Svein Linge - Hans Petter Langtangen

Programming for
Computations —

MATLAB/Octave

Editorial Board
T.J.Barth
M. Griebel

@ Springer Open

Texts in Computational
Science and Engineering

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

14

More information about this series at http://www.springer.com/series/5151

http://www.springer.com/series/5151

Svein Linge - Hans Petter Langtangen

Programming
for Computations
— MATLAB/Octave

A Gentle Introduction to Numerical
Simulations with MATLAB/Octave

@ Springer Open

Svein Linge Hans Petter Langtangen

Department of Process, Energy and Simula Research Laboratory
Environmental Technology Lysaker, Norway

University College of Southeast Norway

Porsgrunn, Norway On leave from:

Department of Informatics
University of Oslo
Oslo, Norway

ISSN 1611-0994

Texts in Computational Science and Engineering

ISBN 978-3-319-32451-7 ISBN 978-3-319-32452-4 (eBook)
DOI 10.1007/978-3-319-32452-4

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2016947215
Mathematic Subject Classification (2010): 34, 35, 65, 68

© The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access.

Open Access This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, a link is provided to the
Creative Commons license and any changes made are indicated.

The images or other third party material in this book are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

This work is subject to copyright. All commercial rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

http://creativecommons.org/licenses/by-nc/4.0/
http://www.springer.com

Preface

Computing, in the sense of doing mathematical calculations, is a skill that mankind
has developed over thousands of years. Programming, on the other hand, is in
its infancy, with a history that spans a few decades only. Both topics are vastly
comprehensive and usually taught as separate subjects in educational institutions
around the world, especially at the undergraduate level. This book is about the
combination of the two, because computing today becomes so much more powerful
when combined with programming.

Most universities and colleges implicitly require students to specialize in com-
puter science if they want to learn the craft of programming, since other student
programs usually do not offer programming to an extent demanded for really mas-
tering this craft. Common arguments claim that it is sufficient with a brief introduc-
tion, that there is not enough room for learning programming in addition to all other
must-have subjects, and that there is so much software available that few really need
to program themselves. A consequence is that engineering students often graduate
with shallow knowledge about programming, unless they happened to choose the
computer science direction.

We think this is an unfortunate situation. There is no doubt that practicing engi-
neers and scientists need to know their pen and paper mathematics. They must also
be able to run off-the-shelf software for important standard tasks and will certainly
do that a lot. Nevertheless, the benefits of mastering programming are many.

Why learn programming?

1. Ready-made software is limited to handling certain standard problems. What do
you do when the problem at hand is not covered by the software you bought?
Fortunately, a lot of modern software systems are extensible via programming.
In fact, many systems demand parts of the problem specification (e.g., material
models) to be specified by computer code.

2. With programming skills, you may extend the flexibility of existing software
packages by combining them. For example, you may integrate packages that do
not speak to each other from the outset. This makes the work flow simpler, more
efficient, and more reliable, and it puts you in position to attack new problems.

Vi Preface

3. It is easy to use excellent ready-made software the wrong way. Insight in
programming and the mathematics behind is fundamental for understanding
complex software, avoiding pitfalls, and become a safe user.

4. Bugs (errors in computer code) are present in most larger computer programs
(also in the ones from the shop!). What do you do when your ready-made
software gives unexpected results? Is it a bug, is it wrong use, or is it the math-
ematically correct result? Experience with programming of mathematics gives
you a good background for answering these questions. The one who can pro-
gram, can also make tailored code for a simplified problem setting and use that
to verify the computations done with off-the-shelf software.

5. Lots of skilled people around the world solve computational problems by writ-
ing their own code and offer their code for free on the Internet. To take advantage
of this truly great source of software in a reliable way, one must normally be able
to understand and possibly modify computer code offered by others.

6. Itisrecognized world wide that students struggle with mathematics and physics.
Too many find such subjects difficult and boring. With programming, we can
execute the good old subjects in a brand new way! According to the authors’
own experience, students find it much more motivating and enlightening when
programming is made an integrated part of mathematics and physical science
courses. In particular, the problem being solved can be much more realistic than
when the mathematics is restricted to what you can do with pen and paper.

7. Finally, we launch our most important argument for learning computer program-
ming: the algorithmic thinking that comes with the process of writing a program
for a computational problem enforces a thorough understanding of both the
problem and solution method. We can simply quote the famous Norwegian
computer scientist Kristen Nyggaard: “Programming is understanding”.

In the authors’ experience, programming is an excellent pedagogical tool for
understanding mathematics: “You think you know when you can learn, are more
sure when you can write, even more when you can teach, but certain when you
can program” (Alan Perlis, computer scientist, 1922-1990). Consider, for example,
integration. A numerical method for integration has a much stronger focus on what
the integral actually is and means compared to analytical methods, where much
time and effort must be devoted to integration by parts, integration by substitution,
etc. Moreover, when programming the numerical integration formula, it becomes
evident that it works for “all” mathematical functions and that the implementation
should be in terms of a general function applicable to “all” integrals. In this way,
students learn to recognize a special problem as belonging to a class of problems
(e.g., integration, differential equations, root finding), for which we have general
numerical methods implemented in widely applicable software. When they write
this software, as we do in this book, they learn how to generalize and increase the
abstraction level of the mathematical problem. When they use this software, they
learn how a special case should be attacked by general methods and software for
the class of problems that comprises the special case at hand. This is the power of
mathematics in a nutshell, and it is paramount that students understand this way of
thinking.

Preface vii

Target audience and background knowledge This book was written for students,
teachers, engineers and scientists that know nothing about programming and nu-
merical methods from before, but who seek a minimum of the fundamental skills
required to get started with programming as a tool for solving scientific and engi-
neering problems. Some knowledge of one- and multi-variable calculus is assumed.
The basic programming concepts are presented in only 50 pages (Chaps. 1 and 2),
before practical applications of these concepts are demonstrated in important math-
ematical subjects addressed in the remaining parts of the book (Chaps. 3-6). Each
chapter is followed by a set of exercises that cover a wide range of application ar-
eas, e.g. biology, geology, statistics, physics and mathematics. The exercises were
particularly designed to bring across important points from the text. The reader will
realize that the modest content of the first 50 pages can in fact bring you quite far
in powerful problem solving!

Learning the very basics of programming should not take long, but as with any
other craft, mastering the skill requires continued and extensive practice. Some
beginning practice is gained through Chaps. 3—6, but the authors strongly empha-
size that this is only a start. Students should continue to practice programming in
subsequent courses, while those who exercise self-study, should keep up the learn-
ing process through continued application of the craft. The book is a good starting
point when teaching computer programming as an integrated part of standard uni-
versity courses in mathematics and physical sciences. In our experience, such an
integration is doable and indeed rewarding.

Numerical methods An overall goal with this book is to motivate computer pro-
gramming as a very powerful tool for doing mathematics. All examples are related
to mathematics and its use in engineering and science. However, to solve math-
ematical problems through computer programming, we need numerical methods.
Explaining basic numerical methods is therefore an integral part of the book. Our
choice of topics is governed by what is most needed in science and engineering, as
well as in the teaching of applied physical science courses. Mathematical models
are then central, with differential equations constituting the most frequent type of
models. Consequently, the numerical focus in this book is on differential equations.
As a soft pedagogical starter for the programming of mathematics, we have chosen
the topic of numerical integration. There is also a chapter on root finding, which
is important for the numerical solution of nonlinear differential equations. We re-
mark that the book is deliberately brief on numerical methods. This is because our
focus is on implementing numerical algorithms, but to develop reliable, working
programs, the programmer must be confident about the basic ideas of the numerical
approximations involved.

The computer language: Matlab We have chosen to use the programming lan-
guage Matlab, because this language gives very compact and readable code that
closely resembles the mathematical recipe for solving the problem at hand. Mat-
lab also has a gentle learning curve. There is a Python companion of this book in
case that language is preferred. Comparing these two versions of the book provides
an excellent demonstration of how similar these languages are. We use the term
Matlab throughout this book to mean the commercial MATLAB (R) software [12]
or the open source alternative Octave [4]. Other computer languages, like Fortran,

viii Preface

C, and C++, have a strong position in science and engineering. During the last
two decades, however, there has been a significant shift in popularity from these
compiled languages to more high-level and easier-to-read languages like Matlab,
Python, R, Maple, Mathematica, and IDL, for instance. This latter class of lan-
guages is computationally less efficient, but superior with respect to overall human
problem solving efficiency. This book emphasizes how fo think like a programmer,
rather than focusing on technical language details. Thus, the book should put the
reader in a good position for learning other programming languages later, including
the classic ones: Fortran, C, and C++.

How this book is different There are numerous texts on computer programming
and numerical methods, so how does the present one differ from the existing lit-
erature? Compared to books on numerical methods, our book has a much stronger
emphasis on the craft of programming and on verification. We want to give students
a thorough understanding of how one thinks about programming as a problem solv-
ing method and how one can be sure that programs are correct (well, you can never
be completely sure, but we show how you can provide convincing evidence for
correctness).

Even though there are lots of books on numerical methods where many algo-
rithms have a corresponding computer implementation (see, e.g., [1-3, 5-7, 11,
13-22]) it is assumed that the reader “can program” beforehand. The present book
teaches the craft of structured programming along with the fundamental ideas of
numerical methods. Furthermore, we have so far not found any other numerical
methods book that has a strong emphasis on verifying implementations. In this
book, unit testing and corresponding test functions are introduced early on. We
also put much emphasis on coding algorithms as functions, as opposed to “flat pro-
grams”, which often dominate in the literature and among practitioners. Functions
are reusable because they utilize the general formulation of a mathematical algo-
rithm such that it becomes applicable to a large class of problems.

There are also numerous books on computer programming, but to our knowledge
only one [9] that aims to teach how to think about programming in the context
of numerical methods and scientific applications. That book [9] has its primary
focus on teaching Python and is a very comprehensive introduction to Python as
alanguage and the thinking about programming as a computer scientist. Sometimes
one needs a text that does not go so deep into the language-specific details, but
instead targets the shortest path to reliable mathematical problem solving through
programming. With this attitude in mind, a lot of topics were left out of the present
book, simply because they were not strictly needed in the mathematical problem
solving process. An example of such a topic is object-oriented programming.

Whenever the need for a structured introduction to programming arises in sci-
ence and engineering courses, this book may be your option, either for self-study or
for use in organized teaching. The thinking, habits, and practice covered in a couple
of hundred pages will put readers in a firm position for utilizing and understanding
the power of computers for problem solving in science and engineering.

Supplementary materials All program and data files referred to in this book are
available from the book’s primary web site: http://hplgit.github.io/progdcomp/.

http://hplgit.github.io/prog4comp/

Preface ix

Acknowledgments First of all, we want to thank all students who attended the
courses FM 1006 Modelling and simulation of dynamic systems, FM 1115 Scientific
Computing, FB1012 Mathematics I and FB2112 Physics at the University College
of Southeast Norway over the last couple of years. They worked their way through
early versions of this text and gave us constructive and positive feedback that helped
us correct errors and improve the book in so many ways. Special acknowledgement
goes to Guandong Kou and Edirisinghe V. P. J. Manjula for their careful reading
of the manuscript and constructive suggestions for improvement. The careful proof
reading by Yapi Donatien Achou is also highly appreciated. We thank all our good
colleagues at the University College of Southeast Norway, the University of Oslo,
and Simula Research Laboratory for their continued support and interest, enlighten-
ing discussions, and for providing such an inspiring environment for teaching and
science. In particular, Svein Linge is thankful to Marius Lysaker for their fruitful
collaboration on introducing programming as an integral part of mathematics and
physics bachelor courses at the University College of Southeast Norway. Finally,
the authors must thank the Springer team with Dr. Martin Peters, Thanh-Ha Le Thi,
and Yvonne Schlatter for the effective editorial and production process.

The text was written in the DocOnce' [8] markup language, which allowed us to
work with a single text source for both the Python and the Matlab version of this
book, and to produce various electronic versions of the book.

December 2015 Svein Linge and Hans Petter Langtangen

Uhttps://github.com/hplgit/doconce

https://github.com/hplgit/doconce
https://github.com/hplgit/doconce

Contents

1 The First Few Steps
1.1 What Is a Program? And What Is Programming?
1.2 A Matlab Program with Variables

1.2.1 TheProgram
1.2.2 Dissection of the Program
1.2.3 Why Not Just Use a Pocket Calculator?
1.2.4 Why You Must Use a Text Editor to Write Programs
1.2.5 Write and Run Your First Program
1.3 A Matlab Program with a Library Function
1.4 A Matlab Program with Vectorization and Plotting
1.5 More BasicConcepts i
1.5.1 Using Matlab Interactively
1.5.2 Arithmetics, Parentheses and Rounding Errors
1.53 Variables
1.5.4 Formatting Text and Numbers
155 Arrayso
1.5.6 Plotting
1.5.7 Error Messages and Warnings
1.5.8 InputData
1.5.9 Symbolic Computations
1.5.10 Concluding Remarks
1.6 EXEICISES . . . oo oot

2 BasicConstructions L L L.
2.1 IfTests . .o oo o
2.2 Functions
23 ForLoops
24 WhileLoops
2.5 Reading from and Writingto Files
2.6 EXErCiSeso

3 Computing Integrals
3.1 Basic Ideas of Numerical Integration
3.2 The Composite TrapezoidalRule

xi

Xii Contents

3.2.1 TheGeneral Formula. 51

3.2.2 Implementation 52

3.2.3 Alternative Flat Special-Purpose Implementation 54

3.3 The Composite Midpoint Method 57

33.1 TheGeneral Formula. 58

3.3.2 Implementationo.... 58

3.3.3 Comparing the Trapezoidal and the Midpoint Methods . . . 59

34 Testing . . . oo i e 60

3.4.1 Problems with Brief Testing Procedures 60

3.4.2 Proper Test Procedures 61

3.4.3 Finite Precision of Floating-Point Numbers 62

3.4.4 Constructing Unit Tests and Writing Test Functions 64

3.5 Vectorization 67

3.6 Measuring Computational Speed 69

3.7 Double and Triple Integrals 69

3.7.1 The Midpoint Rule for a Double Integral 69

3.7.2 The Midpoint Rule for a Triple Integral 73

3.7.3 Monte Carlo Integration for Complex-Shaped Domains .. 76

3.8 EXErCiSes 80

4 Solving Ordinary Differential Equations 87

4.1 Population Growth 88

4.1.1 Derivationofthe Model 89

4.1.2 Numerical Solution 91

4.1.3 Programming the Forward Euler Scheme; the Special Case 94

4.1.4 Understanding the Forward Euler Method 97

4.1.5 Programming the Forward Euler Scheme; the General Case 97

4.1.6 Making the Population Growth Model More Realistic . .. 98

4.1.7 Verification: Exact Linear Solution of the Discrete Equations 101

4.2 Spreading of Diseases 102

4.2.1 SpreadingofaFlu 102
4.2.2 A Forward Euler Method for the Differential Equation

System 105

4.2.3 Programming the Numerical Method; the Special Case . . . 105

424 OutbreakorNot. 106

4.2.5 Abstract Problem and Notation 108

4.2.6 Programming the Numerical Method; the General Case . . 109

4.2.7 Time-Restricted Immunity 111

4.2.8 Incorporating Vaccination 111

4.2.9 Discontinuous Coefficients: a Vaccination Campaign 114

4.3 Oscillating One-Dimensional Systems 115

4.3.1 Derivation of a Simple Model 115

4.3.2 Numerical Solution 117

4.3.3 Programming the Numerical Method; the Special Case . . . 117

4.3.4 A Magic Fix of the Numerical Method 120

4.3.5 The 2nd-Order Runge-Kutta Method (or Heun’s Method) . 122

4.3.6 Software for SolvingODEs 123

4.3.7 The 4th-Order Runge-Kutta Method 130

Contents

xiii

4.3.8 More Effects: Damping, Nonlinearity, and External Forces 133

4.3.9 Illustration of Linear Damping 136
4.3.10 Hlustration of Linear Damping with Sinusoidal Excitation . 137
4.3.11 Spring-Mass System with Sliding Friction. 138
4.3.12 A Finite Difference Method; Undamped, Linear Case . .. 141
4.3.13 A Finite Difference Method; Linear Damping 143
4.4 EXEICISES . o v v vt et et et e e 144
5 Solving Partial Differential Equations 153
5.1 Finite Difference Methods 155
5.1.1 Reduction of a PDE to a System of ODEs 156
5.1.2 Construction of a Test Problem with Known Discrete
Solution 158
5.1.3 Implementation: Forward Euler Method 158
5.1.4 Application: Heat ConductioninaRod 160
5.1.5 Vectorization 165
5.1.6 Using Odespy to Solve the System of ODEs 165
5.1.7 Implicit Methods 166
5.2 EXEICISES . o v v vt ottt 169
6 Solving Nonlinear Algebraic Equations 177
6.1 Brute Force Methods 178
6.1.1 Brute Force RootFinding 179
6.1.2 Brute Force Optimization 181
6.1.3 Model Problem for Algebraic Equations 182
6.2 Newton’sMethod 183
6.2.1 Deriving and Implementing Newton’s Method 183
6.2.2 Making a More Efficient and Robust Implementation 186
6.3 The Secant Method 189
6.4 The Bisection Method 191
6.5 Rateof Convergence 193
6.6 Solving Multiple Nonlinear Algebraic Equations 196
6.6.1 Abstract Notation 196
6.6.2 Taylor Expansions for Multi-Variable Functions 196
6.6.3 Newton’sMethod 197
6.6.4 Implementation 198
6.7 EXEICISES . . v v v oottt 199
References 203
Index 205

List of Exercises

Exercise 1.1: Error messagesttt 22
Exercise 1.2: Volume ofacube 23
Exercise 1.3: Area and circumference of acircle 23
Exercise 1.4: Volumes of threecubes 23
Exercise 1.5: Average of integers 23
Exercise 1.6: Interactive computing of volume andarea 23
Exercise 1.7: Update variable at command prompt 24
Exercise 1.8: Formatted printtoscreen 24
Exercise 1.9: Matlab documentation and random numbers 24
Exercise 2.1: Introducing errors. 38
Exercise 2.2: Compare integersaandb 38
Exercise 2.3: Functions for circumference and areaof acircle 38
Exercise 2.4: Function for area of arectangle 39
Exercise 2.5: Areaof apolygon. 39
Exercise 2.6: Average of integers 40
Exercise 2.7: While loop witherrors 40
Exercise 2.8: Area of rectangle versuscircle 40
Exercise 2.9: Find crossing points of two graphs 40
Exercise 2.10: Sort array with numbers 41
Exercise 2.11: Compute 77 o oot 41
Exercise 2.12: Compute combinationsof sets 41
Exercise 2.13: Frequency of random numbers 42
Exercise 2.14: Game 21 e 42
Exercise 2.15: Linear interpolation 42
Exercise 2.16: Test straight line requirement 43
Exercise 2.17: Fit straightlinetodata 43
Exercise 2.18: Fit sines to straightline 44
Exercise 2.19: Count occurrences of a string inastring 45
Exercise 3.1: Hand calculations for the trapezoidal method 80
Exercise 3.2: Hand calculations for the midpoint method 80
Exercise 3.3: Compute a simple integral 80
Exercise 3.4: Hand-calculations with sine integrals 80
Exercise 3.5: Make test functions for the midpoint method 81
Exercise 3.6: Explore rounding errors with large numbers 81

XVi List of Exercises

Exercise 3.7: Write test functions for f04 Sxdx oo 81
Exercise 3.8: Rectangle methods 81
Exercise 3.9: Adaptive integration 82
Exercise 3.10: Integrating x raised to X 83
Exercise 3.11: Integrate products of sine functions 83
Exercise 3.12: Revisit fit of sines to a function 83
Exercise 3.13: Derive the trapezoidal rule for a double integral 84
Exercise 3.14: Compute the area of a triangle by Monte Carlo integration . . . 84
Exercise 4.1: Geometric construction of the Forward Euler method 144
Exercise 4.2: Make test functions for the Forward Euler method 145
Exercise 4.3: Implement and evaluate Heun’s method 145
Exercise 4.4: Find an appropriate time step; logisticmodel 145
Exercise 4.5: Find an appropriate time step; SIRmodel 146
Exercise 4.6: Model an adaptive vaccination campaign 146
Exercise 4.7: Make a SIRV model with time-limited effect of vaccination . . . 146
Exercise 4.8: Refactor a flat program 146
Exercise 4.9: Simulate oscillations by a general ODE solver 146
Exercise 4.10: Compute the energy in oscillations 147
Exercise 4.11: Use a Backward Euler scheme for population growth 147
Exercise 4.12: Use a Crank-Nicolson scheme for population growth 148
Exercise 4.13: Understand finite differences via Taylor series 148
Exercise 4.14: Use a Backward Euler scheme for oscillations 149
Exercise 4.15: Use Heun’s method for the SIRmodel 150
Exercise 4.16: Use Odespy to solve asimple ODE 150
Exercise 4.17: Set up a Backward Euler scheme for oscillations 150
Exercise 4.18: Set up a Forward Euler scheme for nonlinear and damped
oscillations 151
Exercise 4.19: Discretize an initial condition. 151
Exercise 5.1: Simulate a diffusion equationby hand 169
Exercise 5.2: Compute temperature variations in the ground 170
Exercise 5.3: Compare implicit methods 170
Exercise 5.4: Explore adaptive and implicit methods 171
Exercise 5.5: Investigatethe O rule 171
Exercise 5.6: Compute the diffusion of a Gaussianpeak 172
Exercise 5.7: Vectorize a function for computing the area of a polygon 173
Exercise 5.8: Explore symmetry 173
Exercise 5.9: Compute solutions as? — 00o v vttt it 174
Exercise 5.10: Solve a two-point boundary value problem 175
Exercise 6.1: Understand why Newton’s method can fail 199
Exercise 6.2: See if the secant method fails 199
Exercise 6.3: Understand why the bisection method cannot fail 200
Exercise 6.4: Combine the bisection method with Newton’s method 200
Exercise 6.5: Write a test function for Newton’s method 200

Exercise 6.6: Solve nonlinear equation for a vibratingbeam 200

The First Few Steps

HOW TO WRITE PROGRAMS THAT CAN PRODUCE SUCH PLOTS?
[S H—"

1.0 T T T
08 — Tr2xEXP(-T~2)
' ® o TAXEXP(-T*2)
0.6 -
> o °® 0000y oo
L ° d -
ou : o® %
[)
02 o® ° o, o, . -
0.0 oooo"’l. . | . I""Aqoe-
0.0 0.5 1.0 \S 2.0 2.5 3.0
T
06 1 T o1 1 1 v T
o5 = = — Tr2*EXP(-T~2) |7
our 58 TAUsEXP-TD]
0.3 -
> 02 -
0\ -
0.0F (= -
-0.\|= -
-02 1 1 1 1 1 1 1
0.0 0.5 1.0 \S 2.0 2.5 3.0 35 y.0
T

1.1 What Is a Program? And What Is Programming?

Today, most people are experienced with computer programs, typically programs
such as Word, Excel, PowerPoint, Internet Explorer, and Photoshop. The interaction
with such programs is usually quite simple and intuitive: you click on buttons, pull
down menus and select operations, drag visual elements into locations, and so forth.
The possible operations you can do in these programs can be combined in seemingly
an infinite number of ways, only limited by your creativity and imagination.
Nevertheless, programs often make us frustrated when they cannot do what we
wish. One typical situation might be the following. Say you have some measure-
ments from a device, and the data are stored in a file with a specific format. You
may want to analyze these data in Excel and make some graphics out of it. How-
ever, assume there is no menu in Excel that allows you to import data in this specific

© The Author(s) 2016 1
S. Linge, H.P. Langtangen, Programming for Computations — MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_1

2 1 The First Few Steps

format. Excel can work with many different data formats, but not this one. You start
searching for alternatives to Excel that can do the same and read this type of data
files. Maybe you cannot find any ready-made program directly applicable. You
have reached the point where knowing how to write programs on your own would
be of great help to you! With some programming skills, you may write your own
little program which can translate one data format to another. With that little piece
of tailored code, your data may be read and analyzed, perhaps in Excel, or perhaps
by a new program tailored to the computations that the measurement data demand.

