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Preface

Density functional theory (DFT) is a course that was registered as a “curriculum 
course” at the University of Munich in the 1990s, mainly covering topics such as 
time- and orbital-dependent functions. Over the years, DFT has proven to be a very 
useful theory in various chemical applications. This has prompted us to present 
to interested readers the most important breakthroughs and the current state of 
knowledge on the subject. Since the development of DFT as a quantum mechanical 
theory based on electron density, numerous efforts have been made to redefine 
important concepts already known in organic chemistry and make them useful for 
semiquantitative analysis. The book begins with the principles and theory from the 
ground states to the excited states of photoelectron emission. The detailed principles 
and theories are not limited to metal surfaces but also include nanoscale particles. 
Meanwhile, the DFT model (both time-dependent and time-independent) is 
widely used and has the advantage that it directly accounts for electron correlation 
in its formalism. In addition, DFT can be programmed for computer simulations 
to determine eigenvalues and eigenvectors. It provides enough information 
to determine the electronic structure and the total energy of the particles. An 
important discovery of Kohn-Sham density functional theory (KS-DFT), originally 
formulated half a century ago for Hamiltonians in isolated many-electron systems, 
was the driving force for materials science and led to a wide range of specialized 
codes for the prediction of molecular and crystalline properties. The first important 
improvement came from the discovery of the most important exchange-correlation 
energy functional, which led to the scheme provisionally referred to as the UHFD 
scheme. This scheme is the ultimate approximation beyond UHF and all other hybrid 
exchange-correlation energy functionals, suggesting that the search for a more 
powerful hybrid exchange-correlation energy functional may no longer be necessary 
to escape the chaotic state. The book also discusses the physicochemical properties 
of the drug ellipticine obtained by the DFT-B3LYP/6-311 G (d, p) method using the 
Gaussian computational package. HOMO (highest occupied molecular orbital), 
LUMO (lowest unoccupied molecular orbital), MEP (minimum energy paths) 
surface area, and chemical reactivity descriptors can be used computationally for 
practical applications.

Sajjad Haider, Ph.D.
  Department of Chemical Engineering,

 College of Engineering, 
King Saud University,
 Riyadh, Saudi Arabia
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Chapter 1

The Use of DFT-Based ab-initio
Technique to Determine the
Stability Difference in B2 Ti-PGM
Compounds
Ramogohlo Diale, Duduzile Nkomo, Bongani Ngobe
and Maje Phasha

Abstract

In this chapter, the density functional theory (DFT) based first-principles
approach is used to predict the underlying lattice properties associated with the phase
transformation and stability of B2 phase in titanium-platinum group metal (Ti-PGM)
compounds. This ab- initio technique provides a good platform to accurately explore
phase stability variation between the successful Ti-PGM shape memory alloys (SMAs)
(Ti50M50, M = Rh, Pd, Ir, Pt) and other B2 Ti-PGM compounds that do not show any
shape memory effect (SME), such as Ti50Os50 and Ti50Ru50. The B2 TiFe, TiNi and
TiAu have also been considered in this chapter in order to draw similarities and
differences. Amongst the predicted results, the heat of formation was calculated to
determine the thermodynamic stability, whereas the total densities of states were used
to evaluate the electronic stability of these compounds. Insights on the mechanical
stability of the B2 crystals were derived from the calculated elastic constants.
Mechanical instability was revealed in some compounds, indicative of a possible phase
transition responsible for the intrinsic shape memory character. Although an attempt
to correlate this mechanical instability with imaginary frequencies established from
the phonon dispersion curves is made, the correlation is not yet conclusive due to
some discrepancies observed in TiNi.

Keywords: B2 Ti-PGM, shape memory alloys, DFT, thermodynamic stability,
electronic stability, mechanical stability, lattice dynamic stability

1. Introduction

An interest in PGM-containing SMAs continues to rise due to their unique func-
tional properties desirable for use in various high-temperature applications such as
aerospace, automotive, power plants and chemical industries [1]. Ti-PGM intermetal-
lic compounds such as TiPt [2, 3] and TiPd [4] have gained attention as promising
candidates for development of high-temperature shape memory alloys (HTSMAs).
This is so because they exhibit a martensitic transformation (MT) from cubic
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CsCl-type B2 to orthorhombic AuCd-type B19 phase at temperatures higher (above
373 K) than that of a well-known commercial TiNi. TiPt has attracted significant
interest in various industries due to its high MT from B2 to B19 at approximately
1273 K [2], whilst the MT for TiPd has been observed at 823 K [5, 6]. Similarly, for
TiIr, its B2 phase undergoes MT at 2023 K to monoclinic phase [7], whereas the MT
for TiRh binary system occurs at 1118 K from B2 to tetragonal L10 [8–10]. Similarly,
the MT of TiAu from B2 to B19 occurs at 900 K [11].

On the other hand, some of the Ti-PGM compounds that have been investigated
were previously found to have a highly stable B2 phase to room temperature, with no
sign of martensitic transformation occurring, thus no shape memory behavior was
observed. Amongst those are TiOs [12] and TiRu [13–16], which showed similar
behavior to TiFe [17, 18]. So far, it is not known, at least from experimental studies, if
these compounds may undergo martensitic transformation at cryogenic temperatures.
However, such useful information can be generated using DFT computational tools.
Moreover, from scientific point of view, it is very important to establish factors that
suppress MT.

It is clear that the incorporation of PGMs in Ti influences both the crystal and
electronic structure and consequently, the stability of austenite phase and formation
of martensite phases. These phases are thoroughly studied as they are key in the
design and functionality of SMAs for specific applications [19]. Most researchers have
used computational calculations to gain some insight into the underlying shape mem-
ory properties of TiPt [20], TiPd [21] and TiRh [10]. Computational studies usually
include structural, elastic and electronic properties. First principle calculations have
been proven to be a useful and reliable tool for studying ground-state properties of
these compounds [22–25].

In addition to structural, elastic and electronic properties, there has been an
increase in the use of lattice vibration properties to predict the dynamic stability for a
particular phase by calculating phonon dispersions. For example, Haskins et al. [26]
recently used phonon dispersion calculations to resolve discrepancies associated with
determination of ground-state phases for TiNi [26, 27]. Also, phonon dispersion
calculations have been used by several researchers in order to determine the lattice
vibration properties and predict the phase transformation path for various alloy
systems [10, 20, 27].

Although DFT predictions may not agree perfectly with experimental observa-
tions, the accuracy of predicted results can still be scrutinized against the available
experimental data in order to validate the accuracy of DFT calculations. In predicting
phase stability, there is a link between the predicted thermodynamic, electronic and
mechanical and lattice dynamic stability, which in turn can be used to predict the
expected phases at a particular temperature. Some researchers [26, 28, 29] often
report these stabilities separately and although that is acceptable, we observed that
these stabilities can be used in connection to gain clear understanding of phase trans-
formations for the investigated Ti-PGM compounds.

Furthermore, in order to improve shape memory properties or induce MT in TiOs
and TiRu, factors influencing the shape memory behavior must be understood and
this can be done by studying the predicted mechanical, electronic and dynamic
stabilities. Thus, the main aim of this chapter is to demonstrate the versatile use of
ab-initio methods based on DFT to track the shape memory behavior of these well-
known Ti-PGM compounds by evaluating their ground-state stability of the high-
temperature austenite phase (B2) with reference to mechanical, electronic and
dynamical stability. This will assist the reader in identifying the underlying
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fundamental factors that drive the existence of shape memory behavior and further
give an insight towards the design of new and improvement of existing SMAs.

2. Computational methodology

2.1 Density functional theory (DFT)

Computational modeling techniques offer an alternative way of investigating the
properties of materials using computers, whereby the simulator builds a model of a
real system and explores its behavior. One of the computational techniques that have
received immense attention over the last few decades is the first-principles calcula-
tions, also known as ab-initio calculations. This interest is attributed to significant
usefulness and insightfulness of its calculated data in the materials design.

First-principles methods are based on DFT formalism in which properties of
materials, that is, the values of the fundamental constants and the atomic numbers of
the atoms present can be calculated using the Schrödinger equation. Due to its
improved accuracy achieved over the past years in predicting properties of real solids,
an ab-initio approach is adopted in the current work to predict the ground-state and
structural properties of several B2 intermetallic compounds at equiatomic composi-
tions. Computing total energies of any system is a necessary starting point for first-
principle calculations.

DFT is a quantum-mechanical method used for calculating ground-state properties
of condensed matter systems without dealing directly with many electron states [30].
It was first formulated by Hohenberg and Kohn in 1964 [31] and then secondly
developed by Kohn and Sham in 1965 [32]. DFT has helped in the development of
independent-particle methods that take into account the particle’s correlations and
interactions. Hohenberg-Kohn demonstrated the first theorem that the ground-state
properties of a many-electron system are uniquely determined by an electron density
that depends on only three spatial coordinates [30].

E ¼ E n r!
� �h i

(1)

Where E is the total energy and n is the density. Within the Kohn-Sham scheme
[30], consideration of an interacting electron gas moving in an external potential ve rð Þ,
as a variational principle leads to the effective single-electron Schrödinger equations,

�∇2 þ v n½ �; r!
� �n o

ψ j r!
� �

¼ ∈ jψ j r!
� �

(2)

Kohn-Sham electrons in an effective potential, veff for a system of non-interacting,
is solved as follows:

Veff r!
� �

¼ v r!
� �

þ
ð n r!

0� �

∣ r! � r!
0
∣
d r!

0 þ
δExc n r!

� �h i

δn r!
� � (3)

Where v r!
� �

is the external potential and Exc n r!
� �h i

is the exchange-correlation

density functional [30].
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2.2 Approximations to exchange-correlation functional

The two main types of exchange-correlation functionals used in DFT are the local
density approximation (LDA) [33] and the generalized gradient approximation
(GGA) [34], which have been discussed in the sub-sections below.

2.2.1 Local density approximation

The local density approximation (LDA) is an approximation in which the
exchange-correlation (XC) energy functional in density functional theory (DFT)
depends upon the value of the electronic density at each point in space. It was first
discovered by Kohn and Sham, which is expressed in the Eq. (4):

ELDA
xc n rð Þ½ � ¼

ð
drn rð Þεxc n rð Þð Þ (4)

Where εXC nð Þ is the exchange-correlation energy per electron in a uniform electron
gas of density n [33]. The uniform electron gas represents a group of systems of
interacting electrons with an arbitrary spatially constant density n, which acts as a
parameter. The local density approximation quantity is known for the limit of high
density and can be calculated accurately at densities of interest by the use of Monte
Carlo methods. LDA has been proven to give accurate results for many atomic,
molecular and crystalline interacting electron systems, even though in these systems,
the density of electrons is not slowly varied.

2.2.2 Generalized gradient approximation

The GGA is known to be a semi-local approximation, which means that there is no
use of local density n rð Þ value but its gradient ∇n rð Þ. Perdew and Wang developed
generalized gradient approximation (GGA), which is based on a real-space cut-off of
the spurious long-range components for the second-order gradient expansion for the
exchange-correlation hole [34]. GGA improves total energies, atomization energies,
energy barriers and also the difference in structural energies. GGA takes the form:

EGGA
xc n r!

� �h i
¼
ð
εGGAxc n r!

� �
, j∇n r!

� �
j

� �
n r!
� �

d r! (5)

There are several GGA-based functionals, that is, the PBE [35], PBEsol [36], RPBE
[37], BLYP [38] and AM05 [39]. Other known GGA-based functionals are meta-GGA
[40], hyper-GGA and generalized random phase approximation.

In this chapter, the GGA-PBE [35] functional was used to optimize the Ti50M50

(M = PGMs, Ni, Fe, Au) systems as it provides accurate parameters for these
materials.

2.3 Computational code and implementation

2.3.1 CASTEP code

In this book chapter, the plane-wave Cambridge Serial Total Energy Package
(CASTEP) [41, 42] code was used to investigate the properties of the B2 structures.
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CASTEP is a module embedded within the Materials Studio software package. It is a
first-principle quantum mechanical code based on DFT formalism, used for
performing electronic structure calculations. It can be used to simulate a wide range of
materials, including crystalline solids, surfaces, molecules, liquids and amorphous
materials; the properties of any material that can be thought of as an assembly of
nuclei and electrons can be calculated with the only limitation being the finite speed
and memory of the computers being used. This approach to simulation is extremely
ambitious given that the aim is to use no experimental data but to rely purely on
quantum mechanics.

Aiming to calculate any physical property of the system from first principles, the
basic quantity is the total energy from which many other quantities are derived. For
example, the derivative of total energy concerning atomic positions results in the
forces and the derivative concerning cell parameters gives stresses. To do this, the
total-energy code, on CASTEP code, performs a variational solution to the Kohn-
Sham equations by using a density mixing scheme to minimize the total energy and
also conjugate gradients to relax the ions under the influence of the Hellmann-
Feynman forces. CASTEP uses fast Fourier transforms (FFTs) to provide an efficient
way of transforming various entities (wave functions and potentials) from real to
reciprocal space and back, as well as to reduce the computational cost and memory
requirement for operating with the Hamiltonian on the electronic wave functions, a
plane-wave basis for the expansion of the wave functions. These are then used to
perform full geometry optimizations [41, 42].

A summary of the methodology for electronic structure calculations as implemented
in CASTEP is as follows: a set of one-electron Schrödinger (Kohn-Sham) equations are
solved using the plane-wave pseudopotential approach. The wave functions are
expanded in a plane wave basis set defined by the use of periodic boundary conditions
and Bloch’s Theorem. The electron-ion potential is described employing ab initio
pseudopotentials within both norm-conserving and ultrasoft formulations [41, 42].

Direct energy minimisation schemes are used to obtain self-consistent electronic
wave functions and corresponding charge density. In particular, the conjugate gradi-
ent and density mixing schemes are implemented. Also, the robust electron ensemble
DFT approach can be used for systems with partial occupancies, in particular, metals
[41, 42].

2.3.2 Implementation

Figure 1 illustrates the equiatomic B2 crystal geometry used to carry out all the
calculations reported in this chapter.

The resulting geometry-optimized crystal structure was used to carry out all the
calculations, including structural, thermodynamic and elastic properties, of all con-
sidered compounds. Only valence electrons were considered through the use of
ultrasoft pseudopotentials [41, 42]. All of our calculations were performed with
pseudo-potentials in generalized gradient approximation (GGA) [32] refined by
Perdew, Burke and Ernzerhof (PBE) [35]. Before any calculation could be performed,
a convergence test was also conducted in this code to determine the suitable cut-off
energy and k-point mesh parameter for systems. A plane wave cut-off energy of
500 eV was found to be sufficient enough to converge the total energy of the systems.
The Brillouin zone (BZ) sampling was performed using the k-point mesh of 13x13x13
according to the Monkhorst–Pack method [43]. A full geometry optimization was
performed to determine the ground-state parameters for the binary systems.
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To obtain the stable structure of Ti50M50 with minimum total energy, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) minimization scheme [44] was performed in
geometry optimization. The maximum ionic Hellmann-Feynman force was given to
be 0.03 eV/Å. Furthermore, the elastic constants of a solid were calculated by an
efficient strain–stress method through a linear least-square fit of first-principles cal-
culation results. The maximum stress set is below 0.05 GPa. The phonons dispersion
curves were also calculated.

2.4 Theoretical background on calculated properties

2.4.1 Thermodynamic stability

The heat of formation (ΔHf ) is the enthalpy change when one mole of a compound
is formed from the constituent elements in their stable states and is essential in
determining the structural stabilities of the different crystal structures. The heat of
formation is estimated by the following expression:

ΔHf ¼ EC �
X
i

xiEi (6)

where EC is the calculated total energy of the compound and Ei is the calculated
total energy of the constituent element in the compound. For a structure to be stable,
the heat of formation must have the lowest negative value (ΔHf < 0). The heat of
formation is used to determine the stability trend of the B2 systems.

2.4.2 Electronic stability

The electronic stability is determined by the density of states (DOSs), which refer
to the occupancy and density of the electronic states in a crystalline solid. It is

Figure 1.
Schematic representation of B2 crystal structure of Ti50M50 (M = Ru, Rh, Pd, Os, Ir, Pt, Ni, Fe, Au) intermetallic
compounds.
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described by a function, g (E), as the number of electrons per unit volume and energy
with electron energies near Fermi-level EF. In the case of states with DOS being zero
implies no state has been occupied (empty orbital). In general, a DOS is an average of
all available spaces multiplied by the number of states occupied by the system. The
local density of states (LDOSs) is a measure of variation due to distortion of the
original system. LDOS can locally be non-zero if the DOS of an undisturbed system is
zero due to the presence of local potential. In that case, the DOSs are the total number
of states that are available in the system within the plane-wave framework of DFT. It
is possible to calculate each orbital’s contribution (partial DOS) to determine which
orbitals are occupied or involved in bonding. The electronic behavior of a material is
determined by the location of EF within the DOS. Alloys’ stability can be predicted
using the DOS.

In the case of partial density of states (PDOSs), the states are attributed to the basic
functions and then to the atoms constituting the unit cell. DOS is then calculated as
the sum of atomic contributions. The DOS is calculated by using the following
expression:

n εð Þ ¼ 2
X
n, k

δ ε� εkn
� � ¼ 2

VBZ

X
n

ð
δ ε� εkn
� �

dk (7)

where δ is the Dirac delta function and the k is integral extends over the BZ. The
number of the electrons in the unit cell is given by:

ðεf

�∞

n εð Þdε:

2.4.3 Mechanical stability

There are various criteria established to deduce the mechanical stability of crystals
for different lattice crystals. Accuracy in determining the elasticity of a compound is
vital in understanding its mechanical stability and elastic properties. The elastic con-
stants depend on the type of lattice i.e. for the cubic, there are three (c11, c12, c44)
independent elastic constants [20, 45]. For example, applying two types of strains
ε1ð ε4Þ to the cubic system gives stresses relating to three elastic coefficients, this is a
useful method for obtaining elastic constants. The mechanical stability condition for
the cubic system as outlined in Ref. [45] is given as follows:

c44 >0; c11 > c12 and c11 þ 2c12 >0 (8)

According to Born-Huang’s lattice dynamical theory [46, 47], the stability criterion
for the elastic constants must be completely satisfied for the structure to be stable. The
positive C0 = (1/2(c11–c12) > 0) indicates the mechanical stability of the crystal,
otherwise, it is unstable.

2.4.4 Lattice dynamic stability

A phonon dispersion curve along a high symmetry direction is calculated by using
interplanar force constants [45], as every plane perpendicular to this direction is
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displaced within an elongated supercell. Generally, lattice dynamics are analyzed with
the ab-initio evaluation of forces on all atoms resulting from finite displacements of
few atoms within otherwise perfect crystals. It is usually necessary to construct
supercells of the appropriate size to ensure that interactions of the perturbation with
all its translational symmetry equivalent copies are small. The techniques for selecting
suitable supercells and atomic displacements, assembling force constant matrices
from the calculated forces and calculating phonon dispersion relations via Fourier
transform are well documented.

Using one of the 230 crystallographic space groups, phonon constructs a crystal
structure, calculates the Hellmann-Feynman force constant, builds the dynamical
matrix, diagonalizes it and calculates phonon dispersion relations [45].

In phonon dispersion calculations, polarization vectors and irreducible representa-
tions (Gamma points) of phonon modes are found, and the total and partial phonon
densities are calculated. It plots the internal energy, free energy, entropy, heat capacity
and tensor of mean square displacements (Debey-Waller factor). Phonons calculate the
dynamical structure factor of coherent inelastic neutron scattering and incoherent
doubly differential scattering in single crystal and polycrystalline systems [45].

The properties of phonons can be determined using a harmonic approximation
with one fundamental quantity, the force constants matrix [45]:

Dμν R� R0ð Þ ¼ δ2E
∂uμ Rð Þ∂uν u¼0j (9)

Where u represents the displacement of a given atom and E is the total energy in
the harmonic approximation. This matrix of force constants can also be represented in
reciprocal space and is known as a dynamic matrix:

Dμν qð Þ ¼ 1
NR

X
R

Dμν Rð Þ exp �iqRð Þ (10)

Classical equations of motion can be written as eigenvalue problems with each
atomic displacement in the form of plane waves:

u R, tð Þ ¼ εe qR�ω qð Þtð Þ (11)

Where ε is the 3N-dimensional eigenvector of the eigenvalue problem is:

Mω2 qð Þε ¼ D qð Þε (12)

The ω on the wave vector is well-known as the phonon dispersion. A guide to the
basic theory of phonons has been described in detail by Born and Huang (1954) and
Ashcroft and Mermin (1976) [48, 49]. In this chapter, we use the CASTEP code
[41, 42] to calculate phonon dispersion curves and their density of states (PHDOS). It
is well documented that compounds that radiate real (only positive) vibrational
modes along high symmetry directions in the Brillouin zone are considered to be
vibrationally stable with no possibility to undergo a martensitic phase transition at
lower temperatures [10, 13]. On the other hand, compounds that radiate both positive
and negative vibrational modes turn out to be vibrationally unstable with high
chances to undergo a martensitic phase transition at lower temperatures, a primary
feature of alloys with shape memory effect [20, 23, 50].
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3. Results and discussion

3.1 Structural and thermodynamic stability

The stability of the investigated B2 compounds is first discussed on the basis of
heat of formation. Table 1 presents the ground-state lattice parameters and the heat of
formation of the investigated B2 phases. The reported lattice parameters were
obtained from the geometrically relaxed structures, whereby their respective volumes
and unit cells were allowed to change to obtain their ground state.

The lattice parameters were found to be in good agreement with those reported
previously by other authors [10, 12, 13, 19, 22, 54, 55]. The lattice parameters of the
investigated Ti50M50 compounds increase with the position of the M atom along the
groups or the periods of the periodic table of elements. This is in line with their
respective densities and volume changes observed, as presented in Table 1.

Furthermore, Table 1 also presents the thermodynamic stability of the investi-
gated B2 compounds that were determined by calculating their respective heat of
formation using Eq. (6). Heat of formation provide primary insight into the existence
of the phase. All the investigated B2 phases reported in this research work were found
to be negative (ΔHF < 0), an indication that they are all thermodynamically stable.
Amongst the investigated B2 compounds, the heat of formation value of Ti50Ir50 was
found to be the most thermodynamically stable indicated by the lowest value of
�0.913 eV/atom. The reported heat of formation results were found to be in accor-
dance with other data in literature [51, 52, 55–58].

3.2 Electronic stability

Figure 2 shows the total density of states (tDOS) of all the investigated B2 com-
pounds reported in this chapter. It is noted that the DOS values g (E) of the investi-
gated compounds were found to be non-zero across the Fermi level (EF) indicating
that all the investigated B2 compounds were mainly characterized by metallic bonds.

