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PREFACE TO THE SECOND EDITION.

IN publishing the following work, my principal intention is to

explain difficulties, which may be encountered by the student

on first reading the Principia, and to illustrate the advantages

of a careful study of the methods employed by Newton, by

showing the extent to which they may be applied in the so-

lution of problems. I have also endeavoured to give assist-

ance to the student who is engaged in the study of the higher

branches of Mathematics, by representing in a geometrical form

several of the processes employed in the Differential and Inte-

gral Calculus, and in the analytical investigations of Dynamics.

In my version of the first section and the beginning of the

second I have adhered as closely as I could to the original

form ; and, in the cases in which sections have been inter-

polated, or the form of demonstration changed, I have indi-

cated such changes and interpolations by brackets.

Although it is generally advisable not to deviate from

Newton's words in the demonstrations of the Lemmas, yet in

many cases, I suppose, purposely, he expressed himself very con-

cisely, as in Lemmas IV. and x.; and he was contented with

simply giving the enunciation of Lemma V.; in these cases,

therefore, interpolations are made which, I believe , are in ac-

cordance with Newton's plan of demonstration.

Throughout the Problems and Theorems which depend

upon the sixth proposition, the variations are replaced by

equations ; by this method of treating the subject, I conceive

that clearer ideas of the meaning of each step are obtained by

the student.
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vi PREFACE TO THE SECOND EDITION.

I take this opportunity to acknowledge the great assistance

which I have derived in the preparation of my notes , from

the study of Whewell's Method of Limits, from which the

Articles 55-60 have been almost entirely taken ; I have also

made use of several editions of Newton, and especially of

Carr's.

The Problems are principally selected from the papers set

in the examinations for the Mathematical Tripos, and in the

course of the College examinations ; the results of these pro-

blems are given either in the statements or at the end of the

work, but I have not thought it advisable to supply hints for

the solution, because I imagine that the student would have

been deprived thereby of the advantages which it is the object

of a problem to secure. It is only necessary to add that I

have been careful to introduce no problems which are not

capable of solution by methods given in the work.

I desire to express my thanks to Mr Hadley of St John's

College for several valuable suggestions, and also to Mr Cock-

shott of Trinity College, and to Mr King of Jesus College,

for their kindness in correcting the errors of the press, and

in testing the accuracy of the problems, which, I believe, are

nearly free from mistakes .

CAMBRIDGE,

November 13, 1863.

PERCIVAL FROST.
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NEWTON'S FIRST BOOK

CONCERNING THE MOTION OF BODIES .

SECTION I.

ON THE METHOD OF PRIME AND ULTIMATE RATIOS.

LEMMA I.

Quantities, and the ratios ofquantities, which, in any finite

time, tend constantly to equality, and which, before the

end of that time, approach nearer to each other than by

any assigned difference, become ultimately equal.

If not, let them become ultimately unequal, and let their

ultimate difference be D. Hence, [since, throughout the

time, they tend constantly to equality, ] they cannot ap-

proach nearer to each other than by the difference D,

contrary to the hypothesis, [that they approach nearer

than by any assigned difference. Therefore, they do not

become ultimately unequal, that is, they become ultimately

equal ].

Variable Quantities.

1. The Quantities, of which Newton treats in this Lemma,

are variable magnitudes, described by a supposed law of con-

struction, the variation of these magnitudes being due to the

arbitrary progressive change of some element of the construc-

tion employed in the statement of the law,

When, in the progressive change of this element, it receives

the last value which is assigned to it in any proposition, the hy-

pothesis is said to arrive at its ultimate form, or to be indefinitely

extended.

NEWT. B



2 NEWTON.

Thus, if ABP be a semicircle , ACB its diameter, BP any

arc, PM the ordinate perpendicular to ACB, as the arc BP

gradually diminishes, AM is a variable magnitude, continually

increasing, and BP is the element of the construction, to the

A M NB

arbitrary change of which the variation of AM is due ; and,

if BP may be made as small as we please, AM may be made

to approach to AB nearer than by any difference that can be

named, and the hypothesis approaches its ultimate form.

...

Again, if ABC be a triangle, and AB be divided into a

number of equal portions, Aa, ab , bc, ... and a series of parallelo-

grams be inscribed upon those bases , whose sides aa , bß, cy, .

are parallel to BC and terminated in AC, the sum of the areas

of the parallelograms will be a variable magnitude, defined by

that construction, and changing in a progressive manner, if the

S

२

B d

B

a A

number of parts into which AB is divided is continually in-

creased. In this case the number of parts is the variable element

of the construction . In the ultimate form of the hypothesis,

it will be shewn (Lemma II.) that the sum of the parallelo-

grams is the area of the triangle, when the number is increased

indefinitely.

2. The variation of a magnitude is continuous, when in the

passage from any one value to any other, throughout its change,



LEMMA I. 3

it receives every intermediate value, without becoming infinite.

When this is not the case the variation is discontinuous.

According to the hypothesis in the last illustration , the num-

ber of parts into which AB is divided being exact, the magni-

tude varies discontinuously, i . e. the sum of the areas does not

pass through all the intermediate values between any two states

ofthe progress.

If the hypothesis be changed, equal portions being set off

commencing from B, and Aɑ remaining over and above after

ba, the last of the portions for which there is room , these equal

portions could be made to diminish gradually, and the sum of

the areas would in that case vary continuously.

Tendency to Equality.

3. Quantities are ultimately equal, when they are ulti-

mately in a ratio of equality.

4. Quantities, which always remain finite, throughout the

change of the hypothesis, by which they are described, tend

continually to equality, when their difference continually dimi-

nishes.

Thus, if BQ be an arc, always half of BP, in fig. 1 , page 2 ,

and QN be the corresponding ordinate ; as BP continually di-

minishes, AM and AN remain finite, and, since their difference

continually diminishes, they tend continually to equality.

5. Quantities, which may become indefinitely small, or in-

definitely great, as the hypothesis is indefinitely extended, tend

continually to equality, when the ratio of their difference to

either of them continually diminishes.

To illustrate this test of a tendency to equality, let us sup-

pose, in fig. 1 , page 2, that the chord BP is double of the chord

BQ, then, since (chord BP)² = AB.BM,

and (chord BQ)² = AB.BN;

: . BM : BN :: (chord BP)² : (chord BQ)*

:: 4 : 1 ;

.. MN: BN :: 3 : 1,

B 2



4 NEWTON.

hence, we observe that BM and BN have a difference, which

tends continually to become 3BN, the ratio of which to either

is finite, so that, although both tend to become indefinitely

small, as the hypothesis tends to its ultimate form , BM and

BN do not satisfy the condition requisite for a tendency to

equality.

Observations on the Lemma.

6. We will now proceed to examine the force of the other

important terms employed in the statement of the first Lemma.

The expression " in any finite time " (tempore quovis finito) ,

signifies what has been called the indefinite extension of the hy-

pothesis from some definite state to its ultimate form *.

The law of the variation of the magnitudes under considera-

tion is obtained by the examination of their construction while

the element, to which the change is due, is at a finite distance

from its final value, and the finite time is the supposed time occu-

pied in the passage from this definite to the ultimate state.

In the first illustration (Art. 1) , it denotes the progressive

diminution of BP, from being a finite magnitude to the point of

evanescence.

In the second, the progress from any finite number of equal

portions to an indefinite number.

7. The expression , "which constantly tend " (quæ con-

stanter tendunt) , signifies that , from the commencement of the

finite time to the limit of the extension of the hypothesis, the dif-

ferences continually diminish.

To illustrate this mode of expression , let BC be a quadrant

B Pl

Q"

E

P

* Vide Whewell's Doctrine of Limits.



LEMMA I. 5

of a circle whose bounding radii are OB, OC, and let BDA

be a straight line cutting the arc BDC and the radius OC in

D and A, and let OP be a radius revolving from OC to OB,

and cutting BA in Q, Ethe point of bisection of the arc BD.

OPand OQ twice tend to equality, viz. from OCto OD and

from OEto OB, and once from equality from OD to OE; it is

only from OE to OB that OP" and OQ" tend to equality con-

stantly, during the progress, and it is from such a position as

OE that the finite time must be considered to commence.

8. "Before the end of that time," (ante finem temporis ,)

implies that however small the given difference may be, a less

difference than that difference is arrived at, while the distance

from the ultimate state is still finite, however near to the final

state it may be necessary to proceed.

Thus, if, in the last figure, the angle BOD be 60º, the

radius one inch, and the given difference

35 18

100000 100000

or of

an inch, the difference between OP and OQ is less than the

given difference , if the revolving radius be 2' or 1' , respectively,

from the ultimate position ; and so on, however small the differ-

ence which is chosen.

9. In the proof of the Lemma, if the ultimate difference be

D, the quantities cannot approach nearer than by that given dif-

ference ; otherwise, they would, in one part ofthe progression ,

have been tending from equality in order to arrive ultimately at

that difference, contrary to the statement of the proposition in

the words, " ad æqualitatem constanter tendunt. ”

The nature of the proof, which is more difficult than may at

first sight appear, can be illustrated as follows, by examining

the effect of the omission of some of the points in the statement

of the Lemma.