The real power of computers can only be utilized if you can program them.
By programming you can get the computer to do (most often!) exactly what you
want. Programming consists of writing a set of instructions in a very specialized
language that has adopted words and expressions from English. Such languages
are known as programming or computer languages. The set of instructions is given
to a program which can translate the meaning of the instructions into real actions
inside the computer.

The purpose of this book is to teach you to write such instructions dedicated to
solve mathematical and engineering problems by fundamental numerical methods.

There are numerous computer languages for different purposes. Within the en-
gineering area, the most widely used computer languages are Python, MATLAB,
Octave, Fortran, C, C++, and to some extent Maple, and Mathematica. How you
write the instructions (i.e. the syntax) differs between the languages. Let us use an
analogy.

Assume you are an international kind of person, having friends abroad in Eng-
land, Russia and China. They want to try your favorite cake. What can you do?
Well, you may write down the recipe in those three languages and send them over.
Now, if you have been able to think correctly when writing down the recipe, and
you have written the explanations according to the rules in each language, each of
your friends will produce the same cake. Your recipe is the “computer program”,
while English, Russian and Chinese represent the “computer languages” with their
own rules of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”. Depending on
the error, this may cause “baking execution” to stop, or perhaps produce the wrong
cake. In your computer program, the errors you introduce are called bugs (yes,
small insects! ... for historical reasons), and the process of fixing them is called
debugging. When you try to run your program that contains errors, you usually
get warnings or error messages. However, the response you get depends on the er-
ror and the programming language. You may even get no response, but simply the
wrong “cake”. Note that the rules of a programming language have to be followed
very strictly. This differs from languages like English etc., where the meaning might
be understood even with spelling errors and “slang” included.

This book comes in two versions, one that is based on Python, and one based on
Matlab. Both Python and Matlab represent excellent programming environments
for scientific and engineering tasks. The version you are reading now, is the Matlab
version.

Readers who want to expand their scientific programming skills beyond the
introductory level of the present exposition, are encouraged to study the book
A Primer on Scientific Programming with Python [9]. This comprehensive book
is as suitable for beginners as for professional programmers, and teaches the art

12 A Matlab Program with Variables 3

of programming through a huge collection of dedicated examples. This book is
considered the primary reference, and a natural extension, of the programming
matters in the present book.

Some computer science terms
Note that, quite often, the terms script and scripting are used as synonyms for
program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried to explain
the difference between script and program in a humorous way (from perl.com!):
Suppose you went back to Ada Lovelace’ and asked her the difference between
a script and a program. She’d probably look at you funny, then say something
like: Well, a script is what you give the actors, but a program is what you give
the audience. That Ada was one sharp lady ... Since her time, we seem to
have gotten a bit more confused about what we mean when we say scripting. It
confuses even me, and I'm supposed to be one of the experts.

There are many other widely used computer science terms to pick up. Writing
a program (or script or code) is often expressed as implementing the program.
Executing a program means running the program. An algorithm is a recipe for
how to construct a program. A bug is an error in a program, and the art of
tracking down and removing bugs is called debugging (see, e.g., Wikipedia®).
Simulating or simulation refers to using a program to mimic processes in the
real world, often through solving differential equations that govern the physics
of the processes.

1.2 A Matlab Program with Variables

Our first example regards programming a mathematical model that predicts the po-
sition of a ball thrown up in the air. From Newton’s 2nd law, and by assuming
negligible air resistance, one can derive a mathematical model that predicts the ver-
tical position y of the ball at time 7. From the model one gets the formula

y = vot —0.5g12,

where vy is the initial upwards velocity and g is the acceleration of gravity, for
which 9.81 ms™2 is a reasonable value (even if it depends on things like location
on the earth). With this formula at hand, and when v, is known, you may plug in
a value for time and get out the corresponding height.

1.2.1 The Program

Let us next look at a Matlab program for evaluating this simple formula. Assume
the program is contained as text in a file named ball.m. The text looks as follows
(file ball.m):

! http://www.perl.com/pub/2007/12/06/soto- 1 1.html
2 http://en.wikipedia.org/wiki/Ada_Lovelace
3 http://en.wikipedia.org/wiki/Software_bug#Etymology

http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
https://github.com/hplgit/prog4comp/tree/master/src/m/ball.m
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology

4 1 The First Few Steps

% Program for computing the height of a ball in vertical motion

v0 = 5; % Initial velocity
g = 9.81; 7 Acceleration of gravity
t = 0.6; % Time

y = vO*t - 0.5%gxt”2 J Vertical position

Computer programs and parts of programs are typeset with a blue background
in this book. A slightly darker top and bottom bar, as above, indicates that the code
is a complete program that can be run as it stands. Without the bars, the code is just
a snippet and will (normally) need additional lines to run properly.

1.2.2 Dissection of the Program

A computer program is plain text, as here in the file ball.m, which contains in-
structions to the computer. Humans can read the code and understand what the
program is capable of doing, but the program itself does not trigger any actions on
a computer before another program, the Matlab interpreter, reads the program text
and translates this text into specific actions.

You must learn to play the role of a computer

Although Matlab is responsible for reading and understanding your program, it is
of fundamental importance that you fully understand the program yourself. You
have to know the implication of every instruction in the program and be able to
figure out the consequences of the instructions. In other words, you must be able
to play the role of a computer. The reason for this strong demand of knowledge is
that errors unavoidably, and quite often, will be committed in the program text,
and to track down these errors, you have to simulate what the computer does
with the program. Next, we shall explain all the text in ball.m in full detail.

When you run your program in Matlab, it will interpret the text in your file line
by line, from the top, reading each line from left to right. The first line it reads is

% Program for computing the height of a ball in vertical motion.

This line is what we call a comment. That is, the line is not meant for Matlab to read
and execute, but rather for a human that reads the code and tries to understand what
is going on. Therefore, one rule in Matlab says that whenever Matlab encounters
the sign 7 it takes the rest of the line as a comment. Matlab then simply skips
reading the rest of the line and jumps to the next line. In the code, you see several
such comments and probably realize that they make it easier for you to understand
(or guess) what is meant with the code. In simple cases, comments are probably not
much needed, but will soon be justified as the level of complexity steps up.
The next line read by Matlab is

vO = 5; % Initial velocity

12 A Matlab Program with Variables 5

According to its rules, Matlab will now create a variable with the name vO and
set (the value of) that variable equal to 5. We say that 5 is assigned to v0O. This
means that whenever Matlab reads vO hereafter, it plugs in 5 instead of the name
v0, since it knows that vO has the value 5. You may think of vO as a variable v, in
mathematics. The next two lines

81; Y’ Acceleration of gravity
6; % Time

=9.
= 0.
are of the same kind, so having read them too, Matlab knows of three variables (vO0,

g, t) and their values. These variables are then used by Matlab when it reads the
next line, the actual “formula”,

y = vO*t - 0.5%g*xt"2 % Vertical position

Again, according to its rules, Matlab interprets * as multiplication, - as minus and
~ as exponent (let us also add here that, not surprisingly, + and / would have been
understood as addition and division, if such signs had been present in the expres-
sion). Having read the line, Matlab performs the mathematics on the right-hand
side, and then assigns the result (in this case the number 1.2342) to the variable
name y. Also, since the final line has no semi-colon, Matlab understands that we
also want the result printed to screen. When ball.m is run, the number 1.2342
appears on the screen.

Note that leaving out a semi-colon provides an easy way to print things to screen
in general. Simply writing, e.g., vO in the program above, i.e. without the semi-
colon, will make the content of vO be printed to screen.

In the code above, you see several blank lines too. These are simply skipped by
Matlab and you may use as many as you want to make a nice and readable layout
of the code.

1.2.3 Why Not Just Use a Pocket Calculator?

Certainly, finding the answer as done by the program above could easily have been
done with a pocket calculator. No objections to that and no programming would
have been needed. However, what if you would like to have the position of the ball
for every milli-second of the flight? All that punching on the calculator would have
taken you something like four hours! If you know how to program, however, you
could modify the code above slightly, using a minute or two of writing, and easily
get all the positions computed in one go within a second. A much stronger argu-
ment, however, is that mathematical models from real life are often complicated and
comprehensive. The pocket calculator cannot cope with such problems, even not
the programmable ones, because their computational power and their programming
tools are far too weak compared to what a real computer can offer.

6 1 The First Few Steps

1.2.4 Why You Must Use a Text Editor to Write Programs

When Matlab interprets some code in a file, it is concerned with every character in
the file, exactly as it was typed in. This makes it troublesome to write the code into
a file with word processors like, e.g., Microsoft Word, since such a program will
insert extra characters, invisible to us, with information on how to format the text
(e.g., the font size and type). Such extra information is necessary for the text to be
nicely formatted for the human eye. Matlab, however, will be much annoyed by the
extra characters in the file inserted by a word processor. Therefore, it is fundamental
that you write your program in a fext editor where what you type on the keyboard
is exactly the characters that appear in the file and that Matlab will later read. There
are many text editors around. Some are stand-alone programs like Emacs, Vim,
Gedit, Notepad++, and TextWrangler. Many prefer to use the text editor that comes
with the graphical Matlab environment.

1.2.5 Write and Run Your First Program

Reading only does not teach you computer programming: you have to program
yourself and practice heavily before you master mathematical problem solving via
programming. Therefore, it is crucial at this stage that you write and run a Matlab
program. We just went through the program ball.m above, so let us next write and
run that code.

But first a warning: there are many things that must come together in the right
way for ball.m to run correctly on your computer. There might be problems with
your Matlab installation, with your writing of the program (it is very easy to in-
troduce errors!), or with the location of the file, just to mention some of the most
common difficulties for beginners. Fortunately, such problems are solvable, and
if you do not understand how to fix the problem, ask somebody. Typically, once
you are beyond these common start-up problems, you can move on to learn pro-
gramming and how programs can do a lot of otherwise complicated mathematics
for you.

The term Matlab refers to both the software package Matlab from MathWorks
Inc., and the programming language Matlab. Matlab programs can either be run
in the commercial Matlab software package, or they can be run in the free GNU
Octave* software, usually just called Octave. We first describe how to operate the
Matlab software and then Octave.

The first step is to generate a directory in which you will place your future Matlab
code. Do this in a terminal window (Terminal on Mac, Power Shell or Command
Prompt on Windows, or (e.g.) gnome-terminal on Linux). Write mkdir mycode to
create a directory with name mycode. Then move into that directory by writing cd
mycode.

Write and run a program in Matlab. Start Matlab and try out the following.

1. Write the Matlab program ball.m. Do this by choosing File/New/Script from
the menu in the Command window. In the editor window that pops up, simply

4 http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

1.3 A Matlab Program with a Library Function 7

write the code lines there as they were given above for ball.m. Now save this
with the name ball.m in the right directory, i.e. myCode, via Save As from the
File menu. The program is now ready for use!

2. Run the program. Do this in the Command window by writing the name of the
program without the extension, i.e. write “ball”, and press enter. Matlab will
now run the program.

Write a program in a text editor and run it in Octave. Octave users must write
the program in a plain text editor such as Gedit on Linux computers; TextWran-
gler on Mac, or Notepad++ on Windows. Popular, but more advanced text editors,
primarily Emacs and Vim, are also available for these platforms.

1. Write the Matlab program ball.m by launching a text editor and write each line
exactly as they are listed in the ball.m program. Save the file as ball.min the
mycode directory.

2. Run the program. Type octave. The Octave program is started and gives you
a prompt octave:1>, which indicates that you can give Octave commands.
Type run ball.mand press enter. Octave will now run the program.

With a little luck, you should now get the number 1.2342 out in the command win-
dow. If so, congratulations! You have just executed your first self-written computer
program in Matlab (or Octave), and you are ready to go on studying this book!

m-files
A program such as ball.m, i.e., code stored in a file with the extension .m, is
usually referred to as an m-file.

1.3 A Matlab Program with a Library Function

Imagine you stand on a distance, say 10 m away, watching someone throwing a ball
upwards. A straight line from you to the ball will then make an angle with the
horizontal that increases and decreases as the ball goes up and down. Let us consider
the ball at a particular moment in time, at which it has a height of 10 m.

What is the angle of the line then? Again, this could easily be done with a cal-
culator, but we continue to address gentle mathematical problems when learning
to program. Before thinking of writing a program, one should always formulate
the algorithm, i.e., the recipe for what kind of calculations that must be performed.
Here, if the ball is x m away and y m up in the air, it makes an angle 6 with the
ground, where tan § = y/x. The angle is then tan~!(y/x).

Let us make a Matlab program for doing these calculations. We introduce names
x and y for the position data x and y, and the descriptive name angle for the angle
0. The program is stored in a file ball_angle.m:

x = 10; % Horizontal position
y 10; % Vertical position

angle = atan(y/x);
(angle/pi)*180 % Computes and prints to screen

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_angle.m

8 1 The First Few Steps

Before we turn our attention to the running of this program, let us take a look
at one new thing in the code. The line angle = atan(y/x), illustrates how the
function atan, corresponding to tan~' in mathematics, is called with the ratio
y/x as input parameter or argument. The atan function takes one argument,
and the computed value is returned from atan. This means that where we see
atan(y/x),a computation is performed (tan~!(y/x)) and the result “replaces” the
text atan (y/x). This is actually no more magic than if we had written just y/x:
then the computation of y/x would take place, and the result of that division would
replace the text y/x. Thereafter, the result is assigned to the name angle on the
left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles in radians.
The return value of atan must hence be converted to degrees, and that is why we
perform the computation (angle/pi)*180. With the missing semi-colon, Matlab
will do the computations and print the result to the screen. And yes, the famous pi
(1) is a variable that is known to Matlab.

1.4 A Matlab Program with Vectorization and Plotting

We return to the problem where a ball is thrown up in the air and we have a formula
for the vertical position y of the ball. Say we are interested in y at every milli-
second for the first second of the flight. This requires repeating the calculation of
y = vot — 0.5g¢> one thousand times.

We will also draw a graph of y versus ¢ for ¢ € [0, 1]. Drawing such graphs on
a computer essentially means drawing straight lines between points on the curve,
so we need many points to make the visual impression of a smooth curve. With one
thousand points, as we aim to compute here, the curve looks indeed very smooth.

In Matlab, the calculations and the visualization of the curve may be done with
the program ball_plot.m, reading

v0 = b;
g = 9.81;
t = linspace(0, 1, 1001);

y = vO*t - 0.5%g*xt.”2;

plot(t, y);
xlabel(’t (s)’);
ylabel(Cy (m)’);

This program produces a plot of the vertical position with time, as seen in
Fig. 1.1. As you notice, the code lines from the ball.m program in Sect. 1.2 have
not changed much, but the height is now computed and plotted for a thousand points
in time!

Let us take a look at the differences between the new program and our previous
program.

The function 1linspace takes 3 parameters, and is generally called as

linspace(start, stop, n)

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_plot.m

14 A Matlab Program with Vectorization and Plotting 9

14

L2

10

0.8

E

& 0.6
0.4
0.2
Q?;.o 0.2 0.4 0.6 0.8 10

t(s)
| 2lo[o[+] - [Ea]

Fig. 1.1 Plot generated by the script ball_plot.m, showing the vertical position of the ball at
a thousand points in time

This is our first example of a Matlab function that takes multiple arguments. The
linspace function generates n equally spaced coordinates, starting with start
and ending with stop. The expression 1inspace(0, 1, 1001) creates 1001 co-
ordinates between 0 and 1 (including both 0 and 1). The mathematically inclined
reader will notice that 1001 coordinates correspond to 1000 equal-sized intervals in
[0, 1] and that the coordinates are then given by t;, = i /1000 (i =0, 1, ..., 1000).

The value returned from linspace (being stored in t) is an array, i.e., a collec-
tion of numbers. When we start computing with this collection of numbers in the
arithmetic expression vO*t - 0.5%g+t.~2, the expression is calculated for every
number in t (i.e., every ¢; fori = 0, 1,...,1000), yielding a similar collection of
1001 numbers in the result y. That is, y is also an array.

Note the dot that has been inserted in 0. 5xgx*t . ~2, i.e. just before the operator ~.
This is required to make Matlab do ~ to each number in t. The same thing applies
to other operators, as shown in several examples later.

This technique of computing all numbers “in one chunk” is referred to as vec-
torization. When it can be used, it is very handy, since both the amount of code and
computation time is reduced compared to writing a corresponding for or while
loop (Chap. 2) for doing the same thing.

The plotting commands are simple:

1. plot(t, y) means plotting all the y coordinates versus all the t coordinates
2. xlabel(’t (s)’) placesthetextt (s) on the x axis
3. ylabel(’y (m)’) placesthetexty (m) onthe y axis

10 1 The First Few Steps

At this stage, you are strongly encouraged to do Exercise 1.4. It builds on the
example above, but is much simpler both with respect to the mathematics and the
amount of numbers involved.

1.5 More Basic Concepts

So far we have seen a few basic examples on how to apply Matlab programming to
solve mathematical problems. Before we can go on with other and more realistic
examples, we need to briefly treat some topics that will be frequently required in
later chapters. These topics include computer science concepts like variables, ob-
jects, error messages, and warnings; more numerical concepts like rounding errors,
arithmetic operator precedence, and integer division; in addition to more Matlab
functionality when working with arrays, plotting, and printing.

1.5.1 Using Matlab Interactively

You may also use Matlab interactively (i.e. without writing a program). For exam-
ple, you may do calculations like the following directly at the command prompt
>> in the Command window (a prompt means a “ready sign”, i.e. the program al-
lows you to enter a command, and different programs often have different looking
prompts).

>> 2+2
ans = 4

>> 2%3
ans = 6

>> 10/2
ans = 5

>> 273
ans = 8

You may also define variables and use formulas interactively as

>> v0 = 5;
>> g = 9.81;
> t = 0.6;

>> y = vO*t - 0.5*gxt"2

y =

1.2342000000000

Sometimes you would like to repeat a command you have given earlier, or per-
haps give a command that is almost the same as an earlier one. Then you can use the
“up-arrow” key. Pressing this one time gives you the previous command, pressing
two times gives you the command before that, and so on. If you go too far, you may

1.5 More Basic Concepts n

go back with the “down-arrow” key. When you have the command at the prompt, it
may be edited before pressing enter (which lets Matlab read it).

1.5.2 Arithmetics, Parentheses and Rounding Errors

When the arithmetic operators +, -, *, / and ~ appear in an expression, Mat-
lab gives them a certain precedence. Matlab interprets the expression from left
to right, taking one term (part of expression between two successive + or -) at
a time. Within each term, ~ is done before * and /. Consider the expression
x = 1%57°2 + 10%3 - 1.0/4. There are three terms here and interpreting this,
Matlab starts from the left. In the first term, 1*5~2, it first does 5~2 which equals
25. This is then multiplied by 1 to give 25 again. The second term is 10%3, i.e., 30.
So the first two terms add up to 55. The last term gives 0.25, so the final result is
54.75 which becomes the value of x.

Note that parentheses are often very important to group parts of expressions
together in the intended way. Let us say x = 4 and that you want to divide 1.0 by
x + 1. We know the answer is 0.2, but the way we present the task to Matlab is
critical, as shown by the following example.

>> x = 4;
>> 1.0/x+1
ans = 1.25000000000000000

>> 1.0/ (x+1)
ans = 0.20000000000000001

In the first try, we see that 1.0 is divided by x (i.e., 4), giving 0.25, which is
then added to 1. Matlab did not understand that our complete denominator was
x+1. In our second try, we used parentheses to “group” the denominator, and we
got what we wanted. That is, almost what we wanted! Since most numbers can be
represented only approximately on the computer, this gives rise to what is called
rounding errors. We should have got 0.2 as our answer, but the inexact number
representation gave a small error. Usually, such errors are so small compared to the
other numbers of the calculation, that we do not need to bother with them. Still,
keep it in mind, since you will encounter this issue from time to time. More details
regarding number representations on a computer is given in Sect. 3.4.3.

1.5.3 Variables

Variables in Matlab will be of a certain fype. Real numbers are in computer lan-
guage referred to as floating point numbers, being the default (i.e. what Matlab uses
if nothing is specified) data type in Matlab. These are of two kinds, single and dou-
ble, corresponding to single and double precision, respectively. It is the “double”
that is the default type. With double precision, twice as many bits (64) are used
for storage as with single precision. Writing x = 2 in some Matlab program, by
default makes x a double, i.e. a float variable.

12 1 The First Few Steps

Whole numbers may be stored more memory efficiently as integers, however,
and there are several ways of doing this. For example, writing x = int8(2), or
x = int16(2), will store the integer 2 in the variable x by use of 8 or 16 bits,
respectively.

Another common type of variable is a string, which we get by writing, e.g., x =
>This is a string’. The variable x then becomes a string variable containing
the text between single quotes (the string actually becomes an array of characters,
see “Arrays” below). Several other standard data types also exist in Matlab.

You may also convert between variable types in different ways. For example,
after first writing x = 2 (which causes x to become a double), you may write y
= single(x) to make y contain the number 2 with single precision only. Type
conversion may also occur automatically, e.g. when calling a ready-made Matlab
function that requires input data to be of a certain type. When combining variables
of different types, the result will have a type according to given rules. For example,
multiplying a single and a double, gives a single variable.

Names of variables should be chosen so that they are descriptive. When com-
puting a mathematical quantity that has some standard symbol, e.g. «, this should
be reflected in the name by letting the word alpha be part of the name for the cor-
responding variable in the program. If you, e.g., have a variable for counting the
number of sheep, then one appropriate name could be no_of _sheep. Such naming
makes it much easier for a human to understand the written code. Variable names
may also contain any digit from 0 to 9, or underscores, but can not start with a digit.
Letters may be lower or upper case, which to Matlab is different. Note that certain
names in Matlab are reserved, meaning that you can not use these as names for vari-
ables. Some examples are for, while, if, else, end, global and function. If
you accidentally use a reserved word as a variable name you get an error message.

