for each root of g(z) that is in GF (2™).

This produces the following binary parity check matrix for the (43, 11, 15) code.

Hus 11,15 =

1100111

f1010111..
0101110...
0001010...
0010101...
0101011...

1011010...
0100110...
0101101...
0010011...
0111011...

1101100...
orotr1rrut...
0100100...
0011010...
0111000...

...00000000000000
0000110...
0110101...
0010001...
0111110...

1001101...
0010101...
0100010...
0111001...
0010010...
0000000...

0010010...
10010000...

00000000000000]
10000000000000
00000000000000
00000000000000
00000000000000

00000000000000
00000000000000
00000000000000
10000000000000
00000000000000

10000000000000
00000000000000
10000000000000
00000000000000
00000000000000

10000000000000
00000000000000
10000000000000
10000000000000

11000000000000
10100000000000
10010000000000
00001000000000
00000100000000
01111110000000

10000001000000

00000000100000 |

(6.58)

6.7 Extended BCH Codes as Goppa Codes 159

0111000...10000000010000
0100110...10000000001000
0110101...10000000000100
1000000...000000011111160
1000000...00000000000001

It will be noticed that the last but one row is the Forney concatenation on the last
GF(32) symbol of parity check matrix (6.57), the overall parity check on parity bits
36-41. Bit 0 has been added to this equation. Also, the last row of the binary parity
check matrix is simply a repeat of bit 0. In this way, bit O has been fully compensated
for not being in the last row of parity check symbol matrix (6.57).

BCH codes extended in length in this way can be very competitive compared to
the best known codes [5]. The most efficient extensions of BCH codes are for g(z)
having only multiple roots of z = 0 because no additional deletions of information
bits are necessary nor are compensating parity check equations necessary. However,
n does need to be a Mersenne prime, and the maximum extension is 2 symbols with
2m + 2 additional, overall parity bits, increasing the d,,;, by 4. Where n is not a
Mersenne prime the maximum extension is 1 symbol with m + 1 additional, overall
parity bits, increasing the d,,;, by 2.

However regardless of n being a Mersenne prime or not, multiple symbol exten-
sions may be carried out if g(z) has additional roots from GF(2"), increasing the
din by 2 for each additional root. The additional root can also be z = 0.

As further examples, a (37, 11, 13) code and a (43, 11, 15) code can be constructed
in this way by extending the (31, 11, 11) BCH code. Also a (135, 92, 13) code and
a (143,92, 15) code can be constructed by extending the (127, 92, 11) BCH code.
A (135, 71, 21) code and a (143, 71, 23) code can be constructed by extending the
(127,71, 19) BCH code.

For more than 2 extended symbols for Mersenne primes, or more than 1 extended
symbol for non-Mersenne primes, it is necessary to use mixed roots of g(z) from
GF(2™) and have either deletions of information bits or compensating parity check
equations or both. As examples of these code constructions there are:

e An example of a non Mersenne prime, the (76, 50, 9) code constructed from the
BCH (63, 51, 5) code with additional roots of g(z) at z = Oand o deleting the
first information bit.

e The (153, 71, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, «” and «' with 2 additional, compensating parity check bits.

e The (151, 70, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) atz = 0, o® and &' with the first coordinate deleted reducing the dimension
by 1 and one additional, compensating parity check bit.

e The (160, 70, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, a®, o' and o? with the first coordinate deleted reducing the
dimension by 1 and with 2 additional, compensating parity check bits.

e The (158, 69, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) atz = 0, «°, a', @ and o® with the first 2 coordinates deleted reducing

160 6 Lagrange Codes

the dimension by 2 and one additional, compensating parity check bit. All of these
codes are best known codes [5].

6.8 Binary Codes from MDS Codes

The Goppa codes and BCH codes, which are a subset of Goppa codes, when con-
structed as codes with symbols from GF(g) are all MDS codes and are examples of
generalised Reed—Solomon codes [7]. MDS codes are exceptional codes and there
are not many construction methods for these codes. For (n, k) MDS codes the repe-
tition code, having k = 1, can have any length of n independently of the field size q.
For values k = 3 and k = g — 1 and with g even the maximum value of nisn = g+2
[7]. For all other cases, the maximum value of n is n = g + 1 with a construction
known as the doubly extended Reed—Solomon codes. The parity check matrix for a
(g + 1, k) doubly extended Reed—Solomon code is

1 1 1 1 1 1 1 ... 1 107
1 (03] (0% (0%} (07} a5 (07 g2 00
1 ai a% ozg az ag aé aé_z 00
Hps; =| 1 &7 o o5 o o5 o %4 00 (6.59)
1 o/ll ag oz§ (xi ag‘ ag o, 00
1of k o k g_k af{_k ag_k otg_k aZ:]; 01|
where the g elements of GF(q) are {0, 1, a1, an, 3, ..., ag—1}.

As the codes are MDS, the minimum Hamming distance is g + 2 — k, forming a
family of (¢ + 1, k, g + 2 — k) codes meeting the Singleton bound [8].

The MDS codes may be used as binary codes simply by restricting the data
symbols to values of {0 and 1} to produce a subfield subcode. Alternatively for
GF(2™) each symbol may be replaced with a m x m binary matrix to produce the
family of (2" + 1)m, mk, 2™ 4 2 — k) of binary codes. As an example, with m = 4
and k = 12, the result is a (68, 48, 5) binary code. This is not a very competitive code
because the equivalent best known code [5], the (68, 48, 8) code, has much better
minimum Hamming distance.

However, using the Forney concatenation [2] on each symbol almost doubles
the minimum Hamming distance with little increase in redundancy and produces
the family of (2" + 1)(m + 1), mk,2(2™ + 1 — k) + 1) of binary codes. With
the same example values for m and k the (85,48, 11) binary code is produced.
Kasahara [6] noticed that it is sometimes possible with this code construction to add
an additional information bit by adding the all 1’s codeword to the generator matrix of
the code. Equivalently expressed, all of the codewords may be complemented without
degrading the minimum Hamming distance. It is possible to go further depending
on the length of the code and the minimum Hamming distance. Since the binary

6.8 Binary Codes from MDS Codes 161

parity of each symbol is always even, then if m + 1 is an odd number, then adding
the all 1’s pattern to each symbol will produce weight of at least 1 per symbol. For
the (85, 48, 11) constructed binary code m + 1 = 5, an odd number and the number
of symbols is 17. Hence, adding the all 1’s pattern (i.e. 85 1’s) to each codeword
will produce a minimum weight of at least 17. Accordingly, a (85, 49, 11) code is
produced. Adding an overall parity bit to each codeword increases the minimum
Hamming distance to 12 producing a (86, 49, 12) code and shortening the code
by deleting one information bit produces a (85, 48, 12) code. This is a good code
because the corresponding best known code is also a (85, 48, 12) code. However,
the construction method is different because the best known code is derived from the
(89, 56, 11) cyclic code.

Looking at constructing binary codes from MDS codes by simply restricting the
data symbols to values of {0 and 1}, consider the example of the extended Reed—
Solomon code of length 16 using GF(2*) with 2 parity symbols. The code is the
MDS (16, 14, 3) code. The parity check matrix is

10[1 Ol2 O{3 Ol4 CYS O{6 Ol7 ()[8 C¥9 alO Ol” O112 Ol]3 al4 0

6 9 3 6 9 12 36 9 121} (6.60)

H =
16.14) [101301040112105010101 1 o o o’ «

With binary codeword coordinates, denoted as c; the first parity check equation from
the first row of the parity check matrix is

> =0 6.61)
Squaring both sides of this equation produces

Zcz 2% — (6.62)

As the codeword coordinates are binary, c? = ¢; and so any codeword satisfying the
equations of (6.58) satisfies all of the following equations by induction from (6.60)

1ol o® & o & o o7 of o a0 a!! a'za a 40

1a? ot af o a0 a0 ! o & o & o' a0

Hg6,14) = ! ozi a: O{fz a112 15 “Z a163 “z a142 110 O6134 oz: @ O{ﬁ !
' lo* o a? o' & o aP® a? o* a%a!* & o’ 10
la®a? e o® 1 a® a2 a® 1 of a2 a® & 1

(6.63)

There are 4 consecutive zeros of the parent Reed—Solomon code from the first 4 rows
of the parity check matrix indicating that the minimum Hamming distance may be 5

162 6 Lagrange Codes

Table 6.3 GF(16) extension o

field defined by

l+a'+a*=0 «
o
o

ol
(x“ =a+a®+a’
a?=14+a+a>+a?
a3 =1+a2+a3
a=1+ad3

for the binary code. However, comparing the last column of this matrix with (6.57)
indicates that this column is not correct.

Constructing the binary check matrix from the parity check equations, (6.58)
using Table 6.3 substituting the respective 4 bit vector for each column vector of
each nonzero GF(16) symbol, (0 in GF(16) is 0000) produces the following binary
check matrix

(1000100110101 1107]
0100110100101000
0010011010111100
0001001101011110
Hge,8 = (6.64)
100011000110001 1
0001100011000110
0010100101001010
(0111101111011110

Weight spectrum analysis indicates the minimum Hamming distance of this code
is 4 due to a single codeword of weight 4,{0, 5, 10, 15}. Deleting the last column of
the parity check matrix produces a (15, 8, 5) code. Another approach is needed to
go from the MDS code to a binary code without incurring a loss in the minimum
Hamming distance.

It is necessary to use the generalised Reed—Solomon MDS code. Here, each col-
umn of the parity check matrix is multiplied by a nonzero element of the GF(2™)
field defined as {wo, 1, 2, U3, - . ., Mo }. It is not necessary for these to be dis-
tinct, just to have a multiplicative inverse. The parity check matrix for the (g + 1, k)
generalised Reed—Solomon MDS code is

6.8 Binary Codes from MDS Codes 163

B Vo V1 V2 V3 V4 Vs . Vg—2 Vg—1 0 7
Vo V10 1%010%) V33 Vally Vsts ... Vg2052 0 0
vo vied wal vzed wal vsad ...yl , 000
Hgrs. = | Yo vla? vzag V3a§ v4a2 vsag e V20l 0 0
Vo l)loz‘lt vzag v3a§ wai v5a§ ... vq_zoc;tz 0 0
| vo vlaffk IS LT ST, vsoeg*k vq_za;l:lg 0 v, |

It is clear that as a nonbinary code with codeword coefficients from GF(2™), the
distance properties will remain unchanged as the generalised Reed—Solomon is still
an MDS code. Depending on the coordinate position each nonzero element value
has a unique mapping to another nonzero element value. It is as subfield subcodes
that the generalised Reed—Solomon codes have an advantage. It should be noted that
Goppa codes are examples of a generalised Reed—Solomon code.

Returning to the relatively poor (16, 8, 4) binary code derived from the (16, 14, 3)
MDS code, consider the generalised (16, 14, 3) Reed—Solomon code with parity
check matrix.

Vi V2 V3 V4 Vs Ve ... Vi3 Vig Vs

3 V14Ol]4 0

Hogig =| 0
16,14 =) vla' V20l2 V3Ol3 114(14 1)5(15 v6a6 . V13C¥I

} (6.65)

Setting the vector v to

{a'z,a4,a3,a9,a4,ot',ag,aﬁ,a3,a6,a',a2,a2,a8,a9,a12

Constructing the binary check matrix from these parity check equations using
Table 6.3 by substituting the respective 4 bit vector for each column vector of each
nonzero GF (16) symbol, (0 in GF(16) is 0000) produces the following binary check
matrix

[1100101000000101]
1101110000100011
1000001101011101
1011000111000011

Hqe,s,5 = (6.66)
1001101101011010
1111000010100000
1111110110110110

11001011110111100 |

Weight spectrum analysis indicates that the minimum Hamming distance of this code
is 5 and achieves the aim of deriving a binary code from an MDS code without loss of
minimum Hamming distance. Moreover, the additional symbol of 1, the last column
in (6.59), may be appended to produce the following check matrix for the (17, 9, 5)
binary code:

164 6 Lagrange Codes

[11001010000001010]
11011100001000110
10000011010111010
10110001110000110

Haz,9,5 = (6.67)
10011011010110101
11110000101000000
11111101101101100

| 10010111101111000 |

Not surprisingly, this code has the same parameters as the best known code [5]. The
reader will be asking, how is the vector v chosen?

Using trial and error methods, it is extremely difficult, and somewhat tiresome to
find a suitable vector v, even for such a short code. Also weight spectrum analysis
has to be carried out for each trial code.

The answer is that the vector v is constructed from an irreducible Goppa poly-
nomial of degree 2 with g(z) = & + z + z>. Referring to Table 6.3, the reader may
verify using all elements of GF(16), that v is given by g(e;)~" for i = 0 to 15.

Unfortunately the technique is only valid for binary codes with minimum Ham-
ming distance of 5 and also m has to be even. Weight spectrum analysis has confirmed
that the (65, 53, 5), (257, 241, 5), (1025, 1005, 5) and (4097, 4073, 5) codes can be
constructed in this way from doubly extended, generalised Reed—Solomon, MDS
codes.

6.9 Summary

It has been shown that interpolation plays an important, mostly hidden role in alge-
braic coding theory. The Reed—Solomon codes, BCH codes, and Goppa codes are all
codes that may be constructed via interpolation. It has also been demonstrated that all
of these codes form part of a large family of generalised MDS codes. The encoding of
BCH and Goppa codes has been explored from the viewpoint of classical Lagrange
interpolation. It was shown in detail how Goppa codes are designed and constructed
starting from first principles. The parity check matrix of a BCH code was derived as
a Goppa code proving that BCH codes are a subset of Goppa codes. Following from
this result and using properties of the cyclotomic cosets it was explained how the
minimum Hamming distance of some BCH codes is able to exceed the BCH bound
producing outstanding codes. It was shown how these exceptional BCH codes can
be identified and constructed. A little known paper by Goppa was discussed and as
a result it was shown how Goppa codes and BCH codes may be extended in length
with additional parity check bits resulting in increased minimum Hamming distance
of the code. Several examples were given of the technique which results in some
outstanding codes. Reed—Solomon codes were explored as a means of constructing
binary codes resulting in improvements to the database of best known codes.

References 165

References

1. Bell, E.T.: Men of Mathematics: The Lives and Achievements of the Great Mathematicians
from Zeno to Poincar. Simon and Schuster, New York (1986)

2. Forney Jr., G.D.: Concatenated Codes. MIT Press, Cambridge (1966)

3. Goppa, V.D.: A new class of linear error-correcting codes. Probl Inform Transm 6, 24-30
(1970)

4. Goppa, V.D.: Rational representation of codes and (1; g)-codes. Probl Inform Transm 7, 41-49
(1970)

5. Grassl, M.: Code Tables: Bounds on the parameters of various types of codes (2007). http://
www.codetables.de

6. Kasahara, M., Sugiyama, Y., Hirasawa, S., Namekawa, T.: New classes of binary codes con-
structed on the basis of concatenated codes and product codes. IEEE Trans. Inf. Theory IT-
22(4), 462-468 (1976)

7. MacWilliams, FJ., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
New York (1977)

8. Singleton, R.C.: Maximum distance g-ary codes. IEEE Trans. Inf. Theory IT-10, 116-118
(1964)

9. Sugiyama, Y., Kasahara, M., Namekawa, T.: Some efficient binary codes constructed using
srivastava codes. IEEE Trans. Inf. Theory IT-21(5), 581-582 (1975)

10. Sugiyama, Y., Kasahara, M., Namekawa, T.: Further results on goppa codes and their appli-

cations to constructing efficient binary codes. IEEE Trans. Inf. Theory IT-22(5), 518-526
(1976)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://www.codetables.de
http://www.codetables.de
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Reed-Solomon Codes and Binary
Transmission

7.1 Introduction

Reed-Solomon codes named after Reed and Solomon [9] following their publication
in 1960 have been used together with hard decision decoding in a wide range of
applications. Reed—Solomon codes are maximum distance separable (MDS) codes
and have the highest possible minimum Hamming distance. The codes have symbols
from IF, with parameters (¢ — 1, k, g — k). They are not binary codes but frequently
are used with ¢ = 2, and so there is a mapping of residue classes of a primitive
polynomial with binary coefficients [6] and each element of [F,» is represented as a
binary m-tuple. Thus, binary codes with code parameters (m[2" —1], km, 2™ —k) can
be constructed from Reed—Solomon codes. Reed—Solomon codes can be extended
in length by up to two symbols and in special cases extended in length by up to
three symbols. In terms of applications, they are probably the most popular family
of codes.

Researchers over the years have tried to come up with an efficient soft decision
decoding algorithm and a breakthrough in hard decision decoding in 1997 by Madhu
Sudan [10], enabled more than % errors to be corrected with polynomial time com-
plexity. The algorithm was limited to low rate Reed—Solomon codes. An improved
algorithm for all code rates was discovered by Gursuswami and Sudan [3] and led
to the Guruswami and Sudan algorithm being applied in a soft decision decoder by
Kotter and Vardy [5]. A very readable, tutorial style explanation of the Guruswami
and Sudan algorithm is presented by McEliece [7]. Many papers followed, dis-
cussing soft decision decoding of Reed—Solomon codes [1] mostly featuring sim-
ulation results of short codes such as the (15, 11, 5) and the (31, 25, 7) code.
Binary transmission using baseband bipolar signalling or binary phase shift keying
(BPSK) [8] and the additive white gaussian noise (AWGN) channel is most com-
mon. Some authors have used quadrature amplitude modulation (QAM) [8] with 2™
levels to map to each [Fo» symbol [5]. In either case, there is a poor match between

© The Author(s) 2017 167
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_7

168 7 Reed-Solomon Codes and Binary Transmission

the modulation method and the error-correcting code. The performance achieved is
not competitive compared to other error-correcting code arrangements. For binary
transmission, a binary error-correcting code should be used and not a symbol-based
error-correcting code. For QAM and other multilevel signalling, better performance
is obtained by applying low-rate codes to the least significant bits of received sym-
bols and high-rate codes to the most significant bits of received symbols. Applying
a fixed-rate error-correcting code to all symbol bits is the reason for the inefficiency
in using Reed—Solomon codes on binary channels.

Still, these modulation methods do provide a means of comparing different
decoder arrangements for RS codes. This theme is explored later in Sect. 7.3 where
soft decision decoding of RS codes is explored.

7.2 Reed-Solomon Codes Used with Binary
Transmission-Hard Decisions

Whilst RS codes are very efficient codes, being MDS codes, they are not particularly
well suited to the binary channel as it will become apparent from the results presented
below. Defining the RS code over Fo», RS codes extended with a single symbol
are considered with length n = 2™, with k information symbols, and with d,;, =
n—k+1. The length in bits, n, = mn and there are k; information bits with k;, = km.

The probability of a symbol error with binary transmission and the AWGN channel

is
ps=1—(1—lerfc(/zf/z)) (7.1)

n—k+1
2

The RS code can correct ¢ errors where ¢ = J Accordingly, a decoder error

occurs if there are more than ¢ symbol errors and the probability of decoder error,
pc is given by

n

! .
pe=" — _pi—py- (7.2)

— D!
i=t+1 (n l)

As a practical example, we will consider the (256, 234, 23) extended RS code.
Representing each [Fps symbol as a binary 8 tuple the RS code becomes a (2048,
1872, 23) binary code. The performance with hard decisions is shown in Fig.7.1 as
a function of ’” . This code may be directly compared to the binary (2048, 1872,
33) Goppa code since their lengths and code rates are identical. The decoder error
probability for the binary Goppa code is given by

7.2 Reed-Solomon Codes Used with Binary Transmission-Hard Decisions 169

10° .\
107" \\
1072

103 \\
1074

10°°
10°®

107 \\
10°® \\

FER

10°} S (256,234, 233 hard +
Gogé)a 48,1872,3) hard \\
10_10 RS (256,234,23) erasures/hard *
2 3 4 5 6 7 8
Eb/No [dB]

Fig. 7.1 Comparison of hard decision decoding of the (256, 234, 23) RS code compared to the
(2048, 1872, 33) Goppa code (same code length in bits and code rate)

& mm) (1 k E, 1 K E\ "
e ij%, (nm — i)!i!(i”fc\/ NO) (1 A No) (73)

where 1 = Ldm'”’L'J for the binary Goppa code.

The comparison in performance is shown in Fig.7.1 and it can be seen that the
Goppa code is approximately 0.75dB better than the RS code at 1 x 107! frame
error rate.

It is interesting to speculate whether the performance of the RS code could be
improved by using 3-level quantisation of the channel bits and erasing symbols if
any of the bits within a symbol are erased. The probabilities of a bit erasure pe,qse
and bit error p, for 3-level quantisation are given in Chap.3, Egs.(3.41) and (3.42)
respectively, but note that a lower threshold needs to be used for best performance
with these code parameters, /E; —0.2 x o instead of /E; —0.65 x . The probability
of a symbol erasure, pg crqse 1S given by

PS erase = 1 - (1 - peraxe)m (74)

and the probability of a symbol error, pg .rror 1S given by

Pserror =1 = (1= (1= perase)) = (1 = pp)" 7.5)

http://dx.doi.org/10.1007/978-3-319-51103-0_3
http://dx.doi.org/10.1007/978-3-319-51103-0_3

170 7 Reed-Solomon Codes and Binary Transmission

1018 \
RS (256,250,7) hard + \
RS (256,250,7) erasures/hard x \

5 6 7 8 9 10 11 12 13
Eb/No [dB]

Fig. 7.2 Comparison of hard decision and erasure decoding of the (256, 250, 7) RS code for the
binary channel

and

PS error = (1 - perase)m - (1 - Pb)m (76)

For each received vector, provided the number of errors ¢ and the number of erasures
s such that 2 + s < n — k, then the received vector will be decoded correctly. A
decoder error occurs if 2t + s > n — k.

The probability distribution of errors and erasures in the received vector, e(z) may
be easily found by defining a polynomial p(z) and raising it to the power of n, the
number of symbols in a codeword.

e(Z) = (1 — DSerror — PSerase + Ps erasez_l + ps errorz_z)n (77)

The probability of decoder error p¢ is simply found from e(z) by summing all
coefficients of z~ where i is greater than n — k. This is very straightforward with a
symbolic mathematics program such as Mathematica. The results for the RS (256,
234, 23) code are shown in Fig.7.1. It can be seen that there is an improvement over
the hard decision case but it is rather marginal.

A rather more convincing case is shown in Fig. 7.2 for the RS (256, 250, 7) code
where the performance is shown down to frame error rates of 1 x 10729, In this case,
there is an improvement of approximately 0.4 dB.

7.2 Reed-Solomon Codes Used with Binary Transmission-Hard Decisions 171

It has already been established that for the binary transmission channel, the RS
codes based on GF(2™), do not perform as well as a binary designed code with
the same code parameters. The problem is that bit errors occur independently and
it only takes a single bit error to cause a symbol error. Thus, the code structure,
being symbol based, is not well matched to the transmission channel. Another way
of looking at this is to consider the Hamming distance. For the binary (2048, 1872)
codes considered previously, the RS-based code turns out to have a binary Hamming
distance of 23 whilst the binary Goppa code has a Hamming distance of 33. However,
there is a simple method of modifying RS codes to produce good binary codes as
discussed in Chap. 6. It is a code concatenation method best suited for producing
symbol-based binary codes whereby a single overall binary parity check is added to
each binary m-tuple representing each symbol. Starting with a RS (n, k,n —k — 1)
code, adding the overall binary parity checks produces a (n[m + 1], km, 2[n —k —1])
binary code. Now the minimum weight of each symbol is 2, producing a binary code
with twice the minimum Hamming distance of the original RS code. Kasahara [4]
realised that in some cases an additional information bit may be added by adding the
all 1’s codeword to the generator matrix. Some best known codes are constructed in
this way as discussed in Chap. 6. One example is the (161, 81, 23) binary code [6].

7.3 Reed-Solomon Codes and Binary Transmission Using
Soft Decisions

RS codes applied to the binary transmission channel will now be considered using
unquantised soft decision decoding. The best decoder to use is the modified Dorsch
decoder, discussed in Chap. 15, because it provides near maximum likelihood decod-
ing. However when used with codes having a significant coding gain, the code length
needs to be typically less than 200 bits.

We will consider augmented, extended RS codes constructed from G F'(2™). The
length is 2" + 1 and these are Maximum Distance Separable (MDS) codes with
parameters (2" + 1, k, 2+l _ k). Moreover, the general case is that augmented,
extended RS codes may be constructed using any Galois Field G F (g) with parame-
ters (g +1, k, g+2—k) [6]. Denoting the g fieldelements as 0, g, o, @z, ... 042,
the parity-check matrix is given by

B J J J J .
%1 qll 0{21 aq_% 1 0
a)t al” g e 000
j+2 j+2 j+2 j+2
H=— ayp oy o) cooa;, 000
jtq—k—1 _j+q—k—1 _ j+q—k—1 j+q—k—1
agtl al ™ e A 0 0
j+a—k j+a—k jta—k j+a—k
| o o a; P 0 1]

http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_15

172 7 Reed-Solomon Codes and Binary Transmission

(=1

Table 7.1 G F(32) non-zero 16 -1+ o+ad+ao

extension field elements ozl =1 a17 A
definedby 1 +a? +a° =0 az 0‘2 0t18=1+ot+ot
o= a’=1+a
o =ad al? = o +a?
ot =at o =a?+ad3
o =1+a? o' =ad ot
o =a+a’ a2 =1+0o>+a*
o =’ +o P =1+a+a®+a
of =1+a” +a’ e =+’ +ad+at
o =a+ad+at @ =1+ +a
al =1+t ¥ =1+a+a?+at
o' =1+a+a? e =14+a+d’
a?=a+a?+a? o = a+o?+ o
a3 = o2 + o 4 ot @ =14
al* =140 +ao3 +a* oV =a+at
b =1+a+a?+a’+a

There are ¢ — k + 1 rows of the matrix corresponding to the ¢ — k + 1 parity
symbols of the code. Any of the ¢ — k + 1 columns form a Vandermonde matrix
and the matrix is non-singular which means that any set of ¢ — k + 1 symbols of
a codeword may be erased and solved using the parity-check equations. Thus, the
code is MDS. The columns of the parity-check matrix may be permuted into any
order and any set of s symbols of a codeword may be defined as parity symbols and
permanently erased. Thus, their respective columns of H may be deleted to form a
shortened (2" + 1 — s, k, 2"*! — s — k) MDS code. This is an important property
of MDS codes, particularly for their practical realisation in the form of augmented,
extended RS codes because it enables efficient implementation in applications such
as incremental redundancy systems, discussed in Chap.17, and network coding.
Using the first ¢ — 1 columns of H, and setting g, oy, o2,... o4 equal to
o, a', o?,... a?972, where « is a primitive element of G F(q) a cyclic code may
be constructed, which has advantages for encoding and decoding implementation.

We will consider the shortened RS code (30, 15, 16) constructed from the G F (2°)
extension field with H constructed using j = 0 and « being the primitive root of
1 4+ x* 4+ x°. The GF(32) extension field table is given in Table7.1 based on the
primitive polynomial 1 4+ x? + x° so that 1 + «? 4+ o = 0, modulo 1 + x3'.

The first step in the construction of the binary code is to construct the parity-check
matrix for the shortened RS code (30, 15, 16) which is

http://dx.doi.org/10.1007/978-3-319-51103-0_17

7.3 Reed-Solomon Codes and Binary Transmission Using Soft Decisions 173

1 1 1 ...1
1 a o ...a®
1 o ot ... a%
H(30,15)= 1 0[3 o .0625
10{13(;5.26...01i
1 a“%a® ... &

Each element of this parity-check matrix is to be replaced with a 5 x 5 matrix in terms
of the base field, which in this case is binary. First, the number of rows are expanded
to form H3g 75y given by matrix (7.8). The next step is to expand the columns in
terms of the base field by substituting for powers of « using Table7.1. For example,
if an element of the parity-check matrix H3g 75 is, say &%, then this is replaced by
1 + o + o 4+ * which in binary is 11101. Proceeding in this way the binary matrix
H 150,75 is produced (some entries have been left as they were to show the procedure
partly completed) as in matrix (7.9).

F1 1 1 1]
0 a o o
o o o? ... a?
oo e’ dd
ot ot ot ..ot
1 o o ...a%
o o o o
o o ot . 1
oot @«
ot o af ... a?
1 o ot ... a%
a o o ... a?

H _ o ot of . a® (7.8)
(30,75) — PRV RV B 1V .

ot of o . 1
1 o af ... a®
o o o .. a%
o o o .o
o af o ... a?
ot of @0 o
1t a® o3
a aSa® . ot
o % o
o a1 C b
ot o't o o

174 7 Reed-Solomon Codes and Binary Transmission

[~ 10000 10000 10000 ... 10000 7
01000 01000 01000 ... 01000
00100 00100 00100 ... 00100
00010 00010 00010 ... 00010
00001 00001 00001 ... 00001
10000 01000 00100 ... 10010
01000 00100 00010 ... o*°
00100 00010 00001 ... 10000
00010 00001 10100 ... 01000
00001 10100 01010 ... 00100
10000 00100 00001 ... 11010
01000 00010 10100 ... 01101
00100 00001 01010 ... 10010 (7.9)
00010 10100 00101 ... @ '
00001 01010 10110 ... 10000
10000 00010 01010 ... 10011
01000 00001 00101 ... 11101
00100 10100 10110 ... 11010
00010 01010 01011 ... 01101
00001 00101 o' ... 11010

H150,75) =

10000 «'* 01101 ... 00010
01000 «'5 10010 ... 00001
00100 «'® &3 ...10100
00010 «!7 1 ...01010
00001 «'® & ...00101 |

The resulting binary code is a (150, 75, 16) code with the d,,;, the same as the
symbol-based RS (30, 15, 16) code. As observed by MacWilliams [6], changing the
basis can increase the d,;,, of the resulting binary code, and making j = 3 in the RS
parity-check matrix above produces a (150, 75, 19) binary code.

A (150, 75, 22) binary code with increased d,,;, can be constructed using the
overall binary parity-check concatenation as discussed above. Starting with the (25,
15, 11) RS code, an overall parity check is added to each symbol, producing a parity-
check matrix, Hs0,75,22) given by matrix (7.10). We have constructed two binary
(150, 75) codes from RS codes. It is interesting to compare these codes to the known
best code of length 150 and rate % The known, best codes are to be found in a
database [2] and the best (150, 75) code has a d,,,;, of 23 and is derived by shortening
by one bit (by deleting the x'*° coordinate from the G matrix) of the (151, 76, 23)

cyclic code whose generator polynomial is

100001 100001 100001 ... 100001
010001 010001 010001 ... 010001
001001 001001 001001 ... 001001
000101 000101 000101 ... 000101
000011 000011 000011 ... 000011

7.3 Reed-Solomon Codes and Binary Transmission Using Soft Decisions 175

100001 010001 001001 ... 100100]
010001 001001 000101 ... 010010
001001 000101 000011 ... 100001
000101 000011 101000 ... 010001
000011 101000 010100 . .. 001001
100001 001001 000011 ... 110101
010001 000101 101000 ... 011011
001001 000011 010100 ... 100100
000101 101000 001010 ... 010010
000011 010100 101101 ... 100001
Hs0.75.22) = | 100001 000101 010100 ... 100111 (7.10)
010001 000011 001010 ... 111010
001001 101000 101101 ... 110101
000101 010100 010111 ... 011011
000011 001010 100010 ... 110101
100001 101110 011011 ... 000101
010001 111111 100100 ... 000011
001001 110110 010010 ... 101000
000101 110011 1 ... 010100
000011 110000 010001 ... 001010

g(x) = 1+x3+x5+x8+x10+x”+x14+x15+x17+x19+x20+x22
+x25+x27+x28+x30+x31 +x34+x36+x37+x39+x40+x45+x46
+x48+x50+x52+x59+x6o+x63+x67+x70+x73+x74+x75 (711)

These three binary codes, the RS-based (150, 75, 19) and (150, 75, 22) codes together
with the (150, 75, 23) shortened cyclic code have been simulated using binary trans-
mission for the AWGN channel. The decoder used is a modified Dorsch decoder
set to evaluate 2 x 107 codewords per received vector. This is a large number of
codewords and is sufficient to ensure that quasi-maximum likelihood performance is
obtained. In this way, the true performance of each code is revealed rather than any
shortcomings of the decoder.

The results are shown in Fig. 7.3. Also shown in Fig. 7.3, for comparison purposes,
is the sphere packing bound and the erasure-based binomial bound discussed in
Chap. 1. Interestingly, all three codes have very good performance and are very close
to the erasure-based binomial bound. Although not close to the sphere packing bound,
this bound is for non-binary codes and there is an asymptotic loss of 0.187dB for
rate % binary codes in comparison to the sphere packing bound as the code length
extends towards oo.

Comparing the three codes, no code has the best overall performance over the
entire range of f,—g and, surprisingly the d,,;,, of the code is no guide. The reason for
this can be seen from the Hamming distances of the codewords decoded in error for

http://dx.doi.org/10.1007/978-3-319-51103-0_1

176 7 Reed-Solomon Codes and Binary Transmission

binary (150,75,19) from (30,15,16) RS code '+
Forney (150,75,22) from (25,15,11) RS code

-1 Cyclic (150,75,23) code
10 erasure bound for (150,75) code =
sphere packing bound for (150,75)

102 2

1073 SN
IS\
\,\
DN
u

o

FER
S
S

N

o
&

jl/

—

S
i

w

0 0.5 1 1.5 2 2.5 3 3.5 4
Eb/No [dB]

Fig. 7.3 Comparison of the (150, 75, 19) code derived from the RS(30, 15, 16) code, the concate-
nated (150, 75, 22) code and the known, best (150, 75, 23) code derived by shortening the (151, 76,
23) cyclic code

the three codes after 100 decoder error events. The results are shown in Table 7.2 at
f,—g =3 dB. From Table 7.2 it can be seen that the concatenated code (150, 75, 22) has
more error events with Hamming distances in the range 22-32, but the (150, 75, 23)
known, best code has more error events for Hamming distances up to 36 compared
to the (150, 75, 19) RS derived code, and this is the best code at % =3 dB.

The distribution of error events is illustrated by the cumulative distribution of
error events plotted in Fig. 7.4 as a function of Hamming distance. The weakness of
the (150, 75, 22) code at f,—f) = 3 dB is apparent.

At higher values of ﬁ—(’;, the higher d,,;, of the (150, 75, 23) known, best code
causes it to have the best performance as can be seen from Fig.7.3.

7.4 Summary

This chapter studied further the Reed—Solomon codes which are ideal symbol-based
codes because they are Maximum Distance Separable (MDS) codes. These codes
are not binary codes but were considered for use as binary codes in this chapter. The
performance of Reed—Solomon codes when used on a binary channel was explored
and compared to codes which are designed for binary transmission. The construction
of the parity-check matrices of RS codes for use as binary codes was described

7.4 Summary

177

Table 7.2 Hamming distances and multiplicities of 100 error events for each of the (150, 75) codes

E,
atN—g=3dB

Hamming
distance

(150, 75, 19) Code
number

(150, 75, 22) Code
number

(150, 75, 23) Code
number

22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
47
48

N 00 B W= = O O

—
~

O O = = = N O NN 0 W o W X

S N O v O B~ B

SO O O O N O = O WO

D = O O N N O O O O
S W

—_
o O

—_— === OO N OO

in detail for specific code examples. The performance results of three differently
constructed (150, 75) codes simulated for the binary AWGN channel, using a near
maximum likelihood decoder, were presented. Surprisingly the best performing code
at 10~ error rate is not the best, known (150, 75, 23) code. Error event analysis was
presented which showed that this was due to the higher multiplicities of weight
32-36 codeword errors. However, beyond 10 error rates the best, known (150, 75,
23) code was shown to be the best performing code.

178

Fig.

7 Reed-Solomon Codes and Binary Transmission

100 e
0 //

@
2 60
1S
>
zZ
40
20 4
Cumulative distance profile for (150,75,19) code +
Cumulative distance profile for (150,75,22) code
Cumulative distance profile for (150,75,23) code %
0) "cumweights1§0k75d23.txt" usi’ng 1:2

20 25 30 35 40 45 50
Hamming distance of codeword errors

7.4 Cumulative distribution of Hamming distance error events for the (150, 75, 19) code

derived from the RS(30, 15, 16) code, the RS binary parity-check concatenated (150, 75, 22) code
and the known, best (150, 75, 23) code derived by shortening the (151, 76, 23) cyclic code

References

(o]

10.

El-Khamy, M., McEliece, R.J.: Iterative algebraic soft decision decoding of Reed-Solomon
codes. Int. Symp. Inf. Theory Appl. 2004, 1456-1461 (2004)

Grassl, M.: Code Tables: bounds on the parameters of various types of codes. http://www.
codetables.de (2007)

Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry
codes. IEEE Trans. Inf. Theory 45(6), 1757-1767 (1999)

Kasahara, M., Sugiyama, Y., Hirasawa, S., Namekawa, T.: New classes of binary codes con-
structed on the basis of concatenated codes and product codes. IEEE Trans. Inf. Theory I1T-22
4, 462468 (1976)

Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed—Solomon codes. IEEE Trans.
Inf. Theory 49(11), 2809-2825 (2003)

. MacWilliams, F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland

(1977)

. McEliece, R.J.: The Guruswami—Sudan decoding algorithm for Reed—Solomon codes. JPL

TDA Prog. Rep. 42(153), 1-60 (2003)

. Proakis, J.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)
. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8,

300-304 (1960)
Sudan, M.: Decoding of Reed—Solomon codes beyond the error-correction bound. J. Complex.
13, 180-193 (1997)

http://www.codetables.de
http://www.codetables.de

179

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8
Algebraic Geometry Codes

8.1 Introduction

In order to meet channel capacity, as Shannon postulated, long error-correction codes
with large minimum distances need to be found. A large effort in research has been
dedicated to finding algebraic codes with good properties and efficient decoding
algorithms. Reed—Solomon (RS) codes are a product of this research and have over
the years found numerous applications, the most noteworthy being their implemen-
tation in satellite systems, compact discs, hard drives and modern, digitally based
communications. These codes are defined with non-binary alphabets and have the
maximum achievable minimum distance for codes of their lengths. A generalisation
of RS codes was introduced by Goppa using a unique construction of codes from
algebraic curves. This development led to active research in that area so that cur-
rently the complexity of encoding and decoding these codes has been reduced greatly
from when they were first presented. These codes are algebraic geometry (AG) codes
and have much greater lengths than RS codes with the same alphabets. Furthermore
these codes can be improved if curves with desirable properties can be found. AG
codes have good properties and some families of these codes have been shown to be
asymptotically superior as they exceed the well-known Gilbert—Varshamov bound
[16] when the defining finite field IF, has size ¢ > 49 with g always a square.

8.2 Motivation for Studying AG Codes

Aside from their proven superior asymptotic performance when the field size ¢> >
49, AG codes defined in much smaller fields have very good parameters. A closer
look at tables of best-known codes in [8, 15] shows that algebraic geometry codes
feature as the best-known linear codes for an appreciable range of code lengths for

© The Author(s) 2017 181
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_8

182 8 Algebraic Geometry Codes

different field sizes g. To demonstrate a comparison the parameters of AG codes
with shortened BCH codes in fields with small sizes and characteristic 2 is given.
AG codes of length n, dimension k have minimum distance d = n —k — g + 1 where
g is called the genus . Notice that n — k 4 1 is the distance of a maximum distance
(MDS) separable code. The genus g is then the Singleton defect s of an AG code.
The Singleton defect is simply the difference between the distance of a code and the
distance some hypothetical MDS code of the same length and dimension. Similarly
a BCH code is a code with length n, dimension &, and distance d = n —k — s + 1
where s is the Singleton defect and number of non-consecutive roots of the BCH
code.

Consider Table 8.1, which compares the parameters of AG codes from three curves
with genera 3, 7, and 14 with shortened BCH codes with similar code rates. At high
rates, BCH codes tend to have better minimum distances or smaller Singleton defects.
This is because the roots of the BCH code with high rates are usually cyclically
consecutive and thus contribute to the minimum distance. For rates close to half, AG
codes are better than BCH codes since the number of non-consecutive roots of the
BCH code is increased as a result of conjugacy classes. The AG codes benefit from the
fact that their Singleton defect or genus remains fixed for all rates. As a consequence
AG codes significantly outperform BCH codes at lower rates. However, the genera
of curves with many points in small finite fields are usually large and as the length
of the AG codes increases in Fg, the BCH codes beat AG codes in performance.
Tables 8.2 and 8.3 show the comparison between AG and BCH codes in fields [F g
and Fs,, respectively. With larger field sizes, curves with many points and small
genera can be used, and AG codes do much better than BCH codes. It is worth noting
that Tables 8.1, 8.2 and 8.3 show codes in fields with size less than 49.

8.2.1 Bounds Relevant to Algebraic Geometry Codes

Bounds on the performance of codes that are relevant to AG codes are presented in
order to show the performance of these codes. Let A, (n, d) represent the number of
codewords in the code space of a code ¥ with length n, minimum distance d and
defined over a field of size g. Let the information rate be R = k/n and the relative
minimum distance be § = d/n for0 < § < 1, then

1
a,(8) = ’11111010 ;Aq (n, én)

which represents the k/n such that there exists a code over a field of size ¢ that has
d/n converging to § [18]. The g-ary entropy function is given by

0, x=0

H =
o) {xlogq(q —1)—xlog,x — (1 —x)log,(1—x), 0<x<8

8.2 Motivation for Studying AG Codes 183
Table 8.1 Comparison between BCH and AG codes in Fg
Rate AG code in Fp3 | Number of Genus | Shortened BCH | BCH code in
points code in 3 Fy3
0.2500 [23, 5, 16] 24 3 [23,5,12] [63,45,12]
0.3333 [23,7,14] 24 3 [23,7,11] [63,47,11]
0.5000 [23, 11, 10] 24 3 [23, 10, 8] [63, 50, 8]
0.6667 [23, 15, 6] 24 3 [23, 14, 6] [63, 54, 6]
0.7500 [23,17,4] 24 3 [23, 16, 5] [63, 56, 5]
0.8500 [23,19,2] 24 3 [23,18,4] [63, 58, 4]
0.2500 [33,8,19] 34 7 [33,7,16] [63, 37, 16]
0.3333 [33, 11, 16] 34 7 [33, 11, 14] [63,41, 14]
0.5000 [33, 16, 11] 34 7 [33,15,12] [63,45,12]
0.6667 [33,22,5] 34 7 [33,22,7] [63,52,7]
0.7500 [33,24, 3] 34 7 [33, 24, 6] [63, 54, 6]
0.2500 [64, 16, 35] 65 14 [64, 16, 37] [63, 15, 37]
0.3333 [64, 21, 30] 65 14 [64, 20, 31] [63,19,31]
0.5000 [64, 32, 19] 65 14 [64, 31, 22] [63, 30, 22]
0.6667 [64,42,9] 65 14 [64,42, 14] [63,41, 14]
0.7500 [64, 48, 3] 65 14 [64, 48, 11] [63,47,11]
Table 8.2 Comparison between BCH and AG codes in Fg
Rate AG code in Fp4 | Number of Genus| Shortened BCH | BCH code in
points code in Fop4 Fo4
0.2500 [23,5, 18] 24 1 [23,4,11] [255, 236, 11]
0.3333 [23,7, 16] 24 1 [23, 6, 10] [255, 238, 10]
0.5000 [23, 11, 12] 24 1 [23, 10, 8] [255,242, 8]
0.6667 [23, 15, 8] 24 1 [23, 14, 6] [255, 246, 6]
0.7500 [23,17,6] 24 1 [23, 16, 5] [255, 248, 5]
0.8500 [23,19,4] 24 1 [23, 18, 4] [255, 250, 4]
0.2500 [64, 16, 43] 65 6 [64, 16, 27] [255, 207, 27]
0.3333 [64, 21, 38] 65 6 [64, 20, 25] [255,211, 25]
0.5000 [64, 32, 27] 65 6 [64, 32, 19] [255, 223, 19]
0.6667 [64,42,17] 65 6 [64, 41, 13] [255,232, 13]
0.7500 [64,48,11] 65 6 [64,47,10] [255, 238, 10]
0.8500 [64, 54, 5] 65 6 [64,53,7] [255,244,7]
0.2500 [126, 31, 76] 127 20 [126, 30, 57] [255, 159, 57]
0.3333 [126, 42, 65] 127 20 [126, 41, 48] [255, 170, 48]
0.5000 [126, 63, 44] 127 20 [126, 63, 37] [255, 192, 37]
0.6667 [126, 84, 23] 127 20 [126, 84, 24] [255, 213, 24]
0.7500 [126, 94, 13] 127 20 [126, 94, 19] [255, 223, 19]

184

Table 8.3 Comparison between BCH and AG codes in F3,

8 Algebraic Geometry Codes

Rate AG code in Fp4 | Number of Genus Shortened BCH | BCH code in Fy4
points code in Fp4
0.2500 | [43, 10, 33] 44 1 [43, 10, 18] [1023, 990, 18]
0.3333 | [43, 14,29] 44 1 [43, 14, 16] [1023, 994, 16]
0.5000 |[43,21,22] 44 1 [43,20, 13] [1023, 1000, 13]
0.6667 |[43,28, 15] 44 1 [43,28,9] [1023, 1008, 9]
0.7500 |[43,32,11] 44 1 [43,32,7] [1023, 1012, 7]
0.8500 |[43,36,7] 44 1 [43, 36, 5] [1023, 1016, 5]
0.2500 |[75, 18, 53] 76 5 [75, 18, 30] [1023, 966, 30]
0.3333 | [75,25,46] 76 5 [75, 24, 27] [1023, 972, 27]
0.5000 |[75,37,34] 76 5 [75,36,21] [1023, 984, 21]
0.6667 |[75,50,21] 76 5 [75,50, 14] [1023, 998, 14]
0.7500 |[75,56, 15] 76 5 [75,56, 11] [1023, 1004, 11]
0.8500 |[75,63, 8] 76 5 [75, 62, 8] [1023, 1010, 8]
0.2500 |[103,25,70] 104 9 [103, 25, 42] [1023, 945, 42]
0.3333 |[103, 34, 61] 104 9 [103, 33, 38] [1023, 953, 38]
0.5000 |[103,51,44] 104 9 [103, 50, 28] [1023, 970, 28]
0.6667 |[103, 68, 27] 104 9 [103, 68, 19] [1023, 988, 19]
0.7500 |[103,77,18] 104 9 [103,76, 15] [1023, 996, 15]
0.8500 |[103,87, 8] 104 9 [103, 86, 10] [1023, 1006, 10]

The asymptotic Gilbert—Varshamov lower bound on o (§) is given by,

a,(8) = 1— Hy(8) for0<5<86

The Tsfasman—Vladut—Zink bound is a lower bound on «,(8) and holds true for
certain families of AG codes, it is given by

) >1—8—

1
NI

where /g € N/O

The supremacy of AG codes lies in the fact that the TVZ bound ensures that these
codes have better performance when ¢ is a perfect square and g > 49.
The Figs. 8.1, 8.2 and 8.3 show the R vs § plot of these bounds for some range

of g.

8.2 Motivation for Studying AG Codes

0.9

Gilbert-Varshamov —+—
Tsfasman-Vladut-Zink —*—

0.8

0.7

0.6

0.5

0.4

alphaq(n,d)

0.3

0.2

0.1

0
-0.2 0 0.2 0.4 0.6 0.8
d/n

Fig. 8.1 Tsfasman—Vladut-Zink and Gilbert—Varshamov bound for ¢ = 32

0.9

Gilbert-Varshamov —+—
Tsfasman-Vladut-Zink —*—

0.8

0.7

0.6

0.5

0.4

alphaq(n,d)

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8
d/n

Fig. 8.2 Tsfasman—Vladut-Zink and Gilbert—Varshamov bound for ¢ = 64

185

186 8 Algebraic Geometry Codes

0.9

" Gilbert-Varshamov —+—
Tsfasman-Vladut-Zink —*—

0.8

0.7

0.6

0.5

0.4

alphaq(n,d)

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d/n

Fig. 8.3 Tsfasman—Vladut-Zink and Gilbert—Varshamov bound for ¢ = 256

8.3 Curves and Planes

In this section, the notion of curves and planes are introduced. Definitions and discus-
sions are restricted to two-dimensional planes and all polynomials are assumed to be
defined with coefficients in the finite field IF,. The section draws from the following
sources [2, 12, 17, 18]. Let f(x, y) be a polynomial in the bivariate ring IF, [x, y].

Definition 8.1 (Curve) A curve is the set of points for which the polynomial f (x, y)
vanishes to zero. Mathematically, a curve 2" is associated with a polynomial f (x, y)
so that f(P) = {0|P € 27}.

A curve is a subset of a plane. There are two main types of planes; the affine plane
and the projective plane. These planes are multidimensional, however, we restrict
our discussion to two-dimensional planes only.

Definition 8.2 (Affine Plane) A two-dimensional affine plane denoted by A? (F,) is
a set of points,

A*(Fy) = {(a. B) : o, B € Fy} (8.1)
which has cardinality ¢2.

A curve 2 is called an affine curve if 2" C A?).

Definition 8.3 (Projective Plane) A two-dimensional projective plane P2 (F,) is the
algebraic closure of A? and is defined as the set of equivalence points,

8.3 Curves and Planes 187
P2(Fy) = {(a: B: 1): a, peFy) | J{(a: 1: 0): @ € Fy} [J{(1:0:0)).

A curve 2 is said to lie in the projective plane if 2~ C P*(F,). The points in the
projective plane are called equivalence points since for any point P € P?),

if f(xo, yo,20) =0, then f(axg, ayy, @z9) =0 «€]FZ, P = (xo:y0:20)

because f(x, y, z) is homogeneous. The colons in the notation of a projective point
(x : y : z) represents this equivalence property.

The affine polynomial f(x, y) is in two variables, in order to define a projective
polynomial in three variables, homogenisation is used,

f,y,2)=2f ()Z—C,%) d = Degree of f(x,y)

which turns f(x,y) into a homogeneous' polynomial in three variables. An

n-dimensional projective polynomial has n + 1 variables. The affine space A?(F,)
is a subset of P*(FF,) and is given by,

A*F) ={(@:B:1): a pelF,} CcPF,.
A projective curve can then be defined as a set of points,

X ={P: f(P)=0, PePF,).

Definition 8.4 (Point at Infinity) A point on a projective curve 2~ that coincides
with any of the points of P*(F,) of the form,

{(w:1:0): ¢ eF,JU{(1:0:0)}

i.e. points (xg : ¥o : zo) for which zo = 0 is called a point at infinity.

A third plane, called the bicyclic plane [1], is a subset of the A? (IF;) and consists
of points,

{(a, B) s, p € Ty \ {O}).

This plane was defined so as to adapt the Fourier transform to AG codes since the
inverse Fourier transform is undefined for zero coordinates.

Example 8.1 Consider the two-dimensional affine plane A%(F4). Following the def-
inition of A?(F4) we have,

IEach term in the polynomial has degree equal to d.

188 8 Algebraic Geometry Codes

0,00 O, 1) 1,00 (1,1
1La) (@1 (1,a% @1
(o?, @) (o, @®) (0,a%) (0,)
@2,0) (o,0) (@2, 0 (o,)

where « is the primitive element of the finite field F4. The two-dimensional projective
plane P?(F,) is given by,

Affine Points Points at Infinity
©0:0:1) O:1:1) (1:0:1) (1:1:1) 0:1:0) (1: 0:0)
(1:a:1) (a:1:1) 1:a%: 1) (@2:1:1) (@:1:0)
(@ a: 1) (a:a?: 1) 0:a%: 1) ©O:a:1) (@%:1:0)
(@2:0: 1) (:0:1) (@%:a%: 1) (o:a: 1) (1:1:0)

Definition 8.5 (Irreducible Curve) A curve associated with a polynomial f(x, y, z)
that cannot be reduced or factorised is called irreducible.

Definition 8.6 (Singular Point) A point on a curve is singular if its evaluation on all
partial derivatives of the defining polynomial with respect to each indeterminate is
ZEero.

Suppose f, f,, and f; denote partial derivatives of f(x, y, z) with respect to x,
v, and z respectively. A point P € 2" is singular if,

of(x,y,2) . df(x,y.2) . 9f(x,y,2)
FY £ 3 =l =F

fx(P) = fy(P) = fz(P) =0.

Definition 8.7 (Smooth Curve) A curve £ is nonsingular or smooth does not con-
tain any singular points.

To obtain AG codes, it is required that the defining curve is both irreducible and
smooth.

Definition 8.8 (Genus) The genus of a curve can be seen as a measure of how many
bends a curve has on its plane. The genus of a smooth curve defined by f(x, y, z) is
given by the Pliicker formula,

d—1(d -2
g= ()2#, d = Degree of f(x,V,z)

The genus plays an important role in determining the quality of AG codes. It is
desirable for curves that define AG codes to have small genera.

8.3 Curves and Planes 189
Example 8.2 Consider the Hermitian curve in [F4 defined as,

fx,y)=x>+y*+y affine

f(x,y,2) = x>+ y*z + yz> projective via homogenisation

Itis straightforward to verify that the curve is irreducible. The curve has the following
projective points,

©:0:1) (©0:1:1) (@:a:D(@:a%:1)
@:a:D@:a*>:D)A:a:D) A:a?:1)(@0:1:0)

Notice the curve has a single point at infinity P,, = (0 : 1 : 0). One can easily check
that the curve has no singular points and is thus smooth.

8.3.1 Important Theorems and Concepts

The length of an AG code is utmost the number of points on the defining curve. Since
it is desirable to obtain codes that are as long as possible, it is desirable to know what
the maximum number of points attainable from a curve, given a genus is.

Theorem 8.1 (Hasse—Weil with Serre’s Improvement [2]) The Hasse—Weil theorem
with Serre’s improvement says that the number of rational points® of an irreducible
curve, n, with genus g in F, is upper bounded by,

n<qg+1+gl2q].

Curves that meet this bound are called maximal curves. The Hermitian curves
are examples of maximal curves. Bezout’s theorem is an important theorem, and is
used to determine the minimum distance of algebraic geometry codes. It describes
the size of the set which is the intersection of two curves in the projective plane.

Theorem 8.2 (Bezout’s Theorem [2]) Any two curves Z, and %, with degrees of
their associated polynomials as m and n respectively, have utmost m X n common
roots in the projective plane counted with multiplicity.

Definition 8.9 (Divisor) A divisor on a curve 2" is a formal sum associated with
the points of the curve.

D= > n,P

PeZ

where 7, are integers.

2 A rational point is a point of degree one. See Sect. 8.4 for the definition of the degree of point on
acurve.

190 8 Algebraic Geometry Codes

A zero divisor is one that has n, = 0 forall P € 2. A divisor is called effective
if it is not a zero divisor. The support of a divisor is a subset of 2 for which n,, # 0.
The degree of a divisor is given as,

deg(D) = Z n, deg(P)
PeZ

For simplicity, it is assumed that the degree of points P € 2, i.e. deg(P) is 1
(points of higher degree are discussed in Sect. 8.4). Addition of two divisors D; =
D peanpPand Dy =3 p_, 1, P is so defined,

D+ Dy = Z (n, +1i,)P.
PeX

Divisors are simply book-keeping structures that store information on points of a
curve. Below is an example the intersection divisor of two curves.

Example 8.3 Consider the Hermitian curve in [y defined as,
ity) =5 +y’ 24y
with points given in Example 8.2 and the curve defined by
falx,y,z) =x
with points
©0:0:D@O:1:1)O0:a:1)O0:a?>:1)(0:1:0)
These two curves intersect at 3 points below all with multiplicity 1,
0:0:1)©0:1:0)(0:1:1).
Alternatively, this may be represented using a divisor D,
D=0:0:1)+@©0:1:00+@0:1:1)

with n,, the multiplicity, equal to 1 for all the points. Notice that the two curves meet
at exactly deg(fi)deg(f>) = 3 points in agreement with Bezout’s theorem.

For rational functions with denominators, points in divisor withn, < 0 are poles.
For example, D = P; — 2P, will denote an intersection divisor of two curves that
have one zero P; and pole P, with multiplicity two in common. Below is the formal
definition of the field of fractions of a curve .2".

Definition 8.10 (Field of fractions) The field of fractions F,(2Z") of a curve 2~
defined by a polynomial f(x, y, z) contains all rational functions of the form

8.3 Curves and Planes 191

gx,y,2)
h(x,y,z2)

with the restriction that g(x, y, z) and h(x, y, z) are homogeneous polynomials that
have the same degree and are not divisible by f(x, y, z).

A subset (Riemann—Roch space) of the field of fractions of 2~ meeting certain
conditions are evaluated at points of the curve 2~ to form codewords of an AG code.
Thus, there is a one-to-one mapping between rational functions in this subset and
codewords of an AG code. The Riemann—Roch theorem defines this subset and gives
a lower bound on the dimension of AG codes. The definition of a Riemann—Roch
space is given.

Definition 8.11 (Riemann—Roch Space) The Riemann—Roch space associated with
a divisor D is given by,

L(D) ={t € F,(2)|(t) + D > 0} U0

where [F, (2) is the field of fractions and (¢) is the intersection divisor® of the rational
function ¢ and the curve 2.

Essentially, the Riemann—Roch space associated with a divisor D is a set of
functions of the form ¢ from the field of fractions F,(Z") such that the divisor sum
() + D has no poles, i.e. (t) + D > 0.

The rational functions in L(D) are functions from the field of fractions F,(Z")
that must have poles only in the zeros (positive terms) contained in the divisor D,
each pole occurring with utmost the multiplicity defined in the divisor D and most
have zeros only in the poles (negative terms) contained in the divisor D, each zero
occurring with at least the multiplicity defined in the divisor D.

Example 8.4 Suppose a hypothetical curve 2 has points of degree one,
X ={P1, Py, P3, Py}

We choose a divisor D = 2P; — 5P, with degree —3, and define a Riemann—Roch
space L(D). If we randomly select three functions ¢, #;, and #; from the field of
fractions F, (.Z") such that they have divisors,

(t1)) =3P +5P, +4P4 (t) =2P +4P, (13) = —P, + 8P, + Ps.

t; ¢ L(D) since (t;) + D = —P; + 4P, contains negative terms or poles. Also,
ty ¢ L(D) since (t;) + D = 4P, — P, contains negative terms. However, 3 € L(D)
since (3) 4+ D = P;+3 P>+ P3 contains no negative terms. Any functiont € F,(2Z")
is also in L(D) if it has a pole at P; with multiplicity at most 2 (with no other poles
in common with Z7) and a zero at P, with multiplicity at least 5.