Crystal
structures

Lattice parameters,
a (Å)

Volume
(Å3)

Density
(g.cm3)

Heat of formation, -ΔHF (eV/atom)

This
work

Literature This
work

Literature

Ti50Ru50 3.08 3.07, 3.09 29.21 8.47 0.750 0.798, 0.743, 0.770 [14, 51]

Ti50Rh50 3.12 3.13 30.41 8.23 0.852 0.741, 0.749, 0.715 [51]

Ti50Pd50 3.17 3.18 31.74 8.07 0.508 0.519, 0.530 [14, 21, 51]

Ti50Os50 3.09 3.09, 3.10 29.58 13.37 0.705 0.710, 0.714, 0.683 [51]

Ti50Ir50 3.12 3.12 30.35 13.14 0.913 0.876, 0.847, 0.845 [51]

Ti50Pt50 3.18 3.19, 3.21 32.18 12.54 0.885 0.824, 0.795 [51]

Ti50Fe50 2.95 2.99 25.73 6.70 0.745 0.321 [52]

Ti50Ni50 3.01 3.02, 2.97 27.34 6.47 0.382 0.358 [53]

Ti50Au50 3.27 3.25 34.96 11.63 0.368 0.442 [51]

Table 1.
Lattice parameters and heat of formation of the investigated binary B2 compounds.
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Generally, the density of states’spectra of CsCl-type B2 compounds consists of two
peaks [25] that are separated by a pseudogap (deep valley) at the Fermi level (EF).
With the lower energy peak representing the anti-bonding region and the higher
energy peak representing the bonding region. Therefore, the position of EF at the
pseudogap provides insight into the phase stability of a compound at the ground state.
Such that, if EF is found to fall at the centre of the pseudogap, that signifies phase
stability and if EF falls at the peak or shoulder of the bonding region. Figure 2 shows
that Ti50Fe50, Ti50Ru50 and Ti50Os50 will retain their stable high-temperature austenite
phase as their ground-state as their EF cuts at the centre of the deep valley, while the
other investigated B2 compounds (Ti50M50, M = Ni, Rh, Pd, Ir, Au and Pt) will
certainly undergo a phase transition from the high-temperature B2 to unstable phases
at 0 K because their pseudogap shifted towards the anti-bonding region and enabled
phase transition.

The aforesaid provides insight information about the phase transition of the inves-
tigated compounds from high-temperature austenite (B2) to low-temperature mar-
tensite phase, a gauge for shape memory effect observed on alloys with shape memory
properties.

3.3 Dynamic phase stability

The phonon-dispersion curves are used to gain insight into the underlying lattice
vibrations that may influence the ability of the crystal to transform to martensite
phase on cooling. The information on phonons is very useful for accounting variety of
properties and behaviors of crystalline materials, such as thermal properties, phase
transition, and superconductivity [59].

As detailed in Section 2.4.4, B2 compounds that show only positive frequencies
remain stable with no prospect of undergoing martensitic phase transition, while
those that show both positive and negative frequencies are prone to become unstable
and undergo martensitic phase transition at lower temperatures.

Figure 2.
The total density of states (tDOS) of the nine investigated austenite compounds.
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Figure 3 represents the sets of phonon-dispersion curves of the investigated com-
pounds. It can be shown that Ti50Fe50, Ti50Ru50 and Ti50Os50 consist of only the real
positive vibrational modes, while the rest of the investigated compounds were found
to consist of both positive and negative vibrational modes. This observed behavior
agrees well with the DOS results reported in the previous section as well as the results
reported by other authors [20, 23, 50].

Figure 3.
Phonon-dispersion curves of the investigated B2 phases plotted along selected Brillouin zone directions.
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Furthermore, Figure 3 gives the calculated B2 phonons density of states (PHDOS).
It is evident that the vibrational stable B2 compounds (Ti50M50, M = Fe, Ru and Os)
consist of a valence gap between the positive and negative frequency modes. Such
observed behavior renders the aforementioned compounds to be brittle-metal-com-
pounds, a kind of semi-conductive material properties. While those austenite phases
that were found to be vibrationally unstable (Ti50M50, M = Ni, Rh, Pd, Ir, Pt and Au)
show a clear interaction of valence and conduction electrons with a non-zero DOS.

3.4 Mechanical stability

Elastic constants are the primary output parameters of most DFT codes, and they
determine the response of the crystal to external forces. They are crucial in predicting
the mechanical properties of the crystal structure and their subsequent modulus of
elasticity.

Table 2 presents the calculated elastic constants of the investigated alloys reported
in this chapter. Furthermore, the trend of the elastic constants plotted against differ-
ent B2 compounds is shown in Figure 4.

Based on the mechanical stability criterion for cubic crystals as outlined in Section
2.4.3, as well as very high value of C0, Ti50Fe50, Ti50Ru50 and Ti50Os50 completely

Parameters TiFe TiNi TiRu TiRh TiPd TiOs TiIr TiPt TiAu

C11 357.43 206.68 396.10 166.15 148.46 466.03 �55.28 141.65 131.78

C12 101.88 138.67 122.55 206.86 163.98 140.21 376.01 203.15 139.44

C44 71.64 47.08 82.72 59.41 51.51 125.20 79.08 48.27 43.08

C0 127.78 34.00 136.78 �19.85 �7.76 162.91 �215.65 �30.75 �3.83

Table 2.
The calculated elastic constants (Cij) of the investigated Ti50M50 compounds.

Figure 4.
The calculated elastic constants (GPa) of the investigated compounds.
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satisfy the criterion, rendering the austenite phase to be mechanically stable in these
compounds, thus unlikely to undergo any phase transition at lower temperatures.

Although a similar stability criterion was observed (C0 > 0) for Ti50Ni50, which is a
well-known SMA [14, 60], it should be noted that its C44 was found to be larger than
C0, resulting in anisotropic factor A greater than 1. This is another important elastic
property factor worth attention in design of SMAs and can be assessed on the rela-
tionship between the tetragonal shear modulus (C0) and its corresponding monoclinic
shear constant (C44). It is reported that the mechanical instability of a high-
temperature phase decreases when nearing the martensitic transition temperature
during heating [61], this is the case where C0 becomes close to zero. Furthermore, if
C0 < 0, the corresponding B2 phase is unstable at 0 K, signaling a great potential for
this high-temperature phase to undergo a martensitic phase transition on cooling,
yielding SME character. Since this MT occurs at much higher temperatures, such B2
alloys are of interest for high-temperature structural applications. Table 2 shows that
Ti50Os50 and Ti50Ir50 are the most and least mechanically stable amongst the investi-
gated B2 compounds, and the same results are graphically presented as shown in
Figure 4.

4. Conclusions

The thermodynamic, electronic, lattice dynamic and mechanical stability of the
investigated B2 compounds have been calculated using a first-principles approach and
are reported in this chapter. The calculated heat of formation, elastic constants,
densities of states and vibrational properties have provided a much-needed clarity in
determining the differences in stabilities of various Ti-PGM B2 compounds. This was
made possible by choosing the correct model, resulting in reliable data that compares
well with results reported in literature.

From all the calculated properties, it was shown that the higher-temperature aus-
tenite phase of Ti50Fe50, Ti50Ru50 and Ti50Os50 remains stable with no prospect of
martensitic phase transition that is associated with materials with shape memory effect.

This was evident by the electronic and dynamic stability of the investigated com-
pounds. Furthermore, their corresponding tDOS spectra were found to coincide with
the pseudogap at the EF, rendering electronic stability with no phase transition. This
was further substantiated by phonon curves, which possessed only positive vibrational
frequency indicating that they are not likely to undergo a phase transition. The
predicted mechanical stability of the Ti50Fe50, Ti50Ru50 and Ti50Os50 B2 compounds was
found to be very high, strongly signaling absence of any possible phase transformation.

On the other hand, using the electronic and elastic properties, this work has shown
that other B2 compounds (Ti50M50, M = Ni, Rh, Pd, Ir, Pt and Au) considered in this
study are unstable at 0 K, thus predicting the possibility to undergo phase transition to
martensite phase on cooling, resulting in shape memory effect character if the trans-
formation is diffusionless.
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Chapter 2

DFT and TDDFT Calculations of
Ground and Excited States of
Photoelectron Emission
Brahim Ait Hammou, Abdelhamid El Kaaouachi,
El Hassan Mounir, Hamza Mabchour, Abdellatif El Oujdi,
Adil Echchelh, Said Dlimi and Driss Ennajih

Abstract

The Density-Functional Theory (DFT) is a reformulation of the quantum study of
a correlated N-body system into a simpler system with independent equations being
solved iteratively. The DFT considers only ground states of the systems. The extension
to the time-dependent case of this theory is the Time-Dependent Density-Functional
Theory (TDDFT) that also takes into account the excited states of the system. These
calculations are very interesting in photonics areas. In fact, the interaction between
electrons and light in the vicinity of solid surfaces and nanostructures is important as
pathway to integrate photonics and electronics. The capability to couple light and
electrons in purposefully designed device depends on the capability of creating such
devices and the understanding of the underlying science.

Keywords: DFT, TDDFT, solid surfaces, ground states, excited states

1. Introduction

In the fields of photonics, researchers use the dielectric function and the electronic
density in their calculations and investigations [1–8] to determine the physical and
optical characteristics of materials such as noble metals (Au and Ag). In fact, the
determination of the electronic structure of a material can give us all the physical and
optical information about it. DFT and TDDFT are used to determine the electronic
structure of materials such as noble metals in their ground and excited states. The

purpose of these calculations is to determine the electron density ρ r!
� �

. Indeed, it

informs us about all the physical properties of the studied system. We simplify this
very complex calculation by using several approximations and theorems. We propose
at the end a flowchart to carry out a computer simulation allowing to highlight the

values of the electron density ρ r!
� �

.
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2. DFT calculation steps

The DFT is based on wave Schrodinger equation

Η̂ Tψ R
!

I

� �
, ri!
� �

,t
� � ¼ i

∂

∂t
ψ

R
!
I

� �
, ri!
� �

,t
� � (1)

We consider that the system contains N cores and M electrons.
Η̂ T : is the total Hamiltonian representing N cores and M electrons.
ψ

R
!

I

� �
, ri!
� �

,t
� �: is the wave function representing N cores and M electrons.

R
!
I

n o
and ri!

� �
: represent respectively the set of nuclear and electronic

coordinates.
In the case of stationary processes, the Schrodinger becomes:

Η̂ Tψ R
!

I

� �
, ri!
� �� � ¼ iEψ

R
!

I

� �
, ri!
� �� � (2)

where E represent the energy of the system described by ψ
R
!
I

� �
, ri!
� �� �

Η̂ T ¼ T̂T þ V̂T (3)

where T̂T is the total kinetic energy of the system operator, and V̂T is the operator
describing all Colombian interaction.

Η̂ T can be written as:

Η̂ T ¼ T̂n þ T̂e þ V̂n�e þ V̂e�e þ V̂n�n (4)

where

T̂n ¼ �ℏ2

2

P
I
∇2R

!
I

Mn
: is the kinetic energy of N cores with mass Mn.

T̂n ¼ �ℏ2

2

P
i
∇2 r!i
me

: is the kinetic energy of M electrons with mass me.

V̂n�e ¼ 1
4πε0

P
i,j

e2Zi

R
!

i� r!j

�� ��: is the core-electron attractive Colombian interaction.

V̂e�e ¼ 1
8πε0

P
i 6¼j

e2

r!i� r!jj j: is the electron-electron repulsive Colombian interaction.

V̂n�n ¼ 1
8πε0

P
i 6¼j

e2ZiZj

R
!

i�R
!

j

�� ��: is the core-core repulsive Colombian interaction.

Eq. (4) takes into account N cores and M electrons. Some simplifications must be
made:

• First approximation level: Born-Oppenheimer approximation.
(see paragraph 2-1)

• Second approximation level: Hartree-Fock approximation. (see paragraph 2-2)

• Third approximation level: Inherent approximation to the resolution of equation.
(see paragraph 2-3)
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2.1 Adiabatic born-Oppenheimer approximation

It offers the opportunity to treat separately the cores and the electrons.
So we have

ΨR R
!
, r!

� �
¼ ΦR R

!� �
ΨR r!
� �

(5)

where

ΦR R
!� �

: is the wave function describing the cores.

ΨR r!
� �

: is the wave function describing the electrons.

In this approximation, the interaction electron-phonon is neglected.
Using Eqs. (3) and (4), the new Hamiltonian becomes

Η̂ T ¼ T̂e þ V̂n�e þ V̂e�e þ V̂n�n ¼ V̂ext ¼ Cst
� �

(6)

so

Η̂ T ¼ �ℏ2

2

X
i

∇2 r!i

me
þ 1
4πε0

X
i, j

e2Zi

R
!
i � r!j

���
���
þ 1
8πε0

X
i 6¼j

e2

r!i � r!j

���
���

þ 1
8πε0

X
i 6¼j

e2ZiZj

R
!
i � R

!
j

���
���
¼ Cst

0
B@

1
CA

(7)

The nuclear kinetic energy term independent from electrons is canceled (equal to
zero). The attractive potential energy (electron-core) term is removed and the repul-
sive potential energy (core-core) becomes a constant simply evaluated for determined
geometry. Using the Hohenberg and Kohn Theorems (HK theorems) [9], the formu-

lation of the Schrödinger equation can be now based on the electron density ρ r!
� �

.

This is due to the two HK theorems. In fact, the first KH theorem indicated that the
total energy of the system in the ground state is a single universal function of the
electronic density.

E ¼ E ρ r!
� �h i

(8)

HK gives

E ρ r!
� �h i

¼ FHK ρ r!
� �h i

þ
ð
V̂ext r!

� �
ρ r!
� �

d r!, (9)

where FHK ρ r!
� �h i

represent the HK universal functional and V
!

ext r!
� �

represent

the external potential. The second HK theorem says that it is an analogue variational
principle to the originally proposed in the approach of Hartree-Fock for the functional
of the wave function (∂E ψ½ �

∂ψ ¼ 0), but this time applied to the electronic density
functional.
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∂E ρ r!
� �h i

∂ρ r!
� �

������
ρ0 r!ð Þ

¼ 0 (10)

where ρ0 r!
� �

is the exact electronic density of the system in the ground state. This

theorem can be reformulated like: For a potential V̂ext r!
� �

and with a number M of

electrons, the total energy of the system reaches its minimum value when ρ r!
� �

is

corresponding to the exact density ρ0 r!
� �

of the ground state.

Considering the two HK theorems, the resolution of Schrödinger equation consists

in seeking the minimization of E ρ r!
� �h i

:
∂E ρ r!ð Þ½ �
∂ρ r!ð Þ ¼ 0 by applying the constraint of the

conservation of the total number of particles:
Ð
ρ r!
� �

d r! ¼ M.

This problem can be resolved using Lagrange multipliers

G ρ r!
� �h i

¼
ð
ρ r!
� �

d r! �M (11)

The conservation of the total number of particles constraint becomes

G ρ r!
� �h i

¼ 0, and by introducing auxiliary function A ρ r!
� �h i

with:

A ρ r!
� �h i

¼ E ρ r!
� �h i

� μG ρ r!
� �h i

(12)

where μ is the Lagrange multiplier, the problem to resolve becomes

∂A ρ r!
� �h i

¼
ð ∂A ρ r!

� �h i

∂ρ r!
� � ∂ρdr ¼ 0 (13)

∂ E ρ r!
� �h i

� μ

ð
ρ r!
� �

d r! �M
� �� �

¼ 0

We must calculate the functional derivative of A ρ r!
� �h i

:

∂A ρ r!
� �h i

∂ρ r!
� � ¼ ∂

∂ρ r!
� � E ρ r!

� �h i
� μ

ð
ρ r!
� �

d r! �M
� �� �

¼
∂E ρ r!

� �h i

∂ρ r!
� � � μ

∂

∂ρ r!
� �

ð
ρ r!
� �

d r!
� �

so we have

∂A ρ r!
� �h i

∂ρ r!
� � ¼

∂E ρ r!
� �h i

∂ρ r!
� � � μ (14)
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By replacing this expression in the equation of ∂A ρ r!
� �h i

, we obtained

∂A ρ r!
� �h i

¼
ð ∂E ρ r!

� �h i

∂ρ r!
� � � μ

2
4

3
5∂ρdr ¼ 0

ð ∂E ρ r!
� �h i

∂ρ r!
� � ∂ρdr ¼

ð
μ∂ρdr (15)

ð ∂E ρ r!
� �h i

∂ρ r!
� � ∂ρdr ¼ μ

Using Eq. (9) and calculating the functional derivative of E ρ r!
� �h i

we obtained

∂E ρ r!
� �h i

∂ρ r!
� � ¼ V̂ext r!

� �
þ
∂FHK ρ r!

� �h i

∂ρ r!
� � (16)

By replacing Eq. (16) in Eq. (15) we obtained

μ ¼
∂E ρ r!

� �h i

∂ρ r!
� � ¼ V̂ext r!

� �
þ
∂FHK ρ r!

� �h i

∂ρ r!
� � (17)

This equation constitutes the fundamental DFT formalism.

It only remains to determine the expression of the unknown function FHK ρ r!
� �h i

in Eq. (17), that’s why we are brought to use the Kohn-Sham approximations.

2.2 Kohn-Sham (KS) approximations (equations)

This step [10] consists of two approximations to transform the theorems of
Hohenberg-Kohn into a practical workable from. However, the real system studied is
redefined as a fictitious fermions systemwithout interaction andwith the same electronic

density ρ r!
� �

characterizing the real system to being up the terms of inter-electronic as

corrections of the other terms. Also, single particle orbitals are induced to treat the kinetic
energy term of electronsmore precisely than under the Thomas-Fermi theory.

2.2.1 First approximation of KS

The transformation of the real interactive system as a fictitious non-interactive

system. Considering the first HK theorem, the functional E ρ r!
� �h i

can be written as

indicated in Eq. (9):

E ρ r!
� �h i

¼ FHK ρ r!
� �h i

þ
ð
V̂ext r!

� �
ρ r!
� �

d r! (18)
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The functional FHK ρ r!
� �h i

is independent from V̂ext r!
� �

(external potential), and

it is valid and applies regardless of the system studied. It contains a component of

kinetic energy of electron T̂e ρ r!
� �h i

, and another component corresponding to the

mutual coulomb interaction between electrons V̂e�e ρ r!
� �h i

. The minimization of this

functional with the constraint of preservation of the number of particles M:Ð
ρ r!
� �

d r! ¼ Mgives us directly the total energy of the system and the charge

density of ground state from which all other physical properties can be extracted:

FHK ρ r!
� �h i

¼ TS ρ r!
� �h i

þ EH ρ r!
� �h i

þ EXC ρ r!
� �h i

þ Vext ρ r!
� �h i

(19)

Where

TS ρ r!
� �h i

: is the kinetic energy of non-interactive electron gas.

EH ρ r!
� �h i

¼ 1
2

ÐÐ ρ r!ð Þρ r!
0� �

r!� r!
0�� �� d r!d r!

0
: is the chemical coulomb interaction between

electrons (Hartree term).

EXC ρ r!
� �h i

: the additional functional describing interactions inter-electronic not

obtained from non-interactive system.

Vext ρ r!
� �h i

¼ Ð V̂ext r!
� �

ρ r!
� �

d r!: is the external potential.

The functional EXC ρ r!
� �h i

is called “exchange-correlation energy,” this term con-

tain all differences between fictitious non-interactive system and the real interactive
system.

EXC ρ r!
� �h i

¼ T ρ r!
� �h i

� TS ρ r!
� �h i� �

þ Ve�e ρ r!
� �h i

� VH ρ r!
� �h i� �

(20)

where:

T ρ r!
� �h i

: is the real kinetic energy (of real interactive system).

TS ρ r!
� �h i

: is the non-interactive fermions system energy of KS.

T ρ r!
� �h i

� TS ρ r!
� �h i

: this difference is low and is neglected.

EXC ρ r!
� �h i

traduced only the difference between Colombian energy of the real

system Ve�e ρ r!
� �h i

and the Colombian energy of non-interactive fermions system

VH ρ r!
� �h i

of KS.

EXC ρ r!
� �h i

ffi Ve�e ρ r!
� �h i

� VH ρ r!
� �h i

(21)

2.2.2 Second approximation of KS

This second approximation is based on the formulation of kinetic energy using an
orbital approach. The exact formulation of kinetic energy T for the ground state
systems is given by:
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T ¼
XM
i

ni φ ∗
ih j
�ℏ2∇2 r!

2me
φij i (22)

where φi are natural spin orbital’s and ni their respective occupation number
according to the Pauli principle; 0≤ ni ≤ 1.

KS have taken advantage of the fictitious non-interactive fermions system to
describe the kinetic energy which is also according to the first theorem of KH as
functional of the density:

Ts ρ r!
� �h i

¼
XM
i

ni φ ∗
ih j
�ℏ2∇2 r!

2me
φij i (23)

Ts is the non-interactive fermions system energy of KS as function as electron

density ρ r!
� �

.

3. Kohn-Sham equations

The fundamental equation of DFT is expressed by applying variational KH princi-
pal [9] as:

μ ¼ V̂eff r!
� �

þ
∂Ts ρ r!

� �h i

∂ρ r!
� � (24)

where V̂eff r!
� �

is formulated as a functional of electronic density.

V̂eff r!
� �

¼ V̂eff ρ r!
� �h i

¼ V̂ext r!
� �

þ
∂EH ρ r!

� �h i

∂ρ r!
� � þ

∂EXC ρ r!
� �h i

∂ρ r!
� �

V̂eff r!
� �

¼ V̂ext r!
� �

þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ V̂xc r!
� �

(25)

where V̂xc r!
� �

is the exchange-correlation potential functional derivative of

EXC ρ r!
� �h i

by ρ r!
� �

:

V̂xc r!
� �

¼
∂EXC ρ r!

� �h i

∂ρ r!
� � and ρ r!

� �
¼
XM
i¼1

φi r!
� ����

���
2

(26)

The Schrödinger equation to resolve in the KS approach is:

�ℏ2∇2 r!

2me
þ V̂eff r!

� �" #
φi r!
� ����

E
¼ εi φi r!

� ����
E

(27)

27

DFT and TDDFT Calculations of Ground and Excited States of Photoelectron Emission
DOI: http://dx.doi.org/10.5772/intechopen.111611



The KS equations (Eqs. (25) and (27)) must be resolved with self-coherent method

by starting with an initial electronic density. V̂eff r!
� �

is obtained for which the

Schrodinger equation of Kohn-Sham (Eq. 27) is resolved, and a new electronic density

is then calculated. From this new electronic density, a new V̂eff r!
� �

is determined.

This process is repeated with self-coherent method up to that convergence is reached.
The new electronic density obtained must be very close to the previous one
corresponding to the criterion of convergence fixed before.

At this step, we only need to find the expression of EXC ρ r!
� �h i

.Some exchange-

correlation functional can be considered using different functional approximation
families like: Local Density Approximation (LDA) [11], Generalized Gradient
Approximation (CGA) [12], Meta Generalized Gradient Approximation (Meta CGA)
[13], and Hybrid Functional [14].

Functional Family Dependence

LDA ρ r!
� �

GGA ∇ρ r!
� ����

���, ρ r!
� �

Meta-GGA ∇ρ r!
� ����

���, ∇2ρ r!
� �

, ρ r!
� �

Hybrid Exact Exchange, ∇ρ r!
� ����

���, ρ r!
� �

The order of accuracy is increasing from top to bottom. In the formalism

of exchange-correlation functional, EXC ρ r!
� �h i

is presented like an interaction

between the electronic density ρ r!
� �

and density energy depending on ρ r!
� �

:

εXC ρ r!
� �h i

with

EXC ρ r!
� �h i

¼
ð
εXC ρ r!

� �h i
ρ r!
� �

d r! (28)

εXC ρ r!
� �h i

is considered as a summation of the contribution of exchange and

correlation, (with) εXC ρ r!
� �h i

¼ εX ρ r!
� �h i

þ εC ρ r!
� �h i

and

EXC ρ r!
� �h i

¼ EX ρ r!
� �h i

þ EC ρ r!
� �h i

¼
ð
εX ρ r!

� �h i
ρ r!
� �

d r! þ
ð
εC ρ r!

� �h i
ρ r!
� �

d r!

(29)

3.1 Local Density Approximation (LDA)

In this work we will only use the LDA approximation in our calculations. In this
approximation, the electronic density can be treated locally in the form of uniform
electrons of gas.
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In other words, this approach is to perform the following two hypotheses:

• The exchange-correlation is dominated by the density at the point r!.

• The density ρ r!
� �

is a function slowly varying with r!.