We have seen that, e.g., x = 2 will assign the value 2 to the variable x. But how
do we write it if we want to increase x by 4? We may then write an assignment like
x = x + 4. Now Matlab interprets this as: “take whatever value that is in x, add 4,
and let the result become the new value of ‘x’”. In other words, the old value of x is
used on the right hand side of =, no matter how messy the expression might be, and
the result becomes the new value of x. In a similar way, x = x - 4 reduces the
value of x by 4, x = x*4 multiplies x by 4, and x = x/4 divides x by 4, updating
the value of x accordingly.

1.5.4 Formatting Text and Numbers

Results from scientific computations are often to be reported as a mixture of text and
numbers. Usually, we want to control how numbers are formatted. For example,
we may want to write 1/3 as 0.33 or 3.3333e-01(3.3333 - 10"). The fprintf
command is the key tool to write out text and numbers with full control of the
formatting. The first argument to fprintf is a string with a particular syntax to
specify the formatting, the so-called printf syntax. (The peculiar name stems from
the printf function in the programming language C where the syntax was first
introduced.)

Suppose we have a real number 12.89643, an integer 42, and a text ’some
message’ that we want to write out in the following two alternative ways:

1.5 More Basic Concepts 13

real=12.896, integer=42, string=some message
real=1.290e+01, integer= 42, string=some message

The real number is first written in decimal notation with three decimals, as 12.896,
but afterwards in scientific notation as 1.290e+01. The integer is first written as
compactly as possible, while on the second line, 42 is formatted in a text field of
width equal to five characters.

The following program, formatted_print.m, applies the printf syntax to con-
trol the formatting displayed above:

real = 12.89643;

integer = 42;

string = ’some message’;

fprintf(°real=),.3f, integer=/d, string=Ys’, real, integer, string);
fprintf (’real=Y9.3e, integer=}5d, string=Jis’, real, integer, string);

The output of fprintf is a string, specified in terms of text and a set of variables
to be inserted in the text. Variables are inserted in the text at places indicated by %.
After % comes a specification of the formatting, e.g., %£f (real number), %.d (integer),
or %s (string). The format %9 .3f means a real number in decimal notation, with 3
decimals, written in a field of width equal to 9 characters. The variant 7% . 3f means
that the number is written as compactly as possible, in decimal notation, with three
decimals. Switching f with e or E results in the scientific notation, here 1.290e+01
or 1.290E+01. Writing %5d means that an integer is to be written in a field of width
equal to 5 characters. Real numbers can also be specified with %g, which is used
to automatically choose between decimal or scientific notation, from what gives the
most compact output (typically, scientific notation is appropriate for very small and
very large numbers and decimal notation for the intermediate range).

A typical example of when printf formatting is required, arises when nicely
aligned columns of numbers are to be printed. Suppose we want to print a column
of ¢ values together with associated function values g(¢#) = tsin(¢) in a second
column. The simplest approach would be

t0 = 2;

dt = 0.55;

% Unformatted print

t = t0 + O*dt; g = t*sin(t);
fprintf (°Yg %g\n’, t, g);

t = t0 + 1*dt; g = t*sin(t);
fprintf(°Yg %g\n’, t, g);

t = t0 + 2%dt; g = t*sin(t);
fprintf C%g %g\n’, t, g);

with output

2 1.81859
2.55 1.42209
3.1 0.1289

https://github.com/hplgit/prog4comp/tree/master/src/m/formatted_print.m

14 1 The First Few Steps

(Repeating the same set of statements multiple times, as done above, is not good
programming practice — one should use a for loop, as explained later in Sect. 2.3.)
Observe that the numbers in the columns are not nicely aligned. Using the printf
syntax ’%6.2f %8.3f° ¥, (t, g) for t and g, we can control the width of each
column and also the number of decimals, such that the numbers in a column are
aligned under each other and written with the same precision. The output then
becomes

Formatting via printf syntax

2.00 1.819
2.55 1.422
3.10 0.129

We shall frequently use the printf syntax throughout the book so there will be
plenty of further examples.

1.5.5 Arrays

In the program ball_plot.mfrom Sect. 1.4 we saw how 1001 height computations
were executed and stored in the variable y, and then displayed in a plot showing y
versus t, i.e., height versus time. The collection of numbers in y (or t, respec-
tively) was stored in what is called an array, a construction also found in most other
programming languages. Such arrays are created and treated according to certain
rules, and as a programmer, you may direct Matlab to compute and handle arrays
as a whole, or as individual array elements. Let us briefly look at a smaller such
collection of numbers.

Assume that the heights of four family members have been collected. These
heights may be generated and stored in an array, e.g., named h, by writing

h = zeros(4,1)

h(1) = 1.60
h(2) = 1.85
h(3) = 1.75
h(4) = 1.80

where the array elements appear as h(1), h(2), etc. Generally, when we read or
talk about the array elements of some array a, we refer to them by reading or saying
“a of one” (i.e. a(1)), “a of two” (i.e. a(2)), and so on. The very first line in the
example above, i.e.

h = zeros(4,1)

instructs Matlab to reserve, or allocate, space in memory for an array h with four
elements and initial values set to 0. (Note that zeros(4,1) gives a column array,
while zeros(1,4) gives a line array. Try it at the command prompt to see the
difference. Sometimes this distinction is important, e.g. when doing matrix — vector
calculations.) The next four lines command Matlab to overwrite the zeros with the
desired numbers (measured heights), one number for each element. Elements are,
by rule, indexed (numbers within parentheses) from 1 to the last element, in this

1.5 More Basic Concepts 15

case 4. We say that Matlab has one-based indexing. This differs from zero-based
indexing (e.g., found in Python) where the array index starts with 0.

As illustrated in the code, you may refer to the array as a whole by the name h,
but also to each individual element by use of the index. The array elements may
enter in computations as individual variables, e.g., writing z = h(1) + h(2) +
h(3) + h(4) will compute the sum of all the elements in h, while the result is
assigned to the variable z. Note that this way of creating an array is a bit different
from the one with linspace, where the filling in of numbers occurred automati-
cally “behind the scene”.

By use of a colon, you may pick out a slice of an array. For example, to
create a new array from the two elements h(1) and h(2), we could write
slice_h = h(1:2). For the generated slice_h array, indices are as usual,
ie., 1 and 2 in this case. The very last entry in an array may be addressed as,
e.g., h(length(h)), where the ready made function length gives the number of
elements in the array.

1.5.6 Plotting

Sometimes you would like to have two or more curves or graphs in the same plot.
Assume we have h as above, and also an array H with the heights 0.50 m, 0.70 m,
1.90m, and 1.75 m from a family next door. This may be done with the program
plot_heights.mgiven as

h = zeros(4, 1);

h(1) = 1.60; h(2) = 1.85; h(3)= 1.75; h(4) = 1.80;
H = zeros(4, 1);
H(1) = 0.50; H(2) = 0.70; H(3)= 1.90; H(4) = 1.75;

family_member_no = zeros(4, 1);
family_member_no(1) = 0; family_member_no(2) =
family_member_no(3) 2; family_member_no(4) =

[
w =

plot(family_member_no, h, family_member_no, H);
xlabel (’Family member number’);
ylabel (’Height (m)’)

Running the program gives the plot shown in Fig. 1.2.

Alternatively, the two curves could have been plotted in the same plot by use of
two plot commands, which gives more freedom as to how the curves appear. To do
this, you could plot the first curve by

plot(family_member_no, h)
hold(’on’)

Then you could (in principle) do a lot of other things in your code, before you plot
the second curve by

plot(family_member_no, H)
hold(’off’)

https://github.com/hplgit/prog4comp/tree/master/src/m/plot_heights.m

16 1 The First Few Steps

Figure 1
14
E
£12
g
i
10
0.8
0.6 ,,/’f/f
|
0'11.0 0.5 10 15 2.0 2.5 3.0
Family member number
200+ |®a|

Fig.1.2 Generated plot for the heights of family members from two families

Notice the use of hold here. hold(’on’) tells Matlab to plot also the following
curve(s) in the same window. Matlab does so until it reads hold(’of£?). If you
do not use the hold(’on’) or hold(’off’) command, the second plot command
will overwrite the first one, i.e., you get only the second curve.

In case you would like the two curves plotted in two separate plots, you can do
this by plotting the first curve straightforwardly with

plot(family_member_no, h)

then do other things in your code, before you do

figure()
plot(family_member_no, H)

Note how the graphs are made continuous by Matlab, drawing straight lines be-
tween the four data points of each family. This is the standard way of doing it and
was also done when plotting our 1001 height computations with ball_plot.min
Sect. 1.4. However, since there were so many data points then, the curve looked
nice and smooth. If preferred, one may also plot only the data points. For example,
Wwriting

plot(h, ’*7)

1.5 More Basic Concepts 17

will mark only the data points with the star symbol. Other symbols like circles etc.
may be used as well.

There are many possibilities in Matlab for adding information to a plot or for
changing its appearance. For example, you may add a legend by the instruction

legend(’This is some legend’)

or you may add a title by

title(’This is some title’)

The command

axis([xmin xmax ymin ymax])

will define the plotting range for the x axis to stretch from xmin to xmax and,
similarly, the plotting range for the y axis from ymin to ymax. Saving the figure to
file is achieved by the command

print (’some_plot’, ’-dpng’); # PNG format
print (’some_plot’, ’-dpdf’); # PDF format
print (’some_plot’, ’-dtiff’); # TIFF format
print (’some_plot’, ’-deps’); # Encanspulated PostScript format

For the reader who is into linear algebra, it may be useful to know that stan-
dard matrix/vector operations are straightforward with arrays, e.g., matrix-vector
multiplication. For example, assume you would like to calculate the vector y
(note that boldface is used for vectors and matrices) as y = AX, where A is
a 2 x 2 matrix and x is a vector. We may do this as illustrated by the program
matrix_vector_product.mreading

x = zeros(2, 1);
x(1) = 3; x(2) = 2; % Insert some values

A = zeros(2, 2);
AC1,1) =1; A(1,2)
A(2,1) = 0; A(2,2)

0;
1

y = A*x 7, Computes and prints

Here, x is first established as a column array with the zeros function. Then the test
values are plugged in (3 and 2). The matrix A is first created as a two dimensional
array with A = zeros(2, 2) before filling in values. Finally, the multiplication
is performed as y = A*x. Running the program gives the following output on the
screen:

y =

https://github.com/hplgit/prog4comp/tree/master/src/m/matrix_vector_product.m

18 1 The First Few Steps

1.5.7 Error Messages and Warnings

All programmers experience error messages, and usually to a large extent during the
early learning process. Sometimes error messages are understandable, sometimes
they are not. Anyway, it is important to get used to them. One idea is to start with
a program that initially is working, and then deliberately introduce errors in it, one
by one. (But remember to take a copy of the original working code!) For each error,
you try to run the program to see what Matlab’s response is. Then you know what
the problem is and understand what the error message is about. This will greatly
help you when you get a similar error message or warning later.

Very often, you will experience that there are errors in the program you have
written. This is normal, but frustrating in the beginning. You then have to find the
problem, try to fix it, and then run the program again. Typically, you fix one error
just to experience that another error is waiting around the corner. However, after
some time you start to avoid the most common beginner’s errors, and things run
more smoothly. The process of finding and fixing errors, called debugging, is very
important to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do) different
things in the program you need to fix. A simpler procedure, that often brings you
a long way, is to print information to the screen from different places in the pro-
gram. First of all, this is something you should do (several times) during program
development anyway, so that things get checked as you go along. However, if the
final program still ends up with error messages, you may save a copy of it, and do
some testing on the copy. Useful testing may then be to remove, e.g., the latter half
of the program (by inserting comment signs %), and insert print commands at clever
places to see what is the case. When the first half looks ok, insert parts of what
was removed and repeat the process with the new code. Using simple numbers and
doing this in parallel with hand calculations on a piece of paper (for comparison) is
often a very good idea.

Matlab also offers means to detect and handle errors by the program itself! The
programmer must then foresee (when writing the code) that there is a potential for
error at some particular point. If, for example, some user of the program is asked
(by the running program) to provide a number, and intends to give the number 5,
but instead writes the word five, the program could run into trouble. A try-catch
construction may be used by the programmer to check for such errors and act appro-
priately (see Sect. 6.2 for an example), avoiding a program crash. This procedure
of trying an action and then recovering from trouble, if necessary, is referred to as
exception handling and is the modern way of dealing with errors in a program.

When a program finally runs without error messages, it might be tempting to
think that Ak ..., I am finished!. But no! Then comes program testing, you need to
verify that the program does the computations as planned. This is almost an art and
may take more time than to develop the program, but the program is useless unless
you have much evidence showing that the computations are correct. Also, having
a set of (automatic) tests saves huge amounts of time when you further develop the
program.

1.5 More Basic Concepts 19

Verification versus validation

Verification is important, but validation is equally important. It is great if your
program can do the calculations according to the plan, but is it the right plan? Put
otherwise, you need to check that the computations run correctly according to
the formula you have chosen/derived. This is verification: doing the things right.
Thereafter, you must also check whether the formula you have chosen/derived
is the right formula for the case you are investigating. This is validation: doing
the right things. In the present book, it is beyond scope to question how well
the mathematical models describe a given phenomenon in nature or engineering,
as the answer usually involves extensive knowledge of the application area. We
will therefore limit our testing to the verification part.

1.5.8 InputData

Computer programs need a set of input data and the purpose is to use these data to
compute output data, i.e., results. In the previous program we have specified input
data in terms of variables. However, one often wants to get the input through some
dialog with the user. Here is one example where the program asks a question, and
the user provides an answer by typing on the keyboard:

age = input(’What is your age? ’)
fprintf (°0k, so you are half way to %d, wow!\n’, age*2)

So, after having interpreted and run the first line, Matlab has established the variable
age and assigned your input to it. The second line combines the calculation of
twice the age with a message printed on the screen. Try these two lines in a little
test program to see for yourself how it works.

There are other ways of providing input to a program as well, e.g., via a graphical
interface (as many readers will be used to) or at the command line (i.e., as param-
eters succeeding, on the same line, the command that starts the program). Reading
data from a file is yet another way. Logically, what the program produces when run,
e.g. a plot or printout to the screen or a file, is referred to as program output.

1.5.9 Symbolic Computations

Even though the main focus in this book is programming of numerical methods,
there are occasions where symbolic (also called exact or analytical) operations are
useful. Doing symbolic computations means, as the name suggests, that we do com-
putations with the symbols themselves rather than with the numerical values they
could represent. Let us illustrate the difference between symbolic and numerical
computations with a little example. A numerical computation could be

X = 2;
y=3;
Z = X*y

20 1 The First Few Steps

which will make the number 6 appear on the screen. A symbolic counterpart of this
code could be

syms X y
Z = X*y

which causes the symbolic result x*y to appear on the screen. Note that no numer-
ical value was assigned to any of the variables in the symbolic computation. Only
the symbols were used, as when you do symbolic mathematics by hand on a piece
of paper.

Symbolic computations in Matlab make use of the Symbolic Toolbox (but sup-
port for symbolic computations in Octave is weak). Each symbol is represented by
a standard variable, but the name of the symbol must be declared with syms name
for a single symbol, or syms namel name2 ... for multiple symbols. The fol-
lowing script example_symbolic.mis a quick demonstration of some of the basic
symbolic operations that are supported in Matlab.

syms x y
2%x + 3%x - y % Algebraic computation

f = x72;

diff (£, x) % Differentiate x~2 wrt x

f = cos(x);
int(f, x) % Integrate cos(x) wrt x

f = (x72 + x73)/x72;
simplify (£) % Simplify f

f = sin(x)/x
limit(f, x, 0) % Find limit of f as x -> 0

f = 1bxx - 15;
solve(f, x) % Solve 15*%x - 15 = 0 wrt x

Other symbolic calculations like Taylor series expansion, linear algebra (with
matrix and vector operations), and (some) differential equation solving are also
possible.

Symbolic computations are also readily accessible through the (partly) free on-
line tool WolframAlpha®, which applies the very advanced Mathematica® package
as symbolic engine. The disadvantage with WolframAlpha compared to the Sym-
bolic Toolbox is that the results cannot automatically be imported into your code
and used for further analysis. On the other hand, WolframAlpha has the advantage
that it displays many additional mathematical results related to the given problem.
For example, if we type 2x + 3x - y in WolframAlpha, it not only simplifies the
expression to 5x - y, but it also makes plots of the function f(x,y) = 5x — y,
solves the equation 5x — y = 0, and calculates the integral [[(5x + y)dxdy.

3 http://www.wolframalpha.com
6 http://en.wikipedia.org/wiki/Mathematica

https://github.com/hplgit/prog4comp/tree/master/src/m/example_symbolic.m
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica

1.5 More Basic Concepts 21

The commercial Pro version can also show a step-by-step of the analytical compu-
tations in the problem. You are strongly encouraged to try out these commands in
WolframAlpha:

diff(x~2, x) ordiff (x**2, x)
integrate(cos(x), x)
simplify ((x**2 + x**3)/x**2)
limit(sin(x)/x, x, 0)
solve(5*x - 15, x)

WolframAlpha is very flexible with respect to syntax.

Another impressive tool for symbolic computations is Sage’, which is a very
comprehensive package with the aim of “creating a viable free open source alterna-
tive to Magma, Maple, Mathematica and Matlab”. Sage is implemented in Python.
Projects with extensive symbolic computations will certainly benefit from exploring
Sage.

1.5.10 Concluding Remarks

Programming demands you to be accurate!

In this chapter, you have seen some examples of how simple things may be done
in Matlab. Hopefully, you have tried to do the examples on your own. If you
have, most certainly you have discovered that what you write in the code has
to be very accurate. For example, with our previous example of four heights
collected in an array h, writing h[1] instead of h (1) gives an error, even if you
and I know perfectly well what you mean! Remember that it is not a human
that runs your code, it is a machine. Therefore, even if the meaning of your
code looks fine to a human eye, it still has to comply in detail to the rules of the
programming language. If not, you get warnings and error messages. This also
goes for lower and upper case letters. Pay attention to such details also when
they are given in later chapters.

Remember to insert comments to explain your code
When you write a computer program, you have two very different kinds of read-
ers. One is Matlab, which will interpret and run your program according to the
rules. The other is some human, for example, yourself or a peer. It is very impor-
tant to organize and comment the code so that you can go back to your own code
after, e.g., a year and still understand what clever constructions you put in there.
This is relevant when you need to change or extend your code (which usually
happens often in reality). Organized coding and good commenting is even more
critical if other people are supposed to understand code that you have written.
One important contribution to writing readable code, is to indent parts of the
code that naturally belong together. You will see this used systematically from
Chap. 2 and on. It is a highly recommendable habit to develop for a programmer.

7 http://sagemath.org/

http://sagemath.org/
http://sagemath.org/

22

1 The First Few Steps

Fast code versus readable and correct code

Numerical computing has a strong tradition in paying much attention to creating
fast code. Real industrial applications of numerical computing often involves
simulations that run for hours, days, and even weeks. Fast code is tremendously
important in those cases. The problem with a strong focus on fast code, un-
fortunately, is sometimes that clear and easily understandable constructions are
replaced by clever and less readable, but faster code. However, for beginners it is
most important to learn to write readable and correct code. We will make some
comments on constructions that are fast or slow, but the main focus of this book
is to teach how to write correct programs, not the fastest possible programs.

Matlab requires a license

Matlab has a student licence version that is cheap as long as you are a student.
Note, however, that the student version is stripped of much functionality. A com-
mercial license is required to use Matlab in industry.

Matlab has a whole range of toolboxes with ready-made code dedicated to
particular fields in science and engineering. We encountered one of these above,
the Symbolic Toolbox. Generally, the more toolboxes you want to include in
your license, the more expensive it gets.

Tip: how to deal with long lines

If a statement in a program gets too long, it may be continued on the next line by
inserting three dots in succession immediately after the last character of the line
that is split (no spaces between!).

The present introductory book just provides a tiny bit of all the functionality

that Matlab has to offer. An important source of information is the homepage “of
Matlab™: http://www.mathworks.com. In addition, there are lots of excellent books
(for references, see Preface).

1.6 Exercises

Exercise 1.1: Error messages

Save a copy of the program ball.m and confirm that the copy runs as the original.
You are now supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Matlab’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a)
b)
c)
d)
€)
f)

Insert the word hello on the empty line above the assignment to vO.
Remove the 7% sign in front of the comment initial velocity.
Remove the = sign in the assignment to vO.

Change the symbol ~ into *x*.

Change the calculation of y toy = vO*t.

Write x on the line just above where y is calculated.

http://www.mathworks.com

1.6 Exercises 23

g) Change the statementy = vO*t - 0.5*g*t~2intoy = vO*t - 0.5*gxt~2;.
That is, insert a semicolon at the end.

Filename: testing_ball.m.

Exercise 1.2: Volume of a cube

Write a program that computes the volume V' of a cube with sides of length L =
4 cm and prints the result to the screen. Both I and L should be defined as separate
variables in the program. Run the program and confirm that the correct result is
printed.

Hint See ball.min the text.
Filename: cube_volume.m.

Exercise 1.3: Area and circumference of a circle

Write a program that computes both the circumference C and the area A4 of a circle
with radius r = 2 cm. Let the results be printed to the screen on a single line with
an appropriate text. The variables C, A and r should all be defined as separate
variables in the program. Run the program and confirm that the correct results are
printed.

Filename: circumference_and_area.m.

Exercise 1.4: Volumes of three cubes
We are interested in the volume V of a cube with length L: V = L3, computed for
three different values of L.

a) Use the 1linspace function to compute three values of L, equally spaced on the
interval [1, 3].

b) Carry out by hand the computation V' = L3 if L is an array with three elements.
That is, compute V' for each value of L.

¢) In a program, write out the result V of V. = L.~3 when L is an array with three
elements as computed by linspace in a). Compare the resulting volumes with
your hand calculations.

d) Make a plot of V versus L.

Filename: volume3cubes.m.

Exercise 1.5: Average of integers

Write a program that stores the sum 1 4 2 + 3 4 4 + 5 in one variable and then
creates another variable with the average of these five numbers. Print the average to
the screen and check that the result is correct.

Filename: average_int.m.

Exercise 1.6: Interactive computing of volume and area

a) Compute the volume in Exercise 1.2 by using Matlab interactively, i.e., do the
computations at the command prompt (in a Matlab shell as we also say). Com-
pare with what you got previously from the written program.

b) Do the same also for Exercise 1.3.

24 1 The First Few Steps

Exercise 1.7: Update variable at command prompt
Invoke Matlab interactively and perform the following steps.