3 An intersection divisor is a divisor that contains information on the points of intersection of two
curves.

192 8 Algebraic Geometry Codes

The Riemann—Roch space is a vector space (with rational functions as elements)
thus, a set of basis functions. The size of this set is the dimension of the space.

Theorem 8.3 (Riemann Roch Theorem [2]) Let 2~ be a curve with genus g and D
any divisor with degree (D) > 2g — 2, then the dimension of the Riemann—Roch
space associated with D, denoted by (D) is,

(D) = degree(D) — g + 1

Algebraic geometry codes are the image of an evaluation map of a Riemann—Roch
space associated with a divisor D so that

L(D) — F"
t— (t(P), t(Py), ..., t(Py)

where 2" = {Py, P>, ..., P,, P,} is a smooth irreducible projective curve of genus
g defined over IF,;. The divisor D must have no points in common with a divisor T
associated with 27, i.e. it has support disjoint from 7T'. For example, if the divisor T
is of the form

T=P+P+- ---+P

then, D = mP,.
Codes defined by the divisors T and D = m P, are called one-point AG codes
(since the divisor D has a support containing only one point), and AG codes are

predominantly defined as so since the parameters of such codes are easily deter-
mined [10].

8.3.2 Construction of AG Codes

The following steps are necessary in order to construct a generator matrix of an AG
code,

1. Find the points of a smooth irreducible curve and its genus.

2. Choose divisors D and T = Py + --- + P,. From the Riemann—Roch theo-
rem determine the dimension of the Riemann—Roch space L(D) associated with
divisor D. This dimension /(D) is the dimension of the AG code.

3. Find k = [(D) linearly independent rational functions from L(D). These form
the basis functions of L(D).

4. Evaluate all k basis functions on the points in the support of 7 to form the k rows
of a generator matrix of the AG code.

8.3 Curves and Planes 193
Example 8.5 Consider again the Hermitian curve defined in [y as,
fe,y,2) =x>+y*z+y2?

1. In Example 8.2 this curve was shown to have 8 affine points and one point at
infinity. The genus of this curve is given by the Pliicker formula,

Fr—-—D@Er -2
g:—:

1
2

where r = 3 is the degree of f(x, y, z).
2. Let D = 5P, where Py, = (0: 1: 0) and T be the sum of all 8§ affine points.
The dimension of the Riemann—Roch space is then given by,

I5Px)=5-1+1=5

thus, the AG code has dimension k = 5.
3. The basis functions for the space L(5Py) are

=

LS

2
{0 = il,f, 2,]
z Z z

By examining the basis, it is clear that f; = 1 has no poles, thus, (#;) + D has
no poles also. Basis functions with denominator z have (f;) = S — P, where S
is a divisor of the numerator. Thus, (#;) + D has no poles. Basis functions with
denominator z2 have (t;) = § — 2P, where § is a divisor of the numerator.
Thus, (¢;) + D also has no poles.

4. The generator matrix of the Hermitian code defined with divisor D = 5P is
thus,

[

Z

[11(Py) - 11 (Py)

Li(P) -« - e (Py)
(1000002 a? 1
01000c® a O
=({00100«a 1 «
00010 @ 0 &
1000011 11

Example 8.6 Consider the curve defined in Fg as,

fx,y,2)=x

194 8 Algebraic Geometry Codes

1. This curve is a straight line and has 8 affine points of the form (0 : 8 : 1) and one
point at infinity (0 : 1 : 0). The curve is both irreducible and smooth. The genus
of this curve is given by the Pliicker formula,

_r=Dr=2)
= =

0

where » = 1 is the degree of f(x, y, z). Clearly, the genus is zero since the curve
is straight line and has no bends.

2. Let D = 5Py, where P, = (0: 1: 0) and T be the sum of all 8 affine points.
The dimension of the Riemann—Roch space is then given by,

I(5Px) =5-0+1=6

thus, the AG code has dimension k = 6.
3. The basis functions for the space L(5P,) are

2 3 4 5
ot = [1,X,y—,y—,y—,y—]

By examining the basis, it is clear that #; = 1 has no poles, thus, (f;) + D has
no poles also. Basis functions with denominator z have (f;) = S — P where
S = (0 :0 :1)is a divisor of the numerator. The denominator polynomial
z evaluates to zero at the point at infinity Py of the divisor D, thus, (¢;) + D
has no poles. Basis functions with denominator z? have (t,) = S — 2P, where
S =2x(0:0:1)is adivisor of the numerator. The denominator polynomial
z? evaluates to zero at the point at infinity P, of the divisor D with multiplicity
2, thus, (f) + D has no poles. Basis functions with denominator z* have (t3) =
S — 3P, where S =3 x (0:0: 1) is a divisor of the numerator. Thus, (t3) + D
also has no poles. And so on.
4. The generator matrix of the code defined with divisor D = 5 P, is thus,

(11 (Py) -+ 11 (Py)

(P - 1(P)

11 111111
O a?aa*a’a’l
_ 0cto*al® a a®a’l
10t o’ a0t
0Oc* ¢ @ a?aba’ 1
0o’ o aba*a?1

Clearly, this is a generator matrix of an extended Reed—Solomon code with para-
meters [3, 6, 8]g.

8.3 Curves and Planes 195

Theorem 8.4 (From [2]) The minimum distance of an AG code is given by,
d >n—degree(D)

Thus, the Hermitian code defined by D = 5P is a [8, 5, 3]4 code. The dual of an
AG code has parameters [17],

Dimension, k* = n — degree(D) + g — 1
Distance, d* > degree(D) — 2g + 2

8.4 Generalised AG Codes

Algebraic geometry codes and codes obtained from them feature prominently in the
databases of best-known codes [8, 15] for an appreciable range of code lengths for
different field sizes gq. Generalised algebraic geometry codes were first presented
by Niederreiter et al. [21], Xing et al. [13]. A subsequent paper by Ozbudak and
Stichtenoth [14] shed more light on the construction. AG codes as defined by Goppa
utilised places of degree one or rational places. Generalised AG codes however were
constructed by Xing et al. using places of higher degree (including places of degree
one). In [20], the authors presented a method of constructing generalised AG codes
which uses a concatenation concept. The paper showed that best-known codes were
obtainable via this construction. In [4] it was shown that the method can be effective
in constructing new codes and the authors presented 59 codes in finite fields Fy4, Fg
and Fy better than the codes in [8]. In [11], the authors presented a construction
method based on [20] that uses a subfield image concept and obtained new binary
codes as a result. In [19] the authors presented some new curves as well as 129 new
codes in Fg and [Fy.

8.4.1 Concept of Places of Higher Degree

Recall from Chap. 8 that a two-dimensional affine space A (F,) is given by the set
of points

{(av ﬁ) : a, IB €]Fq}
while its projective closure P2(Fq) is given by the set of equivalence points
{a:8:D}U{(a:1:00}U{(1:0:0)}:0a,B €F,}.

Given a homogeneous polynomial F(x, y, z), a curve 2" /F, defined in p2 (Fyisa
set of distinct points

196 8 Algebraic Geometry Codes
X [F, ={T e PX(F,) : F(T) =0}
Let IF,« be an extension of the field I, the Frobenius automorphism is given as

(bq’g Zth‘ —> qu
¢q,£(ﬂ) = ﬁq :3 € Fq“

and its action on a projective point (x : y : z) in Fy¢ is

Gge((x1y:2))=x7:y7:2%).

Definition 8.12 (Place of Degree from [18]) A place of degree ¢ is a set of £ points
of a curve dgﬁned in the extension field F ¢ denoted by {7y, T1, ..., T;—1} where
each T; = ¢;,,(To). Places of degree one are called rational places.

Example 8.7 Consider the curve in F4 defined as,
F(x,y,z) =x
The curve has the following projective rational points (points of degree 1),

O0:0:DO0:1:D)O:a:D)@O:a%:1)
0:1:0)

where « is the primitive polynomial of F,4. The curve has the following places of
degree 2,
{0:8:1D,0:8*:1)} {(0:82:1),0:p°:1))
{0:8°:1D,0:82:1D)} {(0:8°:1),0:p:1)
{0:87:1),0: 7 : DY{O: " : 1), (0: " : 1))

where S is the primitive element of F¢.

8.4.2 Generalised Construction

This section gives details of the construction of generalised AG codes as described
in [21]. Two maps that are useful in the construction of generalised AG codes are
now described. Observe that IF, is a subfield of F,« for all £ > 2. It is then possible
to map I« to an £-dimensional vector space with elements from [, using a suitable
basis. The map 7y is defined as such,

8.4 Generalised AG Codes 197

. 14
e : Fye —>Fq

me(B) =(cica...cp) BelFy,, ¢ el,.

Suppose (y1, 2, - .., ¥¢) forms a suitable basis of the vector space Ff;, then 8 =
c1y1 +caya + - - - + ¢ ye. Finally, the map oy, is used to represent an encoding map
from an £-dimensional message space in IF, to an n-dimensional code space,

R 4 n
Ot :]Fq — Fq

with £ < n.

A description of generalised AG codes as presented in [4, 13, 21] is now presented.
Let F' = F(x, y, z) be a homogeneous polynomial defined in IF,,. Let g be the genus
of a smooth irreducible curve 2 /F, corresponding to the polynomial F. Also, let
Py, P, ..., P, be r distinct places of 2 /F, and k; = deg(P;) (deg is degree of).
W is a divisor of the curve 2" /FF, such that

W=P+P+-+P

and another divisor G such that the two do not intersect.* Specifically, the divisor
G = m(Q — R) where deg(Q) = deg(R) + 1 for arbitrary’ divisors Q and R. As
mentioned earlier, associated with the divisor G is a Riemann—Roch space .Z(G)
with m = deg(G)) an integer, m > 0. From the Riemann—Roch theorem (Theorem
8.3) it is known that the dimension of .Z(G) is given by /(G) and

I(G)>m—g+1.

Also, associated with each P; is a g-ary code C; with parameters [n;, k; =
deg(P;), d;], with the restriction that d; < k;. Let

{f1: for s it fi € Z(G)}

denote a set of k linearly independent elements of .2 (G) that form a basis. A generator
matrix for a generalised AG code is given as such,

Okym T (f1(Pr))) =+ o Ok,.n, (x, (J1(P)))
Oy (T, (f2(P1))) - oo Ok, n, (T, (f2(Pr)))

Oy (s Fe(P)) -+ - - 0 (11, (fi(P))

4This is consistent with the definition of AG codes. The two divisors should have no points in
common.

S>These are randomly chosen places such that the difference between their degrees is 1 and G does
not intersect W.

198 8 Algebraic Geometry Codes

where f;(P;) is an evaluation of a polynomial and basis element f; at a place P;, my,
is a mapping from F_ to I, and oy, ,, is the encoding of a message vector in IF’;"
to a code vector in [Fy’. This is a 3 step process. The place P; is first evaluated at f;
resulting in an element of]F’;" . The result is then mapped to a vector of length &; in the
subfield I, . Finally, this vector is encoded with code with parameters [n;, k;, d;],.

It is desirable to choose the maximum possible minimum distance for all codes
C; so that d; = k; [21]. The same code is used in the map oy, ,, for all points of the
same degree k;, i.e. the code C; has parameters [n}, j, d;], for a place of degree j.
Let A; be an integer denoting the number of places of degree j and B; be an integer
such that0 < B; < A;.

If ¢ is the maximum degree of any place P; that is chosen in the construction, then
the generalised AG code is represented as a

Cl(k; t; B1, By, ..., B;;d, da, ...,dt).

Let [n, k, d], represent a linear code in I, with length n, dimension k, and minimum
distance d, then a generalised AG code is given by the parameters [21],

k=1G)zm—g+1
r t

n:Zni=ZBjnj
i=1 j=1

r t
d>=>di—g—k+1=> Bjdj—g—k+1.

i=1 j=1

Below are two examples showing the construction of generalised AG codes.
Example 8.8 Let F(x,y,z) = x> + xyz + xz> + y*>z [21] be a polynomial in IF,.
The curve 2" /IF, has genus g = 1 and A; = 4 places of degree 1 and A, = 2 places
of degree 2.

Table 8.4 gives the places of .27 /F, up degree 2. The field Fy. is defined by a
primitive polynomial s> + s + 1 with « as its primitive element. Points

R=(0:a*+d*:1)
as a place of degree 4 and
Q=0:b*+b+b:1)
as a place of degree 5 are also chosen arbitrarily while a and b are primitive elements
of Fy: (defined by the polynomial s* + s3 + 52 + s + 1) and [F»s (defined by the
polynomial s + s% + 1),g respectively. The divisor W is

W=P + -+ Ps.

8.4 Generalised AG Codes 199

Table 8.4 Places of 27/ #

P; deg(P;)
P 0:1:0) 1
P> 0:0:1) 1
P3 1:0:1) 1
Py a:1:1) 1
Ps {(@:1:1),@*: |2
1: 1)}
Pe {la:a+1: 2
D, @2 :a: 1)}

The basis of the Riemann—Roch space .Z(2D) with D = Q — Randm = 2 is
obtained with computer algebra software MAGMA [3] as,

=0T+ + 0/ + Dy
+ @O+ xS+ D/ X+
h= (x8 +x xS+ + 1)/()610+x4 + 1y
+ S+t +x)/a0Hxt D
For the map oy, ,, the codes; ¢; a[l, 1, 1], cyclic code for places of degree 1 and
¢y a[3,2,2], cyclic code places of degree 2 are used. For the map 7, which applies
to places of degree 2, a polynomial basis [y;, y2] = [1, «] is used. Only the first

point in the place P; for deg(P;) = 2 in the evaluation of f; and f, at P; is utilised.
The generator matrix M of the resulting [10, 2, 6], generalised AG code over I, is,

1101011011
M:[0011110101}

Example 8.9 Consider again the polynomial
F(x,y,2)=x"+xyz+x2° +y’z

with coefficients from [F, whose curve (with genus equal to 1) has places up to degree
2 as in Table 8.4. An element f of the Riemann—Roch space defined by the divisor
G = (R — Q) with

Q:(a:a3+a2:1)

and
R=b:b*+b>+b>+b+1:1)

where a and b primitive elements of F,s and F,s (since the curve has no place of
degree 3) respectively, is given by,

200 8 Algebraic Geometry Codes
f=@x+222+ M/ + 32+
+ @+t + 32+t +20)/0 x4+
Evaluating f at all the 5 places P; from the Table 8.4 and using the map mgeg(p,) that
maps all evaluations to [F, results in,
F(P) laeg(p)=1
’) 2
[111]0]1] o 1
——
F(P) ldeg(p)=2
This forms the code [6, 1, 5]4.° In F, this becomes,
[1]1]0]1]10

| 11]
—_ =
1 o?

which forms the code [8,1,5],. Short auxiliary codes [1,1, 1], to encode
F(P) laegp)=1 and [3,2,2], to encode f(P;) |deg(p,)=2 are used. The resulting
codeword of a generalised AG code is,

[1]1]0[1]101]1L10].

This forms the code [10, 1, 7],.

Three polynomials and their associated curves are used to obtain codes in [F ¢ better
than the best-known codes in [15]. The three polynomials are given in Table8.5,
while Table 8.6 gives a summary of the properties of their associated curves (with
t = 4). w is the primitive element of Fi. The number of places of degree j, A;, is
determined by computer algebra system MAGMA [3]. The best-known linear codes
from [15] over Fyg with j =d; for1 < j < 4 are

[1,1,1]16 [3,2,2h6 [5.3,3l16 [7,4,4]16
which correspond to Cy, C,, C3 and Cy, respectively. Since ¢ = 4 for all the codes
in this paper and
[di,dr, d5,ds] = [1,2,3,4]
The representation C(k; t; By, B, ..., B;;dy, da, . .., d,) is shortened as such,

Cl(k’t’ BlyBZa -*"Bl;dlvd2v "‘7dl‘) = Cl(ka B17B29'°" Bt)

Tables 8.7 to 8.9 show improved codes from generalised AG codes with better
minimum distance than codes in [15]. It is also worth noting that codes of the form

%From Bezout’s dypjy =n —m =n —k —g+ 1.

8.4 Generalised AG Codes 201

Table 8.5 Polynomials in Fi¢

Fi =x>+y*z +yz*

Fy = x'0 4 x4yl 4 x* 4 xy’® 4wty 4wt

Fy = x28 4 wx20 4 18 1 qpl0, 17 4 10,05 1 a4 0 3003 3012 o T1 (10 ¢
we® 4 w28 £ pl? fp3x6y2 1956y 4 bx6 4 p2xSy2 B35y 4opldyS
w4ty 4 wTxdy? 4owbxty 4 wdxt 4+ wdxdyd 4 wlledy 4 wtd 4 wlle2yd £apllx2y? 4+

wx?y + wix? + wdry* + wxy? + woxy + w!lyd + y* + wy? + wly

Table 8.6 Properties of 2;/Fi¢

Curve Genus Al Ap A3z Ay Reference
21 6 65 0 1600 15600

K2 40 225 0 904 16920 [5]

23 13 97 16 1376 15840 [6] via [9]

Table 8.7 New codes from 27 /F¢
Codes k Range Description #
[70,k,d > 63 —kl1e |10 <k <50 Ci(k; [65,0, 1,0]) 41

Table 8.8 New codes from 23 /Fi¢

Code k Range Description #

[232, k, 190 — k] 102 > k > 129 Ci(k; [225,0,0,1]) 28
[230, k, 189 — k] 100 > k > 129 Ci(k; [225,0,1,0]) 30
[235, k, 192 — k] 105 > k > 121 Cy(k; [225,0,2,0]) 17

Ci(k; N,0,0,0) are simply Goppa codes (defined with only rational points). The
symbol # in the Tables 8.7 to 8.9 denotes the number of new codes from each gen-
eralised AG code C;(k; By, By, ..., B;). The tables in [7] contain curves known to
have the most number of rational points for a given genus. The curve 2,/F¢ is
defined by the well-known Hermitian polynomial [5].

Table 8.9 New codes from 23 /F¢

Codes k Range Description #

[102, k, 88 — k] 8 <k <66 C(k;[97,0,1,0D 59
[103, k, 89 — k] 8 <k <68 C(k;[97,2,0,0]) 61
[106, k, 91 — k] k=38 C(k;[97,3,0,0]) 1

202 8 Algebraic Geometry Codes

8.5 Summary

Algebraic geometry codes are codes obtained from curves. First, the motivation for
studying these codes was given. From an asymptotic point of view, some families
of AG codes have superior performance than the previous best known bound on the
performance of linear codes, the Gilbert—Varshamov bound. For codes of moderate
length, AG codes have better minimum distances than their main competitors, non-
binary BCH codes with the same rate defined in the same finite fields. Theorems and
definitions as a precursor to AG codes was given. Key theorems are Bezout’s and
Riemann—Roch. Examples using the well-known Hermitian code in a finite field of
cardinality 4 were then discussed. The concept of place of higher degrees of curves
was presented. This notion was used in the construction of generalised AG codes.

References

—

Blahut, R.E.: Algebraic Codes on Lines, Planes and Curves. Cambridge (2008)
2. Blake, I., Heegard, C., Hoholdt, T., Wei, V.: Algebraic-geometry codes. IEEE Trans. Inf. Theory
44(6), 2596-2618 (1998)
3. Bosma, W., Cannon, J.J., Playoust, C.P.: The Magma algebra system I: The user language 24,
235-266 (1997)
4. Ding, C., Niederreiter, H., Xing, C.: Some new codes from algebraic curves. IEEE Trans. Inf.
Theory 46(7), 2638-2642 (2000)
5. Garcia, A., Quoos, L.: A construction of curves over finite fields. ACTA Arithmetica 98(2),
(2001)
6. van der Geer, G., van der Vlugt, M.: Kummer covers with many points. Finite Fields Appl.
6(4), 327-341 (2000)
7. van der Geer, G., et al.: Manypoints: A Table of Curves with Many Points (2009). http://www.
manypoints.org
8. Grassl, M.: Code Tables: Bounds on the Parameters of Various Types of Codes (2007). http://
www.codetables.de
9. Grassl, M.: Private Communication (2010)
10. Lachaud, G., Tsfasman, M., Justesen, J., Wei, V.W.: Introduction to the special issue on algebraic
geometry codes. IEEE Trans. Inf. Theory 41(6), 1545 (1995)
11. Leung, K.H., Ling, S., Xing, C.: New binary linear codes from algebraic curves. IEEE Trans.
Inf. Theory 48(1), 285-287 (2002)
12. Massimo, G.: Notes on Algebraic-geometric Codes. Lecture Notes (2003). http://www.math.
kth.se/math/forskningsrapporter/Giulietti.pdf
13. Niederreiter, H., Xing, C., Lam, K.Y.: A new construction of algebraic-geometry codes. Appl.
Algebra Eng. Commun. Comput. 9(5), (1999)
14. Ozbudak, F., Stichtenoth, H.: Constructing codes from algebraic curves. IEEE Trans. Inf.
Theory 45(7) (1999)
15. Schimd, W., Shurer, R.: Mint: A Database for Optimal Net Parameters (2004). http://mint.sbg.
ac.at
16. Tsfasman, M., Vladut, S., Zink, T.: On Goppa codes which are better than the Varshamov-
Gilbert bound. Math. Nacr. 109, 21-28 (1982)
17. Van-Lint, J.: Algebraic geometry codes. In: Ray-Chaudhari, D. (ed.) Coding theory and design
theory: Part I: Coding Theory, p. 137. Springer, New York (1990)
18. Walker, J.L.: Codes and Curves. American Mathematical Society, Rhode Island (2000)

http://www.manypoints.org
http://www.manypoints.org
http://www.codetables.de
http://www.codetables.de
http://www.math.kth.se/math/forskningsrapporter/Giulietti.pdf
http://www.math.kth.se/math/forskningsrapporter/Giulietti.pdf
http://mint.sbg.ac.at
http://mint.sbg.ac.at

References 203

19. Xing, C., Ling, S.: A class of linear codes with good parameters from algebraic curves. IEEE
Trans. Inf. Theory 46(4), 1527-1532 (2000)

20. Xing, C., Niederreiter, H., Lam, K.: A generalization of algebraic-geometry codes. IEEE Trans.
Inf. Theory 45(7), 2498-2501 (1999a)

21. Xing, C., Niederreiter, H., Lam, K.Y.: Constructions of algebraic-geometry codes. IEEE Trans.
Inf. Theory 45(4), 1186-1193 (1999b)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 9
Algebraic Quasi Cyclic Codes

9.1 Introduction

Binary self-dual codes have an interesting structure and some are known to have
the best possible minimum Hamming distance of any known codes. Closely related
to the self-dual codes are the double-circulant codes. Many good binary self-dual
codes can be constructed in double-circulant form. Double-circulant codes as a class
of codes have been the subject of a great deal of attention, probably because they
include codes, or the equivalent codes, of some of the most powerful and efficient
codes known to date. An interesting family of binary, double-circulant codes, which
includes self-dual and formally self-dual codes, is the family of codes based on
primes. A classic paper for this family was published by Karlin [9] in which double-
circulant codes based on primes congruent to =1 and +3 modulo 8 were considered.
Self-dual codes are an important category of codes because there are bounds on their
minimal distance [?]. The possibilities for their weight spectrum are constrained,
and known ahead of the discovery, and analysis of the codes themselves. This has
created a great deal of excitement among researchers in the rush to be the first in
finding some of these codes. A paper summarising the state of knowledge of these
codes was given by Dougherty et al. [1]. Advances in high-speed digital processors
now make it feasible to implement near maximum likelihood, soft decision decoders
for these codes and thus, make it possible to approach the predictions for frame
error rate (FER) performance for the additive white Gaussian noise channel made
by Claude Shannon back in 1959 [16].

This chapter considers the binary double-circulant codes based on primes, espe-
cially in analysis of their Hamming weight distributions. Section9.2 introduces the
notation used to describe double-circulant codes and gives a review of double-
circulant codes based on primes congruent to =1 and £3 modulo 8. Section9.4
describes the construction of double-circulant codes for these primes and Sect.9.5
presents an improved algorithm to compute the minimum Hamming distance and also

© The Author(s) 2017 205
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_9

206 9 Algebraic Quasi Cyclic Codes

the number of codewords of a given Hamming weight for certain double-circulant
codes. The algorithm presented in this section requires the enumeration of less code-
words than that of the commonly used technique [4, 18] e.g. Sect.9.6 considers
the Hamming weight distribution of the double-circulant codes based on primes.
A method to provide an independent verification to the number of codewords of
a given Hamming weight in these double-circulant codes is also discussed in this
section. In the last section of this chapter, Sect.9.7, a probabilistic method—based
on its automorphism group, to determine the minimum Hamming distance of these
double-circulant codes is described.

Note that, as we consider Hamming space only in this chapter, we shall omit the
word “Hamming” when we refer to Hamming weight and distance.

9.2 Background and Notation

A code ¥ is called self-dual if,
€ =€+

where €'+ is the dual of & There are two types of self-dual code: doubly even or
Type-II for which the weight of every codeword is divisible by 4; singly even or
Type-I for which the weight of every codeword is divisible by 2. Furthermore, the
code length of a Type-II code is divisible by 8. On the other hand, formally self-dual
(FSD) codes are codes that have

€ + 6,

but satisfy A¢(z) = A¢1(z), where A(%) denotes the weight distribution of the
code €. A self-dual, or FSD, code is called extremal if its minimum distance is the
highest possible given its parameters. The bound of the minimum distance of the
extremal codes is [15]

d§4L;—4J+4+a, ©.1)

where

—2 if ¢ is Type-1 withn = 2,4, or 6,
=12, if € isType-lwithn =22 (mod 24), or 9.2)
0, if % is Type-1 or Type-II with n # 22 (mod 24).

for an extremal FSD code with length n and minimum distance d. For an FSD code,
the minimum distance of the extremal case is upper bounded by [4]

d<?2 {%J +2. 9.3)

9.2 Background and Notation 207

As a consequence of this upper bound, extremal FSD codes are known to only
exist for lengths n < 30 and n # 16 and n # 26 [7]. Databases of best-known, not
necessary extremal, self-dual codes are given in [3, 15]. A table of binary self-dual
double-circulant codes is also provided in [15].

As a class, double-circulant codes are (n, k) linear codes, where k = n/2, whose
generator matrix G consists of two circulant matrices.

Definition 9.1 (Circulant Matrix) A circulant matrix is a square matrix in which
each row is a cyclic shift of the adjacent row. In addition, each column is also a
cyclic shift of the adjacent column and the number of non-zeros per column is equal
to those per row.

A circulant matrix is completely characterised by a polynomial formed by its first
row

m—1

r(x) = Zrixi,

i=0

which is called the defining polynomial.

Note that the algebra of polynomials modulo x™ — 1 is isomorphic to that of
circulants [13]. Let the polynomial r(x) have a maximum degree of m, and the
corresponding circulant matrix R is an m x m square matrix of the form

r(x) (mod x™ —1)
xr(x) (mod x™ —1)

xir(x) (II;Od x"—=1) ©-4)

_xm_lr(x) (mod x™ —1) |

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial.

9.2.1 Description of Double-Circulant Codes

A double-circulant binary code is an (n, %) code in which the generator matrix
is defined by two circulant matrices, each matrix being 5 by 3 bits. Circulant
consists of cyclically shifted rows, modulo 7, of a generator polynomial. These
generator polynomials are defined as r;(x) and r(x). Each codeword consists
of two parts: the information data, defined as u(x), convolved with r;(x) mod-
ulo (1 4 x?) adjoined with u(x) and convolved with r,(x) modulo (1 4+ x?). The

code is the same as a non-systematic, tail-biting convolutional code of rate one

208 9 Algebraic Quasi Cyclic Codes

half. Each codeword is [u(x)r;(x), u(x)ry(x)]. If r{(x) [or r,(x)] has no common
factors of (1 + x?2), then the respective circulant matrix is non-singular and may
be inverted. The inverted circulant matrix becomes an identity matrix, and each
codeword is defined by u(x), u(x)r(x), where r(x) = ”(") modulo (1 4+ x2), [or

r(x) = rz (x) modulo (1 + x%), respectively]. The code is now the same as a system-
atic, ta11 bltmg convolutional code of rate one half.

For double-circulant codes where one circulant matrix is non-singular and may be
inverted, the codes can be put into two classes, namely pure, and bordered double-
circulant codes, whose generator matrices G, and G, are shown in (9.5a)

G,=| Ik R (9.52)

and (9.5b),

G, (9.5b)

I, | R

respectively. Here, I is a k-dimensional identity matrix, and o € {0, 1}.

Definition 9.2 (Quadratic Residues) Let be a generator of the finite field F,, where
p be an odd prime, r = «® (mod p) is called a quadratic residue modulo p and so is
r' € F, for some integer i. Because the element « has (multiplicative) order p — 1
over]F , 7 = o has order —(p — 1). A set of quadratic residues modulo p, Q and
non—quadratlc residues modulo p, N, are defined as

Q={r,rz,...,r",....,rT,r2 =1} (9.62)
= {az,ot4, ool = 1}
and
{n:VneF, n# Qandn # 0}
={nr,nrz,...,nri,...,nrpT_},n} (9.6b)
= (" 0<i <27
respectively.

As such RU Q U {0} =TF,. It can be seen from the definition of Q and N that, if
re Q,r=af for even e¢; and if n € N, n = «® for odd e. Hence, if n € N and

9.2 Background and Notation 209

reQ,rn=a¥a?t! = ¥+ D+ ¢ N Similarly, rr = o¥a* = «**) € Q and
nn = a21+1a2j+1 — Ol2(t+/+l) c Q

Furthermore,

e2c Qif p==£1 (mod 8),and2 € N if p = £3 (mod 8)
e —1leQifp=1 (mod 8)orp=—-3 (mod 8),and—1 € Nif p=—1 (mod)
and p =3 (mod 8)

9.3 Good Double-Circulant Codes

9.3.1 Circulants Based Upon Prime Numbers Congruent
to 23 Modulo 8

An important category is circulants whose length is equal to a prime number, p, which
is congruent to =3 modulo 8. For many of these prime numbers, there is only a single
cyclotomic coset, apart from zero. In these cases, 1 4+ x” factorises into the product
of two irreducible polynomials, (1 4+ x)(1 4+ x 4+ x? 4+ x3 4 - - 4+ x?~1). Apart from
the polynomial, (1 + x + x>+ x3+ .-+ xP7), all of the other 27 — 2 non-zero
polynomials of degree less than p are in one of two sets: The set of 27! even weight,
polynomials with 1 + x as a factor, denoted as Sg¢, and the set of 27=1 odd weight
polynomials which are relatively prime to 1 + x”, denoted as S;. The multiplicative
order of each set is 2°~! — 1, and each forms a ring of polynomials modulo 1 + x?.
Any non-zero polynomial apart from (1 + x + x> + x> + ... + x?7!) is equal to
a(x)" for some integer i if the polynomial is in S¢ or is equal to a(x)’ for some
integer i if in S;. An example for p = 11 is given in Appendix “Circulant Analysis
p = 117, In this table, a(x) = 1 + x + x> + x* and a(x) = 1 + x + x>. For these
primes, as the circulant length is equal to p, the generator polynomial r(x) can
either contain 1 4 x as a factor, or not contain 1 + x as a factor, or be equal to
(1 4+ x + x>+ x>+ -+ xP~1). For the last case, this is not a good choice for r(x)
as the minimum codeword weight is 2, which occurs when u(x) = 1 + x. In this case,
r(x)u(x) =1+ x? = 0 modulo 1 4+ x” and the codeword is [1 + x, 0], a weight of
2.

When r(x) is in the ring S¢, u(x)r (x) must also be in S¢ and therefore, be of even
weight, except when u(x) = (1 +x + x> +x3 4+ --- +xP71).

In this case u(x)r(x) = 0 modulo 1 4+ x” and the codeword is [1 4+ x 4+ x? +
x* + ... 4+ xP~1 0]of weight p. When u (x) has even weight, the resulting codewords
are doubly even. When u(x) has odd weight, the resulting codewords consist of two
parts, one with odd weight and the other with even weight. The net result is the
codewords that always have odd weight. Thus, there are both even and odd weight
codewords when u(x) is from Sg.

When r(x) is in the ring Sy, u(x)r(x) is always non-zero and is in Sy (even
weight) only when u(x) has even weight, and the resulting codewords are dou-
bly even. When u(x) has odd weight, u(x) = a(x)’ and u(x)r (x) = a(x)/a(x)’ =

210 9 Algebraic Quasi Cyclic Codes

a(x)™*/ and hence is in the ring S¢ and has odd weight. The resulting codewords
have even weight since they consist of two parts, each with odd weight. Thus,
when r(x) is from S, all of the codewords have even weight. Furthermore, since

r(x) = a(x)’ r(x)a(x)?’ "7 = a(x)®"""~! = 1 and hence, the inverse of r(x),

_ 20D _1— —i

g(X) a(x) .- .
By constructing a table (or sampled table) of S;, it is very straightforward to

design non-singular double-circulant codes. The minimum codeword weight of the
code d,,;, cannot exceed the weight of r(x) + 1. Hence, the weight of a(x)’ needs to
be atleastd,,;, — 1 to be considered as a candidate for r (x). The weight of the inverse
of r(x), a(x)*"" =1~ also needs to be at least d,,;, — 1. For odd weight u(x) = a(x)/
andu(x)r(x) = a(x)/a(x)’ = a(x)Y+). Hence, the weight of u (x)r (x) can be found
simply by looking up the weight of a(x)'*/ from the table. Self-dual codes are those

with — r(x) = r(x~!). With a single cyclotomic coset 24 = —1, and it follows that
a()c)2 =a(x~ 1) With r(x) = a(x), r(x™") = a(x)*> * 1.
In order that ﬁ = r(x71), it is necessary that
. M
a()? T —) T 9.7)

Equating the exponents, modulo 2(P~D — 1, gives

(p=D

27 i =mQPY - 1) -, 9.8)

where m is an integer. Solving for i:

(p—1) _
i = M 9.9)

(/7 D

@7 +D

Hence, the number of distinct self-dual codes is equal to (2(')7_1> + 1).
For the example, p = 13 as above,

) 2(p D1 4095
i= =0 =m = 63m

22 +1 65

and there are 27" + 1 = 65 self-dual codes for 1 < j < 65 and these are a(x)%,
a(x)126, a(x)189’ o a(x)4095.

As p is congruent to %3, the set (u(x)rx))? maps to (ux)r(x))fort =1 —r,
where r is the size of the cyclotomic cosets of 27" + 1. In the case of p=13
above, there are 4 cyclotomic cosets of 65, three of length 10 and one of length 2.
This implies that there on 4 non-equivalent self-dual codes.

For p congruent to —3 modulo 8, (2@ + 1) is not divisible by 3. This means that
the pure double-circulant quadratic residue code is not self-dual. Since the quadratic

9.3 Good Double-Circulant Codes 211

residue code has multiplicative order 3, this means that for p congruent to —3 modulo
8, the quadratic residue, pure double-circulant code is self-orthogonal, and r(x) =
rxh.

For p congruent to 3, (2@ + 1) is divisible by 3 and the pure double-circulant

quadratic residue code is self-dual. In this case, a(x) has multiplicative order of
(p—1_
2(=D 1, and a(x) “—=—" must have exponents equal to the quadratic residues
(p—1) _
(or non-residues). The inverse polynomial is a(x) 5" with exponents equal

to the non-residues (or residues, respectively), and defines a self-dual circulant
code. As an example, for p = 11 as listed in Appendix “Circulant Analysis p =
117, 2=D — 1 = 1023 and a(x)**' = x 4+ x> + x* + x> + x°, the quadratic non-
residuesof 11 are 1,4, 5,9 and 3. a(x)682 =x2 4+ x0 4+ x7 4+ x84 x10 corresponding
to the quadratic residues: 2, 8, 10, 7 and 6 as can be seen from Appendix “Circulant
Analysis p = 11”. Section 9.4.3 discusses in more detail pure double-circulant codes
for these primes.

9.3.2 Circulants Based Upon Prime Numbers Congruent
to £1 Modulo 8: Cyclic Codes

MacWilliams and Sloane [13] discuss the Automorphism group of the extended
cyclic quadratic residue (eQR) codes and show that this includes the projective special
linear group P SL,(p). They describe a procedure in which a double-circulant code
may be constructed from a codeword of the eQR code. It is fairly straightforward. The
projective special linear group PSL,(p) for a prime p is defined by the permutation

y — ?}yiz mod p, where the integers a, b, ¢, d are such that two cyclic groups of

order ”T“ are obtained. A codeword of the (p + 1, ”TH) eQR code is obtained and
the non-zero coordinates of the codeword placed in each cyclic group. This splits the
codeword into two cyclic parts each of which defines a circulant polynomial.

The procedure is best illustrated with an example. Let o € IF,» be a primitive
(p* — Y root of unity; then, B = &*’~? is a primitive %(p +)™ root of unity
since p>—1= %(Zp —2)(p—1). Let A=1/(1+ B) and a = 1> — A; then, the
permutation 7r; on a coordinate y is defined as

y+1
Ty > mod p
ay
where 7y € PSL,(p) (see Sect.9.4.3 for the definition of PSL,(p)). As an example,
consider the prime p = 23. The permutation r; : y — % mod p produces the two

cyclic groups
(1,5,3,11,9, 13,8, 10, 20, 17, 4, 6)

and
(2,21,7,16,12,19, 22,0, 23, 14, 15, 18).

212 9 Algebraic Quasi Cyclic Codes
There are 3 cyclotomic cosets for p = 23 as follows:

Co = {0}
C,=1{1,2,4,8,16,9,18, 13,3, 6, 12}
Cs = {5, 10,20, 17, 11,22, 21, 19, 15, 7, 14}.

The idempotent given by C| may be used to define a generator polynomial, r(x),
which defines the (23, 12, 7) cyclic quadratic residue code:

r(x)=x R A A L R R R e R S L L (9.10)

Codewords of the (23, 12, 7) cyclic code are given by u(x)r(x) modulo 1 4+ x?* and
with u(x) = 1 the non-zero coordinates of the codeword obtained are

1,2,4,8,16,9,18,13,3,6, 12)

the cyclotomic coset C.

The extended code has an additional parity check using coordinate 23 to produce
the corresponding codeword of the extended (24, 12, 8) code with the non-zero
coordinates:

(1,2,4,8,16,9, 18, 13, 3, 6, 12, 23).

Mapping these coordinates to the cyclic groups with 1in the position, where each
coordinate is in the respective cyclic group and 0 otherwise, produces

1,0,1,0,1,1,1,0,0,0, 1, 1)

and
(1,0,0,1,1,0,0,0,1,0,0, 1)

which define the two circulant polynomials, r|(x) and r,(x), for the (24, 12, 8) pure
double-circulant code

rix) = T+ x>+ x4+ 00+ 20+ 2104 x!!
) =14+ x> +x* +x8 +x!. 9.11)

The inverse of r; (x) modulo (1 + x'?) is v (x), where
Y(x) = T+ x+x2 4+ x4 x7 x84+ x1°

and this may be used to produce an equivalent (24, 12, 8) pure double-circulant code
which has the identity matrix as the first circulant

9.3 Good Double-Circulant Codes

Table 9.1

Double-circulant codes mostly based upon quadratic residues of prime numbers

213

Prime (p) p mod8 Circulant codes Circulant codes Circulant codes dmin
2p. p) Cp+2p+D (p+1 2
7 -1 8,4,4) 4
17 1 (18,9, 6) 6
11 3 222,11, 7) B(x) (24,12, 8) 8
23 —1 2(24,12,8) 8
13 -3 (26, 13,7) b(x) 7
31 -1 (32,16, 8) 8
19 3 (38,19, 8) b(x) 8
41 1 (82,41, 14) (42,21, 10) 10
47 -1 2(48, 24, 12) 12
29 -3 (58,29, 11) B(x) (60, 30, 12) 12
71 -1 (72, 36, 12) 12
5(72, 36, 14) 14
73 1 (74,37, 14) 14
37 -3 (74,37, 12) b(x) 12
79 -1 (80, 40, 16) 16
43 3 (86, 43, 16) B(x) (88, 44, 16) 16
97 1 (98, 49, 16) 16
103 -1 2(104, 52, 20) 20
53 -3 (106, 53, 19) B(x) (108, 54, 20) 20
113 1 (114, 57, 16) 16
59 3 (118,59, 19) B(x) (120, 60, 20) 20
61 -3 (122, 61, 19) B(x) (124, 62, 20) 20
127 -1 (128, 64, 20) 20
67 3 2(134, 67, 23) B(x) (136, 68, 24) 24
137 1 (138, 69, 22) 22
151 —1 (152,76, 20) 20
83 3 (166, 83, 23) B(x) (168, 84, 24) 24
191 -1 (192, 96, 28) 28
193 1 (194, 97, 28) 28
199 -1 2(200, 100, 32) 32
101 -3 (202, 101, 23) B(x) (204, 102, 24) 24
107 3 (214, 107, 23) B(x) (216, 108, 24) 24
109 -3 (218, 109, 30) b(x) 30
223 -1 (224,112, 32) 32
233 1 (234,117, 26) 26
239 -1 (240, 120, 32) 32
241 1 (242,121, 32?) 32?
131 3 2(262, 131, 38?) b(x) 387

2Codes with outstanding d,;p,
bCodes not based on quadratic residues
The best (2p, p) circulant polynomial either contains the factor 1 4 x: B(x) or is relatively prime

to 1+ x": b(x)

B(x) circulants can be bordered to produce (2p + 2, p + 1) circulants

214 9 Algebraic Quasi Cyclic Codes

PO =0+ x4+ x + 0+ 20+ x4+ x"y(x) modulo (1 + x'?)
Prx) = (1 +x° +x* + x¥ + x"Hy(x) modulo (1 4 x'?).

After evaluating terms, the two circulant polynomials are found to be

) =1
Fx)=14+x+x2+x*+x° +x° +x!, (9.12)

and it can be seen that the first circulant will produce the identity matrix of dimension
12. Jenson [8] lists the circulant codes for primes p < 200 that can be constructed
in this way. There are two cases, p = 89 and p = 167, where a systematic double-
circulant construction is not possible. A non-systematic double-circulant code is
possible for all cases but the existence of a systematic code depends upon one of the
circulant matrices being non-singular. Apart from p = 89and p = 167 (for p < 200)
a systematic circulant code can always be constructed in each case.

Table 9.1 lists the best circulant codes as a function of length. Most of these codes
are well known and have been previously published but not necessarily as circulant
codes. Moreover, the d,,;, of some of the longer codes have only been bounded and
have not been explicitly stated in the literature. Nearly, all of the best codes are codes

Table 9.2 Generator polynomials for pure double-circulant codes

Code Circulant generator polynomial exponents
(8,4,4) 0,1,2

(24,12, 8) 0,1,3,4,5,6,8

(48,24, 12) 0,1,2,3,4,5,6,8,10, 11, 13, 14, 16, 17, 18
(80, 40, 16) 0,1,5,7,9, 10, 11, 14, 15, 19, 23, 25, 27, 30, 38

(104, 52, 20) 0,2,5,7,10, 13, 14, 17, 18, 22, 23, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 44,
45, 46,47, 48,49

(122, 61, 20) 0,1,3,4,5,9,12,13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46,
47, 48, 49, 52, 56, 57, 58, 60

(134,67, 23) 0,1,4,6,9,10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37,
39,40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65

(156,78, 22) 0,2,3,4,8,9,11, 12, 14, 16, 17, 18, 20, 22, 24, 26, 27, 29, 33, 38, 39, 41, 42,
43, 44, 45, 46, 48, 49, 50, 52, 55, 56, 60, 64, 66, 68, 71,72, 73,74, 75,77

(166, 83, 24) 1,3,4,7,9, 10, 11, 12, 16, 17, 21, 23, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37,
38,40, 41, 44, 48,49, 51, 59, 61, 63, 64, 65, 68, 69, 70, 75, 77, 78, 81

(180, 90, 26) 0,3,5,6,7,8,9,11, 12,13, 14, 17, 18, 19, 21, 22, 23, 28, 36, 37, 41, 45, 50,
51,53, 55,58, 59, 60, 61, 62, 63, 67, 68, 69, 72, 75, 76, 78, 81, 82, 83, 84, 85,
88

(200, 100, 32) 0,1,2,5,6,8,9,10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37, 38,
39,42, 44, 45,50, 51, 52, 53, 57, 58, 59, 64, 66, 67, 70, 73, 75, 76, 77, 80, 82,
85, 86, 89, 92, 93,97, 98

9.3 Good Double-Circulant Codes 215

based upon the two types of quadratic residue circulant codes. For codes based upon
p = £3 mod 8, itis an open question whether a better circulant code exists than that
given by the quadratic residues. For p = =1 mod 8, there are counter examples.
For example, the (72, 36, 14) code in Table 9.1 is better than the (72, 36, 12) circulant
code which is based upon the extended cyclic quadratic residue code of length 71.
The circulant generator polynomial g(x) for all of the codes of Table9.1 is given in
Table9.2.

In Table 9.1, where the best (2p, p) code is given as b(x), the 2p +2,p+ 1)
circulant code can still be constructed from S(x) but this code has the same d,,;,,
as the pure, double-circulant, shorter code. For example, for the prime 109, b(x)
produces a double-circulant (218, 109, 30) code. The polynomial B(x) produces
a double-circulant (218, 109, 29) code, which bordered becomes a (220, 110, 30)
code. It should be noted that 8(x) need not have the overall parity bit border added.
In this case, a (2p + 1, p + 1) code is produced but with the same d,,;,, as the 8(x)
code. In the latter example, a (219, 110, 29) code is produced.

9.4 Code Construction

Two binary linear codes, <7 and A, are equivalent if there exists a permutation 7 on
the coordinates of the codewords which maps the codewords of .7 onto codewords of
. We shall write this as Z = 7 (7). If 7 transforms % into itself, then we say that
7 fixes the code, and the set of all permutations of this kind forms the automorphism
group of €, denoted as Aut(%). MacWilliams and Sloane [13] gives some necessary
but not sufficient conditions on the equivalence of double-circulant codes, which are
restated for convenience in the lemma below.

Lemma 9.1 (cf.[13, Problem 7, Chap. 16]) Let <7 and 2 be double-circulant codes
with generator matrices [I|A] and [1|B], respectively. Let the polynomials a(x)
and b(x) be the defining polynomials of A and B. The codes <7 and P are equivalent
if any of the following conditions holds:

(i) B= A", or
(ii) b(x) is the reciprocal of a(x), or
(iii) a(x)b(x) =1 (mod x™ — 1), or
(iv) b(x) = a(x"), where m and u are relatively prime.

Proof

(i) We can clearly see that b(x) = Z;":—Ol a;x™ . It follows that b(x) = 7 (a(x)),
where 7w : i — m — i (mod m) and hence, < and £ are equivalent.

(i) Given a polynomial a(x), its reciprocal polynomial can be written as a(x) =
Z;":_Ol a;x™ =1 Tt follows that a(x) = w(a(x)), where w :i - m —i — 1
(mod m).

216 9 Algebraic Quasi Cyclic Codes

(iii) Consider the code .7, since b(x) has degree less than m, it can be one of the
possible data patterns and in this case, the codeword of .&7 has the form |b(x)|1].
Clearly, this is a permuted codeword of %.

(iv) If (u,m) = 1,thenm : i — iu (mod m) is a permutationon {0, 1, ..., m — 1}.
So b(x) = a(x") is in the code 7 (7).

Consider an (n, k, d) pure double-circulant code, we can see that for a given user
message, represented by a polynomial u(x) of degree at most k — 1, a codeword of
the double-circulant code has the form (u(x)|u(x)r (x) (mod x™ — 1)). The defining
polynomial r (x) characterises the resulting double-circulant code. Before the choice
of r(x) is discussed, consider the following lemmas and corollary.

Lemma 9.2 Let a(x) be a polynomial over ¥, of degree at most m — 1, i.e.
a(x) = er'n:_ol a;x' where a; € {0, 1}. The weight of the polynomial (1 + x)a(x)
(mod x™ — 1), denoted by wty ((1 + x)a(x)) is even.

Proof Let w = wtg(a(x)) = wtyg(xa(x)) and S ={i : dit1modm =@ #0, 0 <
i<m-—1}

wty (1 + x)a(x)) = wty (a(x)) + wty (xa(x)) — 2|S|
=2(w —|S]),

which is even.

Lemma 9.3 An m x m circulant matrix R with defining polynomial r(x) is non-
singular if and only if r (x) is relatively prime to x™ — 1.

Proof If r(x) is not relatively prime to x™ — 1, i.e. GCD (r(x), x™ — 1) = t(x) for
some polynomial 7(x) # 1, then from the extended Euclidean algorithm, it follows
that, for some unique polynomials a(x) and b(x), r(x)a(x) + (x™ —)b(x) =0,
and therefore R is singular.

If r(x) is relatively prime to x™ — 1, i.e. GCD (r(x), x™ — 1) = 1, then from
the extended Euclidean algorithm, it follows that, for some unique polynomials
a(x) and b(x), r(x)a(x) + (x™ — 1)b(x) = 1, which is equivalent to r (x)a(x) = 1
(mod x™ — 1). Hence R is non-singular, being invertible with a matrix inverse whose
defining polynomial is a(x).

Corollary 9.1 From Lemma 9.3,

(i) if R is non-singular, R™" is an m x m circulant matrix with defining polynomial
r(x)~!, and
(ii) the weight of r(x) or r(x)~' is odd.

Proof The proof for the first case is obvious from the proof of Lemma 9.3. For the
second case, if the weight of (x) is even then r (x) is divisible by 1 + x. Since 1 + x
is a factor of x™ — 1 then r(x) is not relatively prime to x™ — 1 and the weight of
r(x) is necessarily odd. The inverse of r(x)~! is (x) and for this to exist r(x)~!
must be relatively prime to x” — 1 and the weight of r(x)~! is necessarily odd.

9.4 Code Construction 217

Lemma 9.4 Let p be an odd prime, and then

(i) p|2°~' =1, and
(ii) the integer q for pg = 2P~1 — 1 is odd.

Proof From Fermat’s little theorem, we know that for any integer a and a prime

p,aP~! =1 (mod p). This is equivalent to a?~! — 1 = pq for some integer ¢. Let
a = 2, we have

which is clearly odd since neither denominator nor numerator contains 2 as a factor.

Lemma 9.5 Let p be a prime and j(x) = Z{:OI x'; then
(140 """ =1+ jx) mod (x? — 1).

Proof We can write (1 +x)2 ! as

I R (E L G b

14+x T l4x
2r-1-1

= E x'.
i=0

1+

From Lemma 9.4, we know that the integer ¢ = (2”~! — 1)/p and is odd. We can
then write ZZH !

i—o Xx'interms of j(x) as follows:

2r-1-1
> xi= 1+x(1+x+~~~+x"’*‘)+xk”+l (1+x+~~~+x1’*‘)+...+
i=0

J(x) Jx)

L@=Ip+l (1 . +xp—l) 4 x@Dp+1 (1 x4 +x”‘1) +

Jx) J(x)
x@=Drl (1 +x+- 4+ xp")

J(x)
=14+ x@ A +xP) + 2P A+ xP) + ...+ x99I A +xP) +

J(x)

x(qfl)lfﬂj(x)

218 9 Algebraic Quasi Cyclic Codes

Since (1 + x”) (mod x” — 1) = 0 for a binary polynomial, J(x) = 0 and we have

2011
D xt=14xx9"j(x) (mod x? —1).
i=0

Because x’? (mod x” — 1) =1,

2011
> x'=1+xj(x) (modx"—1)

i=0
=14+ j(x) (mod x” —1).

For the rest of this chapter, we consider the bordered case only and for convenience,
unless otherwise stated, we shall assume that the term double-circulant code refers to
(9.5b). Furthermore, we call the double-circulant codes based on primes congruent
to =1 modulo 8, the [p + 1, %(p + 1), d] extended quadratic residue (QR) codes
since these exist only for p = 1 (mod 8).

Following Gaborone [2], we call those double-circulant codes based on primes
congruent to £3 modulo 8 the [2(p + 1), p + 1, d] quadratic double-circulant
(QDC) codes, i.e. p = £3 (mod 8).

9.4.1 Double-Circulant Codes from Extended Quadratic
Residue Codes

The following is a summary of the extended QR codes as double-circulant codes [8,
9, 13].

Binary QR codes are cyclic codes of length p over IF,. For a given p, there exist
four QR codes:

1. jp, /V;, which are equivalent and have dimension %(p—1),and
2. Z,, ¥, which are equivalent and have dimension %(p+1).

The (p + 1, %(p + 1), d) extended quadratic residue code, denoted by jp (resp.
JV},), is obtained by annexing an overall parity check to .Z), (resp. 4},). If p = —1
(mod 8), jp (resp. Jﬁ,) is Type-II; otherwise it is FSD.

Itis well known that! Aut(.,i%,) contains the projective special linear group denoted

by PSL,(p) [13]. If r is a generator of the cyclic group Q, theno : i — (mod p)
is a member of PSL,(p). Given n € N, the cycles of ¢ can be written as

ISince %) and .4, are equivalent, considering either one is sufficient.

9.4 Code Construction 219

(co)(n, nr,nr?, ..., nrY(, 2, .., P)(0), (9.13)

where t = %(p — 3). Due to this property, G, the generator matrix of .,22,, can be
arranged into circulants as shown in (9.14),

connr ..o tart 1r .. r7 0
o 111 ... 1 1(11... 1 1|1
B 0 1
pr 0 1 (9.14)
G= : L R o
gri-1 0 1
Brt 0 1
where L and R are %(p —1) x %(p — 1) circulant matrices. Therows 8, Br, ..., Br!
in the above generator matrix contain eg(x), eg,(x), ..., g (x), where e;(x) =

x'e(x) whose coordinates are arranged in the order of (9.13). Note that (9.14) can
be transformed to (9.5b) as follows:

1 J LJJ 1] [LJ4+wdD|J+wR" 5(p+1)
OT Lfl X 0T L‘R JT = 07' I%(p—l) ‘ L—IR W(L—I)T
(9.15)

where J is an all-ones vector and w(A) = [wty(Ap) (mod 2), wty(Ay)
(mod 2), ...], A; being the ith row vector of matrix A. The multiplication in (9.15)
assumes that L~ exists and following Corollary 9.1, wty (1" (x)) = wty (I(x)) is
odd. Therefore, (9.15) becomes

J +w(RT) s(p+ 1
1
GZIW” L e16)
L'R :
1

In relation to (9.14), consider extended QR codes for the classes of primes:

1. p = 8m + 1, the idempotent e(x) = ZneN x" and B € N.Following [13, Theo-
rem 24, Chap. 16], we know that eg,: (x) where Bri e N,for0 <i < t, contains
2m 4+ 1 quadratic residues modulo p (including 0) and 2m — 1 non-quadratic
residues modulo p. As a consequence, wty (r(x)) is even, implying w(RT) =0
and r (x) is not invertible (cf. Corollary 9.1); and wty (I(x)) is odd and /(x) may be
invertible over polynomial modulo xzP=D _] (cf. Corollary 9.1). Furthermore,
referring to (9.5b), we have o = %(p +1)=4m+1=1mod 2.

220 9 Algebraic Quasi Cyclic Codes

2. p=28m — 1, the idempotent e(x) =1+ _, x" and B € Q. Following [13,
Theorem 24, Chap. 16], if we have a set S containing 0 and 4m — 1 non-quadratic
residues modulo p, the set 8 + S contains 2m + 1 quadratic residues modulo
p (including 0) and 2m — 1 non-quadratic residues modulo p. It follows that
egyi(x), where ,Bri € Q, for 0 <i <t, contains 2m quadratic residues modulo
p (excluding 0), implying that R is singular (cf. Corollary 9.1); and 2m — 1
non-quadratic residues modulo p, implying L~' may exist (cf. Corollary 9.1).
Furthermore, w(R”) = 0 and referring to (9.5b), we have o = %(p +1)=4m =
0 mod 2.

For many jp, L is invertible and Karlin [9] has shown that p = 73,97, 127, 137,
241 are the known cases where the canonical form (9.5b) cannot be obtained.

Consider the case for p = 73, with 8 =5 € N, we have [(x), the defining poly-
nomial of the left circulant, given by

l(x)=x2+x3+x4+x5+x6+x“+x15+x16+x18+
x20+x21 +x25+x30+x31 +x32+x33+x34.

The polynomial /(x) contains some irreducible factors of x>0 — 1 = x¥ — 1,j.e.
GCD (I(x), x3° — 1) = 1 + x> + x*, and hence, it is not invertible. In addition to
form (9.5b), G can also be transformed to (9.5a), and Jenson [8] has shown that, for
7 < p <199, except for p = 89, 167, the canonical form (9.5a) exists.

9.4.2 Pure Double-Circulant Codes for Primes £3 Modulo 8

Recall that S, is a multiplicative group of order 2”~! — 1 containing all polynomials
of odd weight (excluding the all-ones polynomial) of degree at most p — 1, where p
is a prime. We assume that a(x) is a generator of S;. For p = +3 (mod 8), we have
the following lemma.

Lemma 9.6 Forp = £3 (mod 8), let the polynomials q(x) = ZiEQ xlandn(x) =
Dien x!. Self-dual pure double-circulant codes with r(x) = q(x) or r(x) = n(x)
exist if and only if p = 3 (mod 8).

Proof For self-dual codes the condition ¢(x)7 = n(x) must be satisfied where
g(0)" =q(x™") =3, px . Letr(x) = q(x),forthe case when p = +3 (mod 8),
2 € N we have q(x)2 = ZiEQxZi = n(x). We know that 1 + g(x) + n(x) = j(x),
therefore, ¢(x)* = q(x)’q(x) =n(0)g(x) = (1 +¢(x) + j(N))g(x) = g(x) +
n(x) + j(x) = 1. Then, ggj; =¢gx)? and g(x)2 =n(x) =q(x)"' =gx"). On
the other hand, —1 € N if p =3 (mod 8) and thus ¢(x)" =n(). If p= -3
(mod 8), —1 € Q, we have g(x)T = g(x). For r(x) = n(x), the same arguments
follow.