The fundamental hypothesis contained in the LDA formalism is to consider that

the contribution of EXC ρ r!
� �h i

to the total energy of the system can be added by

cumulated method of each portion of the non-uniform gas as it was locally uniform.

ELDA
XC ρ r!

� �h i
¼
ð
εLDA
XC ρ r!

� �h i
ρ r!
� �

d r! (30)

Where εLDA
XC ρ r!

� �h i
represent the exchange-correlation energy by electron in a

system with electron in mutual correlation with uniform density ρ r!
� �

.

Using εLDA
XC ρ r!

� �h i
, the exchange-correlation potential VLDA

XC r!
� �

can be obtained

like:

VLDA
XC r!
� �

¼
∂ ρ r!

� �
εLDA
XC ρ r!

� �h i� �

∂ρ r!
� � (31)

There are several forms for the term of exchange and correlation of a homogeneous
electron gas, among others those of Kohn and Sham [10], Wigner [15], Perdew and
Wang [16], and Hedin and Lundqvis [17], Ceperly and Alder [18]. The last one is the
most used.

3.2 Approximation of Ceperley and Alder

Ceperley and Alder [18] used the exchange energy of uniform electrons gas given
by Dirac formula as:

EX ρ r!
� �h i

¼ �CX

ð
ρ

4
3 r!
� �

d r! (32)

εLDA
X ρ r!

� �h i
¼ �CX

ð
ρ

1
3 r!
� �

d r! (33)

with CX ¼ 3
4

3
π

� �1
3, εLDA

X ρ r!
� �h i

can be expressed like

εLDA
X ρ r!

� �h i
¼ �0:738694ρ

1
3 r!
� �

.

The correlation energy εLDA
C ρ r!

� �h i
is derived on the second order of Moller-

Plesset perturbation theory [19–21]:

εLDA
C ρ r!

� �h i
¼ aLn 1þ b

rs
þ b
r2s

� �
(34)
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With a ¼ Ln2�1
2π2 ¼ �0:01556111 and b ¼ 20:4562557.

rsis the Wigner-Seitz density parameter, in atomic unit we have rs ¼ 4πρ r!ð Þ
3

� ��1=3

.

Considering the correlation term εLDA
C ρ r!

� �h i
, no explicit analytical expression is

known. Several different parameterizations have been proposed since the early 1970’s,
and the most accurate results are based on quantum Monte Carlo simulations of
Ceperley and Alder [18]. The most approximation commonly used today is that of
Zunger [22] and who parameterized the Ceperley and Alder correlation functional for
the spin-polarized electron gas and non-spin-polarized electron gas by the equation:

εPZC ρ r!
� �h i

¼ A� Lnrs þ Bþ C� rs � Lnrs þD� rs, rs ≤ 1

γ= 1þ β1 � rs þ β2 � rsð Þ, rs < 1

�
(35)

For rs ≤ 1, AU ¼ 0:0311, BU ¼ �0:048, CU ¼ 0:002 and DU ¼ �0:0116.
For rs < 1, γ ¼ �0:1423, β1 ¼ 1:0529, and β2 ¼ 0:3334.
The improvements of the LDA approach must consider the gas of electrons in its

real form (non-uniform and non-local), GGA, meta-GGA, and hybrid functional
allow gradually approach to make in consideration their two effects.

4. Resolution of the KS Schrödinger equation

Combining between Eqs. (25) and (27) and using the expression

ρ r!
� �

¼P
M

i¼1
φi r!
� ����

���
2
, where M is the number of electrons, Eq. (27) becomes:

�ℏ2∇2 r!

2me
þ V̂ext r!

� �
þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ V̂xc r!
� �

2
64

3
75 φi r!

� ����
E
¼ εi φi r!

� ����
E

(36)

The only unknown value in this expression is V̂xc r!
� �

(exchange-correlation

potential).

Using LDA approximation of V̂xc r!
� �

(Eq. (30)),Where εLDA
xc ρ r!

� �h i
¼

εLDA
x ρ r!

� �h i
þ εLDA

c ρ r!
� �h i

with

εLDA
xc ρ r!

� �h i
: The exchange-correlation energy of one electron in a system of elec-

tron on mutual interaction with electronic density ρ r!
� �

.

εLDA
x ρ r!

� �h i
: The exchange energy of one electron.

εLDA
c ρ r!

� �h i
: The correlation energy of one electron.

Eq. (36) becomes:

�ℏ2∇2 r!

2me
þ V̂ext r!

� �
þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ
∂ ρ r!
� �

εLDA
xc ρ r!

� �h i� �

∂ρ r!
� �

2
64

3
75 φi r!

� ����
E
¼ εi φi r!

� ����
E

(37)
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�ℏ2∇2 r!

2me
þ V̂ext r!

� �
þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ
∂ ρ r!
� �

εLDA
x ρ r!

� �h i
þ εLDA

c ρ r!
� �h i� �� �

∂ρ r!
� �

2
64

3
75 φi r!

� ����
E

¼ εi φi r!
� ����

E

(38)

�ℏ2∇2 r!

2me
þ V̂ext r!

� �
þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ
∂ ρ r!
� �

εLDA
x ρ r!

� �h i� �� �

∂ρ r!
� �

2
6664

þ
∂ ρ r!
� �

εLDA
c ρ r!

� �h i� �� �

∂ρ r!
� �

3
7775 φi r!

� ����
E

¼ εi φi r!
� ����

E

(39)

where

ĤKS ¼ � 1
2
∇2 r! þ V̂ext r!

� �
þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ
∂ ρ r!

� �
εLDA
x ρ r!

� �h i� �� �

∂ρ r!
� �

þ
∂ ρ r!
� �

εLDA
c ρ r!

� �h i� �� �

∂ρ r!
� �

(40)

V̂eff r!
� �

¼ V̂ext r!
� �

þ
ð ρ r!

0� �

r! � r!
0���
���
d r!

0 þ
∂ ρ r!

� �
εLDA
x ρ r!

� �h i� �� �

∂ρ r!
� �

þ
∂ ρ r!

� �
εLDA
c ρ r!

� �h i� �� �

∂ρ r!
� �

(41)

In the LDA approximation, Eq. (38) must be the departure of our programming

calculations. All terms in Eq. (38) are known and remain to define V̂ext r!
� �

and basis

of functions φi r!
� �

.

V̂ext r!
� �

and φi r!
� �

are selected as the case we want to treat. We will give further

their expressions.
Eq. (37) must be solved self-consistently by starting at a certain density. An

effective potential V̂eff r!
� �

is obtained for which the Schrodinger equation of Kohn-

Sham is resolved, and a new electronic density is determined. This process is repeated
self-consistently until convergence is reached, and the new electronic density
obtained must be very close to the previous one.
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4.1 Self-coherent technical to resolve KS Schrödinger equation

The idea is that do not directly resolve Eq. (39), but to write previously the ϕm r!
� �

in a finite basis function ϕb
p r!
� �

as:

ϕm r!
� �

¼
Xp

p¼1

Cm
p ϕ

b
p r!
� �

(42)

whenm = n.k
!
, k
!
: is the wave vector belonging the first Brillouin zone in the case of

crystal lattice.
The resolution of Eq. (38) consists to determine the coefficients Cm

p necessary to

express ϕm r!
� �

in a given basis ϕb
p r!
� �

.

We need to search a basis to get as close as possible to ϕm r!
� �

with p having a finite

value.
Eq. (37) becomes:

… …

… ϕb
i

� ��ĤKS ϕb
j

���
E
� εm ϕb

i

�
ϕb
j

���
E

…

… …

2
66664

3
77775

Cm
1

…

Cm
p

2
6664

3
7775 ¼

0

…

0

2
664

3
775, (43)

in which one can identify the matrix Elements of Hamiltonian of single particle

and the elements of the recovery matrix, Hij � εmSij
� �

Cm
p ¼ 0, where Ĥij ¼

ϕb
i

� ��ĤKS ϕb
j

���
E
and Sij ¼ ϕb

i

�
ϕb
j

���
E
respectively represent the Hamiltonian matrix and the

recovery matrix.
For a solid, these equations need to be resolved for each vector k in the Brillouin

zone. This secular equation system is linear with the energy. This system constitutes a

problem of determination of the proper values εm and proper functions ϕk
i r!
� �

that

much we know within the Hartree theory and is commonly solved from standard
numerical methods. The diagonalization of the Hamiltonian matrix provides p proper
values clean and p sets values of coefficients that express each p proper functions in a
given basis.

More p is big, more the proper functions are precise, but the matrix diagonaliza-
tion time is also particularly high.

4.2 Self-consistent cycle

Eq. (39) must be resolved in an iterative way in self-consistent cycle procedure.
The procedure starts by the definition of a density of departure corresponding to a
determined geometry core. Generally, the initial density is constituted from a super-
position of atomic densities: ρin ¼ ρcrystal ¼Patρ

at.
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When the elements of the Hamiltonian matrix and recovery matrix were calcu-
lated, proper vectors and proper functions are determined from the diagonalization of
the matrix Hij � εmSij

� �
Cm
p ¼ 0. Following the principle of Aufbau, the orbitals are

filled, a new density is determined:

ρout r!
� �

¼
X
out

ϕi r!
� ����

���
2
,

This step concludes the first cycle. At this stage of the process, acceleration of
convergence is generally used to generate a new density realized from a mixture
between this output density ρout rð Þ and density of entry of this cycle and there ρin rð Þ .
One of the simplest procedures concerning this mixture can be formulated as:
ρiniþ1 rð Þ ¼ 1� αð Þρini rð Þ þ αρouti rð Þ with 0≺ α≺ 1. α is the mixture parameter an i corre-
sponds to iterative cycle number. Density of the new entry ρiniþ1 rð Þ is then introduced
into a second self-consistent cycle. This process is repeated for an iterative manner
until it has the convergence criterion (difference between ρout rð Þ and ρin rð Þ) initially
fixed is reached. When convergence is reached, the energy of the ground state of the
system is reached (Figure 1).

Once we obtain ρout r!
� �

for the first cycle, we inject it like a new value of ρin r!
� �

and we repeat this iterative operation until it is that the fixed precision at the
beginning is reached.

Figure 1.
Schematic representation of the self-consistent cycle.
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Precision = ρout r!
� �

� ρin r!
� �

ρin r!
� �

¼ ρorbital r!
� �

¼
X
at

ρat r!
� �

,

We can use ϕn
k r!
� �

¼ eik
!
: r!unk r!

� �
, where eik

!
: r! is a plane wave and unk r!

� �
a function

processing Lattice periodicity (Bloch theorem unk r! þ k
!� �

¼ unk r!
� �

).

5. Time dependent density functional theory (TDDFT) calculations

The Eigen values of Kohn-Sham does not match corresponding to the
required energy for excited electrons in a correlated electron system with N
electrons, because the Kohn-Sham [10] approach replaces the interacting electron
problem by an independent electron problem. There is a way to study the potential
and the wave function to determine the excitation energies. It is the use of the TDDFT
theory which takes into account the time parameter. The excitation energy of a
system can then be obtained from the response function to extreme electron density
perturbations.

5.1 Rung-Gross theorems

TDDFT is based on the Rung-Gross theorem [23, 24] that is the analog of the time-
dependent of Hohenberg-Kohn theorems [9]. The theorems are cited below:

5.1.1 First theorem

The time depends on the external potential V̂ext r!, t
� �

is determined by the time-

dependent electron density ρ r!, t
� �

to a nearly additive function for an initial state ψ a

stateψ t ¼ 0ð Þ.

5.1.2 Second theorem

By difference with the ground state, the variational principle, which stated that
there is a minimum associated with the total energy does not exist for the time-
dependent systems because the energy is not a conserved quantity. A similar amount
of energy, which is applied on the stationary principle, is defined as:

Α ψ½ � ¼
ðt1
t0
dt ψ tð Þh ji ∂

∂t
� Ĥ tð Þ ψ tð Þj i (44)

where Α is called the action, and ψ tð Þ is a function of the time-dependent poly
electronic wave function.
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5.2 The time-dependent approach of Kohn-Sham

The time-dependent approach [10] of Kohn-Sham shows an equation with partial
derivatives for the effective system such as

i
∂

∂t
φi r!, t
� �

¼ Hφi r!, t
� �

¼ � 1
2
∇2 þ V̂eff ρ r!, t

� �� �� �
φi r!, t
� �

(45)

ρ r!, t
� �

¼
XN
i¼1

φi r!, t
� ����

���
2

(46)

With φi r!, t
� �

is a single electron time-dependent wave function of the Kohn-

Sham. V̂eff ρ r!, t
� �� �

defined in Eq. (46) contains in addition to the external field, a

Hartree potential, and the exchange-correlation potential such as:

V̂eff ρ r!, t
� �� �

¼ V̂ext r!, t
� �

þ
∂EH r!, t

� �

∂ρ r!, t
� � þ V̂xc ρ r!, t

� �� �
(47)

The exchange-correlation term V̂xc ρ r!, t
� �� �

is unknown. There is a major diffi-

culty to evaluate it because it does not depend only on the density ρ r!, t
� �

, but also

depends on the prior density at time t in every point in space. The evolution of

V̂xc ρ r!, t
� �� �

therefore requires the introduction of the single fundamental approxi-

mation of TDDFT.

6. Linear response theory

The TDDFT approach allows one hand to study the perturbation of the system at
time t0, secondly to propagate this disturbance for a time t> t0. The study of the
evolution in the propagation of this disturbance leads to the production of the
absorption spectrum. This theory [25, 26] is used in the space of frequencies ω rather
than in the temporal space. The operation is performed by means of the Fourier
transform.

Considering, the continuous function f of the time variable. The Fourier transform
of f gives:

TF fð Þ : ω↦f ωð Þ ¼ 1ffiffiffiffiffi
2π

p
ðþ∞

�∞
f tð Þe�iωtdt (48)

Considering a system in the ground state of electron density ρ0 which is subject at
t ¼ t0 to a low disturbance of the external potential ∂V̂ext the electron density obtained
following this disturbance is, at first order given by:

ρ r!,ω
� �

¼ ρ0 r!
� �

þ δρ r!,ω
� �

(49)
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In the interacting electrons system, the external potential is also written as the
sum of the external potential calculated in the ground state, supplemented with a
disruptive potential:

V̂ext r!,ω
� �

¼ V̂ext r!
� �

þ δV̂ext r!,ω
� �

(50)

The perturbation δρ depends only on the potential δVext and takes the expression:

δρ r!,ω
� �

¼
ð

r0
χ r!, r!

0
,ω

� �
δV̂ext r!

0
,ω

� �
d r!

0
(51)

χ r!, r!
0
,ω

� �
: represents the response function of the non-interacting electrons sys-

tem. The evolution of χ is complex, but it can be simplified by using the Kohn-Sham

approach that redefines δρ r!,ω
� �

according to the equation:

δρ r!,ω
� �

¼
ð

r0
χKS r!, r!

0
,ω

� �
δV̂eff r!

0
,ω

� �
d r!

0
(52)

where χKS r!, r!
0
,ω

� �
, according to Kohn-Sham response is easily calculated using

the equation:

χKS r!, r!
0
,ω

� �
¼ lim

η!0þ

X∞
p¼1

X∞
q¼1

f p � f q
� �φ ∗

p r!
� �

φq r!
� �

φ ∗
q r!

0� �
φp r!

0� �

ω� ωp!q þ iη
(53)

This expression (52) represents the various excitations between the occupied
Kohn-Sham orbital’s φp and unoccupied φq, for a total number N of orbital’s
approaching infinity. The occupation of the orbital’s number p and q are respectively
denoted f p and f q. The frequency ωp!q ¼ εp � εq; where εp and εq are the eigenvalues
respectively associated with wave functions φp and φq. The infinitesimal positive
number η is introduced to reflect the causality of the system response.

Disruption of the effective potential δV̂eff (Kohn-Sham potential) can be written as
the sum of three terms:

• the Coulomb term:
Ð
r0
δρ r!

0,ω
� �
r!� r!

0�� �� d r!
0

• the external term: δV̂ext r!,ω
� �

• the exchange-correlation term: δV̂xc r!,ω
� �

Such:

δV̂eff r!,ω
� �

¼ δV̂ext r!,ω
� �

þ
ð

r0

δρ r!
0
,ω

� �

r! � r!
0���
���
d r!

0 þ δV̂xc r!,ω
� �

(54)
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Following a Fourier transformation, it is customary to write disturbance of the
exchange-correlation potential as:

δV̂xc r!,ω
� �

¼ TF
ð

r0

ð

t0
f xc r, t, r

0, t0ð Þδρ r0, t0ð Þdt0dr0
� �

(55)

Where

f xc r, t, r
0, t0ð Þ ¼

δV̂xc r!,ω
� �

δρ r0, t0ð Þ , (56)

f xc r, t, r
0, t0ð Þ is the expression of exchange and correlation core.

In this step of the calculation, the development of the disturbance of the electron
density (Eq. 51) through the expression of the effective potential disturbance (Eq. 52)
gives:

δρ r!,ω
� �

¼
ð

r0
χKS r!, r!

0
,ω

� �
δV̂ext r!

0
,ω

� �
d r!

0 þ
ð

r1

ð

r2
χKS r!, r!1,ω
� �

f Hxc r!1, r
!

2,ω
� �

δρ r!2,ω
� �

dr2dr1

(57)

Where

f Hxc r!, r!
0
,ω

� �
¼ 1

r! � r!
0���
���
þ f xc r!, r!

0
,ω

� �
(58)

f Hxc r!, r!
0
,ω

� �
is the expression of the Hartree exchange-correlation core.

Expression of the disturbance of the electron density is known both in the
interacting electron system (Eq. 57) and non-interacting electrons system (Eq. 51).
The equality of these two expressions leads to that of the response function of the
interacting electron system:

χ r!, r!
0
,ω

� �
¼ χKS r!, r!

0
,ω

� �
þ
ð

r1

ð

r2
χ r!, r!1,ω
� �

f Hxc r!1, r
!
2,ω

� �
χKS r!2, r

!0
,ω

� �
dr2dr1

(59)

Equation of the susceptibility χ is important because this linear response has poles
exactly to the energies of the electronic transitions of the system.

• When f Hxc r!1, r
!
2,ω

� �
¼ 0, the electronic transitions are exactly equal to those

given by the Kohn-Sham system in the ground state. Their oscillator strengths are
then given by the poles of χKS.

• When f Hxc r!1, r
!
2,ω

� �
6¼ 0, the excitation energies are corrected by the

exchange-correlation Hartree core, and the oscillator strengths of the transitions
are given by the poles χ.
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7. Resolution of time-dependent problem

7.1 Adiabatic approximation

No analytical expression exists for the time-dependent exchange correlation
potential. So, we work using the adiabatic approximation [26] by ignoring the depen-
dence on previous electron densities of these two terms and use only the instanta-
neous electron density. Furthermore, when the time-dependent potential changes
slowly, thus adiabatically, the system remains in its instantaneous ground state. The
exchange-correlation potential developed in the DFT to describe the ground state of
the system can then be translated to time-dependent systems. The potential and the
adiabatic exchange-correlation core then take local forms in time given to equations
(Eq. 60) and (Eq. 59). It is possible to note that in this approximation, the exchange-
correlation core is independent of the frequency of the disturbance potential applied
to the system.

V̂
adia
xc r!, t
� �

¼ V̂
DFT
xc ρ r!

� �h i
ρ r!ð Þ¼ρ r!,tð Þ (60)

f adiaxc r!, t, r0, t0
� �

¼
δV̂xc r!

� �

δρ r!
0� � δ t� t0ð Þ (61)

The simplicity of this approximation allows to make after Fourier transform, the
exchange-correlation core f adiaxc independent of the frequency ω. Therefore, f Hxc also
becomes independent of the frequency as:

f̂
adia
Hxc r!, r!

0
,ω

� �
¼ f adiaHxc r!, r!

0� �
¼ 1

r! � r!
0���
���
þ f adiaxc r!, r!

0� �
(62)

In the adiabatic approximation, using functional developed for DFT retains weak-
nesses of these functional. For example, functional LDA and most functional GGA
falsely represent the decay of exchange-correlation potential in neutral finite systems.

7.2 Equation with Eigenvalues

When the exchange-correlation core was independent of the frequency (in the
adiabatic approximation case), then search for the poles of the response factor by
solving a system of equations to the eigenvalues [22, 26] of a matrix equation as the
specific form:

X∞
p0¼1

X∞
q0¼1

Mpq,p0q0 f adiaHxc

h i
Xp0q0 ¼ Ω2

pqXpq (63)

where p, p0 et q, q0 respectively represent indices of non-occupied and occupied
orbitals for the orbital’s base with size tends to infinity. Mpq,p0q0 is an element of the
operator matrix writing such that:
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Mpq,p0q0 f adiaHxc

h i
¼ 2Wpq,p0q0 f adiaHxc

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp!qωp0!q0

p þ ω2
p!qδ pqð Þ p0q0ð Þ, (64)

The matrix element ωpq,p0q0 is function as the Hartree exchange-correlation core,
itself-independent of the frequency as:

ωpq,p0q0 f abiaHxc

h i
¼
ð

r

ð

r0
φ ∗
p r!
� �

φ ∗
p0 r!

0� �
f adiaHxc r!, r!

0� �
φq r!
� �

φq0 r!
0� �
d r!d r!

0
(65)

Where Xpq et Ωpq are respectively the vectors and eigenvalues.

8. Conclusion

Our main objective is the determination of the electronic structure, so we have
proposed the model of the Functional Density Theory dependent and independent of
time which is widely used; it has the advantage of taking into account electron
correlation directly in its formalism. To test the relevance of these theoretical calcula-
tions and the limit of validity of all these approximations used during the development
of this theoretical model, a computer simulation model is necessary. Indeed, it will
allow us to obtain the eigenvalues and eigenvectors. They provide enough information
to access to the electronic structure and total energy. This theoretical investigation
may allow to work toward the realistic modeling of the electronic structure of spher-
ical and cylindrical nanoparticles, to provide effective potentials and orbitals that we
can employ to calculate photoemission spectra, and may allow to improve the model-
ing of the ground-state electronic structure of metal surfaces within the framework of
the streaked photoemission calculations, and to develop a theoretical framework for
dielectric response of surfaces and nanostructures to external IR fields in order to
model plasmonic electric fields [27–30] enhancement near nanostructures systems.
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Chapter 3

Distinct Roles of the Principal
Exchange-Correlation Energy and
the Secondary Correlation
Energy Functionals in the
MGC-SDFT-UHFD Decoupling
Masami Kusunoki

Abstract

The Kohn-Sham formalism for the density functional theory (DFT) proposed a
half-century ago has been the extensive motive force for the material science com-
munity, despite it is incomplete because of its problematic notion of eternally-
unknown correlation energy functional including a separated part of kinetic energy.
Here, we widely explain an alternative method recently discovered by us, i.e. the
multiple grand canonical spin DFT (MGC-SDFT) in the unrestricted Hartree-Fock-
Dirac (MGC-SDFT-UHFD) approximation. It is proved that the correlation energy
functional consists of well-defined principal and secondary parts: the former yields
the principal internal energy functional responsible for a set of the one-body quasi-
particle spectra defined by the respective ground and excited states with each natural
LCAO-MO as well as a set of the expected values of Heisenberg spin Hamiltonian, and
the latter does a well-defined spin-dependent perturbation energy responsible for
some many-body effects. An application will be made to explain why the water-
splitting S1-state Mn4CaO5-clusters in photosystem II can exhibit two different EPR
signals, called “g4.8” and “g12-multiline”. Moreover, the secondary correlation energy
part will be shown to promote Cooper-pairings of Bloch-electrons near Fermi level in
the superconductor, provided that their eigenstates might be exactly determined by
the MGC-SDFT-UHFD method.