Draw Oy, Ox at right angles , AB any straight line meeting

Oy in A, CED a curve touching AB in E and meeting Oy in

C, CD' another touching a straight line parallel to AB in C,

MQPP' a common ordinate.

As OM diminishes until it becomes indefinitely small ,

MQPP' moves up to Oy.



6 NEWTON.

In both curves, the ordinates MQ and MP or MP' have an

ultimate difference CA, equal to D suppose.

D'

P'

R
A

E
P

B

M
х

Omit the word " constanter," and the curve CED is admissi-

ble in a representation of the approach of the quantities ; because

the ordinates approach, before the end of the time, nearer than by

any assignable difference , as at E, although the condition of con-

tinual tendency to equality is not satisfied.

Omit the words " ante finem temporis, &c." and CD' is suf-

ficient ; for, in this case, they tend continually to equality, but

before the end of the time they do not approach nearer than by

any assignable difference , and they are ultimately unequal.

In the case of the dotted line ARF touching AB at A, all

the conditions are satisfied. QM and RM tend continually to

equality, and their difference may be made less than any given

difference before OM vanishes.

Limit of a variable quantity.

10. When a variable quantity tends continually to equality

with a certain fixed quantity, and approaches nearer to this quan-

tity than by any assignable difference, as the hypothesis deter-

mining its variation is approaching its ultimate form, this fixed

quantity is called the Limit of the variable quantity.

The tests are, that there should be a tendency to equal-

ity ; that this tendency should be continued from some finite

condition ; and that the approach should , during the progres-

sion to the ultimate form, be nearer than by any assignable

difference.

Thus, as is mentioned in the Scholium at the end ofthe sec-
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tion, the variable quantity does not become equal to , or surpass

the limit, before the arrival at the ultimate form.

Limiting ratio of variable quantities.

11. If two quantities continually diminish or increase, and

the ratio of these quantities tends continually to equality with

a certain fixed ratio, and may be made to differ from that ratio

by less than any assignable difference, as the hypothesis deter-

mining their variation is indefinitely extended ; this fixed ratio

is called the limiting ratio ofthe varying quantities.

Ultimate ratio ofvanishing quantities.

12. When the ultimate form of the hypothesis brings the

quantities to a state of evanescence, they are called vanishing

quantities; and the limiting ratio, or the limit of the ratio, is

the ultimate ratio ofthe vanishing quantities.

The expression, " Vanishing quantities," does not imply that

the quantities are indefinitely small while under examination , but

only that they will be so in the ultimate form ; which observa-

tion implies that the ratio of the vanishing quantities is not an

equivalent expression with the ultimate ratio of the vanishing

quantities, the former being taken " ante finem temporis."

"Ultimæ rationes illæ quibuscum quantitates evanescunt, re-

vera non sunt rationes quantitatum ultimarum." See Scholium ,

at the end of the section.

Thus,

Let GC, FC be two straight lines intersecting ABin G, F,

ADE, MPQ, perpendicular to AB.

E

A M B



8 NEWTON.

Let a, ẞ be the areas AMPD, AMQE, then it is easily found

that

a B AD +MP : AE+ MQ;

now, let MPQ be supposed to move up to ADE, then , in the

ultimate form of the hypothesis , a and ẞ vanish , and are called

vanishing quantities from this circumstance.

Also, the ultimate ratio of the vanishing quantities is

AD : AE.

In this case, since MP : MQ is not equal to AD : AE, the

ratio of the vanishing quantities, viz. AD+ MP : AE+MQ,

is different from AD : AE the ultimate ratio .

Prime Ratios.

13. If the order of the change in the form of the hypo-

thesis be reversed, or the varying quantities be tending from

equality, having started into existence from the commencement

of the time, the quantities are called nascent quantities ; and the

ratio with which they commence existence is called the prime

ratio of the nascent quantities.

Application ofLemma I to the investigation ofcertain Limits.

1. Limit of

mately vanishes.

1 +x

"
2 X

as x gradually diminishes, and ulti-

1 + x 1 3х

Since the difference between

2 х

and is

2 2 (2 -
x)

this

difference continually diminishes as x gradually diminishes , and ,

by diminishing a sufficiently, may be made less than any assign-

able difference.

Hence, tends continually to equality with , if we

1 + x

2 x

commence from some value of x less than 2, and the difference

may be made less than any assignable quantity ante finem tem-"

poris, therefore satisfies all the conditions of being the required

limits .

1

2. Limit of

2 + x

" when x increases indefinitely.

5 + 3x
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2 + x 1

Since the difference
=

1

5 + 3x 3 3 (5 + 2x)'

which continu-

ally diminishes as x increases, and may be made less than any

1

assignable difference ; therefore, as before, satisfies all the con-

ditions of being a limit of

2 + x

5 + 3x

•

3

3. Tangents are drawn to a circular arc, at its middle point,

and at its extremities. Shew that the area ofthe triangleformed

by the chord of the arc, and the two tangents at the extremities,

is ultimately four times that of the triangle formed by the three

tangents.

Let C be the middle point of the arc, AB the chord, FA,

FB, DCEthe three tangents,

AFDE: FAB :: FC2 : FG2.

D

F

T

B

Now FC (FC+2CO) = FA² = FO . FG;

.. FC: FG FO : FC+2CO;

therefore, since FC vanishes in the limit, FC : FG :: CO : 2CO

ultimately ;

.. FG 2FC ultimately,=

and FDE: AFAB : 1 : 4.

xm 1

4. Limit of "
X 1

when x differs from 1 by an indefinitely-

small quantity, m being any number, fractional or integral, posi-

tive or negative.
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1st, where m is a positive whole number

xm -

x -

1

= xm-1 + xm
m-2 + + x+ 1 ,

...

which may be made to differ from m by less than any assignable

difference by taking x sufficiently near to unity ;

therefore m is the limit of

2ndly, Let m =

Ρ q

r

xm-

X 1-

1

, P, q, and r being positive whole

numbers, and let x = y" ;

xm-1

=

=

XC - 1

yp-¶— 1

y"-1

1 y¹ - y¹

y¹y"-1

p
-

1 y” — 1 — (y² — 1 )

yr

y" - 1

-

y"-1

y²1_y² - 1

1 —
y 1 y

-

y"-1

y -1

This may be made to differ from
p -q

by a quantity less
r

than any assignable quantity by taking x, and therefore y,

sufficiently near to unity ;

therefore m or
p-q is the limit required.

When we divide the numerator and denominator by y - 1,

y is not equal to 1 , the time chosen being ante finem temporis

while the difference is finite : see the direction in the Scholium

referred to above ; " Cave intelligas quantitates magnitudine

determinatas, sed cogita semper diminuendas sine limite."

5. Limit of

1P + 2P + 3P + ... + np

p+1
n

increased, p being any positive number.

when n is indefinitely
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Since this sum is the arithmetic mean of the n fractions

()', ()" ,
.......

(1)",

therefore, for all positive values of p, integral or fractional, it

n

lies between ( and (1)

between 0 and 1 .

or 1 , therefore its ultimate value lies.

This being an important limit, we will investigate it first for

the particular case in which p is integral and positive, and then

generally, when p is any positive quantity.

Let

Then

Sn= 1" + 2º + ...... + n².

Sn+1 = 1º + 2² + ·+ n² + (n + 1)" ;......

:. Sn+1− Sn = (n + 1)º .

If therefore we assume that

Sn= An²+¹ + Bn² + ·

1
...... + Ln +M,

then S = An + 1 ] +¹ + B n + 1 ] ³ + ...... + L n + 1 ] + M,

.. (n + 1) = 4 (n + 1] + − n )+ B (n + 1 ] −n ) + ......

+ &c.

- -

= A { (p + 1 ) n² + (p + 1 ) . 2, nº¹ + ......}.

+ B (pn²¬¹ +p

Ρ 1

n²-²+ ......) + ......

2

+ &c.

we obtain, by equating the coefficients , p + 1 equations for deter-

mining the values of the p + 1 constants A, B, L, which

reduce the equation to an identity.

The first of these equations is

.....

1 = ( p + 1 ) A ;

1

.. Sn
- n²+1 + Bn² +

P + 1
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1 B C

+ + +

S

and =

p+1

the number of the terms following

n n
2

1

P+1

..... +

M

+19

being finite.

Hence, ifn be increased, we may make the difference between

Sn
1

and

P+1

diminish until it becomes less than any assignable quantity ;

1

therefore is the limit required.

P + 1

Next, let p be any positive quantity, and let 7 be the

limit of

1º + 2º + .... + no

Nx+1

.. 1º + 2º + ...... + n² = In²+1 + Bn³ + Cn² + ......

in which p+ 1, B, y ...... are in descending order, and

BnB + Cny +

No+1

......

vanishes, when n is made infinitely large.

.. 1º + 2º +....... + n + 1 } = l n + 1 ] +¹ + Bn + 1 }B + ......

• . n + 1 ] = 7 (n + 1 ]p+¹ − n²+¹) + B (n + 1]³ − n³) +

1+

(1 +1)

= 1 .

1+

+ ......

1\p+1

n

-

n

1

+

B

......