9.4 Code Construction 221

Let &, denote a (2p, p, d) pure double-circulant code for p = 3 (mod 8). The
properties of &7, can be summarised as follows:

1. For p=3 (mod 8), since ¢(x)*=1 and ¢* '~ =1, we have g(x) =

a(x)@ =D and g(x)T = a(x)@ /3, There are two full-rank generator matri-
ces with mutually disjoint information sets associated with &, for these primes.
Let G, be areduced echelon generator matrix of &7,,, which has the form of (9.5a)
with R = B, where B is a circulant matrix with defining polynomial b(x) = g (x).
The other full-rank generator matrix G, can be obtained as follows:

G,=, B" |xG =| B’ I, | (9.17)

The self-duality of this pure double-circulant code is obvious from G».

2. For p = -3 (mod 8), (p — 1)/2 is even and hence, neither ¢(x) nor n(x) is
invertible, which means that if this polynomial was chosen as the defining poly-
nomial for &7, there exists only one full-rank generator matrix. However, either
1+ g (x) (resp. 1 + n(x))isinvertible and the inverseis 1 + n(x) (resp. 1 + g(x)),
i.e.

(1+qg@)(1+n(x) =1+qx) +nx) +gx)n(x)
=1+q@) +nx) +qg@)(1+ jx) +qx))
=1+ q(x) +nx) +qx) +qx)jEx) +qx)?

and since ¢(x)j(x) = 0 and q(x)2 = n(x) under polynomial modulo x? — 1, it
follows that

14+gx)(A+nx) =1 (modx”—1).
Let G; be the first reduced echelon generator matrix, which has the form of

(9.5a) where R =1, + Q. The other full-rank generator matrix with disjoint
information sets G, can be obtained as follows:

Gy=1,+N |xG =1,+N I, | (9.18)

Since —1 € Q for this prime, (I, + Q)" = I, + Q implying that the 2p, p, d)
pure double-circulant code is FSD, i.e. the generator matrix of QIJ; is given by

G=1,+0 1,

222 9 Algebraic Quasi Cyclic Codes

A bordered double-circulant construction based on these primes—commonly
known as the quadratic double-circulant construction—also exists, see Sect.9.4.3
below.

9.4.3 Quadratic Double-Circulant Codes

Let p be a prime that is congruent to =3 modulo 8. A (2(p + 1), p + 1, d) binary
quadratic double-circulant code, denoted by 2, can be constructed using the defin-
ing polynomial

1 if p=3 ds8 d
by =L HAW Ap=3 mod B, an 9.19)
q(x) if p=-3 (mod 8)
where g(x) = >, x*. Following [13], the generator matrix G of %, is
loC l() ...lp_l I's 1o ...r,,_l
1 0
G=|: I, B (9.20)
1
0[0... 0 |1|L... 1

which is, if the last row of G is rearranged as the first row, the columns indexed by
I and ry, are rearranged as the last and the first columns, respectively, equivalent
to (9.5b) witha =0andk =p+1.Let j(x) =1 4+x + x>+ ---+x7"!, and the
following are some properties of %, [9]:

1. for p =3 (mod 8), b(x)> = (1 +g(x)*>(1 +g(x)) = (1 +nx)(1 + q(x)) =
1+ j(x),sincc—‘:q()c)2 =n(x) (2 € Nforthisprime)andg(x)j(x) = n(x)j(x) =
J () Wty (g(x)) = wty(n(x)) is odd). Also, (b(x) 4+ j(x))* = (1 +q(x)+
JON* (A +q(x) + j(x) =n@x)*(1+qx) + jx) =q@x)+nx)+jx) =1
because n(x)* = g(x). Since —1 € N and we have b(x)" =1+, ,x7 =
1 4 n(x) and thus, b(x)b(x)T = (1 + gx) (1 +n(x)) =1+ j(x).

There are two generator full-rank matrices with disjoint information sets for ,,.
This is because, although b(x) has no inverse, b(x) + j(x) does, and the inverse
is (b(x) + j(x))*

Let G| has the form of (9.5b) where R = B, and the other full-rank generator
matrix G, can be obtained as follows:

9.4 Code Construction 223

1.1 0[1 ... 11/0...0
0 1 0
G2= XGl= . . (921)
. BT :‘ BT 1| 1,
0 1| 0

It is obvious that G, is identical to the generator matrix of %’,{ and hence, it is
self-dual.

2. for p=—3 (mod 8), b(x)* = n(x)g(x) = (1 + j(x) +q(x)g(x) =1+ j(x)
since g(x)> =n(x) (2e€ N for this prime) and ¢(x)j(x) =n(x)j(x) =0
Wty (q(x)) = wty (n(x)) is even). Also, (b(x) + j(x))* = (g(x) + j(x)*(1 +
n(x)) = qx)* +qx)*nx) + j(x)* + j(x)*nx) =nx) + g(x) + j(x) =1
because n(x)? = g(x). Since —1 € Q and we have b(x)" = Dico X =bx)
and it follows that 2, is FSD, i.e. the generator matrix of 93; is given by

Of1...1/1/0...0
Gl — 1 0
1 B | I,
1 0
Since (b(x) + j(x))~' = (b(x) + j(x))?, there exist full-rank two generator

matrices of disjoint information sets for %,. Let G has the form of (9.5b) where
R = B, and the other full-rank generator matrix G, can be obtained as follows:

I1...1 0f1...1/1]0...0
0 1 0
G = . x G =], : (9.22)
| B? BT 1 I,
0 1 0

Codes of the form 2, form an interesting family of double-circulant codes.
In terms of self-dual codes, the family contains the longest extremal Type-II code
known, n = 136. Probably, it is the longest extremal code that exists, see Sect.9.7.
Moreover, #, is the binary image of the extended QR code over [F4 [10].

The (p + 1, %(p + 1), d) double-circulant codes for p = +1 (mod 8) are fixed
by PSL,(p), see Sect.9.4.1. This linear group PSL,(p) is generated by the set of all
permutations to the coordinates (0, 0, 1, ..., p — 1) of the form

ay+b

> 9.23
~ otd (9.23)

where a, b, c,d e F,,ad —bc =1,y € F, U {x}, and it is assumed that :I:% =0
and :i:% = 0 in the arithmetic operations.

224 9 Algebraic Quasi Cyclic Codes

We know from [13] that this form of permutation is generated by the following
transformations:

S:y—>y+1

Viy—aly (9.24)
1

T :y—> ——,
y

where « is a primitive element of IF,. In fact, V is redundant since it can be obtained
from S and T, i.e.

V = TS“TSHT S (9.25)

forr p=a ! €F,.

The linear group PSL,(p) fixes not only the (p + 1, %(p + 1), d) binary double-
circulant codes, for p = £1 (mod 8), but also the 2(p + 1), p + 1,d) binary
quadratic double-circulant codes, as shown as follows. Consider the coordinates
(00,0, 1,..., p—1) of a circulant, the transformation S leaves the coordinate oo
invariant and introduces a cyclic shift to the rest of the coordinates and hence S fixes
acirculant. Let R; and L; denote the ith row of the right and left circulants of (9.20),
respectively (we assume that the index starts with 0), and let J and J' denote the
last row of the right and left circulant of (9.20), respectively.

Consider the primes p = 8m + 3, Ry = (0 | 1+ ZieQxi)_ Let ¢; and f;, for
some integers i and j, be even and odd integers, respectively. If i € O, —1/i =
—1 xaP 'V ja® = aft x a®~® e N since —1 € N for these primes. Therefore, the
transformation 7 interchanges residues to non-residues and vice versa. In addition,
we also know that T interchanges coordinates co and 0. Applying transformation 7
to Ry, T (Ry), results in

T(R)= (11D x| =Ro+J.
JjeN

Similarly, for the first row of L, which has 1 at coordinates co and O only, i.e.
Lo=(11]1

T(Lo)=Lo+ J.
2TSUTSET S (y) = TSTSHT(y + @) = TSUTSH(—y~ o) = TS'T (‘yﬁ +a) =
TSy 1 ! 1 Ota)~! 1 (ap=Dy+atap—1)
aytapu— _ —ay topu— _ —a(y+a) Fopu— _ ap—l)yta(ap—1)—a) __
(yHu) =T (=y T+u) =T (—(+o)T+u) =T (my+ap=T)) -

((7a1171)y_1+a(om71)7a) — (—a

2y —
L ey —27) =Py = V(.

9.4 Code Construction 225

Lets € Qandlettheset O = Q U {0}, R, = (0 | ZieQ x‘*i) andT (zieQ x5+i) =
Dico x~ Y6+ Following MacWilliams and Sloane [13, Theorem 24, Chap. 16], we
know that the exponents of > ._ 0 x*t" contain 2m + 1 residues and
2m + 1 non-residues. Note that s + i produces no 0.* It follows that —1/(s +
i) contains 2m + 1 non-residues and 2m + 1 residues. Now consider R_;;; =
(0 | Zie@ x"’l/s), i—1/s contains* 0 i, s € Q, 2m residues and 2m + 1 non-
residues. We can write —1/(s 4 i) as
1 i/s 1 1

— — =z -

s+i s+ K s

Let I C Q be a set of all residues such that for all i € I, i — 1/s e N. If -1/
(s+i)e N,ze Q and we can see that z must belong to 7 such thatz — 1/s € N.
This means these non-residues cancel each other in T'(R;) + R_;/,. On the other
hand, if —1/(s +i) € Q, z € N and it is obvious that z — 1/s #i — 1/s for all
i€0, implying that all 2m + 1 residues in 7 (R;) are disjoint from all 2m + 1

residues (including 0) in R_, ;. Therefore, T (R;) + R_y/s = (0 | Zieé xi), ie.
T(R;) = R_y/s + Ro.
Similarly, 7(Ls) = (0 | 1 +x~'/%) and L_y/; = (1 | x~'/*), which means

T(Lg) = L_y + Lo.

Lett € N, R, = (O | Zieéfori) and T (Ziegxt“) = ZieQ x~ VD We know
that ¢ + i contains 0, 2m residues and 2m + 1 non-residues [13, Theorem 24, Chap.
16], and correspondingly —1/(¢t 4 i) contains oo, 2m non-residues and 2m + 1
residues. As before, now consider R_;,, = (O | 2ieo xi_l/’). There are 2m + 1
residues (excluding 0) and 2m + 1 non-residues in i — 1/¢, and let I’ C Q be a
set of all residues such that, for all i € I, i — 1/t € Q. As before, we can write
—1/(t +1i) as z — 1/t, where z = (i/t)/(t +i). If —=1/(t+i)e Q, z€ I’ and
hence, the 2m + 1 residues from —1/(¢ 4 i) are identical to those from i — 1/¢.
If —1/(t+1i) € N, z€ N and hence, all of the 2m non-residues of —1/(¢ +1i)
are disjoint from all 2m + 1 non-residues of i — 1/¢. Therefore, T(R;) + R_y;; =

(11 3 yon) i

T(R)=R_ 1 +Ro+ J.

3Consider a prime p = £3 (mod 8), ¢ € Q and an integer a where (a, p) = 1. In order for
q +a =0 to happen, a = —q. The integer a is a residue if p = 8m — 3 and a non-residue if
p=8m+43.

“4This is because all i € Q are considered and 1/s € Q.

226 9 Algebraic Quasi Cyclic Codes
Similarly, 7(L,) = (0| 1 +x~"") and L_y, = (1 | x~"/"), which means
T(Lt) = L—l/t + LO + J/~

For primes p = 8m — 3, Ry = (0| X_;., x') and since —1 € Q, —1/i € Q for
i € Q. Thus,

T(Ro)=(0]> x| = Ry.
ieQ

Similarly, for L, which contains 1 at coordinates 0 and oo,
T (Ly) = Ly.

Consider Ry = (0 | 3. x**),fors € Q,T (3,00 X)) = 2o X V/¢F). There
are 0 (when i = —s € Q), 2m — 2 residues and 2m — 1 non-residues in the set
s +1i [13, Theorem 24, Chap. 16]. Correspondingly, —1/(s + i) = z — 1/s, where
z=(i/s)/(s + i), contains 0o, 2m — 2 residues and 2m — 1 non-residues. Now con-
sider R_1/s = (0] X;cpx'~'/%), the set i — 1/s contains O (when i = 1/s € Q),
2m — 2 residues and 2m — 1 non-residues. Let I C Q be a set of all residues such
that foralli e I,i —1/s € Q. If —1/(s +i) € Q then z — 1/s € Q which means
z € Q and z must belong to /. This means all 2m — 2 residues of —1/(s 4+ i) and
those of i — 1/s are identical. On the contrary, if —1/(s +i) € N, z € N and this
means 7 — 1/s #i — 1/s foralli € Q, and therefore all non-residues in —1/(s + i)
and i — 1/s are mutually disjoint. Thus, T(R,) + R_;/; = (1 [T+ cn xi), ie.

T(R;)=R_ys+Ro+J.
Similarly, T (L) = (0 | 14 x’l/S), and we can write
T(Ly)=L_y;+Lo+J.

Fort € N,wehave R, = (0| 2, o x"") and T (3, x'*) = > o x~ V¢ Fol-
lowing [13, Theorem 24, Chap. 16], there are 2m — 1 residues and 2m — 1 non-
residues in the set# 4 i and the same distributions are contained in the set —1/(¢ + 7).
Considering R_;;; = (0 | ;. x'~"/"), there are 2m — 1 residues and 2m — 1 non-
residues in i — 1/¢. Rewriting —1/(t +i) =z — 1/¢t, for z = (i/t)/(t + i), and
letting I’ C Q be a set of all residues such that for all i € I', i — 1/t € N, we
know that if —1/(t +i) € N then z — 1/t € N which means that z € Q and z
must belong to I’. Hence, the non-residues in i — 1/¢ and —1/(¢ + i) are iden-
tical. If —1/(t +1i) € Q, however, z€ N and for all i € Q, i — 1/t #z—1/t,
implying that the residues in —1/(# + i) and i — 1/¢ are mutually disjoint. Thus,
T(R,) + R_1/, = (0 | ZiEQ xi), i.e.

9.4 Code Construction 227
T(R,) = R_y); + Ro.

Similarly, T(L;) = (0 | 1 +x~"/"), and we can write
T(L)) = L_y; + Lo.

The effect T to the circulants is summarised as follows:

T for p =3 (mod 8) for p = —3 (mod 8)
T (Ry) Ro+J Ry
T(Ry) R_i;s+ Ry R_iy+J
T(R,) R_i+Ro+J R_i;; + Ry
T(Lo) Lo+ J' Ly
T(Ly) L_;+ L L_,+J
T(Ly) L_i+Lo+J L_i;+ Ly

where s € Q and r € N. This shows that, for p = +3 (mod 8), the transformation
T is a linear combination of at most three rows of the circulant and hence it fixes the
circulant. This establishes the following theorem on Aut(%,) [2, 13].

Theorem 9.1 The automorphism group ofthe 2(p + 1), p + 1, d) binary quadratic
double-circulant codes contains PSL,(p) applied simultaneously to both circulants.

The knowledge of Aut(%,) can be exploited to deduce the modular congruence
weight distributions of %, as shown in Sect. 9.6.

9.5 Evaluation of the Number of Codewords of Given
Weight and the Minimum Distance: A More Efficient
Approach

In Chap.5 algorithms to compute the minimum distance of a binary linear code
and to count the number of codewords of a given weight are described. Assuming
the code rate of the code is a half and its generator matrix contains two mutually
disjoint information sets, each of rank k (the code dimension), these algorithms
require enumeration of

k w/2—1 k
(o) 22 ()

codewords in order to count the number of codewords of weight w. For FSD double-
circulant codes with p = —3 (mod 8) and self-dual double-circulant codes a more
efficient approach exists. This approach applies to both pure and bordered double-
circulant cases.

http://dx.doi.org/10.1007/978-3-319-51103-0_5

228 9 Algebraic Quasi Cyclic Codes

Lemma 9.7 Let T,,(x) be a set of binary polynomials with degree at most m.
Let u;(x),vi(x) € Tr—1(x) fori = 1,2, and e(x), f(x) € Tr—>(x). The numbers of
weight w codewords of the form ci(x) = (u;(x)|vi(x)) and c(x) = (va(x)|u2(x))
are equal, where

(i) for self-dual pure double-circulant codes, u>(x) = u1(x)7 andv,(x) = vi(x)T;
(ii) for self-dual bordered double-circulant codes, u;(x) = (¢le(x)), vi(x) =
Y1 f @), ua(x) = (ele(x)") and v2(x) = (y|f (x)7), where y = wty (e(x))
(mod 2);
(iii) for FSD pure double-circulant codes (p = —3 (mod 8)), u»(x) = u1(x)* and
va(x) = vy (%)%
(iv) for FSD bordered double-circulant codes (p = —3 (mod 8)), u;(x)=(¢ele(x)),
vi(x) = (1 f(0), ua(x) = (ele(x)?), v2(x) = (y|f(x)?), where y =wty
(e(x)) (mod 2).

Proof

(i) Let G; = [I|R] and G, = [RT|I «] be the two full-rank generator matrices
with mutually disjoint information sets of a self-dual pure double-circulant code.
Assume that (x) and 7 (x)7 are the defining polynomials of G| and G, respec-
tively. Given u;(x) as an input, we have a codeword c;(x) = (u;(x)|vi(x)),
where v;(x) = u(x)r(x), from G,. Another codeword c¢,(x) can be obtained
from G, using u; (x)7 as an input, c;(x) = (v; (x)7 |u1(x)7), where v (x)T =
w1 (x)Tr(x)T = (u;(x)r(x))7. Since the weight of a polynomial and that of its
transpose are equal, for a given polynomial of degree at most k — 1, there exist
two distinct codewords of the same weight.

(i1) Let Gy, given by (9.5b), and G, be two full-rank generator matrices with pair-
wise disjoint information sets, of bordered self-dual double-circulant codes. It is
assumed that the form of G, is identical to that given by (9.21) with R” = BT.
Let f(x) = e(x)r(x), consider the following cases:

a. ¢ =0 and wty(e(x)) is odd, we have a codeword c;(x) = (0| e(x) | 1|
f(x)) from G,. Applying (O | e(x)T) as an information vector to G,, we
have another codeword c>(x) = (1] e(x)"r(x)" |0 | e(x)") = (1| f(x)T
| 0| e(x)T).

b. e=1 and wtgy(e(x)) is odd, G; produces ci(x)=(1]|e(x)]| 1]
f(x)+ j(x).Applying (1 | e(x)”) asaninformation vector to G,, we have a
codeword c;(x)= (1] e@) r()"+,j@) [1]e@)”) = (1] fx)"+
J) 11 e)7).

c. ¢ = 0andwtgy(e(x))iseven, G| producesacodewordci(x) = (0| e(x) | O |
f(x)). Applying (0 | e(x)T) as an information vector to G, we have another
codeword c2(x) = (0| e()"r(x)T [0] e)”) = (0] fF(x)T [0 e(x)T).

d. ¢ =1 and wtg(e(x)) is even, G produces ci(x) = (1] e(x) | 0] f(x)+
j(x)). Applying (1 | e(x)”) as an information vector to G,, we have a code-
word 2(x) = (0 [e)Tr()T +j@) [1]ex)”) = (0] fF() + jx)
| 1 |e(x)T).

9.5 Evaluation of the Number of Codewords of Given Weight ... 229

It is clear that in all cases, wty(ci(x)) = wty(ca(x)) since wty (v(x)) =
wty (v(x)T) and wty (v(x) + j(x)) = wty(v(x)T + j(x)) for some polyno-
mial v(x). This means that given an information vector, there always exist two
distinct codewords of the same weight.

(iii) Let Gy, givenby (9.5a) with R = I, + Q, and G, given by (9.18), be two full-

rank generator matrices with pairwise disjoint information sets, of pure FSD
double-circulant codes for p = —3 (mod 8).
Given u;(x) as input, we have a codeword ci(x) = (u;(x)|vi(x)), where
vi(x) = u;(x)(1 4+ g(x)), from G, and another codeword c¢;(x) = (vo(x)|uz
(x)), where uy(x) =u;(x)> and vy(x) = u;(x)*>(1 +n(x)) = u; (x)%(1
+q(x))? = vi(x)?, from G,. Since the weight of a polynomial and that of its
square are the same over [F,, the proof follows.

(iv) Let G, given by (9.5b) with B = R, and G, given by (9.22), be two full-rank
generator matrices with pairwise disjoint information sets, of bordered FSD
double-circulant codes for p = —3 (mod 8). Let f(x) = e(x)b(x), consider
the following cases:

a. ¢ = 0andwty(e(x))isodd, wehaveacodewordci(x)=(0 | e(x) | 1 | f(x))
from G,. Applying (O | e(x)z) as an information vector to G,, we have
another codeword ¢, (x) = (1 [e(x)*n(x) |0 | e(x)z). Since e(x)?n(x) =
e(x)?b(x)? = f(x)?, the codeword ¢; = (1 | f(x)? | 0| e(x)?).

b. ¢ =1 and wty(e(x)) is odd, G produces c;(x) =1 |e(x) | 1| f(x)
+,j(x)). Applying (1| e(x)?) as an information vector to G,, we have a
codeword ¢, (x) = (1 | e(x)’n(x) + j(x) | 1] e(x)z) = (1 | f)? + j(x)
| 1 |e(x)2).

c. ¢ = 0and wty(e(x)) is even, G| produces a codeword c;(x) = (0 | e(x) | O
| £(x)). Applying (0 | e(x)?) as an information vector to G,, we have
another codeword c(x) = (0] e(x)*n(x) | 0| e(x)?) = (0] f(x)*]0
| e(x)z).

d. e =1 and wty(e(x)) is even, G| produces ci(x) = (1| e(x) | 0] f(x)
+j(x)). Applying (1 | e(x)2) as an information vector to G, we have a
codewordz)cz(x) = (0] e)?n(x)+j@x) [1]ex)?) = (0] f(x)>+jx)
[1]e(x)”).

It is clear that in all cases, wty(c(x)) = wty(ca(x)) since wty(v(x)) =
wtg (v(x)?) and wtg (v(x) + j(x)) = wty (v(x)? + j(x)) for some polynomial
v(x). This means that given an information vector, there always exist two distinct
codewords of the same weight.

From Lemma 9.7, it follows that, in order to count the number of codewords of

weight w, we only require
$()
, i
i=1

codewords to be enumerated and if A,, denotes the number of codewords of weight w,

230 9 Algebraic Quasi Cyclic Codes

w/2—1
Aw = a2 +2 Z ai (926)
i=1

where a; is the number of weight w codewords which have i non-zeros in the first k
coordinates.

Similarly, the commonly used method to compute the minimum distance of half-
rate codes with two full-rank generator matrices of mutually disjoint information
sets, for example, see van Dijk et al. [18], assuming that d is the minimum distance
of the code, requires as many as

d/2—1

S:2§ ('Z)

codewords to be enumerated. Following Lemma 9.7, only S/2 codewords are
required for &, and %), for p = —3 (mod 8), and self-dual double-circulant codes.
Note that the bound d /2 — 1 may be improved for singly even and doubly even codes,
but we consider the general case here.

9.6 Weight Distributions

The automorphism group of both (p + 1, %(p + 1), d) extended QR and (2(p +
1), p + 1, d) quadratic double-circulant codes contains the projective special linear
group, PSL,(p). Let S be a subgroup of the automorphism group of a linear code,
and the number of codewords of weight i, denoted by A;, can be categorised into
two classes:

1. aclass of weight i codewords which are invariant under some element of .7#’; and

2. aclass of weight i codewords which forms an orbit of size |.77|, the order of 7.
In the other words, if ¢ is a codeword of this class, applying all elements of 77
to ¢, || distinct codewords are obtained.

Thus, we can write A; in terms of congruence as follows:

Ai =n; x |0+ A (7)),

(9.27)
= Ai(A) (mod |7])
where A;(J¢) is the number of codewords of weight i fixed by some element of
2. This was originally shown by Mykkeltveit et al. [14], where it was applied to
extended QR codes for primes 97 and 103.

9.6 Weight Distributions 231

9.6.1 The Number of Codewords of a Given Weight
in Quadratic Double-Circulant Codes

For %,,, we shall choose /" = PSL,(p), which has order |77| = %p(p2 —1). Let
the matrix [‘C‘z] represent an element of PSL,(p), see (9.23). Since |#’| can be
factorised as || = H qj , where ¢ is a prime and e; is some integer, A; (J7)
(mod |%ﬂ |) can be obtamed by applying the Chinese remainder theorem to A; (S,;)
(mod ¢ ; 7) for all ¢; that divides |.7#’|, where Sy; is the Sylow-g ;-subgroup of %ﬂ .
In order to compute A;(S,;), a subcode of 2, which is invariant under Sy, needs to
be obtained in the first place. This invariant subcode, in general, has a considerably
smaller dimension than 8, and hence, its weight distribution can be easily obtained.

For each odd prime g;, S,; is a cyclic group which can be generated by some
[] € PSLy(p) of order g;. Because S, is cyclic, it is straightforward to obtain
the invariant subcode, from which we can compute A; (S,;).

On the other hand, the case of g; = 2 is more comphcated. Forg; =2, 5 is a
dihedral group of order 2!, where m + 1 is the maximum power of 2 that divides
|| [?]. For p = 8m =+ 3, we know that

1
|| = 7 ®m £3) ((8m £3)* — 1) = 2% (64m> £ 72m* + 26m % 3)

which shows that the highest power of 2 that divides |.7#| is 2> (m = 1). Following
[?], there are 2™ + 1 subgroups of order 2 in S,, namely

H, = {1, P},
GY={1,T}, and
G)={1, PT},

where P, T € PSLy(p), P> =T*>=1and TPT~' = P~

LetT = [? Py !], which has order 2. It can be shown that any order 2 permutation,
P = [? Z], if a constraint b = c is imposed, we have a = —d. All these subgroups,
however, are conjugates in PSL,(p) [?] and therefore, the subcodes fixed by GY, Gé
and H, have identical weight distributions and considering any of them, say Gg, is
sufficient.

Apart from 2™ 4 1 subgroups of order 2, S, also contains a cyclic subgroup of
order 4, 2"~! non-cyclic subgroups of order 4, and subgroups of order 2/ for j > 3.

Following [14], only the subgroups of order 2 and the non-cyclic subgroups of
order 4 make contributions towards A;(S;). For p = +3 (mod 8), there is only
one non-cyclic subgroup of order 4, denoted by G4, which contains, apart from an
identity, three permutations of order 2 [?], i.e. a Klein 4 group,

G4 ={1,P,T, PT).

232 9 Algebraic Quasi Cyclic Codes

Having obtained A; (Gg) and A;(G4), following the argument in [14], the number of
codewords of weight i that are fixed by some element of S is given by

Ai($) = 3A,-(G(2)) —2A;(G4) (mod 4). (9.28)

In summary, in order to deduce the modular congruence of the number of weight
i codewords in Z,,, it is sufficient to do the following steps:

1. compute the number of weight i codewords in the subcodes fixed by G9, G4 and
S, for all odd primes g that divide |J27];

2. apply (9.28) to A,-(Gg) and A, (G4) to obtain A;(S,); and then

3. apply the Chinese remainder theorem to A;(S>) and all A;(S,) to obtain A;(J7)
(mod |F7)).

Given), and an element of PSL; (p), how can we find the subcode consisting of
the codewords fixed by this element? Assume that Z = [25] € PSLy(p) of prime
order. Let ¢;, (resp. ¢,,) and ¢;, (resp. ¢,,) denote the ith coordinate and 77 (i)th
coordinate (ith coordinate with the respect to permutation mz), in the left (resp.
right) circulant form, respectively. The invariant subcode can be obtained by solving
a set of linear equations consisting of the parity-check matrix of 24, (denoted by
H), ¢;, + ¢;, = 0 (denoted by w z(L)) and ¢,, + ¢, = 0 (denoted by m z(R)) for all
ielF, U {x},ie.

H
H,, =

7z (L)
7 z(R)

The solution to H y,; is amatrix of rank 7 > (p + 1), which is the parity-check matrix
of the 2(p + 1), 2(p + 1) — r, d’) invariant subcode. For subgroup G4, which con-
sists of permutations P, T and PT, we need to solve the following matrix

H

wp(L)
Hsuh = nP(R)
mr(L)
7 (R)
wpr(L)
7 pr(R)

to obtain the invariant subcode. Note that the parity-check matrix of %, is assumed
to have the following form:

9.6 Weight Distributions 233

loC l() lp,1 T 70 -+« Fp—1
0 1
H=|: pr o, : (9.29)
0 1
11 1 0]0 0

One useful application of the modular congruence of the number of codewords
of weight w is to verify, independently, the number of codewords of a given weight
w that were computed exhaustively.

Computing the number of codewords of a given weight in small codes using a
single-threaded algorithm is tractable, but for longer codes, it is necessary to use
multiple computers working in parallel to produce a result within a reasonable time.
Even so it can take several weeks, using hundreds of computers, to evaluate a long
code. In order to do the splitting, the codeword enumeration task is distributed among
all of the computers and each computer just needs to evaluate a predetermined number
of codewords, finding the partial weight distributions. In the end, the results are
combined to give the total number of codewords of a given weight. There is always
the possibility of software bugs or mistakes to be made, particularly in any parallel
computing scheme. The splitting may not be done correctly or double-counting or
miscounting introduced as a result, apart from possible errors in combining the partial
results. Fortunately, the modular congruence approach can also provide detection of
computing errors by revealing inconsistencies in the summed results. The importance
of this facet of modular congruence will be demonstrated in determining the weight
distributions of extended QR codes in Sect. 9.6.2. In the following examples we work
through the application of the modular congruence technique in evaluating the weight
distributions of the quadratic double-circulant codes of primes 37 and 83.

Example 9.1 For prime 37, there exists an FSD (76, 38, 12) quadratic double-
circulant code, #3;. The weight enumerator of an FSD code is given by Gleason’s
theorem [15]

L5)
A@R) =D Ki(1 4254 = 22" + 28 (9.30)
i=0

for integers K;. The number of codewords of any weight w is given by the coefficient
of z" of A(z). In order to compute A(z) of %37, we need only to compute A,; for
6 <i < 9. Using the technique described in Sect.9.5, the number of codewords of
desired weights is obtained and then substituted into (9.30). The resulting weight
enumerator function giving the whole weight distribution of the (76, 38, 12) code,
9337 is

9 Algebraic Quasi Cyclic Codes

234

A@) = (1+27°) 42109 x (22 4+ %) +

86469 x (2'® +z%) + 961704 x (z'* + %) +

7489059 x (220 + z%°) + 53574224 x (2 + %) +

(9.31)

275509215 x (z** + 2°%) + 1113906312 x (° + %) +

3626095793 x (22 + z*) + 9404812736 x (% + %) +

19610283420 x (z*? + z*) + 33067534032 x (z** +z*) +

45200010670 x (z%° + z*°) + 50157375456 x z°°.

PSL,(37), and we know that |.77| = 22 x 32 x 19 x 37 = 25308. Con-
sider the odd primes as factors q. For g = 3, [306 !] generates the following permu-

tation of order 3:

Let 57

(00,0, 1)(2,36,19)(3, 18, 13)(4, 12, 10)(5, 9, 23)(6, 22, 7)(8, 21, 24)

(11)(14, 17, 30)(15, 29, 33)(16, 32, 31)(20, 35, 25)(26, 34, 28)(27)

The corresponding invariant subcode has a generator matrix G of dimension 14,

which is given by

oo —O——
oo —
OO~ — OO O ————
oo —— e S
SOO—O————— S

O O e D e e
O OO D
CO— O O == O —
—OO———O—C—=00—O
=g i} Sco—co—
O oco——o—o—

cocooo—~oo0ooSoo
—omm=== Smm=== =3
S —— S =S
Y p—— S =)
0000000000000]

B === 0=T=1==0=0=7=1=

[
Il

)
p

)
)

and its weight enumerator function is

(1+27) +3x (22 +2%) +24 x (21 + %) +

A(Ss)(z)

54 x ("% 4+2%) +150 x (22 +2°°) +176 x (27 +27) +
171 x (124 + 252) + 468 x (z26 + 250) + 788 x (z28 + 148) +

980 x (2 + %) + 1386 x (272 +z*) + 1350 x (™ + %) +

1573 x (2%° + 2*%) + 2136 x 2.

(9.32)

For g =19, [306 %] generates the following permutation of order 19:

(00,0, 25,5,18,32, 14,10, 21, 2, 1, 19, 30, 26, 8, 22, 35, 15, 3)

(4, 36,28, 34,31, 33,16, 17,29, 27,20, 13,11, 23,24,7,9, 6, 12).

The resulting generator matrix of the invariant subcode G5, which has dimension

2,1s

235

9.6 Weight Distributions

and its weight enumerator function is

(9.33)

A(S‘9)(z) =14 2Z38 + 276.

For the last odd prime, g = 37, a permutation of order 37

(00,0, 18, 24,27, 14, 30, 15, 13, 32, 25, 26, 33,19, 7, 4, 6, 23, 34,
1,12,29,31, 28, 16, 2,9, 10, 3, 22, 20, 5, 21, 8, 11, 17, 35)(36)

] and it turns out that the corresponding invariant subcode, and

1

0
36 35

is generated by |

hence, the weight enumerator function, are identical to those of g = 19.

For ¢ = 2, subcodes fixed by some element of G5 and G are required. We have

P=[{]andT

T and

[93¢]. and the resulting order 2 permutations generated by P,

are
(00,5)(0,22)(1,17)(2,21)(3,29)(4, 16)(6, 31)(7, 18)(8, 26) (9, 30)(10, 25)

(11, 34)(12, 14)(13, 36)(15)(19, 28)(20, 24)(23, 27)(32)(33, 35)

(00, 0)(1,36)(2,18)(3, 12)(4,9)(5, 22)(6)(7, 21)(8, 23)(10, 11)(13, 17)

(14,29)(15, 32)(16, 30)(19, 35)(20, 24)(25, 34)(26, 27)(28, 33)(31)

and

(00,22)(0,5)(1, 13)(2, 7)(3, 14)(4, 30)(6, 31)(8, 27)(9, 16)(10, 34)(11, 25)

(12,29)(15, 32)(17, 36)(18, 21)(19, 33)(20)(23, 26)(24)(28, 35)

respectively. It follows that the corresponding generator matrices and weight enu-

merator functions of the invariant subcodes are

I 1
CO00CoO000CoOOOCOOO—S
CO00CCO00C—000CCO00S
COO0000O—~00Oo000SSoO00S
COO0CoO00CO—0O0COO0OD
CO00CCO00COOO0S =000
COO0000000C0O00000O00—
COO—CoO000CoOOOCOOOOD
SO000S0000SO00SSO—~OS
CO000000O—~CoO000SSoO00S

——— O =~~~ 0000000 —00—0
OO0~ —— So——o—00o
o=~~~ 0000000 —00—O
O~ OO~ OO —— ocoo
—~O— 000 —~0—000—0—O—O——
= iy s B S B S = M p= p
OO0~ —O—= OO0 = —————
OO B = D DD D Dt e
P P == NS
o= ———— OO~ ———O——=——0O
D O e et et e D D D D et
OO O o—oco—
C—O000—~00———00——=——00
O OO OO O DD D
OO =00 —O O = OO ——
~OO0O == O = o—ocoo—
OO O e D DD Dt Bt e et

lllll i —coCooo—~o0
O OO~ OO ocoo
e D D P = D =4
CO0000—~000000000000D
Ao~ OO0~ O~ = =0 =D
OO0 Sco——o—o0o
D D e e e B D D D
OO~ O~ O =0 —O——
SO — et PPN = =N

CO00CoO00CO—0O0COOOOD
COO0000000C—~0000SO00S
CO00C0000—~CO000SSO00S
CO00CoOO—~COO00COOOOD
COO00000—~00SO00SSO00S
CO00CO—00CoO00SOO0OD
CO00C—000COO00COOOD
COO00~00000SO00SSO00S
COO—COo000CoO0OSOO0OD
CO—~0C0000COOOOCSOOOS
C—O0000000CSO00SSO00S
OO0 Co000CoO0OCOO00S

236 9 Algebraic Quasi Cyclic Codes

which has dimension 20, with

A (2) = (1 4+27°) + 21 x (22 4 2%) + 153 x (2 + %) +
744 x ('8 +2%%) + 1883 x (220 +2°0) + 4472 x (P +) +
10119 x (z** + 27%) + 21000 x (2%° +z7°) + 36885 x (z** + z*) +
58656 x (27 4 z*°) 4 85548 x (7% + z*) + 108816 x (** +z*) +
127534 x (2° + %) + 136912 x

and
1000000000001101101011011101000110111011111000111000100001000000000010000000
0100000000000000010100111000110001000110000111010110000100000000000000000000
0010000000001101101010000101000100110000001000000000000000100000000000010100
0001000000001 1111111111111 1111111111111 11111111000000000000000000000000000
0000100000000000010100100000110011000100010111101000010000000010100000000000

(;(G4) — 0000010000001101101111000101100101111101101011000000001000010000001000000000

—_— 0000001000001100101101011101100000011011101011010000000010000000000000000000)

0000000100000001100011000101100111101101111001101000000000000000010000000000
0000000010000000110000111101110010000010011101111000000000000000000000100000
0000000001001100001101011000100001011111100011010000000000001100000000001000
0000000000100000100101000101100011001101111011101000000000000000000001000011
0000000000011100111000111101010010010010011100111001000000000001000100000000

which has dimension 12, with

A =(1+2°) +3 x (2% +2) + 11 x (2" + %) +
20 x (ZIS +ZSS) 451 x (ZZO+ZSG) 156 x (122 +ZS4)+
111 x (22 +27%) + 164 x (22 +27°) + 187 x (22 + %) + (9.35)
224 x (20 +2%) +294 x (2% + %) +328 x (2 + %) +
366 x (136 + z40) + 464 x 7%

respectively. Consider the number of codewords of weight 12, from (9.31)—(9.35),
we know that Alz(Gg) =21 and A2(G4) = 3; applying (9.28),
Ap(S)=3x21—2x%x3 (mod4)=1 (mod4)

and thus, we have the following set of simultaneous congruences:

An(Sy) =1 (mod 2%)
Ap(S3) =3 (mod 3%)
A12(S19) =0 (mod 19)
A1p(S37) =0 (mod 37).

Following the Chinese remainder theorem, a solution to the above congruences,
denoted by A, (), is congruentmoduloLCM{Zz, 32,19, 37}, where LCM{22, 32, 19,
37} is the least common multiple of the moduli 22 32 19 and 37, which is equal to
22 x 32 x 19 x 37 = 25308 in this case. Since these moduli are pairwise coprime,
by the extended Euclidean algorithm, we can write

9.6 Weight Distributions

A solution to the congruences above is given by

AIZ(%) =1x |:(—1

+

=2109

ox |

—1x 6327+ —6 x 2812
(mod 25308)

25308
=4x 1582+ == x (=1)

25308

1:9><625—+—T><(—2)

25308
=19 % 631+ == x (=9)

25308
1=37%x37T+ ———
37

X (=2).

25308
}+3xk—m—3—

2

25308
)7
(=2)—

=25308n1, + 2109.

25308i|
+

] (mod 25308)

(mod 25308)

237

25308
0 x |:(—9) Ti|

Referring to the weight enumerator function, (9.31), we can immediately see that
nyp = 0, indicating that A, has been accurately evaluated. Repeating the above pro-
cedures for weights larger than 12, we have Table 9.3 which shows that the weight
distributions of %7 are indeed accurate. In fact, since the complete weight distrib-

Table 9.3 Modular congruence weight distributions of %37

i/m—i|l Ai(S)| Ai(S3)| Ai(S19)| Ai(S37) A () n; in

mod 22| mod 32 mod 19 mod 37| mod 25308| A; =25308n; + A; ()
0/76 1 1 1 1 1 0
12/64 1 3 0 0 2109 0
16/60 1 6 0 0 10545 3
18/58 0 0 0 0 0 38
20/56 3 6 0 0 23199 295
22/54 0 5 0 0 22496 2116
24/52 3 0 0 0 6327 10886
26/50 0 0 0 0 0 44014
28/48 1 5 0 0 16169 143278
30/46 0 8 0 0 5624 371614
32/44 0 0 0 0 0 774865
34/42 0 0 0 0 0 1306604
36/40 2 7 0 0 23902 1785996
38 0 3 2 2 7032 1981878

238 9 Algebraic Quasi Cyclic Codes

utions can be obtained once the first few terms required by Gleason’s theorem are
known, verification of these few terms is sufficient.

Example 9.2 Gulliver et al. [6] have shown that the (168, 84, 24) doubly even self-
dual quadratic double-circulant code %g; is not extremal since it has minimum
distance less than or equal to 28. The weight enumerator of a Type-II code of length
n is given by Gleason’s theorem, which is expressed as [15]

Ln/24]
A@R) = D Ki(l+ 142" + 251 = 2HYY, (9.36)
i=0

where K; are some integers. As shown by (9.36), only the first few terms of A; are
required in order to completely determine the weight distribution of a Type-II code.
For g3, only the first eight terms of A; are required. Using the parallel version
of the efficient codeword enumeration method described in Chap.5, Sect.9.5, we
determined that all of these eight terms are 0 apart from Ag = 1, Ays = 571704 and
Arg = 17008194.

We need to verify independently whether or not A4 and A,g have been correctly
evaluated. As in the previous example, the modular congruence method can be used
for this purpose. For p = 83, we have || = 22 x 3 x 7 x 41 x 83 = 285852. We
will consider the odd prime cases in the first place.

For prime g = 3, a cyclic group of order 3, S3 can be generated by [é)z }] €
PSL,(83), and we found that the subcode invariant under S; has dimension 28 and
has 63 and 0 codewords of weights 24 and 28, respectively.

For prime g = 7, we have [802 110] which generates S7. The subcode fixed by S;
has dimension 12 and no codewords of weight 24 or 28 are contained in this subcode.

Similarly, for prime g = 41, the subcode fixed by Si;, which is generated by

802 i] and has dimension 4, contains no codewords of weight 24 or 28.

Finally, for prime ¢ = 83, the invariant subcode of dimension 2 contains the all-

zeros, the all-ones, {0,0,...,0,0,1,1,...,1,1}and {1, 1,...,1,1,0,0,...,0,0}
84 84 84 84
codewords only. The cyclic group Sgs is generated by [802 o]

For the case of ¢ =2, we have P = [}] and T = [(%]. The subcode fixed
by S, which has dimension 42, contains 196 and 1050 codewords of weights 24
and 28, respectively. Meanwhile, the subcode fixed by G4, which has dimension 22,
contains 4 and 6 codewords of weights 24 and 28, respectively.

Thus, using (9.28), the numbers of codewords of weights 24 and 28 fixed by S,
are

Ax(S) =3%x196—-—2x4=0 (mod 4), and
A28(52)=3X 1050 -2 x6=2 (mod 4)

http://dx.doi.org/10.1007/978-3-319-51103-0_5

9.6 Weight Distributions 239

and by applying the Chinese remainder theorem to all A;(S,) for i = 24, 28, we
arrive at

A24 = Np4 X 285852 (9373)
and
Asg = nag x 285852 + 142926 . (9.37b)

From (9.37) we have now verified A,4 and A,g, since they have equality for non-
negative integers np4 and npg (na4 = 2 and npg = 59). Using Gleason’s theorem,
i.e. (9.36), the weight enumerator function of the (168, 84, 24) code s; is obtained
and it is given by

AQR) =+ "%+
571704 x (2% + 2'*)+
17008194 x (z2% + z140)+
5507510484 x (232 + z%%)+
1252615755636 x (z°° + z3%)+
166058829151929 x (z*° + z'%%)+
13047194638256310 x (z* + z'2H)+
629048483051034984 x (z** + z!2%)+
19087129808556586056 x (272 + z''%)+ (9.38)
372099697089030108600 x (z°° + z''%)+
4739291490433882602066 x (22 + z'%%)+
39973673426117369814414 x (2% + z'%)+
225696677517789500207052 x (z* + ')+
860241109321000217491044 x (77> + 2°%)+
2227390682939806465038006 x (z7° + z°%)+
3935099587279668544910376 x (% + z%%)+
4755747411704650343205104 x 754 .

For the complete weight distributions and their congruences of the (2(p + 1),
p + 1, d) quadratic double-circulant codes, for 11 < p < 83, except p = 37 as it
has already been given in Example 9.1, refer to Appendix “Weight Distributions of
Quadratic Double-Circulant Codes and their Modulo Congruence”.

240 9 Algebraic Quasi Cyclic Codes

9.6.2 The Number of Codewords of a Given Weight
in Extended Quadratic Residue Codes

‘We have modified the modular congruence approach of Mykkeltveitet al. [14], which
was originally introduced for extended QR codes 2, so that it is applicable to the
quadratic double-circulant codes. Whilst %, contains one non-cyclic subgroup of
order 4, jp contains two distinct non-cyclic subgroups of this order, namely G and
G}t. As a consequence, (9.28) becomes

Ai(S2) = Q™+ DA (Hy) — 2" 'A;(GY) — 2" 7' Ai(G)) (mod 2™T1), (9.39)

where 2*! is the highest power of 2 that divides |.7#|. Unlike % »» where there are
two circulants in which each one is fixed by PSL, (p), a linear group PSL,(p) acts on
the entire coordinates of ‘,22,,. In order to obtain the invariant subcode, we only need
a set of linear equations containing the parity-check matrix of .,22,,, which is arranged
in(0,1,..., p—2, p—1)(oc0) order, and ¢; + ¢y =0 for all i € F, U {oo}. Note
that ¢; and c¢;s are defined in the same manner as in Sect.9.6.1.

We demonstrate the importance of this modular congruence approach by proving
that the published results for the weight distributions of 9221 51 and ‘,22137 are incorrect.
However, first let us derive the weight distribution of 922167.

Example 9.3 There exists an extended QR code ,?167 which has identical parameters
(n =168, k = 84 and d = 24) as the code %s3. Since .,??1(,7 can be put into double-
circulant form and it is Type-II self-dual, the algorithm in Sect.9.5 can be used to
compute the number of codewords of weights 24 and 28, denoted by A%, and A’ for
convenience, from which we can use Gleason’s theorem (9.36) to derive the weight
enumerator function of the code, A’(z). By codeword enumeration using multiple
computers we found that

Ay, = 776216

o (9.40)
Al = 18130188,

In order to verify the accuracy of A’, and A’g, the modular congruence method

is used. In this case, we have Aut(.,??m) D s = PSL,(167). We also know that

IPSL,(167)| = 2% x 3 x 7 x 83 x 167 =2328648. Let P =[12%2] and T =

]

Let the permutations of orders 3, 7, 83 and 167 be generated by [191] [1o],
[194] and [% 45]. respectively. The numbers of codewords of weights 24 and 28
in the various invariant subcodes of dimension k are

Hy [G} S3 S7 583 S167
k 42 22 21 28 12 2 1
Aga 252 6 4 140 0 0 0
Aog 1812 36 0 0 6 0 0

9.6 Weight Distributions 241
For .,22167, equation (9.39) becomes
Ai(S)) =5x Aj(Hy) —2 x Ai(G)) —2 x A;(G}) (mod 8). (9.41)
It follows that

A4(52) =0 (mod 8)
A28(52) =4 (mod 8)

and thus,

ALy = nh, x 2328648 + 776216 (9.42a)
and

Al = nhg x 2328648 + 1829652 (9.42b)

from the Chinese remainder theorem.)

From (9.37a) and (9.42a), we can see that %3 and %47 are indeed inequivalent.
This is because for integers ny4, 15, > 0, Azg # A)y.

Comparing Eq.(9.40) with (9.42a) and (9.42b) establishes that A’, = 776216

A

(n%, = 0)and Ajg = 18130188 (n)g = 7). The weight enumerator of .7 is derived
from (9.36) and it is given in (9.43). In comparison to (9.38), it may be seen that
A7 1s a slightly inferior code than g3 having more codewords of weights 24, 28

and 32.
A(z) =E° + 1%+

776216 x (z** + z'*)+
18130188 x (2% 4 ')+
5550332508 x (32 + z'30)+
1251282702264 x (% + z3%)+
166071600559137 x (z** + z'%%)+
13047136918828740 x (z* + z'**)+
629048543890724216 x (z** + z'2%)+
19087130695796615088 x (z°2 + ')+
372099690249351071112 x (z°° + z''%)+
4739291519495550245228 x (2 + z'%%)+
39973673337590380474086 x (z** + ')+
225696677727188690570184 x (% + ')+

242 9 Algebraic Quasi Cyclic Codes

860241108921860741947676 x (7> + 2°%)+
2227390683565491780127428 x (27 4 z72)+
3935099586463594172460648 x (% + z%%)+
4755747412595715344169376 x 5.

(9.43)

Example 9.4 Gaborit et al. [4] gave Ay;, for 22 < 2i < 32, of 9?137 and we will
check the consistency of the published results. For p = 137, we have |PSL,(137)| =
23 x 3 x 17 x 23 x 137 = 1285608 and we need to compute Ay; (S,), where 22 <
2i < 32, for all primes ¢ dividing [PSL,(137)|. Let P = [/5! | and T = [0 13¢].

Let [9 1]. [% 4] and [%] be generators of permutation of orders 3, 17 and
23, respectively. It is not necessary to find a generator of permutation of order 137
as it fixes the all-zeros and all-ones codewords only. Subcodes that are invariant
under GY, GY, Gi, S3, Si7 and Sy; are obtained and the number of weight i, for
22 < 2i < 32, codewords in these subcodes is then computed. The results are shown
as follows, where k denotes the dimension of the corresponding subcode,

H, G G) S3 Si7 So3 S137

k 35 19 18 23 5 3 1
A 170 6 6 0 0 0 0
Aoy 612 10 18 46 0 0 0
Ansg 1666 36 6 0 0 0 0
Asg 8194 36 60 0 0 0 0
Az 34816 126 22 943 0 0 0
Az 114563 261 189 0 0 0 0

‘We have
Ai($) =5%x A;(Hy) —2 x Ai(Gg) —2 X A,«(G}t) (mod 8),

for .,22137, which is identical to that for .,22167 since they both have 23 as the highest
power of 2 that divides |.77°|. Using this formulation, we obtain

A»n(S2) =2 (mod 8)
A (S$) =4 (mod 8)
Ax(82) =6 (mod 8)
Ag(82) =2 (mod 8)
A30(S2) =0 (mod 8)
A3 (S) =3 (mod 8)

and combining all the results using the Chinese remainder theorem, we arrive at

9.6 Weight Distributions 243

A = npy x 1285608 4 321402
Any = npq x 1285608 + 1071340
= ny6 x 1285608 + 964206
= npg x 1285608 4 321402
Azp = n3p x 1285608 4+ 428536
Az = n3p x 1285608 4 1124907

b
S
|

(9.44)

b
&
|

for some non-negative integers n;. Comparing these to the results in [4], we can
immediately see that ny, = 0, nyy = 1, ny¢ = 16, npg = 381, and both A3y and A3,
were incorrectly reported. By codeword enumeration using multiple computers in
parallel, we have determined that

Asp = 6648307504
A3y = 77865259035

hence, referring to (9.44) it is found that n3y = 5171 and n3, = 60566.

Example 9.5 Gaborit et al. [4] also published the weight distribution of ;2215 1 and

we will show that this has also been incorrectly reported. For .,Zz 51, |IPSLa(151)] =
2% x 3 x 5% x 19 x 151 = 1721400 and we have P = [} 3} | and T = [913°].

Let[91].[1% 25] and [|9}] be generators of permutation of orders 3, 5 and 19,
respectively. The numbers of weight i codewords for i = 20 and 24, in the various
fixed subcodes of dimension k, are

H, G G, S3 Ss N Sis1
k 38 20 19 26 16 4 1
Ay 38 2 0 25 15 0 0
Aoy 266 4 4 100 0 0 0

and A;(S,) is again the same as that for primes 167 and 137, see (9.41). Using this
equation, we have A (Sz) = A24(S2) =2 (mod 8). Following the Chinese remain-
der theorem, we obtain

A2() = npp X 1721400 + 28690

. (9.45)
A24 = Np4 X 1721400 + 717250

It follows that A, is correctly reported in [4], but Ay is incorrectly reported as
717230. Using the method in Sect. 9.5 implemented on multiple computers, we have
determined that

Az = 28690
Ay =1T717250,

244 9 Algebraic Quasi Cyclic Codes

hence nyp = 0 and ny4 = 0 in (9.45). Since A,y and A4 are required to derive the
complete weight distribution of ,,22151 according to Gleason’s theorem for Type-II
codes (9.36), the weight distribution of .,221 s1 given in [4] is not correct. The correct
weight distribution of this code, given in terms of the weight enumerator function, is

A@R) =("+"%) +
28690 x (2% +2'7%) +
717250 x (22 +2'%) +
164250250 x (2% +2'*) +
39390351505 x (2% +z'%) +
5498418962110 x (2°° + z!16) +
430930711621830 x (z** + z''?) +
19714914846904500 x (z* + z'%) +
542987434093298550 x (z* + z'%) +
9222363801696269658 x (27 + z'%) +
98458872937331749615 x (z° + z°°) +
670740325520798111830 x (2% +z%) +
2949674479653615754525 x (2% + %) +
8446025592483506824150 x (% + %) +
15840564760239238232420 x (2% + z*°) +
19527364659006697265368 x z'°.

(9.46)

9.7 Minimum Distance Evaluation: A Probabilistic
Approach

An interesting observation is that the minimum weight codewords of jp, forp = +1
(mod 8), and %), for p = 3 (mod 8) are always contained in one or more of their
fixed subcodes. At least, this is true for all known cases (n < 200) and this is depicted
in Table 9.4. We can see that the subcode fixed by H, appears in all the known cases.
In Table 9.4, the column dyy denotes the minimum distance upper bound of extremal
doubly even self-dual codes of a given length and the last column indicates the
various subgroups whose fixed subcodes contain the minimum weight codewords.
The highest n, for which the minimum distance of extended QR codes is known,
is 168 [5] and we provide further results for n = 192, 194, and 200. We obtained
the minimum distance of these extended QR codes using the parallel version of the
minimum distance algorithm for cyclic codes (QR codes are cyclic) described in
Chap.5, Sect. 5.4. Note that the fact that the code is singly even (n = 194) or doubly

http://dx.doi.org/10.1007/978-3-319-51103-0_5

9.7 Minimum Distance Evaluation: A Probabilistic Approach 245

Table 9.4 The minimum distance of jp and %), for 12 < n < 200

n P p mod 8 d dy Subgroups
12 5 -3 4 H», G4

18 17 1 6 Hy, GY, 53
24 23 -1 8 8 Hy, G, G}
28 13 -3 6 Hy, G4, S3
32 31 -1 8 8 Hy, GY, $3
40 19 3 8 8 Ha, G4, S3
42 41 1 10 H,, G, Ss
48 47 -1 12 12 H,, G, Ss
60 29 -3 12 Hy, S3

72 71 -1 12 16 Hy, G}, S3, Ss
74 73 1 14 Hy, GY, Gy, 53
76 37 -3 12 Hy, G4, S3
80 79 -1 16 16 Hy, GY, G, 55
88 43 3 16 16 Ha, S3, $7
90 89 1 18 H>, GY, G, S5
98 97 1 16 H, GY
104 103 -1 20 20 H, GY, S3
108 53 -3 20 Hy, G4
1142 113 1 16 Hy, G, 87
120 59 3 20 24 Ha, Ga, Ss
124 61 -3 20 H>, G4, S3, S5
128 127 -1 20 24 Ha, S

136 67 3 24 24 Ha, G4, S3, S11
138 137 1 22 Hy, GY, G}
1522 151 -1 20 28 Hy, GY, $3, Ss
168 167 -1 24 32 Hy, GY, Gl, S
168 83 3 24 32 Hy, Ga, $3
192 191 -1 28 36 Hy, G}
194 193 1 28 Hy, Gl, $3
200 199 —1 32 36 Hy, G, GL, 85

4Extended duadic code [12] has higher minimum distance

even (n = 192, 200) is also taken into account in order to reduce the number of
codewords that need to be enumerated, see Chap. 5, Sects.5.2.3 and 5.4. This code
property is also taken into account for computing the minimum distance of %, using
the method described in Sect.9.5.

Based on the above observation, a probabilistic approach to minimum distance
evaluation is developed. Given jp or %, the minimum distance of the code is upper
bounded by

d< min {d(2)}, (9.47)
Z=(G5,G4,G1.84, Sy}

http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_5

246

9 Algebraic Quasi Cyclic Codes

Table 9.5 The minimum distance of jp and %), for 204 < n < 450

n P p mod 8 d dy Subgroups
203 101 -3 <24 H>, Gy, S5
216 107 3 <24 40 Hy, G4, S3
220 109 -3 <30 H, S3
224 223 —1 <32 40 H, GY, Gl
2342 233 1 <26 Ha, S13
240P 239 -1 <32 44 Hy, G}
242b 241 1 <32 H,, G}, S3, Ss
258° 257 1 <34 H, G}
264P 263 -1 <36 48 Hy, GY, S3
264P 131 3 <40 48 H, Gy
2720 271 —1 <40 48 Hy, G, GL, S5
280° 139 3 <36 48 H, S
282b 281 1 <36 Hy, GY, Gl, S5
3000 149 -3 <36 H>, Gy
312b 311 -1 <36 56 Hy, GY, S3
3140 313 1 <40 H,, G}, S3
316P 157 -3 <40 H>, $3
328b 163 3 <44 56 H>, Gy
338b 337 1 <40 H,, G}, S3
348P 173 -3 <42 Ha, S3
354P 353 1 <42 H,, G}
360b 359 -1 <40 64 H,,GY, G}, Zs
360° 179 3 <40 64 Hs, G4, Zs
364b 181 -3 <40 Hy, G4, Z3
368° 367 -1 <48 64 Hy, GY, Zs,
3840 383 -1 <48 68 H, GY, Zs
396 197 -3 <44 Hy, Zy;
402> 201 1 <42 H», GY, Gl Zs
4100 409 1 <48 H, GY, Zs
424 211 3 <56 72 Hy, G4, Z3, Z7
4300 431 -1 <48 76 H,, GY., G}, Z3
434P 433 1 <38 H,, GY, Z3
440> 440 -1 <48 76 Hy, GY,Gl, 73
4500 449 1 < 56 Hy, G

2Extended duadic code [12] has higher minimum distance

5The minimum distance of the subcode is computed probabilistically

where d(Z) is the minimum distance of the subcode fixed by Z € PSL,(p) and ¢
runs through all odd primes that divide [PSL,(p)|. Note that for %, Gg = G}‘ hence,
only one is required. Using (9.47), we give an upper bound of the minimum distance
of .ZZ, and %, for all codes where n < 450 and this is tabulated in Table9.5. The

9.7 Minimum Distance Evaluation: A Probabilistic Approach 247

80

T T
Minimum distance
Extremal bound ----)
70 - T 4

60 E
50
40

30

Hamming distance

20

10

0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

Block length

Fig. 9.1 Minimum distance and the extremal bound for distance of doubly even self-dual codes

various fixed subgroups where the minimum weight codewords are found are given
in the last column of this table. As shown in Tables 9.4 and 9.5, there is no extremal
extended QR or quadratic double-circulant codes for 136 < n < 450 and we plot the
minimum distance (or its upper bound for n > 200) against the extremal bound in
Fig.9.1. From this figure, it is obvious that, as the block length increases, the gap
between the extremal bound and the minimum distance widens and it seems that
longer block lengths will follow the same trend. Thus, we conjecture that n = 136 is
the longest doubly even extremal self-dual double-circulant code. It is worth noting
that, for extended QR codes, the results obtained using this probabilistic method are
the same as those published by Leon [11].