1. Initialize a variable x to 2.

2. Add 3 to x. Print out the result.

3. Print out the result of x + 1%2 and (x+1) *2. (Observe how parentheses make
a difference).

4. What variable fype is x?

Exercise 1.8: Formatted print to screen

Write a program that defines two variables as x = pi and y = 2. Then let the
program compute the product z of these two variables and print the result to the
screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.m.

Exercise 1.9: Matlab documentation and random numbers

Write a program that prints four random numbers to the screen. The numbers should
be drawn from a uniform distribution over the interval [0, 10) (0 inclusive, 10 ex-
clusive). Find the information needed for the task, see for example http://www.
mathworks.com.

Hint Matlab has a built-in function rand for drawing random numbers. Try >>
help rand at the command prompt.
Filename: drawing_random_numbers.m.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://www.mathworks.com
http://www.mathworks.com
http://creativecommons.org/licenses/by-nc/4.0/

Basic Constructions

Python 2.7 Frames Objects
Square elements of a list Global frame
x =[98, 0.2, 8.4, 1, 2, 4] ——]0 |2 s s
y =[] i et ‘o‘o.z|oa 1|z2|a
for i, x in enumerate(x): y ‘*
- y.append(x_**2) 1|4 1
rint 2 h : - 3
P Y x 0 | 0.04 ‘ 016 | 1
Edit code]

2.1 If Tests

Very often in life, and in computer programs, the next action depends on the out-
come of a question starting with “if”. This gives the possibility to branch into
different types of action depending on some criterion. Let us as usual focus on
a specific example, which is the core of so-called random walk algorithms used in
a wide range of branches in science and engineering, including materials manufac-
turing and brain research. The action is to move randomly to the north (N), east (E),
south (S), or west (W) with the same probability. How can we implement such an
action in life and in a computer program?

We need to randomly draw one out of four numbers to select the direction in
which to move. A deck of cards can be used in practice for this purpose. Let the
four suits correspond to the four directions: clubs to N, diamonds to E, hearts to S,
and spades to W, for instance. We draw a card, perform the corresponding move,
and repeat the process a large number of times. The resulting path is a typical
realization of the path of a diffusing molecule.

In a computer program, we need to draw a random number, and depending on
the number, update the coordinates of the point to be moved. There are many ways
to draw random numbers and translate them into (e.g.) four random directions, but
the technical details usually depend on the programming language. Our technique
here is universal: we draw a random number in the interval [0, 1) and let [0, 0.25)
correspond to N, [0.25,0.5) to E, [0.5,0.75) to S, and [0.75,1) to W. Let x and y
hold the coordinates of a point and let d be the length of the move. A pseudo code
(i.e., not “real” code, just a “sketch of the logic) then goes like

© The Author(s) 2016 25
S. Linge, H.P. Langtangen, Programming for Computations — MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_2

26 2 Basic Constructions

r = random number in [0,1)
if 0 <=r < 0.25
move north: y =y +d
else if 0.25 <= r < 0.5
move east: x =x + d
else if 0.5 <= r < 0.75
move south: y =y -d
else if 0.76 <=r < 1
move west: x =x - d

Note the need for first asking about the value of r and then performing an action.
If the answer to the “if” question is positive (true), we are done and can skip the
next else if questions. If the answer is negative (false), we proceed with the next
question. The last test if 0.75 < r < 1 could also read just else, since we here
cover all the remaining possible r values.

The exact code in Matlab reads

r = rand() % random number in [0,1)
if 0 <= r < 0.25
% move north
y=y+d;
elseif 0.25 <=1 < 0.5
% move east
X =x + d;
elseif 0.5 <= r < 0.75
% move south
y=y -4
else
% move west
X =x - d;
end

We use else in the last test to cover the different types of syntax that is allowed.
Matlab recognizes the reserved words if, elseif, and else and expects the code
to be compatible with the rules of if tests:

e Thetestreadsif condition,elseif condition,orelse, where condition
is a boolean expression that evaluates to true (1) or false (0).

e [f conditionis true, the following statements up to the next elseif, else, or
end are executed, and the remaining elseif or else branches are skipped.

e If condition is false, the program flow jumps to the next elseif or else
branch.

The blocks after if, elseif, or else may contain new if tests, if desired.

Working with if tests requires mastering boolean expressions. Here are some
basic boolean expressions involving the logical operators ==, =, <, <=, >, and
>=. Given the assignment to temp, you should go through each boolean expression
below and determine if it is true or false.

2.2 Functions 27

temp = 21 % assign value to a variable
temp == 20 7% temp equal to 20

temp ~= 20 7% temp not equal to 20

temp < 20 Y temp less than 20

temp > 20 7% temp greater than 20

temp <= 20 7, temp less than or equal to 20
temp >= 20 7, temp greater than or equal to 20

2.2 Functions

Functions are widely used in programming and is a concept that needs to be mas-
tered. In the simplest case, a function in a program is much like a mathematical
function: some input number x is transformed to some output number. One ex-
ample is the tanh™!(x) function, called atan in computer code: it takes one real
number as input and returns another number. Functions in Matlab are more gen-
eral and can take a series of variables as input and return one or more variables, or
simply nothing. The purpose of functions is two-fold:

1. to group statements into separate units of code lines that naturally belong to-
gether (a strategy which may dramatically ease the problem solving process),
and/or

2. to parameterize a set of statements such that they can be written only once and
easily be re-executed with variations.

Examples will be given to illustrate how functions can be written in various con-
texts.

If we modify the program ball.m from Sect. 1.2 slightly, and include a function,
we could let this be a new program ball_function.mas

function ball_function()
% This is the main program
time = 0.6; % Just pick some time
vertical_position = y(time);
fprintf (°%f \n’,vertical_position)
time = 0.9; % Pick another time
vertical_position = y(time);
fprintf (’%f \n’,vertical_position)
end

% The function ’y’ is a _local_ function in this file
function result = y(t)

g = 9.81; % Acceleration of gravity
vO0 = 5; % Initial velocity
result = vOxt - 0.5%g*t"2;

end

Here, Matlab interprets this as the definition of two functions, recognized
by the reserved word function that appears two places. The first function
ball_function, is defined by the statements between (and including) function

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_function.m

28 2 Basic Constructions

ball_function() and the first end. Note that the first function in a file should
have the same name as the name of the file (apart from the extension .m). The
second function, i.e. y, is similarly defined between function result = y(t)
and the second end.

Opposed to the function y, the function ball_functiondoes not return a value.
This is stated in the first line of each function definition. Comparing, you notice that
y has an assignment there, whereas ball_function has not. The final statement
of the function y, i.e.

result = vO*t - 0.5%g*t"2;

will be understood by Matlab as “first compute the expression, then place the result
in result and send it back (i.e. return) to where the function was called from”.
The function depends on one variable (or we say that it takes one argument or input
parameter), the value of which must be provided when the function is called.
What do these things mean? Well, the function definition itself, e.g. of y, just
tells Matlab that there is a function y, taking the specified arguments as input, and
returning a specified output result. Matlab keeps this information ready for use
in case a call to y is performed elsewhere in the code. In our case, a call to y
happens twice by the line vertical_position = y(time). By this instruction,
Matlab takes y (time) as a call to the function y, assigning the value of time to the
variable t. So in the first call, t becomes 0.6, while in the second call t becomes
0.9. In both cases the code lines of y are executed and the returned result (the output
parameter) is stored in vertical_position, before it is next printed by Matlab.
Note that the reserved word return may be used to enforce a return from a func-
tion before it reaches the end. For example, if a function contains if-elseif-else
constructions, return may be done from within any of the branches. This may be
illustrated by the following function containing three return statements:

function result = check_sign(x)
if x >0
result = ’x is positive’;
return;
elseif x < 0
result = ’x is negative’;
return;
else
result = ’x is zero’;
return;
end
end

Remember that only one of the branches is executed for a single call on check_
sign, so depending on the number x, the return may take place from any of the
three return alternatives.

One phrase you will meet often when dealing with programming, is main pro-
gram or main function, or that some code is in main. This is nothing particu-
lar to Matlab, and simply means the first function that is defined in a file, e.g.

2.2 Functions 29

ball_functionabove. You may define as many functions as you like in a file after
the main function. These then become local functions, i.e. they are only known in-
side that file. In particular, only the main function may be called from the command
window, whereas local functions may not.

A function may take no arguments, or many, in which case they are just listed
within the parentheses (following the function name) and separated by a comma.
Let us illustrate. Take a slight variation of the ball example and assume that the
ball is not thrown straight up, but at an angle, so that two coordinates are needed to
specify its position at any time. According to Newton’s laws (when air resistance is
negligible), the vertical position is given by y(f) = vg,t —0.5 gt? and the horizontal
position by x (z) = vo,t. We can include both these expressions in a new version of
our program that prints the position of the ball for chosen times. Assume we want
to evaluate these expressions at two points in time, t = 0.6s and r = 0.9s. We
can pick some numbers for the initial velocity components vOy and vOx, name the
program ball_position_xy.m, and write it for example as

function ball_position_xy()
initial_velocity_x = 2.0;
initial_velocity_y = 5.0;

time = 0.6; % Just pick one point in time
x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);
fprintf (°%f %f \n’, x_pos, y_pos)

time = 0.9; % Pick another point in time
x_pos = x(initial_velocity_x, time);
y_pos = y(initial_velocity_y, time);
fprintf (°%f %f \n’, x_pos, y_pos)

end

function result = y(vOy, t)
g = 9.81; % Acceleration of gravity
result = vOy*t - 0.5%g*t~2;

end

function result = x(vOx, t)
result = vOx*t;
end

Now we compute and print the two components for the position, for each of the
two chosen points in time. Notice how each of the two functions now takes two
arguments. Running the program gives the output

1.2342

1.2
1.8 0.52695

A function may also return more than one value. For example, the two functions
we just defined could alternatively have been defined into one as

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_position_xy.m

30 2 Basic Constructions

function [resultl, result2] = xy(vOx, vOy, t)
g = 9.81; % acceleration of gravity
resultl = vOxx*t;
result2 = vOy*t - 0.5*%g*t"2;

end

Notice the two return values resultl and result2 that are listed in the function
header, i.e., the first line of the function definition. When calling the function,
arguments must appear in the same order as in the function definition. We would
then write

[x_pos,y_pos] = xy(initial_x_velocity, initial_y_velocity, time);

The variables x_pos and y_pos could then have been printed or used in other ways
in the code.

There are possibilities for having a variable number of function input and output
parameters (using nargin and nargout). However, we do not go further into that
topic here.

Variables that are defined inside a function, e.g., g in the last xy function, are
local variables. This means they are only known inside the function. Therefore,
if you had accidentally used g in some calculation outside the function, you would
have got an error message. By use of the reserved word global, a variable may
be known also outside the function in which it is defined (without transferring it as
a parameter). For example, if, in some function A, we write

global some_variable;
some_variable = 2;

then, in another function B, we could use some_variable directly if we just specify
it first as being global, e.g.

global some_variable;
some_other_variable = some_variablex*2;

We could even change the value of some_variable itself inside B if we like, so
that upon return to the function A, some_variable would have a new value. If you
define one global and one local variable, both with the same name, the function
only sees the local one, so the global variable is not affected by what happens with
its local companion of the same name. The arguments named in the header of
a function definition are by rule local variables inside the function. One should
strive to define variables mostly where they are needed and not everywhere.

In any programming language, it is a good habit to include a little explanation
of what the function is doing, unless what is done by the function is obvious, e.g.,
when having only a few simple code lines. This explanation (sometimes known as
a doc string) should be placed just at the top of the function. This explanation is
meant for a human who wants to understand the code, so it should say something
about the purpose of the code and possibly explain the arguments and return values
if needed. If we do that with our xy function from above, we may write the first
lines of the function as

2.2 Functions 31

function xy(vOx, vOy, t)
% Compute the x and y position of the ball at time t

Note that a function you have written may call another function you have written,
even if they are not defined within the same file. Such a call requires the called
function to be located in a file with the same name as the function (apart from the
extension .m). This file must also be located in a folder where Matlab can find it,
e.g. in the same folder as the calling function.

Functions are straightforwardly passed as arguments to other functions, as illus-
trated by the following script function_as_argument.m:

function function_as_argument ()

X = 2;
y =3
% Create handles to the functions defined below

sum_xy_handle = QOsum_xy;
prod_xy_handle = @prod_xy;

sum = treat_xy(sum_xy_handle, x, y);
fprintf (*%f \n’, sum);
prod = treat_xy(prod_xy_handle, x, y);
fprintf (°%f \n’, prod);

end

function result = treat_xy(f, x, y)
result = £(x, y);
end

function result = sum_xy(x, y)
result = x + y;
end

function result = prod_xy(x, y)
result = x*y;
end

When run, this program first prints the sum of x and y (i.e., 5), and then it
prints the product (i.e., 6). We see that treat_xy takes a function name as its first
parameter. Inside treat_xy, that function is used to actually call the function that
was given as input parameter. Therefore, as shown, we may call treat_xy with
either sum_xy or prod_xy, depending on whether we want the sum or product of x
and y to be calculated.

To transfer a function to the function treat_xy, we must use function handles,
one for each function we want to transfer. This is done by the sign @ combined with
the function name, as illustrated by the lines

sum_xy_handle = Q@sum_xy;
prod_xy_handle = @prod_xy;

https://github.com/hplgit/prog4comp/tree/master/src/m/function_as_argument.m

32 2 Basic Constructions

Note that it is the handle that is used in the function call, as, e.g., in

sum = treat_xy(sum_xy_handle,x,y);

Functions may also be defined within other functions. It that case, they become
local functions, or nested functions, known only to the function inside which they
are defined. Functions defined in main are referred to as global functions. A nested
function has full access to all variables in the parent function, i.e. the function within
which it is defined.

One convenient way of defining one-line functions (they can not be more than
one line!), is by use of anonymous functions. You may then define, e.g., a square
function by the name my_square, as

my_square = Q(x) x72;

and then use it simply as

y = my_sqare(2);

which would have assigned the value 4 to y. Note that my_square here becomes
a handle that may be used directly as a function parameter for example.

Overhead of function calls

Function calls have the downside of slowing down program execution. Usu-
ally, it is a good thing to split a program into functions, but in very computing
intensive parts, e.g., inside long loops, one must balance the convenience of call-
ing a function and the computational efficiency of avoiding function calls. It is
a good rule to develop a program using plenty of functions and then in a later
optimization stage, when everything computes correctly, remove function calls
that are quantified to slow down the code.

2.3 ForLoops

Many computations are repetitive by nature and programming languages have cer-
tain loop structures to deal with this. Here we will present what is referred to as
a for loop (another kind of loop is a while loop, to be presented afterwards). Assume
you want to calculate the square of each integer from 3 to 7. This could be done
with the following program.

for i = 3:7
i~2
end

What happens when Matlab interprets your code here? First of all, the word
for is a reserved word signalling to Matlab that a for loop is wanted. Matlab then
sticks to the rules covering such constructions and understands that, in the present

23 For Loops 33

example, the loop should run 5 successive times (i.e., 5 iterations should be done),
letting the variable i take on the numbers 3, 4, 5, 6, 7 in turn. During each iteration,
the statement inside the loop (i.e. 1~2) is carried out. After each iteration, i is
automatically (behind the scene) updated. When the last number is reached, the last
iteration is performed and the loop is finished. When executed, the program will
therefore print out 9, 16,25, 36 and 49. The variable i is often referred to as a loop
index, and its name (here i) is a choice of the programmer.

Note that, had there been several statements within the loop, they would all be
executed with the same value of i (before i changed in the next iteration). Make
sure you understand how program execution flows here, it is important.

The specification of the values desired for the loop variable (here 3:7) is more
generally given as start:step:stop, meaning that the loop variable should take
on the integers from start to stop, inclusive at both ends, in steps of step. If step
is skipped, the default value is 1, as in the example above. Note that decreasing
integers may be produced by letting start > stop combined with a negative step.
This makes it easy to, e.g., traverse arrays in either direction.

Let us modify ball_plot.m from Sect. 1.4 to illustrate how useful for loops
are if you need to traverse arrays. In that example we computed the height of the
ball at every milli-second during the first second of its (vertical) flight and plotted
the height versus time.

Assume we want to find the maximum height during that time, how can we do
it with a computer program? One alternative may be to compute all the thousand
heights, store them in an array, and then run through the array to pick out the maxi-
mum. The program, named ball_max_height.m, may look as follows.

g = 9.81;

v0 = 5;

t = linspace(0, 1, 1000);
y = vOxt - 0.5%gxt.”2;

% At this point, the array y with all the heights is ready.
% Now we need to find the largest value within y.

largest_height = y(1); % Preliminary value
for i = 2:1000
if y(i) > largest_height
largest_height = y(i);
end
end

fprintf (°The largest height achieved was %f m \n’,largest_height);

% We might also like to plot the path again just to compare
plot(t,y);

xlabel(’Time (s)’);

ylabel(’Height (m)’)

There is nothing new here, except the for loop construction, so let us look at it
in more detail. As explained above, Matlab understands that a for loop is desired
when it sees the word for. The value in y(1) is used as the preliminary largest

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_max_height.m

34 2 Basic Constructions

height, so that, e.g., the very first check that is made is testing whether y(2) is
larger than this height. If so, y(2) is stored as the largest height. The for loop
then updates i to 2, and continues to check y(3), and so on. Each time we find
a larger number, we store it. When finished, largest_height will contain the
largest number from the array y. When you run the program, you get

The largest height achieved was 1.274210 m

which compares favorably to the plot that pops up.

To implement the traversing of arrays with loops and indices, is sometimes chal-
lenging to get right. You need to understand the start, stop and step length choices
for an index, and also how the index should enter expressions inside the loop. At the
same time, however, it is something that programmers do often, so it is important
to develop the right skills on these matters.

Having one loop inside another, referred to as a double loop, is sometimes useful,
e.g., when doing linear algebra. Say we want to find the maximum among the
numbers stored in a 4 x 4 matrix A. The code fragment could look like

largest_number = A(1,1);

for i = 1:length(A)
for j = 1:length(A)
if A(i,j) > largest_number
largest_number = A(i,j);
end
end
end

Here, all the j indices (1 - 4) will be covered for each value of index i. First, i
stays fixed at i = 1, while j runs over all its indices. Then, 1 stays fixed ati = 2
while j runs over all its indices again, and so on. Sketch A on a piece of paper and
follow the first few loop iterations by hand, then you will realize how the double
loop construction works. Using two loops is just a special case of using multiple or
nested loops, and utilizing more than two loops is just a straightforward extension
of what was shown here. Note, however, that the loop index name in multiple loops
must be unique to each of the nested loops. Note also that each nested loop may
have as many code lines as desired, both before and after the next inner loop.

The vectorized computation of heights that we did in ball_plot.m (Sect. 1.4)
could alternatively have been done by traversing the time array (t) and, for each t
element, computing the height according to the formula y = vyt — % gt?. However,
it is important to know that vectorization goes much quicker. So when speed is
important, vectorization is valuable.

Use loops to compute sums
One important use of loops, is to calculate sums. As a simple example, assume
some variable x given by the mathematical expression

N
x=Z2-i,

i=1

2.4 While Loops 35

i.e., summing up the N first even numbers. For some given N, say N = 5, x
would typically be computed in a computer program as:

N 5;
x = 0;
for i = 1:N
X = X + 2%i;
end

Executing this code will print the number 30 to the screen. Note in particular
how the accumulation variable x is initialized to zero. The value of x then gets
updated with each iteration of the loop, and not until the loop is finished will
x have the correct value. This way of building up the value is very common in
programming, so make sure you understand it by simulating the code segment
above by hand. It is a technique used with loops in any programming language.

2.4 While Loops

Matlab also has another standard loop construction, the while loop, doing iterations
with a loop index very much like the for loop. To illustrate what such a loop may
look like, we consider another modification of ball_plot.min Sect. 1.4. We will
now change it so that it finds the time of flight for the ball. Assume the ball is
thrown with a slightly lower initial velocity, say 4.5ms~!, while everything else is
kept unchanged. Since we still look at the first second of the flight, the heights at the
end of the flight become negative. However, this only means that the ball has fallen
below its initial starting position, i.e., the height where it left the hand, so there is
no problem with that. In our array y we will then have a series of heights which
towards the end of y become negative. Let us, in a program named ball_time.m
find the time when heights start to get negative, i.e., when the ball crosses y = 0.
The program could look like this

g = 9.81;

v0 = 4.5; % Initial velocity

t = linspace(0, 1, 1000); % Acceleration of gravity
y = vOxt - 0.5%g*t."2; % Generate all heights

% At this point, the array y with all heights is ready

i=1;

while y(i) >= 0
i=1i+1;

end

% Having the index, we may look up the time in the array t
fprintf (’The time (switch from positive to negative): %f\n’, t(i));

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_time.m

36 2 Basic Constructions

% We plot the path again just for comparison
plot(t, y);

xlabel(’Time (s)’);

ylabel (’Height (m)’);

If you type and run this program you should get

y=0 at 0.917417417417

The new thing here is the while loop only. The loop will run as long as the boolean
expression y(i) >= 0 evaluates to true. Note that the programmer introduced
a variable (the loop index) by the name i, initialized it (i = 1) before the loop, and
updated it (i = i + 1) in the loop. So for each iteration, i is explicitly increased
by 1, allowing a check of successive elements in the array y.

Compared to a for loop, the programmer does not have to specify the number
of iterations when coding a while loop. It simply runs until the boolean expression
becomes false. Thus, a loop index (as we have in a for loop) is not required. Fur-
thermore, if a loop index is used in a while loop, it is not increased automatically;
it must be done explicitly by the programmer. Of course, just as in for loops and
if blocks, there might be (arbitrarily) many code lines in a while loop. Any for
loop may also be implemented as a while loop, but while loops are more general
so not all of them can be expressed as a for loop.

A problem to be aware of, is what is usually referred to as an infinite loop. In
those unintentional (erroneous) cases, the boolean expression of the while test
never evaluates to false, and the program can not escape the loop. This is one
of the most frequent errors you will experience as a beginning programmer. If you
accidentally enter an infinite loop and the program just hangs forever, press Ctrl+c
to stop the program.