-1

Bu² (1 + 2)²-

Noti

1 +

1

n

-

therefore, observing that, when n is increased indefinitely,

(1 + 1) — 1

1+

1

ท

- 1

-
q,
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1 = (p + 1 ) 7 + limit of

B (1 + ε) Bn³ + y (1 + e ') Cnr + ......

where e, e' , ... vanish ultimately. If now e, be the greatest of

the quantities e, e' , ... and all the terms be positive , which is

the most unfavourable case,

B (1 + €) BnB + ......

is less than (1+ ) B x

BnB +
ช Cny + ...

B

NP+1
;

and, since
γ

8

B' B

are each < 1 , this is less than

BnB + Cny +

(1 + € ) ẞ ×
Np+1

which vanishes in the limit, hence, 1 = (p + 1) 7 ultimately ;

therefore

1

P+ 1

is the limit required .

Cor.

1

P+1

is evidently also the limit of the sum

1º + 2º + + n - 1P

np+1

since

no

No+1

vanishes in the limit.

6. If a straight line of constant length slide with its ex-

tremities in two straight lines, which intersect at a given angle A,

and BC, bc be two positions ofthe line intersecting in P, which

become ultimately coincident, find the limits of the ratios Cc : Bb

and PC : PB.

By hypothesis,

but

and

BC²= bc²,

BC2=BA² + CA² – 2BA . CA cos A,

bcb42+cA2-26A .cA cos A;=

:. CA² — cA² – bA² — BA²=

+2 {BA (cA + Cc) – (BA + Bb) cA} cos A;
-

.. Cc (CA + cA) = Bb (BA + bA)

+2 (BA. Cc - cA . Bb) cos A;
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.. Cc: Bb : BA + bA- 2cA cos A : CA+cA- 2BA cos A

:: BA - CA cos A : CA - BA cos A ultimately.

R

A

Draw CN, BM perpendicular to AB, AC, therefore the limit

of the ratio Cc : Bb is BN : CM.

Again, let BQ, drawn parallel to AC, meet bc in Q,

then

And

also

PC:PB:: Cc : BQ.

Cc : Bb : BN: CM ultimately,

Bb : BQ :: Ab : Ac ;

. Cc : BQ BN.AB : CM. AC ultimately.

Draw AR perpendicular to BC, then BN . AB= BR.BC

and CM. AC= CR . BC;

.. PC: PB :: BR : CR ;

.. PCBR and PB= CR.

I.

1. ARE the limits of the ratios y² : x equal in any of the three

equations,

(1) y² = ax², (2) y² = ax- b², (3) y² = ax − x²,

when x is indefinitely diminished ?

-
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2. Find the limit of
x+ 3

1 + 3x

when x is indefinitely diminished,(1 )

(2) when x is indefinitely increased .

3. Find the ultimate ratio of the vanishing quantities ax + bx²,

bx + ax², when x is made indefinitely small.

4. Prove that a - bx and b- ax tend to equality as x diminishes

to zero, and yet have not their limits equal.

5. BAC, bác are two triangles, in which AB, Ab and AC, Ac

are coincident in direction, and BC, bc intersect in P ; prove that if

the areas of the triangles are equal, as B, C and b, c approach, each

to each, P is ultimately in the point of bisection of BC.

6. If in the right-angled triangles ABC, Abc the perimeters be

equal, shew that the ultimate ratio of the vanishing quantities Bb

and Cc is AC + BC : AB + BC.

Also shew that the ultimate ratio of the areas BPb and CPc

is (BC + AC) (BC — AB) : (BC — AC) (BC + AB).
-

7. ABCis an isosceles triangle, base BC; P, Q are points on

the straight lines CA, CB such that AP is always twice BQ ; prove

that, if PQ and AB intersect in R, and R' be the ultimate position

of R, when AP is indefinitely diminished,

RB : AC :: AC : 2BC ~ AC.

8. The extremities of a straight line slide upon two given

straight lines, so that the area of the triangle, formed by the three

straight lines, is constant ; find the limiting position of the chord

of intersection of two consecutive positions of the circle described

about that triangle.

9. Tangents are drawn to a circular arc at its middle point,

and at its extremities, and the three chords are drawn. Prove that

the triangle contained by the three tangents is ultimately one half

of that contained by the three chords, when the arc is indefinitely

diminished.

10. In the last construction shew that one of the triangles con-

tained by two tangents and a chord is eight times either of the two

other triangles, when the arc is indefinitely diminished .

11. APQ is a parabola, PM, QN ordinates to the axis AMN,

with centres M and N and radii PM, QN two circles are drawn ;
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prove that, when N approaches indefinitely near to M, if the two

circles intersect, the distance of their point of intersection from PM

is ultimately equal to the semi-latus rectum. What is the condition

that the circles may intersect ?

12. PN is an ordinate, and PT a tangent to an ellipse, cut-

ting the axis major in Nand T respectively ; A being the vertex,

shew that as P approaches A, NT is ultimately bisected in A.

13. Two concentric and coaxial ellipses have the sum of the

squares of their axes equal ; if the curves approach to coincidence

with each other, shew that the ratio of the distances of one of their

points of intersection from the axes is ultimately equal to the inverse

ratio of the squares of the axes.

14. APQ, ABC are two straight lines which are intersected by

two fixed lines BP, CQ, prove that, as APQ moves up to ABC, PC

and QB intersect in a point whose ultimate position divides BC in

the ratio of AB AC.

15. ABC, APQ are drawn to cut a circle from an external

point A; BU, CT are tangents at B and C to the circle, meeting

APQ in U, T; shew that the ultimate ratio of PU : QT, when APQ

moves upto ABC, is AB² : AC².

16. PSP, QSq are focal chords of a parabola, prove that, ulti-

mately, when P moves up to Q,

PQ : pq :: SP³ : Sp³.

n

17. Find the limit of ( 1 +
(1 + 1)

when n is indefinitely increased.
n

1

18.

nished.

Find the limit of = (1 + n) when n is indefinitely dimi-
n
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LEMMA II.

If, in anyfigure AacE, bounded by the straight lines Aa, AE

and the curve acE, any number of parallelograms Ab, Bc,

Cd, &c. be inscribed, upon equal bases AB, BC, CD, &c.,

and having sides Bb, Cc, Dd, &c. parallel to the side Aa

ofthe figure; and the parallelograms aKbl, bLcm, cMdn,

&c. be completed ; then, if the breadth of these parallelo-

grams be diminished, and the number increased indefi-

nitely, the ultimate ratios which the inscribed figure

AKbLcMdD, the circumscribed figure AalbmcndoE, and

the curvilinear figure AabcdE, have to one another, are

ratios of equality.

K

L

b m

n

a
M

A B C D E

For the difference of the inscribed and circumscribed figures

is the sum of the parallelograms Kl, Lm, Mn, Do, that is,

(since the bases of all are equal) a parallelogram whose

base is Kb, that of one of them, and altitude the sum of

their altitudes, that is, the parallelogram ABla. But this

parallelogram, since its breadth is diminished indefinitely,

[as the number of parallelograms is increased indefinitely, ]

becomes less than any assignable parallelogram, therefore

(by Lemma 1 , the inscribed and circumscribed figures,

and, a fortiori, the curvilinear figure, which is interme-

diate, become ultimately equal.

NEWT. C
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LEMMA III.

The same ultimate ratios are also ratios of equality, when

the breadths of the parallelograms AB, BC, CD, .... are

unequal, and all are diminished indefinitely.

a f

K
m

L

M

A B F C D E

For, let AF be equal to the greatest breadth, and the paral-

lelogram FAaf be completed. This parallelogram will be

greater than the difference between the inscribed and

circumscribed figures. But, when its breadth is diminished

indefinitely, it will become less than any assignable paral-

lelogram. [Therefore, a fortiori, the difference between

the inscribed and circumscribed figures will become less

than any assignable areas. Hence, by Lemma I, the ulti-

mate ratios of the inscribed and circumscribed and the

curvilinear figure, which is intermediate, will be ratios

of equality.]

COR. 1. Hence the ultimate sum of the vanishing parallelo-

grams coincides [as to area] with the curvilinear figure.

COR. 2. And, a fortiori, the rectilinear figure which is

bounded by the chords of the vanishing arcs ab, bc, cd,

&c. ultimately coincides [as to area] with the curvilinear

figure.

COR. 3. As also the rectilinear circumscribed figure, which

is bounded by the tangents at the extremities of the same

arcs.

COR. 4. And these ultimate figures, with respect to their

perimeters acE, are not rectilinear figures, but curvilinear

limits of rectilinear figures.
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Observations on the Lemmas.

14. The statements of the propositions concerning limits of

quantities and their ratios contain :

I. The hypothesis by which the quantities are defined .

II. The manner in which the hypothesis approaches its

ultimate form .

III. The ultimate property when the hypothesis is thus

indefinitely extended.

The strength of the proofs lies in the examination of the

quantities, while the hypothesis is in a finite state, before arrival

at the ultimate form , and the deduction of properties by which

the relations of the quantities can be pursued accurately to the

ultimate state.