9.8 Conclusions

Bordered double-circulant codes based on primes can be classified into two classes:
(p+1,(p+1)/2,d) extended QR codes, for primes £1 (mod 8), and 2(p +
1), p + 1, d) quadratic double-circulant codes, for primes £3 (mod 8).

Whilst quadratic double-circulant codes always exist, given a prime p = +3
(mod 8), bordered double-circulant codes may not exist given a prime p = +1
(mod 8).

There always exist (2p, p, d) pure double-circulant codes for any prime p = +3
(mod 8).

248 9 Algebraic Quasi Cyclic Codes

For primes p = —1,3 (mod 8), the double-circulant codes are self-dual and for
other primes, the double-circulant codes are formally self-dual.

By exploiting the code structure of formally self-dual, double-circulant codes for
p = —3 (mod 8) and also the self-dual double-circulant codes for both pure and
bordered cases, we have shown that, compared to the standard method of evaluation,
the number of codewords required to evaluate the minimum distance or to count the
number of codewords of a given weight can be reduced by a factor of 2.

The automorphism group of the (p + 1, (p + 1)/2, d) extended QR code contains
the projective special linear group PSL,(p) acting on the coordinates (c0)(0, 1, ...,
p—2,p—1.

The automorphism group of the (2(p 4+ 1), p + 1, d) quadratic double-circulant
code contains PSL, (p), acting on coordinates (c0)(0, 1, ..., p — 2, p — 1), applied
simultaneously to left and right circulants.

The number of codewords of weight i of prime-based double-circulant codes,
denoted by A;, can be written as A; =n; x |[PSLy(p)| + A;(PSLy(p)) =
A;(PSL,(p)) (mod |PSL,(p)|) where A;(PSL,(p)) denotes the number of code-
words of weight i that are fixed by some element of PSL,(p). This result was due
to Mykkeltveit et al. [14] and was originally introduced for extended QR codes. We
have shown in this chapter that, with some modifications, this modulo congruence
method can also be applied to quadratic double-circulant codes.

The modulo congruence technique is found to be very useful in verifying the
number of codewords of a given weight obtained exhaustively by computation. We
have shown the usefulness of this method by providing corrections to mistakes in
previously published results of the weight distributions of extended QR codes for
primes 137 and 151.

The weight distribution of the (168, 84, 24) extended QR code, which was previ-
ously unknown, has been evaluated and presented above. There also exists a quadratic
double-circulant code with identical parameters (n, k and d) and the weight dis-
tribution of this code has also been presented above. The (168, 84, 24) quadratic
double-circulant code is a better code than the (168, 84, 24) extended QR code since
it has less low-weight codewords. The usefulness of the modulo congruence method
in checking weight distribution results has been demonstrated in verifying the cor-
rectness of the weight distributions of these two codes.

The weight enumerator polynomial of an extended QR code of prime p, denoted
by A ;(z), can be obtained using Gleason’s theorem once the first few terms are
known. Since PSL;(p) is doubly transitive [13], knowing A .;(z) implies A #(z),
the weight enumerator polynomial of the corresponding cyclic QR code, is also
known, i.e.

-z ,
Ag(z) = Ag?(Z) + mAj(Z)

9.8 Conclusions 249

where A:?(z) is the first derivative of A ;(z) with the respect to z [19]. As a con-
sequence, we have been able to evaluate the weight distributions of the QR codes
for primes 151 and 167. These are tabulated in Appendix “Weight Distributions of
Quadratic Residues Codes for Primes 151 and 1677, Tables9.19 and 9.20, respec-
tively.

A new probabilistic method to obtain the minimum distance of double-circulant
codes based on primes has been described. This probabilistic approach is based on the
observation that the minimum weight codewords are always contained in one or more
subcodes fixed by some element of PSL, (p). Using this approach, we conjecture that
there are no extremal double-circulant self-dual codes longer than 136 and that this
is the last extremal code to be found.

9.9 Summary

In this chapter, self-dual and binary double-circulant codes based on primes have
been described in detail. These binary codes are some of the most powerful codes
known and as such form an important class of codes due to their powerful error-
correcting capabilities and their rich mathematical structure. This structure enables
the entire weight distribution of a code to be determined. With these properties,
this family of codes has been a subject of extensive research for many years. For
these codes that are longer than around 150 bits, an accurate determination of the
codeword weight distributions has been an unsolved challenge. We have shown that
the code structure may be used in a new algorithm that requires less codewords to
be enumerated than traditional methods. As a consequence we have presented new
weight distribution results for codes of length 152, 168, 192, 194 and 200. We have
shown how a modular congruence method can be used to check weight distributions
and have corrected some mistakes in previously published results for codes of lengths
137 and 151. For evaluation of the minimum Hamming distance for very long codes
a new probabilistic method has been presented along with results for codes up to
450 bits long. It is conjectured that the (136, 68, 24) self-dual code is the longest
extremal code, meeting the upper bound for minimum Hamming distance, and no
other, longer, extremal code exists.

Appendix
Circulant Analysis p = 11

See Tables 9.6, 9.7 and 9.8.

9 Algebraic Quasi Cyclic Codes

250

(penunuoo)

8°G°0 0clI 01°68°C0 611 L9€T0 811 01°68°CY 10 LII 8LCYET I orl
8°9°€CT0 SIT OI°8°L9CCTTO PII 01'SY Tl el 01°68°LY 41! 689°¢°0 LTI
0T ‘8°L'SYT°0 011 6°8Y 601 9°CYy 801 01°6°8°C ‘I LO1 L9€T I 901
01 ‘8°L9% Tl SOl 696C€T 01 0L ‘8°LY°E €01 69°6T1 01 9%l 101
01 ‘8°L°9°T 001 8°L9°C v 0 66 6°L9%°0 86 8°SCYy L6 016°9°S¥C0 96
01°9v S6 LSy ¥6 14 €6 O1°LSP€E1°0 6 01°6°L9°Sv°C 16
01°9CTT0 06 0I‘89°¢v°c’0 68 8°L9C°¢ 88 68°LS0 L8 01'8°LS€1°0 98
8°L9OCY T T S8 O0I8°LOCYETT 8 01°8°9°C "1 €8 6°8°€1°0 8 0T °L°9°¢ T 18
0Tv°€T0 08 0T‘6°L°9°CT I 6L 689°CECT0 8L 01°68°9%°1°0 LL 6°CTTO 9L
01°68°9CYT1°0 SL 0196 €Tl YL 68GC10 €L 68°L9°C L 6°L°€T T IL
9°¢’I 0L 0T ‘6°8°S°C 69 01°9°CYTT0 89 LS¥TO L9 6°L9CYTO 99
0168960 $9 660 9 68LOECTT €9 8¥€CTO 9 68LSYEl 19
870 09 6°L9°€0 65 68LIOYVTT 8 68LYOCYETO LS 01°6°CYC 96
6°89°CYT0 99 8°€C 123 6°L9°CT 139 0T ‘8°L €l (43 0T ‘8°9°¢ ‘I 53
69CYE 0s 01°6°€°C0 6y 018°C€TT0 8F 68°C Ly 68°L9CTO 9
9°C €TI0 Sy 6°8°LYE v 68LOCYO €& 68LYOCYETT TP 01°L9%°0 184
LSTT or 0I‘8°L9%°€’0 6¢ 01°89°T°0 8¢ 8°L9°C e Tl LE 0168V € 9¢
L9°€ S¢ 89C €TI0 Y€ 01°6°8€TT0 €€ 0180 [43 LYTTO Ie
vT0 0¢ 01697 €Tl 6C 01°8°6 T I 8¢ LY 1 LT 6°'L9CY 9C
01°8°L°ET 4 8°L9CYT0 vZ 0IL6'8SY'€10 €T 01°6°L¥ T 7 06 8°L9YeTT 1T
68910 0T 9¢ 0 6l 0I°LSYT 81 8°L9FET0 LT S¥°0 91
TT0 Sl 8°9°CY 1 4! 01°6°8°¢C el 6°89YV€TO cl 01°6°C T I I
0T°9°%°€’0 0l 6°8°CT1 6 8C0 8 8°9%v°cT L 01°LY€TT°0 9
LS€ETO S 10 v 6°L9CTT0 € 9T 4 €1°0 !
(0D ! (0D ! (0D ! (0D ! (0D !

aX =+ T JO SIONEJ-UoU ‘X + X + [= (¥)0 ‘[= d sisk[eue JUEINOIL) 9°6 qEL

251

Circulant Analysis p = 11

(penunuoo)

01‘8°L°9°0 SET 01°6°8°LSTO ¥ET 01°9°¢ £ee 01'8°9°Cv°e’e [4%4 6'8°¢TO 1€¢C
9°CYI0 0€C 89°SY'€TT 6TC 01°6°9°CH€TTO 8T 8LV el LTC 0168V T 9¢C
8°LSYET 0 §CC 6°8°LSE e 01‘6°S¥°€T0 €ee L9°CT 0 (444 v€0 1cC
01°6°8°C°€CT0 0TC 0I°68°L°9°C°0 6IC 8°L'S 8¢ 01°6°8 % I LIT 01°8°1 91¢
0T°6°L9°€‘T 0 SIc 01°6°L'ST ¥1¢ 67"l €lc 9%°€T (414 01°LSY°0 11c
6°8SYETT 01T 6°8°L9°CT°0 60T 0T°L9F T 80C 0I°6°L9C V'€ T0 LOT 6°8°9°C°¢c 90¢
€TI0 S0¢ 01°L¥T1 0T 6°8SCYTET0 €0¢ 8Tl 0T 01°6°8 10¢
6°6°€TT 00¢ 01°L°9°6°0 661 01‘8°9°6°€‘1°0 861 016°L°9°C L6l 8°LCT0 961
01°6°9°¢°C S6l 01°8°S Y61 0T°6°€‘T 0 €61 016 °8°LV‘1°0 6l 01'8¥T0 161
681 061 01°68°9%°€T 681 01°8 ‘¢ 881 6'8°0 L81 8 981
68°LSYE0 S8T 0I'6°8°90°CT0 ¥8I 019°¢ ¥ ¢ €81 01°6 ‘8L V€T 81 01°6 ‘LT °0 181
6V T10 08T 6°LSYETO 6LI 016 °8°9°6 ‘10 8LT OI'6°8°L9OGCET 0 LLI 01°9 “S€ °1 9Ll
LSy Tl SLI 01°L°S€°0 VLI 8L9Y¢E €Ll 016 ‘9°S“€'T°0 LT OL'6°L'SHT T ILI
018°CY €T T (U 69°CYT 69T 0I°6°89°CvcTT 891 0T°6 ‘8°L‘9°G ‘¢ L91 6'CvTT 991
01°6 ‘T°1°0 So1 L9°6T 0 91 01°L'S €91 6°9°€TT 91 0I'6°89°Cve 191
68970 091 01°68°9%°CT0 661 01°6°LY€T’l 8S1 67T LST OI°L°9°CTT0 9SI
8°L9OY T SST 6°8°L'STTO ¥SI 8Vl 1391 0T°L¥T0 ST 01 °8°9°GTT0 1IST
016°8°LSYTT0 0SI 6°8°9°¢T ovl 01°6°89%CT1 8yl L9°1 Lyl 01°L°€T0 vl
LSET0 Syl 01 °L°G*E’l 144! 01°68°LT eyl L9YET Wl 6°L9CYET vl
9°C1 Ol 0169V TT0 6€1 0T‘6°L'SYy 8¢l 8°L°TTO LET 01°6°8¥TT0 9El
016°8°L9CTT0 S¢l 0187 °¢€0 Pel 69CY0 eel 0I'8°LY €T 0 (43} 01°¢¥e1 I€1
0T°6°L9°CT 0 0¢cl 8°L€TT 6cl 01°L°0 8¢CI 0T°6°L9C Y T LTT L9SYeTT 9Tl
vel Sel 8°9°CY0 Tl 89y ecl 01°8°L°9°G*E"C Cl 6°9°C€ T 14!

() ! (0D ! (0D ! (D ! (0D !

(ponunuoo) 9°6 IQEL

9 Algebraic Quasi Cyclic Codes

252

(panunuoo)
01 ‘9°¢ ‘Tl 6SE OI‘6°L9°C€T IO ¥SE€ LO'Sv'eC’0O €€ 016°9CT‘I 493 01 ‘6°8°L9 153
01 ‘8 ‘€‘C 0S¢ LY 6vE 01‘6°9°€°0 Ve LOCETTO LvE 89°C el ove
0L ‘8°L9°Ccl Sve 0L6°L9PT0 vpe 019°1 e 01‘6°8°L¥yeT The 6°CYel 823
0L‘6°89°Cy‘C OpE 6°G°l 6£€ 01 8LVl 86c 0l6°8°L°C'CC LEE O1‘6°8°L9OSYT T 9¢¢
01 ‘9°6‘€‘0 SeEE 0I‘6°L9°Ce T YEE [€ee 01'8‘LyT Tee 68YTO %3
6°LYTO 0€€ 0I‘L9CYy 6C¢ 0L v°€1°0 8T 69VE€TIO LTE 0l ‘6 ‘¢ 143
0L ‘6°8°L9°¢"l cTe L9V Tl 1449 01 ‘6°8°Cy €2€ 01‘6°8°L9°C‘T TTE 01‘6°'8°L9O'Sv e’ 1IcCE
8°LCT°0 0z€ 89°¢T1 6I1€ 68LSYTI0 8I¢ 6°L°TT0 L1€ 68°L9YET 91¢
01°6°Sv°0 Sle 8Ly YIE 6°L9YVET T cle 0r‘6‘¥‘cT'1'0 clg 61°0 e
8°C€ Tl 01¢€ el 60 O0I°LS¥eT0 80¢ 69°€¢TO LOE 8°CC 90¢
01 ‘8°L9°C So¢ 687c0 Y0€E 6°8°L°9CTI €0€ OI‘6°SvYT1°0 To0¢ 01‘8°6‘c‘0 10€
01 ‘6°8°LSH€TO 00€ 01 ‘6°LT’l 66T L9C YT 86¢ 896’0 L6T 68°LSYT T 96¢
96l S6¢ €Tl 6T 6°L°9C°C €6C O0l‘6v‘€0 T6C Ol‘6°L'SYE’l 16T
019°¢‘c0 06T LSYT0 68C 0I‘6°9°€C 88¢ 6°€’l L8T 6°LSYE 98¢
8CHeTIO 68T 89 ¢l ¥8C STl €87 01 °8°L9°C‘T‘T 18T L€l 18¢
Tl 08¢ I 6LT 68LYTTO 8LT OILOYVETT LLT 01 ‘6°8°L‘€E 9LT
8°LCETTO SLT SYETO ¥LT 89CY°C €L 6°8°LSYTO TLL 0l6SCHETI ILT
0T ‘6°LSH €TI0 0LT 01 ‘6°LS‘¢E 69C 68°9C°0 89¢ 6°LYE0 L9T 01 ‘8°L°T°0 99¢
0L‘6°'L9%‘c‘c S9C 68°9GCcCO ¥9T 6°8°L°9°CEl €9C 01°6'8°9°C T9T O1°6°'8°L9CETT 19¢C
0L‘6°L€TT0O 09C 68°9CT 65T 9CYeT 8T 0I‘69%‘0 LST 6°€°0 96T
0I°L°9°C ‘T 66T 01°6'8°LET’l ¥ST 01 8V Tl €6T 0189V ‘cT‘l TSt 8°L9°C'€T0 154
89°C 0ST 0I‘6°9CYe’0 67C 0I‘8°6°1°0 8T 6°9°CYTTI0 L¥T 8°C°l 9T
89V€0 YT 01°69°C v el YW 6°89CYETTO €¥T OI°L9TI e 01°8°9CE Tl 1T
01°6°0 ove 69%c0 6£C 6°L'SY0 8€T 6°L°S€’0 LET 9€TT0 9¢T
(0D 1 (X)p 1 (0D 1 (X)p ? (v ?

(ponunuod) 976 IAqeL

253

Circulant Analysis p = 11

(panunuoo)

6 S9v 016°8°9°Cv°1 Y9 OT‘6°LV'€T0 €9 L9CY0 (14 016°8°S¥CT0 19v
01°'8°C°T°0 09 01°6°€ Tl 6Sy 01'8°9°CY Tl 8SY 016°L9T 10 LSy OI°6°8°L9YTT0O 9S¥
L9YTO SSy 8°9°6C€T 1434 89%V1°0 1394 6°8°LSY (494 01°L9Y€ 10 894
01°8°9°C‘€T0 0S¥ 6°9CYETO 6vy 0T°L°9°C°¢ 8y 01°6°L9OCYETO Lbb 0T6°8°L9v ‘0 oy
01°9°¢°¢C 1944 01°€TT°0 1444 8°L9°€¢ 1 vy 89°0 (424 01°LYeT 8%%
0T6°L9°Cv0 Opy 01 6°L°S"I 66y O1°6°LSET0 SEY 018°¢¥€C0 LEY 01°¢°¢ 194
8°L9°CTT0 Stv 6°8°LCT ey 01°6°8°9°€CT’l 294 6°ST [43% 8CCT0 Iey
6°L9°CTT0 0y 01°68°9°C'€CT10 6T 0L ‘6°LV°E 8¢y 01°6°LS°€T0 LTy 8°L°C 9ty
8°9°CT0 Sy 8°9% T I vy 8°9%T0 X474 016°8°¢0 (444 8°LSYE Iy
01°8°L9°CvT 0T L'€T 6l OI°L'S€TT0 S8I¥ 01°8°9°6°0 Ly 68°€TT oly
0I°6°C°€CTT0 SI¥ 01°68°L9O€CTT0 vIY 6°CYIT0 ey 01 °L9°C°l (484 68CYTITO Iy
96vT0 0lv 01‘8°L°9°T‘T°0 60y 6°8FY€T 80% 8°T°0 LOV 01 ‘8°L°9°CT‘0 901
8°L9Cye'T SOv SYvC Y0¥ 6°L9C T €0y 6°L°S oy 6°8°L9OYVE0 10v
01°L9YT 00y 691 66¢ 01‘6°€'1°0 86¢ 8LV Tl L6¢ 01°69°¢T1°0 96¢
6°8°9°CYeT S6€ 6°LY €T ¥6E 68°LOYVETTO €6€ 9°6°€T0 6¢ 0T6°8°S°0 I6¢
01°6°LY°1 06¢ 6°89CTT0 68¢ 01°6°S 88¢ L9°S L8E 016°9C°0 98¢
8°LY'ET G8¢ 6°8°LSE€ETO 8¢ 01 °'L9Y°€E €8¢ 68CY0 8¢ 01°L9°¢T I8¢
LS 08¢ 6°8°LTO 6LE 6°8°L9GCY T 8LE 0T ‘8°L S T LLE 6°9°S 9LE
0T°L°9°C€ 10 SLE LS°0 YLE 8°9°¢C €LE S CLE 89°CYTITO ILE
01 ‘8°L°9°C‘€‘0 OLE L'€TTO 69¢ 6°L9CYT0 89¢ 6°8°L9Y L9¢ 01 °6°8°9°I 99¢
689V TT0 S9¢ 6°8°L9C€T ¥9€ 6°8°LOCYETO €9¢ 6°L°CTO ¢ 016V T°1 19¢
8°LYTO 09¢ SYET0 6S¢ 01°'8°L9°¢T0 8S¢ 01°6°L9YT'l LSE 01°6°L°STT°0 9¢¢

(0D ! (0D ! (0D ! (0D ! (D !

(ponunuod) 9° dqEL

9 Algebraic Quasi Cyclic Codes

254

(panunuoo)

01'89°¢¥CT0 0LS LYET0 69¢ 896CT 1 89¢ 01°LY°E0 L9S 01 v°C 99¢
01 ‘8°9°C ¥y S9¢ 6°9CYETT ¥9¢ 6°LSYT £9¢ 9°¢T 9% 6°8°LYVETO 19¢
8V T 098 S€T 6SS [4 86¢S 01°6°8°S€ Tl LSS 8L'SYETO 9¢¢
01°6°8%°0 939 689Y°€T 12433 9°¢ Y ET 133 6°L9°C¢ (439 01°68°9°G€’l IS¢
01°9°¢¥°€T0 0SS 0T ‘89°CY‘CTTO 6vS 0T ‘8°9°%°0 2149 0T6°L9°T LYS 0T ‘8°C ¥ I %Y
6°8T1°0 949 01 8°L'SP €0 PrS OL°6°L9VCl €¥S 016°8°L9Y‘T ws 0T6°L°€0 849
01°6°8°L9V'ETO OFS 01 ‘8¥‘€T1°0 6¢£S 01 ‘6°L°9°¢ 8¢S L9°SpE LES 0T°L°S°T 0 9¢¢
o1y °1 339 8°L°9°€°0 ¥ES 0L ‘6°8V°CTO €£§ 6°6°€TO (433 6°LSYETO Ies
68°L9OYVEL 0¢cs 6°L€E 6TS 01°L9C¥1°0 8T§ 69T10 LTS 01°L°9°C€Tl 9¢s
6°9°C 1543 6°LSY T ¥ZS OI°L9C*VT0 €T 01°6°L9SC Y€ TT TTS 8°L°€TO 1cs
6°L9YVETO 0cs 9°T°0 61§ 0T ‘LSP°T 81¢ 01°8°9°C°1 LIS 01°8°9 % I 91§
LY €TI SIS 68°LT0 IS 01°68°9°€‘1°0 €IS L9°0 (459 6°L9°CYE0 IS
0T °6°v ‘€ T 01¢ L9°CT T 60S 6°L°9°CY€T 80S OILOCHETTO LOS 6°8CYT 90¢
016°S°€0 Sos 6°89C YT I ¥0S 01°6°8°9F €0$ 01°9°¢¥€1°0 08 8°L9T 1 10§
SVl 00$ 01°69Y°€1°0 667 01°6°8°L9°T°0 86v 689 L6V 01°6°6°C0 961
6°C0 Sev 018°L¥T1T°0 Y6¥ 0T ‘8°9°¢°0 cov 01°6°C oy L'SY €T 16y
8°9°CT0 06 01°6°9°CY€T 68y O01°6°8°L9°CTT 88 8°L°€TO L8Y OI'8°L9OCYTTO 98y
01°6°L9Y 13314 6v'€T 1614 8°C€TO €8y 01°69°¢YT'l (414 6°¢T 181
01°6°0 08y 019%°€C 6Ly 8°L9°T0 8Ly 6°L9YVTTO LLy 0T ‘8°L°€°0 oLy
68V Tl SLy 01°L°9°¢°0 YLy 690 €LY 9¥TT0 Ly 016°8°CT1°0 ILYy
6°S€1T0 0LV 01°6°C 69% O1°6°LSV°€0 89F 670 L9y 01°6°T 991

(0D ! () ! (0D ! (0D ! (0D !

(Ponunuod) 976 AqEL

255

Circulant Analysis p = 11

(panunuoo)

01°6°9°C°¢ Tl 069 L9°G el 689 68°LETTO 889 01°6°Cv°e L89 6Tl 989
6°8°L9CT 0 $89 6°8°L9CYE 89 96 £89 01°8°L°9°C 89 01 ‘8°9 189
0T6°8°LSCY" T 089 8°L°CE0 6L9 01°LC 8L9 0TvyTT0 LLY 68°C°¢T 9L9
01°L°9°€T1°0 SL9 01°6°L9°CY°¢c L9 01°8°CYT €L9 O0L6'8°LSTE€TT TLY JACK A 1.9
0T6°9°T°0 0L9 01°8°¢C°0 699 0T°6°L°9°CT T 899 01°9°0 L99 8°L°9 999
0T°L°€T 0 §99 6'8°CYE 99 01°6°8°9%% €l €99 8°LCY0 799 01°6°9°C°1 199
8°L¥€0 099 8°9°¢ 659 01 6°8 ¢l 859 01°6°8°L9°C°C LS9 6°8°9C0 959
01°L°9 9% 8°L9YTT 0 <9 8°9°1 €S9 6°L9 <9 9 1€9
6°L9°C€ T 059 68°LI9OYVTO 6v9 8P €Tl 8¥9 01 ‘8°L°9°C Tl LY9 01 ‘6°8°L°S 99
016°LCT0 Sv9 0T ‘6°L'S€T T 9 0T ‘6°8°L°9vE €¥9 016°8°L9CY'CT T¥9 018 %"l 179
01°6°¢C0 09 6°8°C€l 6¢£9 9°¢Y T 8¢9 6°8°LYET 0 LE9 OT'8°LCETO 9¢£9
01°8°9°€T1°0 339 LY€TO €9 01°8°L9OY'ETT0 €£9 8°L9CY el (4% 01 °L€T0 1€9
0T6°8°L°0 0€9 6°CY€0 679 8°C°¢ 879 0T “L¥T°0 LT9 8°L9YETT 979
6°L9YVT §e9 6°8°L9YVTO 29 018°L'STT 0 £¢9 LT 79 01°68°CYC0 179
0196y T 029 01°6°L9°S°€ 0 619 01°9C 819 68°6CTO L19 016890 919
01°6°8°L9°C'€T0 SI9 L9YTO 719 01 ‘8°L°9%T0 €19 01 Sy 19 6°8°6°¢0 119
01°6°S €l 019 01 ‘8°¢ €l 609 8°L°9°C°0 809 SYTITO L09 OILSY€TT 909
01'¥°0 S09 01°68°LYTO 09 8°L°CET €09 016960 209 01°68°L9°T0 109
0T°6°8°L9°C' V€0 009 6°89T1 665 6°LY€ET 865 01°6°89°CTT L6S 01°8°¢T1 96S
016°8°L°Sv°E S6S 01°9°¢°T°0 ¥6S 6°8°S €65 01'8°L°SvET S OL°SYETTO 168
01°C°1 065 6°9%€C 68¢S 9%°C 88¢ 8°9°CYET0 L8S 0T Ly el 98¢
6°9°¢ g8¢ 6°8°L9°0 78S 01°6°C ¥ T €8¢ 01°6°8°L9°€"C 78S 01°9°CETT0 18§
6910 08S 0I°68°9°CYc 10 6LS 01°'8°€°C0 8LS 8°L9°C°C LLS 6°L9Y1 9LS
01 6°8°9°C‘€‘C SLS L9°C VLS ¥€T €LS 01 ‘8°L°9°¢ CLS 01°S¥T°0 ILS

(0D ! (0D ! (0D ! (0D ! [(0)D 1

(ponunuod) 976 IAqeL

9 Algebraic Quasi Cyclic Codes

256

(penunuoo)

8°L9OY€TO S08 01°L°E 708 01°8°9°¢C €08 8°L9°CET0 TO8 OI'8°L9°C¥cTO 108
68VEl 008 OI'S°L'S¥ET 66L LT 86L 896CCTO L6L 6°L°9CT0 96L
6°L°STO S6L 8°CYCT V6L 0T °6°8°C°T €6L O0T°6°LVTT0 T6L 8°L°T T6L
01'8°L9C Yl 06L 01°¢¥T0 68L 8°L°9°€C 88L OI'8°LOCY'C L8L S8°LOCYECTTO 98L
01 ‘6°9°C°¢ S8L 01°9%°1°0 8L 01°6°L9°S°€’C €8L 01 °6°L°S°0 8L L9GCYTT0 I8L
6°8°L°€T 08L 9°¢T 6LL 0T°L'S¥TT0 8LL OT'6°8°LTT0 LLL 01°6°L 9LL
019°¢'1°0 SLL 01°¢’1 VLL 6°8°C€TTO ELL 6LV CLL 9°€°0 ILL
8°9°CY°e 0LL 6°L9T 1 69L 0T °L9°S ¥ €0 89L O1°'6°8°L€TO LIL 6°89°€1 99L
6°8°L9CETTO S9L 01°8°L°S°0 oL 01°6v'eT €9L 6°9%Y€l oL 01°,L°9'6°€T0 19L
01 ‘v ‘¢ 09L 0110 6SL L'SYE0 8SL 68°LT1 LSL 01°8°LS€Tl 9SL
6°8¥T0 SSL 01°6°6°€T ¥SL 8°LYT0 €SL 0T °L°T SL L'S€T T ISL
01°6°9°€TT0 0SL 01°9%T1 6vL 01°c°0 87L O1'89°CY 10 L¥L 0161 VL
01°C0 SvL 01 L 01°6°L°9°ST 0 VL 01 8°SYTT0 CTyL 8°L9°C I 1L
0T°6°9°C€1°0 ovL 6°€TTO 6¢L 9%°€T0 8€L 6°L°9°C€TO LEL 0T‘8°L°€TT 0 9¢L
0T6°8°LCE€ETT0O SEL 8°LCET YEL 6°L9Y°E €eL 6°LSTT EL 016°8°9°C I€L
8LSCYTT0 0L 6°L9Y'€E 10 6TL 01°L9Cp el 8CL 8°L9Y°0 LTL O1°8°L9'SY'E 10 9TL
0T°6°8°LCT 0 SCL L9 €0 YL r€TTO €L 6°8°LYT L 6°L°T 1L
8°CreEo 0TL OI'8°L9°ST‘0 6IL 01°8°9°C°0 8IL 0189V TT°0 LIL 69CYETO 9IL
9%°0 SIL 68LYETT VIL 01°6°8°9°¢ €IL OL6°LY€ETO CIL 019°¢ IIL
6°9%T1 O0TL OT‘8°LV'€TT 60L OT6°L9OYVETTO 80L 01°'8°¢¥°0 LOL 018°9¥°€‘1°0 90L
68°¢ SOL 6°LYT1 0L 6°L°S€T €0L 6°L°SE T 0L 0I‘6v°1°0 10L
6°89°CY 00L 6°8°L9°C€’0 669 8V ‘¢ 869 89YVCTTO L69 6°L9°T°0 969
01 ‘6v°€T S69 0I°9F €TI0 ¥69 OI6°8°L¥CTT0 €69 01°9°¢T 1 69 8°L°9CT°0 169

() ! (0D ! (0D ! (0D ! (0D !

(ponunuoo) 9°6 IQEL

257

Circulant Analysis p = 11

L 0€6 018°L9%‘€‘T 676 01 6°8°L°CT T 876 6°SYeET LT6 6°8°L9€T0 976
016890 §T6 018°€T°0 Y26 018°9%°¢T0 €26 01°6°8°LSCY0 TT6 OI'68LO9CYTO 1T6
6°C¥TO 0c6 9%°€10 616 016°9%C 816 L9°6€T L16 016°8°SvT‘T 916

689FV€ 10 SI6 6°LYETTO 716 8°C Y El €16 6°8°LSCYCTTO Tl6 6°8°L9CYT 116
8V €10 0l6 01°68°T°0 606 019Gy I 806 69t L06 8°CTT0 906
6°8°LSYET <06 0T ‘8°L°S‘¢ Y06 01 6°8°L°S€‘T €06 6°89€TT0 06 8°¢’T 106
016°9°CvY1°0 006 L9°6€0 668 01 ‘8°L°9% 10 868 L€0 L68 01°6°9°¢"I 968
OL‘6°L'SYT0 S68 01°68°LOYVETO P68 8°LC Tl €68 68°LSETO 68 960 168
0T°6°9% 1 068 019°%CT0 688 69%T0 888 6°8°L9°1 L88 9°6€TT 988
8°9°CYETO 688 S1°0 788 01‘6°8°C°€1°0 £88 6'89%v°c 88 0T°L°9°T°0 188
01°68°L°€'T0 088 0I'68°LOCYT O 6L8 01°6°L°€T 8L8 01°8°C¥°¢E LL8 01°6°L°9°€T0 9L8
6v€TO SL8 01‘6°8°9°Cv 0 VL8 L9TTO €L8 01°6°9 CL8 6°89°CYc0 IL8
9°CYPETTO 0L8 €T0 698 0T°L'S¥°e 898 L'S'E L98 6°L9CYT I 998
8SYTO S98 01°Ly 798 01°6°8°L I €98 01°9°6CT0 98 01°68°LY€0 198
L9V €TTO 098 0T LS T T 658 OT'6°'L9CYTTO 8S8 6F7€T0 LS8 6°8°L9°C 9¢8
01°8°L°ST 68 01‘6°L9F%°€‘0 768 8°L°E €68 Sv'e (4% 6°8°LYV0 168
9°6T10 0S8 6°L9CET 0 68 8°C YT I 878 6°L9€C LY8 8°C¥T0 98
(S| S8 6°L9°C°0 8 01°L9'SpeT £v8 01°8°9°¢°¢ w8 LY'e 178
01°68°C Y€l 0F8 6°S°€c 6¢£8 9v°¢ 8¢8 € LES 01°69Y°€T0 9¢8
6°8°9°CYET €8 0T6°ST0 €8 01‘6°L'S¥€ET £e8 L9CYT (43} 0T ‘8°L9¥ 1¢€8
0T6°L9YT0 0¢£8 L9y ET O 678 6°L°9CYETTO 8T8 6°LCT0 LT8 01°8°LCT°0 98
696CT0 68 01°‘6°€C’l ¥C8 689°CY10 €28 0I8°LSYT0O T8 01°6°8°L°S€"0 1C8
0T'8%°T°0 078 0I‘68°LSFCTO 618 6°SYETTO 818 0T‘8°L¥°0 LI8 8°L°9CY 918
8°9TT0 SI8 $T0 718 6°8°LY 1 €18 0I‘'6°S¥e1'0 TI8 01°9F €l 118
01°89°¢v°€l 0I8 01°68°LSY°C 608 018y 808 8°L9°CTT0 L08 01°L€T’l 908

[(0)D ! (0D ! (0D ! (0D ! (0D !

(Panunuoo) 9°6 dqEL

9 Algebraic Quasi Cyclic Codes

258

0 €201 01 ‘8°L°9°€‘T0 ol 6°9°C€CTTO 1201
68°L°9C 0201 0L°L9YT1°0 6101 01 ‘vP€T’l 8101 LS el L101 01 ‘8°L9Y el 9101
6°8¥V€TTO SIOT 0T ‘6°8°9°V‘€TT1°0 ¥IOT 6°89%°C €101 0T ‘8°L‘Sy clol 01°8°9°¢C 1ot
0T°6°L°9°0 010t 689G €T I 6001 01 °8°L°SY‘T‘T 8001 8°L°9°CYTO L00T 6°8°LC T 9001
6°8°L9CYTT0 S001 01°68°9T1°0 001 LSVl €001 SPETI 001 0168 °S ‘¢ 1001
01°8°C 0001 6°9°CY1 666 6°8°L9TT0 866 6°L°€T0 L66 6°LSE€ETTO 966
0T°L9C v Tl $66 L*S°T v66 01 ‘68°CV€T €66 0T6°L¥°0 266 018°C¥€1°0 166
LY°0 066 01°LG'€T 686 6°8CYETO 886 O0OI8LSYETTO L8 69610 986
6°LSYTTO $86 016y 786 01 ‘8°6°¢C £86 01 ‘8°9% ¢ 86 01°'8°9%°C 186
01°6°T1°0 086 01°6°L°9°C 6L6 OI°68°LOYVT 8L6 6°SY LL6 6°LSYETT 9L6
01 ‘8°LCT'I SL6 01°S*¥°€0 vL6 L'STETTO €6 0I68°SHETTO TL6 L*9°€T0 1L6
6°8°L€T 0L6 0T°L°9¥%‘€T 0 696 8°L°9%C 896 0168 ¥°€TT L96 01°9°¢¥°0 996
01°€C $96 016°8°LYT 1 96 01°68°L9CY €96 L9y 296 6°8°L°€0 196
6°L°0 096 016°8°9°CC°0 656 6891 866 8°¢0 LS6 SETTO 956
0169V ‘¢ §S6 8°LYETTO ¥S6 0L 8°L9°S¥0 €56 6°9°GC€0 66 01°68°9°CYE€TO 1S6
8°LCYT 0s6 01°LTT0 676 69€T0 876 01'8°LY'€TO LY6 LT0 96
6°8°L SY6 8V TTO Yv6 01 ‘6°9°Cy £vo 01‘6°L'S¥TO (479 6°8°9°C1 16
01°L°9°C°0 0r6 6°8°CY°l 6¢£6 6°LY 8¢€6 016 T LE6 0T6°8°L9°€ 0 9¢6
01°6°L°E’l 53 8°L°0 €6 6°8°LCECTT €€6 6°LT E6 01°8°L 1€6
(0D ! (0D ! (0D ! [0 ! (0D !

(Panunuoo) 9°6 AqEL

259

Circulant Analysis p = 11

(penunuoo)

016°9%°1°0 0CI 6°8°L9YVTT0 6l 89YTIT0 811 01'8°L¥°€0 L1 01°L'S€T 0 oIl
01°69°¢v€CT0 SII 01°S€’l 41! 8'Cve el 68°LSY I TIL O1°6°LS€TT0 111
8V€TT0 oIl 8°L°9°C 601 8°9°CY el 801 01°6°Sv€C LOT O1°8°L°9°Cv°CT 901
689%VTO SOT 6°L9°C¥€ 10 0T 8°9°T°0 €01 01°6°S¥€TT0 201 8°L°ST 101
69°C €T 0 001 8°L°9°CYE 66 01'8°LY 86 8°CT I L6 8°L°9TT°0 96
018 T S6 01681 ¥6 01°6°L9CYETTO €6 01°6°8°LT T 6 0T ‘8°L°9°C 1 16
8°S 06 8°9C YTl 68 01‘68°9%°€T 1 88 8°C L8 01°68°9%v°¢ 98
8°LSYTO c8 01°8°¢°C 78 0T6°8°LSYT 0 €8 0T °L°T°0 [} 8°L 18
01°9°C0 08 01°6'8¥°T°0 6L 8°LSY 8L 8°L°9°€°T0 LL 0T°L9°Cv°0 9L
8°LTl SL 01°L9°C¢v T YL 01°8°9°¢°€TT0 €L O01°6'8°LSYTT TL 9°6¢’l IL
6°L9°T 0L 89 69 6°9°CTT0 89 LY el L9 8°9°C°¢c 99
01°8°C°€‘1°0 S9 6°L°€0 ¥9 8°9°C0 €9 01°6°L°€T T (4 6°8°L9YE 19
01°9°6°€T0 09 9%€TIT0 6S 68°LST0 8¢ 8°L9°C LS 01°689%C 96
L9V TT0 199 8°L9%€T 123 6°8°LSYET T €6 01°6°8°L9°€T0 TS O0OI'8LOCTTO IS
01°8°L°9°€0 0s 6°SYT 6y 6°9Y€10 14 01°9°¢y Ly 016°9°CY°1 9y
8y S OL°L9'SY'ETT v 01°LSYeT 3% 8¢l (44 6960 184
SET0 (1% 6°8Y% T 6¢ 6°8°C€T0 8¢ 6°8°CCTT LE 01°6°89°CYTT 9¢
016°9°¢ 33 01°8°9°¢°T°0 143 8°LY'E €€ 01°6°L°0 [43 0T6°L9°C" 1 53
8°L°C€T 0 0¢ 0168070 6C 01 ‘Sv'e Tl 8¢ 6°LY €T LT 0T°6°L°SPETO 9T
6°LSYE0 Y4 01°L°9°¢T0 ¥C 01°8°9°6°¢C €0 68°L9°CCTT TC 8°9%°T 1c
8°L9°0 0C OI'8°LYT°0 ! 01°8°9°C v €Tl 81 L9CYE0 Ll 0160 91
6°8°L9Y°0 Sl 8°L°9°GCT T i4! 0T16°8°L9°C°C 0 €l 6°LS€ET 0 Tl 01°6'8°L9v'eT 1I
67€0 0T 8°L9'¢¥eTT 6 01°8°¢°0 8 6°89%V€l L 016°8°L°9°0 9
01°LT 0 S 8°Cv0 4 01°6°Sv°€0 € 87 T0 (4 ¥TT0 !
(00 ! ()P ! ()P ! (0P ! (00 !

aX+ TJosIoNe)‘ x + ¥+ ¥+ = (¥)0 [= d sisk[eue JUEINOI) L6 IqEL

9 Algebraic Quasi Cyclic Codes

260

(panunuoo)

68°LTT0 OYT 01°68°L9°CTT 66T 8LSYECTT0O 8T OI°L9SYTTIO LET 8CYTIO 9¢C
0T°6°L°¢C See 6896 0 1474 0167 0 24 0T 6°9% ‘€0 [4%4 6°C 1€C
0T6°8°L9VT°0 0£T 01 ‘6°8°LV I 6CC 01°6°9°C 8¢¢ 01°¢°¢°0 LTC 01°8°9°¢S 97¢
6°L€C Y44 01°8°LS°€’T 144 01°8°L9°¢C €2C 01°6°L9Y€T0 TTT 8Y°€0 1cC
8°9°CYT0 0ce 6°8T1 61¢C SYEl 81¢ 0T9% ‘€10 L1C 01 ‘8°9°C T T 9I¢
6°CYETO SIc 016'8°L9Y 1414 6°8°L9€" T €IT 016'89°Cye’l TIT 01°6°8°C°¢’l L1¢
8°LSY 10 01¢ 01‘8°L¥T0 60T 0T ‘8°L9°€‘TT0 80T 6°LCT0 L0T STT0 90T
6°9CYTT S0T 01°6°8°L9OvT0 ¥0T 01°6°8°C°1°0 £0¢ 01°¢'v°¢c 0T 6°C€TTO 10¢
01°L9°CTT0 00T OI°LSYE€ETTO 661 01°8°9°¢°€’l 861 689V €CTTO L6l 6°8°C°¢ 961
016°8°L9TT0 S6I 01°S*v°C v61 6°8°9°€C0 €6l SYETTO 61 LS T 161
01°6°CC 061 01‘6'8°Sv°E 681 6°L°ST 881 6°L9°C L8T O1°6°8°LOV'CTTO 981
01°6°L9°CY G81 6°LSYET 781 (94 €81 01°6°C°€T 1 81 01 ‘6°L°9°C'€T 0 181
01°S 081 L9°G€T 0 6L1 01°8°¢¥T1 8LI 01°L°SC LLT 6°8°L9OGCYT I 9L1
6°8°LY SLI Sy VLI 01 ‘8°L°E €LI 6°8°L9C T CLI SY Tl IL1
01'8°¢v°c0 OLIT 8°LY'ET 691 01'6°Sy 891 01°LY'€T T L91 01‘68°L°C'€T0 991
0T6°L9°C v TT S9I 6°€T0 91 6°9%°€c €91 S 91 016°89°€‘C 191
6710 091 €T 651 6°8°LCTO 8S1 8°9%°0 LST 01°8°¢°¢ 9¢1
01°6°L9%°0 Sel 9°CYET0 124! 01°8°L°€T0 €61 01°68°€°T°0 (49! 689°CYC IS1
Svee 0S1 0T ‘L9°GC¢ T 671 01°6°8 V€T 14! 0TS ¥€1T°0 Lyl 01°6°9°CYTT°0 4!
0I18°L9CYE0 SPI 0I°6°8°L'SY€T vyl 8°LSYE0 eyl 019 1 (44! 6°89€T0 84}
L'€T T orl 6°L°9°€TT 6¢l (S| 8T 016°L¥€ETTO LET 0T°L¥YTT0 9¢l
66T 1 gel 8°9°¢T Pel 68T eel 01°9°¢°T 43! 01°8°9°¢°T°0 Iel
01°69°¢C°0 0€1 01°6°L°9°C€TT 6Tl L9€0 8¢l 68°LSE0 LTl Y10 9¢Cl
8°L9Y 4! 6°L9YVET 14! 6°8°SYTO 4! 8°L°9°C €T cl 016°LTT°0 14!

(0P ! (0P ! (0P ! (0P ! (0P !

o(panunuod) L°6 IqeL

—

\O
N

Circulant Analysis p = 11

(panunuoo)

01°6 09¢ 8V Tl 6S¢ 01°9°€TT0 86¢ 01°6°L°9 LSE 01°68°C¥C 9¢¢
6°8°L9T T 933 016 % ‘¢ 1433 6°8°L9OYVT €6€ 0T 8°LSY€TT TSE 0I‘6°L9F €T O TSE
8°LCE 0se 6°8°¢0 6v¢ 018 8v¢ 8°LYETO LyE 6°9°¢¢c %3
01 ‘8°L°S Sve 01°L°6' €T T 1423 6°STO eve 01°8v°C [4%3 6°CYET0 Ive
0T 6°8°9°C°0 ore 8°L'CYTT 6¢¢ 89°CyeT 8¢¢ 01°6°L°€TO LEE 01°6°8°L 9¢e
0189710 gee 689YVET Pee 016°89°CY €€€ 01°6°L9CY'E’0 T€EE 01°6°8°CHTT0 I¢€g
016°8°Lv€TT Of€ 016°8°C T I 6C¢ L9%°0 2143 8°9°C€CT0 Lee 8°L9°1 143
8°L9°€ T 0 gce 01°9 YTE 6°8°L9OCYET €TE 6°L9CY T (443 01°L°9°€¢ Ice
8°LT0 (1743 L'S€T 6l¢ 01°9%°0 8l¢ 0L °LS¥TO LIE 01°LSYe0 91¢
0T ‘8°L9% €10 SIE 8°CT0 1413 01 ‘8°6°€ T I cle 01°6°9°S cle 6°CTT0 ITe
6°8°LETO 0le 016°L°S€T 60¢ 01°8°9CTT°0 80¢ L9SYET LOE 69CYE0 90¢
6°L9°C€TTO So¢ 6°L9°CT0 ¥0¢ 68CYTI €0¢ 01 ‘8°L'SY"1 0€ 01°6°8°LSY'E0 10€
0189y 00¢€ 01°6°8°C 66¢ 016°9°€T1 86C 0I'8°LOCY'CT L6T 6°8°L9°C°C 96¢
LTTO S6¢ 01°6°89°C°0 v6¢ 016'8°LV°E €6 01°6°8°LYT1°0 T6CT 6°LCETO 16¢
01°68°9°C€'T°0 06T 96T 68T 01°6°8°L9GCY‘c 88T 01°LT 1 L8C 01°89°¢°¢‘0 98¢
0T6°8T1°0 ¢8¢ 6V TT ¥8¢ 01°L°9°C €8¢ L9°CTT0 8¢C 01'9%C 18¢
9Y%°€C 08C OI‘68°L9CYET0 6LT L9V €T 8LC 01'9%T1°0 LLT 01°C 9LT
01°6°L°9T°0 SLT 68°L9YVETO YLC LT €LT 68YV€TO CLT 01°6°L'ST T ILT
01°L¥T 0LT 016°9°CY€TT 69¢ 961 89¢ (4! L9C L'S¥°0 99¢
69CYET §9¢ 016 T 1 ¥9¢ 8°LCTTO £9¢ 016°S¥1°0 9¢ L9T1 19¢
0T6°L¥1°0 09¢ 01 ‘8°L°9°C YT 0 6ST O01°6°L9V'€TT 8ST 01°8°9°0 LST 9°¢1T°0 9¢¢
0 9Y4 0T°L°9°C*€‘0 ¥S¢ 6°8°9°1 1354 01°8°C°0 (44 01'8°9°CvT 1s¢
8°C€’l 05¢ L'STO 6¥C 8°L9YEl 8¥¢C 68€TT0 LVC 0I‘8°L'S¥0 ovC
6°8°L9°C°0 944 01 9°C°€ T I L4 01°CT0 eve 6°LY€ETO e 6°L9GCT0 IvC
() 1 () 1 ()P ! () ! () 1

(Ponunuod) £'6 AqeL,

9 Algebraic Quasi Cyclic Codes

262

(panunuoo)

L'SYETO 08y 6°8YV€TI 6Ly 6°L°9CYETT 8Ly 01°8°LSEl LLy 01°8°9°CY€T0O 9LV
0T °L°S°0 SLy 01°6°8¥€TT0 vLv L9Y T eLy 01°8°S¥T°0 Ly L9SYET ILy
6°L9°€ 0Ly LYT0 69 0T°L°9°C°T°0 89 6°LYV°0 L9V 6°8°L°0 99

01°68°9°CY €TI0 S9¥ 6°8°L9°T°0 Yor 6°L9°SCY 0 (3% LYy (414 L'SYETO 9%
6°8°LSETT O 09 L1 65y 6°8°LGET 8SY 0TL9F €l LSY 6LVl oSy
016°8°L9V‘€ 0 SSy 01°6°9°0 1434 L9 1394 01°6°S°1 (434 016°8°L°€‘0 ISy
L9YE oSy 01°L°9°6T 1 (144 016°9°Sv°c 8¥¥ L9°T0 Lvy 6°9°CYET 144
0T6°LSYTT 0 Sk 6°8°LOVETO php SYTO evy 8°9°6°0 (444 LS 824

01 ‘8C¥°1°0 ory 9°¢CT0 6¢ct L'SYT 8¢ey 01‘6°LYT0 LEY 0189°C ocy
0T L°G°T 394 6°89T1T°0 1494 8°L°9°C€C 294 01°6°C¥T1 (494 01°6°€T1°0 Iev

01°'8°L9v°0 0ey L9SYy 6Cy 6°8°LCE T 8Ty 01°9°¢°€“1°0 Ly L9°C€TT 9ty

8°L9YETTO ST 0L6°8°L9°CTT ¥T¥ OL6°L9'SY1°0 €T¥ 01°6°L9°CC (444 8V el Iy
01°8°6°€C°0 ocy 6°SvE 61y 6°8°CYE0 8Iy L€ LIy 6°9°C¥€TT0 9Iv
6°9Y°€TT Sy LY€0 1484 01°8°Cy cly 01'vCTo (484 8Ll L1y
01 '8°LYT1 01y 8°LYTTO 60 68°LSCYET0 8OV 6'8°6°C LOY 01°6°L°ST0 901
L9°€T Sor 01 ‘6°8°9 1404 689G Y0 19014 0T°L9% T 0 v 0T °6°8°L°CE 10v

6 V€TI0 00¥ 8°9°€¢TT0 66€ 01°689V°€TO 86¢ 01'8°9%°€C L6E 016°9°CT1 96¢

6°LSYT S6€ 8LOCYTIO v6g L'SET £6¢ 01°L9°S c6¢ 01°6°L°9°¢0 I6¢

6°LSYETTO 06¢ 01°9°¢v€’C 68¢ 0168y 88¢ 0T ‘8°L°9°CE L8E L9SYT 0 98¢

0T6°8°L9CY" I G8¢ 01'89%°C0 ¥8E 6°8°L9OCETO €8¢ 018°¢C TWE L9CYETTO 18€

01°6°Ly 08¢ 8°L°S€TO 6L¢ 0T6°8°L9°C 8LE 01691 LLE 01°L'v'e 9LE

01°6°8v°€°C SLE 0T L€'l vLE 01°€‘1°0 €LE 6°8°LYOCYECTTO TLE 016 ¥°€1°0 ILE

01 ‘6°8°L€’l 0LE 01 °L 69¢ 01‘8°L9Y°E 89€ 0I'89°CYET0 L9€ oIy 99¢

01°8°9°C‘1°0 co¢ 0T°6°'L9V‘T ¥9¢ 01 LV T €9€ 016°L9°CTT0 T9¢ 6°CT I 19¢
()P ! ()0 ! () ! () ! () !

(Ponunuod) £'6 AqeL,

263

Circulant Analysis p = 11

(penunuoo)

6°L9°CT T S6S 01°6°8°9°C€TT ¥6S 01°L°€C €65 0T LS P el 68 8°LT°0 16S
y€T0 065 01°6°S°€C0 68S 6°LSYT0 88¢ 01 '8v'€Tl L8S 68°L9°C¢ 98¢
8°L9°CT 0 S8 6°8LCYECTO ¥8S 6°8°LYTO €8¢ 0T°L9%‘€‘0 8¢S 0T6°L9°C T 18¢
0T6°L9°CTT°0 08S 01°8°9°1 6LS 0Tv°1°0 8LS 8CYET0 LLS O1°6°8°L9C'ET 9LS
0T6°8°Lv 0 SLS 6v°€C VLS 01'8%TT°0 €LS 01°6°9°C°T°0 TLS 01°6°9Y€TT0 ILS
6°LSYTO 0LS OT‘8°LS'E€TTO 695 8°LVT 89S 01°6°8°L9°C'T0 L9S 6V €l 99¢
018°L°ST1 S9¢ OIv'€T10 9S8 9%°¢0 €96 681 9¢ 68°LYET 19¢
80 I 09¢ 8°9°CY 6SS 01 °6°8°L°9°C€TT0 8SS 689Gy LSS 8°0% €T T 9¢¢
vl 999 68V TIT0 1259 016°89°CvT0 1399 6v 43 01°9°¢¥T0 1SS
6°LYET0 0SS 69l 61S 8°L9CYET0 8¥¢ 8°L9°¢ LYS ve 1%
6°L9°C 194% 8°L°9°CY0 1425 r€ET0 evs 01°6°'Lv €T ws L9°€TT 0 IvS
6'8Y°¢c (0% 6°9°€TT0 (39 0T6°8°LOYVT'I 8¢S 689CYET0O LES 01°8°C 1 9¢s
8°¢eC ges ¥ 1239 6°8°LST 1 €es 01°8°€°0 (439 (1) A Ies
0T ‘8°L9% T 0es 0T°L°S‘¢E 6CS 6°LYT 8¢S 01°6°89°G°¢ LTS 0TS ¥°€T0 9¢¢
01°6°L9T 1 §cs 01°6°8°LT0 %Y LSV el €S veETa s 69CYTO |49
68°L€TO 0cs 016 v'€C0 61¢ 01°68°SY€T°0 8IS 01°6°L9'SY'ET LIS 68°LOYECTT 9IS
0T°L9%‘€T SIS 6°S°T0 148 01°8°L°ST0 989 9CTT0 (459 8°9°CTT0 IS
v°0 01S 0I°68°9°CTI°0 60S 01°6°9°¢T°0 80§ 8V°1°0 LOS L'STT 90¢
01 '8°L°1 U8 6°SY0 Y08 01°6°LSY"1 €0¢ 01‘68°Sv"l 0SS 689CYTIT0O 10S
01°9°¢C 00S 018°L9%C 661 0T ‘v°€°0 86¥ L9°S‘¢ Lé6v 8°9°CCTT 96y
0T 8°L¥ €l Sev L9CYTO 6y 01°6°8°9°T°0 €6y 01°6°8°S°€°0 oy 01 8°L9C'ET0 1l6v
0T°L'S€T 0 oot 01 6°L°9°€C 631 0T ‘6°9°% Tl 887 01°6°8°Sv'€TT LSY 67T0 981
LY€T S8y 8°L°9F% €0 8y 016°89%T1°0 €8y 0T°L°€TTO 8y L9°S T 18y

()P ! ()P ! ()P ! ()P ! ()P !

(ponunuoo) £°6 dIqEL

9 Algebraic Quasi Cyclic Codes

264

(penunuoo)

LSV €T OIL 01°6°8°9°C" 1 60L 6°8°L9 80L 0T6°L°S‘€‘0 LOL 8°LCETT 90L
68°LSYE SOL 0I6°89°CHPCT YOL OI6°8°LVET0 €OL 68°LOCETT0 TOL 68LYT0 10L
01°9°¢°¢ 00L 0T ‘LS VT T 669 L*9°6°0 869 01°L°9°6°T 0 L69 6°S 969
8°L9CYETO S69 89°¢Ye0 Y69 6°9°CT £69 0T°L9°1 69 9% T1 169
0r‘6°6°¢ 069 0169V €l 689 01'69v°¢€T 889 0I6°L9°C°€T0 L§9 01°LY°0 989
6°LYTTO $89 68°CY ¥89 01 ‘8°T°0 €89 01°8°L9°C0 89 6°89YVT T 189
016°L°ST 0 089 9°¢Y€TO 6L9 01'8°Cv€T 8L9 01°8°9°CYTT0 LLY 018°9°C ¥ I 9L9
8°L¥ €T 0 SL9 6°L9YE 0 vL9 OT°6°8°L9V ‘€T €L9 6°L°S‘C LY 6°8°L T 1.9
68CTT0 0L9 6°L9CY'ETO 699 8°L9CY T 899 01°9°T°0 L99 0T ‘6°8°L°S T 999
68°L9¢€C S99 0I6°8°L9°CT°0 +99 01'89%T1 €99 0I6°8°L'SYTO T99 OISyl 199
6°8°L9CYET 099 69°T°0 659 01°6°LSV'T 859 0T6°8°L°T°0 LS9 8°CT0 959
6°9°C°1 9% 01°9°¢¥°1°0 9 6°C¢’l €59 S TS9 0I°68°L9CYETO 189
9°C €TI0 059 01°6°S°€'T°0 619 6°1 8Y9 01°6°8°9°C"1 LY9 01 ‘8°L°9°C'€T 1 99
9°1 Sv9 01 ‘8°L'€T T 142 6°89%1°0 €v9 6°9°¢ T (42 6°8SYETTO 179
S (] 09 1°0 6¢9 019 ¢ 8¢9 8CYETT LE9 68°1°0 9¢9
01°L9YT°0 33 016 8Y°€0 €9 9610 £€9 01°68°9°¢°0 (43" 01 ‘6°L9°GC el 1€9
6°89°CETTO 0€9 0T6°L‘S 629 01°6°C°0 879 011 L29 016°9°CvT 929
8°L°C0 §¢9 01°6°L 1 Y29 6°LSYET €29 LYTO 9 0191 129
L9°6'€TO 0¢9 01'8°LTT0 619 01°6°L9Y°‘E 819 01'8°L9°SCy L19 6°SCYTTO 919
01610 S19 01 ‘8°9°¢ T I ¥19 0189y 0 €19 0T°8°L9°T 0 Cl9 6°8°L9GCTTO 119
OTL9F€TTO 019 0L°6°9°CFETO 609 01°L¥€1°0 809 68°9°7C L09 018°L'SYT 909
01°6°8°¢ S09 01 ‘6°8°S°€C 09 8l €09 01°6°8°L9°C°€°0 709 6°8°L9°€°0 109
6°8°S°l 009 016V T 66S 6°LSY 865 89T 1 L6S 6°L9YVT T 96S

()P ! ()P ! ()P ! ()P ! ()P !