Keywords: spin density functional theory (SDFT), LCAO-natural molecular orbitals
(NMO), principal exchange-correlation energy, Heisenberg spin Hamiltonian,
secondary correlation energy, superconductivity

1. Introduction

In this chapter, we aim to explain why the predominant Kohn-Sham formalism of
density functional theory (KS-DFT) based on the variational principle with respect to
the electron density in a closed N-electron system [1–6], must be stated as incomplete,
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during a number of active works motivated on it (e.g [7–12]) still continuing, by
pushing out the alternative electron density functional theory based on the multiple
grand canonical quantum statistical variational principle capable of generating a large
enough number of quantized energy levels of the ground and excited states in the
unrestricted Hartree-Fock-Dirac approximation taking account of the explicit princi-
pal exchange-correlation energy functional -KXC. This ultimate theory has been
recently developed and called “multiple grand canonical spin DFT in the UHFD
approximation (MGC-SDFT-UHFD method)” [13]. Moreover, we aim to present here
a compact text of this ultimate MGC-SDFT-UHFD method in Sections 2.1 and 2.2 in
order to help not only the reader’s understanding but also some program developers to
challenge this painful-but-promising project to revise some codes associated with this
paradigm shift from KS-DFT to MGC-SDFT-UHFD world in an extensive range of so
far dedicated codes for predicting molecular and crystalline properties.

It is also important and exciting for us to be able to present as much as possible
experimental evidence powerfully supporting the quantitative and systematic aspects of
the MGC-SDFT-UHFD method to determine the one-body energy spectra, the quasi-
particle’s wave functions, the magnetic property such as the mean isotropic spin-
exchange coupling constants {Ji,j} and the total electronic internal energies, in Section
2.3. In [13], we provided the first experimental evidence for it; in Table 1, the derived
formulas for J1,2 demonstrated excellent quantitative agreements (less than 1% errors)
with 10 experimental results from biomimetic binuclear transition metal complexes
(TM: Cu, Mn, Fe), using the Mulliken’s atomic spin densities [14] and a set of the
internal energies calculated by the UB3LYP/PBS/lacvp** method [15, 16]. Among many
controversial problems that remained to be elucidated in photosynthesis research (see a
recent review [17]), in Section 2.4 we discuss the second experimental supporting
evidence provided by two broad EPR signals, named “g4.8” [18, 19] and “g12-multiline”
[20], observed from the dark-stable S1 state Mn4CaO5 clusters in the PSII having slightly
different structures between thermophilic cyanobacteria in [18, 19] and higher-plant
spinach in [20], respectively. At present, however, we have at hand only the structure
of former’s PSII crystal at 1.95 Å high-resolution viewed by femtosecond XFEL pulse
irradiation [21] but do not have any structure of the latter PSII crystal at least at similar
high-resolution. It should be also noted that the super-brilliant femtosecond XFEL-pulse
irradiation may generate high-density secondary photoelectrons to deoxidize nearby
Mn4 clusters with high probability during diffraction measurements. Then, the quanti-
tative determination of the Heisenberg spin Hamiltonian involved in the principal
exchange-correlation energy function can play a key role in the geometry optimization by
the UB3LYP/PBS(ε)/lacvp** method to make the model Mn4CaOx cluster being ther-
mally distributed in some isomeric substates of any Kok-Si state.

Furthermore, in Section 2.5, we discuss the most interesting many-body effect
induced by the secondary correlation energy term, which represents a spin-dependent
attractive correlation interaction between a couple of conductive Bloch-electrons with
antiparallel spins that could be generated only near the Fermi surface in the metallic
crystal. This strong correlation interaction may accelerate the phase transition from
the normal state to the superconductive state by promoting Cooper-pairings of con-
ductive Bloch-electrons near the Fermi level in the superconductor against the com-
mon knowledge [22–27].

A problematic idea underlining the KS-DFT formalism may be described in other
words such that the ground state energy E of the one-particle self-consistent field
Hamiltonian for N electron systems, which corresponds to the internal energy func-
tional of the electron density determined in thermal equilibrium state, should be further
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minimized by “the exact variation principle” with respect to the electron density
regarded as a variational variable to search for “the exact energy functional” of “the
exact electron density”, subjected to the N-representability condition [4]. This wrong
variational idea appears to have been widely accepted so far, although it may have been
enforced by a special situation enforced by too strong expressions involving many
exact’s: “the exact variational principle”, and “the existence theorem of an exact energy
functional of the exact electron density” as well as “N-representability condition”.
Especially, “the N-representability condition” seems to be too strong to consider any
open quantum system, in which the total numbers (Nα, Nβ) of (up, down) electrons in
the system should be replaced by the mean values (Nα, NβÞ of a pair of the expected
values of their operators, (bNα, bNαÞ, respectively, in the context of applying the varia-
tional principle to the minimum grand potential including them, as will be shown in this
chapter. So far, neither theoretical proof nor evidence for the K-S formalism could not
be provided unless the exact correlation energy function is discovered.

In a GC ensemble, one may consider a much larger M-electron system (M » N) of
atoms, molecules, and solids, which will be maximally realized with a finite probabil-
ity in contact with a grand canonical heat/particle reservoir containing a much larger
number of electrons at temperature θ/kB (kB is the Boltzmann constant). All the
stational states of the M-electron system, which involve the ground and all kinds of
excited states, may be assumed to be describable in terms of the time-independent
non-relativistic Schrödinger wave equation in 3D-space:

HΨ ¼ EΨ x1, x2,⋯⋯、xMð Þ;M»N, (1)

where H is the Hamiltonian operator given by

H ¼ T þ Vne þ Vee, (2)

¼
XM
i¼1

� 1
2
∇2

i

� �
þ
XM
i¼1

υ ri, εð Þ þ
XM
i< j

1
ri,j

: (3)

Here, xi � (ri, si) represents the (orbital, spin) coordinates of the ith electron,T is
the electron kinetic energy operator; Vne is the electrostatic interaction operator of
electrons with all nuclei and the surrounding medium of the dielectric constant ε if a
convenient “the linear Poisson-Boltzmann equation Solver (PBS)” model [8] is aug-
mented; Vee is the electron Coulomb interaction operator; and ri,j � |ri-rj|. Since it is
impossible to exactly solve Eq. (1) except for the case of a hydrogen atom, we have
developed the ultimate MGC-SDFT formalism [7], which has been constructed by
developing five new methodological concepts in Subsections 2.1 through 2.5 along the
basic principles of quantum thermodynamics with the theory of open quantum sys-
tems, but not of closed quantum system as adopted in the Kohn-Sham formalism.

2. Multiple grand canonical spin density functional theory

2.1 Definition of a grand canonical ensemble: One-particle and two-particle
reduced density matrices

The principally most general choice would be made for an extended antisymmetric
Slater determinant wave function as the trial many-electron wave function Ψ(x1,
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x2,… , xM) in the Schrödinger Eq. (1), consisting of a complete large enough number,
(Mα, Mβ), of mutually-independent natural molecular spin-orbitals (NMO) wave
functions, Eq. (6), which may be most-appropriately expandable in terms of a Linear
Combination of gaussian-type or Slater-type Atomic Orbitals (LCAO), GA� [gal (r)]
(a, the atomic order number from 1 to NA; l, a set of plural AO quantum numbers).
The maximum size of (Mα, Mβ)-dimensional Hilbert space of the NMO set M0 of
Eq. (4) must be as large enough as possible to satisfy the near-completeness
condition of Eq. (5) and the orthonormality relations of Eqs. (6) and (7) as far as the
highest NMO energy levels may not exceed a dissociation limit given by a work
function, W.

M0 ¼ αM0 þ βM0 � Ψ0
τ xð Þ, ϵ0τ; τ ¼ 1α, … ,Mα, 1β, … ,Mβ

� �
, (4)

XσM0

mσ
Ψ0

mσ⟩j ⟨Ψ0
mσj ffi 1 for Mσ > >Nσ; σ ¼ α, β: (5)

Ψ0
mσ xð Þ � Φ0

mσ rð Þξ0mσ sð Þ, (6)

⟨Ψ0
mσjΨ0

mσ0 0⟩ ¼ ⟨Φ0
mσjΦ0

mσ0 0⟩⟨ξ
0
mσjξ0mσ0 0⟩ ¼ δmσ,mσ0 0δσ,σ0 0 , (7)

Φmσ rð Þ ¼
XGA

a, l
Cmσ
a,l g

a
l rð Þ ¼

XNA

a¼1

X
=

Cmσ
a,l g

a
l rð Þ: (8)

In Eq. (8), the AO basis functions, which may include polarization and diffuse
functions, are assumed to be orthonormalized in each atom such as ⟨gal jgal0⟩ ¼ δl,l0 but
slightly overlap between the valence-electron orbitals of neighboring atoms, except
for most AOs in the core levels. Hereafter, the single dashed quantities in Eqs. (4)–(7)
will be used for the quantities in a thermal nonequilibrium state. The completeness
Eq. (5) and the orthonormality Eqs. (6) and (7) are assumed to seamlessly hold even
in such non-equilibrium states.

It is important to remind that the thermodynamic equilibrium state can be
achieved in terms of the Rayleigh-Ritz variational principle applied to the one-particle
reduced density matrix given by

bΓ p0,Ψ0½ � �
X∞
N0

XM0

τ

P0
N0,τ⌊Ψ0

N0,τ⟩⟨Ψ0
N0,τj, (9)

¼
XM0

τ

X1
nτ¼0

p0τ,nτ⌊Ψ
0
τ,nτ⟩⟨Ψ

0
τ,nτ j, (10)

with respect to a set of the distribution probabilities, designated
P0
N0,τ;N

0 ¼ 0, … ,∞; τ ¼ 1, … ,M
� �

for fermions and bosons in Eq. (9) or
p0τ,nτ; τ ¼ 1, … ,M; nτ ¼ 0, 1f g for (NMO-transformed) fermions in Eq. (10). This

nonequilibrium state will relax to the maximum entropy state keeping the normaliza-
tion condition of Eq. (11) and the binary chemical potential (μα/μβ) equilibrium
conditions with the heat/particle reservoir leading to Eqs. (12) and (13):

Tr bΓ
h i

¼
XM0

τ

X1
nτ¼0

p0τ,nτ ¼ 1, (11)
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bNσ ¼
XσM0

τ σð Þ
ba†τ σð Þbaτ σð Þ; σ ¼ α, β (12)

Tr bNσ
bΓ

h i
¼
XσM0

τ σð Þ

X1
nτ σð Þ¼0

nτ σð Þp0τ σð Þ,nτ σð Þ � Nσ p0,Ψ0½ �, (13)

where baτ and ba†τ are the annihilation and creation operators of an electron in the τth
NMO-eigenstate, respectively. Subsequently, using the GC entropy

Σ p0,Ψ0½ � ¼ �kBTr bΓ ln bΓ
� �

¼ �kB
XM0

τ

X1
nτ¼0

p0τ,nτ ln p0τ,nτ , (14)

and the second quantization expression of the Hamiltonian operator, that is

bH ¼ bH0 þ bH1 ¼
XM0

τ

ϵ0τba†τbaτ þ bH1, (15)

which in general consists of the principal part bH0 and the secondary part bH1,
responsible for the GC ensemble of mutually independent NMO fermions and a
perturbational interaction between them, respectively, we obtain the grand potential
in thermal nonequilibrium state:

Ω p0,Ψ0½ � � Tr bΓ θ ln bΓþ bH0 � μα bNα � μβ bNβ

� �h i
, (16)

¼
XM0

τ

X1
nτ¼0

p0τ,nτ θ ln p0τ,nτ þ ⟨Ψ0
τ, nτj ϵ0τ � μσ τð Þ

� �
nτjΨ0

τ, nτ⟩
h i

: (17)

In Eqs. (16) and (17) should be noted that bH is replaced by the principal part

bH0 ¼P
M0

τ
ϵ0τba†τbaτ: The variational equations subject to the normalization condition

Eq. (11) are given by

∂

∂p0τ,nτ
Ω p0τ,nτ ,Ψ

0
τf g½ � þ λ

XM
τ

X1
nτ¼0

p0τ,nτー1

" # !
¼ 0, (18)

with λ being a Lagrange’s multiplier, satisfying

e�1�λ=θ ¼
XM0

τ

X1
nτ¼0

⟨Ψ0
τ, nτjϵ0τ � μαNα � μβNβjΨ0

τ, nτ⟩: (19)

Thus, we obtain an intermediate solution with fixed {Ψ0
τ}:

p0τ,nτ !yields p0τ,nτ Ψ0ð Þ ¼
exp ⟨Ψ0

τ, nτj μσ τð Þ � ϵ0τ
� �

nτjΨ0
τ, nτ⟩=θ

h i

P1
nτ¼0

exp ⟨Ψ0
τ, nτj μσ τð Þ � ϵ0τ

� �
nτjΨ0

τ, nτ⟩=θ
h i (20)
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bΓ0
Ψ0ð Þ ¼

XM0

τ

X1
nτ¼0

p0τ,nτ Ψ0ð Þ⌊Ψ0
τ,nτ⟩⟨Ψ

0
τ,nτ j: (21)

Then, the GC potential decreases by the non-negative quantity (the equality
appears when p0 = p0), namely

Ω p0τ,nτ ,Ψ
0
τf g½ � � Ω p0τ,nτ ,Ψ

0
τ

n oh i

¼
XM
τ

X1
nτ¼0

p0τ,nτ θ ln p0τ,nτ þ ⟨Ψ0
τ, nτj ϵ0τ � μσ τð Þ

� �
nτjΨ0

τ, nτ⟩
� �

þθ ln
XM
τ

X1
nτ¼0

exp ⟨Ψ0
τ, nτj μσ τð Þ � ϵ0τ

� �
nτjΨ0

τ, nτ⟩=θ
h i

¼ θ
XM
τ

X1
nτ¼0

p0τ,nτ ln p0τ,nτ � ln p0τ,nτ Ψ0ð Þ
h i

≥0,

(22)

which is notably induced only by the increase of the GC entropy
Σ [p0,Ψ0] -Σ [p0,Ψ0]. This initial-guess state of the GC ensemble M0 = {Ψ0

τ, ϵ0τ} will
relax to converge toward the self-consistent, orthonormal and complete eigenvectors/
eigenvalues set M of Eqs. (23)–(27) by iteration technique, which will be described in
Section 2.2.

M ¼ αMþ βM � Ψmσ xð Þ, ϵmσ, f mσ μσð Þ;mσ � τ ¼ 1α, … ,Mα, 1β, … ,Mβ
� �

, (23)

XσM

mσ
Ψmσ⟩j ⟨Ψmσj ffi 1 for Mσ > >Nσ; σ ¼ α, β: (24)

Ψmσ xð Þ � Φmσ rð Þξmσ sð Þ, (25)

⟨ΨmσjΨmσ0⟩ ¼ ⟨ΦmσjΦmσ0⟩⟨ξmσjξmσ0⟩ ¼ δmσ,mσ0 0δσ,σ0 0 , (26)

f mσ μσð Þ ¼ pmσ,1 ¼ exp ϵmσ � μσð Þ=θ½ � þ 1f g�1 � f ϵmσ � μσð Þ, (27)

where it should be noted that only the populated distribution probability p0mσ,1 of
Eq. (20) converges to the Fermi-Dirac distribution probability f mσ μσð Þ of Eq. (27).

Next, we need to introduce the first-order (for one-particle interactions) and the
second order (for two-particle interactions) reduced electron density matrixes, Γ(x, x0)
and Γ2(x1x2, x01x02), respectively, for the GC ensembleM in thermal equilibrium state,
as given by

Γ x, x0ð Þ ¼
XM
τ

f τ Ψτ xð Þ⟩j ⟨Ψτ x0ð Þj, (28)

Γ2 x1x2,x0
1x

0
2

� � ¼ 1
2
Γ x1, x0

1ð ÞΓ x2, x0
2ð Þ � Γ x1, x0

2ð ÞΓ x2,x0
1ð Þ½ �, (29)

which will be used in Section 2.2.
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2.2 The self-consistent field method in the UHFD approximation

Here, we derive the self-consistent field (SCF) method to generate such a realistic
GC ensemble, M, as given by Eqs. (23)–(27), in which all NMO levels will be partially
occupied with the Fermi-Dirac distribution probability f(ϵmσ�μσ) constrained by the
chemical potentials μσ defined by either Eq. (27) or the Gibbs free energy per a σ-spin
electron for σ = (α, β), as given by Eq. (30), using the mean number of σ-spin NMO-
fermions for σ = (α, β) in Eq. (31):

G ¼ μαNα þ μβNβ, (30)

Nσ ¼
XσM

mσ
f ϵmσ � μσð Þ: (31)

At first, we define various spinless electron density matrixes for later usage:

ρσ r, r0ð Þ ¼ Trs Γσ x, x0ð Þ½ �s¼s0 ¼
XσM

mσ

f mσ μσð ÞΦmσ rð ÞΦ ∗
mσ r0ð Þ; σ ¼ α, β, (32)

ρ r, r0ð Þ ¼ ρα r, r0ð Þ þ ρβ r, r0ð Þ, (33)

ρσ rð Þ � ρσ r, rð Þ, ρ rð Þ ¼ ρα rð Þ þ ρβ rð Þ, (34)

where Trs represents the trace on the spin coordinate s.
Next, we will prove that the internal energy U Γα,Γβ

� �
as a function of the reduced

density matrix Γ = (Γα, Γβ) can be decoupled into two parts, as seen in Eq. (36): (1) the
principal part U0

UHFD Γα,Γβ

� �
of Eq. (37) including the principal exchange-correlation

energy functional -KXC [ρα, ρβ] defined by Eq. (40) and (2) a secondary part
containing only a spin-dependent correlation energy functional
ΔEcorr

UHFD Γα,Γβ

� �
defined by Eq. (43). This ultimate decoupling scheme neglecting the

secondary correlation term ΔEcorr
UHFD Γ½ α, Γβ] of Eq. (43) will be tentatively called “the

Unrestricted Hartree-Fock-Dirac (UHFD) approximation”. because the Dirac’s spin
permutation operator (σi is called spinor)

Pσ
12 ¼

1
2
1þ σ1, σ2ð Þ½ � ¼ 1

2
1þ 4 s1, s2ð Þ½ �, (35)

including an inner product of two of Pauli’s spin operators σ1, σ2ð Þ ¼ 2s1, 2s2ð Þ, has
played a decisive role in our discovery of this new decoupling scheme. This is indeed a
revolutionary discovery a long way beyond the early Unrestricted Hartree (UH),
Unrestricted Hartree-Fock (UHF) and Unrestricted Hartree-Fock-Slater (UHFS)
approximations. This new UHFD decoupling scheme leads to a group of fundamental
equations:

U Γα,Γβ

� � ¼ U0
UHFD Γα,Γβ

� �þ ΔEcorr
UHFD Γα,Γβ

� �
, (36)

U0
UHFD Γα,Γβ

� � � T ρ½ � þ Vne ρ½ � þ J ρ½ � � 1
2
KXC ρα, ρβ

� �þHES Γα,Γβ

� �
, (37)

Vne ρ½ � ¼
ð
drυ r, εð Þρ rð Þ, (38)
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J ρ½ � ¼ 1
2

ðð
dr1dr2
r12

ρ r1ð Þρ r2ð Þ, (39)

�KXC ρα, ρβ
� � ¼ � 1

2

ðð
dr1dr2
r12

ρ r1, r2ð Þρ r2, r1ð Þ, (40)

HES Γα,Γβ

� � ¼ �2
ðð

dr1dr2
r12

Q r1, r2ð ÞQ r2, r1ð Þ s1, s2ð Þ, (41)

Q r1, r2ð Þ ¼ ρα r1, r2ð Þ � ρβ r1, r2ð Þ, (42)

ΔEcorr
UHFD Γα,Γβ

� � ¼ �2
ðð

dr1dr2
r12

ρα r1, r2ð Þρβ r2, r1ð Þþρβ r1, r2ð Þρα r2, r1ð Þ� s1, s2ð Þ,�

(43)

where T [ρ] represents the expected value of the electron kinetic energy operator
T, although this notation does not mean any explicit functional form of ρ, the other
explicit energy functionals of ρ have usual meanings, and HES Γα,Γβ

� �
does the spin

density coupling energy functional between two NMO-fermions, which is expected to
contain Hex. (CORREGENDUM: Please add a miss-dropped factor, 2, in Eq. (3.18) in
[13], just like above Eq. (41)).

[Proof of Eqs. (36)–(42)] Substituting Eq. (28) into Eq. (29), we get the NMO
expansion formula of the exchange-product matrix:

Γ x1, x0
2ð ÞΓ x2, x0

1ð Þ ¼
XM
σ,mσ

f mσ μσð ÞΦmσ r1ð ÞΦmσ r02ð Þ ∗

�
XM
σ0,mσ0

f mσ0 μσ0ð ÞΦmσ0 r2ð ÞΦmσ r01ð Þ ∗ ξmσ s2ð Þξmσ0 s1ð Þ⟩j ⟨ξmσ s01ð Þξmσ0 s
0
2ð Þj:

(44)

Here, to restore the spin-pair wave function to the normal-order form, Dirac’s spin
operator of Eq. (35) needs to be operated to the two-spin function:

ξmσ s2ð Þξmσ0 s1ð Þ ¼ Pσ
12ξmσ s1ð Þξmσ0 s2ð Þ: (45)

Then, using Eqs. (32), (33), (35), and (45), we can transform Eq. (44) into two
different formulas:

Γ x1, x0
2ð ÞΓ x2, x01ð Þ

¼ ρ r1, r02ð Þρ r2, r01ð Þ 1
2

1þ σ1zσ2zð Þ þ 1
4

σ1þσ2� þ σ1�σ2þð Þ
� �

,
(46)

¼ 1
2

ρα r1, r02ð Þρα r2, r01ð Þ þ ρβ r1, r02ð Þρβ r2, r01ð Þ� �

þ 1
2

ρα r1, r02ð Þρβ r2, r01ð Þ þ ρβ r1, r02ð Þρα r2, r01ð Þ� �

þ 1
2
Q r1, r02ð ÞQ r2, r01ð Þ σ1, σ2ð Þ

þ 1
2

ρα r1, r02ð Þρβ r2, r01ð Þ þ ρα r1, r02ð Þρβ r2, r01ð Þ� �
σ1, σ2ð Þ,

(47)

with the use of the spin density matrix Q of Eq. (42) and the off-diagonal spinors
σj� of Eq. (48):
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σj� ¼ σjx � iσjy, j ¼ 1, 2: (48)

Apparently, there exist two decoupling schemes: (1) In Eq. (46) is decoupled a pair
of off-diagonal spinor terms, leading to the UHF approximation, and (2) In Eq. (47)
decoupled only the last term, leading to the UHFD approximation. In the UHFD
approximation, we obtain the functional formula for the internal energy U Γα,Γβ

� �
in

3D-spin space decomposed into the principal part U0
UHFD Γα,Γβ

� �
and the secondary

part ΔEUHFD
corr in Eq. (36). (QED)

Since all the DFT calculations can be made in the binary-spin Hilbert space, we
must take the trace of HES [Γα, Γβ] in Eq. (37) on the 3D-spin coordinates to obtain its
functional of ρ(ρα, ρβ), which is equal to a half of the principal exchange-correlation
energy functional, that is

HES ρα, ρβ
� � � TrS HES Γα,Γβ

� �� � ¼ � 1
2
KXC ρα, ρβ

� �
: (49)

Using Eq. (49), we also obtain the principal internal energy functional of ρ:

U0
UHFD ρα, ρβ

� � � TrS U0
UHFD Γα,Γβ

� �� � ¼ T ρ½ � þ Vne ρ½ � þ J ρ½ � � KXC ρα, ρβ
� �

, (50)

which should be equated to the GC ensemble average of the principal part of the
Hamiltonian operator in the second quantization representation in the thermal equi-
librium state (see Eq. (15)), that is

bH0
UHFD ¼

XM
τ

ϵτba†τbaτ, (51)

leading to

U0
UHFD ρα, ρβ

� � � TrM ΓbH0

h i
¼
ð
dr
XM
τ

ϵτf τ ϵτ � μσ τð Þ
� �

Φ ∗
τ rð ÞΦτ rð Þ: (52)

Similarly, U0
UHFD can be expanded as the GC ensemble average of a self-consistent

effective Hamiltonian as given by

U0
UHFD ρα, ρβ

� � ¼
ð
dr

XM
τ

f τ ϵτ � μσ τð Þ
� �

Φ ∗
τ rð Þ

(

� � 1
2
∇2Φτ rð Þ þ

ð
υNMO r, r0ð ÞΦτ r0ð Þdr0

� �� , (53)

with the use of the local and non-local NMO-based effective potential defined by

υNMO r, r0ð Þ ¼ υ r, εð Þ þ 1
2

ð
dr00

ρ r00ð Þ
r� r00j j

� �
δ r� r0ð Þ � ρ r, r0ð Þ

2 r� r0j j , (54)

ρ rð Þ ¼
XM
τ

f τ ϵτ � μσ τð Þ
� �

Φτ rð Þj j2, (55)

ρ r, r0ð Þ ¼
XM
τ

f τ ϵτ � μσ τð Þ
� �

Φ ∗
τ r0ð ÞΦτ rð Þ: (56)
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From equivalent Eqs. (52) and (53) leading to Eq. (57), we obtain a series of central
Schrödinger equations, (58) by putting [… ]τ = 0:

U0
UHFD ρα, ρβ

� �� TrM ΓbH0

h i
¼
ð
dr

XM
τ

f τ ϵτ � μσ τð Þ
� �

Φ ∗
τ rð Þ

(

� 1
2
∇2Φτ rð Þ þ

ð
υNMO r, r0ð ÞΦτ r0ð Þdr0 � ϵτΦτ rð Þ

� ��
¼ 0

(57)

� 1
2
∇2Φτ rð Þ þ

ð
dr0υNMO r, r0ð ÞΦτ r0ð Þ ¼ ϵτΦτ rð Þ,

and h:c: for all τ∈M:

(58)

This central (not variational!) solution will be stocked as the presumed GC ensem-
ble M, in which the eigenvalues ϵτf g are usually assumed to be rearranged from the
minimum ϵ1σ to the maximum ϵMσ in the order of increasing energies, first for α-spin
NMOs and second for β-spin NMOs, as

τ ¼ 1α, 2α,⋯,Mα, 1β, 2β,⋯,Mβ ¼ 1, 2,⋯,M M ¼ Mα þMβ

� �
: (59)

For simplicity, we assume that there exists no degeneracy in energy levels in the
unrestricted large system without any structural symmetry.