If in this manner we analyse the statements of Lemmas II

and III : the hypothetical constructions are given in the manner

of describing the parallelograms ; the extension of the hypo-

thesis towards its ultimate form is the continual increase of the

number of parallelograms in infinitum ; the ultimate property is

the equality of the ratio of the sums of the parallelograms and

the curvilinear area.

In the proof of the Lemmas, the continual decrease ofthe

parallelograms Al or Af, shews that the conditions of ultimate

equality of two quantities are all satisfied , viz . , that the sums of

the two series of parallelograms, since they are finite, tend con-

tinually to equality, and that they approach nearer to each other

than by any assignable difference " ante finem temporis, " while

the number of the parallelograms still remains finite.

Volumes of Revolution .

15. In a manner exactly similar to Lemma II, it may be

shewn, that, if Aa be perpendicular to AE, and the whole

figure revolve round AE as an axis, the ultimate ratios which

the sums of the volumes of the cylinders, generated respectively

by the rectangles Ab, Bc, ...... and aB, bC, ...... and the volume

of revolution generated by the curvilinear area AЕa have to

each other, are ratios of equality.

C 2
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The figure represents the cylinders generated by the in-

scribed rectangles.

A

a b

d

E

Thus, the difference of the cylinders generated by Ab and

aB is the annulus generated by the rectangle ab, and the

difference of the two series of cylinders, which have all equal

heights AB, BC, ......, is the sum of such annuli, and is easily

seen to be the cylinder generated by aB, which, since the height

continually diminishes, may be made less than any assignable

volume, hence the conditions that the two series may have the

same limit are satisfied , and hence also the volume of revolution,

which is greater than one sum and less than the other, is ulti-

mately in a ratio of equality to either sum.

The same argument applies , if the revolution be only through

a certain angle instead of being complete ; in which case the

cylinders are replaced by sectors of cylindrical volumes.

Sectorial Areas.

16. The Lemmas may be extended to sectorial areas.

a

A

க

H

3.

d
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Thus, if SABCF be a sectorial area, and the angle ASF be

divided into equal portions ASB, BSC, ...... and the circular

arcs Ab' , aBc', bCd',...... be drawn with center S; then, since

the difference of the two series of circular sectors is the sum

of the areas ab' , bc', ...... it is equal to the difference of the

greatest and least of the sectors, viz. AGHb' , therefore the two

areas SAb'Bc'………….. and SaBbC ...... tend continually to equality

as the number of angles is increased , and their magnitudes di-

minished, and the ratios which these areas have to each other

and to the area SABF are ultimately ratios of equality.

Similarly for Lemma III, if ASB, BSC, ...... be unequal.

Surfaces of Revolution .

17. The following proposition is the extension of the prin-

ciples of the Lemmas to the determination of a method for

finding the area of a surface of a solid of revolution .

Let CD be a plane curve which generates a surface of revo-

lution by its revolution round AB, a line in its plane.

CD is divided into portions of which PQ is one, PM, QN

are perpendicular to AB; Pp, Qq are drawn parallel to AB, and

each equal to PQ in length , pm, qn are perpendicular to AB.

The surface generated by CD shall be the limit of the sum of

the cylindrical surfaces generated by such portions as Pp or Qq.

For, the cylindrical surfaces generated by Pp and Qq are one

less, and the other greater than that generated by PQ, since

P

Q

D

NM Nm B

every portion of Qq is at a greater, and every portion of Pp at a

less distance from the axis , than the corresponding portions

of PQ.
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But these surfaces are respectively 2πPM. Рp and 2πQN. Qq,

and their difference is 2π (QN- PM) PQ, and the ratio of this

difference to the surfaces themselves is QN- PM : PM, or QN,

which ratio is ultimately less than any given ratio.

Hence the sums of the surfaces generated by the lines cor-

responding to Pp and Qq have the ratio of their difference to either

sum less than the greatest value of the ratio QN- PM: PM,

which may be made less than any finite ratio. Therefore

the sums of the cylindrical surfaces, and the curved surface,

which is intermediate in magnitude to these sums, are ultimately

in a ratio of equality.

Centers of Gravity.

18. It is easily seen howthe same methods are applicable

to determine the position of the center of gravity of any body,

since it is known that, if a body be divided into any number of

portions, the distance of the center of gravity of the body from

any plane is equal to the sum of the moments of all the sub-

divisions divided by the sum of all the subdivisions .

General Extension.

19. The most general extension may be stated as follows.

If any magnitude A be divided into a series of magnitudes

.... An , each of which, when their number is increased

indefinitely, becomes indefinitely small, and two series of quan-

tities aa ......a and b,b,......b, can be found such that

2
......

α₁ > A₁ > b₁ ,

ɑ2 > A½ > b₂,2

an > An > bn,

-
2

and also such that each of the ratios a, b,: a,, a, b₂ a₂ ......

becomes less than any finite ratio, when the number is increased ;

then a₁ + a₂ + ...... + αn , b₁ + b₂ + ...... + b, and A will be ulti-

mately in a ratio of equality. For, let 7 1 be equal to the

greatest of the ratios a, b, a,, &c.

--―

·· ɑ₁− b₁ + ɑ½ − b₂ +
......

1 2 ......

is a ratio less than 7 : 1 , and may therefore be made less than
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2

any assignable ratio by increasing the number. Therefore the

two series a, + a + ...... and b, + b₁₂+ ...... tend continually to

equality, and the difference may be made, before the end of the

time, less than any assignable magnitude ; therefore the three

magnitudes are ultimately in a ratio of equality.

20. COR. 1. "Omni ex parte " has not been adopted from

the text of Newton, because it requires limitation, for the peri-

meters do not coincide with the perimeter of the curvilinear

area.

In the figure for Lemma II, the perimeter of the inscribed

series of parallelograms is

AK+Kb +bL + Lc + ...... + DA = 2AK +2AD,

and the limit of this perimeter is 2Aa +2AE.

The perimeter of the other series of parallelograms being

also 2Aa + 2AE is constant throughout the change, and has

properly no limit.

21. COR. 2. The perimeter of the figure bounded by the

chords ab, bc, ...... ultimately coincides with that of the curvi-

linear figure. This coincidence will be discussed under Lemma V.

22. COR. 3. The same is true for the figure formed by the

tangents.

23. COR. 4. Instead of " propterea," as in Newton, it is

advisable to state, as in Whewell's Doctrine of Limits, that, if a

finite portion of a curve be taken, and many successive points

in the curve be joined, so as to form a polygon, the sides of

which are chords, taken in order, of portions of the curve, when

the number of those points is increased indefinitely, the curve

will be the limit of the polygon.

Application to the determination ofcertain areas, volumes, &c.

nate.

1. Area ofa parabola bounded by a diameter and an ordi-

Let AB, BC be the bounding abscissa and ordinate. Com-

plete the parallelogram ABCD.
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Let AD be divided into n equal portions, of which suppose

AM to contain and MN to be the ( +1)th, draw MP, NQ

D

N

M

n

B

parallel to AB, meeting the curve in P, Q, and Pn parallel to

MN; the curvilinear area ACD is the limit of the sum of the

series of parallelograms constructed , as PN, on the portions cor-

responding to MN.

But, parallelogram PN : parallelogram ABCD

:: PM.MN : CD . AD,

and, by the properties of the parabola,

PM : CD :: AM² : AD²

202 : n²,

and MN AD :: 1 : n ;

:. PM.MN : CD.AD. :: r² : n³

therefore, parallelogram PN=
=

202

no
× parallelogram ABCD ;

hence, the sum of the series of parallelograms

1ª + 2ª + ...... + n − 1]²
=

n³
× parallelogram ABCD,

and

1ª + 2ª +

2

+ n 1
- 1

n³

=

3'

when the number of parallelograms is increased indefinitely,

therefore, proceeding to the ultimate form of the hypothesis,

the curvilinear area ACD:=
10of the parallelogram ABCD,
3

and the parabolic area ABC =
3

of the parallelogram ABCD.
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COR. 1. If we had inscribed the series of parallelograms in

ABC, AB being divided into n portions, we should have arrived

at the result

1 + 2 + + n
-1

no

for the ratio of the series of parallelograms to the parallelo-

gram ABCD, which might thus have been shewn to be ulti-

2

mately .
·

COR. 2. If BC had been divided into n equal portions , the

parallelogram corresponding to PN would have been

n²— p²

3 × parallelogram ABCD,

and the ratio of the area ABC to the parallelogram ABCD, the

limit of

of 1

2.

n²- 1² + n²- 2²+ ...... + n³ - n

n³

· + n" —n−1 ]³¸

2

12+ 22+ ...... + n - 112

n

= -

1
3

2

=

Volume of a paraboloid.

Let AKH be the area of a parabola cut off by the axis AH

I K

n

P
m R

A M N H

and an ordinate HK, which by its revolution round the axis

generates a paraboloid .

Let AH be divided into n equal portions, and on MN the

r+ 11th, as base, let the rectangle PRNM be inscribed.

Cylinder generated by PN : cylinder by AHKL

:: PM² . MN : HK² . AH.
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But,

and

PM :HK :: AM : AH,

:: rn,

MN:AH:: 1 : n;

.. PM².MN : HK² . AH :: r : n².