(ponunuoo) £°6 dIqEL

265

Circulant Analysis p = 11

(panunuoo)

01°8°9°C v ¢ ce8 9°¢ Pes 01°9'%°€T0 €€8 018°L9OVTT0 T€8 9°0 1¢8
8°L9YTT 0¢8 69°C€TO 68 8°9°¢°0 878 01°6°8°L9°C'CT LT 01°6°8°S 98
9°¢ 68 6'81v°0 ¥C8 01°68°L9C €78 9°6¢€C (44 69°CY 10 1C8
68CYET 08 01°9°¢°0 618 8°C¥€TO 8I8 0I°6°89%V'C’T0 LI OI‘8°L9°C€T0 9I8
01 ‘Y€l SI8 01°LSYy VI8 9y €18 01°6°L V€0 CI8 01°¢T 1 118
9vE’l 0I8 01°6°8°9°¢"1 608 6°LS T 808 6910 LO8 01°8°LS°T0 908
L9CYTT S08 68V €T 0 708 016V TT°0 €08 01°6°L9°G*¢ 08 96 e 108
8°L9OYTO 008 01°6°S¥T0 66L 9°CYTITO 86L OI°LOCETTO L6L 68LOCTTO 96L
016°8°9°Cv°c’0 S6L 6°89CY T Y6L L'€T0 €oL 01°6°L¥T 1 6L 8V €T I6L
018°L¥€T 06L 9°C 68L O1'8°SvETTO 88L 8°CCTTO L8L 019°¢T 98L
6LV S8L 0r‘6°¢’l ¥8L L9T0 €8L 6°L9°€T0 8L 01°L9°€‘T 0 18L
0T ‘8°L°9%‘€T0 08L 8LV I 6LL 0T 6°8°0 % I 8LL 9°¢T1 LLL 6°8°L°S 9LL
0T ‘8°L°Sv°E SLL 0T°6°9°C°¢T VLL 6°8°L9YT ELL 01'8°¢TT0 CLL 01°LCTTO ILL
01°6°8°LS€TT OLL 6°L°CE€T I 69L 68CY10 89L 89%VE10 L9L O1°L9OGCP €10 99L
9%°T0 SoL 6°9°CY oL 016°89°C‘C €9L 01°8°9F%°€TT°0 T9L 6°SYETT 19L
6°8°L¢C 09L 6°L9CYT 6SL 01°9°¢¥°€’0 8SL 68°L9CYE0 LSL 0T6°L°S€T 9SL
01°8°L9°CYTT SSL 6°LT'l YSL 01°9°CY €TI0 €SL 689°¢ <SL 01°L9Y T 1 ISL
6°8°L9CY 0SL 6850 6vL 6°9°¢T 8YL 6°8°LCTT LyL 69T VL
016C°0 SPL O1°8°L9OCY' €TI0 ¥hL 01°6'8°¢T0 evL 6°8°L9CT0 L 69 IvL
6°L9°C€T OovL 01°6°LSY€TO 6¢L 6°¢ 8€L 01‘6°L'SY 0 LEL 68°9°CEl 9¢L
6°9°€0 SeL 01 ‘6°8°9°CT1°0 YeL 8°CTT0 ceL 6°8 (475 L'€ET0 IeL
016°CT1°0 0€L 6'8°9°C 6CL 6°8°LYEl 8CL 8°L9°C 10 LTL 6'8°¢T 9CL
8°L°9°C€0 gL 6°LOYVETTO ¥TL 01°6°8°9°C°€T0 €TL L9YT CL 01°8°LC IcL
6°L 0CL 0T°L°9°¢T T 6IL 8°CYT 8IL 6°L9Y LIL 69YTTO 9IL
01 ‘8¢l SIL 6°L€’l VIL 01'8v°'€T0 cIL 01 ‘68°LSY CIL LOYETO I1L
() ! ()P ! ()P ! () ! () !

(ponunuod) ' dIqeL

9 Algebraic Quasi Cyclic Codes

266

(panunuoo)

01 ‘8°9% ‘€0 096 6°L€TT O 656 8°L9CYT 856 0T°L9°Cv° T LS6 O01°8°L9OYVETT 956
0T 8°L°9°¢ 1 §S6 016°9°C°¢C ¥56 6°89°CCT0 £56 0T6°89°Cv‘1°0 s6 6°L°S0 156
01‘6°€°0 056 01°LY€TO 66 6°8°L9CYTO 8¥6 01°68°L°9°C LY6 8°¢Tl 96
0T6°L°€T 0 Sv6 016°8°Sv°0 6 01 ‘6°8°C°€TT0 €v6 0T8°9 ¥ €1 e 01‘6°L9VTTO 1v6
L9°€E"T 0v6 0I‘68°L9°CY0 6€6 8°CT0 8¢€6 6°L9Y 10 LE6 016°€T1°0 9¢6
01°S°€C g6 8°L€0 ¥€6 8°L9°¢ Tl £€6 L'S€0 (439 LS 1€6
0T6°8°L9CYTT 0 0¢6 8°L'SYET 626 L'S€TTO 876 €°0 LT6 0T°8°L°€‘T°0 976
016 °8°LCY el §T6 8°¢ ¥Z6 01°6°C¥€’l €76 01°8°9°¢C0 o 8°C°€0 126
0T°L9°SveT 0 0c6 L9°6T 616 €T 816 8°9°C I L16 0T°L°9°C e 916
01°€°C0 Sl6 6°89°€T T ¥16 01°9°¢T1°0 €16 8°L°CT (419 01°8°¢T1°0 116
68°L9CETO 016 OI'8°L'SY'€T0 606 6°L1°0 806 LYTl L0O6 €1 906
8°L9%T°0 S06 01°6°L°C Y06 6°€CT0 €06 6°L9°C€ 0 06 6°9%T 106
8°9°¢ I 006 6°8°LSYT 668 016V €TI 868 6°89°C1°0 L68 0T6°8°L°9°1 968
L9YETO S68 €T1°0 768 01 ‘8¢ ve’l £68 01°8°L°9T"1 68 01°68°€T1 168
01°6°8°LVET0 068 6°89CYETT 688 8°LOGCETTO 888 6°9°C€TT L88 01870 988
0T6°L9¥" 1 G88 01°¢°'1°0 788 OT°LSPT°0 £88 01°¢ 788 01 °6°8°LCTT0O 188
01°68°¢C°0 088 01°L°€°0 6L8 9%°1°0 8L8 6°L9° LL8 01 '8v°¢ 9L8
6°89%v°c 0 SL8 6°8°LYE0 VL8 OT ‘8°LSV'CT0 €L8 6°CY°1 CL8 6°L9CET IL8
01°6°¢C 0L8 9°¢YT 698 L'SYTTO 898 6°L9°€T0 L98 01°9°¢ye1 998
01°68°L°S°0 S98 01°68°LY‘T 798 01°6°L°9°CYTO €98 01697 T0 98 68°9°CTI 198
6°8°C€T0 098 6°8°LYETTO 658 01 ‘8°¢‘T 868 9°¢T I LS8 01°L°9°C€T 9¢8
01°6°8°LCET 0 68 016°9CT1T°0 ¥S8 9°¢¥°0 €68 019%°€T1 (4% 8°LETTO 168
8°9°CYETTO 0S8 6°L9YVT0 6v8 0T ‘6°LSV'€TT 8r8 01697 L¥8 01°6°8°LE€ETT0 9¥8
9°6°€0 S8 0T 6LV €l 78 9CPeTT £v8 8°9°CT w8 01°9°¢°0 178
01°69°¢¥°0 0¥8 01°8°9°¢ 6¢£8 01°8°L"9 8¢8 0l 6°8°L'SPETTO LEY 01°8°L°9°C°0 9¢8
()P ! () ! ()0 ! () ! () !

(ponunuod) L6 dIqeL,

267

Circulant Analysis p = 11

0T6°8°L9CY'CTT €201 01°¢¥T1°0 <0l 016°8¥T0 1201
8°0 0201 68LSY0 6101 6°L9SCYTTO 8101 S0 L101 6°L9CTT0 9101
0T °8°L°S‘€‘0 ST01 8°6T0 Y101 0T'8°L¥V€TT 0 €101 01 v €T clol 01°0 1ot
6°6°¢T 010t LY€ETTO 6001 01°8°L°0 8001 016°9°C°€‘0 L001 01°6°8°L€T 9001
01°Sv 0 So0T1 01°68°L°ST 001 689°CYETO €001 OI‘8°L'SYTT°0 T001 689 1001
01°6 ¥ T 0001 6°0 666 6°8°SY el 866 01°L9Y L66 6890 966
89F%°€TO S66 01°9°¢‘1 766 6°S°€0 €66 01°9°¢¥T1 66 016°L9°T°0 166
6'89°C°¢T 066 6°L9°CYE 686 01'8v°€°1°0 886 01°6°8°0 L86 6°LGCTTO 986
0T6°LSv‘E 86 0T6°L9°C°0 786 0T8°L9Cv‘T°0 €86 0I1°6°9°C€TT0O T8 O0I‘68°CYCTO 186
016°9°¢T0 086 8°L°ST 6L6 6°L9OYET 8L6 6°8°LT LL6 6°8°LYT T 9L6
L0 SL6 01°6°8°L9°CYT ¥L6 01 ‘8°L°9°CC €L6 8°LYV°0 CL6 6°8°¢1 1L6
8°9%°¢c 0L6 L'ST 0 696 8°9°¢CT0 896 8°9°CY1°0 L96 6°8°LSYTTO 996
697T°1 $96 69Y€TO 96 01°L°9°0 £96 01°€T 1 96 01°6°8¥T1 196
()0 ! ()0 ! () ! () ! () !

(ponunuod) L' dIqeL

268 9 Algebraic Quasi Cyclic Codes

Table 9.8 Circulant analysis p =11, jx)=14+x+x>2+x>+x* + x> +x0+ 27 + x5 +
x2 + x19 factors of 1 + x”

i J)

1 0,1,2,3,4,5,6,7,8,9,10

Weight Distributions of Quadratic Double-Circulant Codes
and their Modulo Congruence

Primes +3 Modulo 8

Prime 11

We have P =[}3]and T =[91¥], P, T € PSLy(11), and the permutations of
order 3,5 and 11 are generated by [) 1], [& 1] and [) §], respectively. In addition,

-
S

PSL,(11) =2%.3.5.11- = 660

and the weight enumerator polynomials of the invariant subcodes are

AG (@) = (1+2%) +15- (8 +2') + 3221
Aggf‘”(z) =1+ +3- (P +2'%)+8-2"
AG, @ =1+ +14.2"

AS @ =(1+2*)+4 (P +%)+6-"
AD (@) =(1+2)+2- 77

The weight distributions of %, and their modular congruence are shown in Table 9.9.

Table 9.9 Modular congruence weight distributions of %
i Ai($2) A (83) A (Ss) Ai(S11) A () n;® A
mod 22 mod 3 mod 5 mod 11 mod 660

1 1 1 1 1 0 1
8 3 0 4 0 99 1 759
12 0 2 1 2 596 3 2576
16 3 0 4 0 99 1 759
24 1 1 1 1 1 0 1

Ai—Ai ()
Vl[=
660

a

Weight Distributions of Quadratic Double-Circulant ...

Prime 19

269

We have P =[} 4] and T =[], P.T € PSL2(19) and the permutations of

0
order 3,5 and 19 are generated by [% 1], [

18

PSL,(19) =22 .3%2.5.19- = 3420

and the weight enumerator polynomials of the invariant subcodes are

(Gz)
(Ga)
A9319 (@)=

(S%)
A@w

(519)
Aué’w

1+z)

1+)+2 z

AG @ = (142°) +5- (& +22) +80- (=2

o) 1

28) 4250 (z16

(z8 +z32) +38- (z12 +zzg) + 14 (216 +124) +16- %

(18 +Z32) +22. (212

(
= (

A%L(z) (1+z)+14 22
= (

}]and [& 4]. respectively. In addition,

24) +352.7%0

28)_’_57. (116+Zz4)+84_220

The weight distributions of %9 and their modular congruence are shown in

Table 9.10.

Prime 43

We have P = [18

Jand T =[9%]. P.T € PSL2(43) and the permutatlons of

order 3,7, 11 and 43 are generated by [% 1], [5 4], [2 4] and [& /) | respectively.

In addition,

Table 9.10 Modular congruence weight distributions of A9

PSL,(43) =2%-3-7-11-43- = 39732

i Ai(S2) Ai(S3) A;(Ss) Ai(S19) Ai () n;® A;
mod 22 mod 32 mod 5 mod 19 mod 3420
0 1 1 1 1 1 0 1
8 1 6 0 0 285 0 285
12 0 4 0 0 760 6 21280
16 2 3 0 0 570 70 239970
20 0 3 4 2 2244 153 525504
24 2 3 0 0 570 70 239970
28 0 4 0 0 760 6 21280
32 1 6 0 0 285 0 285
40 1 1 1 1 1 0 1

a
ni=

Ai—Ai ()
3420

270 9 Algebraic Quasi Cyclic Codes

and the weight enumerator polynomials of the invariant subcodes are

Al 2)(z) (1+2%%) + a4 (10 +272) + 1232 (20 +2%%) + 10241 - (24 4 254) +
54560 - (2% 4 200) + 198374 - (3 + 2%°) + 491568 - (20 + 272 +
839916 - (240 + z48) 41002432 . 74
AGI@ = (14+25%) +32 (20 +2%8) 477 (2 +25) 4160 (2 +25) +
330 - (Z32 +Z56) + 480 - (236 JFZ52) +616- (140 +Z48) +704 . ;%4
AGY @ = (1+2%%) +7- (104 27) + 168 (20 +258) + 445 (24 +) +
1960 - (2% +260) + 4704 - (32 4+ %) +7224 - (20 + 22) +
10843 (%0 + 2%%) 4 14832 ¥
A(;,ZZ (@) = (l + 288) +6- (216 + 272) +16- (124 + 264) +6- (228 + zéo) +
9. (242) +48 (3 +22) + 84 2
AG @) = (142%) + 1424
(543)(Z) (1 +Z88) 1.4

&13

The weight distributions of %3 and their modular congruence are shown in
Table9.11.

Prime 59

We have P = [23 58] and T = [(1) S| P. T e PSL,(59), and the permutations of
order 3,5,29 and 59 are generated by [& 1], [& 25 |. [& 1] and [& &], respectively.
In addition,

PSL,(59) =22 -3-5-29.59. = 102660
and the weight enumerator polynomials of the invariant subcodes are
gij() = (1 + leo) +90- (ZZO + zloo) +2555- (124 + z%) +
32700 - (2 +2%) + 278865 - (2 + %) + 1721810 - (= + M) +

7807800 - (140 + ZSO) 426366160 - (z44 + z76) 467152520 - (z48 + 272) +

130171860 - (252 + 268) + 193193715 - (z56 + 264) + 220285672 - 2

271

() 'v—="v
I 0 I I I I I I 88
vo1zE 0 v91ZE 0 0 9 I 0 w
7€87669 9L1 0 0 0 0 0 0 89
STOTELSES €8hel 690ST 0 0 z I I 9
SYYY8EETI9T LSESTH v91ZE 0 0 9 I 0 09
OLYI8LOTYSTT — €89€L9S +IS8 0 0 z 0 z 9¢
TSTSPLO6SSOVT €6L9LESE 9L9S 0 0 9 0 0 s
96LIETE08E9TY 61TLOLKOT 88HIT 0 0 0 I 0 8
OYYSYPTIT896S 6TLITTOST TI8ST z € 0 0 0 b
96LTETE0SE9TY 61TLOLKOT 88HIT 0 0 0 I 0 ov
TSISPLO6SSOVT €6L9LESE 9L9S 0 0 9 0 0 9¢
OLYISLOTYSTT — €89€L9S +IS8 0 0 z 0 z €
SYYY8EETI9T LSESTH v91zE 0 0 9 I 0 8T
STOTELSES €8hel 690ST 0 0 z I I T
787669 9L1 0 0 0 0 0 0 0z
vo1zE 0 v91ZE 0 0 9 I 0 91
I 0 I I I I I I 0
'y 7 TEL6S POW (2)'y € pow (E¥§)'y 11 pow (11§)'y L pow (L§)'y ¢ pow (£§)'y g pow ()Y 1

Weight Distributions of Quadratic Double-Circulant ...

€vg5 JO suonnqLISIp JYS1om 90uanISuod IeNpojy [1°6 dqEL

272 9 Algebraic Quasi Cyclic Codes

AGY @) = (1 + z‘z‘)) +6- (z20 + zwo) +19. (224 + z%) +132- <228 + 292) +
303 (2 4+ 2%%) + 878 (0 4+ 25) + 1848 (0 +2%) + 3312 (4 +) +
5192+ (2% +272) + 7308 - (2 + 2%) + 8931 - (2% + 2) + 9496 - 2

AL @ = (1+2") 4285 (2 +2%) +21280- (220 4+ 24) +
239970 - (148 n 272) 4525504 - 20

A%si)g() = (1 +7120) 412, (220 +ZIOO) +711 - (240 +180) + 2648 - 60
A%ZSQ;(Z) _ (1 + Z120) +4. (132 + Zss) +6. .50

Ags;)() = (l +le0) +2. 60

The weight distributions of %s¢ and their modular congruence are shown in
Table9.12.

Prime 67

We have P = [20 66] and T = [(1) %], P,T € PSL,(67), and the permutations of
order3,11, 17 and 67 are generated by | & 1], [& 5], [& 4] and [66 P] respectively.
In addition,

PSL,(67) =2%-3-11-17-67- = 150348

and the weight enumerator polynomials of the invariant subcodes are

AGD () = (14 2199) 4578 - (2 4 2112) 4 14688 - (25 + 21%%) +

173247 - (2% + 2'%) + 1480768 - (*° + 2'%) + 9551297 - (%0 + 2%0) +
46687712 - (z* 4 22) + 175068210 - (z*% 4 %) + 509510400 - (8“) +
1160576876 - (2% + 2°7) + 2081112256 - (%0 + 27°) + 2949597087 - (c + 27%) +
3312322944 - %

Agg(z) =1 +Z136) 118. (z24 +Z112) 188. (sz +Z103) 171 (132 +z]04) 4
816 - (z36 +ZIOO) 42001 - (240 4 Z96) 44344 . (244 4 Z92) 4
8386 - (% +2) + 14144 - (=2 + M) 421260 (=% + %) +
28336 - (2% +27°) + 33599 - (z% + 27%) + 35616 - 2

A%3()7(z) =(142%) 466 (2 +2'12) 4682 (% + %) 1+ 3696 - (32 + 21%) +
12390 - (2% + 2'%) + 54747 - (2% + %) + 163680 - (z** + %) +
318516 - (% + %) 4753522 (22 +) + 1474704 - (% + %) +

1763454 - (0 + 27) 42339502 - (2* + 27?) + 3007296 -

273

Weight Distributions of Quadratic Double-Circulant ...

099201

='u

®

() 'v—="v
I 0 I I I I I I 0zl
7981L 0 T981L 0 0 z 0 z 001
$159928¢ (423 S669L 0 0 0 0 ¢ 96
0062Y67119 $9565 0 0 0 0 0 0 6
SPLOTTTISSLY 00vTEY ShLTE 0 b 0 0 I 88
0£96988587788 1 TTE0LEEST OT1L1 0 0 0 I z 8
960£8886E67L6E SLLTTSTLSE 96S19 0 0 I 0 0 08
0T6£010SISISOE9Y TIT6YESOISE O 0 0 0 0 0 9L
OV9S6LSSHEGSTESOE ¥SSTIGYOVLET O 0 0 0 0 0 w
097€S8E9E986ET09TT TTHISTLLIOSTT O 0 0 0 0 0 89
S619LS90LYSLLSTLST OTIELOOT6SOST S669L 0 0 0 0 € 9
8FP169L0EE6T00TSEE 1SSHY66YISOTE 8SLSS z 9 € 0 0 09
S6T19LS9OLYSLLSTLST OTTELOOT6SOST S669L 0 0 0 0 € 95
097€S8E9E986ETO9TT TTHISTLLIOSIT O 0 0 0 0 0 s
OY9S6LSSTEGSTESOE ¥SSTIGYOVLET O 0 0 0 0 0 8
0T6£0T0STSTSOE9Y TIT6YESOISE O 0 0 0 0 0 b
960€8886E6H7L6E SLLITSTLSE 96S19 0 0 I 0 0 ov
0£96988S878S TT60LEEST OTTLI 0 0 0 I z 9¢
SPLOTTTISSLY 00vTEY ShLTE 0 b 0 0 I 143
0062767119 $9565 0 0 0 0 0 0 8T
S159928¢€ e S669L 0 0 0 0 € T
7981L 0 7981L 0 0 z 0 z 0z
I 0 I I I I I I 0
ly .7 099201 POW (2)'V 6§ pow (659)!'y 67 pow (635)!'y ¢ pow (S§)!'y ¢ pow (£9)!'y Lz pow (2§)'y 1

655 JO suonNQLISIP JYS1om 0UANISU0D IR[NPOJN TT°6 dqBL

274 9 Algebraic Quasi Cyclic Codes
A(;él()lz(z) — (1 +Zl36) +6- (Z24 +2112) +16- (236 + ZlOO) +6- (244 _’_292) +
9. (% +2%) +48. (z56 + Zso) + 84 . 7%8
AGD (@) = (14+2"%6) + 14 .8
AG () = (14+2¢) +2. %

The weight distributions of %s; and their modular congruence are shown in
Table9.13.

Prime 83

We have P = [é 8’5] and T = [(1) 81, P, T € PSL,(83), and the permutations of
order 3,7, 41 and 83 are generated by | & |] [&1] [o4] and [s] respectively.
In addition,

PSL,(83) =22.3.7-41-83. = 285852

and the weight enumerator polynomials of the invariant subcodes are

A% = (14 2'%) 4196+ (2 +214) + 1050 (2 4 210) +
20232 (22 +21%0) + 443156 - (20 +21%2) +
4866477 - (%0 + 21%8) + 42512190 - (4 + 2'24) +
292033644 - (z48 + z”‘)) + 1590338568 - (z52 + 1”6) +
6952198884 - (156 n 2“2) 424612232106 - (z(’o + 2108) +
71013075210 - (164 + 1104) + 167850453036 - (168 n z“’o) n
326369180312 - (172 + z%) 4 523672883454 - (276 + 192) +
694880243820 - (zgo + zsg) + 763485528432 - 3

A;g:}) () = (1 + 1168) +4- (z24 + 2144) +6- (228 + 2140) +
96 (22 +21%) 532 (2% + 212) 1437 (10 4+ /%) +
3810 - (244 +Z124) 110572 - (248 +z120) 124456 - (252 +Z116) +
50244 - (2% +212) 95030 - (% + 2'%F) + 158874 - (% 4 2'%) +
241452 - (z68 +21%) + 337640 - (z72 + z%) + 425442 (z76 + 192) +

489708 - (180 n z88) 4515696 - 2%

275

Weight Distributions of Quadratic Double-Circulant ...

8YE0ST
=t
14

GOv—rv
I 0 I I I I I I 9¢l
068L66¢ 9T 1888 0 0 9 0 C (48!
0TE88TCI €LI8 9110S 0 0 0 1 0 801
SLLTELS86TSI 180LICI L8SLE 0 0 0 0 € Y01
910V I¥¥16E8CTY 1 78950056 0899¢1 0 0 S 0 0 001
S01L9ST08SL8CI9 8LY18€9L0Y 19LC11 0 0 0 0 1 96
0rY60866CYS9LO66Y | 6815€6CSL66 899¢1 0 0 9 0 0 6
0681LETI6LOESIESIT 186SYYSTYCeyl TOSOT 0 0 6 0 C 88
0009L60ST6116¥0SS8T 000C1169€8€ECT 0O 0 0 0 0 0 78
YOOTCLCOTLISTITSYLO SYPSYIESOLLISYY THE601 0 0 ¥ 0 0 08
CS66917YSLIL6STELO9TE ¥TTYSSITLLTTOIT O 0 0 0 0 0 9L
SI1961C1€90085L9CT8E9 191C1199966%1Cy L8SLE 0 0 0 0 € L
0V86LS86EO6ETLITSTI08 €819€80998SCIES 9SI8ET C 14 L 0 0 89
SI1961C1€9008SL9CT8E9 191C1199966%1Cy L8SLE 0 0 0 0 € 9
CS669YYSLIL6STELO9TE ¥TTYSSITLLTTOIT O 0 0 0 0 0 09
YOOICLCOTLISTITSYLO SYSYIESOLLISYO THE601 0 0 14 0 0 9¢
0009L60ST6116¥70SS8T 000CT169€8¢€ECT O 0 0 0 0 0 49
0681LETI6LOESIESIT 186SYYSYYCeyl COSOT 0 0 6 0 [4 8
0Y160866C1S9L66Y 1 681SE6CSLO66 899¢1 0 0 9 0 0 144
S01L9ST08SL8CI9 8LY18€9L0Y 19LC11 0 0 0 0 1 or
910V IvY16e8Tyl 78950056 0899¢1 0 0 S 0 0 9¢
SLLTELSB6TSI 180L1CI L8SLE 0 0 0 0 € 43
0TEY88CCI €LI8 9110S 0 0 0 1 0 8¢C
068L66¢ 9¢ 1888 0 0 9 0 C 1
I 0 1 1 I I I 1 0
ty o'l 87€0ST POW (%) 'y L9 powr (L99) 'y LT powr (LIg)!y 11 pow (lIg)'y ¢ pour (£§)'y T pow (¢§)'V ?

L9g5 3o suonnqLusIp JySrom 20uanI3uod JeNPojA €1°6 dqEL

276 9 Algebraic Quasi Cyclic Codes
AS @ = (14+2'%) 463 (22 +2%) 48568 (2% + 21%2) + 617085 - (% + 21%0) +
11720352 - (z°° 108) + 64866627 - (6) + 114010064 - 2%

AG) @ = (1+2'%) +759 - (20 +217) + 2576 - 2
(3534;;)(7) (1 +zl68) +4. (244 +1124) +6.7%
A%Sz:s)() = (1 +zl68) 4.8,

The weight distributions of g3 and their modular congruence are shown in
Table9.14.

Primes —3 Modulo 8

Prime 13

We have P = [Z 1%] and T = [(1) ‘02], P, T € PSL,(13), and the permutations of
order 3,7 and 13 are generated by [% 1], [% 4] and [& |,]. respectively. In addition,

PSL,(13) =2%-3-7-13- = 1092

and the weight enumerator polynomials of the invariant subcodes are

A;g3(z) = (1 +2%) +26- (zg +z20) +32. (z”’ + 118) +37. (212 + z16) 641
EB(Z) (1 +228) +10- (28 +220) +8- (zlo —|—218) +5- (112 +zl6) +16-z14
%3(2) (1 +228> +6- (zs +220) +10- (zlo +218) +9- (112 +z]6) +12. 714
A% @ =(1+2%)+2.2M

S13

AJB(Z) (1 +128) +2.714

The weight distributions of %3 and their modular congruence are shown in
Table9.15.

Prime 29
We have P = [13] and T =[9%], P, T € PSL,(29), and the permutations of
order 3, 5, 7 and 29 are generated by 208 oIt [4] and [%] respectively.

In addition,

PSL,(29) =22-3.5.7-29- = 12180

277

Weight Distributions of Quadratic Double-Circulant ...

(panunuoo)

9008£05919086£678906£LTTT 06L9€LTOSTOSTTITOLL 9cecyl 0 0 0 0 [6
9LEOT6V1S8996LTL8S660SE6E 8E0¥C896901CEITI9LEL 0 0 0 0 0 0 88
YOISOCEVE0SOVOLT IVLYLSSLY CTY1T96L2098960LE991 P8YI11¢C 0 9 0 [0 8
9LEOT6¥1S8996LTLIS660SE6E 8€0¥C896901CE1TI9LEL 0 0 0 0 0 0 08
9008€05919086£6C8906£LTTT 06L9€LTOSTOSTTITOLL 96Tyl 0 0 0 0 4 9L
P7016¥L1200012€601 112098 LY08LEICOSSEE6£600€ 0 0 0 0 0 0 L
CSOLOTO0S68LLISLLIYGISTL 10181S0S08LSS68L 0 0 0 0 0 0 89
VIPY1869€LI19CYELIELO6E YrSye9C6e8cSor86¢El 96Tyl 0 0 0 0 C 9
990209788EEY061 16C6ELY §69965€888CS6LSI] 9zecyl 0 0 0 0 [4 09
0098010€0680L69660CLE YOLEYOOTSITLIOEL CLIT8 0 0 € 0 0 9¢
9609859558086C1 L8061 8L8YSB69LTLLIY 0 0 0 0 0 0 49
¥867€0150€878706C9 ¥1L6680900CC 0 0 0 0 0 0 8y
01€9ST8EIVO1LYOE] 0CCI8IEYISY 0L89S1 0 14 0 0 4 144
6261168850991 68576085 68evIT 0 0 0 0 I oy
9€966LS19TSTI ev0C8ey 0 0 0 0 0 0 9¢
Y8Y01SLOSS L9T61 0 0 0 0 0 0 [43
Y61800L1 6S 96yl 0 0 0 0 [8¢
YOLILS [0 0 0 0 0 0 Ve
! 0 6889 0 ! ! ! ! 0

CG8SYC powt £8 pow I pow L powr € pow ¢ pou 1
4 o U ()'v &)y ()'y)y &)Y (@)Y !

€855 JO suonnqLISIp JYSom 20uaNISU0d IE[NPOIA 6 dqEL

9 Algebraic Quasi Cyclic Codes

278

[4%:1%:14
=t
14

GOv-tv

I 0 6889 0 I I I I 891
YOLILS C 0 0 0 0 0 0 124!
761800L1 6S 926Crl 0 0 0 0 [orl
Y8¥01SL0SS L9T61 0 0 0 0 0 0 9¢l
9€966LS19CSTl £Y0T8EY 0 0 0 0 0 0 cel
6261516C8850991 6856085 68EvIT 0 0 0 0 1 8¢l
01€9ST8EIVOILYOE]L 0TCI81EY9SY 0L89S1 0 14 0 0 C ¥l
786¥£01S0€8178706C9 Tr1L6680900CC 0 0 0 0 0 0 0cI
9609859558086C1L8061 8LBYS869LTLLIY 0 0 0 0 0 0 911
0098010£0680L69660CLE YOLEYOOISITLIOLT TLI918 0 0 € 0 0 Cll
990209788ECTO6716C6ELY €69965€888CS6LSIT 926Crl 0 0 0 0 C 801
VIvY1869€LI19TELIELO6E YrSre9T6e8cSsor86el 9T6Crl 0 0 0 0 [4 Y01
CS0LOTO0S68LLISLLIG969STT 1018TSOSTY0O8LSSO8L 0 0 0 0 0 0 001
¥r0167L120001C€601 1177098 LY08LEITOSSEL6E£600E 0 0 0 0 0 0 96

G868 pow £8 pow I pout L pout € pow z¢ pout !
'y o'l)'v (£89) 'y (o) 'y (tH'v (e)'y)y 1

(PoNUNUOd) p1°6 AQEL

Weight Distributions of Quadratic Double-Circulant ... 279

Table 9.15 Modular congruence weight distributions of %3
i Ai($2) Ai(S3) Ai(S7) Ai(S13) Ai (1) ni? Aj
mod 22 mod 3 mod 7 mod 13 mod 1092

0 1 1 1 1 1 0 1
8 2 0 0 0 546 0 546
10 0 1 0 0 364 1 1456
12 1 0 0 0 273 3 3549
14 0 0 2 2 912 4 5280
16 1 0 0 0 273 3 3549
18 0 1 0 0 364 1 1456
20 2 0 0 0 546 0 546
28 1 1 1 1 1 0 1
a, _ Ai—Ai(H)
1092
and the weight enumerator polynomials of the invariant subcodes are
46 9 12, 48 46 16, 44
A @ =(1+20) 428 (224 24) 4 112 (2 4+ 20) + 304 (10 4+ 24) +
1024+ ('8 4 2%) 41708 - (2 +) + 3136 - (+2%8) 45516 (2 + %) +
7168 - (20 +234) + 8737 - (28 + 2%2) + 9888 - £
(Ga) 14, 46 (18, 42
AGY@ = (14+2%0) + 12 (M + %) +30- (10 +) 432 (1 +22) +

60 - (zz + ¥)+48~(z +73)+60- (z +z36)+96~ (z26+z34)+
105 - (z28 +z32) 1136 7%
AG) @ = (14+2%) +10- ("2 + %) 470 (1% + 22) 4245 (2 + 20) 437222
A(Ss)) = (1 +160) 115. (Zzo +Z40) 132530
A%;)g() = (1 +260) +6- (216 +z44) +2- (218 +z42) +8- (z22 +z38) +8- (z24 +z36) +
1. (Zzs +Z32) +12.730
AP @ = (1+:9) +2.20

The weight distributions of %9 and their modular congruence are shown in
Table9.16.

Prime 53

We have P = [} 0] and T = [9 52] P, T e PSL2(53) and the permutations of
order3, 13 and 53 are generated by [1], [& {] and [& 4,]. respectively. In addition,

PSL,(53) =2%-3%.13-53. = 74412

280

9 Algebraic Quasi Cyclic Codes

Table 9.16 Modular congruence weight distributions of %>9
i Ai(S2) Ai(S3) Ai(Ss) Ai(S7) Ai(Sz) A (1) n;® A;
mod2? mod3 mod5 mod7 mod29 mod 12180
0 1 1 1 1 1 1 0 1
12 0 1 0 0 0 4060 0 4060
14 0 0 0 0 0 0 2 24360
16 2 0 0 6 0 2610 24 294930
18 0 1 0 2 0 11020 141 1728400
20 0 0 0 0 0 0 637 7758660
22 0 0 0 1 0 3480 2162 26336640
24 0 2 0 1 0 11600 5533 67403540
26 0 0 0 0 0 0 10668 129936240
28 1 0 0 1 0 6525 15843 192974265
30 0 0 2 5 2 8412 18129 220819632
32 1 0 0 1 0 6525 15843 192974265
34 0 0 0 0 0 0 10668 129936240
36 0 2 0 1 0 11600 5533 67403540
38 0 0 0 1 0 3480 2162 26336640
40 0 0 0 0 0 0 637 7758660
42 0 1 0 2 0 11020 141 1728400
44 2 0 0 6 0 2610 24 294930
46 0 0 0 0 0 0 2 24360
48 0 1 0 0 0 4060 0 4060
60 1 1 1 1 1 1 0 1
Ai—Ai ()

12180

and the weight enumerator polynomials of the invariant subcodes are

(G9)

A@53

(G4)
A@ﬁ

@) =(1+2"%) +234 (22 +2%) + 1768 - (22 + %) + 5655 - (2* +) +
16328 - (220 +2%2) + 47335 - (22 + 2%) + 127896 - (2% +2"%) +

316043 - (232 +27®) + 705848 - (* + 27%) + 1442883 - (2% +27%) +
2728336 - (2% + 27%) + 4786873 - (z*0 + z%) + 7768488 - (z** + %) +

11636144 - (z* + %) + 16175848 - (% + %) + 20897565 - (** + %) +

25055576 - (z50 + ZSS) 427976131 - (152 + 256) 429057552 - 754

@=1+2"%)+12- P+ +12. (2 +5)+77 (P +)+
108 - (220 +2%) +243 - (22 +2%) +296 - (2% +278) + 543 - (22 +27°) +
612 . (234 + %) 41127 (236 +27%) 41440 - (138 +27%) 42037 - (140 + %) +
2636 - (Z42 4 266) 43180 - <Z44 4 264) 13672 (246 4 262) 44289 . (148 4 260) +

4836 - (z5° 4 ZSS) 14875 - (252 T 256) 45544 75

Weight Distributions of Quadratic Double-Circulant ...

Table 9.17 Modular congruence weight distributions of %53

281

i Ai(S2) Ai(S3) Ai(S13) Ai(Ss3) A (1) n;® A
mod 22 mod 3° mod 13 mod 53 mod 74412
0 1 1 1 1 1 1
20 2 0 0 0 37206 3 260442
22 0 0 0 0 0 78 5804136
24 3 18 0 0 43407 1000 74455407
26 0 0 0 0 0 10034 746650008
28 3 0 6 0 64395 91060 6776021115
30 0 18 2 0 64872 658342 48988609776
32 3 0 0 0 18603 3981207 296249593887
34 0 0 0 0 0 20237958 1505946930696
36 3 6 0 0 26871 86771673 6456853758147
38 0 0 0 0 0 315441840 23472658198080
40 1 0 8 0 67257 976699540 72678166237737
42 0 0 8 0 11448 2584166840 192293022909528
44 0 0 0 0 0 5859307669 436002802265628
46 0 0 0 0 0 11412955404 849260837522448
48 1 9 0 0 31005 19133084721 1423731100290057
50 0 0 0 0 0 27645086470 2057126174405640
52 3 0 1 0 1431 34462554487 2564427604488075
54 0 5 12 2 55652 37087868793 2759782492680368
56 3 0 1 0 1431 34462554487 2564427604488075
58 0 0 0 0 0 27645086470 2057126174405640
60 1 9 0 0 31005 19133084721 1423731100290057
62 0 0 0 0 0 11412955404 849260837522448
64 0 0 0 0 0 5859307669 436002802265628
66 0 0 8 0 11448 2584166840 192293022909528
68 1 0 8 0 67257 976699540 72678166237737
70 0 0 0 0 0 315441840 23472658198080
72 3 6 0 0 26871 86771673 6456853758147
74 0 0 0 0 0 20237958 1505946930696
76 3 0 0 0 18603 3981207 296249593887
78 0 18 2 0 64872 658342 48988609776
80 3 0 6 0 64395 91060 6776021115
82 0 0 0 0 0 10034 746650008
84 3 18 0 0 43407 1000 74455407
86 0 0 0 0 0 78 5804136
88 2 0 0 0 37206 3 260442
108 1 1 1 1 1 1

a .

Ai—Ai ()

74412

282 9 Algebraic Quasi Cyclic Codes

Table 9.18 Modular congruence weight distributions of %

i Ai(S2) Ai(S3) Ai(Ss5) Ai(S31) Ai(Se1) A; () n;® Aj
mod22 mod3 mod5 mod31 mod 61 mod 113460
0 1 1 1 1 1 1 0 1
20 0 0 3 0 0 90768 0 90768
22 0 1 0 0 0 75640 4 5294380
24 2 2 0 0 0 94550 95 10873250
26 0 2 4 0 0 83204 1508 171180884
28 2 2 3 0 0 71858 19029 2159102198
30 0 0 1 0 0 68076 199795 22668808776
32 0 1 0 0 0 75640 1759003 199576556020
34 0 0 3 0 0 90768 13123969 1489045613508
36 2 0 3 0 0 34038 83433715 9466389337938
38 0 1 1 0 0 30256 454337550 51549138453256
40 0 2 0 0 0 37820 2128953815 241551099887720
42 0 0 3 0 0 90768 8619600220 977979841051968
44 0 0 2 0 0 22692 30259781792 3433274842143012
46 0 2 1 0 0 105896 92387524246 10482288501057056
48 0 2 0 0 0 37820 245957173186 27906300869721380
50 0 2 0 0 0 37820 572226179533 64924782329852000
52 0 2 1 0 0 105896 1165598694540 132248827882614296
54 0 2 3 0 0 15128 2081950370302 236218089014480048
56 0 2 2 0 0 60512 3264875882211 370432817595720572
58 0 2 2 0 0 60512 4499326496930 510493584341738312
60 1 2 1 0 0 20801 5452574159887 618649064180799821
62 0 2 1 2 2 102116 5813004046431 659543439108163376
64 1 2 1 0 0 20801 5452574159887 618649064180799821
66 0 2 2 0 0 60512 4499326496930 510493584341738312
68 0 2 2 0 0 60512 3264875882211 370432817595720572
70 0 2 3 0 0 15128 2081950370302 236218089014480048
72 0 2 1 0 0 105896 1165598694540 132248827882614296
74 0 2 0 0 0 37820 572226179533 64924782329852000
76 0 2 0 0 0 37820 245957173186 27906300869721380
78 0 2 1 0 0 105896 92387524246 10482288501057056
80 0 0 2 0 0 22692 30259781792 3433274842143012
82 0 0 3 0 0 90768 8619600220 977979841051968
84 0 2 0 0 0 37820 2128953815 241551099887720
86 0 1 1 0 0 30256 454337550 51549138453256

(continued)

Weight Distributions of Quadratic Double-Circulant ... 283

Table 9.18 (continued)
i Ai(82) Ai(S3) Ai(Ss) Ai(S31) Ai(Se1) A (I0) ni? Aj
mod?22 mod3 mod5 mod31 mod61 mod 113460

88 2 0 3 0 0 34038 83433715 9466389337938
90 0 0 3 0 0 90768 13123969 1489045613508
92 0 1 0 0 0 75640 1759003 199576556020
94 0 0 1 0 0 68076 199795 22668808776
96 2 2 3 0 0 71858 19029 2159102198
98 0 2 4 0 0 83204 1508 171180884
100 2 2 0 0 0 94550 95 10873250
102 0 1 0 0 0 75640 4 529480
104 0 0 3 0 0 90768 0 90768
124 1 1 1 1 1 1 0 1
Ai—Ai ()

a
ni=

113460

AR @ =(1+2"%) +234 (2 +) + 1962 (0 +27) + 9672 (7 + %) +
28728 - (2% + 2%) + 55629 - (*® + 2%%) + 69692 - 2>
AV @) =(1+2"%) +6- (B +5) +2. (0 + 78 +8- (0 + %)+
8. (242 +Z66) +1. (152 +256) +12.7%
Agﬁ;)(z) =0+ Z108) 12 7%

The weight distributions of %s; and their modular congruence are shown in
Table9.17.

Prime 61
We have P = [129 %8] and T = [(1)6(? , P, T € PSL,(61), and the permutations of
order3,5,31 and 61 are generated by [{1 . [& 5 |- [& 1] and [& &], respectively.
In addition,

PSL,(61) =22-3.5.31-61.- = 113460

and the weight enumerator polynomials of the invariant subcodes are

284

G

Aﬂm -

(Gy) _
A@a -

(83) _
A@m -

9 Algebraic Quasi Cyclic Codes

(1+2124) +208 - (20 +21%4) 400+ (22 +212) + 1930 (2 +2190) +
8180 (0 +2%) +26430 - (25 +2%0) + 84936 - (=0 +) +

253572+ (232 4+ 27) + 696468 - (3 + 22) + 1725330 (2 + %) +

3972240 - (% + %) + 8585008 - (2% + 2™ + 17159632 - (2 + 82) +
31929532 (24 4 2%0) + 55569120 (240 +27%) + 90336940 - (%% 4 27°) +
137329552 - (%0 4 27) + 195328240 - (%2 + 277 + 260435936 - (2 + 27°) +
325698420 - (% + 26%) + 381677080 - (7% + 2) + 419856213 - (% + 2°4) +
433616560 - 22

(1 + Z124) +12. (z20 + Z104) +12. (z22 + Z102) +36- (z24 + Z100) +

40+ (20 +2%) + 140 (2 +2%) +176 - (20 + %) +498 - (2 +22) +

576 (23 +22) + 1340 (%0 + 2%) + 1580+ (2 + 2%) + 2660 (%0 +) +
3432 (M 4 287) + 4932 (M 4 2%0) + 6368 - (%0 4+ 27%) + 8820 (* 4 70) +
10424+ (20 4 7) 412752 (292 4 272) + 14536 - (3 + 270) + 15840 - (20 4+ %) +
18296 - (2% +2%) + 18505 - (% + 2%) + 20192 . .62

(1 +2124) +30. (z20 +Zm4) +10. (z22 +z1°2) +50. (z24 +Z100) +

200+ (224 2%) + 620 (2 +2%) + 960 (20 +27) +

2416 - (132 +292) + 4992 . (234 +Z90) + 6945 - (136 +288) +

15340 - (2% + 2%0) 425085 - (240 + 2) + 34920 (2 + 282) +

68700 - (c* + 280 + 87548 (40 4+ 27%) + 104513 - (48 4 7€) +

177800 - (2% + 274) + 201440 - (3 + 27%) + 225290 - (=% 4 27°) +

322070 - (20 + 2%%) + 301640 - (%% +26¢) + 316706 - (% +) +

399752 - 762

4G5 _ (1 +z'24) +3. (z20 +Z104) +24. (Z26 +Z98) +48. (Zzs +Z96) +

Be

1 6- (Z30 +294) +150- (232 +192) +8- (134 +Z90) +168 - (236 +288) +
96 (% +2%0) 475 (% + 25) 4468 (2 +28) + 132 (M + 5) +
656 - (146 +Z78) + 680 - (Z48 +Z76) +300- (z50 Jr174) + 1386 - (Zsz Jr172) +
198 (5 4+ 270) + 1152+ (290 4+ 288) + 1272 (% 4 2%0) 4301+ (9 + %) +

2136 - 762

(S31) _ 124 62
A@m _(1+z)+2 z

(S61) _ 124 .62
Au@m _(1+Z)+2 .

Weight Distributions of Quadratic Double-Circulant ...

285

The weight distributions of % and their modular congruence are shown in

Table9.18.

Weight Distributions of Quadratic Residues Codes for Primes

151 and 167

See Tables9.19 and 9.20

Table 9.19 Weight distributions of QR and extended QR codes of prime 151

i

A; of [152,76, 20] code

< of [151, 76, 19] code

0
19
20
23
24
27
28
31
32
35
36
39
40
43
44
47
48
51
52
55
56
59
60
63
64
67
68
71
72
75
76

1

0

28690

0

717250

0

164250250

0

39390351505

0

5498418962110

0

430930711621830

0

19714914846904500

0

542987434093298550

0

9222363801696269658

0

98458872937331749615
0
670740325520798111830
0
2949674479653615754525
0
8446025592483506824150
0
15840564760239238232420
0
19527364659006697265368

1

3775

24915

113250

604000

30256625

133993625

8292705580

31097645925
1302257122605
4196161839505
113402818847850
317527892773980
5706949034630250
14007965812274250
171469716029462700
371517718063835850
3155019195317144883
6067344606379124775
36274321608490644595
62184551328841105020
264765917968736096775
405974407552062015055
1241968201959417159800
1707706277694198594725
3778485133479463579225
4667540459004043244925
7503425412744902320620
8337139347494335911800
9763682329503348632684
9763682329503348632684

286

9 Algebraic Quasi Cyclic Codes

Table 9.20 Weight distributions of QR and extended QR codes of prime 167

1

A; of [168, 84, 24] code

a; of [167, 84, 23] code

0

23
24
27
28
31
32
35
36
39
40
43
44
47
48
51
52
55
56
59
60
63
64
67
68
71
72
75
76
79
80
83
84

1

0

776216

0

18130188

0

5550332508

0

1251282702264

0

166071600559137

0

13047136918828740

0

629048543890724216

0

19087130695796615088

0

372099690249351071112

0

4739291519495550245228

0
39973673337590380474086
0
225696677727188690570184
0
860241108921860741947676
0
2227390683565491780127428
0
3935099586463594172460648
0
4755747412595715344169376

1

110888

665328

3021698

15108490

1057206192

4493126316

268132007628
983150694636
39540857275985
126530743283152
3417107288264670
9630029630564070
179728155397349776
449320388493374440
5907921405841809432
13179209289954805656
124033230083117023704
248066460166234047408
1692604114105553659010
3046687405389996586218
15228066033367763990128
24745607304222616483958
91353417175290660468884
134343260551898030101300
368674760966511746549004
491566347955348995398672
1007629118755817710057646
1219761564809674070069782
1873856945935044844028880
2061242640528549328431768
2377873706297857672084688
2377873706297857672084688

References 287

References

17.

18.

19.
20.

. Dougherty, T.G., Harada, M.: Extremal binary self-dual codes. IEEE Trans. Inf. Theory 43(6),

2036-2047 (1997)

. Gaborit, P.: Quadratic double circulant codes over fields. J. Comb. Theory Ser. A 97, 85-107

(2002)

. Gaborit, P, Otmani, A.: Tables of self-dual codes (2007). http://www.unilim.fr/pages_perso/

philippe.gaborit/SD/index.html

. Gaborit, P, Nedeloaia, C.S., Wassermann, A.: On the weight enumerators of duadic and

quadratic residue codes. IEEE Trans. Inf. Theory 51(1), 402-407 (2005)

. Grassl, M.: On the minimum distance of some quadratic residue codes. In: Proceedings of the

IEEE International Symposium on Inform. Theory, Sorento, Italy, p. 253 (2000)

. Gulliver, T.A., Senkevitch, N.: On a class of self-dual codes derived from quadratic residue.

IEEE Trans. Inf. Theory 45(2), 701-702 (1999)

. Huffman, W.C., Pless, V.S.: Fundamentals of Error-Correcting Codes. Cambridge University

Press, Cambridge (2003) ISBN 0 521 78280 5

. Jenson, R.: A double circulant presentation for quadratic residue codes. IEEE Trans. Inf. Theory

26(2), 223-227 (1980)

. Karlin, M.: New binary coding results by circulants. IEEE Trans. Inf. Theory 15(1), 81-92

(1969)

. Karlin, M., Bhargava, V.K., Tavares, S.E.: A note on the extended quadratic residue codes and

their binary images. Inf. Control 38, 148-153 (1978)

. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting

codes. IEEE Trans. Inf. Theory 34(5), 1354-1359 (1988)

. Leon, J.S., Masley, J.M., Pless, V.: Duadic codes. IEEE Trans. Inf. Theory 30(5), 709-713

(1984)

. MacWilliams, FJ., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,

Amsterdam (1977)

. Mykkeltveit, J., Lam, C., McEliece, R.J.: On the weight enumerators of quadratic residue codes.

JPL Tech. Rep. 32-1526 XII, 161-166 (1972)

. Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook

of Coding Theory. Elsevier, North Holland (1998)

. Shannon, C.E.: Probability of error for optimal codes in a Gaussian channel. Bell. Syst. Tech.

J. 38(3), 611-656 (1959)

Tjhai, C.J.: A study of linear error correcting codes. Ph.D dissertation, University of Plymouth,
UK (2007)

van Dijk, M., Egner, S., Greferath, M., Wassermann, A.: On two doubly even self-dual binary
codes of length 160 and minimum weight 24. IEEE Trans. Inf. Theory 51(1), 408-411 (2005)
van Lint, J.H.: Coding Theory. Lecture Notes in Mathematics vol. 201. Springer, Berlin (1970)
Zimmermann, K.H.: Integral hecke modules, integral generalized reed-muller codes, and lin-
ear codes. Technical Report, Technische Universitdit Hamburg-Harburg, Hamburg, Germany,
pp. 3-96 (1996)

http://www.unilim.fr/pages_perso/philippe.gaborit/SD/index.html
http://www.unilim.fr/pages_perso/philippe.gaborit/SD/index.html

288

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 10
Historical Convolutional Codes as Tail-Biting
Block Codes

10.1 Introduction

In the late 1950s, a branch of error-correcting codes known as convolutional codes
[1, 6, 11, 14] was explored almost independently of block codes and each discipline
had their champions. For convolutional codes, sequential decoding was the norm and
most of the literature on the subject was concerned with the performance of practical
decoders and different decoding algorithms [2]. There were few publications on the
theoretical analysis of convolutional codes. In contrast, there was a great deal of
theory about linear, binary block codes and not a great deal about decoders, except
for hard decision decoding of block codes. Soft decision decoding of block codes
was considered to be quite impractical, except for trivial, very short codes.

With Andrew Viterbi’s invention [13] of the maximum likelihood decoder in 1967,
featuring a trellis based decoder, an enormous impetus was given to convolutional
codes and soft decision decoding. Interestingly, the algorithm itself, for solving the
travelling saleman’s problem [12], had been known since 1960. Consequently, inter-
estin hard decision decoding of convolutional codes waned in favour of soft decision
decoding. Correspondingly, block codes were suddenly out of fashion except for the
ubiquitous Reed—Solomon codes.

For sequential decoder applications, the convolutional codes used were systematic
codes with one or more feedforward polynomials, whereas for applications using a
Viterbi decoder, the convolutional codes were optimised for largest, minimum Ham-
ming distance between codewords, d s, for a given memory (the highest degree of
the generator polynomials defining the code). The result is always a non-systematic
code. It should be noted that in the context of convolutional codes, the minimum
Hamming distance between codewords is understood to be evaluated over the con-
straint length, the memory of the code. This is traditionally called d,,;,. This is
rather confusing when comparing the minimum Hamming distance of block codes
with that of convolutional codes. A true comparison should compare the d . of a
convolutional code to the d,,;, of a block code, for a given code rate.

© The Author(s) 2017 289
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_10

290 10 Historical Convolutional Codes as Tail-Biting Block Codes

Table 10.1 Best rate % convolutional codes designed for Viterbi decoding

Memory Generator Polynomial r (x) Generator Polynomial r(x) dfree
2 1+ x4 x2 1+ x? 5
3 l+x+x24%3 1+x+x3 6
4 l+x+x24+x4 1+ x3 +x* 7
5 T+x+x2+x3+x° 1+ x2 4+ x* + %3 8
6 14+ x+x24x3+x° T+ x2 434+ 42 10
7 14 x 4+ x2+x° +x* 4+ 47 14 x2 427 +x0 +x7 10
8 Lx+x2+x3 +2% +x7 + 28 1+x% 4+ x3 + % +x8 12

Since the early 1960s, a lot of work has been carried out on block codes and con-
volutional codes for applications in deep space communications, primarily because
providing a high signal-to-noise ratio is so expensive. Error-correcting codes allowed
the signal to noise ratio to be reduced.

The first coding arrangement implemented for space [6, 9] was part of the pay-
load of Pioneer 9 which was launched into space in 1968. The payload featured a
systematic, convolutional code designed by Lin and Lyne [7] with a d s, of 12 and
memory of 20. The generator polynomial is

r(x):1+x+x2+x5+x6+x8+x9+x12+x13+x14+x16+x17+x18+x19+x20_

This convolutional code was used with soft decision, sequential decoding featuring
the Fano algorithm [2] to realise a coding gain of 3 dB. Interestingly, it was initially
planned as a communications experiment and not envisaged to be used operationally
to send telemetry data to Earth. However, its superior performance over the standard
operational communications system which featured uncoded transmission meant that
it was always used instead of the standard system.

In 1969, the Mariner’69 spacecraft was launched with a first order Reed—Muller
(32, 6, 16) code [8] equivalent to the extended (32, 6, 16) cyclic code. A maximum
likelihood correlation decoder was used. The coding gain was 2.2 dB [9].

By the mid 1970s, the standard for soft decision decoding on the AWGN channel
notably applications for satellite communications and space communications was to
use convolutional codes with Viterbi decoding, featuring the memory 7 code listed
in Table 10.1. The generator polynomials are rj(x) = 1 + x + x> + x> + x% and
7 (x) = 14+x24x34 x> 4+x° convolutional code, best known, in octal representation,
as the (171, 133) code. The best half rate convolutional codes designed to be used
with Viterbi decoding [1, 6] are tabulated in Table 10.1.

The (171, 133) code with Viterbi soft decision decoding featured a coding gain
of 5.1 dB at 107> bit error rate which was around 2 dB better than its nearest rival
featuring a high memory convolutional code and hard decision, sequential decoding.
The (171, 133) convolutional code is one of the recommended NASA Planetary
Standard Codes [3].

10.1 Introduction 291

However, more coding gain was achieved by concatenating the (171, 133) con-
volutional code with a (255, 233) Reed—Solomon (RS) code which is able to correct
16 symbol errors, each symbol being 8 bits. Quite a long interleaver needs to be
used between the Viterbi decoder output and the RS decoder in order to break up the
occasional error bursts which are output from the Viterbi decoder. Interleaver lengths
vary from 4080 bits to 16320 bits and with the longest interleaver the coding gain of
the concatenated arrangement is 7.25 dB, (ﬁ = 2.35dB at 107 bit error rate), and

N,
it is a CCSDS [3] standard for space commuonications.

10.2 Convolutional Codes and Circulant Block Codes

It is straightforward to show that a double-circulant code is a half rate, tail-biting,
feedforward convolutional code. Consider the Pioneer 9, half rate, convolutional
code invented by Lin and Lyne [7] with generator polynomial

r(x) — 1~|—x~|—x2~|—x5~|—x6+x8—l—xg+x12+x13+x14+x16+x17+x18~|—x19+x20

For a semi-infinite data sequence defined by d(x), the corresponding codeword, c(x),
of the convolutional code consists of

c(x) =dX@)|dx)r(x) (10.1)

where || represents interlacing of the data polynomial representing the data sequence
and the parity polynomial representing the sequence of parity bits.