On the other hand, the secondary correlation energy functional, ΔEcorr
UHFD Γ½ α, Γβ],

defined by Eq. (43), represents the sole perturbation term in 3D-spin space. Taking
the trace of it on the 3D-spin coordinates, we obtain the second quantization expres-
sion of it as follows

bH1
UHFD ¼ Trs ΔEcorr

UHFD Γα,Γβ

� �� �

¼ � 1
2

ðð
dr1dr2
r12

Trs ρα r1, r2ð Þρβ r2, r1ð Þ þ ρβ r1, r2ð Þρα r2, r1ð Þ� ��
σ1, σ2ð Þg

¼ �
XαM

mα

XβM

mβ

f ϵmα � μαð Þ f ϵmβ � μβ
� � ðð dr1dr2

r12

� Φ ∗
mα r2ð ÞΦmα r1ð ÞΦ ∗

mβ r1ð ÞΦmβ r2ð Þ
h i

σþ,mα,σ�,mβ þ σ�,mασþ,mβ

� �

¼ �
XαM

mα

XβM

mβ

σþ,mα,σ�,mβ þ σ�,mασþ,mβ

� � ðð dr1dr2
r12

� Φ ∗
mα r2ð ÞΦ ∗

mβ r1ð ÞΦmβ r2ð ÞΦmα r1ð Þ
h i

ba†mβbamβba†mσbamα:

(60)

The first-order perturbation term vanishes owing to the nondiagonal spinors.
However, the second-order perturbation correction can always induce a finite
attractive force between any pair of NMO-fermions with antiparallel spins. The most
interesting example would be a positive enhancement effect on the Cooper-pair
superconductivity due to an additional attractive force between two conductive
Bloch-electrons with antiparallel spins near Fermi level, as will be discussed in
Section 2.4.
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2.3 MGC-SDFT-UHFD method for polynuclear transition metal complexes

We next consider a variety of paramagnetic systems including plural n (≥ 2) spins,
designated {Si, i = 1,… ,n}, which arise from transition metal (TM) cations, C/N/O-
radicals, -C=C- bond radicals, and so on. These spins are quantum-mechanically
interacting with each other via the exchange coupling constants (Ji, j) in the Heisen-
berg spin Hamiltonian defined by

Hex ¼ �2
Xn�1

i¼1

Xn
j¼iþ1

Ji,j Si, Sj
� �

: (61)

However, this Hex model takes account only the pure spin operators {Si} but
does not contain any kind of polarized spins of ligand atoms, designated {siL},
“Why?” The most fundamentally important question is, “What is the origin of Hex?”
These questions have been recently solved by Kusunoki [13], as reviewed in
this subsection. Let us investigate what kinds of spin-dependent physical
processes are involved in the spin-density coupling energy functional HES [Γα,Γβ]
of Eqs. (41) and (42).

Since in the binary spin space appear 2n�1 (n ≥ 2) mutually-independent up/down-
iES arrangements (ESA), which represent one ferromagnetic and the other anti-
ferromagnetic states, we must prepare a set of multiple grand canonical (MGC)
ensembles, as given by

M ¼
X2n�1

k¼1

M kð Þ,M kð Þ ¼ α
M kð Þþβ

M kð Þ; (62)

σM kð Þ � Ψ kð Þ
mσ xð Þ, ϵ kð Þ

mσ, f
kð Þ
mσ ϵ kð Þ

mσ � μ kð Þ
σ

� �
;mσ ¼ 1, … ,Mσ

n o
; σ ¼ α, β: (63)

Practically, we can calculate only a set of 2n�1 principal internal energy functionals:

U kð Þ
UHFD ρ kð Þ

α , ρ kð Þ
β

h i
¼ T kð Þ ρ½ � þ V kð Þ

ne ρ½ � þ J kð Þ ρ½ � � K kð Þ
XC ρ kð Þ

α , ρ kð Þ
β

h i
; k ¼ 1, … , 2n�1: (64)

However, the origin of Hex must be traced to a set of 2n�1 equality relationships

between the principal exchange-correlation energy functional, �K kð Þ
XC ρ kð Þ

α , ρ kð Þ
β

h i
, and

the projected value of the spin-dependent XC energy functional, i.e.

�K kð Þ
XC ρ kð Þ

α , ρ kð Þ
β

h i
¼ 2H kð Þ

ES ρ kð Þ
α , ρ kð Þ

β

h i
¼ 2Trs H kð Þ

ES Γ kð Þ
α ,Γ kð Þ

β

h i� �
; k ¼ 1, … , 2n�1: (65)

We note that the kth projected value of Si, Sj
� �

onto the binary Hilbert space
spanned by the kth GC ensemble M(k) must depend not only on the kth principal
exchange-correlation energy between iES and jES, but also on the polarized spins of
bridging and non-bridging ligand atoms, iLaj (j 6¼ i) and iLnb, respectively, via the
conservation law of each projected spin number of ni

(k) and nj
(k), defined by

n kð Þ
i � 2Siσ

kð Þ
z,i ; σ

kð Þ
z,i ¼ �1, k ¼ 1, … , 2n�1; i ¼ 1, … , n: (66)

Xn
i¼1

Siσ
kð Þ
z,i ≥0, k ¼ 1, … , 2n�1: (67)
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Although the arrangement order of n ESA-codes σ kð Þ
z,i ¼ 1 or� 1, i ¼ 1� n

n o
leaves

the choice of one’s best depending on the arrangement order of n TM-cation spins {Si,
�1 – n}, a non-negative sum rule of Eq. (67) must be satisfied owing to the time-
reversal symmetry.

For the ith transition metal (TM) cations, its non-bridging ligand atoms iLnb and
its bridging ligand atoms iLaj between the ith and jth TM-cations, this wave-packet
spin projection may be entrusted to the respective spin operator by itself, that is Si,
siLnb and siLaj, by imposing each projection equation acting on a spin-dependent AO in
a LCAO-NMO wave function, without change of the F-D distribution for the former
two and with change to its half distribution for the latter one:

Sigal xð Þ ¼ δa,iδl,3diSig
i
3d xð Þ, (68)

siLnbgal xð Þ ¼ δa∈ iLnbδl,2psiLnbgiLnb2p xð Þ, (69)

siLajgal xð Þ ¼ δa∈ iLajδl,2psiLajg
iLaj
2p xð Þ; f iLajmσ ¼

f imσ

νiLaj
¼ f imσ

2
, (70)

where we have introduced the share frequency νiLajmσ among n different subsets
(in this case, it is 2), δa ∈ A = (1 for a ∈ A; 0 for otherwise) and δx,y is Kronecker’s δ.

Concomitantly, the kth GC ensemble M(k) might be decomposed into n spin-
dependent NMO-subsets associated with these elements, and the other spin-free

subset as in Eq. (71), each M kð Þ
i further decomposed into three components as in

Eqs. (72) and (73), finally to define the ith ES in terms of two components in Eq. (74).

M kð Þ ¼
Xn
i¼1

M kð Þ
i þM0 kð Þ, (71)

M kð Þ
i ¼ M kð Þ

id þM kð Þ
iL þM kð Þ

io , (72)

M kð Þ
iL ¼

Xn

j 6¼i

M kð Þ
iLaj þM kð Þ

iLnb, (73)

M kð Þ
iES ¼ M kð Þ

id þ
Xn

j6¼i

M kð Þ
iLaj, (74)

where the ith subset in Eq. (72) consists of the subsetM kð Þ
id associated with (3d, 4 s,

4p)-electron AO’s in the ith TM cation, the subset M kð Þ
iL associated with 2p-valence

electron AO’s in the iLth assembly of ligand atoms, and the subset M kð Þ
io associated

with other doubly-occupied core-shell AO’s in the ith TM cation. The iLth subset in
Eq. (73) can be further decomposed into two kinds of ligand assembly: (1) a thermal
equipartition half of the iLajth assembly of bridging ligand atoms between the ith and
jth TM cations, which can mediate the antiferromagnetic super-exchange coupling,
and (2) the iLnbth assembly of non-bridging ligand atoms around the ith TM cation,
which can be either paramagnetically or diamagnetically polarized depending on the
ligand C/N/O atomic structure and hence control the ith ES magnitude via the spin
number (ni) conservation law governing the Mulliken atomic spin densities {M kð Þ

a } [14]

of these magnetically-interacting atoms, finally to define the ith ES density n kð Þ
iEF so as

to satisfy Eq. (76):
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n kð Þ
iEF � M kð Þ

id þ
Xn

j6¼i

X
iLaj

M kð Þ
iLajϑ M kð Þ

iLajσ
kð Þ
z,i

� �

ν kð Þ
iLaj

þ δk> 1

Xn

j6¼i

X
iLaj

σ kð Þ
z,i

M 1ð Þ
iLajϑ �σ 1ð Þ

z,j σ
1ð Þ
z,i

� �

ν 1ð Þ
iLaj

; (75)

n kð Þ
iLnb �

X
iLnb0

M kð Þ
iLnb0 ; n

kð Þ
iEF þ n kð Þ

iLnb ¼ ni:k ¼ 1 Fð Þ, 2 AFð Þ, … , 2n�1 AFð Þ: (76)

Here, ϑ(sign1*sign2) is the Heaviside step function, and ν kð Þ
iLaj is the frequency of the

iLaj spin density shared by plural ESs with the same sign, which can be calculated as

ν kð Þ
iLaj ¼ 1þ ϑ σ kð Þ

z,i σ
kð Þ
j

� �
for all k’s, (77)

(CORRIGENDAM: Eq. (5.6c) in [13] should be replaced by Eq. (77)).
Decomposition into these NMO-subsets allows us to provide a noble systematic

and quantitative method to derive a set of the expected values of Hex {<Hex >
(k);

k = 1, … , 2n�1} from the spin-dependent XC energy functional in Eq. (65), as follows:
The kth spin density matrix for Eq. (42) can be decomposed into

Q kð Þ r, r0ð Þ ¼
Xβ
σ¼α

�1ð Þσ
XσM kð Þ

mσ

f mσΦmσ rð ÞΦmσ rð Þ ∗ ; �1ð Þα=β ¼ �1, (78)

¼
Xn
i¼1

Q kð Þ
iES r, r0ð Þ þ Q kð Þ

iLnb r, r0ð Þ þ Q kð Þ
io r, r0ð Þ

h i
þ Q 0 kð Þ r, r0ð Þ, (79)

¼
Xn
i¼1

Q kð Þ
iES r, r0ð Þ þQ kð Þ

iLnb r, r0ð Þ
h i

þ
Xn
i¼1

ρ kð Þ
io,α r, r0ð Þ � ρ kð Þ

io,β r, r0ð Þ
h i

þ ρ0 kð Þ
α r, r0ð Þ � ρ0 kð Þ

β r, r0ð Þ,
(80)

in which Eq. (80) indicates that the first term will contribute to both intra-atomic
and interatomic spin-density coupling energies generated by open 3d-shell electrons,
as given by

2H kð Þ
ES1 ρ kð Þ

α , ρ kð Þ
β

h i
� 2E kð Þ

ES1 ¼ �
Xn
i¼1

J kð Þ
i,i Si Si þ 1ð Þ, (81)

J kð Þ
i,i � 1

2n2i

ðð
dr1dr2
r12

ρ kð Þ
iES r1, r2ð Þ þ ρ kð Þ

iLnb r1, r2ð Þ
h i

ρ kð Þ
iES r2, r1ð Þ þ σ kð Þ

iLnb r2, r1ð Þ
h i

, (82)

and

2H kð Þ
ES2 ρ kð Þ

α , ρ kð Þ
β

h i
¼ 2E kð Þ

ES2 ¼ Hexh i kð Þ ¼ �2
Xn
i< j

Ji,j Si, Sj
� �� � kð Þ, (83)

Si, Sj
� �� � kð Þ ¼ Tr Si, Sj

� �
Γ kð Þ
2 x1x2,x1x2ð Þ

h i
, (84)

¼
XSi

Mi¼�Si

XSj

Mj¼�Sj

Tr ⟨Mi,Mjj Si, Sj
� �jMi,Mj⟩

� � ⟨Mi,MjjΓ kð Þ
i,j x1x2,x1x2ð ÞjMi,Mj⟩

i
,

(85)
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with

Γ kð Þ
i,j x1x2, x1x2ð Þ ¼ 2

2
Γ kð Þ
iES x1, x1ð ÞΓ kð Þ

jES x2, x2ð Þ � Γ kð Þ
iES x1,x2ð ÞΓ kð Þ

jES x2, x1ð Þ
h i

, (86)

respectively, and the second and third terms to a major Hex-less.
component in the principal XC energy, as given by

�K kð Þ
XC�Hex

ρ kð Þ
α , ρ kð Þ

β

h i
¼ 2H kð Þ

ES0 ρ kð Þ
ES0,α, ρ

kð Þ
ES0,β

h i
¼ 2E kð Þ

ES0, (87)

¼ � 1
2

ðð
dr1dr2
r12

ρ kð Þ r1, r2ð Þ �
Xn
i¼1

ρ kð Þ
iES r1, r2ð Þ þ ρ kð Þ

iLnb r1, r2ð Þ
n o" #

� ρ kð Þ r2, r1ð Þ �
Xn
i¼1

ρ kð Þ
iES r2, r1ð Þ þ ρ kð Þ

iLnb r2, r1ð Þ
n o" #

;

(88)

To calculate Eq. (84), we need the total spin operator given by

Stot ¼
Xn
i¼1

Si þ
X
iLaj

siLaj þ
X
iLnb

siLnb

 !
, (89)

The ith ES spin operator, Si, is considered to turn around between up and down
states, |Si > and |-Si>, in the binary Hilbert space spanned by two rules:

XSi
Mi¼�Si

Mi⟩j ⟨Mij ¼ 1i; i ¼ 1, … , n, (90)

and

⟨αijMi⟩ ¼ δMi,Siffiffiffiffiffiffiffi
nij jp , ⟨βjMi⟩ ¼ δMi,�Siffiffiffiffiffiffiffi

nij jp ; (91)

while the iLajth and iLnbth ES spin operators, siLaj and siLnb, are assumed to
automatically respond to the up or down state of Si. Then, the expected value of the z-
component of Stot in the kth ESA state is given by

Stot,zh i kð Þ ¼
Xn
i¼1

Tr Si,z Γ kð Þ
iES x,xð Þ þ Γ kð Þ

iLnb x, xð Þ
h in o

, (92)

¼
Xn
i¼1

Siσ
kð Þ
z,i P kð Þ

iES þ P kð Þ
iLnb

� �
¼
Xn
i¼1

Siσ
kð Þ
z,i , (93)

Γ kð Þ
iES x, x0ð Þ ¼ Γ kð Þ

id x, x0ð Þ þ
Xn

j6¼i

X
iLaj0

Γ kð Þ
iLaj0 x,x

0ð Þ, (94)

P kð Þ
iES ¼

n kð Þ
iES

ni
¼ 1

ni

ð
drQ kð Þ

iES r, rð Þ, (95)

P kð Þ
iLnb ¼

n kð Þ
iLnb

ni
¼ 1

ni

ð
drQ kð Þ

iLnb r, rð Þ, (96)

57

Distinct Roles of the Principal Exchange-Correlation Energy and the Secondary Correlation…
DOI: http://dx.doi.org/10.5772/intechopen.111746



P kð Þ
iES þ P kð Þ

iLnb ¼ n kð Þ
iES þ n kð Þ

iLnb

h i
=ni ¼ 1: (97)

It is important to remind that the last additional term in Eq. (75) in the antiferro-
magnet kAFth ESA state was absolutely required for a systematic better agreement

with experimental Ji,j indicating that a large-positive M 1Fð Þ
iLaj density in the 1Fth-ESA

state can be divided into two half densities which will be reversed to be distributed

with phase matching to an antiferromagnetic pair of n kAFð Þ
iES and n kAFð Þ

jES in the kAFth
ESA state, as given by a programmatic equation [13],

M kð Þ
iLaj (

1
2
σ kð Þ
z,i M

1ð Þ
iLajϑ �σ kð Þ

z,i σ
kð Þ
z,j

� �
þM kð Þ

iLaj: (98)

Now, substituting Eq. (86) into Eq. (85) and taking the traces over spin-orbital
coordinates with use of Eqs. (90), (91), (95) and (96), we obtain a noble formula

Si, Sj
� �� � kð Þ ¼ n kð Þ

iESn
kð Þ
jES 1� S kð Þ

iES,jES

� �
, (99)

S kð Þ
iES,jES �

Tr Γ kð Þ
iES x1,x2ð ÞΓ kð Þ

jES x2, x1ð Þ
h i

Tr Γ kð Þ
iES x1, x1ð Þ

h i
Tr Γ kð Þ

jES x1,x1ð Þ
h i , k ¼ 1, … , 2n�1: (100)

Here, {S kð Þ
iES,jES} represents a set of the Exchange-Correlation vs. Classical Coulomb

Density Overlap Integral (XC/CC-DOI) ratios. Although it appears almost impossible
to directly calculate a set of 2n�2n(n-1) XC/CC-DOI ratios, we could find out a reason-
able solution of Eq. (103) by imposing 2n�1 equations to eliminate all the residues

{Δ2 S2tot
� � kð Þ

} from a set of the expected values of { S2tot
� � kð Þ

}, which are given by

S2tot
� � kð Þ ¼ Stot,zh i kð Þ Stot,zh i kð Þ þ 1

h i
þ
Xn
i¼1

Si 1� σ kð Þ
z,i

� �
þ Δ2 S2tot

� � kð Þ
, (101)

Δ2 S2tot
� � kð Þ ¼

Xn
i¼1

S2i 1� P kð Þ
iES

� �2� �
� 1
2

X
i< j

n kð Þ
iESn

kð Þ
jESS

kð Þ
iES,jES ¼ 0, (102)

S kð Þ
iES,jES ¼

4
n n� 1ð Þ

Xn
i0¼1

S2i0 1� n kð Þ
i0ES=2S

kð Þ
i0

� �2� �( )
n kð Þ
iESn

kð Þ
jES

� ��1
; k ¼ 1, … , 2n�1,

(103)

Thus, we could derive the MGC-set of the internal energy functionals taking each
different decomposition form from Eq. (64) involving the projected Heisenberg spin
Hamiltonian:

Hexh i kð Þ ¼ � 1
2

Xn
i< j

Ji,j 1� S kð Þ
iES,jES

� �
n kð Þ
iESn

kð Þ
jES, k ¼ 1, … , 2n�1, (104)

U kð Þ
UHFD�Hex

ρ½ � ¼ T kð Þ ρ½ � þ V kð Þ
en ρ½ � þ J kð Þ ρ½ � � K kð Þ

XC�Hex ρ�
Xn
i¼1

ρiES þ ρiLnbf g
" #

, (105)
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U kð Þ
UHFD ρα, ρβ

� � ¼ U kð Þ
UHFD�Hex

ρ½ � þ Hexh i kð Þ: (106)

Notably, one may expect that the Hex-less internal energy function defined by
Eq. (106) will become almost constant over 2n�1 ESA states, owing to the sum of four
different components with each having a weak k-dependency. If this is the case, one
can utilize Eqs. (104) and (106) to determine the only unknown set of mean ES-
exchange coupling constants, {Ji,j; i(j > i) = 1,… ,n}, since n2n�1 effective spin densities
{niES

(k)}, 2n�2n(n-1) XC/CC-DOI ratios defined by Eq. (103) and (2n�1-1) energy-
difference equations (107) could be quantitatively calculated using UB3LYP/PBS(ε6)/
lacvp** method:

ΔU kð Þ
UHFD ρα, ρβ

� � � U kð Þ
UHFD ρα, ρβ

� ��U 1ð Þ
UHFD ρα, ρβ

� � ffi Hexh i kð Þ � Hexh i 1ð Þ; k ¼ 2, … , 2n� 1,

(107)

so that the transformed equations can be written in regular matric form:

ATAX ¼ ATB, (108)

A ¼ � 1
2

Δ 1� S 2ð Þ
1ES,2ES

� �
n 2ð Þ
1ESn

2ð Þ
2ES

h i
⋯ Δ 1� S 2ð Þ

n�1ð ÞES,nES
� �

n 2ð Þ
n�1ð ÞESn

2ð Þ
nES

h i

⋮ ⋱ ⋮

Δ 1� S
2n�1ð Þ
n�19ES,nESð

� �
n

2n�1ð Þ
n�1ð ÞESn

2n�1ð Þ
nES

� �
⋯ Δ 1� S

2n�1ð Þ
n�1ð ÞES,nES

� �
n

2n�1ð Þ
n�1ð ÞESn

2n�1ð Þ
nES

� �

2
6664

3
7775,

(109)

B ¼ B2,⋯,B2n�1ð Þ,Bk ¼ ΔU kð Þ
UHFD � ΔU kð Þ

UHFD�Hex
; k ¼ 2, … , 2n�1, (110)

X ¼ X1,⋯,Xn n�1ð Þ=2
� � � Xij

� �
;Xij ¼ Ji,j, (111)

where AT is the transpose of A. Thus, we get a unique solution:

Ji,j ¼ ATA
� ��1

ATB
h i

ij
: (112)

For n = 2, Eq. (112) reduces to

J1,2 ffi
2ΔU 2ð Þ

UHFD

1� S 1ð Þ
1ES,2ES

� �
n 1ð Þ
1ESn

1ð Þ
2ES � 1� S 2ð Þ

1ES,2ES

� �
n 2ð Þ
1ESn

2ð Þ
2ES

: (113)

In Table 1, we show again the results of benchmark-test calculations of the ES-

exchange coupling constants J1,2, designated (J mð Þ
1,2=a, J

mð Þ
1,2=c, … , J mð Þ

1,2=k), for 10 biomimetic
binuclear Cu, Mn and Fe complexes, named (a, c, … , k), were made using 13
conventional mXC/PBS/lacvp** method (m = 4 � 16) in place of the present MGC-
SDFT-UHFD (�0XC) method, which is unfortunately not yet implemented. These

data sets were compared with the observed values, named Jexp1,2=a, J
exp
1,2=c, … :, Jexp1,2=k

� �
, to

show all the excellent quantitative agreements between the theoretical values

J 4ð Þ
1,2=a, J

4ð Þ
1,2=c, … , J 4ð Þ

1,2=k

� �
and the experimental values mentioned above only by the

standard B3LYP (�4XC) method [13]. Here, we raise two possible explanations for
the best performance by the B3LYP hybrid XC energy functional; (1) the best atomic
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structure of each TM-dimeric complex could be obtained by further geometry-
optimization near the observed XRD structure by the B3LYP/PBS(ε)/lacvp** method
[15, 16] with the dielectric constant ε of the solvent being chosen the best one from 5,
10, 20, and 40 [13]; (2) as an ideally-good balance between the exchange and correlation
energy in the UHFD approximation is considered to be a key factor, B3LYP/PBS(ε)/
lacvp** method may satisfy this condition most closely.