Hence cylinder generated by PN=2 × cylinder by AHKL;

therefore the sum of the cylinders inscribed is

1 + 2 + + (n- 1)......

2
n"

× circumscribed cylinder,

but, when n is indefinitely increased,

1 + 2 + ...... + n 1
1-

=
ultimately ,

n²
2

2

and the paraboloid is the limit of the series of inscribed cylinders ;

hence the volume of the paraboloid is half the cylinder on the

same base and of the same altitude.

3. Volume of a spherical segment.

Let AHKgenerate, by its revolution round the diameter AB,

the spherical segment whose height is AH.

PAR

A MN H C

Divide AH, as before,

.. AM= AH,

n

and PM AM. MB=

=AM. (AB- AM)

r

- AH. AB- AH.==

n
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Volume of cylinder generated by PN

=π PM² . MN=T .

= π

AH

.PM2

n

AH.( AB- AH) ,

whence as before, the limit of the sum

AB AH

=TAH²

2 3AH),

which is the volume proposed.

12
2

COR. 1. If AH = AB= AC, the segment is a hemisphere

whose volume is ‹

TAC³ (AC_40)=3

2πAC¹³

3

which is two-thirds of the cylinder on the same base and of the

same altitude.

COR. 2. If AH= 2AC,

the volume of the whole sphere

= 47 C² (AC_240)
4πAC² =

3

4πAС¹³

3

4. Area of the surface of a right cone .

As an illustration of the method of finding surfaces given

above, suppose AHK to be a right-angled triangle, which re-

volves round AH, a side containing the right angle, then the

hypothenuse AK generates a conical surface.

·

Let MN be the r + 1 ]th portion of AH, after division into

A

K

Q

P

P

M N H

n equal portions, MP, NQ ordinates parallel to HK, Pp, Qq each

equal to PQ and parallel to AH.
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The areas generated by Pp and Qq respectively are

2πPM. Рp, and 2πQN. Qq,

and PM : HK :: AM : AH :: r : n,

QN:HK:: AN: AHr+1 : n,

PQ:AK:: MN: AH:: 1 : n;

2 2+1

n²

therefore, the areas are 72.2πHK . AK, and 2πHK. AK,

respectively ; and the conical surface is intermediate in mag-

nitude to

(n -1)
1 +2 + ...... + n-

2πHK. AKX
2
n

and 2πHK . AK×

1 + 2 + ....

n²

...... + n

each of which have for their limit πHK. AK, which is therefore

the area of the conical surface.

The reader may notice the following method of obtaining

the conical surface by development, although it is not related to

the method of limits.

If a circular sector KAK' , traced on paper, be cut out, the

bounding radii AK, AK' can be placed in contact, so that the

boundary KLK' forms a circle.

The figure so formed will be conical, AK will be the slant

side, and HK in the last figure will be the radius of the circular

base whose length will be the arc of the sector KAK'.

Hence, the area of the conical surface is equal to that of the

1

sector_KAK' = ¦ AK.2πHK=πHK, AK.

5. Mass of a rod whose density varies as the mth power of

the distance from the extremity.

Let AB be the rod, and let MNbe the r + 1]th portion, when

its length has been divided into n equal parts ; and let p . AM"

be the density at M, or the quantity of matter contained in an

unit of length of the rod supposed of the same substance as the

rod at the point M.

The quantity of matter in MN is intermediate between

p . AM . MN, and pAN™. MN,
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the ratio of the difference of these to either of them being less

than any assignable ratio when n is indefinitely increased .

go 1

Therefore, since AM= AB, and MN = AB, the mass of

n

the whole rod is the limit of

ρ .

1m + 2m + ... + n − 1 ]m......

n
m+1

n

ABM+1

1
=

m + 1

X ρ . ABm+1

= (+ )

th

of the mass of a rod of length AB, and of uniform

density equal to that of the rod AB at B.

6. Center ofgravity ofthe volume ofa hemisphere.

Let CAB be a quadrant which by its revolution round the

radius CA generates the hemisphere.

P
R

B
K

AMN H

Let MR be the rectangle which generates the 7th inscribed

cylinder, so that CM= 2 × CA, and MN== × CA.
n n

If the mass of an unit of volume be chosen as the unit of

mass, the mass of the cylinder generated by MR will be

πPM². MN=π (CA² — CM²) MN
-

CA

- (1-5) 04. 04
π

n

πCA³ ( +1) пСА

n n³
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hence, the mass of the series of inscribed cylinders will be

12 +22+ ...... + n²

ПCA³ пСА³;
n³

and the mass of the hemisphere

1

= π -

3

пСА3 пСА .

2
=

3

Again, the moment of the mass of the cylinder generated

by MR, with respect to the base of the hemisphere, will be

πPN². MN.

CM + CN

2

which differs from πPN². MN.CMby a quantity which vanishes

compared with it, and is therefore ultimately

πCA*;

( - ) -04 ;n

therefore the moment of the hemisphere, with respect to its

base, is

1

( - ) CA , or C4 ;

π

hence, the distance of the center of gravity of the volume of the

hemisphere from C, which is the moment with respect to the

base divided by the mass,

=

1

TCA

4

1
2
1
3 πCA³

=
3

8

• CA.

7. Area of an equiangular spiral, between bounding radii

SA, SL.

L

DF

I
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Let ABCbe the polygon whose curvilinear limit is the equi-

angular spiral (Appendix II.) , in which

L SAB== ✩ SBC= ...... = α.

Draw SY perpendicular to AB.

Then, SBSA2+AB -2AB . AY,

and ASAB= } AB . SY

= AB.AYtan a

=
tan a (SA² - SB²+AB²).

Similarly ASBC= } tan a (SB * – SC * + BC*) ,

But

-

and ASCD= tan a (SC² – SD² + CD²),
-

.. area ASL tan a (SA - SL2+ AB²+BC²+ ...).=

BC : AB :: CD : BC :: ...... :: λ : 1 ,

where λ 1 is a constant ratio, λ < 1 ;:

.. AB²+ BC² + ...... : AB² :: 1 + λ² + λ + ton terms : 1 ,

:: 1-1- λ²;

:: SA² - SL2 : SA²–SB² ;-

.. AB +BC²+ ...... : SA - SL2 :: AB2 : 2AB. AY- AB2

:: AB: 2SA cos a ultimately ;

therefore AB + BC² + ...... vanishes in the limit,

and the curvilinear area = ≥ (SA² – SL²) tan «.

II.

1. Illustrate the terms " tempore quovis finito " and " constanter

tendunt ad æqualitatem" employed in Lemma I, by taking the case

of Lemma III, as an example.

2. Shew from the course of the proof of Lemma II, that the

ultimate ratio of vanishing quantities may be indefinitely small or

great.

3. Shew that the ratio of the area of the parabolic curve, in

which PM³ ∞ AM, to the area of the circumscribing parallelogram,

of which one side is a tangent to the curve at A, is 3 : 4.
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4. Prove that the areas of parabolic segments, cut off by focal

chords, vary as the cubes of the greatest breadths of the segments.

5. Shew that the volume of a right cone is one-third of the

cylinder on the same base and of the same altitude.

6. Find the center of gravity of the volume of a right cone,

by the method of Lemma II.

7. AHK is a parabolic area, AH the axis and HK an ordinate

perpendicular to the axis. AHKL the circumscribing rectangle .

Shew that the volumes generated by the revolution of AHK round

AH, KL, AL and HK are respectively ,, and of the cylinder

generated by the rectangle.

8. Find the mass of a rod whose density varies as the dis-

tance from an extremity. Find also its center of gravity, and shew

that it is in one of the points of trisection of the rod.

9.
Find the mass of a circle whose density varies as the mth

power of the distance from the center.

10. Find the volume of the solid of revolution generated by

the curve in which a .PM² = b² . AM– AM³, round the line along

which AM is measured, PM being perpendicular to AM.

11. Find the area of an hyperbola intercepted between the

curve, an asymptote, and two ordinates parallel to the other

asymptote.

Shew that, if OAB be the first asymptote, AD, BC the bounding

OB

ordinates, O the center, the area required is OA . AD Į
OA

12. In the curve ACD, BE is an ordinate perpendicular to

AD, and FC is the greatest value of BE, and

BE : FC :: sin π

ABY

・AD) : 1.

K

T

Ꭺ BH G T
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Shew that the area ABE varies as HG, where GK is the ordi-

nate equal to BE of the circle CH, whose centre is F, and radius

FC.

13. In the curve of the last problem, shew that the ratio of the

area ACD to the triangle whose sides are AD, and the tangents

AT, DT at the extremities, is 8 : π².

14. In the curve APC, in which the relation between any

P
B

MN B

rectangular ordinate PM, and abscissa OM, is

PM

OM : OA :: log 1 ;
OA

prove that the area contained between the curve, the abscissa OB,

and ordinate BC, is OA (BC- AO).

15. Shew that the center of gravity of a paraboloid of revo-

lution is distant from the vertex two-thirds of the length of the

axis.

16. Shew that the abscissa and ordinate of the center of gravity

of a parabolic area, contained between a diameter AB and ordinate

BC, are AB and BC, respectively.