2.5 Reading from and Writing to Files

Input data for a program often come from files and the results of the computations
are often written to file. To illustrate basic file handling, we consider an example
where we read x and y coordinates from two columns in a file, apply a function f
to the y coordinates, and write the results to a new two-column data file. The first
line of the input file is a heading that we can just skip:

d y coordinates
4

The relevant Matlab lines for reading the numbers and writing out a similar file are
given in the file file_handling.m

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling.m

25 Reading from and Writing to Files 37

filename = ’tmp.dat’;
infileID = fopen(filename, ’r’); 7 Open file for reading
fgetl(infileID); % Read and skip first line

% First read file to count number of lines with data
no_of_lines = 0;
while ~feof (infilelID)
no_of_lines = no_of_lines + 1;
fgetl(infilelD);
end
fclose(infilelD);

% Can now define arrays x and y of known length
x = zeros(no_of_lines, 1);
y = zeros(no_of_lines, 1);

% Re-open the file for reading
infileID = fopen(filename, ’r’); % Open file for reading
fgetl(infileID); % Read and skip first line

% Read x and y coordinates from the file and store in arrays
i=1;
while i <= no_of_lines

x(i) = fscanf(infileID, ’%f’, 1);

y (i) fscanf (infileID, ’%f’, 1);

i=1+1;

end
fclose(infilelD);

% Next, we treat the y-coordinates and write to file

F = @(y) log(y);

y = F(y); % Overwrite y with new values

filename = ’tmp_out.dat’;

outfileID = fopen(filename, ’w’); % Open file for writing
i=1;

while i <= no_of_lines
fprintf (outfileID, ’%10.5f %10.5f’, x(i), y(i));
i=1+1;

end

fclose(outfileID);

Such a file with a comment line and numbers in tabular format is very common
so Matlab has functionality to ease reading and writing. Here is the same example
(file file_handling_easy.m):

filename = ’tmp.dat’;

data = load(filename);

x = data(:,1);

y = data(:,2);

data(:,2) = log(y); % insert transformed y back in array
filename = ’tmp_out.dat’;

outfile = fopen(filename, ’w’); 7% open file for writing
fprintf (outfile, ’%% x and y coordinates\n’);

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling_easy.m

38 2 Basic Constructions

fprintf (outfile, ’%10.5f %10.5f\n’, data);
fclose(outfile);

2.6 Exercises

Exercise 2.1: Introducing errors
Write the program ball_function.m as given in the text and confirm that the
program runs correctly. Then save a copy of the program and use that program
during the following error testing.

You are supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Matlab’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Change the first line from function ball_function() to ball_
function(),i.e. remove the word function.

b) Change the first line from function ball_function() to function ball_
func (), i.e., change the name of the function.

¢) Change the line function result = y(t) to function y(t).

d) Change the line function result = y(t) to function result = y(),
i.e., remove the parameter t.

e) Change the first statement that calls y from vertical _position = y(time);
to vertical_position = y();.

Filename: introducing_errors.m.

Exercise 2.2: Compare integers a and b
Explain briefly, in your own words, what the following program does.

a
b

input(’Give an integer a: ’);
input (’Give an integer b: ’);

if a<b

fprintf(’a is the smallest of the two numbers\n’);
elseif a ==

fprintf(’a and b are equal\n’);
else

fprintf(’a is the largest of the two numbers\n’);
end

Proceed by writing the program, and then run it a few times with different values
for a and b to confirm that it works as intended. In particular, choose combinations
for a and b so that all three branches of the if construction get tested.

Filename: compare_a_and_b.m.

Exercise 2.3: Functions for circumference and area of a circle
Write a program that takes a circle radius r as input from the user and then computes
the circumference C and area A of the circle. Implement the computations of C and

2.6 Exercises 39

A as two separate functions that each takes r as input parameter. Print C and A to
the screen along with an appropriate text. Run the program with » = 1 and confirm
that you get the right answer.

Filename: functions_circumference_area.m.

Exercise 2.4: Function for area of a rectangle

Write a program that computes the area A = bc of a rectangle. The values of b
and ¢ should be user input to the program. Also, write the area computation as
a function that takes b and ¢ as input parameters and returns the computed area.
Let the program print the result to screen along with an appropriate text. Run the
program with b = 2 and ¢ = 3 to confirm correct program behavior.

Filename: function_area_rectangle.m.

Exercise 2.5: Area of a polygon

One of the most important mathematical problems through all times has been to
find the area of a polygon, especially because real estate areas often had the shape
of polygons, and it was necessary to pay tax for the area. We have a polygon as
depicted below.

6

The vertices (“corners”) of the polygon have coordinates (xy, y1), (x2, 2), - - -
(x,,, y»), numbered either in a clockwise or counter clockwise fashion. The area A
of the polygon can amazingly be computed by just knowing the boundary coordi-
nates:

1
A= S|y xys 4o Xy)
— (V1X2 + 923+ o Va1 X+ 2ux)|

40 2 Basic Constructions

Write a function polyarea(x, y) that takes two coordinate arrays with the ver-
tices as arguments and returns the area. Assume that x and y are either lists or
arrays.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.
Filename: polyarea.m.

Exercise 2.6: Average of integers

Write a program that gets an integer N > 1 from the user and computes the average
of all integers i = 1,..., N. The computation should be done in a function that
takes N as input parameter. Print the result to the screen with an appropriate text.
Run the program with N = 5 and confirm that you get the correct answer.
Filename: average_1_to_N.m.

Exercise 2.7: While loop with errors
Assume some program has been written for the task of adding all integers i =
1,2,...,10:

some_number = 0;

i=1;

while j < 11;
some_number += 1

print some_number

a) Identify the errors in the program by just reading the code and simulating the
program by hand.

b) Write a new version of the program with errors corrected. Run this program and
confirm that it gives the correct output.

Filename: while_loop_errors.m.

Exercise 2.8: Area of rectangle versus circle

Consider one circle and one rectangle. The circle has a radius r = 10.6. The
rectangle has sides a and b, but only a is known from the outset. Let ¢ = 1.3 and
write a program that uses a while loop to find the largest possible integer b that
gives a rectangle area smaller than, but as close as possible to, the area of the circle.
Run the program and confirm that it gives the right answer (which is b = 271).
Filename: area_rectangle_vs_circle.m.

Exercise 2.9: Find crossing points of two graphs
Consider two functions f(x) = x and g(x) = x2 on the interval [—4, 4].

Write a program that, by trial and error, finds approximately for which values
of x the two graphs cross, i.e., f(x) = g(x). Do this by considering N equally
distributed points on the interval, at each point checking whether | f(x)—g(x)| < €,
where € is some small number. Let N and € be user input to the program and let
the result be printed to screen. Run your program with N = 400 and ¢ = 0.01.
Explain the output from the program. Finally, try also other values of N, keeping
the value of € fixed. Explain your observations.

Filename: crossing_2_graphs.m.

2.6 Exercises 41

Exercise 2.10: Sort array with numbers

The built-in function rand may be used to draw pseudo-random numbers for the
standard uniform distribution between 0 and 1 (exclusive at both ends). See help
rand.

Write a script that generates an array of 6 random numbers between 0 and 10.
The program should then sort the array so that numbers appear in increasing order.
Let the program make a formatted print of the array to the screen both before and
after sorting. The printouts should appear on the screen so that comparison is made
easy. Confirm that the array has been sorted correctly.

Filename: sort_numbers.m.

Exercise 2.11: Compute
Up through history, great minds have developed different computational schemes
for the number . We will here consider two such schemes, one by Leibniz (1646—
1716), and one by Euler (1707-1783).

The scheme by Leibniz may be written

= 1
g _Sg(4k+1)(4k+3)’

while one form of the Euler scheme may appear as

If only the first N terms of each sum are used as an approximation to 7, each
modified scheme will have computed 7 with some error.

Write a program that takes N as input from the user, and plots the error develop-
ment with both schemes as the number of iterations approaches N. Your program
should also print out the final error achieved with both schemes, i.e. when the num-
ber of terms is N. Run the program with N = 100 and explain briefly what the
graphs show.

Filename: compute_pi.m.

Exercise 2.12: Compute combinations of sets

Consider an ID number consisting of two letters and three digits, e.g., RE198. How
many different numbers can we have, and how can a program generate all these
combinations?

If a collection of 7 things can have m; variations of the first thing, m, of the sec-
ond and so on, the total number of variations of the collection equals mm; - - - m,,.
In particular, the ID number exemplified above can have 26:26-10-10-10 = 676,000
variations. To generate all the combinations, we must have five nested for loops.
The first two run over all letters A, B, and so on to Z, while the next three run over
all digits 0, 1, ..., 9.

To convince yourself about this result, start out with an ID number on the form
A3 where the first part can vary among A, B, and C, and the digit can be among 1,
2, or 3. We must start with A and combine it with 1, 2, and 3, then continue with

42 2 Basic Constructions

B, combined with 1, 2, and 3, and finally combine C with 1, 2, and 3. A double for
loop does the work.

a) In adeck of cards, each card is a combination of a rank and a suit. There are 13
ranks: ace (A), 2,3,4,5,6,7,8,9, 10, jack (J), queen (Q), king (K), and four
suits: clubs (C), diamonds (D), hearts (H), and spades (S). A typical card may
be D3. Write statements that generate a deck of cards, i.e., all the combinations
CA, C2, C3, and so on to SK.

b) A vehicle registration number is on the form DE562, where the letters vary from
A to Z and the digits from 0 to 9. Write statements that compute all the possible
registration numbers and stores them in a list.

¢) Generate all the combinations of throwing two dice (the number of eyes can
vary from 1 to 6). Count how many combinations where the sum of the eyes
equals 7.

Filename: combine_sets.m.

Exercise 2.13: Frequency of random numbers

Write a program that takes a positive integer N as input and then draws N random
integers in the interval [1, 6] (both ends inclusive). In the program, count how many
of the numbers, M, that equal 6 and write out the fraction M/N. Also, print all the
random numbers to the screen so that you can check for yourself that the counting
is correct. Run the program with a small value for N (e.g., N = 10) to confirm that
it works as intended.

Hint Use 1+floor(6*rand()) to draw a random integer between 1 and 6.
Filename: count_random_numbers.m.

Remarks For large N, this program computes the probability M /N of getting six
eyes when throwing a dice.

Exercise 2.14: Game 21

Consider some game where each participant draws a series of random integers

evenly distributed from O and 10, with the aim of getting the sum as close as pos-

sible to 21, but not larger than 21. You are out of the game if the sum passes 21.

After each draw, you are told the number and your total sum, and are asked whether

you want another draw or not. The one coming closest to 21 is the winner.
Implement this game in a program.

Hint Use floor (11*rand()) to draw random integers in [0, 10].
Filename: game_21.m.

Exercise 2.15: Linear interpolation
Some measurements y;, i = 0,1,..., N (given below), of a quantity y have been
collected regularly, once every minute, at times ; = i,7 = 0,1,..., N. We want
to find the value y in between the measurements, e.g., at t = 3.2min. Computing
such y values is called interpolation.

2.6 Exercises 43

Let your program use linear interpolation to compute y between two consecutive
measurements:

Findi suchthatt; <t <t ;.

. Find a mathematical expression for the straight line that goes through the points
(i, y:) and (0 + 1, yiq1).

3. Compute the y value by inserting the user’s time value in the expression for the

straight line.

DN =

a) Implement the linear interpolation technique in a function that takes an array
with the y; measurements as input, together with some time ¢, and returns the
interpolated y value at time ¢.

b) Write another function with a loop where the user is asked for a time on the
interval [0, N] and the corresponding (interpolated) y value is written to the
screen. The loop is terminated when the user gives a negative time.

c) Use the following measurements: 4.4,2.0,11.0,21.5,7.5, corresponding to
times 0,1,...,4 (min), and compute interpolated values at t = 2.5 and
t = 3.1min. Perform separate hand calculations to check that the output
from the program is correct.

Filename: linear_interpolation.m.

Exercise 2.16: Test straight line requirement

Assume the straight line function f(x) = 4x + 1. Write a script that tests the
“point-slope” form for this line as follows. Within a chosen interval on the x-axis
(for example, for x between 0 and 10), randomly pick 100 points on the line and
check if the following requirement is fulfilled for each point:

fi) = o) _

X;i —¢C

a, i=1,2,...,100,

where a is the slope of the line and ¢ defines a fixed point (c, f(c)) on the line. Let
¢ = 2 here.
Filename: test_straight_line.m.

Exercise 2.17: Fit straight line to data
Assume some measurements y;,i = 1,2,...,5 have been collected, once every
second. Your task is to write a program that fits a straight line to those data.

a) Make a function that computes the error between the straight line f(x) = ax+b
and the measurements:

5
e:Z(axi—i-b—y,-)z.

i=1

b) Make a function with a loop where you give a and b, the corresponding value of
e is written to the screen, and a plot of the straight line f(x) = ax + b together
with the discrete measurements is shown.

44 2 Basic Constructions

¢) Given the measurements 0.5,2.0, 1.0, 1.5, 7.5, at times 0, 1, 2, 3, 4, use the func-
tion in b) to interactively search for a and b such that e is minimized.

Filename: fit_straight_line.m.

Remarks Fitting a straight line to measured data points is a very common task. The
manual search procedure in c) can be automated by using a mathematical method
called the method of least squares.

Exercise 2.18: Fit sines to straight line

A lot of technology, especially most types of digital audio devices for processing
sound, is based on representing a signal of time as a sum of sine functions. Say the
signal is some function f(¢) on the interval [—, 7] (a more general interval [a, b]
can easily be treated, but leads to slightly more complicated formulas). Instead of
working with f(¢) directly, we approximate f by the sum

N
Sn(t) =) bysin(nt). 2.1)

n=1

where the coefficients b, must be adjusted such that Sy (¢) is a good approximation
to f(¢). We shall in this exercise adjust b, by a trial-and-error process.

a) Make a function sinesum(t, b) that returns Sy (¢), given the coefficients b,
in an array b and time coordinates in an array t. Note that if t is an array, the
return value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a) and deter-
mines if the function computes a test case correctly. As test case, let t be an
array with values —7/2 and 7 /4, choose N = 2, and by = 4 and b, = 3.
Compute Sy () by hand to get reference values.

¢) Make a function plot_compare (f, N, M) that plots the original function f(¢)
together with the sum of sines Sy (¢), so that the quality of the approximation
Sy (t) can be examined visually. The argument f is a Matlab function imple-
menting f(¢), N is the number of terms in the sum Sy (¢), and M is the number
of uniformly distributed ¢ coordinates used to plot f and Sy.

d) Write a function error (b, f, M) that returns a mathematical measure of the
error in Sy (¢) as an approximation to f(t):

E= \/Z (1) = Sw(e)).

where the #; values are M uniformly distributed coordinates on [—m, w]. The
array b holds the coefficients in Sy and f is a Matlab function implementing the
mathematical function f(¢).

e) Make a function trial(f, N) for interactively giving b, values and getting
a plot on the screen where the resulting Sy (¢) is plotted together with f(¢).
The error in the approximation should also be computed as indicated in d). The
argument f is a Matlab function for f(¢) and N is the number of terms N in the

2.6 Exercises 45

sum Sy (¢). The trial function can run a loop where the user is asked for the b,
values in each pass of the loop and the corresponding plot is shown. You must
find a way to terminate the loop when the experiments are over. Use M=500 in
the calls to plot_compare and error.

f) Choose f(t) to be a straight line f(¢) = %t on [—m,x]. Call trial(f, 3)
and try to find through experimentation some values by, b,, and b3 such that the
sum of sines Sy (¢) is a good approximation to the straight line.

g) Now we shall try to automate the procedure in f). Write a function that has
three nested loops over values of by, b,, and b3. Let each loop cover the interval
[—1, 1] in steps of 0.1. For each combination of by, b,, and b3, the error in the
approximation Sy should be computed. Use this to find, and print, the smallest
error and the corresponding values of by, b,, and b3. Let the program also plot
f and the approximation Sy corresponding to the smallest error.

Filename: fit_sines.m.
Remarks

1. The function Sy (x) is a special case of what is called a Fourier series. At
the beginning of the 19th century, Joseph Fourier (1768—1830) showed that any
function can be approximated analytically by a sum of cosines and sines. The
approximation improves as the number of terms (/) is increased. Fourier series
are very important throughout science and engineering today.

(a) Finding the coefficients b, is solved much more accurately in Exercise 3.12,
by a procedure that also requires much less human and computer work!

(b) In real applications, f(¢) is not known as a continuous function, but func-
tion values of f(¢) are provided. For example, in digital sound applications,
music in a CD-quality WAV file is a signal with 44100 samples of the corre-
sponding analog signal f(¢) per second.

Exercise 2.19: Count occurrences of a string in a string

In the analysis of genes one encounters many problem settings involving searching
for certain combinations of letters in a long string. For example, we may have
a string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string letter by letter. The length of the string is given by
length(gene), so with a loop index i, for i = 1:length(gene) will produce
the required index values. Letter number i is then reached through gene (i), and
a substring from index i up to and including j, is created by gene (i:j).

a) Write a function freq(letter, text) that returns the frequency of the letter
letter in the string text, i.e., the number of occurrences of letter divided
by the length of text. Call the function to determine the frequency of C and G
in the gene string above. Compute the frequency by hand too.

b) Write a function pairs(letter, text) that counts how many times a pair
of the letter letter (e.g., GG) occurs within the string text. Use the function

46 2 Basic Constructions

to determine how many times the pair AA appears in the string gene above.
Perform a manual counting too to check the answer.

¢) Write a function mystruct (text) that counts the number of a certain structure
in the string text. The structure is defined as G followed by A or T until a double
GG. Perform a manual search for the structure too to control the computations
by mystruct.

Filename: count_substrings.m.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

Computing Integrals

WE 70sT pRAW SONE RECTANGLES 7| *5["
70 APPROXIATE THE ARER

ONDER TLE CURVE AND SUM P
THE RECTAVGOLAR AREAS!

We now turn our attention to solving mathematical problems through computer
programming. There are many reasons to choose integration as our first application.
Integration is well known already from high school mathematics. Most integrals
are not tractable by pen and paper, and a computerized solution approach is both
very much simpler and much more powerful — you can essentially treat all integrals
fab f(x)dx in 10 lines of computer code (!). Integration also demonstrates the
difference between exact mathematics by pen and paper and numerical mathematics
on a computer. The latter approaches the result of the former without any worries
about rounding errors due to finite precision arithmetics in computers (in contrast to
differentiation, where such errors prevent us from getting a result as accurate as we
desire on the computer). Finally, integration is thought of as a somewhat difficult
mathematical concept to grasp, and programming integration should greatly help
with the understanding of what integration is and how it works. Not only shall we
understand how to use the computer to integrate, but we shall also learn a series
of good habits to ensure your computer work is of the highest scientific quality.
In particular, we have a strong focus on how to write Matlab code that is free of
programming mistakes.
Calculating an integral is traditionally done by

b
/f(x) dx = F(b) — F(a), 3.1

© The Author(s) 2016 47
S. Linge, H.P. Langtangen, Programming for Computations — MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_3

48 3 Computing Integrals

where IF
fx) = dx

The major problem with this procedure is that we need to find the anti-derivative
F(x) corresponding to a given f(x). For some relatively simple integrands f(x),
finding F(x) is a doable task, but it can very quickly become challenging, even
impossible!

The method (3.1) provides an exact or analytical value of the integral. If we
relax the requirement of the integral being exact, and instead look for approximate
values, produced by numerical methods, integration becomes a very straightforward
task for any given f(x) (!).

The downside of a numerical method is that it can only find an approximate an-
swer. Leaving the exact for the approximate is a mental barrier in the beginning, but
remember that most real applications of integration will involve an f(x) function
that contains physical parameters, which are measured with some error. That is,
f(x) is very seldom exact, and then it does not make sense to compute the integral
with a smaller error than the one already present in f(x).

Another advantage of numerical methods is that we can easily integrate a func-
tion f(x) that is only known as samples, i.e., discrete values at some x points,
and not as a continuous function of x expressed through a formula. This is highly
relevant when f is measured in a physical experiment.

3.1 Basicldeas of Numerical Integration

We consider the integral
b
[rwis. (32)
a

Most numerical methods for computing this integral split up the original integral
into a sum of several integrals, each covering a smaller part of the original inte-
gration interval [a,b]. This re-writing of the integral is based on a selection of
integration points x;, i = 0,1,...,n that are distributed on the interval [a, b].
Integration points may, or may not, be evenly distributed. An even distribution sim-
plifies expressions and is often sufficient, so we will mostly restrict ourselves to that
choice. The integration points are then computed as

xi=a+ih, i=0,1,...,n, (3.3)

where

(3.4)

Given the integration points, the original integral is re-written as a sum of inte-
grals, each integral being computed over the sub-interval between two consecutive

3.2 The Composite Trapezoidal Rule 49

integration points. The integral in (3.2) is thus expressed as

/bf(x)dx=7f(x)dx+]zf(x)dx+...+ 7f(x)dx. (3.5)

Note that xo = @ and x,, = b.

Proceeding from (3.5), the different integration methods will differ in the way
they approximate each integral on the right hand side. The fundamental idea is that
each term is an integral over a small interval [x;, x;], and over this small interval,
it makes sense to approximate f by a simple shape, say a constant, a straight line,
or a parabola, which we can easily integrate by hand. The details will become clear
in the coming examples.

Computational example To understand and compare the numerical integration
methods, it is advantageous to use a specific integral for computations and graphical
illustrations. In particular, we want to use an integral that we can calculate by hand
such that the accuracy of the approximation methods can easily be assessed. Our
specific integral is taken from basic physics. Assume that you speed up your car
from rest and wonder how far you go in 7 seconds. The distance is given by the
integral fOT v(t)dt, where v(t) is the velocity as a function of time. A rapidly
increasing velocity function might be

v (t) = 32" . (3.6)

The distance after one second is

1

/ v(t)dt, 3.7)

0

which is the integral we aim to compute by numerical methods. Fortunately, the
chosen expression of the velocity has a form that makes it easy to calculate the
anti-derivative as

V() =e" —1. (3.8)

We can therefore compute the exact value of the integral as V(1) — V(0) ~ 1.718
(rounded to 3 decimals for convenience).

3.2 The Composite Trapezoidal Rule

The integral fab f(x)dx may be interpreted as the area between the x axis and the
graph y = f(x) of the integrand. Fig. 3.1 illustrates this area for the choice (3.7).
Computing the integral fol f(t)dt amounts to computing the area of the hatched
region.

If we replace the true graph in Fig. 3.1 by a set of straight line segments, we
may view the area rather as composed of trapezoids, the areas of which are easy to

50 3 Computing Integrals

O L L
0.0 0.2 0.4 0.6 0.8 1.0

Fig.3.1 The integral of v(¢) interpreted as the area under the graph of v

compute. This is illustrated in Fig. 3.2, where 4 straight line segments give rise to
4 trapezoids, covering the time intervals [0, 0.2), [0.2, 0.6), [0.6, 0.8) and [0.8, 1.0].
Note that we have taken the opportunity here to demonstrate the computations with
time intervals that differ in size.

The areas of the 4 trapezoids shown in Fig. 3.2 now constitute our approximation
to the integral (3.7):

1
[vwar~ (W) o (w)
0

2
i (v(0.6) + v(0.8)) e (v(0.8) + v(l.O)) ’ (3.9)
2 2
where
hy = (0.2 -0.0), (3.10)
hy = (0.6 —0.2), (3.11)
hy = (0.8 —0.6), (3.12)
hy = (1.0 —10.8) (3.13)

With v(t) = 3t%¢! *, each term in (3.9) is readily computed and our approximate

computation gives
1

/ v(t)dt ~ 1.895. (3.14)
0

3.2 The Composite Trapezoidal Rule 51

9

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.2 Computing approximately the integral of a function as the sum of the areas of the trape-
zoids

Compared to the true answer of 1.718, this is off by about 10 %. However, note
that we used just 4 trapezoids to approximate the area. With more trapezoids, the
approximation would have become better, since the straight line segments at the
upper trapezoid side then would follow the graph more closely. Doing another hand
calculation with more trapezoids is not too tempting for a lazy human, though,
but it is a perfect job for a computer! Let us therefore derive the expressions for
approximating the integral by an arbitrary number of trapezoids.