2.4 Two most stable isomers of the S1(0) state Mn4CaO5 clusters: Identified by
two EPR signals

We have recently applied the UB3LYP/PBS(ε)/lacvp** method in place of the
UHFD/ PBS(ε)/lacvp** method to all the water-splitting and oxygen-evolving reac-
tions catalyzed by the Mn4CaO5 cluster in photosystem II (PSII). The electron-
abstracting and proton-releasing reactions from the so-called oxygen-evolving com-
plex (OEC) are considered to occur serially via five redox states, called Kok’s Si-states
(i = 0, 1, … , 4), where S1 is the dark-stable state, and S4 spontaneously decays to the
initial S0-state after releasing two protons and evolving dioxygen: the generalized
reaction schemes are symbolically given by

S 0ð Þ
1 !�e

S þ1ð Þ
2 !�e !�Hþ

S þ1ð Þ
3 !�e !�2Hþ

S 0ð Þ
4 !þ2H2O!�O2 S 0ð Þ

0 !�e !�Hþ
S 0ð Þ
1 ↺

n o
, (114)

where the figure k in the superfix parentheses of Si
(k) represents a formal charge of

the ith OEC, �e above an arrow (!) indicate one electron transfer from OEC to
P680(+), an oxidized PSII reaction center intermittingly generated by every �10 μs
light-pulse,�H+above an arrow (!) does a proton released into aqueous phase, and the
symbols +(�) indicate to go out(in) of OEC, respectively. Among many controversial
problems remained to be elucidated, we here take up the molecular structure of the
S1

(0)-state Mn4CaO5 cluster, that is not yet established because the experimental data
from XFEL, EPR and EXAFS spectroscopies appear to be apparently inconsistent if
these are assumed to have been observed from the same S1

(0)-state. Although we can’nt
exclude the possibility that the XFEL model [21] may reflect a photo-reduced S0

(�1)

state of the S1
(0)-state Mn4CaO5 cluster, we have no reason to doubt the fact that two

kinds of broad g4.8 and g12-multiline EPR signals were observed from the S1
(0)-state

samples of cyanobacteria [18, 19] and spinach [20], respectively, which must have
slightly different structures due to the different peripheral proteins between them.
Indeed, we could prove that these EPR signals are attributable to two different struc-
tural isomers, named S1A and S1B in [23], which coexist with quasi-degenerate lowest
energies in the respective S1

(0)-state. Two papers substantiating these ideas will be
submitted for publication near future.

2.5 Superconductivity enhanced by the secondary correlation interaction
in metals

It is well known that many materials become superconducting (S-phase) at lower
temperatures than the critical temperature Tc where each system makes the transition
from the normal metallic phase (N-phase). This phenomenon has been explained in
terms of the Bardeen-Cooper-Schrieffer model [23, 24] combining the Fröhlich
electron-lattice attractive interaction model [25] and the Bogoliubov Cooper-pairing
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model [26]. The highest Tc that had been achieved on 2015 is the sulfur hydride system
at 203 K at high pressure (155 GP), identified from the observed magnetization vs. θ/kB
stepping-curve [26]. The observed H/D isotope effect on the down-shift & down-size of
this curve appears to be consistent with the BCS model. Drozdov et al. raised three
conditions required for such much higher-Tc than those of normal metals: (1) higher-
frequency-phonon, (2) stronger electron-phonon coupling, and (3) a higher-density of
Cooper pairing states [27]. At least the former two conditions could in principle be
fulfilled for metallic and covalent compounds dominated by hydrogen. But notably the
BCS model contains a serious deficiency that it is based on the free electron model but
not on the Bloch-electron model depending on any approximation of self-consistent
exchange-correlation potential, so that it is forced to take account only the screened
Coulomb repulsive force between conductive electrons, as given by a Fourie transform,

lim
κ!0þ

e2

r
e�κr ¼

ð
Vsc q
� �

eiq∙rdq;Vsc q
� � ¼ lim

κ!0þ

4πe2

q2 þ κ2
, (115)

where κ is called “Thomas-Fermi wave number” and the limit of κ ! 0+ implies a
bare-Coulomb interaction. In order to treat such a many-body effect for Bloch-
electrons near the Femi-level μF, we should adopt the grand potential Ω as the more
appropriate thermodynamic free energy than the internal energy U, as given by

Ω ¼ �pV ¼ U � μFN � θΣ: (116)

Although here we assume that the decrease of entropy Σ upon the N-to-S phase
transition may be relatively much smaller than the decrease of U � μFN at least at low
temperatures. This choice of Ω is also consistent with the fact that the higher pressure
appears to be directly correlated with higher-Tc superconductors [27].

In contrast to the conventional idea of repulsive Coulomb force, the principal

exchange-correlation energy Hamiltonian bH0
UHFD of Eq. (57) is already incorporated in

the present GC-UHFD-SDFT theory to define a binary set of Bloch eigenstates occupied
with the Fermi-Dirac distribution f(ϵk � μF), designated

σ
BM(σ=α, β), and there remains

only the secondary correlation energy part of Eq. (60) to be regarded as giving rise to
the attractive exchange force between opposite-spin itinerant Bloch-electrons. Hence,
neglecting the entropic term, we need only to treat a small part of the grand potential of
Eqs. (116) alone, that can be expanded by the perturbation theory:

BΩUHFD ¼ BΩ
0
UHFD þ BΩ

1
UHFD þ BΩ

2
UHFD þ⋯, (117)

B
bΩ0
UHFD ffiB

bH0
UHFD � μF

XσBM

kσ

a†kσakσ ¼
X
σ¼α, β

XσBM

kσ

ϵkσ � μF½ �a†kσakσ, (118)

B
bΩ1
UHFD ¼

X
σ¼α, β

XσBM

kσ, k0σ
Vkσ,k0σ

UHFDVk σ,k0σa
†
k σa

†
k0σak0σak σ, (119)

Vkσ,k0σ
UHFD � �e2

ðð
dr1dr2
2r12

Φ ∗
k σ r2ð ÞΦ ∗

k0σ r1ð ÞΦk0σ r2ð ÞΦk σ r1ð Þ
� σþ,k σ,σ�,k0σ þ σ�,k σσþ,k0σð Þ

, (120)

≈� lim
κ!0þ

4πe2V

k� k0
�� ��2 þ κ2

σþ,k σ,σ�,k0σ þ σ�,k σσþ,k0σð Þ, (121)

61

Distinct Roles of the Principal Exchange-Correlation Energy and the Secondary Correlation…
DOI: http://dx.doi.org/10.5772/intechopen.111746



where we put α ¼ β and β ¼ α, and used the plane-wave approximation for the
conductive Bloch-wave functions: Φkσ r2ð Þ≈ exp ik•½ r2], Φ ∗

k σ r2ð Þ≈ exp �ik•½ r2] et c.
to make the double integrations on the coordinate vectors r1 and r2 after transformed
into R12 = (r1 + r2)/2 and r12 = r2-r1, together with introducing the screened-Coulomb
damping factor exp.(�κr12). Note that the volume of the system V appears from the
integral on the center-of-mass coordinate R12.

Notably, this spin-dependent first-order perturbation of Eq. (120) is
off-diagonal in the binary Hilbert space, so that it can’nt contribute to the
renormalized eigenstates (S-state) through any odd-number order of perturbation
term. Then, the predominant contribution could arise from the second order pertur-
bation term as given by

BΩ
2
UHFD ¼

X
σ¼α, β

XσBM

k1σ

XσBM

k01σ

XσBM

k2σ

XσBM

k02σ

Vk1,k01
UHFD Vk2,k02

UHFD

h i ∗

ϵk1σ þ ϵk01σ � ϵk2σ � ϵk02σ

�f ϵk1σ � μð Þf ϵk01σ � μ
� �

1� f ϵk2σ � μð Þ½ � 1� f ϵk02σ � μ
� �� �

,

(122)

Vk,k0
UHFD ¼ � lim

κ!0þ

4πe2V

k� k0
�� ��2 þ κ2

: (123)

Significantly in the second-quantization representation this term may be
transformed into

B
bΩ2
UHFD ¼

X
σ¼α, β

XσBM

k1σ

XσBM

k01σ

XσBM

k2σ

XσBM

k02σ

Vk1,k01; k2,k02
UHFD

�bak02σba†k02σbak2σba
†
k2σ
ba†k01σbak01σba

†
k1σ
bak1σ ,

(124)

Vk1,k01; k2,k02
UHFD ¼ lim

κ!0þ

4πe2Vð Þ2

k1 � k01j j2 þ κ2
� �

k2 � k02j j2 þ κ2
� �

ϵk1 þ ϵk01 � ϵk2 � ϵk02ð Þ
<0:

(125)

The first point to notice is that the second-order perturbation Eq. (122) might be
too complicated but could generate the attractive interaction between two
Cooper-pair particles if it be approximated by the appropriate form (simply putting
k0iβ = �kiβ; i = 1, 2 and multiplying twice the state number in each spherical-shell
volume, 4πkF3ωD/μF, as given by N(kF) ≈ 4πkF3ωD/μF (2π)3V = kF

3ωD/2π2VμF):

B
bΩ2
UHFD≈

X
σ¼α, β

XσBM

k1σ

XσBM

k2σ

Vk1,�k1; k2,�k2
UHFD ba�k2σba†�k2σ

bak2σba†k2σba
†
�k1σ
ba�k1σba†k1σbak1σ , (126)

Vk1,�k1; k2,�k2
UHFD ≈ lim

κ!0þ

4πe2ð Þ2 k3FωD=2π2μF
� �2

2 4k21 þ κ2
� �

4k22 þ κ2
� �

ϵk1 � ϵk2ð Þ <0; (127)

which is an attractive potential under the BCS restrictions:

�ωD < ϵk1 � μF <0< ϵk2 � μF <ωD, (128)

62

Density Functional Theory – New Perspectives and Applications



where ωD is the Debye frequency, and note that the matrix element Eq. (126)
does not contain V and it is proportional to ωD

2/(ϵk2 � ϵk1 ), which diverges as
ϵk2 � ϵk1ð Þ ! 0 and hence may not be approximated as a constant. Examination
of this singularity problem must be postponed in future, because of the page
limitation.

Up to the present stage, however, we find out that in the principal
GC-SDFT-UHFD method the remained secondary correlation interaction
between Bloch-electrons near the Fermi-surface could generate an additional
attractive force to promote the Cooper-pairing superconductivity by increasing not
only the concentration of Cooper-pair particles but also the energy gap at the Fermi
level.

3. Conclusion

In this chapter, we have reviewed the MGC-SDFT-UHFD method proposed in [13]
in order to advance beyond the conventional KS-DFT-UHF method. We need more
clearly to explain why the KS-formalism must be regarded as incomplete, because it is
a kind of double standard or hybrid theory based the quantum-mechanical rule in
closed system and the thermodynamic rule in open system, as clearly seen from their
use of two distinct variation-principal equations. This inconsistent theory results in
two problematic notions, (1) “eternally-unknown correlation energy functional”
including a separated part of kinetic energy, and (2) a set of mutually interacting
LCAO-MO quasi-particles.

Here, we have widely proposed a thermodynamic alternative to derive the princi-
pal internal energy functional, which has been required to define the self-consistent
one-body potential in the Schrödinger equation yielding the ultimate ground and
excited states, further which have been required multiple grand canonical ensembles
to properly describe all kinds of spin-dependent systems, like the paramagnetic prop-
erties of the water-splitting Mn4CaO5-cluster in photosystem II. This one-body quasi-
particle world picture has been completed by our two revolutionary discoveries of the
principal exchange-correlation energy functional, that is, a non-local exchange-
correlation interaction, and a complete set of self-consistent LCAO-NMOs, which
extensively span all the energy levels below dissociation limit (called the work func-
tion W) with the Fermi-Dirac distribution.

Significantly, we have presented in Sections 2.3 and 2.4 two experimental
evidences directly supporting the quantitative and systematic aspects of the
MGC-SDFT-UHFD method, and in Section 2.5 one more evidence indirectly
supporting this UHFD decoupling scheme retaining the only secondary correlation
energy functional, which spin-dependent interaction between Bloch-electrons can
promote Cooper-pairings of Bloch-electrons near Fermi-level in superconductor,
provided that their eigen states might be exactly determined by the MGC-SDFT-
UHFD method under the crystalline periodic conditions. This implies that the
Bloch-electrons near the Fermi surface are unstable in the normal phase and
hence tend to make the phase transition to the superconducting phase. Further, this
provides an additional mechanism for the high-temperature superconductivity. It is
further emphasized that the MGC-SDFT-UHFD/PSB(ε)/lacvp** method can help
meet the demand for an eagerly awaited, first principle, quantitative, and practical
method to elucidate the enzymatic function of paramagnetic Mn4CaOx clusters in a
series of water-splitting and oxygen-evolving reactions in PSII. Moreover, the present
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method have very high potential to be able to extend the application fields to the
optical excited states, the van-der Waals interactions between fragments in the
molecular system and the high-temperature superconductor.
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Chapter 4

Monitoring Organic Synthesis via
Density Functional Theory
Nurdiana Nordin

Abstract

A preliminary molecular structure for a system, which may or may not be
known, is the first step in a typical investigation using ab initio techniques. A stable
system is generated by a geometry search using an energy minimization method
(usually a local minimum or transition state). Subsequently, it is easy to obtain
any energetic properties (such as atomization energies, formation temperatures,
binding energies) or expectation values or quantifiable quantities from the wave
function of the molecular system and its fragments. The stability of such a system
can be determined by considering the second derivative of the energy with respect to
the spatial coordinates (also known as the Hessian matrix). It could be a goal to find
out how the system interacts with other systems and eventually to decipher the
synthesis pathways. Therefore, this chapter presents a recent application of
approaches based on density functional theory (DFT) to study chemical processes at
the catalytic sites of enzymes. The focus is on the interaction of small organic mole-
cules with the ability to inhibit a catalytic cysteine of the malaria parasite, in the area
of drug design.

Keywords: density functional theory, ab initio, organic reaction, local optimization,
transition states, potential energy surface, enzymatic catalysis

1. Introduction

Two quantum-chemical theories have been established since Lewis first proposed
the idea of a chemical bond at the beginning of the twentieth century [1]: the valence
bond (VB) theory and the molecular orbital (MO) theory, both of which are based on
Schrödinger’s equation [2]. The density functional theory (DFT), which states that the
ground state energy of a non-degenerate N-electron system is a special functional of
the density (r), was developed in the 1960s of the previous centuries on the basis of
the Hohenberg and Kohn theorems.

E ρ rð Þ½ � ¼
ð
ρ rð Þv rð Þ drþ F ρ rð Þ½ � (1)

The “external one-electron potential” or the electron-nucleus Coulomb interaction
is represented by v(r), and F[(r)] is the Hohenberg-Kohn universal functional
obtained by adding the kinetic energy functional T[(r)] and the energy functional of
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the electron-electron interaction Vee[(r)]. The rigorous theoretical basis of DFT is this
theorem. If the number of electrons is kept constant within the DFT framework, the
electron density can be represented as a functional derivative of the energy with
respect to the external potential:

ρ rð Þ ¼ δ E
δ v rð Þ

� �

N
(2)

Density functional theory (DFT) calculations therefore require the construction of
an expression for the electron density. Similar to the quantum chemical theory based
on the Schrödinger equation, it is computationally impossible to resolve the electron
density functional ρ(r) for a complicated system. The definition of the individual
terms in the functional F[ρ] is the crux of the mathematical problem. The Hartree-
Fock equation served as a rough analogy to introduce the Kohn-Sham formalism [3].
In recent years, numerous empirical DFT functions have been developed, including
B3LYP [4, 5], MPWB1K [6], and more recently M06 and related functions [7], which
provide precise energies and allow the study of organic reactions with a computational
cost comparable to MO calculations.

A thorough quantum chemical study of molecular electron density in terms of
nonbinding and binding molecular areas was made possible by the invention of topo-
logical analysis of the electron localization function in the late twentieth century [8].
This investigation made it possible to build a molecular model that was connected to
the Lewis binding pattern. The molecular mechanism of the majority of organic
reactions has been identified through topological electron localization function analy-
sis of binding alterations throughout a reaction pathway. The construction of a reac-
tivity model in which these bonds are produced by the C-to-C coupling of two pseudo
radical centers [9] formed along the reaction pathway [10] has been made possible by
several studies of organic reactions in which C-C bonds are formed. This pattern is
interestingly present in C-C double bond reactions that are nonpolar, polar, and ionic.
High activation energies in nonpolar reactions are a result of the energy needed to
break C-C double bonds in order to produce pseudo radical structures. It is notewor-
thy that when the reaction’s polarity rises, these high activation energies diminish.
Domingo has shown that the global electron density transfer that takes place in polar
processes favors the variations in electron density necessary for the creation of C-C
single bonds.

An essential and typical first step in most quantum chemical studies is structural
optimization. It is a crucial element of any computational chemistry study that deals
with the structure and reactivity of a molecule. There are numerous methods for
structural optimization. These techniques are used to find transition structures (TS),
find minimum energy paths (MEP) that correlate with reaction pathways, and opti-
mize equilibrium geometries. In this chapter, a concise protocol is presented to
understand how to easily obtain energetic properties (such as atomization energies,
formation temperatures, binding energies) by considering the first and second
derivatives of the energy with respect to the Hessian matrix.

1.1 Local optimization

The last 50 years have seen rapid progress in optimization techniques for ab initio
molecular orbital simulations. The introduction of energy gradient techniques, the
development of algorithms, and the increase in processing capacity have played an

70

Density Functional Theory – New Perspectives and Applications



important role [11–13]. Optimization algorithms based solely on energy are orders of
magnitude slower than analytical gradient-based optimization strategies. Searching
for transition structures is now feasible, and optimization of equilibrium geometries
has become routine, even for quite large systems.

1.1.1 Potential energy surface

The relative positions of the individual atoms within a molecule define its molecu-
lar structure. The molecule has a clear energy for a particular location and electronic
state. The potential energy surface (PES) describes this energy, which varies
depending on the electronic state and atomic coordinates. The potential energy sur-
face of two geometric variables is roughly shown in Figure 1. The Born-Oppenheimer
approximation [15], in which the motions of nuclei and electrons are studied inde-
pendently, leads to the ideas of potential energy surfaces. Nuclei move slower than
electrons because they are much heavier. This makes it possible to separate the nuclear
motions from the electronic motions.

The minima, maxima, and saddle points—the stationary points that form the
surface of the potential energy—define it [16]. Each point, which can be identified
from the first and second derivatives of the molecule, indicates a different state of the
molecule. The first energy derivatives of each atom with respect to its coordinates
combine to give a vector called a gradient. The combined second derivatives are used
to form a matrix called a Hessian. A vanishing gradient is a property of any stationary
point. Also, the Hessian matrix is positively defined at a minimum (all eigenvalues of
the Hessian matrix are positive) and the Hessian matrix has only one negative eigen-
value at a first-order saddle point. In chemistry, minima indicate stable structures,
while first-order saddle points can be associated with transition states (TS). For
structural optimization, higher-order saddle points on the potential energy surface are
not relevant (but they are relevant for electronic structure calculations). When using
mass-weighted coordinates, the minimum energy path (MEP) or intrinsic reaction
coordinate (IRC) consists of the steepest descent reaction paths (SDP) from the

Figure 1.
The minima, saddle points, and inflection points are displayed as an intriguing feature of the PES model [14].
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transition state to the minima on either side of the saddle point. Taylor expansion
allows to represent the potential energy surface, E(x), as an infinite sum in neighbor-
hood of a point x0, using the step x and gradient gT vectors, and Hessian matrix, H,

EðxÞ ¼ Eðx0Þ þ gTxþ 1=2 xTHx þ … (3)

Most optimization methods are constructed based on this representation. Since two
coordinate systems connected by a linear transformation are equivalent in all gradient
optimization methods, the significance of the coordinates for the optimization process
may not be immediately apparent. This is because the gradient vector and the Hessian
matrix must be properly transformed from one system to the other. On this basis, it has
been argued that the Cartesian coordinates are comparable to the valence-type internal
coordinates [17–19] or even better [20]. This claim [17–19] ignores the potential impor-
tance of cubic and higher valence couplings. However, it has been shown that optimi-
zation in Cartesian coordinates can be as effective as in Z-matrix coordinates [20] or
natural internal coordinates for medium-sized systems with a trustworthy initial Hes-
sian matrix and suitable initial geometries [21]. However, optimization in Cartesian
coordinates is incredibly wasteful, especially if the system is large enough, since it lacks
initial curvature information (i.e., without a Hessian matrix) [20, 21]. Even if the initial
geometries are suboptimal for optimization, Cartesian coordinates are less effective
than internal coordinates, even if the exact Hessianmatrix is always known [22]. A good
and affordable initial Hessian matrix for ab initio calculations is usually a molecular
mechanics force constant matrix.