17. The limiting ratio of a hyperboloid of revolution, whose

axis is the transverse axis, to the circumscribing cylinder, is 1 : 2,

when the altitude is indefinitely diminished, and 1 : 3, when it is

indefinitely increased.

18. The volume of a spheroid is two-thirds ofthe circumscribing

cylinder.

NEWT. D
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LEMMA IV.

If in two figures AacE, PprT, there be inscribed (as in

Lemmas II, III) two series ofparallelograms, the number

in each series being the same, and if, when the breadths are

diminished indefinitely, the ultimate ratios of the paral-

lelograms in one figure to the parallelograms in the other

be the same, each to each ; then, the two figures AacE,

PprT are to one another in that same ratio.

a

↑

A E P T

[Since the ratio, whose antecedent is the sum of the ante-

cedents, and whose consequent is the sum of the conse-

quents of any number of given ratios, is intermediate in

magnitude between the greatest and least of the given

ratios ; it follows that the sum of the parallelograms de-

scribed in AacE is to the sum in PprT in a ratio inter-

mediate between the greatest and least of the ratios of the

corresponding inscribed parallelograms ; but the ratios of

these parallelograms are ultimately the same, each to each,

therefore the sums of all the parallelograms described in

AacE, PprT are ultimately in the same ratio, and so the

figures AacE, PprT are in that same ratio ; for, by Lemma

III, the former figure is to the former sum, and the latter

figure to the latter sum in a ratio of equality.] Q. E. D.

Cor. Hence, if two quantities of any kind whatever, be di-

vided into any, the same, number of parts ; and those

parts, when their number is increased, and magnitude

diminished indefinitely, assume the same given ratio each

to each, viz. the first to the first, the second to the second,

and so on in order, the whole quantities will be to one
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another in the same given ratio. For, if, in the figures

of this Lemma, the parallelograms be taken each to each

in the same ratio as the parts, the sums of the parts will

be always as the sums of the parallelograms : and, there-

fore, when the number of the parts and parallelograms is

increased, and their magnitude diminished indefinitely, the

two quantities will be in the ultimate ratio of parallelo-

gram to parallelogram, that is, (by hypothesis) in the ulti-

mate ratio of part to part.

Observations on the Lemma.

24. The general proposition contained in the Corollary may

be proved independently in the following manner :

Let A, B be two quantities of any kind, which can be di-

vided into the same number n of parts, viz . a,, a,, a.......a , and

b₁, b₂, b₁ ...... b₁ respectively ; such that, when their number is

increased and their magnitudes diminished indefinitely, they

have a constant ratio L : 1 each to each, so that

a₁ : b₁ :: Z ( 1 + a₁) : 1 ,1

a₂ : b₂ :: L (1 + α ) : 1 ,

......

2

......

where a, a , ...... vanish when n is increased indefinitely.

Then, a₁ + a₂ + ... : b₁ + b₂ + being a ratio which is

intermediate between the greatest and least of these ratios, each

of which is ultimately L : 1 , we have, if we proceed to the limit,

A B L : 1,: ::

that is, A and B are in the ultimate ratio of the parts .

25. The proof given in the Principia is as follows : " For,

as the parallelograms are each to each, so, componendo, is the

sum of all to the sum of all, and so the figure AacEto the figure

PprT, for, by Lemma III, the former figure is to the former sum,

and the latter figure to the latter sum in a ratio of equality.”

The proof given in the text is substituted for this, because

the state of things is not followed up from a finite time to the

ultimate form.

D 2
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In the last article the ratio a, + a +... : b₁ + b₂ + ... is
2

L1+

(1

1 22
: 1 ,

b₁ + b₂ + ...2

and reason ought to have been given why

a,b , + ab₂+ ... vanishes

b₁₂+ b₂+ ...2

in the limit.

Application of Lemma IV to the comparison ofcertain areas, and

the determination ofcertain volumes, masses, &c.

1. Area ofan ellipse.

Let ACa be the major axis of an ellipse, BC the semi-minor

axis, ADa the auxiliary circle, and let parallelograms be in-

scribed whose sides are common ordinates to the two curves.

Let PMNR, QMNU be any two corresponding parallelo-

grams. The ratio of these parallelograms is PM : QM or

BC : AC.

D

B

Ꭱ

Hence, by Lemma IV,

N M

area of ellipse area of circle :: BC : AC

:: TAС.BC : πAС²,

but area of circle = πAC².

Therefore, area of ellipse =TAC. BC.

COR. Area ofa sector of an ellipse, pole in the focus.

If Sbe a focus of the ellipse, and SP, SQ be joined,

ASPM: ASQM :: BC : AC,

and area APM : area AQM :: BC : AC,

hence, area ASP area ASQ :: BC : AC,
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but area ASQ ASCQ + sector ACQ
=

=1SC.QM÷ | AC. arc AQ ;

therefore area ASP= 1 {SC.PM+BC . arc AQ}.

2. In the following proposition it is asserted that when a

chord PQ is drawn to a curve from a point P, as Q moves up to

P, PQ assumes as its limiting position that of the tangent at P,

which is deducible from the idea of a tangent being in the direc-

tion of the curve at the point of contact.

Area of a parabolic curve cut off by a diameter and an ordi-

nate to the diameter.

Let AB, BC be the diameter and ordinate, AD the tangent

at A, CD parallel to AB, P, Q points near each other, PM, QN

and Pm, Qn parallel respectively to AD and AB.

Let QPproduced meet BA in T, and complete the parallelo-

grams TMPS, TNQU

U

S m

n

D

R

T A M B

Then since QP is ultimately a tangent at P, AT= AM

ultimately, and the parallelogram PU is ultimately double of

the parallelogram Pn, and the complements PN, PU are equal ;

therefore the parallelograms PN, Pn are ultimately in the ratio

2 : 1 .

Hence, in the curvilinear areas ABC, ACD, two sets of

parallelograms can be inscribed which are ultimately in the ratio

2 : 1 , each to each ; therefore area ABC is ultimately double of

areaACD, and is therefore two-thirds of the parallelogramABCD.

3. Volume ofa paraboloid ofrevolution .

Let AH be the axis of the parabola APK, AHKL the

circumscribing rectangle. Also let PN, Pn be rectangles in-

scribed in the portions AHK, AKL.
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Volume generated by PN

=πPM².MNT.PM. PN.

Volume generated by Pn

=πQN'.AM-TPM².AM

=TAM. ( QN+PM) . mn
=

=
·π ( QN + PM) . Pn ;

Ꮮ K

n

m R

A M N H

.. vol. by PN : vol. by Pn :: PM.PN : (QN+PM) Pn

mately ;

:: PM.2Pn : (QN+ PM) Pn, ulti-

and QN+PM=2PM ultimately ;

therefore vol. by PN= vol. by Pn, ultimately ;

hence, by Cor., Lemma IV,

volume generated by AHK= volume generated by AKL,

therefore the volume of paraboloid is half the volume of the cir-

cumscribing cylinder.

4. Center ofgravity ofa paraboloid ofrevolution.

Since the volumes generated by PN and Pn are ultimately

equal, the moment of the volume generated by PN with respect

to the tangent plane at A

: moment of that generated by Pn

:: distance of the center of gravity ofPN

: distance of center of gravity of Pn, ultimately ;

:: AM : Pm, ultimately,

:: 2 : 1 ;
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hence the moment of volume generated by AHK

: that of the volume generated by AKL

:: 2 : 1 , ultimately,

and the moment of the paraboloid

=
2

3

2
1
3

2
1
3

moment of the cylinder

volume of cylinder x

AH

2

volume of paraboloid × AH;

hence the distance of the center of gravity ofthe paraboloid from

the vertex is two-thirds of the height of the paraboloid.

5. Area ofa cycloid.

Let P, P' be two points very near each other in a cycloid,

Q, Q' corresponding points in the generating circle, p, p' in the

evolute, R, R′ the intersections of the base with normals Pp,

P'p', T, Sthe intersections of BQ' and P'p' with PQ.

Then PR PR= BQ (see Appendix II) ,
=

pl

R
B

D

and triangle p'RR' : triangle p'PS :: 1 : 4, ultimately.
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Also BQT= p'RR', ultimately, since BQ, BT are equal and

parallel to pR, p'R ;

.. ABQT : Ap'PS :: 1 : 4, ultimately,

and ABQT trapezium PRR'S :: 1 : 3, ultimately,

and the same being the ultimate ratio of all the inscribed tri-

angles, and trapeziums, whose sums are ultimately the areas of

the semicircle and semicycloid ; therefore by Cor. , Lemma IV,

area of semicircle area of semicycloid :: 1 : 3 ,

hence the area of the cycloid is three times the generating circle .

6. Center of gravity and mass of a rod whose density varies

as the distance from an extremity.

Let ABbe the rod, MNa small portion of it, then the density

at M∞AM.

M N

R

Construct on AB as axis an isosceles triangle CAD, whose

base is CD, and draw PMR, QNS parallel to CD ; then PR,

QS, CD are proportional to the densities at M, N, and B; there-

fore the mass of MN is proportional to a rectangle intermediate

to the rectangles PR, MN and QS, MN, which are ultimately

in a ratio of equality.