3.2.1 The General Formula
For a given function f(x), we want to approximate the integral fab f(x)dx by n

trapezoids (of equal width). We start out with (3.5) and approximate each integral
on the right hand side with a single trapezoid. In detail,

/bf(x)dx:]lf(x)dx+]2f(x)dx+...+7f(x)dx,

L) S0t
+h S (xXno1) + f(xn) (3.15)

2

52 3 Computing Integrals

By simplifying the right hand side of (3.15) we get

b
/f(X) dx ~ g[f(xo) +2/(x) +2f(x2) + ...+ 2f (1) + S ()] (3.16)

which is more compactly written as

b n—1
[rwax [%f(xO) £ S0 + %f(xn)} e
a i=1

Composite integration rules

The word composite is often used when a numerical integration method is ap-
plied with more than one sub-interval. Strictly speaking then, writing, e.g., “the
trapezoidal method”, should imply the use of only a single trapezoid, while “the
composite trapezoidal method” is the most correct name when several trapezoids
are used. However, this naming convention is not always followed, so saying just
“the trapezoidal method” may point to a single trapezoid as well as the composite
rule with many trapezoids.

3.2.2 Implementation

Specific or general implementation? Suppose our primary goal was to compute
the specific integral fol v(t)dt with v(t) = 3t%e! *. First we played around with
a simple hand calculation to see what the method was about, before we (as one
often does in mathematics) developed a general formula (3.17) for the general or
“abstract” integral fab f(x)dx. To solve our specific problem fol v(t)dt we must
then apply the general formula (3.17) to the given data (function and integral limits)
in our problem. Although simple in principle, the practical steps are confusing for
many because the notation in the abstract problem in (3.17) differs from the notation
in our special problem. Clearly, the f, x, and % in (3.17) correspond to v, ¢, and
perhaps At for the trapezoid width in our special problem.

The programmer’s dilemma

1. Should we write a special program for the special integral, using the ideas
from the general rule (3.17), but replacing f by v, x by ¢, and & by At?

2. Should we implement the general method (3.17) as it stands in a general
function trapezoid(f, a, b, n) and solve the specific problem at hand
by a specialized call to this function?

Alternative 2 is always the best choice!

The first alternative in the box above sounds less abstract and therefore more
attractive to many. Nevertheless, as we hope will be evident from the examples,
the second alternative is actually the simplest and most reliable from both a math-
ematical and programming point of view. These authors will claim that the second

3.2 The Composite Trapezoidal Rule 53

alternative is the essence of the power of mathematics, while the first alternative is
the source of much confusion about mathematics!

Implementation with functions For the integral fab f(x)dx computed by the for-
mula (3.17) we want the corresponding Matlab function trapezoid to take any f,
a, b, and n as input and return the approximation to the integral.

We write a Matlab function trapezoidal in a file trapezoidal.m as close
as possible to the formula (3.17), making sure variable names correspond to the
mathematical notation:

function integral = trapezoidal(f, a, b, n)
h = (b-a)/n;
result = 0.5%f(a) + 0.5%f(b);
for i = 1:(n-1)
result = result + f(a + i*h);
end
integral = h*result;
end

This function must be placed in a file trapezoidal.mto be reused in other pro-
grams and in interactive sessions.

Solving our specific problem in a session An interactive session can make use
of the trapezoidal function in trapezoidal.mto solve our particular problem

[l v@dr:

octave:1> v = @(t) 3*(t~2)*exp(t~3);

octave:2> n = 4;

octave:4> numerical = trapezoidal(v, 0, 1, n);
octave:5> numerical

numerical = 1.9227

Let us compute the exact expression and the error in the approximation:

octave:6> V = @(t) exp(t~3);
octave:7> exact = V(1) - V(0);
octave:8> error = exact - numerical
ans = -0.20443

Is this error convincing? We can try a larger n:

octave:9> numerical = trapezoidal(v, 0, 1, 400);
octave:10> exact - numerical
ans = -2.1236e-05

Fortunately, many more trapezoids give a much smaller error.

https://github.com/hplgit/prog4comp/tree/master/src/m/trapezoidal.m

54 3 Computing Integrals

Solving our specific problem in a program Instead of computing our special
problem in an interactive session, we can do it in a program. As always, a chunk
of code doing a particular thing is best isolated as a function even if we do not see
any future reason to call the function several times and even if we have no need for
arguments to parameterize what goes on inside the function. In the present case,
we just put the statements we otherwise would have put in a main program, inside
a function:

function application()
v = @(t) 3*(t"2)*exp(t~3);
n = input(’n: ’)
numerical = trapezoidal(v, 0, 1, n);

% Compare with exact result

V = @(t) exp(t~3);

exact = V(1) - V(0);

error = exact - numerical;

fprintf("n=Yd: %.16f, error: %g", n, numerical, error)
end

Now we compute our special problem by calling application() as the only state-
ment in the main program. The application function and its call is in the file
trapezoidal_app.m, which can be run as

Terminal> octave trapezoidal_app.m

n: 4

n= 4

n=4: 1.9227167504675762, error: -0.204435

3.2.3 Alternative Flat Special-Purpose Implementation

Let us illustrate the implementation implied by alternative 1 in the Programmer’s
dilemma box in Sect. 3.2.2. That is, we make a special-purpose code where we
adapt the general formula (3.17) to the specific problem fol 312 dt.

Basically, we use a for loop to compute the sum. Each term with f(x) in the
formula (3.17) is replaced by 312", x by ¢, and h by At!. A first try at writing
a plain, flat program doing the special calculation is

a 0.0; b=1.0;
n = input(’n: ’)
dt = (b-a)/n;

' Replacing h by At is not strictly required as many use /4 as interval also along the time axis.
Nevertheless, At is an even more popular notation for a small time interval, so we adopt that
common notation.

3.2 The Composite Trapezoidal Rule 55

% Integral by the trapezoidal method
numerical = 0.5%3%(a"2)*exp(a~3) + 0.5%3*(b~2)*exp(b~3);
for i = 1:(n-1)
numerical = numerical + 3*((a + ixdt) 2)*exp((a + i*dt)~3);
end
numerical = numerical*dt;

exact_value = exp(173) - exp(073);
error = exact_value - numerical;
fprintf (*n=)d: %.16f, error: %g’, n, numerical, error);

The problem with the above code is at least three-fold:

1. We need to reformulate (3.17) for our special problem with a different notation.

2. The integrand 3¢%¢’ * is inserted many times in the code, which quickly leads to
errors.

3. A lot of edits are necessary to use the code to compute a different integral —
these edits are likely to introduce errors.

The potential errors involved in point 2 serve to illustrate how important it is to
use Matlab functions as mathematical functions. Here we have chosen to use the
anonymous function to define the integrand as the variable v:

v = @(t) 3x(t"2)*exp(t~3);
a=0.0; b=1.0;

n = input(’n: ’)

dt = (b-a)/n;

% Integral by the trapezoidal method
numerical = 0.5%v(a) + 0.5*%v(b);
for i = 1:(n-1)

numerical = numerical + v(a + ixdt);
end
numerical = numericalx*dt;

F = @(t) exp(t™3);

exact_value = F(b) - F(a);

error = exact_value - numerical;

fprintf (°n=Yd: %.16f, error: %g’, n, numerical, error);

Unfortunately, the two other problems remain and they are fundamental.

. 11 32
Suppose you want to compute another integral, say f—1 e * dx. How much do
we need to change in the previous code to compute the new integral? Not so much:

e the formula for v must be replaced by a new formula
e the limits a and b

56 3 Computing Integrals

e the anti-derivative V' is not easily known? and can be omitted, and therefore we
cannot write out the error

e the notation should be changed to be aligned with the new problem, i.e., t and
dt changed to x and h

These changes are straightforward to implement, but they are scattered around in
the program, a fact that requires us to be very careful so we do not introduce new
programming errors while we modify the code. It is also very easy to forget to make
a required change.

With the previous code in trapezoidal.m, we can compute the new integral
f_lll e~ dx without touching the mathematical algorithm. In an interactive session
(or in a program) we can just do

octave:1> trapezoidal(@(x) exp(-x~2), -1, 1.1, 400)
ans = 1.5269

When you now look back at the two solutions, the flat special-purpose program
and the function-based program with the general-purpose function trapezoidal,
you hopefully realize that implementing a general mathematical algorithm in a gen-
eral function requires somewhat more abstract thinking, but the resulting code can
be used over and over again. Essentially, if you apply the flat special-purpose style,
you have to retest the implementation of the algorithm after every change of the
program.

The present integral problems result in short code. In more challenging engineer-
ing problems the code quickly grows to hundreds and thousands of lines. Without
abstractions in terms of general algorithms in general reusable functions, the com-
plexity of the program grows so fast that it will be extremely difficult to make sure
that the program works properly.

Another advantage of packaging mathematical algorithms in functions is that
a function can be reused by anyone to solve a problem by just calling the function
with a proper set of arguments. Understanding the function’s inner details is not
necessary to compute a new integral. Similarly, you can find libraries of functions
on the Internet and use these functions to solve your problems without specific
knowledge of every mathematical detail in the functions.

This desirable feature has its downside, of course: the user of a function may
misuse it, and the function may contain programming errors and lead to wrong an-
swers. Testing the output of downloaded functions is therefore extremely important
before relying on the results.

2 You cannot integrate e by hand, but this particular integral is appearing so often in so many
contexts that the integral is a special function, called the Error function (http://en.wikipedia.org/
wiki/Error_function) and written erf(x). In a code, you can call erf (x).

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function

3.3 The Composite Midpoint Method 57

3.3 The Composite Midpoint Method

The idea Rather than approximating the area under a curve by trapezoids, we can
use plain rectangles. It may sound less accurate to use horizontal lines and not
skew lines following the function to be integrated, but an integration method based
on rectangles (the midpoint method) is in fact slightly more accurate than the one
based on trapezoids!

In the midpoint method, we construct a rectangle for every sub-interval where
the height equals f at the midpoint of the sub-interval. Let us do this for four
rectangles (Fig. 3.3), using the same sub-intervals as we had for hand calculations
with the trapezoidal method: [0, 0.2), [0.2,0.6), [0.6,0.8), and [0.8, 1.0]. We get

1
[o=y (S502) 4y (252
0

2 2

0.6 +0.8 0.84+1.0
S (+) thef (+) (318

where hy, hy, hs, and hy are the widths of the sub-intervals, used previously with
the trapezoidal method and defined in (3.10)—(3.13).

With f(t) = 3t%e’ * the approximation becomes 1.632. Compared with the true
answer (1.718), this is about 5 % too small, but it is better than what we got with
the trapezoidal method (10 %) with the same sub-intervals. More rectangles give
a better approximation.

04
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.3 Computing approximately the integral of a function as the sum of the areas of the rect-
angles

58 3 Computing Integrals

3.3.1 The General Formula

Let us derive a formula for the midpoint method based on n rectangles of equal
width:

/bf(x)dx=]lf(x)dx+7f(x)dx+...+ /x-” f(x)dx,

%hf(xole)+hf(xl';x2)+.”+hf(xn—l+xn)’

2
(3.19)
Xo + X1 X1+ x2 Xp—1 + Xy
() e () e ().
(3.20)
This sum may be written more compactly as

b n—1

/f(x)dx ~hYy f(x), (3.21)
g i=0

where x; = (a + %) +ih.

3.3.2 Implementation

We follow the advice and lessons learned from the implementation of the
trapezoidal method and make a function midpoint(f, a, b, n) (in a file
midpoint.m) for implementing the general formula (3.21):

function result_integration = midpoint(f, a, b, n)
h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + £((a + h/2) + ixh);
end
result_integration = h*result;
end

We can test the function as we explained for the similar trapezoidal method.
The error in our particular problem fol 312¢" dt with four intervals is now about 0.1
in contrast to 0.2 for the trapezoidal rule. This is in fact not accidental: one can
show mathematically that the error of the midpoint method is a bit smaller than for
the trapezoidal method. The differences are seldom of any practical importance,
and on a laptop we can easily use n = 10° and get the answer with an error of about
1072 in a couple of seconds.

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m

3.3 The Composite Midpoint Method

59

3.3.3 Comparing the Trapezoidal and the Midpoint Methods

The next example shows how easy we can combine the trapezoidal and
midpoint functions to make a comparison of the two methods in the file compare_
integration_methods.m:

g = 0(y) exp(-y~2);

a = 0;

b = 2;

fprintf (

for i =
n =
m =

b

1:
o=
midpoint(g, a, b, n);

n midpoint

20
i

t = trapezoidal(g, a, b, n);
fprintf (°%7d %.16f %.16f\n’, n, m, t);

end

Note the efforts put into nice formatting — the output becomes

o >N

[l elelNeNeNeNeNeNeNeolNeoNeoNeoNeolNeolNolNeolNolNeolNo)

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

midpoint

.8842000076332692
.8827889485397279
.8822686991994210
.8821288703366458
.8820933014203766
.8820843709743319
.8820821359746071
.8820815770754198
.8820814373412922
.8820814024071774
.8820813936736116
.8820813914902204
.8820813909443684
.8820813908079066
.8820813907737911
.8820813907652575
.8820813907631487
.8820813907625702
.8820813907624605
.8820813907624268

trapezoidal

.8770372606158094
.8806186341245393
.8817037913321336
.8819862452657772
.8820575578012112
.8820754296107942
.8820799002925637
.8820810181335849
.8820812976045025
.8820813674728968
.8820813849400392
.8820813893068272
.8820813903985197
.8820813906714446
.8820813907396778
.8820813907567422
.8820813907610036
.8820813907620528
.8820813907623183
.8820813907623890

trapezoidal\n’);

A visual inspection of the numbers shows how fast the digits stabilize in both meth-

ods. It appears that 13 digits have stabilized in the last two rows.

Remark

The trapezoidal and midpoint methods are just two examples in a jungle of nu-
merical integration rules. Other famous methods are Simpson’s rule and Gauss
quadrature. They all work in the same way:

/b f(x)dx ~

n—1

=0

Zwif(xi)-

https://github.com/hplgit/prog4comp/tree/master/src/m/compare_integration_methods.m

60 3 Computing Integrals

That is, the integral is approximated by a sum of function evaluations, where
each evaluation f(x;) is given a weight w;. The different methods differ in the
way they construct the evaluation points x; and the weights w;. We have used
equally spaced points x;, but higher accuracy can be obtained by optimizing the
location of x;.

3.4 Testing
3.4.1 Problems with Brief Testing Procedures

Testing of the programs for numerical integration has so far employed two strate-
gies. If we have an exact answer, we compute the error and see that increasing
n decreases the error. When the exact answer is not available, we can (as in the
comparison example in the previous section) look at the integral values and see that
they stabilize as n grows. Unfortunately, these are very weak test procedures and
not at all satisfactory for claiming that the software we have produced is correctly
implemented.

To see this, we can introduce a bug in the application function that calls
trapezoidal: instead of integrating 3t2e”’, we write “accidentally” 3r3¢'’, but
keep the same anti-derivative V(t)et3 for computing the error. With the bug and
n = 4, the error is 0.1, but without the bug the error is 0.2! It is of course com-
pletely impossible to tell if 0.1 is the right value of the error. Fortunately, increasing
n shows that the error stays about 0.3 in the program with the bug, so the test pro-
cedure with increasing n and checking that the error decreases points to a problem
in the code.

Let us look at another bug, this time in the mathematical algorithm: instead
of computing %(f(a) + f(b)) as we should, we forget the second % and write

0.5%f(a) + £(b). The error for n = 4, 40,400 when computing f114.19 312" dt
goes like 1400, 107, 10, respectively, which looks promising. The problem is that
the right errors should be 369, 4.08, and 0.04. That is, the error should be reduced
faster in the correct than in the buggy code. The problem, however, is that it is
reduced in both codes, and we may stop further testing and believe everything is
correctly implemented.

Unit testing

A good habit is to test small pieces of a larger code individually, one at a time.
This is known as unit testing. One identifies a (small) unit of the code, and then
one makes a separate test for this unit. The unit test should be stand-alone in
the sense that it can be run without the outcome of other tests. Typically, one
algorithm in scientific programs is considered as a unit. The challenge with unit
tests in numerical computing is to deal with numerical approximation errors.
A fortunate side effect of unit testing is that the programmer is forced to use
functions to modularize the code into smaller, logical pieces.

34 Testing 61

3.4.2 Proper Test Procedures

There are three serious ways to test the implementation of numerical methods via
unit tests:

1. Comparing with hand-computed results in a problem with few arithmetic oper-
ations, i.e., small n.

2. Solving a problem without numerical errors. We know that the trapezoidal rule
must be exact for linear functions. The error produced by the program must then
be zero (to machine precision).

3. Demonstrating correct convergence rates. A strong test when we can compute
exact errors, is to see how fast the error goes to zero as n grows. In the trape-
zoidal and midpoint rules it is known that the error depends on n as n2 as

n — oQ.

Hand-computed results Let us use two trapezoids and compute the integral
1 2 13
Jo v(®), v(r) = 3t%e":

%h(v(o) +v(0.5)) + %h(v(O.S) + v(1)) = 2.463642041244344,

when i = 0.5 is the width of the two trapezoids. Running the program gives exactly
the same result.

Solving a problem without numerical errors The best unit tests for numerical
algorithms involve mathematical problems where we know the numerical result be-
forehand. Usually, numerical results contain unknown approximation errors, so
knowing the numerical result implies that we have a problem where the approx-
imation errors vanish. This feature may be present in very simple mathematical
problems. For example, the trapezoidal method is exact for integration of linear
functions f(x) = ax 4+ b. We can therefore pick some linear function and con-
struct a test function that checks equality between the exact analytical expression
for the integral and the number computed by the implementation of the trapezoidal
method.

A specific test case can be || 1‘%'24 (6x — 4)dx. This integral involves an “arbitrary”
interval [1.2, 4.4] and an “arbitrary” linear function f(x) = 6x — 4. By “arbitrary”
we mean expressions where we avoid the special numbers 0 and 1 since these have
special properties in arithmetic operations (e.g., forgetting to multiply is equivalent
to multiplying by 1, and forgetting to add is equivalent to adding 0).

Demonstrating correct convergence rates Normally, unit tests must be based on
problems where the numerical approximation errors in our implementation remain
unknown. However, we often know or may assume a certain asymptotic behavior
of the error. We can do some experimental runs with the test problem fol 312! dt
where n is doubled in each run: n = 4,8, 16. The corresponding errors are then
12 %, 3 % and 0.77 %, respectively. These numbers indicate that the error is roughly
reduced by a factor of 4 when doubling 7. Thus, the error converges to zero as n >
and we say that the convergence rate is 2. In fact, this result can also be shown

62 3 Computing Integrals

mathematically for the trapezoidal and midpoint method. Numerical integration
methods usually have an error that converge to zero as n~? for some p that depends
on the method. With such a result, it does not matter if we do not know what
the actual approximation error is: we know at what rate it is reduced, so running
the implementation for two or more different n values will put us in a position to
measure the expected rate and see if it is achieved.

The idea of a corresponding unit test is then to run the algorithm for some n
values, compute the error (the absolute value of the difference between the exact
analytical result and the one produced by the numerical method), and check that the
error has approximately correct asymptotic behavior, i.e., that the error is propor-
tional to 72 in case of the trapezoidal and midpoint method.

Let us develop a more precise method for such unit tests based on convergence
rates. We assume that the error £ depends on n according to

E=Cn",

where C is an unknown constant and r is the convergence rate. Consider a set of

experiments with various n: ny,ns, ..., n,. We compute the corresponding errors

Ey, ..., E,;. For two consecutive experiments, number i and i — 1, we have the
error model

E =Cn, (3.22)

Ei_y =Cn]_,. (3.23)

These are two equations for two unknowns C and r. We can easily eliminate C by
dividing the equations by each other. Then solving for r gives

_ IIl(E,'/E,'_l)

r = 7ln(ni/n,~_1) . (3.24)

We have introduced a subscript 7 in r since the estimated value for r varies with
i. Hopefully, r; approaches the correct convergence rate as the number of intervals
increases and i — q.

3.4.3 Finite Precision of Floating-Point Numbers

The test procedures above lead to comparison of numbers for checking that calcu-
lations were correct. Such comparison is more complicated than what a newcomer
might think. Suppose we have a calculation a + b and want to check that the result
is what we expect. We start with 1 4 2:

>> a = 1;
> a + b=
ans = 1

b = 2; expected = 3;
= expected

34 Testing 63

Then we proceed with 0.1 + 0.2:

>> a =0.1; b = 0.2; expected = 0.3;
>> a + b == expected
ans = 0

So why is 0.1 + 0.2 # 0.3? The reason is that real numbers cannot in general be
exactly represented on a computer. They must instead be approximated by a float-
ing-point number? that can only store a finite amount of information, usually about
17 digits of a real number. Let us print 0.1, 0.2, 0.1 + 0.2, and 0.3 with 17 decimals:

>> fprintf (°%.17f\n%.17f\n%.17£f\n’%.17f\n’, 0.1, 0.2, 0.1 + 0.2, 0.3)
0.10000000000000001
0.20000000000000001
0.30000000000000004
0.29999999999999999

We see that all of the numbers have an inaccurate digit in the 17th decimal place.
Because 0.1 4 0.2 evaluates to 0.30000000000000004 and 0.3 is represented as
0.29999999999999999, these two numbers are not equal. In general, real numbers
in Matlab have (at most) 16 correct decimals.

When we compute with real numbers, these numbers are inaccurately repre-
sented on the computer, and arithmetic operations with inaccurate numbers lead
to small rounding errors in the final results. Depending on the type of numerical
algorithm, the rounding errors may or may not accumulate.

If we cannot make tests like 0.1 + 0.2 == 0.3, what should we then do? The
answer is that we must accept some small inaccuracy and make a test with a roler-
ance. Here is the recipe:

>> a =0.1; b = 0.2; expected = 0.3;
>> computed = a + b;

>> diff = abs(expected - computed);
>> tol = 1E-15;

>> diff < tol

ans = 1

Here we have set the tolerance for comparison to 10~!°, but calculating 0.3 -
(0.1 + 0.2) shows that it equals -5.55e-17, so a lower tolerance could be used
in this particular example. However, in other calculations we have little idea about
how accurate the answer is (there could be accumulation of rounding errors in more
complicated algorithms), so 10~!° or 10~'* are robust values. As we demonstrate
below, these tolerances depend on the magnitude of the numbers in the calculations.