1.2 Monitoring transition states

Numerous methods have been proposed to find suitable starting geometries
because the calculations of the transition structures are so sensitive to the starting
geometry. One very helpful method is to start with reactant and product structures,
which are easier to obtain than transition structures. The simplest way to determine
the shape of a transition structure is to assume that each atom is exactly halfway
between its initial and final positions. The term “linear synchronous transit” refers to
this nearly linear motion (LST). Although this is a good first approximation, it is not
perfect. Consider the motion of an atom whose bond angle varies relative to the other
molecules in the system. The bond length in the middle of the line connecting its
starting and ending points will be shorter than expected and therefore have a larger
energy (perhaps much larger). The quadratic synchronous transit (QST) method is
the logical development of this technique. These techniques assume that a parabola
connecting the geometries of reactant and product is formed by the positions of the
atoms in the transition structure. Even if it is only a very small improvement, QST is
usually better than LST. A weighting factor can often be entered by the user (e.g., to
specify a structure containing 70% products and 30% reactants). This allows the
application of the Hammond postulate, which states that the transition structure
resembles the reactants in an exothermic reaction or the products in an endothermic
reaction [23]. These methods have their limitations, but have proven to be quite useful
for simple reactions. The drawback is that each of these methods, however good, is
based on the premise that the reaction proceeds in a single step with coordinated
motion of all atoms [24]. For multistep reactions, each of these methods can be used
on its own. For a reaction with a single transition structure but uncoordinated motion
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(e.g., breaking one bond and building another), the use of hand-drawn initial geome-
tries or eigenvalue tracking may be preferable.

1.2.1 Reaction coordinate

The maximum on the reaction pathway is by definition a transition structure.
There is a single, well-defined reaction pathway, namely the intrinsic or low energy
(IRC) pathway. Numerous groups have developed methods to derive the IRC pathway
from quasi-Newton optimization. These methods are based on the observation that
quasi-Newton methods oscillate around the IRC path from one iteration to the next.

By following the reaction path from the equilibrium geometry to the transition
structure, one can also obtain a transition structure. The user chooses which mode of
oscillation to trigger a reaction given sufficient kinetic energy, which is why this
method is also known as eigenvalue tracking [25]. This is not the most effective
approach to obtaining an IRC, nor is it the fastest or most reliable way to find a
transition structure. The advantage is that there are no assumptions about the transi-
tion structure or the coordinated motions of the atoms.

Using a pseudo-reaction coordinate is another method. This method can be a lot of
work for the user and takes more time than most other methods. However, it has the
advantage of being extremely reliable, so it will work even when all other methods
have failed. By first selecting a geometric parameter that is directly related to the
reaction, a pseudo-reaction coordinate is calculated (e.g., the bond length for a bond
that is formed or broken). Then, a series of calculations is performed while all other
geometric parameters are optimized and this parameter is fixed at various values
ranging from those in the reactants to those in the products.

The result is an approximation of the reaction coordinate rather than the actual
reaction coordinate, which is close to the actual reaction coordinate only for equilib-
rium geometries and transition structures. Normally, the geometry for a quasi-
Newton optimization starts with the calculation from this set with the highest energy.
Quasi-Newton optimization may still fail in some rare cases where extremely flat
potential surfaces are present. In this case, the transition structure can be estimated
with arbitrary accuracy (within the theoretical model) by determining the maximum
energy by adjusting the selected geometric parameter in smaller and smaller steps.

1.2.1.1 Solvent effects

The choice of solvent can influence the reaction rate. Interactions with the solvent
often change the geometry of the transition structure only slightly, but have a large
effect on the energy of the structure. If the solvent effects are taken into account in the
calculation, all transition structure discovery methods can be applied. The transition
structure identification method is not affected by the presence of solvent interactions.

1.2.2 Evaluating the Hessian

Partitioned-rational function optimization (P-RFO), a useful technique, is based
on partitioning the eigenvalues of the Hessian into modes with negative curvatures
along which the energy is maximized and all other modes along which the energy is
minimized. To guarantee convergence to the nearest transition states, P-RFO requires
an initial Hessian with a single negative eigenvalue along the reaction coordinate. If all
eigenvalues of the hessian are positive, the P-RFO search may not find the desired
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transition states because the smallest positive eigenvalue is selected as the mode for
energy maximization, which may not match the reaction coordinate. The same prob-
lem occurs when the Hessian has numerous negative eigenvalues of comparable mag-
nitude. In this case, the most negative eigenvalue is tracked upward, even though it
may not be the reaction coordinate. Even if the transition states estimate is accurate, a
P-RFO calculation may fail if the Hessian is not calculated with high accuracy, since
inaccuracies in the sign of the eigenvalues create the same ambiguity in determining
which mode to follow upward [26]. Monitoring a reaction rate using the activation
energy in the Arrhenius equation is the simplest technique for determining a reaction
rate. Experimental results or a simple theoretical approach, such as the kinetic theory
of gasses, can be used to determine the pre-exponential factor. The activation energy
can be roughly calculated by subtracting the energy of the reactant and transition
structures. The addition of the zero-point vibrational energy leads to an easily deter-
mined additional correction to these energies.

The simple use of activation energy implies that the intrinsic reaction coordinate is the
only direction in which a reaction can proceed. It would be more accurate to consider the
possibility that reactions can also occur that pass through a geometry that closely
approximates the transition structure. The variable transition state calculations take this
into account. The vibrational frequencies of the transition structure, the full reaction
coordinate, or the total potential energy surface may need to be used in these calculations.
Tunneling at the reaction barrier may also be considered in these calculations. These
calculations can provide accurate answers, but they are particularly susceptible to minute
parameters such as the choice of a mass-weighted coordinate system for the geometry.

Dynamic analyses can be used to study how the direction and velocity of the
entering reactants affect the reaction rate. These studies often begin with ab initio
calculated potential energy surface. Although obtaining the potential energy surface
was not an easy task in itself, the effort required to study a reaction using these
methods can be significantly greater.

2. Structural model based on computational method

One of the conventional methods for modeling matter based on quantum mechan-
ics, including atoms, molecules, solids, nuclei, and both quantum and classical fluids,
is density functional theory (DFT). The first category includes techniques often
referred to as ab initio techniques, such as Hartree-Fock (HF), Moller-Plesset pertur-
bation theory (MP), configuration interaction (CI), and linked-cluster methods (CC)
[27]. Given that the wave function for a system of N electrons depends on 3N spatial
variables, it should be noted that as the number of electrons increases, so does the
complexity of the wave function. DFT approaches [28], on the other hand, use func-
tionals of the electron density which are a function of only 3N spatial variables and
independent of the system size.

The first H-K theorem shows how the Hamilton operator, and consequently all the
properties of the system, is uniquely determined by the electron density, while the
second theorem asserts that the functional related to the ground-state energy of the
system yields the lowest energy if and only if the input density is the true ground-state
density (i.e., nothing other than the variational principle). Currently, the correctness
and effectiveness of DFT-based approaches depend on the basis chosen for the
expansion of the Kohn-Sham orbitals, but in particular on the caliber of the exchange
correlation (XC) functional used [3].
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Local density approximation (LDA) was the first method originally proposed for
modeling XC functionals [29]. A simple generalization of the local spin density
approximation (LDA) to include electron spin in the functional was proposed by
Slater [30]. The well-known SVWN functional, whose exchange component was
created by Slater [31] and whose correlation component was created by Vosko, Wilk,
and Nusair [31] is indeed one of the early LSDA-XC functionals. However, experience
has shown that LSDA leads to inflated binding energies and underestimation of barrier
heights, although it usually provides the bond lengths of molecules and solids with an
amazing accuracy (about 2%). Thus, the average accuracy of LSDA is insufficient for
most applications in monitoring organic synthesis in chemistry.

Compared to LSDA functions, GGA (Generalized Gradient Approximation) func-
tions have been shown to provide better predictions for total energies, atomization
energies, and structural properties. The most commonly used XC functions of this
type are the Perdew 86 (P86), Becke (B86, B88), Perdew-Wang 91 (PW91), Laming-
Termath-Handy (CAM), Perdew-Burke-Ernzerhof (PBE), revised Perdew-Burke-
Ernzerhof (RPBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Becke
exchange and Lee-Yang-Parr correlation (BLYP), and Armiento-Mattsson 2005
(AM05). However, they still provide too low barrier heights and usually fail in
describing van der Waals interactions.

An alternative strategy has been developed, called the SCC-DFTB (self-consistent-
charge density functional tight binding, later abbreviated as DFTB) method. The
DFTB approach, which is an alternative to the traditional semi-empirical methods in
quantum chemistry, including the well-known MNDO, AM1, and PM3 schemes
derived from RF theory, is based on a second-order expansion of the DFT total energy
expression. Since its parameterization technique is based entirely on DFT calculations
and does not require fitting empirical data, DFTB is not, strictly speaking, a semi-
empirical method.

3. Case study: monitoring enzymatic inhibition

Typically, a two-step mechanism is used to describe how the enzyme and substrate
function. First, favorable placement of the molecule in the binding pocket ensures the
formation of a non-covalent enzyme-inhibitor complex. When the thiolate group of
the catalytic CYS attacks one of the carbon atoms of the ring, ring opening occurs
(Figure 2), leading to irreversible alkylation of this amino acid.

The effect of the environment at the carbon atoms in the rings on the kinetics and
thermodynamics was evaluated by Helten and colleagues using quantum chemical
simulation [32, 33]. According to these estimates, acidic media have a greater effect on
the opening of the aziridine ring than for epoxide. They discovered that the proton-
ation of the nitrogen center of aziridine-based inhibitors occurs at the beginning of the
reaction course, more precisely before the transition state for the ring opening. It was
also discovered, and this is important, that aziridine is inactive without the prior N-
protonation step. Therefore, it is suggested that protonation significantly accelerates
the reaction rate by stabilizing both the transition state and the ring opening product.
Hence, substituents that deprive the nitrogen atom of electrons should lead to lower
reaction barriers and, consequently, a greater inhibition effect [32]. Since the products
of this reaction are highly stabilized, only the thermodynamics of this reaction are
favored by O-protonation, while the kinetics remain unchanged, in contrast to the
behavior of aziridines [32]. This is due to the fact that, in the case of epoxide-based

75

Monitoring Organic Synthesis via Density Functional Theory
DOI: http://dx.doi.org/10.5772/intechopen.112290



inhibitors, the protonation of the oxygen center occurs only after the appearance of
the transition state. The attacking cysteine was represented by a methyl thiolate (H3C-
S-), while the inhibitors were represented by tripartite ring systems (H2C)2X with
X = O, N-R. The authors characterized this simplified model as typical for the inhibi-
tion mechanism of the enzyme. The heteroatom of the three-membered rings and the
methyl thiolate were placed near solvent molecules with increasing proton donor
capacity to capture the effects of decreasing pH on the reaction profile. Water mole-
cules were used to model settings with weak proton donor capabilities (pKa = 15.74).
In contrast, NH4

+ (pKa 9.3) and HCO2H (pKa 3.8) molecules were used to mimic
environments with stronger proton donor capabilities [33]. While the energies were
derived using B3LYP [21] single point calculations, the geometry optimizations of the
relevant stationary points, verified by frequency calculations, were calculated using
the BLYP [34, 35] functional. A TZVP basis set and both functionals were merged
[36]. The accuracy of the theoretical approach was evaluated and the researchers
found that BLYP significantly underestimated the barrier heights, while the response
profile derived with B3LYP showed excellent agreement with CCSD (T) data [32].

A schematic representation of the mechanism of action at the catalytic site is
formed by a cysteine and a histidine, whose side chains form a thiolate/imidazolium
ion pair, and an asparagine, which plays a crucial role in the appropriate alignment of
the ion pair [37], is outlined in Figure 3. One of the key events in the catalytic
hydrolysis of hemoglobin is the nucleophilic attack of the thiolate anion on the
corresponding electron-deficient carbonyl group of the substrate, resulting in a nega-
tively charged tetrahedral intermediate stabilized by the “oxyanion hole” formed by
the side chains of GLN36 and TRP206 in FP2 and by GLN38 and TRP208 in FP3 [38].
The kinetics, thermodynamics, and regioselectivity of the ring-opening reaction of
epoxide- and aziridine-based compounds can be evaluated by using standard quantum
mechanics (QM) calculations [32, 33].

The enzyme, the warhead of the inhibitor, and water are the components of the
model system used for the quantum mechanics/molecular mechanics (QM/MM) cal-
culations. The part subjected to quantum mechanics corresponded to the zwitterionic
side chains of the catalytic residues CYS and HIS and the electrophilic warhead of the
inhibitors. The calculations in the QM domain both with and without the mediating
water molecule can identify if water could mediate proton transfer. One-point calcu-
lations at the B3LYP/TZVP level of theory are used to more accurately determine the
activation and reaction energies, while QM calculations can be performed during
geometry optimization and potential energy surface scanning. The MM part can be

Figure 2.
Schematic representation of the ring opening mechanism of the alkylation of a methyl thiolate by an N-substituted
aziridine ring. X = O, N-R. Adapted from [27].
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implemented using the CHARMM force field [39]. The inhibition reaction, which
included the ring opening of the inhibitor and the formation of the S(CYS)-C bond,
can be captured by the calculated potential energy surface. The results rule out a direct
proton shift from the HIS to the organic ligand and show that even a single water
molecule is sufficient to create a highly effective relay system that allows protons to
move from the HIS to the inhibitor. This result strongly suggests that the effectiveness
of the inhibitors can be reduced by substituents that can prevent proton transfer.

The speed-up of the calculations can be even greater when a parameterized quan-
tum mechanics technique such as the density functional tight binding (DFTB)
approach is considered or when it is combined with molecular mechanics. This makes
QM/MM MD simulations in the ns range easily feasible, which is an essential require-
ment for reliable determination of free energies for biomolecular reactions.

4. Conclusions

The purpose of this chapter is to present a brief protocol of conceptual DFT
reactivity in enzymatic reactions. The calculations can be used to easily determine
energetic properties (such as atomization energies, formation temperatures, binding
energies) by considering the first and second derivatives of the energy with respect to
the Hessian matrix. Chemical intuition comes into play during the procedure, such as
understanding the shape of transition states in a system related to the system under
study. It is likely that the transition states can be found if the conjecture is strong
enough to indicate that it lies in the quadratic basin of transition states, or in other
words, has a negative Hessian eigenvalue. The main advantage of this homolog-based
method is that it is computationally free and effective when dealing with simple or
very closely related systems with known transition states. On the other hand, with the

Figure 3.
Schematic reaction mechanism of the cysteine protease-mediated cleavage of a peptide bond.
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help of realistic models and DFT techniques, enzymatic catalysis is becoming more
understandable at the electronic level. This is particularly helpful for the development
of irreversible enzyme inhibitors that can covalently bind the catalytic amino acids of
the enzyme.
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Chapter 5

Impact of Crystal Parameters
in XRD and DFT Measurements
Subramanian Usha and Charles Kanakam Christopher

Abstract

The Zwitterionic property of aminoacids give molecular crystal formation through
homodesmotic reaction with smaller organic molecules which can undergo hydrogen
bonding interactions. Alpha hydroxyl phenyl acetic acid known as mandelic acid
(MA) was added with essential amino acid, L-phenylalanine (LPA) resulted in the
formation of molecular crystal with P21 space group otho rhombic crystal containing
four units (namely one MA, two LPA and one water) bis-L –phenyl alanine mandelate
(BLPAMA) by slow evaporation method. The single crystal obtained was subjected to
characterisation studies. Recrystallised BLPAMA using methanol, subjected to slow
evaporation method resulted in the formation of non centerosymmetric C2 point
group monoclinic single crystal of R-phenylalanine-S-mandelate (RPASMA) con-
firmed with XRD study. The theoretical DFT study of RPASMA using Gaussian 09
software to study the non-covalent interactions with MO6,6-31++G(d,p) showed
encouraging results for the formation of low energy gap, highly reactive RPASMA.
The H-bonding in the crystal confirmed by DFT study showed the existence of three
units – MA, H and LPA in the crystal. Compared the experimental and theoretical
crystal parameters of the reactants (MA, LPA) and product (RPASMA) for the thermo
chemical properties, intermolecular hydrogen bonding existing between MA and LPA
stabilises the structure of the formed RPASMA crystal resulting in the small difference
in energy gap observed from HOMO-LUMO studies indicate the highly reactive
character of RPASMA.

Keywords: crystal parameters, theoretical study, intermolecular hydrogen bonding,
low energy gap, thermo chemical properties

1. Introduction

MA has a long history of use in the medical community as an antibacterial, partic-
ularly in the treatment of urinary tract infections. It has also been used as an oral
antibiotic and as a component of chemical face peels analogous to other alpha hydroxy
acids. LPA is an essential aromatic amino acid in humans (provided by food), LPA
plays a key role in the biosynthesis of other amino acids and is important in the
structure and function of many proteins and enzymes. LPA is converted to
tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters.
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The LPA is incorporated into proteins, while the D-form acts as a painkiller. Absorp-
tion of ultraviolet radiation by Phenylalanine (PA) is used to quantify protein
amounts.

LPA is the L-enantiomer of PA. It has a role as a nutraceutical, a micronutrient, an
Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabo-
lite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an
EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phospho-
enolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a
L-alpha-amino acid. LPA is a conjugate base of a L-phenylalaninium, conjugate acid of
a L-phenylalaninate, an enantiomer of a D-phenylalanine and a tautomer of a
L-phenylalanine zwitterion.

Homodesmic reaction of MA and LPA results in the two/four components
molecular single crystals due to the zwitter ionic form of phenyl alanine. The
formation of non linear crystals having low energy gap highly reactive phenylalanine
mandelates are stabilised due to the intermolecular H-bonding and intramolecular
hydrogen bonding along with the van der Waals forces of attraction between the
molecules in the crystal formation [1, 2]. The hydrogen bonding interactions
induces the polarisability character and dipole moments of the compounds are
resulting in the application of the compounds in different areas like opto
electronics property, biological activity, antioxidant activity etc., [3–5]. The experi-
mental solid state measurements are compared with the theoretical gaseous state
measurement for the crystal parameters, FTIR, FT Raman, thermochemical
properties to confirm the applications of the product and the reactants. Nonlinear
nature of the compounds comply with the expected vibrational frequencies calculated
using the formula (3N-6) with the theoretical vibrational changes contribution to
Total Energy Distribution (TED) [6]. The charge transfer mechanism in the molecule
and the presence of high antioxidant power and antiradical power of RPASMA is
confirmed by Homo-Lumo small energy gap, electrochemical Cyclic Voltametric
analysis [7, 8].

2. Materials and methods

The compounds MA and LPA were taken to obtain the two component molecular
crystal RPASMA by two steps mentioned below.

2.1 Step – 1: Synthesis of BLPAMA

Alfa Aesar DL- Mandelic acid(99%) and Nice chemicals L-phenylalanine in the
molar ratio 1:2 respectively were taken in a beaker, dissolved in water, stirred well
in a magnetic stirrer and obtained the molecular crystal BLPAMA by slow evapora-
tion at room temperature. Confirmed the crystal structure by characterisation
studies.

2.2 Step – 2: Synthesis of RPASMA

BLPAMA crystals were dissolved in 1:10 mmol in AR grade methanol, filtered, a
clear pale yellow solution was obtained. Filterate was allowed to slow evaporation at
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RT, resulted in yellow coloured molecular crystals and confirmed the structure by
characterisation studies.

Non-centerosymmetric crystal information of RPASMA given in CCDC number
1452128.

3. Computational analysis

Gaussian 09 with MO6 DFT 6-31++G(d,p) basis set shows the existence of hydro-
gen bonding charge transfer mechanism in the molecular crystal formation resulting
in the formation of non-centerosymmetric structure having C2 space group [9].
Experimental parameters in the solid crystalline state XRD is compared with the
gaseous phase density functional measurement using Gaussian 09 with MO6 DFT 6-31
++G(d,p) basis sets are compared and discussed in detail [10]. The optimised DFT
structure of the compounds are shown in the Figures 1–3.

The interactions in the title compounds, types of electrons, protons, vibrations
are compared and discussed in detail [11]. Comparison of thermo chemical
properties of the compounds show the energy involved during the crystal formation
[12]. The electron transfer from the LPA molecule Highest occupied molecular orbital
(HOMO) interaction with the lowest unoccupied orbital (LUMO) of MA molecule is
confirmed from the theoretical DFT study supports the experimental study of the
compounds [13].

As the size of the molecule increases the charge and dipole moment increase and
hence polarisability increases as shown in Table 1.

Figure 1.
Labelled MA.
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4. Results and discussion

The compound RPASMA formed through donor-acceptor charge transfer mecha-
nism during noncenterosymmetric monoclinic molecular crystal formation results in

Figure 2.
Labelled LPA.

Figure 3.
Optimised labelled structure of RPASMA using MO6 DFT with 6-31++G(d,p).

86

Density Functional Theory – New Perspectives and Applications



the variation of bond lengths, bond angles, dihedral angles and torsional angles than
expected values. The hydrogen bonding interactions give distorted noncentero-
symmetric structure during crystallisation. The XRD values and the DFT values are
compared for the compounds MA, LPA and RPASMA and are reported in detail.

4.1 Bond length

The expected average C-C bond length is 1.54 Å, C-O bond length is 1.43 Å, C-N
bond length is 1.43 Å, C-H bond length is 1.09 Å, C=O bond length is 1.23 Å, O-H
bond length is 1.67 Å, N-H bond length is 2.1 Å. The comparative bond length study of
the compounds show the C-C, C-H, C-O and O-H the equal XRD and DFT values
shown in the Table 2. The hydrogen bonding existing in C-O, O-H, N-H, C-H shows
considerable variation in values in RPASMA for the respective atoms of MA and LPA.
N1-H9 bond length in LPA theoretical value is higher than experimental value due to
the measurement in gaseous state and solid state and the zwitterionic nature of amino
acid [14].

4.2 Bond angle (Å)

The intermolecular hydrogen bonding during the crystallisation of RPASMA give
variations in bond angles due to sp3 hybridisation and sp2 hybridisation compounds
because of their measurements in solid phase XRD and gaseous phase DFT are shown
in the Table 3 and theoretical values are due to the intramolecular hydrogen bonding
and the respective measurements in the RPASMA are due to the internal strain and
stress factors experienced during inter molecular hydrogen bonding. In the experi-
mental and theoretical measurements of LPA show variation in bond angles due to the
zwitter ionic nature of amino acid and the respective atoms in RPASMA show varia-
tion in the atoms involved in inter molecular hydrogen bonding which causes strain in
the crystallisation [15].