Hence the mass of MNis ultimately proportional to the mass

of the rectangle PR, MN, supposed of uniform density, and the

moment of MN, with respect to the line CD, is proportional to

the moment of the same rectangle, since their distance is the

same; hence, by the Lemma, the moment of the whole rod

: the moment of the triangle with respect to CD

:: the mass ofthe rod : the mass of the triangle ;
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therefore the distances of the centers of gravity of the rod and

triangle from CD being the same, the center of gravity of the rod

is at a distance AB from B.

Also, the mass of MN being proportional to the area PRN,

the mass of the rod is proportional to the area of the triangle

ACD, and the mass of a rod of uniform density equal to that

at B, and of length AB, being in the same proportion to the

rectangle AB, CD, is therefore double of the mass of the rod.

7. Center ofgravity ofa circular arc.

Let O be the center of a uniform circular arc ABC, OB the

bisecting radius, aBc a tangent at B, OD parallel to ac, and Aa,

Cc parallel to OB.

Let QR be the side of a regular polygon described about the

a

H

12

arc, Pthe point of contact, Qq, Rr perpendicular to ac, and PM

to OB. Then, since OP, OB are perpendicular to QR, qr,

qr QR OM OP

:: OM : OB ;

but since OM, OB are the distances of the centers of gravity of

QR and qr from OD, and QR . OM= qr . OB, the moments of

QR and qr with respect to OD are in a ratio of equality, and

the same is true of every side of the circumscribing polygon ;

therefore, by Cor. , Lemma IV, the moment of the arc, which
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is ultimately that of the polygon, is equal to the moment of

ac=ac. OB = chord AC. radius OB.

Hence, the distance of the center of gravity of the arc from O

radius x chord

arc

8. To find the direction and magnitude of the resultant

attraction of a uniform rod upon a particle, every particle ofthe

rod being supposed to attract with a force which varies inversely

as the square of its distance from the attracted particle.

n

m

qS

α

Let ABbe the attracting rod, O the particle attracted by the

rod ; draw OC perpendicular to AB, join OA, OB, and let a

circle be described with center O and radius OC meeting OA,

OB in a, b. Let OpP, OqQ be drawn cutting off the small

portions pq, PQ from the arc aCb and the rod, respectively :

and draw PR perpendicular to OQ.

Then,

and

PR: PQ OC : OP

Pq : PR Op : OP

ultimately,

. pq PQ Op² : OP³,

and if aCb be of the same density as the rod, and attract accord-

ing to the same law,

attraction of pq on 0 : attraction ofPQ

PQpq
:: :
Op Op ultima

tely
.
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Therefore, the portions PQ, pq of the rod and arc attract O

in the same direction , with forces which are ultimately equal.

Hence, by the Corollary to Lemma IV, the resultant attrac-

tion of the rod is the same as that of the arc aCb, which by

symmetry is in the direction OD, bisecting the angle AOB.

Again, if qn be perpendicular to OD, pr to qn,

pq qr Oq : On;

pq
On qr

Og² Og-Ori
Oq

=

that is, the resultant attraction of pq in the direction OD is the

same as that of qr at the distance OC ; hence the whole re-

sultant attraction of AB is

μ . αζ

OC12

2μ 1
or sin AOB,

ос 2

where μ is the attraction of an unit of mass at the unit distance.

III.

1. Find the volume of a hemisphere, by comparing the volumes

generated by the quadrantal sector, and the portion of the circum-

scribing square which is the difference between the square and the

quadrantal sector.

2. Shew that the area of the sector of an ellipse contained be-

tween the curve and two central distances, varies as the angle of the

corresponding sector of the auxiliary circle.

3. Find the volume of a paraboloid by comparison with the area

of a triangle whose vertex and base are those of the generating

parabola.

4. Find the center of gravity of the paraboloid by reference

to the same triangle.

5. Find the mass of a straight rod, whose density varies as the

square of the distance from the extremity, by comparison with a cone

whose axis is the rod.

6. Find the volume of a paraboloid generated by the revolution

of a semi-cubical parabola, in which PM³∞ AM³, by means of a cone

on the same axis.
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7. Shew that the orthogonal projection of any plane area on

another plane is the given area × the cosine of the inclination of the

two planes.

R

A

Prove that, pqsr being the projection of the inscribed parallelogram

PQSR,

pqsr : PQSR :: cos BAC : 1 ,

and deduce the proposition by Lemma IV.

8. P is any point of a curve OP, OX, OY any lines drawn at

right angles through 0, PM, PN perpendicular to OX, OY respec-

tively. Prove that, if area OPM : area OPN :: m : 1 , and the

whole system revolve about OX, volumes generated by OPM, OPN

will be as m : 2.

9. Prove that the surface generated by the revolution of a semi-

circle round its bounding diameter is to the curved surface gene-

rated by the revolution of the same semicircle round the tangent at

the extremity of the diameter, in the ratio of the length of the

diameter to the length of the arc of the semicircle.

10. Common ordinates MPP, NQQ' are drawn to two ellipses

which have a common minor axis, and the outer of which touches

the directrices of the inner ; shew that the area of the surface

generated by the revolution of PQ about the major axis bears a

constant ratio to the area MP'QʻN.

11. Two catenaries touch at the vertex, and the inner one is

half the linear distance of the outer ; from the directrix of the

outer are drawn two ordinates MPQ, M'P'Q', shew that the area

of the surface generated by the arc PP about the directrix is

equal to 2x area MQQ'M'.
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LEMMA V.

·All the homologous sides of similar figures are proportional

whether curvilinear or rectilinear, and their areas are in

the duplicate ratio ofthe homologous sides.

[Similar curvilinear figures are figures whose curved boun-

daries are curvilinear limits of corresponding portions of

similar polygons.

Let SABCD ......, sabed ...... be two similar polygons of

which SA, AB, BC, ......are homologous to sa, ab, bc, ......

respectively.

E

a

Then,

Similarly,

AB ab : SA : sa.

BC : bc AB : ab :: SA : sa

CD cd : BC : bc :: SA : sa,

....

Therefore, componendo,

AB+BC+ CD + ... : ab + be + cd + ... :: SA sa.:

...

Now this, being true for all similar polygons, will be true

in the limit, when the number of the sides AB, BC,

and ab, bc, ... is increased, and their lengths diminished

indefinitely ; if, therefore, AE, ae be curves which pass

through the angular points A, B, ...... and a, b,...... of

the polygons, these curves are the curvilinear limits of

AB+BC+ ... and ab + be + ... and are the boundaries of

similar curvilinear figures : and therefore

the curved line AE : the curved line ae

:: SA sa :: SE : se.
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Again, polygon SABC ... : polygon sabc: polygon sabc ... :: SA² : sa²,

and this being true always, is true in the limit ;

.. (Lemma III, Cor. 2),

curvilinear area SAE curvilinear area sac

:: SA² : sa²

:: AE² : ae2

:: SE² : se².

Observations on the Lemma.

Q. E.D.]

26. In order to deduce the properties of similar curves ,

it is premised as before mentioned under Cor. 4 , Lemma III ,

that, if a finite portion of a curve be taken, and if a polygon

be inscribed in the curve, the sides of which are chords taken

in order, of portions of the curve, and the number of sides

of the polygon be increased indefinitely, and the magnitudes

at the same time diminished indefinitely, the curve is the limit

of the perimeter of the polygon. See Whewell's Doctrine of

Limits.

It is not assumed that each chord is equal to the corres-

ponding arc ultimately : this is afterwards proved for a con-

tinuous curve in Lemma VII.

Criteria of Similarity.

27. From the definition of similar curve lines, that they

are curvilinear limits of homologous portions of similar polygons ,

the following criteria of similarity can be deduced, which are

each very convenient in practice ; namely,

(1) One curve line is similar to another when, if any

polygon be inscribed in one, a similar polygon can be inscribed

in the other.

(2) If two curves be similar, and any point S be taken

in the plane of one curve, another point s can be found in the

plane of the other, such that, any radii SP, SQ being drawn in

the first, radii sp, sq can be drawn in the second, inclined at



LEMMA V. 47

the same angle as the former, and such that the following

proportion will hold,

sp : sq :: SP: SQ.

(3) If two curves be similar, and in the plane of one

curve any two lines OX, OY be drawn, two other lines ox, oy

can be drawn in the plane of the other curve, inclined at the

same angle, having the property that the abscissa and ordinate

OM, MP of any point P in the first being taken, the abscissa

and ordinate om, mp of a corresponding point p in the second

will be proportional to the former, viz. ,

om : mp :: OM: MP.

And the converse propositions can also be deduced , that if

these proportions hold, the curves will be similar.

28. In order to illustrate test ( 1 ) , let the arcs AB, ab of

two circles have the same center C, and let the bounding radii

be coincident in direction.

B

Let ADEB be any polygon inscribed in AB, and let CD,

CE cut ab in d, e ; join ad, de, eb ; these are parallel to AD,

DE, EB, respectively, and ad : de eb :: AD : DE: EB, hence,

adeb is similar to ADEB; and therefore the arcs ab, AB are

similar.

:

Deduction ofcriteria ofsimilarity.

29. Test (1 ) follows immediately from the definition .

Test (2) may be deduced as follows.