The same generator polynomial can be used to define a block code of length 2n,
a (2n, n) double-circulant code with a codeword consisting of

c(x) =d(x)|ld(x)r(x) modulo (1 + x") (10.2)

(Double-circulant codewords usually consist of one circulant followed by the second
but it is clear that an equivalent code is obtained by interlacing the two circulants
instead.)

While comparing Eq. (10.1) with (10.2) as n — o0, it can be seen that the
same codewords will be obtained. For finite n, it is apparent that the tail of the
convolution of d(x) and r(x) will wrap around adding to the beginning as in a
tail-biting convolutional code. It is also clear that if n is sufficiently long, only the
Hamming weight of long convolutions, will be affected by the wrap around and
these long convolution results will be of high Hamming weight anyway leading to
the conclusion that if # is sufficiently long the d,,;, of the circulant code will be the
same as the d .. of the convolutional code. Indeed, the low weight spectral terms
of the two codes will be identical, as is borne out by codeword enumeration using
the methods described in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-51103-0_5

292 10 Historical Convolutional Codes as Tail-Biting Block Codes

For the Pioneer 9 code, having a dy,., of 12, a double-circulant code with d,,;,
also equal to 12 can be obtained with n as low as 34, producing a (68, 34, 12) code.
It is noteworthy that this is not a very long code, particularly by modern standards.

Codewords of the double-circulant code are given by

c(x) =dx@)|dx)(1 +x B B I R i I S Ly
+ x4 x17 4 x4 x1 4 x2%) modulo (1 + x**) (10.3)

As a double-circulant block code, this code can be soft decision decoded, with
near maximum likelihood decoding using an extended Dorsch decoder, described
in Chap. 15. The results for the AWGN channel are shown plotted in Fig. 10.1. Also
plotted in Fig. 10.1 are the results obtained with the same convolutional code realised
as a (120, 60, 12) double-circulant code which features less wrap around effects com-
pared to the (68, 34, 12) code.

Using the original sequential decoding with 8 level quantisation of the soft deci-
sions realised a coding gain of 3 dB at a BER of 5 x 10~*. Using the modified Dorsch
decoder with this code can realise a coding gain of over 5 dB at a BER of 5 x 107*
and over 6 dB at a BER of 107° as is evident from Fig. 10.1. Moreover, there is
no need for termination bits with the tail-biting arrangement. However, it should be
noted that the state of the art, modified Dorsch decoder with soft decision decoding

0
107 T T T " T
QPSK Coherent detection ~ +
I Pioneer 9 convolutional code as (68,34,12) code, hard ~ x
Pioneer 9 convolutional code (120,60,12) code, hard *
Pioneer 9 convolutional code (68,34,12) code
10-1 Pioneer 9 convolutional code as (120,60,12) code L] i
\ >\
102 o\
o
w 10 N
m X
10
Y X AN
10°°
10°®
0 2 4 6 8 10

Eb/No [dB]

Fig. 10.1 BER performance of the Pioneer 9 convolutional code encoded as a (68, 34, 12) or
(120, 60, 12) double-circulant code with soft and hard decision, extended Dorsch decoding in
comparison to uncoded QPSK

http://dx.doi.org/10.1007/978-3-319-51103-0_15

10.2 Convolutional Codes and Circulant Block Codes 293

needs to evaluate up to 500,000 codewords per received vector for the (68, 34, 12)
double-circulant code realisation and up to 1,000,000 codewords per received vector
for the (120, 60, 12) double-circulant code version in order to achieve near maximum
likelihood decoding. Figure 10.1 also shows the hard decision decoding performance
realised with the modified, hard decision Dorsch decoder, also described in Chap. 15.
The (120, 60, 12) double-circulant code version, has a degradation of 2.3 dB at 10~*
BER compared to soft decision decoding, but still achieves a coding gain of 3.3 dB
at 10~* BER. Similarly, the (68, 34, 12) double-circulant code version, has a degra-
dation of 2.2 dB at 10~* BER compared to soft decision decoding, but still achieves
a coding gain of 2.3 dB at 10~* BER.

The conclusion to be drawn from Fig. 10.1 is that the Pioneer 9 coding system
was limited not by the design of the code but by the design of the decoder. However
to be fair, the cost of a Dorsch decoder would have been considered beyond reach
back in 1967.

It is interesting to discuss the differences in performance between the (68, 34, 12)
and (120, 60, 12) double-circulant code versions of the Pioneer 9 convolutional code.
Both have a d,;, of 12. However the number of weight 12 codewords, the multi-
plicities of weight 12 codewords of the codes’ weight distributions, is higher for the
(68, 34, 12) double-circulant code version due to the wrap around of the second cir-
culant which is only of length 34. The tails of the circulants of codewords of higher
weight than 12 do suffer some cancellation with the beginning of the circulants. In
fact, exhaustive weight spectrum analysis, (see Chaps.5 and 13 for description of
the different methods that can be used), shows that the multiplicity of weight 12
codewords is 714 for the (68, 34, 12) code and only 183 for the (120, 60, 12) code.

Moreover, the covering radius of the (68, 34, 12) code has been evaluated and
found to be 10 indicating that this code is well packed, whereas the covering radius
of the (120, 60, 12) code is much higher at 16 indicating that the code is not so
well packed. Indeed the code rate of the (120, 60, 12) code can be increased without
degrading the minimum Hamming distance because with a covering radius of 16 at
least one more information bit may be added to the code.

With maximum likelihood, hard decision decoding, which the modified Dorsch
decoder is able to achieve, up to 10 hard decision errors can be corrected with the
(68, 34, 12) code in comparison with up to 16 hard decision errors correctable by the
(120, 60, 12) code. Note that these are considerably higher numbers of correctable
errors in both cases than suggested by the d,.. of the code (only five hard decision
errors are guaranteed to be correctable). This is a recurrent theme for maximum
likelihood, hard decision decoding of codes, as discussed in Chap.3, compared to
bounded distance decoding.

It is also interesting to compare the performance of other convolutional codes that
have been designed for space applications and were originally intended to be used
with sequential decoding. Of course now we have available the far more powerful
(and more signal processing intensive) modified Dorsch decoder, which can be used
with any linear code.

Massey and Costello [6, 10] constructed a rate %, memory 31 non-systematic
code which was more powerful than any systematic code with the same memory

http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_13
http://dx.doi.org/10.1007/978-3-319-51103-0_3

294 10 Historical Convolutional Codes as Tail-Biting Block Codes

and had the useful property that the information bits could be obtained from the two
convolutionally encoded parity streams just by adding them together, modulo 2. The
necessary condition for this property is that the two generator polynomials differ
only in a single coefficient. The two generator polynomials, ro(x) and r;(x) may be
described by the exponents of the non-zero coefficients:

ro(x) < 1{0,1,2,4,5,7,8,9,11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}
ri(x) < {0,2,4,5,7,8,9,11, 13,14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}

As can be seen the two generator polynomials differ only in the coefficient of x.
This code has a d,.. of 23 and can be realised as a double-circulant (180, 90, 23)
code from the tail-biting version of the same convolutional code. This convolutional
code has exceptional performance and in double-circulant form it, of course, may
be decoded using the extended Dorsch decoder. The performance of the code in
(180, 90, 23) form, for the soft decision and hard decision AWGN channel, is shown
in Fig. 10.2. For comparison purposes, the performances of the Pioneer 9 codes are
also shown in Fig.10.2. Shorter double-circulant code constructions are possible
from this convolutional code in tail-biting form, without compromising the d,,;, of
the double-circulant code. The shortest version is the (166, 83, 23) double-circulant
code.

0
107 T T T " T
QPSK Coherent detection +
i Pioneer 9 convolutional code as (68,34,12) code, hard ~ x
Pioneer 9 convolutional code (120,60,12) code, hard

L Pioneer 9 convolutional code (68,34,12) code
10—1 Massey Costello convolutional code as (180,90,23) code,hard ~
Massey Costello convolutional code as (180,90,23) code ©
3 Pioneer 9 convolutional code as (120,60,12) code

*

102 N
\.-\
% 10° N
\
104
X
5 X
10°
\
10
0 2 4 6 8 10

Eb/No [dB]

Fig. 10.2 BER performance of the Massey Costello convolutional code in (180, 90, 23) double-
circulant code form for the AWGN channel, using soft and hard decisions, with extended Dorsch
decoding

10.2 Convolutional Codes and Circulant Block Codes 295

By truncating the generator polynomials, ry(x) and 71 (x) above, a reduced mem-
ory convolutional code with memory 23 and dy,.. of 17 can be obtained as dis-
cussed by Massey and Lin [6, 10] which still has the non-systematic, quick decoding
property. The generator polynomials are given by the exponents of the non-zero
coefficients:

Fo(x) < {0,1,2,4,5,7,8,9,11, 13, 14, 16, 17, 18, 19, 21, 22, 23}
F1(x) < {0,2,4,5,7,8,9,11,13, 14,16, 17, 18, 19, 21, 22, 23}

A (160, 80, 17) double-circulant code can be obtained from the tail-biting version
of this convolutional code. In fact, many double-circulant codes with high d,,;, can
be obtained from tail-biting versions of convolutional codes.

It is straightforward to write a program in C++ which searches for the generator
polynomials that produce the convolutional codes with the highest values of d /..
The only other constraint is that the the generator polynomials need to be relatively
prime to each other, that is, the GCD of the generator polynomials needs to be 1
in order to avoid a catastrophic code [6]. However, it is also necessary in selecting
the generator polynomials that the wrap around effects of the circulants are taken
into account otherwise the d,,;, of the double-circulant code is not as high as the
d free Of the convolutional code from which it is derived. Indeed to construct a good
code in this way with high dy,., and high d,,;,, it has to be constructed as a tail-
biting convolutional code right from the start. One example of a good tail-biting
convolutional code that has been found in this way has generator polynomials, o (x)
and r(x) given by the exponents of the non-zero coefficients:

ro(x) < {0,2,5,8,9,10, 12, 13, 14, 15, 27}
ri(x) < {0,1,2,3,4,5,7,8,11, 12, 16, 18, 20, 23, 27}

This code has a memory of 27 and a d s, of 26. It may be realised in double-circulant
form as a (180, 90, 26) double-circulant code and weight spectrum analysis shows
that this code has the same d,,;, of 26 as the best-known code with the same code
parameters [4]. The two polynomials 7 (x) and | (x) factorise into polynomials with
the following exponents of the non-zero coefficients:

ro(x) < {0,3,5}{0,2,3,5,6,7,8, 10, 13, 14, 16, 17, 18, 20, 22}
ri(x) <{0,3,5,6,8}{0,1,3,4,5,6,8}{0,2,4,7, 11}

It can be seen that neither polynomial has a common factor and so the GCD is 1.
Correspondingly, the convolutional code is not a catastrophic code.

As well as constructing double-circulant codes from convolutional codes, double-
circulant codes may be used to construct good convolutional codes. The idea of
generating convolutional codes from good block codes is not that new. Massey et al.
in 1973 generated a convolutional code for space communications from a (89, 44, 18)
quadratic residue cyclic code [5, 6]. As described in Chap. 9, prime numbers which

http://dx.doi.org/10.1007/978-3-319-51103-0_9

296 10 Historical Convolutional Codes as Tail-Biting Block Codes

are congruent to =3 modulo 8 may be used to generate double-circulant codes using
the quadratic residues to construct one circulant, the other circulant being the identity
circulant; the length of the circulants are equal to the prime number.

Particularly, good double-circulant codes are obtained in this way as discussed in
Chap. 9. For example, the prime number 67 can be used to generate a (134, 67, 23)
double-circulant code with the circulants defined by the two polynomials with the
following exponents of the non-zero coefficients:

ro(x) < {0}
ri(x) < {0,1,4,6,9,10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36,
37, 39,40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65}

Using these two polynomials as the generator polynomials for a % rate convolutional
code, a systematic convolutional code having a d s, of 30 is obtained. Interestingly,
deriving another double-circulant code from the tail-biting version of this convolu-
tional code only produces good results when the circulants are exactly equal to 67,
thereby reproducing the original code. For longer circulants, the d,,;, is degraded
unless the circulants are much longer. It is found that the circulants have to be as
long as 110 to produce a (220, 110, 30) double-circulant code having a d,,;, equal
to that of the original convolutional code. Moreover, this is a good code because the
code has the same parameters as the corresponding best-known code [4].

A double-circulant code may also be used to derive a non-systematic convolutional
code with much smaller memory and a d ¢, equal to the d,,,;,, of the double-circulant
code by selecting a codeword of the double-circulant code which features low-degree
polynomials in each circulant. It is necessary to check that these polynomials are
relatively prime otherwise a catastrophic convolutional code is produced. In this event
a new codeword is selected. The code produced is a non-systematic convolutional
code with memory equal to the highest degree of the two circulant polynomials.
For example, a memory 41 non-systematic convolutional code can be derived from
a memory 65, systematic convolutional code based on the (134, 67, 23) double-
circulant code with the following exponents of the non-zero coefficients:

ro(x) < {0}
ri(x) < {0,1,4,6,9,10,14,15,16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35
36,37, 39,40, 47,49, 54,55, 56, 59, 60, 62, 64, 65}

Codeword analysis of the double-circulant code is carried out to find the low
memory generator polynomials. The following two generator polynomials were
obtained from the two circulant polynomials making up a weight 23 codeword of
the (134, 67, 23) code:

ro(x) < {0,1,2,4,5,10, 12,32, 34,36, 39, 41}
ri(x) < {0,2, 4,13, 19, 24, 25, 26, 33, 35, 37}

http://dx.doi.org/10.1007/978-3-319-51103-0_9

10.2 Convolutional Codes and Circulant Block Codes 297

In another example, the outstanding (200, 100, 32) extended cyclic quadratic
residue code may be put in double-circulant form using the following exponents
of the non-zero coefficients:

ro(x) < {0}

ri(x) < {0,1,2,5,6,8,9,10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37,
38, 39,42, 44, 45, 50, 51, 52, 53,57, 58, 59, 64, 66, 67,70, 73,75, 76,
77, 80, 82, 85, 86, 89, 92, 93, 97, 98}

Enumeration of the codewords shows that there is a weight 32 codeword that
defines the generator polynomials of a memory 78, non-systematic convolutional
code. The codeword consists of two circulant polynomials, the highest degree of
which is 78. The generator polynomials have the following exponents of the non-
zero coefficients:

ro(x) < {0, 2,3,8,25,27,37, 44,50, 52, 55, 57, 65, 66, 67, 69, 74, 75, 78}
ri(x) < {0, 8, 14, 38,49, 51, 52, 53, 62, 69, 71, 72, 73}

The non-systematic convolutional code that is produced has a d ;.. of 32 equal
to the d,,;, of the double-circulant code. Usually, it is hard to verify high values
of dy,.. for convolutional codes, but in this particular case, as the convolutional
code has been derived from the (200, 100, 32) extended quadratic residue, double-
circulant code which is self-dual and also fixed by the large projective special linear
group PSL,(199) the d,,;, of this code has been proven to be 32 as described in
Chap. 9. Thus, the non-systematic convolutional code that is produced has to have a
dfree of 32.

10.3 Summary

Convolutional codes have been explored from a historical and modern perspective.
Their performance, as traditionally used, has been compared to the performance
realised using maximum likelihood decoding featuring an extended Dorsch decoder
with the convolutional codes implemented as tail-biting block codes. It has been
shown that the convolutional codes designed for space applications and sequential
decoding over 40 years ago were very good codes, comparable to the best codes
known today. The performance realised back then was limited by the sequential
decoder as shown by the presented results. An additional 2 dB of coding gain could
have been realised using the modern, extended Dorsch decoder instead of the sequen-
tial decoder. However back then, this decoder had yet to be discovered and was
probably too expensive for the technology available at the time.

It has also been shown that convolutional codes may be used as the basis for
designing double-circulant block codes and vice versa. In particular, high, guaranteed
values of d s, may be obtained by basing convolutional codes on outstanding double-
circulant codes. A memory 78, non-systematic, half rate convolutional code with a
dfree Of 32 was presented based on the (200, 100, 32) extended quadratic residue,
double-circulant code.

http://dx.doi.org/10.1007/978-3-319-51103-0_9

298 10 Historical Convolutional Codes as Tail-Biting Block Codes

References

1. Clark, G.C., Cain, J.B.: Error-Correction Coding for Digital Communications. Plenum Pub-
lishing Corporation, New York (1981). ISBN 0 306 40615 2

2. Fano, R.: A heuristic discussion of probabilistic decoding. IEEE Trans. Inf. Theory I'T-9, 64-74
(1963)

3. Gaborit, P,, Otmani, A.: Tm synchronization and channel coding. CCSDS 131.0-B-1 BLUE
BOOK (2003)

4. Grassl, M.: Code tables: bounds on the parameters of various types of codes (2007). http://
www.codetables.de

5. Massey, J.L., Costello Jr., D.J., Justesen, J.: Polynomial weights and code constructions. IEEE
Trans. Inf. Theory IT-19, 101-110 (1973)

6. Lin, S., Costello Jr., D.J.: Error Control Coding: Fundamentals and Applications, 2nd edn.
Pearson Education Inc., Upper Saddle River (2004)

7. Lin, S., Lyne, H.: Some results on binary convolutional code generators. IEEE Trans. Inf.
Theory IT-13, 134-139 (1967)

8. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

9. Massey, J.: Deep-space communications and coding: a marriage made in heaven. In: Hagenauer,
J. (ed.) Advanced Methods for Satellite and Deep Space Communications. Lecture Notes in
Control and Information Sciences 182. Springer, Heidelberg (1992)

10. Massey, J.L., Costello Jr., D.J.: Nonsystematic convolutional codes for sequential decoding in
space applications. IEEE Trans. Commun. COM-19, 806-813 (1971)

11. Peterson, W.: Error-Correcting Codes. MIT Press, Cambridge (1961)

12. Pollack, M., Wiebenson, W.: Solutions of the shortest route problem - a review. Oper. Res. 8,
224-230 (1960)

13. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. Inf. Theory IT-13, 260-269 (1967)

14. Wozencraft, J.: Sequential decoding for reliable communications. Technical report No. 325
Research Laboratory of Electronics, MIT (1957)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://www.codetables.de
http://www.codetables.de
http://creativecommons.org/licenses/by/4.0/

Chapter 11
Analogue BCH Codes and Direct Reduced

Echelon Parity Check Matrix Construction

11.1 Introduction

Analogue error-correcting codes having real and complex number coefficients were
first discussed by Marshall [2]. Later on Jack Wolf [3] introduced Discrete Fourier
Transform (DFT) codes having complex number coefficients and showed that an
(n, k) DFT code can often correct up to n — k — 1 errors using a majority voting
type of decoder. The codes are first defined and it is shown that (n, k) DFT codes
have coordinate coefficients having complex values. These codes have a minimum
Hamming distance of n — k + 1 and are Maximum Distance Separable (MDS)
codes. The link between the Discrete Fourier Transform and the Mattson—Solomon
polynomial is discussed and it is shown that the parity check algorithm used to
generate DFT codes can be applied to all BCH codes including Reed—Solomon codes
simply by switching from complex number arithmetic to Galois Field arithmetic.
It is shown that it is straightforward to mix together quantised and non-quantised
codeword coefficients which can be useful in certain applications. Several worked
examples are described including that of analogue error-correction encoding and
decoding being applied to stereo audio waveforms (music).

In common with standard BCH or Reed—Solomon (RS) codes, it is shown that
parity check symbols may be calculated for any n — k arbitrary positions in each
codeword and an efficient method is described for doing this. A proof of the validity
of the method is given.

11.2 Analogue BCH Codes and DFT Codes

In a similar manner to conventional BCH codes, a codeword of an analogue (n, k)
BCH code is defined as

2 3 4 5 -1
c(x)=co+cix +ox’ +c3x” +eaxt +esxC 4+ -+ e x”

© The Author(s) 2017 299
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_11

300 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

where
c(x) = gx)d(x)

g(x) is the generator polynomial of the code with degree n — k and d(x) is any data
polynomial of degree less than k. Correspondingly,

g(x) = go+g1x + gox? + -+ guyx"*

and
d(x) =dy +dix + d2x2 +--- 4+ dk,lxk_]

The coefficients of c(x) are complex numbers from the field of complex numbers.
A parity check polynomial /(x) is defined, where

h(x) = ho+ hix + hox? 4+ hax® + hax* + hsx® + -+ hy_ 2"}

where
h(x)g(x) mod (x" — 1) =0

and accordingly,
h(x)c(x) mod (x" —1) =0

The generator polynomial and the parity check polynomial may be defined in
terms of the Discrete Fourier Transform or equivalently by the Mattson—Solomon
polynomial.

Definition 11.1 (Definition of Mattson—Solomon polynomial) The Mattson—
Solomon polynomial of any polynomial a(x) is the linear transformation of a(x)
to A(z) and is defined by [1],

n—1

A@) =MS@() =D al ™z (11.1)

i=0
The inverse Mattson—Solomon polynomial or inverse Fourier transform is:

n—1
a(x) =MS'(A(z)) = %ZA(ai)xi (11.2)
i=0

« is a primitive root of unity with order n and for analogue BCH codes
a=elx (11.3)

where j = (—1)%.

11.2 Analogue BCH Codes and DFT Codes 301

In terms of a narrow sense, primitive BCH code with a generator polynomial of g (x),
the coefficients of G(z) are all zero from z° through 7" 7*=1 and the coefficients of
H(z) are all zero from 7" ¥ through z"~'. Consequently, it follows that the coefficient
by coefficient product of G(z) and H (z) represented by ©

n—1

GR)OHR) =D (G;OH)Z =0 (11.4)
j=0
The nonzero terms of H (z) extend from z° through to z"*~! and a valid parity check
matrix in the well known form is:
1 1 1 e 1
1 o a? co.at!
1 0[2 0[4 . aZ(nfl)
H=1 " a0 QD

1 Olnfkfl a2(n7k71) anfkfl(nfl)

It will be noticed that each row of this matrix is simply given by the inverse Mattson—
Solomon polynomial of H(z), where

Hiz= 1

H(iz) = z

HiZ) = 22 (11.5)
HiZ) = ...

H(Z) — Znfkfl

Consider H(z) = z—a', the inverse Mattson—Solomon polynomial produces a parity
check equation defined by

1 2

l—da'—a'a?>—a...0...a" ' —a
Notice that this parity check equation may be derived from linear combinations of
the first two rows of H by multiplying the first row by o before subtracting it from

the second row of H. The resulting row may be conveniently represented by

a® q a2 q% .0 ... g% gl

It will be noticed that the i’ coordinate of the codeword is multiplied by zero,
and hence the parity symbol obtained by this parity check equation is independent
of the value of the i’ coordinate. Each one of the other coordinates is multiplied
by a nonzero value. Hence any one of these n — 1 coordinates may be solved using

302 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

this parity check equation in terms of the other n — 2 coordinates involved in the
equation.

Similarly, considering H (z) = z — &/, the inverse Mattson—-Solomon polynomial
produces a parity check equation defined by

1 2

l—a/al—ala?—a/ ...0...a" ! —af

and this may be conveniently represented by

by by by

abo b b gb 0L el g

Now the j* coordinate is multiplied by zero and hence the parity symbol obtained

by this parity check equation is independent of the value of the j** coordinate.
Developing the argument, if we consider H(z) = (z — a')(z — /), the inverse

Mattson—Solomon polynomial produces a parity check equation defined by

a%gb gl 0. 0. . gBrgbe

This parity check equation has zeros in the i’ and j* coordinate positions and
as each one of the other coordinates is multiplied by a nonzero value, any one of
these n — 2 coordinates may be solved using this parity check equation in terms of
the other n — 3 coordinates involved in the equation.

Proceeding in this way, for H(z) = (z—a')(z—a/)(z— oX), the inverse Mattson—
Solomon polynomial produces a parity check equation which is independent of the
i, j"™ and k'" coordinates and these coordinate positions may be arbitrarily chosen.
The parity check matrix is

1 1 1 1 1 1... 1
o' o o2 gt e 0., o
a 0 o o a™ 0...a"!
™ 0 o 0 ™ 0...a"!

H, =

The point here is that this parity check matrix Hy, has been obtained from linear
combinations of the original parity check matrix H and all parity check equations
from either H or Hy, are satisfied by codewords of the code.

The parity check matrix Hy, may be used to solve for 4 parity check symbols in 4
arbitrary coordinate positions defined by the i", j** and k" coordinate positions plus
any one of the other coordinate positions which will be denoted as the /" position.
The coordinate value in the /' position is solved first using the last equation. Parity
symbols in the i’", j'* and k' positions are unknown but this does not matter as
these are multiplied by zero. The third parity check equation is used next to solve
for the parity symbol in the k" position. Then, the second parity check equation is
used to solve for the parity symbol in the j** position and lastly, the first parity check
equation is used to solve for the parity symbol in the i’ position. The parity check
matrix values, for s = 0 through to n — 1, are given by:

11.2 Analogue BCH Codes and DFT Codes 303

als = o — ai
o’ = (' —a')(a® —al) =a" (o' —al)
o = (Ols _ Oll)(OlS _ Olj)(OlS _ Ct’k) =Y (le _ Olk)

Codewords of the code may be produced by first deciding on the number of parity
check symbols and their positions and then constructing the corresponding parity
check matrix Hy,. From the information symbols, the parity check symbols are cal-
culated by using each row of Hy, starting with the last row as described above.

In the above, there are 4 parity check rows and hence 4 parity check symbols
which can be in any positions of the code. Clearly, the method can be extended
to any number of parity check symbols. Any length of code may be produced by
simply assuming coordinates are always zero, eliminating these columns from the
parity check matrix. The columns of the parity check matrix may also be permuted
to any order but the resulting code will not be cyclic.

It follows that with the n — k parity check equations constructed using the method
above, codeword coordinates may be solved in any of n — k arbitrary positions. In
the construction of each parity check equation there is exactly one additional zero
compared to the previously constructed parity check equation. Hence there are n — k
independent parity check equations in any of n — k arbitrary positions.

Since these equations are all from the same code the minimum Hamming distance
of the code is n — k + 1 and the code is MDS. A system for the calculation of parity
check symbols in arbitrary positions may be used for encoding or for the correction of
erasures. A block diagram of such an encoder/erasures decoder is shown in Fig. 11.1.

Input|
Input Vector Update

IEEEE I B X |
Multiply and Sum X
I EEEE) - - - f [}
| Register } 1
— © 1 ol —a
>giste i
| ogistor } R
| Register } ol — a3
[Register } a -«
I R@ l
egister } i n—3
IEEER! RER] gi:gn—2
Select | at—aqn 1
t, [Parity Sym-

_bols List [Controller

Fig. 11.1 The efficient encoder/erasures decoder realisation for BCH codes

304 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

When operating as an erasures decoder in Fig. 11.1, the List of Parity Symbols is
replaced with a list of the erasures positions.

11.3 Error-Correction of Bandlimited Data

In many cases, the sampled data to be encoded with the analogue BCH code is already
bandlimited or near bandlimited in which case, the higher frequency coefficients of
the Mattson—Solomon polynomial, D(z) of the data polynomial d(x), consisting of
successive PAM samples, will be zero or near zero. An important point here is that
there is no need to add additional redundancy with additional parity check samples.
In a sense the data, as PAM samples, already contains the parity check samples.
Commonly, it is only necessary to modify a small number of samples to turn the
sampled data into codewords of the analogue BCH code as illustrated in the example
below. The brg)ad sense BCH codes are used with the following parity check matrix,
with = ™/

1 of o .. o DP

1 P+l q2B+D | o (=D(+D)
1 b2 2B+ | =D+
1

Hy B3 Q2B+ =B+ (11.6)

1 -1 | 1

Using this parity check matrix will ensure that the highest n — k Fourier coefficients
will be zero. Several alternative procedures may be used. n — k samples in each
sequence of n samples may be designated as parity symbols and solved using this
parity check matrix following the procedure above for constructing the reduced
echelon matrix so that the values of the designated parity samples may be calculated.
An alternative, more complicated procedure, is for each constructed codeword, to
allow the n — k parity samples to be in any of the #lk), combinations of positions
and choose the combination which produces the minimum mean squared differences
compared to the original n — k complex samples.

11.4 Analogue BCH Codes Based on Arbitrary
Field Elements

It is not necessary that the parity check matrix be based on increasing powers of «
with parity check equations corresponding to the forcing of Fourier coefficients to
be zero. An arbitrary ordering of complex field elements corresponding to permuted
powers of & may be used. With o« = e~/ ¥ where N > n, consider the parity check

11.4 Analogue BCH Codes Based on Arbitrary Field Elements 305

matrix
(o)) (o)) (o)) (041 e (e %))
(o)) o] (0%) (0%} e Oy_1
2 2 2 2
@ o) &3 ®n1
H, = 3 3 3 3
a0 o @ a3 |
n—k—1 _n—k—1 _n—k—1 n—k—1
| %o o a5 as a, |
The {og, o1, @2, @3, ..., a,—1} complex number field elements are all distinct and

arbitrary powers of «. Any combination of any n — k columns, or less, of this
parity check matrix are independent because the matrix transpose is a Vandermonde
matrix [1]. Consequently, the code is a (n, k, n — k + 1) MDS code.

Following the same procedure as outlined above to produce directly a reduced
echelon parity check matrix Hy, with zeros in arbitrary columns, for example in three
columns headed by, «,, o, and «,.

%)) 7))) 70} %)
H — (g — aa) 0 (2 —aq) (a3 —aq) (otp—1 — a)
b (et —) (e — atp) 0 0 (a3 — ota) (@3 — p) o (op—1 — o) (y—1 —)
(g — ota) (g — ap) (g —ac) O 0 (a3 —aa)(@3 —op)(@3 —ac) ... 0

The parity check equation corresponding to the fourth row of this parity check

matrix is
n—1

D (e — o) ey —) (e — ac)ei =0 (11.7)

i=0
where the analogue BCH codeword consists of n complex numbers

{COa Cla CZ? C3a MR] Cn—l}
k of these complex numbers may be arbitrary, determined by the information source
and n — k complex numbers are calculated from the parity check equations:
Defining
(@ — @) (@ — o) (@ — ac) =] + ao} + Preyj + Bo

Parity check Eq. (11.7) becomes

n—1 n—1 n—1 n—1
DGt afci+ Y i+ oy =0 (11.8)
i=0 i=0 i=0 i=0

306 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

This codeword is from the same code as defined by the parity check matrix H,
because using parity check matrix H,, codewords satisfy the equations

n—1

n—1 n—1 n—1
Za?ci=0 Za?cizo Zaicizo 2ci=0
i=0 i=0 i=0 i=0
and consequently the codewords defined by H, satisfy (11.8) as

0+ B0+ 10+ B0=0

It is apparent that the reduced echelon matrix Hy, consists of linear combinations of
parity check matrix H, and either matrix may be used to produce the same MDS,
analogue BCH code.

11.5 Examples

11.5.1 Example of Simple (5, 3, 3) Analogue Code

This simple code is the extended analogue BCH code having complex sample values
with @ = e'+ and uses the parity check matrix:

11111
H_[Olj—l—j]

This parity check matrix is used to encode 3 complex data values in the last 3
positions, viz (0.11 4 0.98;, —0.22 —0.88j, 0.33 + 0.78;). This produces the
codeword:

(-0.2-0.22j, —-0.02-0.66;5, 0.11+0.98;, —-0.22-0.88;, 0.3340.78;)
Suppose the received vector has the last digit in error
(-0.2-0.225, —-0.02-0.66j, 0.1140.98;, —0.22-0.88;, 0.44+0.9))

Applying the first parity check equation produces 0.07 + 0.12 . This result tells us
that there is an error of 0.07 +0.12j in one of the received coordinates. Applying the
second parity check equation produces 0.12—0.07 ;. Since this is the error multiplied
by —Jj, this tells us that the error is in the last coordinate. Subtracting the error from
the last coordinate of the received vector produces (0.4 +0.95) — (0.07 4+ 0.12j) =
0.33 + 0.78 and the error has been corrected.

11.5 Examples 307

11.5.2 Example of Erasures Correction Using (15,10, 4)
Binary BCH code

This is an example demonstrating that the erasures decoder shown in Fig. 11.1 may
be used to correct erasures in a binary BCH code as well as being able to correct
erasures using an analogue BCH code.

The code is abinary BCH code of lengthn = 15, with binary codewords generated
by the generator polynomial g(x) = (1 +x* +x*)(1 +x). The Galois field is GF(2*)
generated by the primitive root o, which is a root of the primitive polynomial 14x+x*
so that 1 + o + a* = 0, and the Galois field consists of the following table of 15
field elements, plus the element, O.

One example of a codeword from the code is

c(x):x+x3+x4+x6+x8+x9+x10+x“ (11.9)

and consider that in a communication system, the codeword is received with erasures
in positions in Ag = 5, A; = 0 and A, = 8§, so that the received codeword is

Cx)=¢C +x + x>+ xt +5x° +x0 e X0 X104 1 (11.10)

To find the party check equations to solve for the erasures, referring to Fig. 11.1, the
first parity check equation, ho(x), the all 1’s vector is stored in the Register. The
second parity check equation 4, (x) has zero for the coefficient of x"~*0="=3 and is
given by

n—1
hy(x) = Z(ozj —a'%) x/ (11.11)
=0

Note that /; (x).¢(x) = 0 and these polynomials are derived with the intention that
the coefficient of x° will be evaluated. Referring to Fig. 11.1, h;(x) is stored in the
corresponding Register. After substitution using Table 11.1, it is found that

h(x) = +abx +a*x? + a5 +o?xr + 10
T+ a’x + a7+ ax® £ aPx® 4+ gy

+ x4+ a%x B 4ol (11.12)
Notice that although the codeword is binary, the coefficients of this equation are from

the full extension field of GF(16). The third parity check equation %, (x) has zero in
position n — A; = n — 0 and is given by

n—1
hy(x) =D (@ — 1) x/ (11.13)
j=0

308 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

after evaluation

ho(x) = a*x + ax? + o + ax* + o'
+ a3 4+ a%%7 + a?x® + alx® + @Sk 10

+0112x”+a”x12+a6x13+a3x14 (1114)

Referring to Fig. 11.1, this polynomial is stored in the corresponding Register.

The parity check equation which gives the solution for coefficient ¢g is Az (x) =
ho(x) ® hi(x) © hy(x). Multiplying each of the corresponding coefficients together
of the polynomials Ao (x), h;(x) and h,(x) produces

ha(x) = a'2x + a'2x? 4+ o''x% + o¥x* + a'%x

+ a5x0 £ x7 + o'% 4 o5x? 4 oMy
NPT E RTINSt (11.15)

5

Referring to Fig. 11.1, h3(x) will be input to Multiply and Sum. It should be noted
that the parity check equation /3(x) has non-binary coefficients, even though the
codeword is binary and the solution to the parity check equation has to be binary.
Evaluating the coefficient of x° of /13(x)¢(x) gives ' + o' + 'l + o + ¢ +
o’ + a'® + @® = 0, which simplifies to a'! + &5 + «'® + &* = 0. Using Table 11.1
gives
@+’ +a)+&+(1+a+a))+a’=0

Table 11.1 All 15 Nonzero Galois Field elements of GF(16)
Symbol o modulo 1 + & + o*

(=}

o' = 1

ol = ol

o’ = o?

o’ = o’
at= 1+ o

o = o+ o?

o = o+ o’
o = 14 a+ o3
o= 14 o?

o = o+ o3
o= 14+ a+ o?

all = ot o2+ o3
a?= 1+at+ o2+ o?
a3= 14 o2+ o3
alt 1+ o’

11.5 Examples 309

and ¢g = 1. Referring to Fig.11.1, Select produces from h3(x) the value of the
coefficient of x” which is 1 and when inverted this is also equal to 1. The output of
the Multiply and Add is 1, producing a product of 1, which is used by Update to
update ¢g = 1 in the Input Vector ¢(x).

The parity check equation /,(x) gives the solution for coefficient ¢y. Evaluating
the coefficient of x° of /1, (x)é(x) gives

0=Ol3+0lll+0612+€’50[5+057
+O(9+(¥13+O[10+Ol

Substituting using Table 11.1 gives ésa® = 0 and &5 = 0.
Lastly the parity check equation ho(x) gives the solution for coefficient ¢y. Eval-
uating the coefficient of x° of ho(x)é(x) gives

O=c¢p+1+1+14+14+1+1+14+1 (11.16)
and it is found that ¢y = 0, and the updated ¢(x) with all three erasures solved is
) =x4+ 0+ xt +x0 +x8 x x0 4 (11.17)

equal to the original codeword.

11.5.3 Example of (128, 112, 17) Analogue BCH Code
and Error-Correction of Audio Data (Music)
Subjected to Impulsive Noise

In this example, a stereo music file sampled at 44.1 kHz in complex Pulse Ampli-
tude Modulation (PAM) format is split into sequences of 128 complex samples and
encoded using an analogue (128, 112, 17) BCH code with o = ejl%, and reassem-
bled into a single PAM stream. A short section of the stereo left channel waveform
before encoding is shown plotted in Fig. 11.2.

The encoding parity check matrix is the Hy matrix for bandlimited signals given
above in matrix (11.6). There are 16 parity symbols and to make these obvious they
are located at the beginning of each codeword. The same section of the stereo left
channel waveform as before but after encoding is shown plotted in Fig. 11.3. The
parity symbols are obvious as the newly introduced spikes in the waveform.

310 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

4000

wavedata ——

3000

2000

amplitude
>
o
o

-1000

-2000

-3000 | | |
0 100 200 300 400 500

wave file original

Fig. 11.2 Section of music waveform prior to encoding

2000
wavedata ——
1500
1000

500

amplitude

-500

-1000

-1500

-2000 L L L L L
0 100 200 300 400 500
wave file original

Fig. 11.3 Section of music waveform after encoding

11.5 Examples 311

20000 T T T T T
wavedata ——

15000

10000

5000

amplitude

-5000

-10000

-15000

-20000
0 100 200 300 400 500

wave file original

Fig. 11.4 Section of music waveform after encoding and subjected to impulse noise

The parity symbols may be calculated for any combination of 16 coordinate posi-
tions and in a more complicated encoding arrangement the positions could be selected
as those that produce the minimum mean square error. However, the frequency com-
ponents affected extend from 19.47 to 22.1 kHz (these components are equal to zero
after encoding) and are beyond the hearing range of most people.

The encoded music waveform is subjected to randomly distributed impulse noise
with a uniformly distributed amplitude in the range 16000. The result is shown
plotted in Fig. 11.4 for the same section of the waveform as before, although this is
not obvious in the plot.

The decoder strategy used is that in each received codeword the 16 received
PAM samples with the greatest magnitudes exceeding a dynamic threshold or with
largest change relative to neighbouring samples are erased. The erasures are then
solved using the parity check equations as outlined above. In several cases, correctly
received PAM samples are erased, but this does not matter provided the 112 non-
erased samples in each received codeword are correct. The decoded music waveform
is shown in Fig. 11.5, and is apparent that waveform after decoding is the same as
the encoded waveform and the impulse noise errors have been corrected.

Usually, impulse noise effects are handled by noise suppressors which produce
short, zero-valued waveform sections. These audible gaps are irritating to the lis-
tener. By using analogue BCH, error-correcting codes, there are no waveform gaps
following decoding.

312 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

2000

wavedata ——

1500

1000

500

amplitude

-500

-1000

-1500

-2000 1 1 1 1 1
0 100 200 300 400 500

wave file original

Fig. 11.5 Section of music waveform after decoding

11.6 Conclusions and Future Research

It has been demonstrated that for analogue (n, k, n — k + 1) BCH codes, parity check
symbols having complex values may be calculated for any n — k arbitrary positions
in each codeword and an efficient method of calculating erased symbols for any BCH
code including binary codes has been presented. Bandlimited data naturally occurs
in many sources of information. In effect the source data has already been encoded
with an analogue BCH code. In practice the parity check equations of the BCH
code will only approximately equal zero for the PAM samples of the bandlimited
source. There is scope for determining those samples which require the minimum
of changes in order to satisfy the parity check equations. Similarly in decoding
codewords corrupted by a noisy channel there is the opportunity to use the statistics
of the noise source to design a maximum likelihood decoder for analogue BCH
codes. It appears likely that the extended Dorsch decoder described in Chap. 15 may
be adapted for analogue BCH codes.

There are many ad hoc noise suppression algorithms used on analogue video
and audio waveforms which cause artefacts in the signal processed outputs. There
appears to be an opportunity to improve on these by using analogue BCH coding
since the output of the decoder is always a codeword. For high quality systems this
will predominantly be the transmitted codeword and therefore the decoder output
will be free of artefacts.

Whilst most communications these days is digitally based, analogue communi-
cations is usually far more bandwidth efficient, particularly in wireless applications.
By using analogue BCH codes, analogue communications may be attractive once
more, particularly for niche applications.

http://dx.doi.org/10.1007/978-3-319-51103-0_15

11.6 Conclusions and Future Research 313

Steganography is another area in which analogue BCH codes may be utilised.
Errors in parity check equations may be used to communicate data in a side channel.
By virtue of the parity check equations these errors may be distributed over multiple
PAM samples or pixels. Secrecy may be assured by using a combination of secret
permutations of the parity check matrix columns and a secret linear matrix trans-
formation so that the parity check equations are unknown by anyone other than the
originator.

11.7 Summary

Many information sources are naturally analogue and must be digitised if they are
to be transmitted digitally. The process of digitisation introduces quantisation errors
and increases the bandwidth required. The use of analogue error-correcting codes
eliminates the need for digitisation. It been shown that analogue BCH codes may
be constructed in the same way as finite field BCH codes, including Reed—Solomon
codes. The difference is that the field of complex numbers is used instead of a prime
field or prime power field. It has been shown how the Mattson—Solomon polynomial
or equivalently the Discrete Fourier transform may be used as the basis for the
construction of analogue codes. It has also been shown that a permuted parity check
matrix produces an equivalent code using a primitive root of unity to construct the
code as in discrete BCH codes.

A new algorithm was presented which uses symbolwise multiplication of rows
of a parity check matrix to produce directly the parity check matrix in reduced
echelon form. The algorithm may be used for constructing reduced echelon parity
check matrices for standard BCH and RS codes as well as analogue BCH codes.
Gaussian elimination or other means of solving parallel, simultaneous equations are
completely avoided by the method. It was also proven that analogue BCH codes are
Maximum Distance Separable (MDS) codes. Examples have been presented of using
the analogue BCH codes in providing error-correction for analogue, band-limited
dataincluding the correction of impulse noise errors in BCH encoded, analogue stereo
music waveforms. It is shown that since the data is bandlimited it is already redundant
and the parity check symbols replace existing values so that there is no need for
bandwidth expansion as in traditional error-correcting codes. Future research areas
have been outlined including an analogue, maximum likelihood, error-correcting
decoder based on the extended Dorsch decoder of Chap. 15. Steganography is another
future application area for analogue BCH codes.

http://dx.doi.org/10.1007/978-3-319-51103-0_15

314 11 Analogue BCH Codes and Direct Reduced Echelon Parity ...

References

1. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Ams-
terdam (1977)

2. Marshall, J.T.: Coding of real-number sequences for error correction: a digital signal processing
problem. IEEE J. Sel. Areas Commun. 2(2), 381-392 (1984)

3. Wolf, J.: Redundancy, the discrete fourier transform, and impulse noise cancellation. IEEE Trans.
Commun. 31(3), 458-461 (1983)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 12
LDPC Codes

12.1 Background and Notation

LDPC codes are linear block codes whose parity-check matrix—as the name
implies—is sparse. These codes can be iteratively decoded using the sum prod-
uct [9] or equivalently the belief propagation [24] soft decision decoder. It has been
shown, for example by Chung et al. [3], that for long block lengths, the performance
of LDPC codes is close to the channel capacity. The theory of LDPC codes is related
to a branch of mathematics called graph theory. Some basic definitions used in graph
theory are briefly introduced as follows.

Definition 12.1 (Vertex, Edge, Adjacent and Incident) A graph, denotedby G(V, E),
consists of an ordered set of vertices and edges.

e (Vertex) A vertex is commonly drawn as a node or a dot. The set V(G) consists
of vertices of G(V, E) and if v is a vertex of G(V, E), itis denoted as v € V(G).
The number of vertices of V(G) is denoted by |V (G)].

e (Edge) An edge (u,v) connects two vertices u € V(G) and v € V(G) and it
is drawn as a line connecting vertices u# and v. The set E(G) contains pairs of
elements of V(G), i.e. {(u,v) |u,v € V(G)}.

e (Adjacent and Incident) If (#,v) € E(G), thenu € V(G) and v € V(G) are
adjacent or neighbouring vertices of G(V, E). Similarly, the vertices u and v are
incident with the edge (u, v).

Definition 12.2 (Degree) The degree of a vertex v € V(G) is the number of edges
that are incident with vertex v, i.e. the number of edges that are connected to vertex v.

Definition 12.3 (Bipartite or Tanner graph) Bipartite or Tanner graph G(V, E)
consists of two disjoint sets of vertices, say V,(G) and V,(G), such that V(G) =
V,(G) U V,(G), and every edge (v, p;) € E(G), such thatv; € V,(G) and p; €
V,(G) for some integers i and j.

© The Author(s) 2017 315
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_12

316 12 LDPC Codes

An [n, k,d] LDPC code may be represented by a Tanner graph G(V, E). The
parity-check matrix H of the LDPC code consists of |V,(G)| = n — k rows and
[V,(G)| = n columns. The set of vertices V,(G) and V,(G) are called variable and
parity-check vertices, respectively. Figure 12.1 shows the parity check and the cor-

Vo V1 U2 U3 U4 Us Vg Uy Vg Vg Uip Vi1 V12 V13 V14 U1s
111 10000000O0O0O0GO0O0T7P
000011 110O0O0O0O0O0GO0O0]|P
0000O0OO0OO0OO0OT1TT1T1T1TO0O0O0O0 (P
0000O0OO0OO0OO0OO0OO0OO0OT1TO0T111|Pps
0001 10O00O0O0O0O0O0T1T1O0 /(P
H— 001000101O01O0O000O0O0]|P
10000O0OO0O1O0T1TO0O0O0OT1TO0O0/|Ps
0001001001O001O0O0O0 |pr
001 000O0OO01O0O0O01O0QO01|ps
01 000101T0O0O0O01O0O0O0 (P
1000010O0O0O0OT1TO0O0O0T1O0/|pPo
L0100 1000O0O0O0OT1TO0O0O0T|p

(a) Parity check matrix

Vo

U1

V2 Po
U3 D1
(o D2
Us D3
Vg P4
v7 D5
Us Do
Yo D7
V10 Ps
11 Do
V12 P10
v13 D11
V14

V15

(b) Tanner graph

Fig. 12.1 Representations of a [16, 4, 4] LDPC code

12.1 Background and Notation 317

responding Tanner graph of a [16, 4, 4] LDPC code. Let V,,(G) = (vo, Vi, ..., Vu—1)
and V,(G) = (po, p1, - - -, Pn—k—1); We can see that for each (v;, p;) € E(G), the
ith column and jthrowof H, H;; #0,for0 <i <n—1land0<j<n—k—1.

Definition 12.4 (Cycle) A cycleinagraph G(V, E) is a sequence of distinct vertices
that starts and ends in the same vertex. For bipartite graph G(V, E), exactly half of
these distinct vertices belong to V,(G) and the remaining half belong to V,(G).

Definition 12.5 (Girth and Local Girth) The girth of graph G(V, E) is the length
of the shortest cycle in the graph G(V, E). The local girth of a vertex v € V(G) is
the length of shortest cycle that passes through vertex v.

The performance of a typical iteratively decodable code (e.g. an LDPC or turbo
code) may be partitioned into three regions, namely erroneous, waterfall and error
floor regions, see Fig. 12.2. The erroneous region occurs at low E; /Ny values and
is indicated by the inability of the iterative decoder to correctly decode almost all
of the transmitted messages. As we increase the signal power, the error rate of the
iterative decoder decreases rapidly—resembling a waterfall. The E;/Ny value at
which the waterfall region starts is commonly known as the convergence threshold
in the literature. At higher E, /Ny values, the error rate starts to flatten—introducing
an error floor in the frame error rate (FER) curve.

In addition to this FER curve, the offset sphere packing lower bound and the
probability of error based on the union bound argument as described in Chap. 1 are
also plotted in Fig. 12.2. The sphere packing lower bound represents the region of

Waterfall region Error floor regio

FER
3
o

Typical performance of
; iteratively decodable code-

107 f region

10
10°
1070
101 Offset sphere packing 4 g
: lower-bound : : : Union bound _
10—12 C il i I i i [i i 1 i 3
0 0.5 1 15 2 25 3 3.5 4 4.5
E,/N,, dB

Fig. 12.2 Waterfall and error regions of a typical LDPC code for the AWGN channel

http://dx.doi.org/10.1007/978-3-319-51103-0_1

318 12 LDPC Codes

attainable performance of a coding system. The performance to the left of this lower
bound is not attainable, whereas that to the right may be achieved by some coding
and decoding arrangements. The other curve is the union bound of the probability of
error, which is dominated by the low Hamming weight codewords and the number of
codewords of these Hamming weights. The larger the minimum Hamming distance
of a code, the lower the union bound typically. For iteratively decodable codes which
are not designed to maximise the minimum Hamming distance, the union bound
intersects with the offset sphere packing lower bound at relatively low Ej,/ Ny values.

It may be seen that, with an ideal soft decision decoder, the performance of a
coding system would follow the sphere packing lower bound and at higher E,/Ny
values, the performance floors due to the limitation of the minimum Hamming weight
codewords. However, as depicted in Fig. 12.2, there is a relatively wide gap between
the union bound and the error floor of a typical iteratively decodable code. This
is an inherent behaviour of iteratively decodable codes and it is attributed to the
weakness of the iterative decoder. There are other error events, which are not caused
by the minimum Hamming weight codewords, that prevent the iterative decoder from
reaching the union bound.

In terms of the construction technique, we may divide LDPC codes into two
categories: random and algebraic LDPC codes. We may also classify LDPC codes
into two categories depending on the structure of the parity-check matrix, namely
regular and irregular codes—refer to Sect. 12.1.1 for the definition. Another attractive
construction method that has been shown to offer capacity-achieving performance
is non-binary construction.

12.1.1 Random Constructions

Gallager [8] introduced the (n, A, p) LDPC codes where n represents the block length
whilst the number of non-zeros per column and the number of non-zeros per row are
represented by A and p, respectively.

The short notation (A, p) is also commonly used to represent these LDPC codes.
The coderate of the Gallager (A, p) codes is given by

A
R=1-—.
I

An example of the parity-check matrix of a Gallager (A, p) LDPC code is shown
inFig.12.1a.Itisa[16, 4, 4] code with a A of 3 and a p of 4. The parity-check matrix
of the (A, p) Gallager codes always have a fixed number of non-zeros per column
and per row, and because of this property, this class of LDPC codes is termed regular
LDPC codes. The performance of the Gallager LDPC codes in the waterfall region
is not as satisfactory as that of turbo codes for the same block length and code rate.
Many efforts have been devoted to improve the performance of the LDPC codes and
one example that provides significant improvement is the introduction of the irregular

12.1 Background and Notation 319

LDPC codes by Luby et al. [18]. The irregular LDPC codes, as the name implies,
do not have a fixed number of non-zeros per column or per row and thus the level
of error protection varies over a codeword. The columns of a parity check matrix
that have a higher number of non-zeros provide stronger error protection than those
that have a lower number of non-zeros. Given an input block in iterative decoding,
errors in the coordinates of this block, whose columns of the parity-check matrix
have a larger number of non-zeros, will be corrected earlier, i.e. only a small number
of iterations are required. In the subsequent iterations, the corrected values in these
coordinates will then be utilised to correct errors in the remaining coordinates of the
block.

Definition 12.6 (Degree Sequences) The polynomial A; (x) = >, A;x' is called
the symbol or variable degree sequence, where A; is the fraction of vertices of degree
i. Similarly, A,(x) = >, pix' is the check degree sequence, where p; is the
fraction of vertices of degree i.

The degree sequences given in the above definition are usually known as vertex-
oriented degree sequences. Another representations are edge-oriented degree
sequences which consider the fraction of edges that are connected to a vertex of
certain degree. Irregular LDPC codes are defined by these degree sequences and it
is assumed that the degree sequences are vertex-oriented.

Example 12.1 An irregular LDPC code with the following degree sequences

As(x) = 0.5x% +0.26x + 0.17x° + 0.07x'°
Ap(x) = 0.80x'* +0.20x "

has 50, 26, 17 and 7% of the columns with 2, 3, 5 and 10 ones per column, respectively,
and 80 and 20% of the rows with 14 and 15 ones per row, respectively.

Various techniques have been proposed to design good degree distributions.
Richardson et al. [27] used density evolution to determine the convergence thresh-
old and to optimise the degree distributions. Chung et al. [4] simplified the density
evolution approach using Gaussian approximation. With the optimised degree dis-
tributions, Chung et al. [3] showed that the bit error rate performance of a long block
length (n = 107) irregular LDPC code was within 0.04 dB away from the capacity
limit for binary transmission over the AWGN channel, discussed in Chap. 1. This is
within 0.18 dB of Shannon’s limit [30]. The density evolution and Gaussian approxi-
mation methods, which make use of the concentration theorem [28], can only be used
to design the degree distributions for infinitely long LDPC codes. The concentration
theorem states that the performance of cycle-free LDPC codes can be characterised
by the average performance of the ensemble. The cycle-free assumption is only valid
for infinitely long LDPC codes and cycles are inevitable for finite block-length LDPC
codes. As may be expected, the performance of finite block-length LDPC codes with
degree distributions derived based on the concentration theorem differs considerably
from the ensemble performance. There are various techniques to design good finite

http://dx.doi.org/10.1007/978-3-319-51103-0_1

320 12 LDPC Codes

block-length LDPC codes, for instance see [1, 2, 10, 33]. In particular, the work of
Hu et al. [10] with the introduction of the progressive edge-growth (PEG) algorithm
to construct both regular and irregular LDPC codes, that of Tian et al. [33] with
the introduction of extrinsic message degree and recently, that of Richter et al. [29]
which improves the original PEG algorithm by introducing some construction con-
straints to avoid certain cycles involving variable vertices of degree 3, have provided
significant contributions to the construction of practical LDPC codes as well as the
lowering of the inherent error floor of these codes.

12.1.2 Algebraic Constructions

In general, LDPC codes constructed algebraically have a regular structure in their
parity-check matrix. The algebraic LDPC codes offer many advantages over ran-
domly generated codes. Some of these advantages are

1. The important property such as the minimum Hamming distance can be easily
determined or in the worst case, lower and upper bounds may be mathematically
derived. These bounds are generally more accurate than estimates for random
codes.

2. The minimum Hamming distance of algebraic LDPC codes is typically higher
than that of random codes. Due to the higher minimum Hamming distance, alge-
braic codes are not that likely to suffer from an early error floor.

3. The existence of a known structure in algebraic codes usually offers an attractive
and simple encoding scheme. In the case of random codes, in order to carry
out encoding, a Gaussian elimination process has to be carried out in the first
place and the entire reduced echelon parity-check matrix has to be stored in
the memory. Algebraically constructed codes such as cyclic or quasi-cyclic codes
can be completely defined by polynomials. The encoding of cyclic or quasi-cyclic
codes may be simply achieved using a linear-feedback shift-register circuit and
the memory requirement is minimum. Various efficient techniques for encoding
random LDPC codes have been proposed, see Ping et al. [26] for example, but
none of these techniques simplifies the storage requirements. The simplicity of the
encoder and decoder structure has led to many algebraically constructed LDPC
codes being adopted as industry standards [5].

4. Cyclic LDPC codes have n low Hamming weight parity-check equations and
therefore, compared to random codes, these cyclic LDPC codes have k extra
equations for the iterative decoder to iterate with and this leads to improved
performance.

One of the earliest algebraic LDPC code constructions was introduced by
Margulis [21] using the Ramanujan graphs. Lucas et al. [19] showed that the
well-known different set cyclic (DSC) [36] and one-step majority-logic decodable
(OSMLD) [17] codes have good performance under iterative decoding. The iter-
ative soft decision decoder offers significant improvement over the conventional

12.1 Background and Notation 321

hard decision majority-logic decoder. Another class of algebraic codes is the class
of the Euclidean and projective geometry codes which are discussed in detail by
Kou et al. [16]. Other algebraic constructions include those that use combinatorial
techniques [13-15, 35].

It has been observed that in general, there is an inverse performance relationship
between the minimum Hamming distance of the code and the convergence of the
iterative decoder. Irregular codes converge well with iterative decoding, but the min-
imum Hamming distance is relatively poor. In contrast, algebraically constructed
LDPC codes, which have high minimum Hamming distance, tend not to converge
well with iterative decoding. Consequently, compared to the performance of irreg-
ular codes, algebraic LDPC codes may perform worse in the low SNR region and
perform better in the high SNR region. This is attributed to the early error floor of
the irregular codes. As will be shown later, for short block lengths (n < 350), cyclic
algebraic LDPC codes offer some of the best performance available.

12.1.3 Non-binary Constructions

LDPC codes may be easily extended so that the symbols take values from the finite-
field Fo» and Davey et al. [6] were the pioneers in this area. Given an LDPC code over
[F, with parity-check matrix H, we may construct an LDPC code over Fon form > 2
by simply replacing every non-zero element of H with any non-zero element of Fp» in
arandom or structured manner. Davey et al. [6] and Hu et al. [11] have shown that the
performance of LDPC codes can be improved by going beyond the binary field. The
non-binary LDPC codes have better convergence behaviour under iterative decod-
ing. Using some irregular non-binary LDPC codes, whose parity-check matrices are
derived by randomly replacing the non-zeros of the PEG-constructed irregular binary
LDPC codes, Hu et al. [11] demonstrated that an additional coding gain of 0.25 dB
was achieved. It may be regarded that the improved performance is attributable to the
improved graph structure in the non-binary arrangement. Consider a cycle of length
6 in the Tanner graph of a binary LDPC code, which is represented as the following
sequence of pairs of edges {(vo, po), (3, Po)s (v3, p2), (v4, p2), (v4, p1), (vo, p1)}.
If we replace the corresponding entries in the parity-check matrix with some non-
zeros over Fon for m > 2, provided that these six entries are not all the same, the
cycle length becomes longer than 6. According to McEliece et al. [22] and Etzion
et al. [7], the non-convergence of the iterative decoder is caused by the existence of
cycles in the Tanner graph representation of the code. Cycles, especially those of
short lengths, introduce correlations of reliability information exchanged in iterative
decoding. Since cycles are inevitable for finite block length codes, it is desirable to
have LDPC codes with large girth.