Particulars MADFT.out LPADFT.out RPASMADFT.out

File Type .log .log .log

Calculation Type FREQ FREQ FREQ

Calculation Method RM06 RM06 RM06

Charge 0 0 0

Spin Singlet Singlet Singlet

Solvation None None None

E(RM06) Hartree �535.04918 �554.4665 �1089.5313

RMS Gradient Norm Hartree/Bohr 2.14E-05 8.30E-06 1.59E-05

Imaginary Freq 0 0 0

Dipole Moment Debye 3.2937709 4.924759 7.0780304

Polarizability a.u. 100.668 117.08567 215.24667

Table 1.
Comparison of DFT details of MA, LPA and RPASMA using G09 MO6-31++G(d,p).
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Experimental Theoretical Corresponding atoms
in RPASMA

Experimental Theoretical

Atoms in
MA

C1-C2 1.507 1.519 C7-C8 1.521 1.525

C1-O1 1.298 1.347 C8-O1 1.201 1.223

C1-O2 1.197 1.203 C8-O2 1.298 1.308

C2-H1 0.979 1.103 C7-H7 0.981 1.101

C2-C3 1.505 1.514 C6-C7 1.516 1.514

C2-O3 1.407 1.402 C7-O3 1.409 1.407

C3-C4 1.366 1.397 C6-C5 1.381 1.395

C3-C8 1.359 1.394 C6-C1 1.368 1.395

C4-H5 0.93 1.088 C5-H5 0.93 1.091

C4-C5 1.369 1.391 C4-C5 1.378 1.392

C5-H4 0.929 1.087 C4-H4 0.931 1.089

C5-C6 1.344 1.394 C4-C3 1.361 1.394

C6-H3 0.931 1.087 C3-H3 0.931 1.088

C6-C7 1.329 1.392 C3-C2 1.371 1.393

C7-H2 0.931 1.087 C2-H2 0.931 1.088

C7-C8 1.378 1.392 C2-C1 1.382 1.392

C8-H6 0.929 1.089 C1-H1 0.931 1.088

01-H7 0.819 0.971 O1-H1D 0.811 0.964

O3-H8 0.819 0.964 O3-H3A 0.811 1.011

Atoms in
LPA

C1-C2 1.519 1.533 C17-C16 1.532 1.557

C1-O1 1.227 1.205 C17-O4 1.251 1.269

C1-O2 1.251 1.336 C17-O5 1.229 1.227

C2-H1 0.981 1.102 C16-H16 0.981 1.097

C2-C3 1.519 1.539 C16-C15 1.527 1.523

C2-N1 1.486 1.465 C16-N1 1.483 1.506

C3-H2 0.969 1.099 C15-H15A 0.971 1.096

C3-H3 0.971 1.098 C15-H15B 0.971 1.101

C3-C4 1.499 1.507 C15-C14 1.502 1.505

C4-C5 1.373 1.398 C14-C13 1.383 1.401

C4-C9 1.376 1.397 C14-C9 1.381 1.395

C5-H4 0.931 1.091 C13-H13 0.931 1.089

C5-C6 1.369 1.392 C13-C12 1.381 1.391

C6-H5 0.931 1.088 C12-H12 0.931 1.088

C6-C7 1.368 1.392 C12-C11 1.361 1.393

C7-H6 0.931 1.088 C11-H11 0.931 1.088

C7-C8 1.359 1.392 C11-C10 1.356 1.391

C8-H7 0.929 1.088 C10-H10 0.931 1.088
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Experimental Theoretical Corresponding atoms
in RPASMA

Experimental Theoretical

C8-C9 1.375 1.392 C10-C9 1.377 1.392

C9-H8 0.931 1.088 C9-H9 0.931 1.092

N1-H9 0.895 1.959 N1-H1A 0.891 1.052

N1-H10 1.006 1.014 N1-H1B 0.941 1.025

N1-H11 0.884 1.018 N1-H1C 0.881 1.021

Table 2.
Bond length (Å).

Experimental Theoretical Corresponding
atoms in RPASMA

Experimental Theoretical

Atoms
in MA

C2-C1-O1 111.576 110.029 C7-C8-O1 104.651 106.701

C2-C1-O2 124.451 126.239 C7-C8-O2 122.801 122.141

O1-C1-O2 123.961 123.677 O1-C8-O2 124.361 126.171

C1-C2-H1 108.204 107.312 C8-C7-H7 109.101 106.451

C1-C2-C3 112.203 108.162 C8-C7-C6 111.431 110.231

C1-C2-O3 108.211 107.248 C8-C7-O3 112.801 111.681

H1-C2-C3 108.221 108.863 H7-C7-C6 109.101 108.771

H1-C2-O3 108.192 111.824 H7-C7-O3 109.045 111.395

C3-C2-O3 111.681 113.194 C6-C7-O3 113.482 113.073

C2-C3-C4 120.832 119.431 C7-C6-C5 119.401 120.101

C2-H1-C8 121.411 120.819 C7-H7-C1 121.601 120.281

C4-C3-C8 117.744 119.746 C5-C6-C1 119.001 119.611

C3-C4-H5 119.749 119.095 C6-C5-H5 119.901 120.261

C3-C4-C5 120.427 119.984 C6-C5-C4 120.301 120.281

H5-C4-C5 119.824 120.921 H5-C4-C5 119.901 120.261

C4-C5-H4 119.497 119.814 C4-C5-H4 119.701 120.141

C4-C5-C6 120.937 120.141 C4-C5-C3 120.501 120.001

H4-C5-C6 119.566 120.045 H4-C5-C3 119.421 120.103

C4-C5-H3 120.252 120.034 C5-C3-H3 109.053 108.774

C4-C5-C7 119.411 119.961 C5-C3-C2 111.424 108.774

H3-C5-C7 120.336 120.005 H3-C3-C2 120.301 120.121

C5-C7-H2 119.635 120.178 C3-C2-H2 119.801 120.041

C5-C7-C8 120.662 119.957 C3-C2-C1 120.501 120.201

H2-C7-C8 119.704 119.864 H2-C2-C1 119.801 119.761

C3-C8-C7 120.802 120.209 C6-C1-C2 120.201 120.071
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Experimental Theoretical Corresponding
atoms in RPASMA

Experimental Theoretical

C3-C8-H6 119.631 119.517 C6-C1-H1 119.901 119.101

C7-C8-H6 119.568 120.274 C2-C1-H1 119.901 120.841

C1-O1-H7 109.441 107.042 C8-O1-H1D 114.798 108.093

C2-O3-H8 109.459 108.257 C7-O3-H3A 107.024 112.549

Atoms
in LPA

C2-C1-O1 118.488 123.816 C16-C17-O4 118.401 113.841

C2-C1-O2 116.555 113.748 C16-C17-O5 117.201 115.261

O1-C1-O2 124.906 122.421 O4-C17-O5 124.301 130.901

C1-C2-H1 109.025 104.789 C17-C16-H16 107.701 108.391

C1-C2-C3 111.507 112.325 C17-C16-C15 111.201 113.161

C1-C2-N1 109.834 108.267 C17C16-N1 110.571 107.111

H1-C2-C3 109.055 108.249 H16-C16-C15 107.701 110.161

H1-C2-N1 109.029 106.434 H16-C16-N1 107.701 106.891

C3-C2-N1 108.351 116.027 C15-C16-N1 111.701 110.891

C2-C3-H2 109.061 107.115 C16-C15-H15A 108.401 105.381

C2-C3-H3 109.016 109.336 C16-C15-H15B 108.401 110.091

C2-C3-C4 113.019 113.935 C16-C15-C14 115.381 112.841

H2-C3-H3 107.729 107.264 H15A-C15-H15B 107.501 107.301

H2-C3-C4 108.927 108.417 H15A-C15-C14 108.401 111.031

H3-C3-C4 108.953 110.504 H15B-C15-C14 108.401 109.991

C3-C4-C5 120.524 119.383 C15-C14-C13 120.801 120.521

C3-C4-C9 121.631 121.944 C15-C14-C9 121.601 120.511

C5-C4-C9 117.834 118.666 C13-C14-C9 117.601 118.931

C4-C5-H4 119.346 119.315 C14-C13-H13 119.501 119.321

C4-C5-C6 121.301 120.995 C14-C13-C12 120.901 120.251

H4-C5-C6 119.354 119.687 H13-C13-C12 119.501 120.421

C5-C6-H5 120.147 119.944 C13-C12-H12 119.901 119.711

C5-C6-C7 119.766 119.872 C13-C12-C11 120.201 120.371

H5-C6-C7 120.087 120.182 H12-C12-C11 119.901 119.921

C6-C7-H6 119.976 120.178 C12-C11-H11 120.201 120.061

C6-C7-C8 120.087 119.598 C12-C11-C10 119.701 119.771

H6-C7-C8 119.936 120.224 H11-C11-C10 120.201 120.161

C7-C8-H7 120.041 120.024 C11-C10-H10 119.701 120.111

C7-C8-C9 119.768 120.411 C11-C10-C9 120.501 119.871

H7-C8-C9 120.191 119.565 H10-C10-C9 119.701 120.021

C4-C9-C8 121.223 120.458 C14-C9-C10 121.101 120.801

C4-C9-H8 119.384 119.035 C14-C9-H9 119.501 119.391
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4.3 Dihedral angle

Dihedral angle value increases in the RPASMA compared to MA and LPA, it shows
decrease in value where the hydrogen bonding takes place. The negative values in the
case of molecular crystal is due to the formation non-centerosymmetric organic salt
having delocalisation of charge. The steric hindrance give distorted ring structure is
shown in the Table 4. The decrease in torsional values of salt compared to the MA and
LPA shows the high symmetry attained during crystallisation due to hydrogen bond-
ing interactions. The charge transfer mechanism during crystallisation result in nega-
tive values [16].

Experimental Theoretical Corresponding
atoms in RPASMA

Experimental Theoretical

C8-C9-H8 119.393 120.404 C10-C9-H9 119.501 119.811

C2-N1-H9 112.675 82.203 C16-N1-H1A 113.501 112.231

C2-N1-H10 110.662 111.593 C16-N1-H1B 107.801 107.301

C2-N1-H11 109.646 111.219 C16-N1-H1C 112.701 113.631

H9-N1-H10 105.982 133.369 H1A-N1-H1B 109.001 102.361

H9-N1-H11 106.483 107.774 H1A-N1-H1C 105.001 109.561

H10-N1-H11 111.294 107.603 H1B-N1-H1C 108.001 111.161

Table 3.
Bond angle (Å).

Experimental Theoretical Corresponding
atoms in RPASMA

Experimental Theoretical

Atoms
in MA

O1-C1-C2-C3 59.381 81.265 O1-C8-C7-C6 69.900 94.817

O1-C1-C2-O3 �176.954 �156.333 O1-C8-C7-O3 �167.100 �167.106

O2-C1-C2-C3 �121.821 �96.124 O2-C8-C7-C6 �110.800 �110.852

O2-C1-C2-O3 1.844 26.279 O2-C8-C7-O3 12.200 38.300

C1-C2-C3-C4 69.561 73.525 C8-C7-C6-C5 �70.900 �70.832

O3-C2-C3-C4 �52.141 �45.164 O3-C7-C6-C5 171.300 150.782

O2-C2-C3-C8 126.482 135.629 O3-C7-C6-C1 �6.900 �28.943

C8-C3-C4-C5 �0.900 �0.560 C1-C6-C4-C5 �1.600 0.480

C2-C3-C8-C7 �177.848 �179.502 C7-C6-C1-C2 179.200 178.505

C3-C4-C5-C6 1.185 0.425 C6-C4-C5-C3 1.300 0.561

C4-C5-C6-C7 �1.347 �0.024 C4-C5-C3-C2 �0.300 �0.862

C6-C5-C8-C3 �1.014 0.103 C3-C2-C1-C6 0.100 0.924

Atoms
in LPA

O1-C1-C2-C3 �91.018 �24.481 O5-C17-C16-C15 �75.300 �54.612

O1-C1-C2-N1 148.858 �153.905 O5-C17-C16-N1 160.000 �177.121

O2-C1-C2-C3 86.524 156.910 O4-C17-C16-C15 103.200 125.749

O2-C1-C2-N1 �33.601 27.485 O4-C17-C16-N1 �21.500 3.240
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4.4 Bond alteration coefficient

The Bond Alteration Coefficient (BAC) of the compounds show the solid state
experimental measurements of MA and RPASMA are almost equal but the theoretical
gaseous phase measurements are varying due to van der Waals forces of attraction.
The BAC of LPA and RPASMA are showing variations in both solid and gaseous phase
measurements indicate the zwitter ionic nature of LPA leads to charge transfer mech-
anism as shown in the Table 5.

Experimental Theoretical Corresponding
atoms in RPASMA

Experimental Theoretical

C1-C2-C3-C4 70.644 88.972 C17-C16-C15-C14 �56.400 �63.318

N1-C2-C3-C4 �168.363 �145.745 N1-C16-C15-C14 67.600 57.061

C2-C3-C4-C5 81.910 90.273 C16-C15-C14-C9 �84.500 �102.871

C2-C3-C4-C9 �99.128 �88.697 C16-C15-C14-C13 94.900 74.611

C9-C4-C5-C6 1.012 0.228 C13-C14-C9-C10 �0.300 �0.811

C3-C4-C9-C8 �179.174 178.940 C15-C14-C13-C12 �179.600 �176.669

C5-C4-C9-C8 �0.185 �0.037 C9-C14-C13-C12 �0.200 0.853

C4-C5-C6-C7 �1.703 �0.263 C14-C9-C10-C11 0.500 0.359

C5-C6-C7-C8 1.546 0.105 C9-C10-C11-C12 �0.200 0.060

C6-C7-C8-C9 �0.736 0.083 C10-C11-C12-C13 �0.300 �0.014

C7-C8-C9-C4 0.055 �0.117 C11-C12-C13-C14 0.500 �0.449

Table 4.
Dihedral angle (Å).

Exp BAC DFT BAC RPASMA Exp BAC DFT BAC

MA C1-C2 1.507 1.519 C17-C16 1.521 1.525

C2-C3 1.505 0.002 1.514 0.005 C16-C15 1.516 0.005 1.514 0.009

C3-C4 1.366 0.139 1.397 0.117 C15-C14 1.381 0.135 1.395 0.119

C4-C5 1.369 �0.003 1.391 0.006 C14-C13 1.378 0.003 1.392 0.003

C5-C6 1.344 0.025 1.394 �0.003 C13-C12 1.361 0.017 1.394 0.002

0.166 0.128 0.16 0.133

LPA C4-C5 1.376 1.397 C13-C14 1.383 1.401

C5-C6 1.369 0.007 1.392 0.005 C12-C13 1.381 0.002 1.391 0.01

C6-C7 1.368 0.001 1.392 0 C11-C12 1.361 0.02 1.393 �0.002

C7-C8 1.359 0.009 1.392 0 C10-C11 1.356 0.005 1.391 0.002

C8-C9 1.375 0.016 1.392 0 C9-C10 1.377 0.021 1.392 �0.001

0.033 0.005 0.048 0.012

Table 5.
Bond alteration coefficient analysis of the title compounds.
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4.5 Hydrogen bonding

The hydrogen bonding in XRD values and DFT values confirm the charge transfer
mechanism happening between donor- acceptor interactions resulting in the forma-
tion non centerosymmetric crystallisation [17] as shown in the Table 6.

4.6 Mulliken atomic charges for MA, LPA and RPASMA

Mulliken atomic charges of the compounds show large positive charges of the
acceptor hydrogen atoms and high negative charges of the donor O atom and N atoms
respectively. MA and RPASMA show decrease in charge values respectively but the
carbon atoms close to hydrogen bonding show increase in the atomic charge value.
H1A of RPASMA connected to nitrogen atom show higher positive charge compared
to LPA because of charge transfer interactions during hydrogen bonding [18]. The
Mulliken atomic charges show the presence of charge transfer mechanism in the
crystal formation as shown in the Table 7.

D – H… .. A d(D-H) d(H… ..A) d(D… ..A) ∠DHA

Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo.

C(15) – … .. O(5) 0.970 1.096 2.877 2.597 3.072 2.928 92.27 96.32

O(3) – H(3A)… .. O(4) 0.812 1.011 1.807 1.606 2.605 2.607 167.15 116.70

N(1) – H(1A)… .. O(2) 0.886 1.052 2.057 1.747 2.918 2.744 163.59 156.50

N(1) – H(1B)… .. O(4) 0.940 1.025 2.819 2.213 2.704 2.529 73.32 95.68

Table 6.
Hydrogen bonding in RPASMA.

MA
ATOM

Charge Corresponding atoms in
RPASMA

Charge LPA
ATOM

Charge RPASMA
ATOM

Charge

C1 0.246 C8 �0.267 C1 0.405 C17 0.108

C2 0.13 C7 0.744 C2 �0.518 C16 �0.176

C3 �0.648 C6 �1.259 C3 0.079 C15 0.055

C4 0.699 C5 0.094 C4 �0.082 C14 �0.544

C5 �0.114 C4 �0.219 C5 �0.107 C13 0.214

C6 0.045 C3 �0.001 C6 �0.112 C12 �0.004

C7 �0.246 C2 0.006 C7 0.002 C11 �0.289

C8 �0.419 C1 0.19 C8 �0.297 C10 �0.034

H1 0.137 H7 0.132 C9 �0.016 C9 0.081

H2 0.144 H2 0.132 H1 0.199 H16 0.171

H3 0.112 H3 0.134 H2 0.147 H15A 0.217

H4 0.107 H4 0.129 H3 0.164 H15B 0.107

H5 0.109 H5 0.128 H4 0.075 H13 0.164

H6 0.094 H1 0.137 H5 0.1 H12 0.137
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4.7 Proton NMR

The non centerosymmetric structure of the RPASMA show the chemical shifts
for the various type of protons as expected for both shielding effect and deshielding
effect as shown in the Table 8. The OH proton present in the H-C-OH environment

MA
ATOM

Charge Corresponding atoms in
RPASMA

Charge LPA
ATOM

Charge RPASMA
ATOM

Charge

H7 0.4 H1D 0.385 H6 0.098 H11 0.047

H8 0.388 H3A 0.556 H7 0.104 H10 0.131

O1 �0.416 O1 �0.407 H8 0.15 H9 0.081

O2 �0.375 O2 �0.339 H9 0.416 H1A 0.506

O3 �0.393 O3 �0.333 H10 0.335 H1B 0.403

H11 0.332 H1C 0.395

O1 �0.469 O4 �0.641

O2 �0.395 O5 �0.429

N1 �0.61 N1 �0.642

Total
charge

0 �0.058 0 0.058

Table 7.
Mulliken atomic charges for MA, LPA and RPASMA.

Hydrogen atom
number

Position in RPASMA Experiment
(ppm)

Theoretical
(ppm)

H1 MA aromatic ring 7–8 9.65

H2 MA aromatic ring 7–8 7.98

H3 MA aromatic ring 7–8 7.47

H4 MA aromatic ring 7–8 7.57

H5 MA aromatic ring 7–8 9.5

H1D H in H-C-OH in MA 5 6.13

H7 H in OH in H-C-OH in MA 3.7 2.9

H3A H in COOH in MA 7–8 9.7

H9 LPA aromatic ring 7–8 7.64

H10 LPA aromatic ring 7–8 8.26

H11 LPA aromatic ring 7–8 6.14

H12 LPA aromatic ring 7–8 7.99

H13 LPA aromatic ring 7–8 9.7

H15A CH2 in LPA 7–8 4.32

H15B CH2 in LPA 3.7 4.31

H16 H in C connected to N in LPA 3.8 4.1
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and the COOH environment close to each other. The molecular strain in the
molecule due to hydrogen bonding leads to the values for both experimental and
theoretical values in the measurements of XRD and DFT respectively as shown in the
Figures 4 and 5.

4.8 Carbon NMR

Carbon NMR calculated to TMS show similar values for both experimental and
theoretical values of chemical shifts, Table 9. The experimental values are less com-
pared to the theoretical values because of the method of estimation in the solid state
and gaseous state respectively. Aromatic carbon shifts show the increase in
theoretical values, the functional group carbon atoms show almost same or decrease
in theoretical values may be due to the charge delocalisation in solid and gaseous
phases respectively.

4.9 FTIR

The non linear aromatic molecules obey the 3N-6 rule for fundamental modes of
vibrations, (N is the total number of atoms in the molecule). The number of atoms in

Figure 4.
Proton NMR of RPASMA.

Hydrogen atom
number

Position in RPASMA Experiment
(ppm)

Theoretical
(ppm)

H1A H in NH3+ in LPA connected to MA 5.1 7.63

H1B H in NH3+ in LPA 5.1 7.5

H1C H in NH3+ in LPA 5.1 7.2

Table 8.
Proton NMR.
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Figure 5.
Carbon NMR of RPASMA.

Carbon atom number Position in RPASMA Experiment (ppm) Theoretical (ppm)

C1 MA aromatic ring 127.08 143.97

C2 MA aromatic ring 127.97 137.71

C3 MA aromatic ring 128.51 145.51

C4 MA aromatic ring 128.85 141.83

C5 MA aromatic ring 129.88 139.73

C6 MA aromatic ring connected to C7 129.88 164.08

C7 H-C-OH in MA 72.93 73.28

C8 COOH in MA 174.51 157.17

C9 LPA aromatic ring 127.08 122.26

C10 LPA aromatic ring 127.97 136.26

C11 LPA aromatic ring 128.51 144.24

C12 LPA aromatic ring 128.85 142.21

C13 LPA aromatic ring 129.88 145.84

C14 LPA aromatic ring 129.88 154.76
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MA are 19 and the fundamental modes of vibrations expected are 51, also confirmed
by DFT study. The presence of total number of 23 atoms in LPA show 63
fundamental modes of vibrations by FTIR, which has been confirmed by DFT
study. The RPASMA molecule with 42 atoms which shows 120 modes of fundamental
vibrations confirmed by DFT study. The comparative FTIR PLOT of the title
compounds is shown in the Figure 6.

4.10 FT Raman

The polarisation effect leading to dipole change is measured using FT Raman.
The charge transfer mechanism in the RPASMA is confirmed by the FT Raman
study and is shown in the Figure 7 and the respective values are given in the
Table 10.

Figure 6.
Comparison of FTIR of the compounds.

Carbon atom number Position in RPASMA Experiment (ppm) Theoretical (ppm)

C15 LPA -CH2 129.88 146.33

C16 LPA -C-N 36.99 60.94

C17 COOH in LPA 140.96 120.39

Table 9.
Comparative carbon NMR data of RPASMA.

97

Impact of Crystal Parameters in XRD and DFT Measurements
DOI: http://dx.doi.org/10.5772/intechopen.112291



5. Thermochemical properties

The thermochemical properties of the compounds indicate the spontaneity of the
reaction and it is accompanied by the decrease in free energy. As the polarisation
increases due to charge transfer mechanism, donor – acceptor interactions, the dipole
moment increases in the compound after crystallisation as bimolecular single crystal
(Table 11).

The comparison of HOMO – LUMO energy details Figures 8 and 9 show the low
energy gap in RPASMA formation from the donor – acceptor interactions of MA and

Figure 7.
Comparison of the compounds FT Raman study.

Wavenumber (cm�1) MA LPA RPASMA

3060 0.092 0.110 0.081

2939 0.033 0.065 0.029

1604 0.033 0.032 0.028

1189 0.022 0.012 0.017

1032 0.017 0.013 0.016

1000 0.055 0.059 0.048

861 0.016 0.014 0.010

822 0.002 0.013 0.009

757 0.016 0.013 0.008

617 0.010 0.008 0.008

Table 10.
Comparison of Raman intensities of MA, LPA and RPASMA.
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Parameter MA LPA RPASMA

Total Energy (E) Hartree �535.04918 �554.4665 �1089.5313

Zero point Vibrational Energy Kcal/Mole 93.1878 119.2589 213.9199

Dipole moment (Debye) 3.2938 4.9247 7.0780

Total heat capacity Cal/Mole-Kelvin 36.5180 41.4870 81.5680

Total Entropy Cal/Mole-Kelvin 97.6190 104.5540 151.3150

Total thermal Energy Kcal/Mol 99.2460 126.0270 227.1680

Table 11.
Comparison of thermochemical properties of MA, LPA and RPASMA.

Figure 8.
RPASMA HOMO PLOT.

Figure 9.
RPASMA LUMO PLOT.
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LPA, which is resulting in the formation of less stable and highly reactive compound
as shown in the Table 12 [19, 20].

6. Conclusion

The donor – acceptor interactions in the MA and LPA, give charge transfer mecha-
nism in monoclinic RPASMA. The comparative study of the compounds show the
parameters of solid state XRD measurements and the gaseous state DFT measurements
are comparable. This study also confirms the product having inter and intra molecular
hydrogen bonding, polarisation and van der Waals forces of attractions. The C2 space
group results in noncenterosymmetric crystal structure. The FTIR vibrational study
confirms the XRD and DFT parameters. The low energy gap of the RPASMA results in
highly reactive nature and possibilities of compound in biological activity.
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Parameter MA LPA RPASMA

HOMO (Orbital) 40 44 84

HOMO (Energy) �0.27163 �0.25791 �0.25269

LUMO (Orbital) 41 45 85

LUMO (Energy) �0.04288 �0.05366 �0.06529

Energy Gap �0.22875 �0.20425 �0.1874

Table 12.
Comparison of HOMO – LUMO energies of MA, LPA and RPASMA.
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