Doing an experiment with 10F + 0.3 — (IOk +0.14+0.2) fork =1,...,10
shows that the answer (which should be zero) is around 10'®*. This means that
the tolerance must be larger if we compute with larger numbers. Setting a proper
tolerance therefore requires some experiments to see what level of accuracy one
can expect. A way out of this difficulty is to work with relative instead of absolute

3 https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point

64 3 Computing Integrals

differences. In a relative difference we divide by one of the operands, e.g.,

a—>b
—-

a=10+03, b=(10"+01402), c¢=

Computing this ¢ for various k shows a value around 107'®. A safer procedure is
thus to use relative differences.

3.4.4 Constructing Unit Tests and Writing Test Functions

Software testing in other languages often applies comprehensive test frameworks to
automatically run through large numbers of tests. This is very advantageous as one
can at any time check that the code works. It is a good habit to run the test suite
after every edit of the source code files.

Matlab also has test frameworks, but we shall here just use the common ideas
(across languages) for writing tests and not employ any particular framework for
running the tests. Our convention is to put each test in a separate fest function, with
the following properties:

the name must start with test_

the test function cannot have any arguments

the tests inside test functions must be boolean expressions

a boolean expression b must be tested with assert (b, msg), where msg is an
optional object (string or number) to be written out when b is false

Suppose we have written a function

function u = add(a, b)
u=a+ b;
end

A corresponding test function might then be

function test_add

expected = 1 + 1;

computed = add(1, 1);

assert(computed == expected, ’1+1=Jg’, computed) ;
end

Test functions and their calls are conveniently placed in files whose names start
with test_. A simple script can be made to search for such files and run them
automatically (essentially, this is what testing frameworks do).

As long as we add integers, the equality test in the test_add function is appro-
priate, but if we try to call add (0.1, 0.2) instead, we will face the rounding error
problems explained in Sect. 3.4.3, and we must use a test with tolerance instead:

34 Testing 65

function test_add
expected = 0.3;
computed = add(0.1, 0.2;
tol = 1E-14;
diff = abs(expected - computed);
assert(diff < tol, ’diff=Jg’, diff);
end

Below we shall write test functions for each of the three test procedures we
suggested: comparison with hand calculations, checking problems that can be ex-
actly solved, and checking convergence rates. We stick to testing the trapezoidal
integration code and collect all test functions in one common file by the name
test_trapezoidal.m.

In Matlab, we need to enforce the following rules on files for the function to be
tested and the test functions:

e The numerical method (to be tested) must be available as a function in a file with
the same name as the function.
e The test functions are put in separate files.

Hand-computed numerical results Our previous hand calculations for two trape-
zoids can be checked against the trapezoidal function inside a test function (in
a file test_trapezoidal.m):

function test_trapezoidal_one_exact_result
% Compare one hand-computed result
v = @(t) 3*x(t"2)*exp(t~3);
n=2;
computed = trapezoidal(v, 0, 1, n);
expected = 2.463642041244344;
error = abs(expected - computed) ;

tol = 1E-14;
assert(error < tol, ’error=Y%g > tol=lg’, error, tol);
end

Note the importance of checking err against exact with a tolerance: rounding
errors from the arithmetics inside trapezoidal will not make the result exactly
like the hand-computed one. The size of the tolerance is here set to 10~'%, which is
a kind of all-round value for computations with numbers not deviating much from
unity.

Solving a problem without numerical errors We know that the trapezoidal rule
is exact for linear integrands. Choosing the integral || 1%‘24 (6x —4)dx as test case, the
corresponding test function for this unit test may look like

function test_trapezoidal_linear
% Check that linear functions are integrated exactly
f = @(x) 6*x - 4;
F = @(x) 3*%x”2 - 4*x; Y Anti-derivative

https://github.com/hplgit/prog4comp/tree/master/src/m/test_trapezoidal.m

66 3 Computing Integrals

a=1.2; b =4.4;
expected = F(b) - F(a);
tol = 1E-14;
for n = [2 20 21]
computed = trapezoidal(f, a, b, n);
error = abs(expected - computed) ;
assert(error < tol, ’n=/d, err=Jg’, n, error);
end
end

Demonstrating correct convergence rates In the present example with integra-
tion, it is known that the approximation errors in the trapezoidal rule are propor-
tional to 2, n being the number of subintervals used in the composite rule.

Computing convergence rates requires somewhat more tedious programming
than the previous tests, but can be applied to more general integrands. The al-
gorithm typically goes like

e fori =1,2,...,¢q
- n; = 2i
— Compute integral with n; intervals
— Compute the error E;
— Estimate r; from (3.24) if i > 1

The corresponding code may look like

function r = convergence_rates(f, F, a, b, num_experiments)
n = zeros(num_experiments, 1);
E = zeros(num_experiments, 1);
r = zeros(num_experiments-1, 1);
expected = F(b) - F(a);

for i = 1:num_experiments
n(i) = 27i;
computed = trapezoidal(f, a, b, n(i));
error = abs(expected - computed) ;
E(i) = error;
if (1> 1)
r(i-1) = log(E(i-1)/E(i))/log(n(i-1)/n(i));
r(i-1) = round(r(i-1)#*100)/100; % Truncate, two decimals
end
end
end

Making a test function is a matter of choosing f, F, a, and b, and then checking
the value of r; for the largest i:

function test_trapezoidal_conv_rate
% Check empirical convergence rates against the expected -2.
v = @(t) 3*(t"2)*exp(t~3);
V = @(t) exp(t~3);

1.1; b = 1.9;

num_experiments = 14;

a

3.5 Vectorization 67

r = convergence_rates(v, V, a, b, num_experiments)
tol = 0.01;
assert (abs (r (num_experiments-1)) - 2 < tol, ’%f, %f, %f, %f, %f’,...
r((num_experiments-1)-4:num_experiments-1)) ;
end

Running the test shows that all r;, except the first one, equal the target limit 2
within two decimals. This observation suggests a tolerance of 1072

Remark about version control of files

Having a suite of test functions for automatically checking that your soft-
ware works is considered as a fundamental requirement for reliable computing.
Equally important is a system that can keep track of different versions of the files
and the tests, known as a version control system. Today’s most popular version
control system is Git*, which the authors strongly recommend the reader to use
for programming and writing reports. The combination of Git and cloud storage
such as GitHub is a very common way of organizing scientific or engineering
work. We have a quick intro® to Git and GitHub that gets you up and running
within minutes.

The typical workflow with Git goes as follows.

1. Before you start working with files, make sure you have the latest version of
them by running git pull.

2. Edit files, remove or create files (new files must be registered by git add).

3. When a natural piece of work is done, commit your changes by the git
commit command.

4. Implement your changes also in the cloud by doing git push.

A nice feature of Git is that people can edit the same file at the same time and
very often Git will be able to automatically merge the changes (!). Therefore,
version control is crucial when you work with others or when you do your work
on different types of computers. Another key feature is that anyone can at any
time view the history of a file, see who did what when, and roll back the entire
file collection to a previous commit. This feature is, of course, fundamental for
reliable work.

3.5 Vectorization

The functions midpoint and trapezoid usually run fast in Matlab and compute
an integral to a satisfactory precision within a fraction of a second. However, long
loops in Matlab may run slowly in more complicated implementations. To increase
the speed, the loops can be replaced by vectorized code. The integration functions
constitute a simple and good example to illustrate how to vectorize loops.

We have already seen simple examples on vectorization in Sect. 1.4 when we
could evaluate a mathematical function f(x) for a large number of x values stored
in an array. Basically, we can write

4 https://en.wikipedia.org/wiki/Git_(software)
3 http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html

https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html

68 3 Computing Integrals

function result = f(x)
result = exp(-x)*sin(x) + 5.*x
end

]
I

= linspace(0, 4, 101); # coordinates from 100 intervals on [0, 4]
y = £(x); # all points evaluated at once

The result y is the array that would be computed if we ran a for loop over the
individual x values and called f for each value. Vectorization essentially eliminates
this loop in Matlab (i.e., the looping over x and application of £ to each x value are
instead performed in a library with fast, compiled code).

Vectorizing the midpoint rule The aim of vectorizing the midpoint and trape-
zoidal functions is also to remove the explicit loop in Matlab. We start with
vectorizing the midpoint function since trapezoid is not equally straightforward.
The fundamental ideas of the vectorized algorithm are to

1. compute all the evaluation points in one array x
2. call £ (x) to produce an array of corresponding function values
3. use the sum function to sum the f (x) values

The evaluation points in the midpoint method are x; = a + (i + %)h, i=0,....,n—
1. That is, n uniformly distributed coordinates between a + h/2 and b — h/2. Such
coordinates can be calculated by x = linspace(a+h/2, b-h/2, n). Given that
the Matlab implementation £ of the mathematical function f works with an array
argument, which requires array versions of arithmetic operators (.+, .*, etc.) in
Matlab, £ (x) will produce all the function values in an array. The array elements
are then summed up by sum: sum(f(x)). This sum is to be multiplied by the
rectangle width % to produce the integral value. The complete function is listed
below.

function result_integration = midpoint_vec(f, a, b, n)
h = (b-a)/n;
x = linspace(a + h/2, b - h/2, n);
result_integration = h*sum(f(x));

end

The code is found in the file midpoint_vec.m. An interactive test reads

octave:1> v = @(t) 3.*t."2.*exp(t.”3);
octave:2> midpoint_vec(v, 0, 1, 10)
ans = 1.7015

Note the need for the vectorized operator . * in the function expression since v (x)
will be called with array arguments x.

The vectorized code performs all loops very efficiently in compiled code, result-
ing in much faster execution. Moreover, many readers of the code will also say that
the algorithm looks clearer than in the loop-based implementation.

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_vec.m

3.7 Double and Triple Integrals 69

Vectorizing the trapezoidal rule We can use the same approach to vectorize the
trapezoid function. However, the trapezoidal rule performs a sum where the end
points have different weight. If we do sum(f (x)), we get the end points f (a) and
f (b) with weight unity instead of one half. A remedy is to subtract the error from
sum(f(x)): sum(f(x)) - 0.5%f(a) - 0.5%f(b). The vectorized version of
the trapezoidal method then becomes (code in trapezoidal_vec.m)

function result_integration = trapezoidal_vec(f, a, b, n)

h = (b-a)/n;

x = linspace(a, b, n+l);

result_integration = h*(sum(f(x)) - 0.5%f(a) - 0.5%f(b))
end

3.6 Measuring Computational Speed

Now that we have created faster, vectorized versions of functions in the previous
section, it is interesting to measure how much faster they are. The purpose of the
present section is therefore to explain how we can record the CPU time consumed
by a function so we can answer this question. The “stop watch” in Matlab is the
function pair tic (start) and toc. Here is an interactive session measuring the effect
of midpoint_vec versus midpoint:

octave:1> v = @(t) 3*t"2xexp(t~3);

octave:2> v_ = @(t) 3.*t. 2.xexp(t.”3);

octave:3> tic; midpoint_vec(v_, 0, 1, 1000000); toc
Elapsed time is 0.38 seconds.

octave:4> tic; midpoint(v_, 0, 1, 1000000); toc
Elapsed time is 40 seconds.

octave:5> 40/0.38

ans = 105.26

The vectorized version is 100 times faster!

3.7 Double and Triple Integrals
3.71 The Midpoint Rule for a Double Integral

Given a double integral over a rectangular domain [a, b] X [c, d],

b d
/ / £ y)dyds,

how can we approximate this integral by numerical methods?

Derivation via one-dimensional integrals Since we know how to deal with in-
tegrals in one variable, a fruitful approach is to view the double integral as two

https://github.com/hplgit/prog4comp/tree/master/src/m/trapezoidal_vec.m

70 3 Computing Integrals

integrals, each in one variable, which can be approximated numerically by previous
one-dimensional formulas. To this end, we introduce a help function g(x) and write

b

/b/df(x,J’)dydx =/g(x)dx, g(x):/c{f(x,y)dy.

Each of the integrals

b

d
/ gydx, g(x) = / Fxy)dy

a

can be discretized by any numerical integration rule for an integral in one variable.
Let us use the midpoint method (3.21) and start with g(x) = [¢ f(x,y)dy. We
introduce n, intervals on [c, d] with length /. The midpoint rule for this integral
then becomes

ny—1

d
1 .
g = [Sy ~ by Y Sy = e ghy +
¢ j=0

The expression looks somewhat different from (3.21), but that is because of the
notation: since we integrate in the y direction and will have to work with both x
and y as coordinates, we must use n, for n, h, for h, and the counter i is more
naturally called j when integrating in y. Integrals in the x direction will use /4, and
n, for h and n, and i as counter.

The double integral is fab g(x)dx, which can be approximated by the midpoint

method:
b

ny—1
X 1
Xd %l’l)bg Xi), i = a—l——hx—i—'hx.

Putting the formulas together, we arrive at the composite midpoint method for a dou-
ble integral:

b d ny—1 ny—1
[[s = b Y b Y f
o i=0 j=0

ny—1ny=1

hy | . hy .
=hohy Y > fla+ S5+ ihe,c + 7V + jhy). (3.25)
i=0 j=0

Direct derivation The formula (3.25) can also be derived directly in the two-
dimensional case by applying the idea of the midpoint method. We divide the
rectangle [a, b] x [c,d] into n, x n, equal-sized cells. The idea of the midpoint
method is to approximate f by a constant over each cell, and evaluate the constant
at the midpoint. Cell (i, j) occupies the area

[a+ihy,a+ (G + Dh]x[c+ jhy,c+ (j + Dhy,

3.7 Double and Triple Integrals 7

and the midpoint is (x;, y;) with

1 1
xi:a+ihx+§hx, yj :C+j/’ly+§hy.

The integral over the cell is therefore 4,4, f(x;, y;), and the total double integral
is the sum over all cells, which is nothing but formula (3.25).

Programming a double sum The formula (3.25) involves a double sum, which
is normally implemented as a double for loop. A Matlab function implementing
(3.25) may look like

function result = midpoint_doublel(f, a, b, ¢, d, nx, ny)
hx = (b - a)/nx;
hy = (d - ¢)/ny;
I=0;
for i = 0:(nx-1)
for j = 0:(ny-1)
xi = a + hx/2 + ixhx;
yj = ¢ + hy/2 + j*hy;
I = I + hx*hy*xf(xi, yj);
end

end
result = I;
end

With this function, which is available in the file midpoint_doublel.m, we may
now compute some integral f02 f; (2x + y)dydx = 9 in an interactive shell and
demonstrate that the function computes the right number:

>> f = 0(x, y) 2*%x + y;
>>> midpoint_doublel(f, 0, 2, 2, 3, 5, 5)
9.0

Reusing code for one-dimensional integrals It is very natural to write a two-
dimensional midpoint method as we did in function midpoint_doublel when we
have the formula (3.25). However, we could alternatively ask, much as we did in
the mathematics, can we reuse a well-tested implementation for one-dimensional
integrals to compute double integrals? That is, can we use function midpoint

function result_integration = midpoint(f, a, b, n)
h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + f((a + h/2) + ixh);
end
result_integration = h*result;
end

from Sect. 3.3.2 “twice”? The answer is yes, if we think as we did in the mathemat-
ics: compute the double integral as a midpoint rule for integrating g(x) and define

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_double1.m

72 3 Computing Integrals

g(x;) in terms of a midpoint rule over f in the y coordinate. The corresponding
function has very short code:

function I = midpoint_double2(f, a, b, c, d, nx, ny)
function result = g(x)
result = midpoint(@(y) f(x, y), c, d, ny);
end
g_handle = Qg;
I = midpoint(g_handle, a, b, nx);
end

The important advantage of this implementation is that we reuse a well-tested
function for the standard one-dimensional midpoint rule and that we apply the one-
dimensional rule exactly as in the mathematics.

Verification via test functions How can we test that our functions for the dou-
ble integral work? The best unit test is to find a problem where the numerical
approximation error vanishes because then we know exactly what the numerical
answer should be. The midpoint rule is exact for linear functions, regardless of how
many subinterval we use. Also, any linear two-dimensional function f(x,y) =
px + qy + r will be integrated exactly by the two-dimensional midpoint rule. We
may pick f(x,y) = 2x + y and create a proper fest function that can automatically
verify our two alternative implementations of the two-dimensional midpoint rule.
To compute the integral of f(x, y) we take advantage of SymPy to eliminate the
possibility of errors in hand calculations. The test function becomes

function test_midpoint_double()
% Test that a linear function is integrated exactly.
f=0(x, y) 2%x + y;

a=0; b=2; c=2; d-=3;

syms X y;

I_expected = int(int(f, y, c, d), x, a, b);

% Test three cases: nx < ny, nx = ny, nx > ny

nx = 3; ny = 5;

for i = (0:2)
nx =nx + 1; ny =ny - 1;
I_computedl = midpoint_doublel(f, a, b, c, d, nx, ny);
I_computed2 = midpoint_double2(f, a, b, ¢, d, nx, ny);
tol = 1E-14;
%Efprintf (°. ..
% I_expected = %g, I_computedl = %g, I_computed2 = %g\n’,...
% I_expected, I_computedl, I_computed?2);

assert(abs(I_computedl - I_expected) < tol);

assert (abs(I_computed2 - I_expected) < tol);

end

end

3.7 Double and Triple Integrals 73

Let test functions speak up?

If we call the above test_midpoint_double function and nothing happens, our
implementations are correct. However, it is somewhat annoying to have a func-
tion that is completely silent when it works — are we sure all things are properly
computed? During development it is therefore highly recommended to insert
a print statement such that we can monitor the calculations and be convinced
that the test function does what we want. Since a test function should not have
any print statement, we simply comment it out as we have done in the function
listed above.

The trapezoidal method can be used as alternative for the midpoint method. The
derivation of a formula for the double integral and the implementations follow ex-
actly the same ideas as we explained with the midpoint method, but there are more
terms to write in the formulas. Exercise 3.13 asks you to carry out the details.
That exercise is a very good test on your understanding of the mathematical and
programming ideas in the present section.

3.7.2 The Midpoint Rule for a Triple Integral

Theory Once a method that works for a one-dimensional problem is generalized
to two dimensions, it is usually quite straightforward to extend the method to three
dimensions. This will now be demonstrated for integrals. We have the triple integral

b d f
///g(x,y,z)dzdydx

and want to approximate the integral by a midpoint rule. Following the ideas for
the double integral, we split this integral into one-dimensional integrals:

f
p(x,y) = /g(x,y,Z)dZ

e
d

4(x) = / p(x. y)dy

¢

b

/b/d/fg(x,y,z)dzdydx:/q(x)dx

a

74 3 Computing Integrals

For each of these one-dimensional integrals we apply the midpoint rule:

f -
p(x.y) = /g(x,y,Z)dz ~ Y g y.z),
k=0

d ny—1
0 = [ey = 3 pe,
¢ j=0

ny—1

b d f b
a/ / / ¢(x, v, 2)dzdydx = / = 3)

where
1 1 . 1 .
zk:e—l—ihz—l—khz, yj:c—i—ihy—l—]hy x,-:a—l—ihx—l—zhx.

Starting with the formula for fab fcd fef g(x,y,z)dzdydx and inserting the two
previous formulas gives

f

b d
///g(x,y,z)dzdydx

ny—1ny=ln,—1
~ hyhyh. Z Z > g+ %hx +ihy, e+ %hy + jhy,e + %hz + kh.).
i=0 j=0 k=0
(3.26)
Note that we may apply the ideas under Direct derivation at the end of Sect. 3.7.1
to arrive at (3.26) directly: divide the domain into n, X n, x n cells of volumes
hyhyh.; approximate g by a constant, evaluated at the midpoint (x;, y;, zx), in each
cell; and sum the cell integrals A h,h-g(x;, y;, Zi).

Implementation We follow the ideas for the implementations of the midpoint
rule for a double integral. The corresponding functions are shown below and
found in the files midpoint_triplel.m, midpoint.m, midpoint_triple2.m,
test_midpoint_triple.m.

function result = midpoint_triplei(g, a, b, ¢, d, e, f, nx, ny, nz)

hx = (b - a)/nx;
hy = (d - ¢)/ny;
hz = (f - e)/nz;
I=0;

for i = 0:(nx-1)
for j = 0:(ny-1)
for k = 0:(nz-1)
xi a + hx/2 + ix*hx;
¥j = ¢ + hy/2 + j*hy;

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple1.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple2.m
https://github.com/hplgit/prog4comp/tree/master/src/m/test_midpoint_triple.m

3.7 Double and Triple Integrals

zk = e + hz/2 + k*hz;
I = I + hx*hyxhzxg(xi, yj, zk);
end
end
end
result = I;
end

function result_integration = midpoint(f, a, b, n)
h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + f((a + h/2) + ixh);
end
result_integration = h*result;
end

function I = midpoint_triple2(g, a, b, c, d, e, f, nx, ny, nz)
function result = p(x, y)
result = midpoint(@(z) g(x, y, z), e, £, nz);
end

function result = q(x)
result = midpoint(@(y) p(x, y), ¢, d, ny);
end

q_handle = Qq;
I = midpoint(q_handle, a, b, nx);
end

function test_midpoint_triple()
% Test that a linear function is integrated exactly.
g =0(x, y, 2) 2kx + y - 4*z;

a=0; b=2; c=2; d=3; e=-1; f =2;
syms X y z;
I_expected = int(int(int(f, y, c, d), x, a, b), z, e, £);
nx = 3; ny =5; nz = 2;
for i = 0:2
nx =nx + 1; ny =ny - 1; nz = nz + 2;
I_computedl = midpoint_triplel(...
g, a, b, ¢, d, e, f, nx, ny, nz)
I_computed2 = midpoint_triple2(...
g, a, b, ¢, d, e, £, nx, ny, nz)
tol = 1E-14;
fprintf (°...
I_expected = %g, I_computedl = %g, I_computed2 = %g\n’,...
I_expected, I_computedl, I_computed?2);
assert (abs(I_computedl - I_expected) < tol);
assert (abs(I_computed2 - I_expected) < tol);
end
end

76 3 Computing Integrals

3.7.3 Monte Carlo Integration for Complex-Shaped Domains

Repeated use of one-dimensional integration rules to handle double and triple inte-
grals constitute a working strategy only if the integration domain is a rectangle or
box. For any other shape of domain, completely different methods must be used.
A common approach for two- and three-dimensional domains is to divide the do-
main into many small triangles or tetrahedra and use numerical integration methods
for each triangle or tetrahedron. The overall algorithm and implementation is too
complicated to be addressed in this book. Instead, we shall employ an alternative,
very simple and general method, called Monte Carlo integration. It can be im-
plemented in half a page of code, but requires orders of magnitude more function
evaluations in double integrals compared to the midpoint rule.

However, Monte Carlo integration is much more computationally efficient than
the midpoint rule when computing higher-dimensional integrals in more than three
variables over hypercube domains. Our ideas for double and triple integrals can
easily be generalized to handle an integral in m variables. A midpoint formula then
involves m sums. With n cells in each coordinate direction, the formula requires
n™ function evaluations. That is, the computational work explodes as an exponen-
tial function of the number of space dimensions. Monte Carlo integration, on the
other hand, does not suffer from this explosion of computational work and is the
preferred method for computing higher-dimensional integrals. So, it makes sense
in a chapter on numerical integration to address Monte Carlo methods, both for
handling complex domains and for handling integrals with many variables.