The non-binary LDPC codes also offer an attractive matching for higher order
modulation methods. The impact of increased complexity of the symbol-based iter-
ative decoder can be moderated as the reliability information from the component

322 12 LDPC Codes

codes may be efficiently evaluated using the frequency-domain dual-code decoder
based on the Fast Walsh-Hadamard transform [6].

12.2 Algebraic LDPC Codes

Based on idempotents and cyclotomic cosets, see Chap. 4, a class of cyclic codes that
is suitable for iterative decoding may be constructed. This class of cyclic codes falls
into the class of one-step majority-logic decodable (OSMLD) codes whose parity-
check polynomial is orthogonal on each bit position—implying the absence of a girth
of 4 in the underlying Tanner graph, and the corresponding parity-check matrix is
sparse, and thus can be used as LDPC codes.

Definition 12.7 (Binary Parity-Check Idempotent) Let .#4 < .4 and let the poly-
nomial u(x) € T (x) be defined by

u(x) = Z es(x) 12.1)

se M

where e, (x) is an idempotent. The polynomial u(x) is called a binary parity-check
idempotent.

The binary parity-check idempotent u(x) can be used to describe an [n, k] cyclic
code as discussed in Chap.4. Since GCD(u(x), x" — 1) = h(x), the polynomial
i(x) = x9Ny (x 1) and its n cyclic shifts (mod x" — 1) can be used to define
the parity-check matrix of a binary cyclic code. In general, wtg (z(x)) is much lower
than wty (h(x)), and therefore a low-density parity-check matrix can be derived from
u(x).

Let the parity-check polynomial #(x) = x“ + x™ + ... + x™ of weight t + 1.
Since the code defined by u(x) is cyclic, for each non-zero coefficient u; in u(x),
there are another ¢ parity-check polynomials of weight # + 1, which also have a
non-zero coefficient at position ;. Furthermore, consider the set of these r + 1
polynomials that have a non-zero coefficient at position i;, there is no more than
one polynomial in the set that have a non-zero at position i ; for some integer j. In
other words, if we count the number of times the positions 0, 1, ..., n — 1 appear
in the exponents of the aforementioned set of # + 1 polynomials, we shall find that
all positions except u; appear at most once. This set of # + 1 polynomials is said to
be orthogonal on position i;. The mathematical expression of this orthogonality is
given in the following definition and lemma.

Definition 12.8 (Difference Enumerator Polynomial) Let the polynomial f(x) €
T (x). The difference enumerator of f(x), denoted as Z(f(x)), is defined as

D(fx)=f @) f(x)=do+dix+-- +dpx", (12.2)

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4

12.2 Algebraic LDPC Codes 323

where it is assumed that Z(f (x)) is a modulo x” — 1 polynomial with coefficients
taking values from R (real coefficients).

Lemma 12.1 Let d; for 0 < i < n — 1 denote the coefficients of 2(u(x)). If
d;i € {0,1}, foralli € {1,2,...,n — 1}, the parity-check polynomial derived from
u(x) is orthogonal on each position in the n-tuple. Consequently,

(i) the minimum distance of the resulting LDPC code is 1 + wty (u(x)), and
(ii) the underlying Tanner Graph has girth of at least 6.

Proof (i) [25, Theorem 10.1] Let a codeword ¢(x) = co+cix + - - +c,_1x" ! and
¢(x) € T (x). For each non-zero bit position c; of ¢(x), where j € {0,1,...,n —
1}, there are wty (u(x)) parity-check equations orthogonal to position c;. Each of
the parity-check equations must check another non-zero bit ¢;, where [# j, so
that the equation is satisfied. Clearly, wty (c(x)) must equal to 1 + wty (u(x)) and
this is the minimum weight of all codewords.

(i) The direct consequence of having orthogonal parity-check equations is the
absence of cycles of length 4 in the Tanner Graphs. Leta, b and ¢, wherea < b < c,
be three distinct coordinates in an n-tuple, since d; € {0, 1} for 1 <i <n — 1, this
implies that b — a # ¢ — b. We know that g(b — a) (mod n) € {1,2,...,n — 1}
and thus, g(b —a) (mod n) = (c — b) for some integer g € {1,2,...,n—1}. If we
associate the integers a, b and ¢ with some variable vertices in the Tanner graph, a
cycle of length 6 is produced.

It can be deduced that the cyclic LDPC code with parity-check polynomial i (x)
is an OSMLD code if d; € {0, 1}, foralli € {1,2,...,n — 1} or a difference set
cyclic (DSC) code if d; = 1, foralli € {1,2,...,n — 1}, where d; is the coefficient
of Z(u(x)).

In order to arrive at either OSMLD or DSC codes, the following design conditions
are imposed on i (x) and therefore, u(x):

Condition 12.1 The idempotent u(x) must be chosen such that
wty (u(x)) (Wt (u(x)) — 1)) <n — L

Proof There are wty (u(x)) polynomials of weight wty (#(x)) that are orthogonal
on position j for some integer j. The number of distinct positions in this set of
polynomials is wty (u(x)) (Wtg (u(x)) — 1), and this number must be less than or
equal to the total number of distinct integers between 1 and n — 1.

Condition 12.2 Following Definition 12.8,let W = {i |d; =1, 1 <i <n — 1},
the cardinality of W must be equal to wty (u(x)) (wty (u(x)) — 1).

Proof The cyclic differences between the exponents of polynomial u(x) are given
by Z (u(x)) = z;:ol d;x', where the coefficient d; is the number of differences
and the exponent i is the difference. The polynomial u(x) and some of its cyclic
shifts are orthogonal on position 0 and this means that all of the cyclic differences

324 12 LDPC Codes

between the exponents of u(x) (excluding zero) must be distinct, i.e. d; € {0, 1} for
1 <i # n — 1. Since the weight of u(x) excluding x%is wty (u(x)) — 1 and there
are wty (u(x)) cyclic shifts of u(x) that are orthogonal to x°, the number of distinct
exponents in the cyclic differences is wty (#(x)) (wty (u(x)) — 1) = W.

Condition 12.3 The exponents of u(x) must not contain a common factor of n,
otherwise a degenerate code, a repetition of a shorter cyclic code, is the result.

Proof If the exponents of u(x) contain a common factor of n, p with n = pr, then
factors of u(x) divide x” — 1 and form a cyclic code of length r. Every codeword of
the longer code is a repetition of the shorter cyclic code.

Condition 12.4 Following (12.1), unless wty (es(x)) = 2, the binary parity-check
idempotent e, (x) must not be self-reciprocal, i.e. e;(x) # ¢; (x7'), foralli € ./Z.

Proof The number of non-zero coefficients of Z(es(x)) is equal to

wtp (es(x)) (Wey (eg(x)) —1).

For a self-reciprocal case, e, (x)e (x’l) = ef (x) = es(x) with wtg (e (x)) non-zero
coefficients. Following Condition 12.1, the inequality

wtg (es(x)) (Wi (es(x) — 1) < wig(e;(x))

becomes equality if and only if wty (e;(x)) = 2.

Condition 12.5 Following (12.1), u(x) must not contain e, (x~'), for all i € .,
unless e, (x) is self-reciprocal.

Proof If u(x) contains e; (x‘l) for i € ., then 2(u(x)) will contain both
es(x)eg (x’l) and e, (x’l) es(x), hence, some of the coefficients of Z(es(x)),
d; # {0, 1} for some integer i.

Although the above conditions seem overly restrictive, they turn out to be helpful
in code construction. Codes may be designed in stage-by-stage by adding candidate
idempotents to u(x), checking the above conditions at each stage.

In order to encode the cyclic LDPC codes constructed, there is no need to deter-
mine g(x). With « defined as a primitive n'" root of unity, it follows from Lemma 4.4
that u(a’) € {0,1} for 0 < i < n — 1. Let I = (Jo, ji, .-, jn—k—1) be a set of
integers between 0 and n — 1, such that g(a/) = 0, for all j € J . Because u(x)
does not contain o/ as its roots, it follows that u(e/) = 1, for all je f. Inl,,
1 + u(a/) = 0 and the polynomial 1 + u(x) = e, (x), the generating idempotent of
the code may be used to generate the codewords as an alternative to g(x).

The number of information symbols of the cyclic LDPC codes can be determined
either from the number of roots of u(x) which are also roots of unity, i.e. n —
wty (U (z)), or from the degree of (u(x), x" — 1) = h(x).

http://dx.doi.org/10.1007/978-3-319-51103-0_4

12.2 Algebraic LDPC Codes 325

Example 12.2 Consider the design of a cyclic LDPC code of length 63. The cyclo-
tomic coset modulo 63 is given in Example 4.2. Let u(x) be defined by Co, i.e.
u(x) = eg(x) = x°(1 + x° + x?’). 2(u(x)) indicates that the parity-check matrix
defined by u(x) has no cycles of length 4; however, following Condition 12.3, it is
a degenerate code consisting of repetitions of codewords of length 7.

With u(x) = ep(x) = x3(1 + x% 4+ x20 4+ x2 4+ x30 4 x3), the resulting cyclic
code is a [63, 31, 6] LDPC code which is non-degenerate and its underlying Tanner
graph has girth of 6. This code can be further improved by adding e;; (x) to u(x).
Despite e, (x) being self-reciprocal, its weight is 2 satisfying Condition 12.4. Now,
u(x) = x2 A +x2 +x8 + 22+ x22 4+ xP 4+ x2 +x%7), and it is a [63, 37, 9] cyclic
LDPC code.

Based on the theory described above, an algorithm which exhaustively searches
for all non-degenerate cyclic LDPC codes of length n which have orthogonal parity-
check polynomials has been developed, and it is given in Algorithm 12.1.

Algorithm 12.1 CodeSearch(V, index)

Input:
index < an integer that is initialised to —1
V < a vector that is initialised to ¢
7 &= A excluding 0
Output:
CodesList contains set of cyclic codes which have orthogonal parity-check polynomial
TV
2: for (i=index+1;i < |.7|; i++) do

3: Tprev <T

4: it (Xy,er ICs | < /n, S; is the ™ element of) then

5: Appendi to T

6: u(x) = Xy ey es, (%)

7: if (u(x) is non-degenerate) and (u(x) is orthogonal on each position (Lemma 12.1))

then

8: U(z) = MS (u(x))

9: k=n—wty (U(z))
10: ¢ < aln, k, 1+ wty(u(x))] cyclic code defined by u(x)
11: if (k> }) and (¢ ¢ CodeList) then

12: Add C to CodeList

13: end if

14: end if

15: CodeSearch(T, i)

16: end if

17: T < Tprev

18: end for

Table 12.1 lists some example of codes obtained from Algorithm 12.1. Note that
all codes with code rate less than 0.25 are excluded from the table and codes of longer
lengths may also be constructed. We can also see that some of the codes in Table 12.1
have the same parameters as the Euclidean and projective geometry codes, which
have been shown by Jin et al. [16] to perform well under iterative decoding.

http://dx.doi.org/10.1007/978-3-319-51103-0_4

326

Table 12.1 Examples of
2-cyclotomic coset-based
LDPC codes

12 LDPC Codes

[n, k,d] Cyclotomic cosets
(21,11, 6] C7, Cy
[63,37,9] C21,Co3
[93,47, 8] C3, C3

[73, 45, 10] Cy

[105, 53, 8] C7,Ci5

[219, 101, 12] C3, Cp3

[255, 135, 13] C1, Cio

[255, 175, 17] Ci,Cy

[273, 191, 18] C1, Co1, Cr17
[341, 205, 16] Cy, Css

[511, 199, 19] Cs, C37
[511,259, 13] C1, Carg

[819, 435, 13] Ci

[819, 447, 19] C1, G351
[1023, 661, 23] C1, Cs3, C341
[1023, 781, 33] C1, Cs3, C123, C341
[1057, 813, 34] Cs, Cy43, Cy51
[1387, 783, 28] C1, Crz
[1971, 1105, 21] C1, Ces7
[2047, 1167, 23] C1,Cxy

[2325, 1335, 28] C1, Cs7, C175
[2325, 1373, 30] C1, Cs2s, Cioss
[2359, 1347, 22] Cq

[3741, 2229, 29] C

[3813, 2087, 28]

C1, C369, C1271

[4095, 2767, 49]

C1, C41, Ca35, C733

[4095, 3367, 65]

C1, C41, Ca35, C273, Ca11, C733

[4161, 2827, 39]

C1, C307, Ci3g7

[4161, 3431, 66]

C1, Cass, C307, C357, Ci387

[4681, 2681, 31]

C1,Cs

[5461, 3781, 43]

C1, C77,Cs79

A key feature of the cyclotomic coset-based construction is the ability to increment
the minimum Hamming distance of a code by adding further weight from other
idempotents and so steadily decrease the sparseness of the resulting parity-check
matrix. Despite the construction method producing LDPC codes with no cycles of
length 4, itis important to remark that codes that have cycles of length 4 in their parity-
check matrices do not necessary have bad performance under iterative decoding, and
a similar finding has been demonstrated by Tang et al. [31]. It has been observed

12.2 Algebraic LDPC Codes 327

that there are many cyclotomic coset-based LDPC codes that have this property, and
the constraints in Algorithm 12.1 can be easily relaxed to allow the construction of
cyclic LDPC codes with girth 4.

12.2.1 Mattson—-Solomon Domain Construction of Binary
Cyclic LDPC Codes

The [n, k, d] cyclic LDPC codes presented in Sect. 4.4 are constructed using the sum
of idempotents, which are derived from the cyclotomic cosets modulo »n, to define
the parity-check matrix. A different insight into this construction technique may be
obtained by working in the Mattson—Solomon domain.

Let n be a positive odd integer, 'o» be a splitting field for x” — 1 over [P, o be a
generator for F,n, and 7, (x) be a polynomial with maximum degree of n — 1 and
coefficients in [Fo» . Similar to Sect. 4.4, the notation of T’ (x) is used as an alternative to
T (x) and the variables x and z are used to distinguish the polynomials in the domain
and codomain. Let the decomposition of z” — 1 into irreducible polynomials over [,
be contained in a set F# = {f1(z), f2(2), ..., i@} ie. [[<<, fi(z) = 2" — 1. For
each f;(z), there is a corresponding primitive idempotent, denoted as 6; (z), which
can be obtained by [20]

2@ =D f @)

0;(z) = 8(z" —1 12.3
() 70 +8(z" = 1) (12.3)

where f/(z) = d%fi(z), f{(z) € T(z) and the integer § is defined by

5 — 1 if deg(f;(z)) is odd,
|0 otherwise.

Let the decomposition of z” — 1 and its corresponding primitive idempotent be listed
as follows:

ui(x) 01(2) fi@)
ur(x) 62(z) fo(2)

uztx) 9;@ fz(.Z)-

Here u;(x), us(x), ..., u,(x) are the binary idempotents whose Mattson—Solomon
polynomials are 6, (z), 6>(z), .. ., 6,(z), respectively. Assume that . C {1,2,...,1},
let the binary polynomials u(x) = > ;e » i (x), f(2) = [lvicr fi(2), and 6(2) =

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4

328 12 LDPC Codes

Z\ﬁeﬂ 0;(z). It is apparent that, since u;(x) = MS~! (6:(2)), u(x) = MS™! 0(2)
and u(x) is an idempotent. !

Recall that u(x) is a low-weight binary idempotent whose reciprocal polynomial
can be used to define the parity-check matrix of a cyclic LDPC code. The number of
distinct n' roots of unity which are also roots of the idempotent «(x) determines the
dimension of the resulting LDPC code. In this section, the design of cyclic LDPC
codes is based on several important features of a code. These features, which are
listed as follows, may be easily gleaned from the Mattson—Solomon polynomial of
u(x) and the binary irreducible factors of z" — 1.

1. Weight of the idempotent u(x)
The weight of u(x) is the number of n roots of unity which are zeros of f(z).
Note that, f(a') = 0 if and only if §(a’) = 1 since an idempotent takes only the
values 0 and 1 over Fon. If u(x) is written as uo 4+ u; x +- - -+ up_1x" 1, following
(11.2), we have

u; =0@@) (mod?2) fori={0,1,....,n—1)}.

Therefore, u; = 1 precisely when f(a') = 0, giving wty (u(x)) as the degree of
the polynomial f(z).

2. Number of zeros of u(x)
Following (11.1), it is apparent that the number of zeros of u(x) which are roots
of unity, which is also the dimension of the code k, is

Number of zeros of u(x) =k =n — wty (6(2)) . (12.4)

3. Minimum Hamming distance bound

The lower bound of the minimum Hamming distance of a cyclic code, defined
by idempotent u(x), is given by its BCH bound, which is determined by the
number of consecutive powers of «, taken cyclically (mod), which are roots
of the generating idempotent e, (x) = 1 + u(x). In the context of u(x), it is the
same as the number of consecutive powers of «, taken cyclically (mod n), which
are not roots of u(x). Therefore, it is the largest number of consecutive non-zero
coefficients in 6(z), taken cyclically (mod n).

The method of finding f;(z) is well established and using the above information,
a systematic search for idempotents of suitable weight may be developed. To be
efficient, the search procedure has to start with an increasing order of wty (1 (x)) and
this requires rearrangement of the set .% such that deg(f;(z)) < deg(f;i + 1(z)) for
all i. It is worth mentioning that it is not necessary to evaluate u(x) by taking the

ISince the Mattson-Solomon polynomial of a binary polynomial is an idempotent and vice-versa
[20], the Mattson—Solomon polynomial of a binary idempotent is also a binary idempotent.

http://dx.doi.org/10.1007/978-3-319-51103-0_11
http://dx.doi.org/10.1007/978-3-319-51103-0_11

12.2 Algebraic LDPC Codes 329

Mattson—Solomon polynomial of 6(z), for each f(z) obtained. It is more efficient to
obtain u(x) once the desired code criteria, listed above, are met.

For an exhaustive search, the complexity is of order & (2"@'). A search algorithm,
see Algorithm 12.2, has been developed and it reduces the complexity considerably by
targeting the search on the following key parameters. Note that this search algorithm,
which is constructed in the Mattson—Solomon domain, is not constrained to find
cyclic codes that have girth at least 6.

1. Sparseness of the parity-check matrix
A necessary condition for the absence of cycles of length 4 is given by the inequal-
ity wty (u(x)) (wtg(u(x)) — 1) < n — 1. Since wty (u(x)) = deg(f(z)), a rea-
sonable bound is

D deg(fi(2)) < /.

Vies

In practise, this limit is extended to enable the finding of good cyclic LDPC codes
which have girth of 4 in their underlying Tanner graph.

2. Code rate
The code rate is directly proportional to the number of roots of u(x). If R,
represents the minimum desired code rate, then it follows from (12.4) that we can
refine the search to consider the cases where

WtH(e(Z)) = (1 - Rmm)n .

3. Minimum Hamming distance

If the idempotent u(x) is orthogonal on each position, then the minimum Ham-
ming distance of the resulting code defined by u(x) is equal to 1 + wty (u(x)).
However, for cyclic codes with cycles of length 4, there is no direct method to
determine their minimum Hamming distance and the BCH bound provides a
lower bound to the minimum Hamming distance. Let d be the lowest desired
minimum Hamming distance and ry be the largest number of consecutive non-
zero coefficients, taken cyclically, of 6(z). If a cyclic code has ry of d, then its
minimum Hamming distance is at least 1 4-d. It follows that we can further refine
the search with the constraint

rg >d—1.

In comparison to the construction method described in Sect. 4.4, we can see that
the construction given in Sect.4.4 starts from the idempotent u(x), whereas this
section starts from the idempotent 6(z), which is the Mattson—Solomon polynomial
of u(x). Both construction methods are equivalent and the same cyclic LDPC codes
are produced.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4

330 12 LDPC Codes

Algorithm 12.2 MSCodeSearch(V, index)

Input:
V & a vector initialised to ¢
index <= an integer initialised to —1
Rynin < minimum code rate of interest
d < lowest expected minimum distance
8 < small positive integer
F(z) < {fi(2)} Vi € I sorted in ascending order of the degree
Q) < bi(@}Viel

Output:
CodesList contains set of codes
. TV
2: for (i=index+1;i < |.7|; i++) do
3: Thew&=T
4: if (ZvjeT deg(fj(x)) + deg(f; (x)) < 4/n + §) then
5: Appendi to T
6: 0(z) < ZV_/ET 0;(2)
7: if (Wtg(0(2)) < (1 — Ryin)n and rg > d) then
8: u(x) =MS~! ()
9: if (u(x) is non-degenerate) then
10: ¢ < acyclic code defined by u(x)
11: if (¢ ¢ CodeList) then
12: Add C to CodeList
13: end if
14: end if
15: end if
16: MSCodeSearch(T, i)
17: endif
18: T & Tprey
19: end for

Some good cyclic LDPC codes with cycles of length 4 found using Algorithm 12.2,
which may also be found using Algorithm 12.1, are tabulated in Table 12.2. A check
based on Lemma 12.1 may be easily incorporated in Step 12 of Algorithm 12.2 to
filter out cyclic codes whose Tanner graph has girth of 4.

Figure 12.3 demonstrates the FER performance of several cyclic LDPC codes
found by Algorithm 12.2. It is assumed that binary antipodal signalling is employed
and the iterative decoder uses the RVCM algorithm described by Papagiannis
et al. [23]. The FER performance is compared against the sphere packing lower
bound offset for binary transmission. We can see that the codes [127, 84, 10] and
[127, 99, 7], despite having cycles of length 4, are around 0.3 dB from the offset
sphere packing lower bound at 10~* FER. Figure 12.3¢c compares two LDPC codes
of block size 255 and dimension 175, an algebraic code obtained by Algorithm 12.2
and an irregular code constructed using the PEG algorithm [10]. It can be seen that,
in addition to having improved minimum Hamming distance, the cyclic LDPC code
is 0.4 dB superior to the irregular code, and compared to the offset sphere packing
lower bound, it is within 0.25 dB away at 10~* FER. The effect of the error floor
is apparent in the FER performance of the [341, 205, 6] irregular LDPC code, as

12.2 Algebraic LDPC Codes 331

Table 12.2 Several good cyclic LDPC codes with girth of 4

[n,k,d] u(x)
[51, 26, 10] T4 23 40 4+ x12 x17 4 x2 x27 63 30 4 x® 448
[63, 44, 8] T4 o 182l x 224 225 4 27 436 4 37 xR x5 4 x50 x5

[117,72,12] Lhx+x2+x a8 x4 x10 4 522 4 32 4 %4 4 139 4 404 4«88
[127’ 84, 10] 1+x+x2+x4+x8+x16+x32+x55+x59+x64+x91+x93+x109+x110+x118

[127,91, 10] 14+ x2 4 x10 4 18 4 x29 4 132 4 33 4% 4 x30 p x% 4 138 x5 4
74 476 4 78 4 86 4 (87 L (88 L (02 4 93 L 05

[127,92’7] 1+X5 +x10+x20+x29 +x3l+x33 +x39 +X40 +X58 +x62+x66+
¥78 +x79 +X80 +X83 +x103 +x105 +x115 +xll6 +X121 +x124
[127,99,7] 1—|—x13+x16+x18+x22+x26+x39+x42+x45+x46+x49+x57+x65+x68+

x70+x78+x80+x90+x91 +x92+x96+x97+x102+x103+x105+x108+x111

1 0 0 Cyclic LDPC code + Cyclic LOPC code ~ +
=z o e 7 Ot Spher Pacing Lo
] 1w
v i w
2 i 2
5] | T
o | [vq
5 1 s
] i' |
o)
IS | €
g i S
w i w
10% | i] 10
051 15 2 25 3 35 4 45 5 55 051 15 2 25 3 35 4 45 5 55
Ep/N,, dB Ep/N,, dB
(a) [127,84,10] cyclic LDPC code (b) [127,99,7] cyclic LDPC code
1 0 ’ Cyclic LDPC code ~ +
& 107} i
v w i
2 107? 2 1
g g |
= 10° = i
e <] f i
w 10* i ' |
A 2 |
5 o 5 10°] i
w w f i
10® Y 106 L :]
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 4.5
Ep/N,, dB Ep/N,, dB
(¢) [255,175,17] cyclic and [255,175,6] ir- (d) [341,205,16] cyclic and [341,205,6] ir-
regular PEG LDPC codes regular PEG LDPC codes

Fig. 12.3 FER performance of some binary cyclic LDPC codes

shown in Fig. 12.3d. The floor of this irregular code is largely attributed to minimum
Hamming distance error events. Whilst this irregular code, at low SNR region, has
better convergence than does the algebraic LDPC code of the same block length and
dimension, the benefit of having higher minimum Hamming distance is obvious as

332 12 LDPC Codes

the SNR increases. The [341, 205, 16] cyclic LDPC code is approximately 0.8 dB
away from the offset sphere packing lower bound at 10~* FER.

It is clear that short block length (rn < 350) cyclic LDPC codes have outstanding
performance and the gap to the offset sphere packing lower bound is relatively close.
However, as the block length increases, the algebraic LDPC codes, although these
code have large minimum Hamming distance, have a convergence issue, and the
threshold to the waterfall region is at larger E,/Ny. The convergence problem arises
because as the minimum Hamming distance increases, the weight of the idempotent
u(x), which defines the parity-check matrix, also increases. In fact, if u(x) satisfies
Lemma 12.1, we know that wty (u(x)) = d — 1, where d is the minimum Hamming
distance of the code. Large values of wty (u(x)) result in a parity-check matrix that
is not as sparse as that of a good irregular LDPC code of the same block length and
dimension.

12.2.2 Non-Binary Extension of the Cyclotomic Coset-Based
LDPC Codes

The code construction technique for the cyclotomic coset-based binary cyclic LDPC
codes, which is discussed in Sect. 4.4, may be extended to non-binary fields. Similar
to the binary case, the non-binary construction produces the dual-code idempotent
which is used to define the parity-check matrix of the associated LDPC code.

Let m and m' be positive integers with m | m’, so that Fo» is a subfield of F,..
Let n be a positive odd integer and I, be the splitting field of x* — 1 over F,n, so
thatn|2" —1.Letr = 2™ —1)/n,l = 2™ —1)/(2" — 1), a be a generator for F,,,
and B be a generator of Fon, where B = o'. Let T, (x) be the set of polynomials of
degree at most n — 1 with coefficients in F,.. For the case of a = 1, we may denote
Ti(x) by T (x) for convenience.

The Mattson—Solomon polynomial and its corresponding inverse, (11.1) and
(11.2), respectively, may be redefined as

n—1

A@R) =MS (a(x)) = D a@)z (12.5)
j=0
1 n—1
a(x) =MS~! (A(2)) = - ZA(a"")x" (12.6)

i=0

where a(x) € T, (x) and A(z) € T, (2).

Recall that a polynomial e(x) € T,,(x) is termed an idempotent if the property
e(x) = e(x)? (mod x" —1) is satisfied. Note that e(x) # e(x?) (mod x" —1) unless
m = 1. The following definition shows how to construct an idempotent for binary
and non-binary polynomials.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_11
http://dx.doi.org/10.1007/978-3-319-51103-0_11

12.2 Algebraic LDPC Codes 333

Definition 12.9 (Cyclotomic Idempotent) Assume that .4 be a set as defined in
Sect.4.4,lets € .4 and let C, ; represent the (i 4+ 1)th element of Cy, the cyclotomic
coset of s (mod n). Assume that the polynomial e, (x) € T,,(x) is given by

es(x)= > ec,x, (12.7)

0=i<|Cy|-1

where |Cy| is the number of elements in C;. In order for e;(x) to be an idempotent,
its coefficients may be chosen in the following manner:

(i) ifm=1,ec,6 =1,
(i1) otherwise, ec,, is defined recursively as follows:

fori =0, ec,, € {L.B.p%.... "2},
fori > 0, ec,; = e%‘si—l'

We refer to the idempotent e, (x) as a cyclotomic idempotent.

Definition 12.10 (Parity-Check Idempotent) Let 4 < .4 and letu(x) € T, (x) be

u(x) = 2 es(x). (12.8)

seM
The polynomial u(x) is an idempotent and it is called a parity-check idempotent.

As in Sect. 4.4, the parity-check idempotent u(x) is used to define the Fo» cyclic
LDPC code over F,», which may be denoted by [, k, d]o». The parity-check matrix
consists of n cyclic shifts of x92@®)y (x~1). For the non-binary case, the minimum
Hamming distance d of the cyclic code is bounded by

do+1 < d <min (wtg(g(x)), wtp (1 + u(x))),

where dj is the maximum run of consecutive ones in U(z) = MS(u(x)), taken
cyclically mod n.

Based on the description given above, a procedure to construct a cyclic LDPC
code over Fy» is as follows.

1. For integers m and n, obtain the splitting field (IF,.) of x” — 1 over [Fo». Unless
the condition of m | m’ is satisfied, F,» cyclic LDPC code of length n cannot be
constructed.

2. Generate the cyclotomic cosets modulo 2" — 1 denoted as C’.

3. Derive a polynomial p(x) from C’ and let s € .4 be the smallest positive integer
such that |C| = m. The polynomial p(x) is the minimal polynomial of «*,

reo =[] (x+occévf). (12.9)

0<i<m

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4

334 12 LDPC Codes

Construct all elements of Fo» using p(x) as the primitive polynomial.

4. Let C be the cyclotomic cosets modulo n and let .4 be a set containing the
smallest number in each coset of C. Assume that there exists a non-empty set
A C A and following Definition 12.10 construct the parity-check idempotent
u(x). The coefficients of u(x) can be assigned following Definition 12.9.

5. Generate the parity-check matrix of ¢ using the n cyclic shifts of x9¢8®)y (x 1),

6. Compute r and [, and then take the Mattson—Solomon polynomial of u(x) to
produce U (z). Obtain the code dimension and the lower bound of the minimum
Hamming distance from U (z).

Example 12.3 Consider the construction of a n = 21 cyclic LDPC code over Fys.
The splitting field of x2! — 1 over Fys is Fp, and this implies that m = m’ = 6,
r=3and! = 1. Let C and C’ denote the cyclotomic cosets modulo n and o',
respectively. We know that |C}| = 6 and therefore the primitive polynomial p(x) has
roots of o/, forall j € C{,i.e. p(x) = 1 +x + x° By letting 1 + 8 + 8 = 0, all of
the elements of Fys can be defined. If u(x) is the parity-check idempotent generated
by the sum of the cyclotomic idempotents defined by Cy, where s € {# : 5,7, 9}
and ec, , for all s € .# be %, 1 and 1, respectively,

M(.X) =,323X5 +x7 —|—X9 +[346x10 +ﬂ43x13 +x14 +)C15 +ﬂ53x17 +X18
4 1358)(19 4 ,329)620

and its Mattson—Solomon polynomial U (z) indicates thatitisa[21, 15, > 5],s cyclic
code, whose binary image is a [126, 90, 8] linear code.

The following systematic search algorithm is based on summing each possible
combination of the cyclotomic idempotents to search for all possible o cyclic codes
of a given length. As in Algorithm 12.2, the search algorithm targets the following
key parameters:

1. Sparseness of the resulting parity-check matrix
Since the parity-check matrix is directly derived from u(x) which consists of the
sum of the cyclotomic idempotents, only low-weight cyclotomic idempotents are
of interest. Let W,,,, be the maximum wt g (u(x)); then the search algorithm will
only choose the cyclotomic idempotents whose sum has total weight less than or
equal to W,

2. High code rate
The number of roots of u(x) which are also roots of unity define the dimension
of the resulting LDPC code. Let the integer k,;,;,, be defined as the minimum code
dimension, and the cyclotomic idempotents that are of interest are those whose
Mattson—Solomon polynomial has at least k,,;, zeros.

3. High minimum Hamming distance
Let the integer d’ be the smallest value of the minimum Hamming distance of
the code. The sum of the cyclotomic idempotents should have at least d’ — 1
consecutive powers of 8 which are roots of unity but not roots of u(x).

12.2 Algebraic LDPC Codes 335
Table 12.3 Examples of [n, k, d]o» cyclic LDPC codes
g |kl u(x) d d; Comment
Fyp |[51,29] B2x3 + BxC 4+ B2 12 4 B2x 1T 4 B | >5 10 m=2,
ﬂx27 +ﬂx34 +,32X39 +ﬂx45 +,32X48 m/ — 8,
r=5and
1=385
[255, 175] BxT 4 B2xM 4 BxB 4 20 4 x| =17 | <20 |m=2,
ﬂx“2 +x123+ﬂ2x13] +x183 +x]89+ m’:8
ﬂx193—|—x219+x222+,82x224+x237+x246 r=1and
=85
[273, 191] B2xB + Bx3T 4 px*0 4 p2x74 + >18 | <20 |m=2,
ﬂx91 +/32x92 +’32x95 +}32x107 + m/ — 12’
x“7+ﬁx148+ﬂ2x155+,32x182+ r =15 and
ﬂx184 +/3x190 +x195 +ﬂx2|4 +x234 1 = 1365
Fy | [63,40] 1+ 8520+ BxB + 38+ 219+ | >6 10 m =3,
,32x26 +}36x36 +ﬂ4x38 +,3x41 +,84x52 m = 6,
r =1 and
1=9
[63,43] B2x + x4 pAxI8 4 21 4 =8 |<12 m=3,
ﬂ6x22 —|—ﬂ3x25 _|_x27 —|—f3x36 +ﬂ5x37 + m = 6,
x42 + ﬂ5x44 +x45 + /36)(50 +x54 r=1and
1=9
[91, 63] BOx + BOx2 4 B3x* 4 pOx8 4 px13 + | =8 <10 |m=3,
55x16+ﬂ5x23+ﬁ2x26+ﬂ3x32+/35x37+ m = 12’
ﬂ3x46+ﬂ4x52+,36x57+,36x64+,33x74 r = 45 and
1 =585
Fps | [85,48] 14 B12x20 4 g9x*2 4 pOx33 4 B35 4| >7 <12 |m=4,
ﬂ9x77 +ﬂ12x81 +ﬂ6x83 +ﬂ3x84 m = 8,
r =3 and
=17
Fys | [31,20] 14+ 8280 + 8720 + pPx 10 x4 | >7 12 m=S5,
x13+ﬁ]4x18+ﬂ19x20+x2'+x22+x26 m' :5’
r =1and
I=1
[31721] ﬂ23x5 +ﬂ29x9 _,’_ﬂlelO +ﬂx“ + 24 8 m = 5’
/34)613 +,327x18 +l330x20 +,316x21 + m = 5’
Bx? + pEx20 r=1and
I=1
Fys | [21,15] BBEx% 4+ x7 4+ x4 pHx10 4 pBx3 4 15 18 m=6,
x14 _|_x15 +/353x17 _|_x18+/358x19+ m’:6,
ﬂ29x20 r =3and

=1

TThe minimum Hamming distance of the binary image which has been determined using the improved Zimmermann

algorithm, Algorithm 5.1

336 12 LDPC Codes

Following Definition 12.10 and the Mattson—Solomon polynomial

UR)=MS| > es(x)) = > E(2),

seM seM

it is possible to maximise the run of the consecutive ones in U(z) by varying the
coefficients of e;(x). It is therefore important that all possible non-zero values of
ec,, for all s € .# are included to guarantee that codes with the highest possible
minimum Hamming distance are found.

Table 12.3 outlines some examples of [n, k, d],» cyclic LDPC codes. The non-
binary algebraic LDPC codes in this table perform well under iterative decoding as
shown in Fig. 12.4 assuming binary antipodal signalling and the AWGN channel.
The RVCM algorithm is employed in the iterative decoder. The FER performance
of these non-binary codes is compared to the offset sphere packing lower bound in
Fig.12.4.

As mentioned in Sect. 12.1.2, there is an inverse relationship between the conver-
gence of the iterative decoder and the minimum Hamming distance of a code. The
algebraic LDPC codes, which have higher minimum Hamming distances compared
to irregular LDPC codes, do not converge well at long block lengths. It appears that

CydlicLDPC code. +

Cyclic LDPC code. +
Offset Sphere Packing Lower Bound ~-----)

s < OfetSpher Packing Lower Boond

Frame Error Rate (FER)
Frame Error Rate (FER)
5]

05 1 15 2 25 3 35 4 45 5 55 05 1 15 2 25 3 35 4 45 5 55
Ep/N,, dB Ey/N,, dB
(a) [51,29,> 5],2 cyclic LDPC code (b) [21,15,> 5]56 cyclic LDPC code

CyclicLDPC code. +

Cyclic LDPC code. +
Offset Sphere Packing Lows

= 3
& - 1
L\I__, 1 - 1
2 12 1
1 m 1

o =
& % g | %

= 11}
i 1 1
g | £ _5: |
§ 107 1 g 1
[T [iy 1 [¥ 1
Iy)] 10! y]

05 1 15 2 25 3 35 4 45 5 55 05 1 15 2 25 3 35 4 45 5 55
Ep/N,, dB Ep/N,, dB
(c) [85,48,> T)y4 cyclic LDPC codes (d) [255,175,> 17]42 cyclic LDPC codes

Fig. 12.4 FER performance of some non-binary cyclic LDPC codes

12.2 Algebraic LDPC Codes

337
10° R ey T ; T
[6461,3781,<11], irregular PEG LDPC code ~ +
[5461,3781,43], cyclic LDPC code []
R A Offset Sphere Packing Lower Bound -------
107" 3 \ \
\ k
\ A
e \\ \
2 2 N
w 10 ¥ \ \
w \ ‘\\
2L \ "
g | 1
- 107 ; § \
g “l “\ “\
w 5 \ \
© H \ \
€ 4
g 10° \ *
L i hY |
i A \
B \ \
i \ \
s o |
' \ -
v \
i %
10 -
0.5 1 1.5 2 25 3 35 4 4.5 5

55 6 6.5
Ey/N,, dB

Fig. 12.5 FER performance of algebraic and irregular LDPC codes of rate 0.6924 and code length
5461 bits

the best convergence at long code lengths can only be realised by irregular LDPC
codes with good degree distributions. Figure 12.5 shows the performance of two
LDPC codes of block length 5461 bits and code rate 0.6924; one is an irregular code
constructed using the PEG algorithm and the other one is an algebraic code of mini-
mum Hamming distance 43 based on cyclotomic coset and idempotent construction
(see Table 12.1). These results are for the AWGN channel using binary antipodal
signalling with a belief propagation iterative decoder featuring 100 iterations. We
can see that at 107> FER, the irregular PEG code is superior by approximately 1.6 dB
compared to the algebraic cyclic LDPC code. However, for short code lengths, alge-

braic LDPC codes are superior. The codes have better performance and have simpler
encoders than ad hoc designed LDPC codes.

12.3 Irregular LDPC Codes from Progressive
Edge-Growth Construction

It is shown by Hu et al. [11] that LDPC codes obtained using the PEG construction
method can perform better than other types of randomly constructed LDPC codes.
The PEG algorithm adds edges to each vertex such that the local girth is maximised.
The PEG algorithm considers only the variable degree sequence, and the check degree

338 12 LDPC Codes

10" E: Code 0
[Code 1

[Code2
Code 3
Code 4
102 £ Code5
- Code 6

[- Code 7
" Code 8
Code 9
103 | Code 10
F: Code 11
- Code 12
I- Code 13
- Code 14
4 | Code 15
107 E Code 16
F- Code 17
[Code 18
L. Code 19
Code 20

Frame Error Rate

O 000060 D ¢ 4«44 » P> e O mOX X +

EyN,, dB

Fig. 12.6 Effect of vertex degree ordering in PEG algorithm

sequence is maintained to be as uniform as possible. In this section, the results of
experimental constructions of irregular LDPC codes using the PEG algorithm are
presented. Analysis on the effects of the vertex degree ordering and degree sequences
have been carried out by means of computer simulations. All simulation results in
this section, unless otherwise stated, were obtained using binary antipodal signalling
with the belief propagation decoder using 100 iterations. Each simulation run was
terminated after the decoder had produced 100 erroneous frames.

Figure 12.6 shows the FER performance of various [2048, 1024] irregular LDPC
codes constructed using the PEG algorithm with different vertex degree orderings.
These LDPC codes have variable degree sequence A; (x) = 0.475x% + 0.280x> +
0.035x* 4+ 0.109x> + 0.101x'3. Let (vo, vi, ..., Vi, ..., va_1) be a set of variable
vertices of an LDPC code. Code 0 and Code 1 LDPC codes were constructed with

an increasing vertex degree ordering, i.e. deg(vg) < deg(vy) < --- < deg(v,—1),
whereas the remaining LDPC codes were constructed with random vertex degree
ordering.

Figure 12.6 clearly shows that, unless the degree of the variable vertices is assigned
in an increasing order, poor LDPC codes are obtained. In random degree ordering of
half rate codes, it is very likely to encounter the situation where, as the construction
approaches the end, there are some low-degree variable vertices that have no edge
connected to them. Since almost all of the variable vertices would have already had
edges connected to them, the low-degree variable vertices would not have many
choice of edges to connect in order to maximise the local girth. It has been observed

12.3 TIrregular LDPC Codes from Progressive Edge-Growth Construction 339

that, in many cases, these low-degree variable vertices are connected to each other,
forming a cycle which involves all vertices, and the resulting LDPC codes often
have a low minimum Hamming distance. If d variable vertices are connected to each
other and a cycle of length 2d is formed, then the minimum Hamming distance of
the resulting code is d because the sum of these d columns in the corresponding
parity-check matrix H is 07 .

In contrast, for the alternative construction which starts from an increasing degree
of the variable vertices, edges are connected to the low-degree variable vertices
earlier in the process. Short cycles, which involve the low-degree variable vertices
and lead to low minimum Hamming distance, may be avoided by ensuring these low-
degree variable vertices have edges connected to the parity-check vertices which are
connected to high-degree variable vertices.

It can be expected that the PEG algorithm will almost certainly produce poor
LDPC codes if the degree of the variable vertices is assigned in descending order. It
is concluded that all PEG-based LDPC codes should be constructed with increasing
variable vertex degree ordering.

Figure 12.7 shows the effect of low-degree variable vertices, especially A, and
A3, on the FER performance of various [512, 256] PEG-constructed irregular LDPC
codes. Table 12.4 shows the variable degree sequences of the simulated irregular
codes. Figure 12.7 indicates that, with the fraction of high-degree variable vertices
kept constant, the low-degree variable vertices have influence over the convergence

10°

Frame Error Rate

| code24 -

1 15 2 2.5 3 3.5
Ey/N,, dB

Fig. 12.7 Effect of low-degree variable vertices

340 12 LDPC Codes

Table 12.4 Variable degree sequences for codes in Fig. 12.7

Code %) A3 A4 As sv

Code 0 0.150 0.350 0.350 0.050 0.100
Code 1 0.200 0.325 0.325 0.050 0.100
Code 2 0.250 0.300 0.300 0.050 0.100
Code 3 0.300 0.275 0.275 0.050 0.100
Code 4 0.350 0.250 0.250 0.050 0.100
Code 5 0.400 0.225 0.225 0.050 0.100
Code 6 0.450 0.200 0.200 0.050 0.100
Code 7 0.500 0.175 0.175 0.050 0.100
Code 8 0.550 0.150 0.150 0.050 0.100
Code 10 0.150 0.700 0.000 0.050 0.100
Code 11 0.200 0.550 0.100 0.050 0.100
Code 12 0.250 0.400 0.200 0.050 0.100
Code 13 0.300 0.250 0.300 0.050 0.100
Code 14 0.350 0.100 0.400 0.050 0.100
Code 20 0.150 0.000 0.700 0.050 0.100
Code 21 0.200 0.100 0.550 0.050 0.100
Code 22 0.250 0.200 0.400 0.050 0.100
Code 23 0.300 0.300 0.250 0.050 0.100
Code 24 0.350 0.400 0.100 0.050 0.100

in the waterfall region. As the fraction of low-degree variable vertices is increased,
the FER in the low signal-to-noise ratio (SNR) region improves. On the other hand,
LDPC codes with a high fraction of low-degree variable vertices tend to have low
minimum Hamming distance and as expected, these codes exhibit early error floors.
This effect is clearly depicted by Code 7 and Code 8, which have the highest
fraction of low-degree variable vertices among all the codes in Fig. 12.7. Of all of
the codes, Code 6 and Code 24 appear to have the best performance.

Figure 12.8 demonstrates the effect of high-degree variable vertices on the FER
performance. These codes are rate 3/4 irregular LDPC codes of length 1024 bits
with the same degree sequences, apart from their maximum variable vertex degree.
One group has maximum degree of 8 and the other group has maximum degree of
12. From Fig. 12.8, it is clear that the LDPC codes with maximum variable vertex
degree of 12 converge better under iterative decoding than those codes with maximum
variable vertex degree of 8.

In a similar manner to Fig. 12.7, the effect of having various low-degree variable
vertices is also demonstrated in Fig. 12.9. In this case, the LDPC codes are constructed
to have the advantageous linear-time encoding complexity, where the parity symbols
are commonly described as having a zigzag pattern [26]. In this case, A; and A, of
these LDPC codes are fixed and the effect of varying A3, A4 and A5 is investigated.

12.3 Irregular LDPC Codes from Progressive Edge-Growth Construction 341

Frame Error Rate (FER)
Frame Error Rate (FER)

Frame Error Rate (FER)
Frame Error Rate (FER)

FNQEREEE. - EREIE. - EEETE: - SEEEE- SRS SRS

Ey/N,, dB
Fig. 12.8 Effect of high-degree variable vertices

10°

[code0 —+—
codel —»—

© code2 —x—
102k code3 —8—
;. code4 —=—

- code5
[[code6 —e—
- code?7
. code8 ——
code9 —v—
103 | code10 ——
- codel! —o—
[codel2 —e—
- code13 —e—
| code14 —e—
I codel5 —eo—
code1l6 —o—

Frame Error Rate (FER)

107

2 2.2 2.4 2.6 2.8 3
Ey/N,, dB

Fig. 12.9 Effect of varying low-degree variable vertices

342 12 LDPC Codes

Table 12.5 Variable degree sequences of LDPC codes in Fig. 12.9

Code A A2 A3 A4 As A2

Code 0 0.000625 0.249375 0.644375 0.105625
Code 1 0.000625 0.249375 0.420000 0.224375 0.105625
Code 2 0.000625 0.249375 0.195000 0.449375 0.105625
Code 3 0.000625 0.249375 0.420000 0.224375 0.105625
Code 4 0.000625 0.249375 0.195000 0.449375 0.105625

Code 5 0.000625 0.249375 0.420000 0.111875 0.111875 0.106250
Code 6 0.000625 0.249375 0.195000 0.224375 0.224375 0.106250

Code 7 0.000625 0.249375 0.420000 0.224375 0.105625
Code 8 0.000625 0.249375 0.195000 0.449375 0.105625
Code 9 0.000625 0.249375 0.449375 0.195000 | 0.105625

Code 10 | 0.000625 0.249375 0.449375 0.097500 | 0.097500 |0.105625
Code 11 0.000625 0.249375 0.449375 0.044375 0.150000 | 0.106250
Code 12 | 0.000625 0.249375 0.495000 0.150000 | 0.105000
Code 13 | 0.000625 0.249375 0.495000 | 0.075000 | 0.075000 | 0.105000
Code 14 | 0.000625 0.249375 0.495000 | 0.037500 |0.111875 0.105625
Code 15 | 0.000625 0.249375 0.570000 0.075000 | 0.105000
Code 16 | 0.000625 0.249375 0.570000 | 0.037500 | 0.037500 | 0.105000

10° 10°
o 3
g i =
=3 1 ‘ - -1 -
g 10 \\ s 10 g
© @
x N x
= o
S p <] N
=102 £ 102 X
] N i X
g g
€ 109 [aw o N\ s
R N B =
o
oo June e
otrepa oo e
joorefumn e
104 a2 104 Lomi =2
2 22 24 26 28 3 2 22 24 26 28 3
Ey/N,, dB Ey/N,, dB
e
_ R
7 ; ~
0 [T N
o s 10'F sceree 1
@
& &
2 L qorpeeee
w L
[(o}
- :
T NS 1078 prmmms e
-4
10 2 22 24 26 28 3
Ey/N,, dB Ey/N,, dB

Fig. 12.10 Effect of varying high-degree variable vertices

343

12.3 Irregular LDPC Codes from Progressive Edge-Growth Construction

SLEGYT'0 = ©Y PU® $29000°0 = 'Y 181 910N

YIS AN 005280°0 SLITTO 0000¢y°0 €€ 9p0D

§290C1°0 005L60°0 SL8ITTO 0000Ct°0 ¢€ 9p0D

§C9SL00 00Sey1°0 SLYITTO 00002¥°0 L€ 9p0D

§29060°0 00SLT1°0 SLITTO 000020 0€ 9p0D

§Tose10 SL8ITTO 005280°0 0000Ct°0 €¢ 9p0D

§290C1°0 SL8ITTO 005L60°0 0000C+°0 ¢¢ 9p0D

§796L00 SLYITIO 00STr1°0 000020 ¢ ®p0D

§79060°0 SLBITTO 00SLC1°0 0000¢y°0 0¢ 8poD

0529¢1°0 SL8ITTO SL8ITTO 00006£°0 €1 8p0oo

0scIZI0 SLYITI0 SLYITT0 00050¥°0 ¢l 9poD

SL89L00 SLYITT0 SLITTO SLEGYY O I ®p0D

SL8T60°0 SL8ITTO GL8ITTO SLEVEY'O 0} ®p0D

§2o01°0 SL8ITTO SL8IITO 00002¥°0 9 9po)
§2901°0 SLYITIO SLYITT0 000020 G 9p0D

§2901°0 SLBITTO SLITT0 0000¢°0 ¥ 9p0D

§2901°0 SL8ITTO SL8ITTO 00002¥°0 € 9po)

§2o01°0 SL8ITTO SL8ITTO 00002¥°0 ¢ 9p0)

§2901°0 SLYITIO SLITT0 000020 | ®p0D

§2901°0 SLYITTO SLITTO 0000¢y°0 0 ®po)

vly €ly (48 18% Ol 6y 8y Sy vy €y Apo)

01°21 “S1q ur sapod DJQ1 Jo seouanbas oa1Sop o[qerep 97T AqEL

344 12 LDPC Codes

The variable degree sequences of the LDPC codes under investigation, which are
rate 3/4 codes of length 1600 bits, are depicted in Table 12.5. The results show that,
as in the previous cases, these low-degree variable vertices contribute to the waterfall
region of the FER curve. The contribution of A; is more significant than that of A;
and this may be observed by comparing the FER curves of Code 1 with either Code
3 or Code 4, which has A3 of 0.0. We can also see that Code 0, which has the most
variable vertices of low degree, exhibits a high error floor.

In contrast to Fig. 12.9, Fig. 12.10 shows the effect of varying high-degree variable
vertices. The LDPC codes considered here all have the same code rate and code length
as those in Fig. 12.9 and their variable degree sequences are shown in Table 12.6. The
results show that

e The contribution of the high-degree variable vertices is in the high SNR region.
Consider Code 10 to Code 33, those LDPC codes that have larger A, tend to
be more resilient to errors in the high SNR region than those with smaller 1;,. At
E,/N, = 3.0dB, Code 10, Code 11 and Code 12 are inferior to Code 13 and
similarly, Code 23 and Code 33 have the best performance in their group.

e Large values of maximum variable vertex degree may not always lead to improved
FER performance. For example, Code 5 and Code 6 do not perform as well as
Code 4 at E;,/ N, = 3.0 dB. This may be explained as follows. As the maximum
variable vertex degree is increased, some of the variable vertices have many edges
connected to them, in the other words the corresponding symbols are checked
by many parity-check equations. This increases the chances of having unreliable
information from some of these equations during iterative decoding. In addition, a
larger maximum variable vertex degree also increases the number of short cycles
in the underlying Tanner graph of the code. It was concluded also by McEliece
et al. [22] and by Etzion et al. [7] that short cycles lead to negative contributions
preventing the convergence of the iterative decoder.

12.4 Quasi-cyclic LDPC Codes and Protographs

Despite irregular LDPC codes having lower error rates than their regular counter-
parts, Luby et al. [18], the extra complexity of the encoder and decoder hardware
structure, has made this class of LDPC codes unattractive from an industry point
of view. In order to encode an irregular code which has a parity-check matrix H,
Gaussian elimination has to be done to transform this matrix into reduced echelon
form. Irregular LDPC codes, as shown in Sect.12.3, may also be constructed by
constraining the n — k low-degree variable vertices of the Tanner graph to form a
zigzag pattern, as pointed out by Ping et al. [26]. Translating these n — k variable
vertices of the Tanner graph into matrix form, we have

12.4 Quasi-cyclic LDPC Codes and Protographs 345

H,=| :: . (12.10)

The matrix H , is non-singular and the columns of this matrix may be used as the
coordinates of the parity-check bits of an LDPC code.

The use of zigzag parity checks does simplify the derivation of the encoder as the
Gaussian elimination process is no longer necessary and encoding, assuming that

H=[H,H,
Vo Vi Vi—2 Vi—1 Vi Vik+1 « -« Vp—2 Vn—1
Uo,0 uoi ... Uok—2 uor—1 |1
ui,0 uig ... Upg—2 urg—1 |1 1
= 9
Up k2,0 Un—k—2,1 +++ Un—k—2k—2 Un—k—2,k—1 1
Up—k—1,0 Up—k—1,1 -+ Un—k—1k—2 Un—k—1 k-1 1

can be performed by calculating parity-check bits as follows:

k—1
Ve = Zvjuoqj (mod 2)
Jj=0
k—1
vi=vioi+ D Vil (mod2) fork+1<i<n-—1.
j=0

Nevertheless, zigzag parity bit checks do not lead to a significant reduction in encoder
storage space as the matrix H, still needs to be stored. It is necessary to introduce
additional structure in H,, such as using a quasi-cyclic property, to reduce signifi-
cantly the storage requirements of the encoder.

12.4.1 Quasi-cyclic LDPC Codes

Quasi-cyclic codes have the property that each codeword is a m-sized cyclic shift
of another codeword, where m is an integer. With this property simple feedback
shift registers may be used for the encoder. This type of code is known as circulant
codes defined by circulant polynomials and depending on the polynomials can have
significant mathematical structure as described in Chap.9. A circulant matrix is a
square matrix where each row is a cyclic shift of the previous row and the first row

http://dx.doi.org/10.1007/978-3-319-51103-0_9

346 12 LDPC Codes

is the cyclic shift of the last row. In addition, each column is also a cyclic shift of the
previous column and the column weight is equal to the row weight.

A circulant matrix is defined by a polynomial r(x). If »(x) has degree <m, the
corresponding circulant matrix is an m x m square matrix. Let R be a circulant matrix
defined by r(x), then M is of the form

r(x) (mod x™ —1)
xr(x) (mod x™ —1)

x'r(x) (rriod X" —1) (12.11)

_xm_lr(x) (mod x™ —1) |

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial. A quasi-cyclic code
can be built from the concatenation of circulant matrices to define the generator or
parity-check matrix.

Example 12.4 A quasi-cyclic code with defining polynomials r;(x) = 1 + x 4 x3
and 5 (x) = 14x2+4x>, where both polynomials have degree less than the maximum
degree of 6, produces a parity-check matrix in the following form:

[1101000/10100107]
0110100/0101001
0011010{1010100

0001101
1000110
0100011

11010001

0101010
0010101
1001010

0100101 |

Definition 12.11 (Permutation Matrix) A permutation matrix is a type of circulant
matrix where each row or column has weight of 1. A permutation matrix, which is
denoted by P,, ;, has r(x) = x/ (mod x™ — 1) as the defining polynomial and it
satisfies the property that P,zn, j = I, where I, is an m x m identity matrix.

Due to the sparseness of the permutation matrix, these are usually used to construct
quasi-cyclic LDPC codes. The resulting LDPC codes produce a parity-check matrix
in the following form:

Pm,ouo PWLOUJ . Pm«OO.r—l
Pm,OLU Pm,OH v PWl,Ol,:fl

H = . o _ (12.12)
Pmsos—l.[) Pmsosfl.] s meO.&fl.l*l

12.4 Quasi-cyclic LDPC Codes and Protographs 347

From (12.12), we can see that there exists a s X ¢ matrix, denoted by O, in H.
This matrix is called an offset matrix and it represents the exponent of r(x) in each
permutation matrix, i.e.

Ooo Op1 ... Og;-1

O10 O11 ... O141
0=

Os5-1,0 Os-1,1 - Os_1,41

where0 < O; ; <m—1,for0 <i <s—1and0 < j < ¢t—1.The permutation matrix
P, ; has m rows and m columns, and since the matrix H contains s and ¢ of these
matrices per row and column, respectively, the resulting code is a [mt, m(t — s), d]
quasi-cyclic LDPC code over [F,.

In general, some of the permutation matrices P; ; in (12.12) may be zero matrices.
In this case, the resulting quasi-cyclic LDPC code is irregular and O; ; for which
P; ; = O may be ignored. If none of the permutation matrices in (12.12) is a zero
matrix, the quasi-cyclic LDPC code defined by (12.12) is a (s, t) regular LDPC code.

12.4.2 Construction of Quasi-cyclic Codes
Using a Protograph

A protograph is a miniature prototype Tanner graph of arbitrary size, which can be
used to construct a larger Tanner graph by means of replicate and permute operations
as discussed by Thorpe [32]. A protograph may also be considered as an [#/, k] linear
code & of small block length and dimension. A longer code may be obtained by
expanding code & by an integer factor Q so that the resulting code has parameter
[n =n'Q, k = k' Q] over the same field. A simplest way to expand code & and also
to impose structure in the resulting code is by replacing a non-zero element of the
parity-check matrix of code &2 with a Q x Q permutation matrix, and a zero element
with a Q x Q zero matrix. As a consequence, the resulting code has a quasi-cyclic
structure. The procedure is described in detail in the following example.

Example 12.5 Consider a code &2 = [4, 2] over [F, as a protograph. The parity-
check matrix of code & is given by

Vo V1 V2 V3
co/ 1 101/ (12.13)
C1 0111

H =

Let the expansion factor Q = 5, the expanded code, which is a [20, 10] code, has a
parity-check matrix given by

348

€0
€1

Vo V1

V2 V3

V4 Vs5Ve V7 Vg

12 LDPC Codes

V9 V10 V11VI2V13 V14 V15V16V17 V18 V19

1
1

1

1

c 1
c3 1 1 1

cs 1 1 1
6 1 1 1
c7 1 1 1

co 1 1 1
(12.14)

where the zero elements have been omitted. This protograph construction may also
be described using the Tanner graph representation as shown in Fig. 12.11.

Initially, the Tanner graph of code & is replicated Q times. The edges of these
replicated Tanner graphs are then permuted. The edges may be permuted in many
ways and in this particular example, we want the permutation to produce a code which
has quasi-cyclic structure. The edges shown in bold in Fig. 12.11 or equivalently the
non-zeros shown in bold in (12.14) represent the code £2.

The minimum Hamming distance of code &2 is 2 and this may be seen from its
parity-check matrix, (12.13), where the summation of two column vectors, those of
vy and v3, produces a zero vector. Since, in the expansion, only identity matrices are

Vo U1 V2 U3
Tanner graph
of code P
Cp c)
Replicate @ =5 times
Vg U1 V2 U3 Vg Uy Vg Uy vg Vg U1 V11 V12 V13 V14 V15 V16 V17 V18 V19
Q replicas of
the above
Tanner graph
o 1 Co C3 Ca Cr Cg cr cg Co
Permute the edges
Vg U1 V2 U3 Vg Uy Vg Uy vg Vg U1 V11 V12 V13 V14 V15 V16 V17 V18 V19
Tanner graph
of the

expanded code

Fig. 12.11 Code construction using a protograph

12.4 Quasi-cyclic LDPC Codes and Protographs 349

employed, the expanded code will have the same minimum Hamming distance as the
protograph code. This is obvious from (12.14) where the summation of two column
vectors, those of vs and vs, produces a zero vector. In order to avoid the expanded
code having low minimum Hamming distance, permutation matrices may be used
instead and the parity-check matrix of the expanded code is given by (12.15).

YoVi V2 V3 V4 V5V6 V7 V8 V9 VioVI1VI2VI3 V14 V15 V16 V17VI8 V19
o 1 1 1
1 1 1 1

c3|l 1 1

c 1 1 1

c7 1 1 1

cg 1 1 1
c9 1 1 1

(12.15)

The code defined by this parity-check matrix has minimum Hamming distance of 3.
In addition, the cycle structure of the protograph is also preserved in the expanded
code if only identity matrices are used for expansion. Since the protograph is such a
small code, the variable vertex degree distribution required to design a good target
code, which has much larger size than a protograph does, in general, causes many
inevitable short cycles in the protograph. Using appropriate permutation matrices in
the expansion, these short cycles may be avoided in the expanded code.

In the following, we describe a construction of a long quasi-cyclic LDPC code for
application in satellite communications. The standard for digital video broadcasting
(DVB), which is commonly known as DVB-S2, makes use of a concatenation of
LDPC and BCH codes to protect the video stream. The parity-check matrices of
DVB-S2 LDPC codes contain a zigzag matrix for the n — k parity coordinates and
quasi-cyclic matrices on the remaining k coordinates. In the literature, the code with
this structure is commonly known as the irregular repeat accumulate (IRA) code [12].

The code construction described below, using a protograph and greedy PEG
expansion, is aimed at improving the performance compared to the rate 3/4 DVB-S2
LDPC code of block length 64800 bits. Let the [64800, 48600] LDPC code that we
will construct be denoted by %). A protograph code, which has parameter [540, 405],
is constructed using the PEG algorithm with a good variable vertex degree distribu-
tions obtained from Urbanke [34],

Ay, (x) = 0.00185185x + 0.248148x% 4-0.55x> 4 0.0592593x°
for zigzag matrix
+0.0925926x® + 0.00555556x "% + 0.00185185x "> + 0.0166667x"°
+0.00185185x%* +0.00185185x2® + 0.0203704x%.

350

12 LDPC Codes

The constructed [540, 405] protograph code has a parity-check matrix H' = [H, |
H',)] where H', is a 135 x 135 zigzag matrix, see (12.10), and H, is an irregular
matrix satisfying A, (x) above. In order to construct a [64800, 48600] LDPC code
%1, we need to expand the protograph code by a factor of Q = 120. In expanding
the protograph code, we apply the greedy approach to construct the offset matrix
O in order to obtain a Tanner graph for the [64800, 48600] LDPC code %), which
has local girth maximised. This greedy approach examines all offset values, from
0to Q — 1, and picks an offset that results in highest girth or if there is more than
one choice, one of these is randomly chosen. A 16200 x 48600 matrix H, can be
easily constructed by replacing a non-zero element at coordinate (i, j) in H,, with a
permutation matrix Py o, ;. The resulting LDPC code % has a parity-check matrix
givenby H = [H,, | Hp]; where, as before, H , is given by (12.10).
In comparison, the rate 3/4 LDPC code of block length 64800 bits specified in the

DVB-S2 standard takes a lower Q value, Q = 45. The protograph is a [1440, 1080]
code which has the following variable vertex degree distributions

Ay, (x) = 0.000694x + 0.249306x2 4+ 0.666667x> + 0.083333x 2.

for zigzag matrix

For convenience, we denote the DVB-S2 LDPC code by %5.

10° . ;
X Standard - Rate 3/4, n=64800 O
LA Design - Rate 3/4, n=64800 X
[Offset sphere packing lower bound -------
107 k2 ITA
. ek
\ 84}
(-
x \
& 10 \
s L
©
o |
S 107 \ \
5 =
) [
g [
i 10 |
!
1 |
fo
1]
10° \ \
|
\
|
u
108 H
1 1.5 2 25 3 3.5 4
E,/N,, dB

Fig. 12.12 FER performance of the DVB-S2 and the designed [64800, 48600] LDPC codes

12.4 Quasi-cyclic LDPC Codes and Protographs 351

Figure 12.12 compares the FER performance of 4} and %, using the belief propa-
gation decoder with 100 iterations. Binary antipodal signalling and AWGN channel
are assumed. Note that, although the outer concatenation of BCH code is not used,
there is still no sign of an error floor at FER as low as 107% which means that the
BCH code is no longer required. It may be seen from Fig. 12.12 that the designed
LDPC code, which at 10~ FER performs approximately 0.35 dB away from the
sphere packing lower bound offset for binary transmission loss, is 0.1 dB better than
the DVB-S2 code.

12.5 Summary

The application of cyclotomic cosets, idempotents and Mattson—Solomon polynomi-
als has been shown to produce many binary cyclic LDPC codes whose parity-check
equations are orthogonal in each position. Whilst some of these excellent cyclic codes
have the same parameters as the known class of finite geometry codes, other codes
are new. A key feature of this construction technique is the incremental approach
to the minimum Hamming distance and the sparseness of the resulting parity-check
matrix of the code. Binary cyclic LDPC codes may also be constructed by consid-
ering idempotents in the Mattson—Solomon domain. This approach has provided a
different insight into the cyclotomic coset-based construction. It has also been shown
that, for short algebraic LDPC codes, the myths of codes which have cycles of length
4 in their Tanner graph do not converge well with iterative decoding is not necessarily
true. It has been demonstrated that the cyclotomic coset-based construction can be
easily extended to produce good non-binary algebraic LDPC codes.

Good irregular LDPC codes may be constructed using the progressive edge-
growth algorithm. This algorithm adds edges to the variable and check vertices in
a way that maximises the local girth. Many code results have been presented show-
ing the effects of choosing different degree distributions. Guidelines are given for
designing the best codes.

Methods of producing structured LDPC codes, such as those which have quasi-
cyclic structure, have been described. These are of interest to industry due to the
simplification of the encoder and decoder. An example of such a construction to
produce a (64800, 48600) LDPC code, using a protograph, has been presented along
with performance results using iterative decoding. Better results are obtained with
this code than the (64800, 48600) LDPC code used in the DVB-S2 standard.

352

12 LDPC Codes

References

19.

20.

21.

22.

23.

. Campello, J., Modha, D.S., Rajagopalan, S.: Designing LDPC codes using bit-filling. In: Pro-

ceedings of the IEEE ICC, pp. 55-59 (2001)

. Campello, J., Modha, D.S.: Extended bit-filling and LDPC code design. In: Proceedings of the

IEEE Globecom Conference, pp. 985-989 (2001)

. Chung, S.Y., Forney Jr., G.D., Richardson, T.J., Urbanke, R.L.: On the design of low-density

parity check codes within 0.0045 db of the shannon limit. IEEE Commun. Lett. 3(2), 58-60
(2001)

. Chung, S.Y.,Richardson, T.J., Urbanke, R.L.: Analysis of sum-product decoding of low-density

parity-check codes using a gaussian approximation. IEEE Trans. Inf. Theory 47(2), 657-670
(2001)

. Costello, Jr. D., Forney, Jr. G.: Channel coding: the road to channel capacity (2006). Preprint

available at http://arxiv.org/abs/cs/0611112

. Davey, M.C., MacKay, D.J.C.: Low-density parity-check codes over GF(q). [IEEE Commun.

Lett. 2, 165-167 (1998)

. Etzion, T., Trachtenberg, A., Vardy, A.: Which codes have cycle-free tanner graphs? IEEE

Trans. Inf. Theory 45(6), 2173-2181 (1999)

. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory IT 8, 21-28 (1962)
. Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)
. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Irregular progressive edge-growth tanner graphs.

In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Lausanne,
Switzerland (2002)

. Hu, X\Y,, Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge-growth tanner

graphs. IEEE Trans. Inf. Theory 51(1), 386-398 (2005)

. Jin, H., Khandekar, A., McEliece, R.J.: Irregular repeat-accumulate codes. In: Proceedings

of 2nd International Symposium on Turbo Codes and Related Topics, Brest, France, pp. 1-8

(2000)

. Johnson, S.: Low-Density Parity-Check Codes from Combinatorial Designs. Ph.D dissertation,

School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan,
NSW 2308, Australia (2004)

. Johnson, S.J., Weller, S.R.: Construction of low-density parity-check codes from Kirkman

triple systems. In: Proceedings of IEEE Information Theory Workshop, Cairns, Australia, 2—7
Sept, pp. 90-92 (2001)

. Johnson, S.J., Weller, S.R.: Codes for iterative decoding from partial geometries. In: Proceed-

ings IEEE International Symposium on Information Theory, Lausanne, Switzerland, 30 June-3
July p. 310 (2002)

. Kou, Y., Lin, S., Fossorier, M.: Low-density parity-check codes based on finite geometries: a

rediscovery and new results. IEEE Trans. Inf. Theory 47(7), 2711-2736 (2001)

. Lin, S., Costello Jr., D.J.: Error Control Coding: Fundamentals and Applications, 2nd edn.

Pearson Education, Inc, NJ (2004)

. Luby, M.G., Shokrolloahi, M.A., Mizenmacher, M., Spielman, D.A.: Improved low-density

parity-check codes using irregular graphs. IEEE Trans. Inf. Theory 47(2), 585-598 (2001)
Lucas, R., Fossorier, M.P.C., Kou, Y., Lin, S.: Iterative decoding of one-step majority logic
decodable codes based on belief propagation. IEEE Trans. Commun. 46(6), 931-937 (2000)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

Margulis, G.A.: Explicit constructions of graphs without short cycles and low density codes.
Combinatorica 2(1), 71-78 (1982)

McEliece, R.J., MacKay, D.J.C., Cheng, J.F.: Turbo decoding as an instance of pearl’s “belief
propagation” algorithm. IEEE J. Sel. Areas Commun. 16, 140-152 (1998)

Papagiannis, E., Ambroze, M.A., Tomlinson, M.: Analysis of non convergence blocks at low
and moderate SNR in SCC turbo schemes. In: SPSC 2003 8 International workshop on Signal
Processing for Space Communications. Catania, Italy, pp. 121-128 (2003)

http://arxiv.org/abs/cs/0611112

References 353

24.

25.
26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo (1988)

Peterson, W., Weldon Jr., E.J.: Error-Correcting Codes. MIT Press, Cambridge (1972)

Ping, L., Leung, W.K., Phamdo, N.: Low density parity check codes with semi-random parity
check matrix. Electron. Lett. 35(1), 38-39 (1999)

Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular
low-density parity-check codes. IEEE Trans. Inf. Theory 47(2), 619-637 (2001)

Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. Inf. Theory 47(2), 599-618 (2001)

Richter, G., Hof, A.: On a construction method of irregular LDPC codes without small stopping
sets. In: Proceedings of IEEE International Conference on Communications, Istanbul, Turkey,
pp. 1119-1124 (2006)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379423
(1948)

Tang, H., Xu, J., Lin, S., Abdel-Ghaffar, K.A.S.: Codes on finite geometries. IEEE Trans. Inf.
Theory 51(2), 572-596 (2005)

Thorpe, J.: Low-density parity-check (LDPC) codes constructed from protographs. JPL IPN
Progress Report 42—-154 (2003). Available: http://tmo.jpl.nasa.gov/progress_report/42-154/
154C.pdf

Tian, T., Jones, C., Villasenor, J., Wesel, R.: Selective avoidance of cycles in irregular LDPC
code construction. IEEE Trans. Commun. 52, 1242-1247 (2004)

Urbanke, R.: LdpcOpt a fast and accurate degree distribution optimizer for LDPC code ensem-
bles (2001). Available at http://Ithcwww.epfl.ch/research/ldpcopt/

Vasic, B., Milenkovic, M.: Combinatorial constructions of low-density parity-check codes for
iterative decoding. IEEE Trans. Inf. Theory 50(6), 1156-1176 (2004)

Weldon Jr., E.J.: Difference-set cyclic codes. Bell Syst. Tech. J. 45, 1045-1055 (1966)

http://tmo.jpl.nasa.gov/progress_report/42-154/154C.pdf
http://tmo.jpl.nasa.gov/progress_report/42-154/154C.pdf
http://lthcwww.epfl.ch/research/ldpcopt/

354

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part 111
Analysis and Decoders

This part is about the analysis of codes in terms of their codeword and stopping
set weight spectrum and various types of decoders. Decoders are described, which
include hard and soft decision decoders for the AWGN channel and decoders for the
erasure channel. Universal decoders are discussed, which are decoders that can be
used with any linear code for hard or soft decision decoding. One such decoder is
based on the Dorsch decoder and this is described in some detail together with its
performance using several different code examples. Other decoders such as the itera-
tive decoder require sparse parity-check matrices and codes specifically designed for
this type of decoder. Also included in this part is a novel concatenated |u|u 4 v| code
arrangement featuring multiple near maximum likelihood decoders for an optimised
matching of codes and decoders. With some outstanding codes as constituent codes,
the concatenated coding arrangement is able to outperform the best LDPC and turbo
coding systems with the same code parameters.

Chapter 13

An Exhaustive Tree Search for Stopping
Sets of LDPC Codes

13.1 Introduction and Preliminaries

The performance of all error-correcting codes is determined by the minimum Ham-
ming distance between codewords. For codes which are iteratively decoded such as
LDPC codes and turbo codes, the performance of the codes for the erasure channel is
determined by the stopping set spectrum, the weight (and number) of erasure patterns
which cause the iterative decoder to fail to correct all of the erasures. Codes which
perform poorly on the erasure channel do not perform well on the AWGN channel.
To determine all of the stopping sets of a general (n, k) code is a prohibitive task, for
example, a binary (1000, 700) code would require evaluation of 2'%% possible stop-
ping sets. It should be noted by the reader that all codewords are also stopping sets,
but most stopping sets are not codewords. Fortunately the properties of particular
types of codes may be used to reduce considerably the scale of the task, and in par-
ticular codes with sparse parity-check matrices such as LDPC codes and turbo codes
are amenable to analysis in practice. As the tree search is exhaustive, the emphasis
is first on focusing the search so that only low-weight stopping sets are found, up to
a specified weight, and second the emphasis is on the efficiency of the algorithms
involved.

In alandmark paper in 2007, Rosnes and Ytrehus [7] showed that exhaustive, low-
weight stopping set analysis of codes whose parity-check matrix is sparse is feasible
using a bounded tree search over the length of the code with no distinction between
information and parity bits. A previous paper on the same topic of an exhaustive
search of stopping sets of LDPC codes by Wang et al. [2] used a different and much
less efficient algorithm. In common with this earlier research, we use similar notation
in the following preliminaries.

The code % is defined to be binary and linear of length n and dimension k and is a
k-dimensional subspace of {0, 1}", and may be specified as the null space of am x n
binary parity-check matrix H of rank n — k. The number of parity-check equations,
m of H satisfies m > (n — k), although there are, of course, only n — k independent
parity-check equations. It should be noted, as illustrated in the results below, that the

© The Author(s) 2017 357
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_13

358 13 An Exhaustive Tree Search for Stopping Sets of LDPC Codes

number of parity-check equations m in excess of n — k can have a dramatic effect on
the stopping set weight spectrum, excluding codewords of course, as these are not
affected.

As in [7], .7 is used to denote a subset of {0, 1}", the set of all binary vectors of
length n. At any point in the tree search, a constraint set, .%# is defined consisting of
bit positions p; and the states of these bit positions s, s,; € {0, 1}". The support set
x (&) of the constraint set, .%, is the set of positions where s p; = 1,and the Hamming
weight of .# is the number of such positions. The sub-matrix H, (&) consists of all
the columns of H where s,, = 1, and the row weight of H, () is the number of 1's
in that row. An active row of H, %) is a row with unity row weight. It is obvious
that if all rows of H, () have even row weight then .# is a codeword, noting that
for an iterative decoder codewords are also stopping sets. If at least one row has odd
weight, 3 or higher and there are no active rows then .# is a stopping set but not a
codeword. If there are active rows then .# has either to be appended with additional
bit positions or one or more states s,,; need to be changed to form a stopping set. With
this set of basic definitions, tree search algorithms may be described which carry out
an exhaustive search of {0, 1}" using a sequence of constraints .7 to find all stopping
sets whose Hamming weight is < t.

13.2 An Efficient Tree Search Algorithm

At any given point in the search, the constraint set F is used to represent the set of
searched known bits (up to this point) of a code ¢, which forms a branch of the tree
in the tree search. The set of active rows in H is denoted by {ho, ..., bs—1}, where ¢
is the total number of active rows. A constraint set F with size n is said to be valid
if and only if there exists no active rows in H*?. In which case the constraint set
is equal to a stopping set. The pseudocode of one particularly efficient algorithm to
find all the stopping sets including codeword sets with weight equal to or less than T
is given in Algorithm 13.1 below. Each time a stopping set is found, it is stored and
the algorithm progresses until the entire 2" space has been searched.

The modified iterative decoding is carried out on a n-length binary input vector
containing erasures in some of the positions. Let r;(F) be the rank (ones) of row
Jj» j €10, ...,m — 1} for the constrained position {p; : (p;, 1) € F} intersected
by row j on H. And let r;.(F) be the rank of row j for the unconstrained position
{pi : (pi, 1) € {0, ...,n — 1}\ F} intersected by row j on H. The modified iterative
decoding algorithm based on belief-propagation decoding algorithm over the binary
erasure channel is shown in Algorithm 13.2. As noted in the line with marked (*),
the modified iterative decoder is not invoked if the condition of r; < 1 and r} =1
is not met; or the branch with constraint set F has condition of ; = 1 and . =0.
This significantly speeds up the tree search. As noted in the line with marked (¥),
the modified iterative decoder is not necessary to call, if the condition of 7; < 1 and

13.2 An Efficient Tree Search Algorithm 359

Algorithm 13.1 Tree search based Stopping Set Enumeration (TSSE)

repeat
Pick one untouched branch as a constraint set F.
if |F| =n and w(F) < t then
Constraint set F' is saved, if F is valid
else
1). Pass F to the modified iterative decoder (*) with erasures in the unconstrained positions.
2). Construct a new constraint set F’ with new decoded positions, which is the extended
branch.
if |F/| =nand w(F') < 7 then
Constraint set F’ is saved, if F’ is valid
else if No contradiction is found in H¥"?, and w/(F’) < 7 then
a). Pick an unconstrained position p.
b). Extending branch F’ to position p to get new branch F” = F’J{(p, 1)} and branch
F" = F' U{(p. 0)}.
end if
end if
until Tree has been fully explored

Algorithm 13.2 Modified Iterative Decoding

Get rank r(F) and r'(F) for all the equation rows on H.
repeat
if 7; > 1 then
Row j is flagged
else if r; = 1 and r; = 0 then
Contradiction — Quit decoder
elseif r; < 1andr; = I then
1). Row j is flagged
2). The variable bit i is decoded as the XOR of the value of 7.
3). Update the value of r; and r}, it Hj = 1.
end if
until No new unconstrained bit is decoded

r} = 1 is not met; or the branch with constraint set F' can be ignored, if condition
of r; = 1 and r} = 0 occurs. Thus the computing complexity can be significantly
reduced than calling it for every new branch with the corresponding constraint set F'.

13.2.1 An Efficient Lower Bound

The tree search along the current branch may be terminated if the weight necessary
for additional bits to produce a stopping set plus the weight of the current constraint
set F exceeds 7. Instead of actually evaluating these bits, it is more effective to
calculate a lower bound on the weight of the additional bits. The bound uses the
active rows Z (F) = {I;,(F), ..., I;,_, (F)}, where I; (F) is the set of active rows
with constraint set F' corresponding to the ipth column h;, of H, and ¢ is the number

13 An Exhaustive Tree Search for Stopping Sets of LDPC Codes

360

(o) oce (0) 901 (0) 9¢ (K4 (VX3 ¢ 1 91 [¢] (ZST “+0S) AeSoeN
©¢ (2% (© ¢ (©¢ ©o0 o M1 ¢ | [S ‘el ($0S ‘8001) 3ou! DA
(09) 21 (82) T§ oD 1¢ (I €1 ©s M1 Me €1 [S ‘€] (2ST ‘+0S) Sy HAd
0| (09 11t (0) 8L (9 LT 08 @¢s (K 61 [S ‘€] (ST ‘$0S) 398 DA
(6€2) S¥6 | (1D 62€ | (%) 91T (80 1S (40«4 W 1 1 [S ‘€1 (82T ‘967) 3o¥ DA
(C2X4! @09 (Do (M1 o o1 M1 SI [+] (1S *¥201) DdA1 D0
()] (0079) (€201)
(598¢h) S8SELYT 06T6S€ SLT90T | (0) STLET 8156 | (0) ST0T (0) sor 81 [9] (19 *SS1) Touue],
9+“N | S+HN| v+N| ¢+"“N| THEN| 1+"“N “N g aweN 9po)

SIPOO UMOUY JO SPIOMIPOD pue s1as Suiddols JySrom-moT °€T dqeL

361

13.2 An Efficient Tree Search Algorithm

0 0 0 0 (9€9)179 (96)88¢ (0)88¢ (096 (0096 8¢ 81

0 0 0 (26)9LT 00 0o (00 (00 (z6)T6 €C L1

0 0 0 0 0 0 ((raligy (088 | (190)¥9C 8¢ 91

0 0 0 0 0 (z81)81¢ (891)95L r8)v8 (¥8)¥8 LT Sl

0 0 0 0 0 (091001 (0¥00vC (08)0vC (08)091 S¢ 4!
(9L)9L (OL9L (00 (00 (00 (00 (00 (00 (9L)9L 61 €l
0 Ovr1 (910)91¢ (00 (00 (00 (00 (00 (TLTL 1C Cl

0 0 0 0 0 0 0 (0807 (89)89 LT 11

0 (821)95C (96)96 00 09 99 (00 00 99 0C 0l

0 0 0 0 (00£)0zL (09)081 (009 (0)09 (009 v 6

0 0 0 0 (0828001 (r20)098 (2008 (0)9s | (1DTII €T 8

0 0 0 0 0 (4949 (00 (00 0z 61 L

0 0 WrDP1 (0)8¥ (00 (0o 00 (00 (8Y)81 61 9

0 0 (TeN9L1 (F¥)9LT (88)0TC (et vy (00 (V)74 61 S

0 0 (099)09L1 (021)088 (oznoov (091)08¢ (0091 (ov)oct (o9)ozt 61 ¥

0 0 (9L9¥0€ET (z91)018 (081)88 99)vTe Or1 (9€)9¢ (9€)9¢ 61 €

0 (2L9)8881 (¥T0)T66 (TSOVOL (96)261 (zo)sel (¥9)96 (00 (oce 81 C

0 (8821)09¥S (9L¥)96TC (rTO9sL (891)0TH (¥8)80€ (9$)9¢ (99)0v1 (0)9s 81 1

0 (CL483 (zL)oT1 0)c 00 rove (00 00 rove €l 0
w+=.:=a>~ b+=.§w~< o+:.§a>\ m+=:§>~ w+:§u\< m+=.::m>\ N+=,§w>~ ~+E_§>\ E:@Z ure 1

$9p0D DAATZ/1 XeN'M T'ET dIqeL

362 13 An Exhaustive Tree Search for Stopping Sets of LDPC Codes

Table 13.3 WiMax 2/3A LDPC Codes

! Smin_| Ny N in+1 Niyint2 Niin+3 Noint4 | Nopin+5 | Noyin+6
13| 15 76(76) | 228(152) | () 0 0 0 0
14| 14 80(0) 80(80) 160(0) 0 0 0 0
15|15 84(84) | 252(0) 0 0 0 0 0
16 | 15 88(88) | 0(0) 0 0 0 0 0
17| 15 92(92) | 0(0) 92(92) 460(276) | O 0 0
18| 15 96(96) | 0(0) 96(96) 480(384) | O 0 0

Table 13.4 WiMax 2/3B LDPC Codes

i | Smin | Neyy Niyint1 Niyin+2 Niyint3 Niyin -4 Nipin+5 Nipin+6
6 | 16 96(48) 432(48) 0 0 0 0 0
7 |15 52(52) | 00) 104104) | 156(104) | 728(312) | 2041(533) | O
8 16 63(63) 56(56) 196(56) 560(168) 1568(196) | O 0
9 |17 120(60) | O 0 0 0 0 0
10 | 15 64(64) 0(0) 0(0) 0(0) 128(0) 384(64) 0
11] 18 204(68) | O 0 0 0 0 0
1215 7272) | 00) 0(0) 72(0) 0 0 0
13| 15 76(76) 0(0) 0(0) 0(0) 0(0) 76(0) 0
14 | 16 80(80) 80(0) 0 0 0 0 0
15|15 84(84) 0(0) 0(0) 0(0) 84(84) 294(168) 0
16 | 16 83(88) 83(0) 0 0 0 0 0
17 | 20 92(92) 92(0) 92(0) 0 0 0 0
18 | 15 96(96) 0(0) 0(0) 0(0) 0(0) 144(96) 0
1;(F)

of intersected unknown bits. Let w(h;"" *) be the weight of ones on jth column of
H, which is the number of active rows intersected with jth column. Under a worst
case assumption, the /;(F) with larger column weight of ones on jth column is
always with value 1, then the active rows can be compensated by /;(F') and the total
number of active rows ¢ is reduced by w(hj’ (F)) until ¢ < 0. Algorithm 13.3 shows
the pseudocode of computing the smallest number of intersected unknown bits ¢ in
order to produce no active rows. The lower bound w'(F) = w(F) + ¢ is the result.

Algorithm 13.3 Simple method to find the smallest collection set of active rows

1. Arrange the set of .# (F') in descending order, where h,-(/) is the column with the maximal column
weight corresponding to constraint F.
2. g is initialised as 0.
while ¢ > 0 do
1). ¢ is subtracted by w(h,«(/)).
2). g is accumulated by 1.
end while

13.2 An Efficient Tree Search Algorithm 363
Table 13.5 WiMax 3/4A LDPC Codes

i Smin | Nspin Nipin+1 Npin+2 Nopin+3 Nspint4 | Nspin+s | Noyin+6
6 | 10 48(0) 0(0) 24(0) 240(48) 624(288) | O 0

7 12 26(0) 156(52) 260(104) 2184(416) 0 0 0

8 | 12 28(0) 112(0) 224(168) 952(280) 0 0 0

9 |12 90(60) 60(0) 180(60) 372(192) 0 0 0

11| 12 34(0) 68(68) 0(0) 0(0) 0 0 0

12 | 12 36(0) 0(0) 0(0) 0(0) 72(0) 504(144) 0
13|12 38(0) 76(76) 0(0) 76(76) 0 0 0

14 | 12 40(0) 80(0) 160(0) 240(0) 240(0) 800(160) 0

15 | 12 42(0) 0(0) 0(0) 0(0) 0(0) 168(84) 0

16 | 12 44(0) 0(0) 0(0) 88(88) 0 0 0

17 | 12 46(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0

18 | 12 48(0) 0(0) 0(0) 0(0) 0(0) 0(0) 96(0)
Table 13.6 WiMax 3/4B LDPC Codes

i Smin | Nspin Npin+1 Nypin+2 Ny, in+3 Ny, in+4 Nyppin+5 Nyypin+6
7 19 52(52) | 52(52) 52(52) 312(156) 988(416) 3094(1274) | 11180(3952)
8 12 560(392) | 616(224) 1792(616) 7784(2968) 0 0 0

9 10 60(60) 60(60) 130(10) 540(240) 2190(810) 7440(2940) | O

10 | 11 64(64) | 128(128) 128(64) 960(640) 3648(1408) | () 0

11 | 13 272(204) | 748(544) 2992(1564) 0O 0O 0 0

12 | 12 72(0) 576(432) 576(216) 2520(936) 0 0 0
13|12 228(228) | 380(304) 988(836) 2888(836) 0 0 0

14 | 10 80(80) 0(0) 0(0) 0(0) 640(480) 2416(1216) | O

15| 11 84(0) 84(84) 336(168) 546(294) 1260(588) 0 0

16 | 14 176(88) | 968(792) 0 0 0 0 0

17 | 13 184(92) | 92(92) 1012(644) 0 0 0 0

18 | 12 16(16) 96(96) 672(480) 0O 0 0 0

13.2.2 Best Next Coordinate Position Selection

In the evaluation of the lower bound above, the selected unconstrained positions
are assumed to have value 1. Correspondingly, the first position in the index list
has maximal column weight and is the best choice for the coordinate to add to the
constraint set F.

364 13 An Exhaustive Tree Search for Stopping Sets of LDPC Codes

Table 13.7 Weight Spectra and stopping set spectra for the WiMax LDPC Codes [1]

Code Length N = 576 + 96i

i 0 1 2 3 4 5 6 7 8 9
N 576 | 672 | 768 | 864 | 960 | 1056 | 1152 | 1248 | 1344 1440
Code Rate Minimum Codeword Weight dj,
1/2 13 19 20 19 19 21 19 22 23 27
2/3A 10 9 8 11 13 10 14 13 14 13
2/3B 12 11 14 16 15 15 16 15 16 17
3/4A 10 10 10 12 12 13 13 13 14 12
3/4B 8 8 9 11 11 9 11 9 12 10
5/6 5 7 7 7 7 7 7 7 7 7

Minimum Stopping Set Weight s,
1/2 18 18 18 21 19 19 24 19 24 24
2/3A 10 10 11 9 12 13 13 14 14 14
2/3B 10 12 13 15 14 16 16 18 18 17
3/4A 9 8 10 11 12 12 10 12 12 12
3/4B 9 10 10 10 11 11 11 12 12 12
5/6 6 6 7 7 7 7 7 9 7 8

Code Length N = 576 + 96i

i 10 11 12 13 14 15 16 17 18
N 1536 | 1632 | 1728 | 1824 | 1920 | 2016 | 2112 | 2208 | 2304
Code Rate Minimum Codeword Weight dy;
1/2 20 27 21 19 25 27 28 23 31
2/3A 12 13 15 15 15 15 15 15 15
2/3B 15 18 15 15 16 15 16 20 15
3/4A 14 13 17 13 17 17 15 20 19
3/4B 11 13 13 12 10 12 14 13 12
5/6 7 7 8 8 7 7 8 8 9

Minimum Stopping Set Weight s,
1/2 24 28 28 28 25 29 29 28 28
2/3A 15 12 14 16 14 16 17 18 18
2/3B 19 18 18 20 17 20 17 21 20
3/4A 12 12 12 12 12 12 12 12 12
3/4B 13 13 12 13 14 11 14 13 15
5/6 8 9 7 9 7 8 9 8 10

13.3 Results

The algorithms above have been used to evaluate all of the low-weight stopping
sets for some well-known LDPC codes. The results are given in Table 13.1 together
with the respective references where details of the codes may be found. The total

13.3 Results 365

number of stopping sets are shown for a given weight with the number of codewords
in parentheses. Interestingly, the Tanner code has 93 parity-check equations, 2 more
than the 91 parity-check equations needed to encode the code. If only 91 parity-check
equations are used by the iterative decoder there is a stopping set of weight 12 instead
of 18 which will degrade the performance of the decoder. The corollary of this is that
the performance of some LDPC codes may be improved by introducing additional,
dependent, parity-check equations by selecting low-weight codewords of the dual
code. A subsequent tree search will reveal whether there has been an improvement
to the stopping sets as a result.

13.3.1 WiMax LDPC Codes

WiMax LDPC codes [1], as the IEEE 802.16e standard LDPC codes, have been
fully analysed and the low-weight stopping sets for all combinations of code rates
and lengths have been found. Detailed results for WiMax LDPC codes of code rates
1/2,2/3A,2/3B,3/4A,3/4B are givenin Tables 13.2,13.3,13.4,13.5, 13.6. In these
tables, the code index i is linked to the code length N by the formula N = 576+ 96i.
The minimum weight of non-codeword stopping sets (s;,) and codeword stopping
sets (d,,) for all WiMax LDPC codes is given in Table 13.7.

13.4 Conclusions

An efficient algorithm has been presented which enables all of the low weight stop-
ping sets to be evaluated for some common LDPC codes. Future research is planned
that will explore the determination of efficient algorithms for use with multiple com-
puters operating in parallel in order to evaluate all low weight stopping sets for
commonly used LDPC codes several thousand bits long.

13.5 Summary

It has been shown that the indicative performance of an LDPC code may be deter-
mined from exhaustive analysis of the low-weight spectral terms of the code’s stop-
ping sets which by definition includes the low-weight codewords. In a breakthrough,
Rosnes and Ytrehus demonstrated the feasibility of exhaustive, low-weight stopping
set analysis of codes whose parity-check matrix is sparse using a bounded tree search
over the length of the code, with no distinction between information and parity bits.
For an (n, k) code, the potential total search space is of size 2" but a good choice of
bound dramatically reduces this search space to a practical size. Indeed, the choice of
bound is critical to the success of the algorithm. It has been shown that an improved

366 13 An Exhaustive Tree Search for Stopping Sets of LDPC Codes

algorithm can be obtained if the bounded tree search is applied to a set of k infor-
mation bits since the potential total search space is initially reduced to size 2*. Since
such a restriction will only find codewords and not all stopping sets, a class of bits is
defined as unsolved parity bits, and these are also searched as appended bits in order
to find all low-weight stopping sets. Weight spectrum results have been presented for
commonly used WiMax LDPC codes in addition to some other well-known LDPC
codes.

An interesting area of future research has been identified whose aim is to improve
the performance of the iterative decoder, for a given LDPC code, by determining
low-weight codewords of the dual code and using these as additional parity-check
equations. The tree search may be used to determine improvements to the code’s
stopping sets as a result.

References

1. WiMax LDPC codes, Air interface for fixed and mobile broadband wireless access systems,
IEEE Std 802.16e-2005 (2005). http://standards.ieee.org/getieee802/download/802.16e-2005.
pdf

2. Wang, C.C., Kulkami. S.R., Poor, H.V.: Exhausting error-prone patterns in LDPC codes (2007).
http://arxiv.org/abs/cs.IT/0609046, submitted to IEEE Transaction in Information Theory

3. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge-growth tanner
graphs. IEEE Trans. Inf. Theory 51(1), 386-398 (2005)

4. Lan, L., Zeng, L., Tai, Y.Y., Chen, L., Lin, S., Abdel-Ghaffar, K.: Construction of quasi-cyclic
LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans. Inf.
Theory 53, 2429-2458 (2007)

5. MacKay, D.: Encyclopedia of sparse graph codes [online] (2011). http://www.inference.phy.
cam.ac.uk/mackay/codes/data.html

6. Tanner, R.M., Sridhara, D., Fuja, T.: A class of group-structured LDPC codes. In: Proceedings
of the International Symposium on Communications Theory and Applications (ISCTA) (2001)

7. Rosnes, E., Ytrehus, O.: An algorithm to find all small-size stopping sets of low-density parity-
check matrices. In: International Symposium on Information Theory, pp. 2936-2940 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder.

http://standards.ieee.org/getieee802/download/802.16e-2005.pdf
http://standards.ieee.org/getieee802/download/802.16e-2005.pdf
http://arxiv.org/abs/cs.IT/0609046
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://creativecommons.org/licenses/by/4.0/

Chapter 14
Erasures and Error-Correcting Codes

14.1 Introduction

It is well known that an (n, k, d,,;;,) error-correcting code %, where n and k denote
the code length and information length, can correct d,,;, — 1 erasures [15, 16] where
d i 1s the minimum Hamming distance of the code. However, it is not so well known
that the average number of erasures correctable by most codes is significantly higher
than this and almost equal to n — k. In this chapter, an expression is obtained for
the probability density function (PDF) of the number of correctable erasures as a
function of the weight enumerator function of the linear code. Analysis results are
given of several common codes in comparison to maximum likelihood decoding
performance for the binary erasure channel. Many codes including BCH codes,
Goppa codes, double-circulant and self-dual codes have weight distributions that
closely match the binomial distribution [13-15, 19]. It is shown for these codes that
alower bound of the number of correctable erasures is n—k —2. The decoder error rate
performance for these codes is also analysed. Results are given for rate 0.9 codes and
it is shown for code lengths 5000 bits or longer that there is insignificant difference
in performance between these codes and the theoretical optimum maximum distance
separable (MDS) codes. The results for specific codes are given including BCH codes,
extended quadratic residue codes, LDPC codes designed using the progressive edge
growth (PEG) technique [12] and turbo codes [1].

The erasure correcting performance of codes and associated decoders has received
renewed interest in the study of network coding as a means of providing efficient
computer communication protocols [18]. Furthermore, the erasure performance of
LDPC codes, in particular, has been used as a measure of predicting the code perfor-
mance for the additive white Gaussian noise (AWGN) channel [6, 17]. One of the
first analyses of the erasure correction performance of particular linear block codes
is provided in a key-note paper by Dumer and Farrell [7] who derive the erasure
correcting performance of long binary BCH codes and their dual codes. Dumer and
Farrell show that these codes achieve capacity for the erasure channel.

© The Author(s) 2017 367
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_14

368 14 Erasures and Error-Correcting Codes

14.2 Derivation of the PDF of Correctable Erasures

14.2.1 Background and Definitions

A set of s erasures is a list of erased bit positions defined as f; where
O<i<s fie0...n—1

A codeword X = xg, Xy ...x,_ satisfies the parity-check equations of the parity-
check matrix H
Hx"=0

A codeword with s erasures is defined as

X = (Xugs Xuy - - Xu [Xfys Xy - X7,)

where x,, are the unerased coordinates of the codeword, and the set of s erased
coordinates is defined as f;. There are a total of n — k parity check equations and
provided the erased bit positions correspond to independent columns of the H matrix,
each of the erased bits may be solved using a parity-check equation derived by the
classic technique of Gaussian reduction [15-17]. For maximum distance separable
(MDS) codes, [15], any set of s erasures are correctable by the code provided that

s<n—k (14.1)

Unfortunately, the only binary MDS codes are trivial codes [15].

14.2.2 The Correspondence Between Uncorrectable Erasure
Patterns and Low-Weight Codewords

Provided the code is capable of correcting the set of s erasures, then a parity-check
equation may be used to solve each erasure, viz:

Xf, = h()’())Cu0 +h0,1xu] + hO,quz +.. ~h0,n—S—1xun7:7|
Xp, = hi0Xu, +hi 1%, + hi X, +. o hy 1 X,
X =]’lzyoxuo +h2,1xu1 + h2,2xuz +.. «h2,nfsflxu,,,.,.,1

Xt = hs—l,Oxuo +hs—l,1xul + hs—l,quz +.. ~hs—1,n—s—1xu,,,s,1

where £, ; is the coefficient of row i and column j of H.

14.2 Derivation of the PDF of Correctable Erasures 369

As the parity-check equations are Gaussian reduced, no erased bit is a function of
any other erased bits. There will also be n — k — s remaining parity-check equations,
which do not contain any of the erased bits’ coordinates x;

hs,O-xuo + hs,l-xul + hs,2-xuz + -+ hS,n*S*I'xun—x—l =0
R 1,0%u, + Boy1,1%0, + Rsp1 20X, + - + Bor 1 p—s—1%,,, =0
hs+2,0xuo + hs+2,1xu1 + hs+2,2xu2 + -+ hs+2,nfsflxu,l_5_1 =0
Pn—k—1,0%uy + Pp—k—1,1%, + Bp—g—12%0, + -+ + Ap—k—1 p—s—1%u,_,_, =0

Further to this, the hypothetical case is considered where there is an additional erased
bit x7,. This bit coordinate is clearly one of the previously unerased bit coordinates,
denoted as x,,.

Xf, =)Cup
Also, in this case it is considered that these s+ 1 erased coordinates do not correspond
to s + 1 independent columns of the H matrix, but only to s + 1 dependent columns.
This means that x,, is not contained in any of the n — k — s remaining parity-check
equations, and cannot be solved as the additional erased bit.

For the first s erased bits whose coordinates do correspond to s independent
columns of the H matrix, the set of codewords is considered in which all of the
unerased coordinates are equal to zero except for x,,. In this case the parity-check
equations above are simplified to become:

xf() = hOanMp
xfl = hla[’xup

X, = ha pXy,

Xf = hs—1pXu,

As there are, by definition, at least n — s — 1 zero coordinates contained in each
codeword, the maximum weight of any of the codewords above is s+ 1. Furthermore,
any erased coordinate that is zero may be considered as an unsolved coordinate, since
no non-zero coordinate is a function of this coordinate. This leads to the following
theorem.

370 14 Erasures and Error-Correcting Codes

Theorem 1 The non-zero coordinates of a codeword of weight w that is not the
Jjuxtaposition of two or more lower weight codewords, provide the coordinate posi-
tions of w — 1 erasures that can be solved and provide the coordinate positions of w
erasures that cannot be solved.

Proof The coordinates of a codeword of weight w must satisfy the equations of the
parity-check matrix. With the condition that the codeword is not constructed from
the juxtaposition of two or more lower weight codewords, the codeword must have
w — 1 coordinates that correspond to linearly independent columns of the H matrix
and w coordinates that correspond to linearly dependent columns of the H matrix.

Corollary 1 Given s coordinates corresponding to an erasure pattern containing s
erasures, s < (n — k), of which w coordinates are equal to the non-zero coordinates
of a single codeword of weight w, the maximum number of erasures that can be
corrected is s — 1 and the minimum number that can be corrected is w — 1.

Corollary 2 Given w — 1 coordinates that correspond to linearly independent
columns of the H matrix and w coordinates that correspond to linearly dependent
columns of the H matrix, a codeword can be derived that has a weight less than or
equal tow.

The weight enumeration function of a code [15] is usually described as a homo-
geneous polynomial of degree n in x and y.

n—1

Wi (x,y) = > A"y

i=0

The support of a codeword is defined [15] as the coordinates of the codeword that
are non-zero. The probability of the successful erasure correction of s or more erasures
is equal to the probability that no subset of the s erasure coordinates corresponds to
the support of any codeword.

The number of possible erasure patterns of s erasures of a code of length »n is (f)
For a single codeword of weight w, the number of erasure patterns with s coordinates
that include the support of this codeword is (’;j:) Thus, the probability of a subset
of the s coordinates coinciding with the support of a single codeword of weight w,
prob(xy € fs) is given by:

()
()

prob(xy € f5) =

and
(n—w)!s! (n—s9)!

prob(xy € £5) = n! (s—w)! (n—ys)!

simplifying o
prob(xy € fy) = Wt
n! (s —w)!

14.2 Derivation of the PDF of Correctable Erasures 371

In such an event the s erasures are uncorrectable because, for these erasures, there
are not s independent parity-check equations [15, 16]. However, s — 1 erasures are
correctable provided the s — 1 erasures do not contain the support of a lower weight
codeword.

The probability that s erasures will contain the support of at least one codeword
of any weight, is upper and lower bounded by

s s

I—Hl—Aw<PS§ ZAM (14.2)

Tl(s — j)! Tnl(s — j)!

J=Amin J=dmin

And given s 4 1 erasures, the probability that exactly s erasures are correctable,
Pr(s) is given by

Pr(s) - Ps+l - Ps (143)

Given up to n — k erasures the average number of erasures correctable by the
code is

n—k n—k
Ne= D" sPr(s)= D s(Py1—Py). (14.4)
s=din S=din

Carrying out the sum in reverse order and noting that P, ;,; = 1, the equation
simplifies to become

n—k
N, =(m—k) — Z P, (14.5)

$=dmin

An MDS code can correct n — k erasures and is clearly the maximum number of
correctable erasures as there are only n — k independent parity-check equations. It
is useful to denote an MDS shortfall

n—k
MDS horitat = D, P (14.6)
s:dmin
and
]Ve = (n — k) — MDSgportfait 14.7)
with
- : (n—j)ls!
1 - 1 — Aj————= < MDSgporifan (14.8)
nl(s — !

372 14 Erasures and Error-Correcting Codes

and

—)l
MDSshortfall < Z Z ’(l"l(s i)];' (149)
S=dpin j=min
The contribution made by the high multiplicity of low-weight codewords to the
shortfall in MDS performance is indicated by the probability f’j that the support of at
least one codeword of weight j is contained in s erasures averaged over the number
of uncorrectable erasures s, from s = d,;;;, to n — k, and is given by

R n—k Al
B=> pris— l)A,(’:(S—_)];' (14.10)
§S=dmin

14.3 Probability of Decoder Error

For the erasure channel with erasure probability p, the probability of codeword
decoder error, P,(p) for the code may be derived in terms of the weight spectrum
of the code assuming ML decoding. It is assumed that a decoder error is declared
if more than n — k erasures occur and that the decoder does not resort to guessing
erasures. The probability of codeword decoder error is given by the familiar function
of p.

Py(p) =D _Pp'(1—p)*™ (14.11)

Splitting the sum into two parts

Pip) =D Pp'(1=p)™+ D Pp'l—p) (14.12)

s=n—k+1

The second term gives the decoder error rate performance for a hypothetical MDS
code and the first term represents the degradation of the code compared to an MDS
code. Using the upper bound of Eq.(14.2),

n—k s .
(n—j!s! n! s s
Py(p) < 22% T
s=1 j=

+ Z Pl —p) (14.13)

V!
snk+1)S

14.3 Probability of Decoder Error 373

As well as determining the performance shortfall, compared to MDS codes, in terms
of the number of correctable erasures it is also possible to determine the loss from
capacity for the erasure channel. The capacity of the erasure channel with erasure
probability p was originally determined by Elias [9] to be 1 — p. Capacity may be
approached with zero codeword error for very long codes, even using non-MDS codes
such as BCH codes [7]. However, short codes and even MDS codes, will produce
a non-zero frame error rate (FER). For (n, k,n — k + 1) MDS codes, a codeword
decoder error is deemed to occur whenever there are more than n — k erasures. (It
is assumed here that the decoder does not resort to guessing erasures that cannot be
solved). This probability, Pyps(p), is given by

n—k
n!) s
Pups(p) =1 — E mpé(l —p)Y (14.14)
s=0

The probability of codeword decoder error for the code may be derived from the
weight enumerator of the code using Eq. (14.13).

! s! |
Peoie(p) = Z Z(ik e UL

s=dyin J=pmin n! (s =t (n
_ (n—s)
+ Z S)' 7 =p)) (14.15)
s=n— k+l

This simplifies to become

Peoie(p) = Z Z wp(l—pﬂ"—”wms(p) (14.16)

5=din J=dmin

The first term in the above equation represents the loss from MDS code performance.

14.4 Codes Whose Weight Enumerator Coefficients
Are Approximately Binomial

It is well known that the distance distribution for many linear, binary codes including
BCH codes, Goppa codes, self-dual codes [13—15, 19] approximates to a binomial
distribution. Accordingly,

n!

A~ M 14.17
= D

For these codes, for which the approximation is true, the shortfall in performance

374 14 Erasures and Error-Correcting Codes

compared to an MDS code, MDS a1 is obtained by substitution into Eq. (14.9)

n—k s .
n! (n—!s!
MDSshortfall = ZZ N - (14.18)
= =1 (n—NIj12n=*nl (s —j)!
which simplifies to
n—k 25 _ 1
MDSsharl_‘fall = z W (1419)
s=1
which leads to the simple result
n—k—2
MDSshortfall =2- T 2 (1420)

It is apparent that for these codes the MDS shortfall is just 2 bits from correcting
all n — k erasures. It is shown later using the actual weight enumerator functions
for codes, where these are known, that this result is slightly pessimistic since in the
above analysis there is a non-zero number of codewords with distance less than d,,;;;,.
However, the error attributable to this is quite small. Simulation results for these codes
show that the actual MDS shortfall is closer to 1.6 bits due to the assumption that
there is never an erasure pattern which has the support of more than one codeword.

For these codes whose weight enumerator coefficients are approximately bino-
mial, the probability of the code being able to correct exactly s erasures, but no more,
may also be simplified from (14.2) and (14.3).

s+1

S e
Pr(s) —Z (n—PLjr2r=k nl (s+1—))!

j=1
S ! —Nls!
_ Z n . (n]).'s. (14.21)
= (n—=pPj12n=*nl (s — !
which simplifies to become
25 —1

fors <n—kandfors=n—k

n—k

n! (n—j! (n—k)!
Prin—ky=1- > GHATE k=) (14.23)

j=1

and

14.4 Codes Whose Weight Enumerator Coefficients Are Approximately Binomial 375

Table 14.1 PDF of number

. Correctable erasures Probability
of correctable erasures for :
codes whose weight n—k ok
enumerator coefficients are n—k—1 0.5 —2%
binomial n—k—2 0.25 _2%](
n—k=3 0.125 -5
n—k—4 0.0625 — 3¢
n—k=>5 0.03125 —5t¢
n—k—6 0.0150625 — 5L
n—k—1 0.007503125 — 5L
1 1
n—k—s %~ 3 F
1
Pr(n—k) = T (14.24)

For codes whose weight enumerator coefficients are approximately binomial, the pdf
of correctable erasures is given in Table 14.1.

The probability of codeword decoder error for these codes is given by substitution
into (14.15),

n—k

25 —1 !
Pmde(p) = Z () (" ps(l — p)("fs) + PMDS(p) (14.25)

n—k —s)!s!
= n—s)s

As first shown by Dumer and Farrell [7] as n is taken to 0o, these codes achieve the
erasure channel capacity. As examples, the probability of codeword decoder error
for hypothetical rate 0.9 codes, having binomial weight distributions, and lengths
100 to 10,000 bits are shown plotted in Fig. 14.1 as a function of the channel erasure
probability expressed in terms of relative erasure channel capacity %. It can be

seen that at a decoder error rate of 108 the (1000, 900) code is operating at 95%
of channel capacity, and the (10,000, 9,000) code is operating at 98% of channel
capacity. A comparison with MDS codes is shown in Fig. 14.2. For codelengths
from 500 to 50,000 bits, it can be seen that for codelengths of 5,000 bits and above,
these rate 0.9 codes are optimum since their performance is indistinguishable from
the performance of MDS codes with the same length and rate.

A comparison of MDS codes to codes with binomial weight enumerator coeffi-
cients is shown in Fig. 14.3 for % rate codes with code lengths from 128 to 1024.

376

14 Erasures and Error-Correcting Codes

10° == T
Binomial 100k90 +
Binomial 200k180 %
_q N Binomial 500k450 *
10 B i R Binomial 1000k900 §
Binomial 5000k4500 =
2 2?:& B W S Binomial 10000k9000 ©
10 &1 o) X by
18 X X
108 1. X N
ol X
L X \
104 Ta X X
o bl X ¥
i A o
w | &
10 b5 X
b h
\
106 1ok X X
1o)
T \ !
-7 |
10 b X X
& o
-8 |
10 L |
| X
10°® L
1.05 1 0.9

Relative ersure channel capacity

0.85

Fig. 14.1 FER performance of codes with binomial weight enumerator coefficients

100 T T
Binomial 500k450 +
MDS 500k450 x
1 MDS 1000k900 % |
10 \K Binomial 1000k900 0
N Binomial 5000k4500 =
1072 MDS 5000k4500 © |
\ MDS 50000k45000 ~ ®
\ Binomial 50000k45000 A
-3
) 1 \ »\\
10-4 *)\\\
L 10°
° x NQ\ \\9
° * q‘)\\ \
- # % E\ \ \\
10°
10-10 * ‘& \X \ \
1.04 1.02 1 0.98 0.96 0.94 0.92 0.9

Relative ersure channel capacity

Fig. 14.2 Comparison of codes with binomial weight enumerator coefficients to MDS codes

14.5 MDS Shortfall for Examples of Algebraic, LDPC and Turbo Codes

100 T T
Binomial (128,64) +
MDS code (128,64) x
4 9 Binomial (128,64)
10 RN MDS code (256,128) @
\“\ Binomial (512,256) =
102 VN Bmomal 024518 o+
AN MDS code (1024,512) &
RV odo (A2
10 |\ WY W
b G
AL
- 1 W W
o EAE NN
i P
10° B\ AW ¥
\ \ \oiN
\ \\ \\ \\
6
10 AT \
00 W VA W
o7 9 W W
(IR | ooy
N VAU A W
108 \.\. “ \. \ \
S | B \ \
A B N\
10° [L | \ \
0.8 07 0.6 0.5 0.4 0.3 0.2 0.1

erasure probability

Fig. 14.3 Comparison of half rate codes having binomial weight enumerator coefficients with MDS
codes as a function of erasure probability

14.5 MDS Shortfall for Examples of Algebraic, LDPC
and Turbo Codes

The first example is the extended BCH code (128, 99, 10) whose coefficients up to
weight 30 of the weight enumerator polynomial [5] are tabulated in Table 14.2.

Table 14.2 Low-weight

Weight Ay
spectral terms for the
extended BCH (128, 99) code 0 !
10 796544
12 90180160
14 6463889536
16 347764539928
18 14127559573120
20 445754705469248
22 11149685265467776
24 224811690627712384
26 3704895377802191104
28 50486556173121673600
30

574502176730571255552

377

378 14 Erasures and Error-Correcting Codes

The PDF of the number of erased bits that are correctable up to the maximum
of 29 erasures, derived from Eq.(14.1), is shown plotted in Fig. 14.4. Also shown
plotted in Fig. 14.4 is the performance obtained numerically. It is straightforward,
by computer simulation, to evaluate the erasure correcting performance of the code
by generating a pattern of erasures randomly and solving these in turn using the
parity-check equations. This procedure corresponds to maximum likelihood (ML)
decoding [6, 17]. Moreover, the codeword responsible for any instances of non-MDS
performance, (due to this erasure pattern) can be determined by back substitution into
the solved parity-check equations. Except for short codes or very high rate codes, it
is not possible to complete this procedure exhaustively, because there are too many
combinations of erasure patterns. For example, there are 4.67 x 10?® combinations
of 29 erasures in this code of length 128 bits. In contrast, there are relatively few
low-weight codewords responsible for the non-MDS performance of the code. For
example, each codeword of weight 10 is responsible for (11198) = 4.13 x 10%! erasures
patterns not being solvable.

As the d,,;, of this code is 10, the code is guaranteed to correct any erasure pattern
containing up to 9 erasures. It can be seen from Fig. 14.4 that the probability of not
being able to correct any pattern of 10 erasures is less than 1078, The probability of
correcting 29 erasures, the maximum number, is 0.29. The average number of erasures
corrected is 27.44, almost three times the d,,;,,, and the average shortfall from MDS
performance is 1.56 erased bits. The prediction of performance by the lower bound is
pessimistic due to double codeword counting in erasure patterns featuring more than
25 bits or so. The effect of this is evident in Fig. 14.4. The lower bound average number
of erasures corrected is 27.07, and the shortfall from MDS performance is 1.93
erasures, an error of 0.37 erasures. The erasure performance evaluation by simulation
is complementary to the analysis using the weight distribution of the code, in that
the simulation, being a sampling procedure, is inaccurate for short, uncorrectable
erasure patterns, because few codewords are responsible for the performance in this
region. For short, uncorrectable erasure patterns, the lower bound analysis is tight
in this region because it not possible for these erasure patterns to contain more than
one codeword due to codewords differing by at least d,,;;,.

The distribution of the codeword weights responsible for non-MDS performance
of this code is shown in Fig. 14.5.

This is in contrast to the distribution of low-weight codewords shown in Fig. 14.6.
Although there are a larger number of higher weight codewords, there is less chance
of an erasure pattern containing a higher weight codeword. The maximum occurrence
is for weight 14 codewords as shown in Fig. 14.5.

The FER performance of the BCH (128, 107, 10) code is shown plotted in Fig. 14.7
as a function of relative capacity defined by @ Also, plotted in Fig. 14.7 is the
FER performance of a hypothetical (128, 99, 30) MDS code. Equations (14.15) and
(14.14), respectively, were used to derive Fig. 14.7. As may be seen from Fig. 14.7,
there is a significant shortfall in capacity even for the optimum MDS code. This
shortfall is attributable to the relatively short length of the code. At 10~° FER, the
BCH (128, 99, 10) code achieves approximately 80% of the erasure channel capacity.

14.5 MDS Shortfall for Examples of Algebraic, LDPC and Turbo Codes 379

10°

(128,9I9,10) simulatio'n — :1
(128,99,10) analysis. il . ==

10-1 -

Probability

Il

0 5 10 15 20 25 30

PDF of number of corrected erased bits

Fig. 14.4 Erasure performance for the (128, 99, 10) Extended BCH Code

10°

codeword distribution (128,99,10) simulation =—=1

10°

10*

10°