The Monte Carlo integration algorithm The idea of Monte Carlo integration of
fab f(x)dx is to use the mean-value theorem from calculus, which states that the
integral fab f(x)dx equals the length of the integration domain, here b—a, times the
average value of f, f,in [a, b]. The average value can be computed by sampling
f at a set of random points inside the domain and take the mean of the function
values. In higher dimensions, an integral is estimated as the area/volume of the
domain times the average value, and again one can evaluate the integrand at a set of
random points in the domain and compute the mean value of those evaluations.

Let us introduce some quantities to help us make the specification of the integra-
tion algorithm more precise. Suppose we have some two-dimensional integral

/ f(x,y)dxdx,
1?)

where £2 is a two-dimensional domain defined via a help function g(x, y):

2 ={(x.y)|glx.y) =0}

That is, points (x, y) for which g(x,y) > 0 lie inside £2, and points for which
g(x,y) < £2 are outside £2. The boundary of the domain 952 is given by the im-
plicit curve g(x, y) = 0. Such formulations of geometries have been very common
during the last couple of decades, and one refers to g as a level-set function and the
boundary g = 0 as the zero-level contour of the level-set function. For simple ge-
ometries one can easily construct g by hand, while in more complicated industrial
applications one must resort to mathematical models for constructing g.

3.7 Double and Triple Integrals 77

Let A(£2) be the area of a domain £2. We can estimate the integral by this Monte
Carlo integration method:

embed the geometry 2 in a rectangular area R

draw a large number of random points (x, y) in R
count the fraction g of points that are inside £2
approximate A(£2)/A(R) by g, i.e., set A(§2) = qA(R)
evaluate the mean of f, £, at the points inside £2
estimate the integral as A(2) f

AN S

Note that A(R) is trivial to compute since R is a rectangle, while A(£2) is unknown.
However, if we assume that the fraction of A(R) occupied by A(£2) is the same as
the fraction of random points inside £2, we get a simple estimate for A(£2).

To get an idea of the method, consider a circular domain §2 embedded in a rect-
angle as shown below. A collection of random points is illustrated by black dots.

3.5

3.0t

1.5¢

1.0p

0.5 ! ! ! ! !
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Implementation A Matlab function implementing [, f(x, y)dxdy can be written
like this:

function result = MonteCarlo_double(f, g, x0, x1, yO, y1, n)

Monte Carlo integration of f over a domain g>=0, embedded
in a rectangle [x0,x1]x[y0,y1]. n~2 is the number of
random points.

EISNISNINS

% Draw n~2 random points in the rectangle

x = x0 + (x1 - x0)*rand(n,1);

y = y0 + (y1 - yO)*rand(n,1);

% Compute sum of f values inside the integration domain
f_mean = 0;

num_inside = 0; % number of x,y points inside domain (g>=0)

78 3 Computing Integrals

for i = 1:length(x)
for j = 1:length(y)
if g(x(@1), y(§)) >=0
num_inside = num_inside + 1;
f_mean = f_mean + f(x(i), y(j));
end
end
end
f mean = f_mean/num_inside;
area = num_inside/(n"2)*(x1 - x0)*(y1l - yO);
result = area*f_mean;
end

(See the file MonteCarlo_double.m.)

Verification A simple test case is to check the area of a rectangle [0, 2] x [3,4.5]
embedded in a rectangle [0, 3] x [2,5]. The right answer is 3, but Monte Carlo
integration is, unfortunately, never exact so it is impossible to predict the output of
the algorithm. All we know is that the estimated integral should approach 3 as the
number of random points goes to infinity. Also, for a fixed number of points, we
can run the algorithm several times and get different numbers that fluctuate around
the exact value, since different sample points are used in different calls to the Monte
Carlo integration algorithm.

The area of the rectangle can be computed by the integral foz f;'s dydx, so in
this case we identify f(x,y) = 1, and the g function can be specified as (e.g.) 1
if (x, y) is inside [0, 2] x [3,4.5] and —1 otherwise. Here is an example on how
we can utilize the MonteCarlo_double function to compute the area for different
number of samples:

>> g =0(x, y) -1 + 2%(0 <= x && x <= 2 && 3 <=y && y <= 4.5);
>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 100)
2.9484

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)
2.947032

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)
3.0234600000000005

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)
2.9984580000000003

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)
3.1903469999999996

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 5000)
2.986515

To get a one-line definition of g, we have exploited the fact that each of the boolean
tests (in parenthesis separated by &&) will evaluate to either O (if false) or 1 (if
true). If all of them evaluate to true, the whole parenthesis will evaluate to 1 and the
number 1 (from —1 + 2 x 1) is returned. On the other hand, if any single one of the
boolean tests evaluate to false, the parenthesis will evaluate to 0 and the number —1
(from —1 + 2 % 0) is returned. We see that the values fluctuate around 3, a fact that
supports a correct implementation, but in principle, bugs could be hidden behind
the inaccurate answers.

https://github.com/hplgit/prog4comp/tree/master/src/m/MonteCarlo_double.m

3.7 Double and Triple Integrals 79

It is mathematically known that the standard deviation of the Monte Carlo es-
timate of an integral converges as n~'/2, where n is the number of samples. This
kind of convergence rate estimate could be used to verify the implementation, but
this topic is beyond the scope of this book.

Test function for function with random numbers To make a test function, we
need a unit test that has identical behavior each time we run the test. This seems
difficult when random numbers are involved, because these numbers are different
every time we run the algorithm, and each run hence produces a (slightly) different
result. A standard way to test algorithms involving random numbers is to fix the
seed of the random number generator. Then the sequence of numbers is the same
every time we run the algorithm. Assuming that the MonteCarlo_double function
works, we fix the seed, observe a certain result, and take this result as the correct
result. Provided the test function always uses this seed, we should get exactly this
result every time the MonteCarlo_double function is called. Our test function can
then be written as shown below.

function test_MonteCarlo_double_rectangle_area()
% Check the area of a rectangle.
g =0(x, y) -1 + 2%(0 <= x && x <= 2 && 3 <=y & y <= 4.5);

x0 = 0; x1=3; yO=2; yl=5; ¥ embedded rectangle
n = 1000;
rand("seed", 8); % must fix the seed!
I_expected = 3.117285; Y, computed with this seed
I_computed = MonteCarlo_double(@(x,y) 1, g, x0, x1, yO, yl, n);
assert (abs(I_expected - I_computed) < 1E-14);
end

(See the file test_MonteCarlo_double_rectangle_area.m.)

Integral over a circle The test above involves a trivial function f(x,y) = 1. We
should also test a non-constant f function and a more complicated domain. Let §2
be a circle at the origin with radius 2, and let /' = /x2 + y2. This choice makes it
possible to compute an exact result: in polar coordinates, [, f(x, y)dxdy simpli-

fies to 2w f02 r2dr = 167 /3. We must be prepared for quite crude approximations
that fluctuate around this exact result. As in the test case above, we experience bet-
ter results with larger number of points. When we have such evidence for a working
implementation, we can turn the test into a proper test function. Here is an example:

function test_MonteCarlo_double_circle_r ()
% Check the integral of r over a circle with radius 2.
function result = g(x, y)

xc = 0; yc = 0; % center

R = 2; % radius

result = R72 - ((x-xc)”2 + (y-yc)~2);
end

g_handle = Qg;

https://github.com/hplgit/prog4comp/tree/master/src/m/test_MonteCarlo_double_rectangle_area.m

80 3 Computing Integrals

% Exact: integral of r*r*dr over circle with radius R becomes
% 2xpi*1/3*%R"3

syms r;

I_exact = int(@(r) 2*pixr*r, r, 0, 2);

fprintf (’Exact integral: %g\n’, I_exact);

x0 =-2; x1=2; yo=-2; yl=2;

n = 1000;

rand("seed", 6); % must fix the seed!
I_expected = 16.85949525320151 7 Computed with this seed
I_computed = MonteCarlo_double(. ..

@(x, y) sqrt(x"2 + y~2), g_handle, x0, x1, yO, yi1, n);
fprintf (°’MC approximation (%d samples): %.16f’, n~2, I_computed);
assert(abs(I_computed - I_expected) < 1E-15);

end

(See the file test_MonteCarlo_double_circle_r.m.)

3.8 Exercises

Exercise 3.1: Hand calculations for the trapezoidal method

Compute by hand the area composed of two trapezoids (of equal width) that ap-
proximates the integral || 13 2x3dx. Make a test function that calls the trapezoidal
function in trapezoidal .mand compares the return value with the hand-calculated
value.

Filename: trapezoidal_test_func.m.

Exercise 3.2: Hand calculations for the midpoint method

Compute by hand the area composed of two rectangles (of equal width) that approx-
imates the integral || 13 2x3dx. Make a test function that calls the midpoint function
inmidpoint.mand compares the return value with the hand-calculated value.
Filename: midpoint_test_func.m.

Exercise 3.3: Compute a simple integral

Apply the trapezoidal and midpoint functions to compute the integral f26 x(x—
1)dx with 2 and 100 subintervals. Compute the error too.

Filename: integrate_parabola.m.

Exercise 3.4: Hand-calculations with sine integrals
We consider integrating the sine function: fob sin(x)dx.

a) Let » = m and use two intervals in the trapezoidal and midpoint method.
Compute the integral by hand and illustrate how the two numerical methods
approximates the integral. Compare with the exact value.

b) Do a) when b = 27.

Filename: integrate_sine.pdf.

https://github.com/hplgit/prog4comp/tree/master/src/m/test_MonteCarlo_double_circle_r.m

3.8 Exercises 81

Exercise 3.5: Make test functions for the midpoint method

Modify the file test_trapezoidal.m such that the three tests are applied to the
function midpoint implementing the midpoint method for integration.

Filename: test_midpoint.m.

Exercise 3.6: Explore rounding errors with large numbers

The trapezoidal method integrates linear functions exactly, and this property
was used in the test function test_trapezoidal_linear in the file test_
trapezoidal.m. Change the function used in Sect. 3.4.2to f(x) = 6-108x—4-10°
and rerun the test. What happens? How must you change the test to make it useful?
How does the convergence rate test behave? Any need for adjustment?

Filename: test_trapezoidal2.m.

Exercise 3.7: Write test functions for f04 Jxdx

We want to test how the trapezoidal function works for the integral f04 Jxdx.
Two of the tests in test_trapezoidal.m are meaningful for this integral.
Compute by hand the result of using 2 or 3 trapezoids and modify the test_
trapezoidal_one_exact_result function accordingly. Then modify test_
trapezoidal_conv_rate to handle the square root integral.

Filename: test_trapezoidal3.m.

Remarks The convergence rate test fails. Printing out r shows that the actual con-
vergence rate for this integral is —1.5 and not —2. The reason is that the error in the
trapezoidal method® is —(b — a)’n=2 f"(£) for some (unknown) £ € [a, b]. With
f(x) = /x, f"(§) -» —oo as £ — 0, pointing to a potential problem in the size
of the error. Running a test with a > 0, say f04 | ~/xdx shows that the convergence
rate is indeed restored to —2.

Exercise 3.8: Rectangle methods

The midpoint method divides the interval of integration into equal-sized subinter-
vals and approximates the integral in each subinterval by a rectangle whose height
equals the function value at the midpoint of the subinterval. Instead, one might use
either the left or right end of the subinterval as illustrated in Fig. 3.4. This defines
a rectangle method of integration. The height of the rectangle can be based on the
left or right end or the midpoint.

a) Write a function rectangle(f, a, b, n, height=’1left’) for computing
an integral fab f(x)dx by the rectangle method with height computed based on
the value of height, which is either left, right, or mid.

b) Write three test functions for the three unit test procedures described in
Sect. 3.4.2. Make sure you test for height equal to left, right, and mid. You
may call the midpoint function for checking the result when height=mid.

Hint Edit test_trapezoidal.m.
Filename: rectangle_methods.m.

6 http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

82 3 Computing Integrals

0.2 0.4 0.6 0.8 1.0 . 0.2 0.4 0.6 0.8 1.0

Fig. 3.4 Illustration of the rectangle method with evaluating the rectangle height by either the left
or right point

Exercise 3.9: Adaptive integration

Suppose we want to use the trapezoidal or midpoint method to compute an integral
fab f(x)dx with an error less than a prescribed tolerance €. What is the appropriate
size of n?

To answer this question, we may enter an iterative procedure where we compare
the results produced by n and 2n intervals, and if the difference is smaller than €,
the value corresponding to 2n is returned. Otherwise, we halve n and repeat the
procedure.

Hint Tt may be a good idea to organize your code so that the function adaptive_
integration can be used easily in future programs you write.

a) Write a function

adaptive_integration(f, a, b, eps, method=midpoint)

that implements the idea above (eps corresponds to the tolerance €, and method
can be midpoint or trapezoidal).

b) Test the method on f02 x2dx and f02 Jxdx for e = 107", 107'° and write out
the exact error.

¢) Make a plot of n versus € € [10~",1071°] for f02 /xdx. Use logarithmic scale
fore.

Filename: adaptive_integration.m.

Remarks The type of method explored in this exercise is called adaptive, because
it tries to adapt the value of n to meet a given error criterion. The true error can very
seldom be computed (since we do not know the exact answer to the computational
problem), so one has to find other indicators of the error, such as the one here where
the changes in the integral value, as the number of intervals is doubled, is taken to
reflect the error.

3.8 Exercises 83

Exercise 3.10: Integrating x raised to x

Consider the integral
4

1 :/.xxdx.

0

The integrand x* does not have an anti-derivative that can be expressed in terms of
standard functions (visithttp://wolframalpha.comandtype integral (x~x,x)
to convince yourself that our claim is right. Note that Wolfram alpha does give you
an answer, but that answer is an approximation, it is not exact. This is because
Wolfram alpha too uses numerical methods to arrive at the answer, just as you will
in this exercise). Therefore, we are forced to compute the integral by numerical
methods. Compute a result that is right to four digits.

Hint Use ideas from Exercise 3.9.
Filename: integrate_x2x.m.

Exercise 3.11: Integrate products of sine functions
In this exercise we shall integrate

T

Iy = /sin(jx) sin(kx)dx,

-7
where j and k are integers.

a) Plot sin(x) sin(2x) and sin(2x) sin(3x) for x €] — &, 7] in separate plots. Ex-
plain why you expect [sinxsin2x dx = 0 and [”_sin2x sin3x dx = 0.
b) Use the trapezoidal rule to compute /;; for j =1,...,10andk =1,...,10.

Filename: products_sines.m.

Exercise 3.12: Revisit fit of sines to a function
This is a continuation of Exercise 2.18. The task is to approximate a given function
f(t) on [—m,] by a sum of sines,

N
Sy(t) = bysin(nr). (3.27)

n=1

We are now interested in computing the unknown coefficients b, such that Sy ()
is in some sense the best approximation to f(t). One common way of doing this
is to first set up a general expression for the approximation error, measured by
“summing up” the squared deviation of Sy from f:

E= / (Sw(0) — F(0)d.

http://wolframalpha.com

84 3 Computing Integrals

We may view E as a function of by,...,by. Minimizing E with respect to
by, ..., by will give us a best approximation, in the sense that we adjust by, ..., by
such that Sy deviates as little as possible from f.
Minimization of a function of N variables, E (b, ..., by) is mathematically per-
formed by requiring all the partial derivatives to be zero:
E 0
aby
oE
— =0,
ob,
0E 0
by

a) Compute the partial derivative dE/db; and generalize to the arbitrary case
dE/db,,1 <n < N.
b) Show that

by = % / F(t)sin(nt) dt .

¢) Write a function integrate_coeffs(f, N, M) that computes by, ...,by by
numerical integration, using M intervals in the trapezoidal rule.

d) A remarkable property of the trapezoidal rule is that it is exact for integrals
f_”n sinnt dt (when subintervals are of equal size). Use this property to
create a function test_integrate_coeff to verify the implementation of
integrate_coeffs.

e) Implement the choice f(t) = %t as a Matlab function £ (t) and call inte-
grate_coeffs(f, 3, 100) to see what the optimal choice of by, b,, b3 is.

f) Make a function plot_approx(f, N, M, filename) where you plot £ (t)
together with the best approximation Sy as computed above, using M intervals
for numerical integration. Save the plot to a file with name filename.

g) Runplot_approx(f, N, M, filename) for f(¢) = %t for N = 3,6,12,24.
Observe how the approximation improves.

h) Run plot_approx for f(t) = e~?~™ and N = 100. Observe a fundamental
problem: regardless of N, Sy (—m) = 0, not e>* ~ 535. (There are ways to fix
this issue.)

Filename: autofit_sines.m.

Exercise 3.13: Derive the trapezoidal rule for a double integral

Use ideas in Sect. 3.7.1 to derive a formula for computing a double integral
fab fcd f(x, y)dydx by the trapezoidal rule. Implement and test this rule.
Filename: trapezoidal_double.m.

Exercise 3.14: Compute the area of a triangle by Monte Carlo integration

Use the Monte Carlo method from Sect. 3.7.3 to compute the area of a triangle with
vertices at (—1,0), (1,0), and (3, 0).

Filename: MC_triangle.m.

3.8 Exercises 85

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

Solving Ordinary Differential Equations

T T v g T T
DIFFERENTIAL anfmoNs ' = f(uw,t)
ARE HARD TO SO

BUT NOT WITH PRDGRAMING

TUST REDUCE THE TIME STEP
TO MAKE MORE ACCURAT!
PREDICTIONS!

HEQE wE KNOW THE SLOPE: HEQE wE KNOW THE SLOPE:
= f(u,

LET THE SDLI)TIDN wNTINL)E
ALONG THAT SLOf

LET THE SDLUTADN CONTINVE
ALONG THAT SLOf

EXACT SOLUTION

N
N
os |- / ~~~~ -] -
THIS IS THE NEXT THIS IS THE NEXT
PREDICTED PONT | \ , \ PREDICTED PONT | \ , ,

0.0 05 10 15 20 25 30 35 4o 0.0 05 10 5 20 25 30 35 4o

EXACT SOLUTION

Differential equations constitute one of the most powerful mathematical tools to
understand and predict the behavior of dynamical systems in nature, engineering,
and society. A dynamical system is some system with some state, usually expressed
by a set of variables, that evolves in time. For example, an oscillating pendulum,
the spreading of a disease, and the weather are examples of dynamical systems. We
can use basic laws of physics, or plain intuition, to express mathematical rules that
govern the evolution of the system in time. These rules take the form of differential
equations. You are probably well experienced with equations, at least equations like
ax+b = 0orax?+bx+c = 0. Such equations are known as algebraic equations,
and the unknown is a number. The unknown in a differential equation is a function,
and a differential equation will almost always involve this function and one or more
derivatives of the function. For example, f'(x) = f(x) is a simple differential
equation (asking if there is any function f such that it equals its derivative — you
might remember that e* is a candidate).

The present chapter starts with explaining how easy it is to solve both single
(scalar) first-order ordinary differential equations and systems of first-order differ-
ential equations by the Forward Euler method. We demonstrate all the mathematical
and programming details through two specific applications: population growth and
spreading of diseases.

Then we turn to a physical application: oscillating mechanical systems, which
arise in a wide range of engineering situations. The differential equation is now of
second order, and the Forward Euler method does not perform well. This observa-
tion motivates the need for other solution methods, and we derive the Euler-Cromer

© The Author(s) 2016 87
S. Linge, H.P. Langtangen, Programming for Computations — MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_4

4

88 4 Solving Ordinary Differential Equations

scheme!, the 2nd- and 4th-order Runge-Kutta schemes, as well as a finite difference
scheme (the latter to handle the second-order differential equation directly without
reformulating it as a first-order system). The presentation starts with undamped
free oscillations and then treats general oscillatory systems with possibly nonlinear
damping, nonlinear spring forces, and arbitrary external excitation. Besides de-
veloping programs from scratch, we also demonstrate how to access ready-made
implementations of more advanced differential equation solvers in Matlab.

As we progress with more advanced methods, we develop more sophisticated
and reusable programs, and in particular, we incorporate good testing strategies so
that we bring solid evidence to correct computations. Consequently, the beginning
with population growth and disease modeling examples has a very gentle learning
curve, while that curve gets significantly steeper towards the end of the treatment
of differential equations for oscillatory systems.

4.1 Population Growth

Our first taste of differential equations regards modeling the growth of some pop-
ulation, such as a cell culture, an animal population, or a human population. The
ideas even extend trivially to growth of money in a bank. Let N(¢) be the number
of individuals in the population at time . How can we predict the evolution of N(¢)
in time? Below we shall derive a differential equation whose solution is N(¢). The
equation reads

N'(t) = rN(1), 4.1)

where r is a number. Note that although N is an integer in real life, we model N as
a real-valued function. We are forced to do this because the solution of differential
equations are (normally continuous) real-valued functions. An integer-valued N ()
in the model would lead to a lot of mathematical difficulties.

With a bit of guessing, you may realize that N(t) = Ce'’, where C is any
number. To make this solution unique, we need to fix C, done by prescribing the
value of N at some time, usually # = 0. Say N(0) is given as Ny. Then N(t) =
Noe”.

In general, a differential equation model consists of a differential equation, such
as (4.1) and an initial condition, such as N(0) = N,. With a known initial con-
dition, the differential equation can be solved for the unknown function and the
solution is unique.

It is, of course, very seldom that we can find the solution of a differential equa-
tion as easy as in this example. Normally, one has to apply certain mathematical
methods, but these can only handle some of the simplest differential equations.
However, we can easily deal with almost any differential equation by applying nu-
merical methods and a bit of programming. This is exactly the topic of the present
chapter.

! The term scheme is used as synonym for method or computational recipe, especially in the con-
text of numerical methods for differential equations.

4.1 Population Growth 89

41.1 Derivation of the Model

It can be instructive to show how an equation like (4.1) arises. Consider some
population of (say) an animal species and let N(¢) be the number of individuals
in a certain spatial region, e.g. an island. We are not concerned with the spatial
distribution of the animals, just the number of them in some spatial area where
there is no exchange of individuals with other spatial areas. During a time interval
At, some animals will die and some new will be born. The number of deaths and
births are expected to be proportional to N. For example, if there are twice as many
individuals, we expect them to get twice as many newborns. In a time interval At,
the net growth of the population will be

N(t + At) — N(t) = bN(t) — d N(1),

where bN(t) is the number of newborns and d N(r) is the number of deaths. If
we double Az, we expect the proportionality constants b and d to double too, so it
makes sense to think of b and d as proportional to At and “factor out” A¢. That
is, we introduce b = b/At and d = d /At to be proportionality constants for
newborns and deaths independent of Az. Also, we introduce r = b — d, which is
the net rate of growth of the population per time unit. Our model then becomes

N(t + At) = N(t) = At rN(t). (4.2)

Equation (4.2) is actually a comp