If ABCD ..., abcd ... , be corresponding portions of similar

polygons, AB, BC, ... ab, bc, ... being homologous sides, and AS,
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BS, ... be drawn to any point S, construct the triangle sab equi-

angular with SAB and join sb, se, ... (See fig. p . 45.)

Then sb SB :: ab : AB :: bc : BC,

and SBC = 2 sbc ;

therefore, SBC, sbc are similar triangles ,

and sc SC :: sb : SB :: sa : SA ;

and similarly fór sd, se, &c.

Hence, if two polygons are similar, and any point be taken

in one, another point can be found in the other, such that the

radii drawn to corresponding angular points are proportional and

include the same angles.

If we now increase the number of sides indefinitely and di-

minish their magnitude , the same property holds with respect to

the curvilinear limit of the polygon.

30. The converse proposition may be thus proved.

If the angles ASB, BSC ... be equal to the angles asb ,

bsc,

and SA SB : SC ... :: sa : sb : sc ...

the triangles ASB, asb, &c. are similar,

and AB ab :: SB : sb :: BC : bc,:

.. AB : BC : CD :: ab bc : cd ...

or the part of the polygons are similar which are bounded by

corresponding radii.

Hence, proceeding to the ultimate form of the hypothesis, the

similarity of the curves which are the curvilinear limits of the

corresponding portions of the polygons is proved .

Test (3) can be deduced in a similar manner.

Centers of Similitude.

31. If two similar curves are so situated that a point can

be found, such that the radii , drawn from that point, either in

the same or opposite directions, are in a constant ratio , such a

point is called a center ofsimilitude.
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If the radii are measured in the same direction, the point is

a center of direct similitude, and of inverse similitude if they are

in opposite directions.

It is easily shewn that there can only be one center of simi-

litude of one kind.

Properties of similar Curves, and application of tests of Simi-

larity.

1. Similar conterminous arcs, which have their chords coin-

cident, have a common tangent.

D

B

Let APB, Apb be similar conterminous arcs , ABb the line of

their chords, AQq, APp any straight lines meeting the curves in

Q, q and P, p respectively ;

.. AQ : Aq :: AP : Ap ;

hence, AP, Ap are similar portions of the curve ;

therefore, by Lemma V,

arc AP arc Ap :: AP : Ap :: AB : Ab;

therefore arcs AP, Ap vanish simultaneously,

or, when AP assumes its limiting position AD for the curve

APB, this is also the limiting position for Apb, that is , the curves

have a common tangent.

2. To find the centers of direct and inverse similitude ofany

two circles.

NEWT. E
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Let S be the intersection of two common tangents to the

circles which intersect in the produced line Cc joining their

centers, and let CQ, cq be radii at the points of contact.

Draw SpPthrough S cutting the circles in

Cq is parallel to CQ,

P, P,

and CP cp CQ : cq :: CS : cS;

.. CS : CP :: cS : cp,

also CPS, cpS are each greater or each less than a right angle,

and CSP is common to the triangles CPS, cpS, therefore the

triangles are similar (Euclid, vI. 7) , and the sides about the

angle CSP are proportional ,

that is, SP Sp :: SC : Sc;

therefore S is the center of direct similitude.

Similarly, the intersection of two common tangents which

cross between the circles is a center of inverse similitude.

3.
To find the condition ofsimilarity oftwo conic sections.

Let the conic sections be placed so that their directrices are .

parallel and foci coincident, and let SpP be any line through the

D d Α a

focus meeting them in p, P, draw SaAD perpendicular to the

directrix DQ of AP, PQ perpendicular to DQ, join SQ, and let

pq, parallel to PQ, meet it in 9, and draw qd perpendicular to SD.

Then
Sd SD Sq SQ Sp : SP;

and, ifthe curves be similar, Sp : SP is a constant ratio ,
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therefore Sd : SD is a constant ratio,

and dq is a fixed straight line for all positions of p,

also, since pq Sp PQ : SP,

pq Sp is a constant ratio ;

therefore qd is the directrix of ap, and the constant ratio being

the same in both, the eccentricities are the same.

4. All parabolas are similar.

For, using the last figure, if DQ, dq be the parallel directrices

and S the focus of the two parabolas AP, ap, draw SpPmeeting

them in p, P, and let pq, PQ be perpendicular to dq, DQ ; then

Sp=pq, and SP=PQ ;

.. Sp : pq :: SP : PQ,

and Spq= 4< = < SPQ,

therefore the triangles are similar and SqQ is a straight line,

hence, Sp SP :: Sq : SQ,

:: Sd : SD,

:: Sa : SA ;

therefore the parabolas ap, AP are similar.

5. All cycloids are similar.

Let two cycloids APC, Apc be placed so that their vertices

are the same, and their axes coincident in direction , and describe

B

7

M

m

A

P

E 2



52 NEWTON.

circles on the axes AB, Ab as diameters. Draw AqQ cutting

the circles in q, Q.

Then, since the segments Aq, AQ are similar,

arc Aq arc AQ :: Aq : AQ.

And, if mqp, MQP be ordinates to the cycloids,

arcs Aq, AQ = qp, QP respectively ;

qp QP Aq : AQ,

and ApP is a straight line.

Also Ap AP :: Aq : AQ,

:: Ab : AB, a constant ratio ;

hence, a condition of similarity is satisfied.

OBS. In this position of the cycloids the point A is a center

of direct similitude.

6. The properties of similar curves may be employed to con-

struct curves which satisfy given conditions, as in the following

problem.

To construct a cycloid which shall have its vertex at a given

point, its base parallel to a given straight line, and which shall

pass through a given point.

Let A be the given vertex, AB perpendicular to the given

line, Pthe given point.

In AB take any point b , and with the generating circle,

whose diameter is Ab, describe a cycloid Apc, join AP intersect-

ing this cycloid in p.

Take AB a fourth proportional to Ap, AP, and Ab ; then

ABwill be the diameter of the generating circle of the required

cycloid.

For, since Ap AP :: Ab : AB, and all cycloids are similar,

P is a point in the cycloid whose axis is AB.

7. Instruments for copying plans on an enlarged or reduced

scale are founded upon the properties of similar figures , as the

Pantagraph and the Eidograph ; as are also other methods of

copying, such as by dividing plans or pictures into squares.
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The Pantagraph is an instrument for drawing a figure similar

to a given figure on a smaller or larger scale ; one of its forms is

as in the figure ; AD, EF, GC and AE, DG, FC are two sets of

parallel bars, joined at all the angles by compass-joints ; at B is

D

B
C

E

a point, which serves to fix the instrument to the drawing board ,

at A is a point, which is made to pass round the figure to be

reduced or enlarged ; at C' is a hole for a pencil pressed down by

a weight, and the pencil traces the similar figure, altered in di-

mensions in the ratio of BC : AB, or BF : AD.

The similarity of the figure traced by the pencil is a conse-

quence of continual similarity of the triangles ABD, BFC.

By changing the positions of the pegs at Fand G the figure

described by C may be made of the required dimensions.

For a description of the Eidograph, invented by Professor

Wallace, see the Transactions ofthe Royal Society of Edinburgh,

Vol. XIII .

8.
Volume of a cone whose base is a plane closed figure of

anyform.

Let V be the vertex, AB the base, VH perpendicular to the

base from V: let VH be divided into n equal portions, of which

MN

B

MN is the r +1]th ; and let PQ be the section through Mparallel

to AB.
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Let A be the area of the base.

Then, if VPA be any generating line,

PM: AH : VM : VH;

therefore, PQ is similar to AB, in which M, H are similar and

similarly situated points,

and area PQ area AB :: 7² : n³,

MN : VH :: 1 : η ;

hence area PQ . MN : A.VH :: r² : n³ ;

therefore the volume of the cylinder whose base is PQ and

height MN

= 3 × A.VH;
n

and the volume of the cone = A. VH × limit of

=

1ª + 2² + ...... + n
-12

3
n

one-third of the cylinder whose base is AB and height VH.

IV.

1. Apply a criterion of similarity to shew that segments of a

circle, which contain equal angles, are similar.

2. From the definition of an ellipse, as the locus of a point

the sum of whose distances from two fixed points is constant,

shew that the ellipses are similar when the eccentricities are the

same.

3. Prove that the center of an ellipse is a center of inverse

similitude to two opposite equal portions of the circumference of the

ellipse.

4. Employ the properties of similar figures to inscribe a square

in a given semicircle.

5. Construct, by means of similar figures, two circles, each of

which shall touch two given straight lines and pass through a given

point.
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6. If A be the vertex of a conical surface, G the center of

gravity of the base, H that of the volume of the conical figure,

AH = 232AG.

4

7. Find the centers of gravity, the surface and volume of a right

cone on a circular base . Explain why the method does not apply to

the surface of an oblique cone, while it does to the volume.

8. Deduce the position of the center of gravity of a circular

sector from that of a circular arc ; shew that the distance from

2 radius × chord

the center is

3' arc

•

9. Shew that all the spirals of Archimedes, in which the radius

vector varies as the angle, are similar.

10. Find the condition of similarity of equiangular spirals.

11. Shew that arcs of catenaries are similar, whose horizontal

abscissæ from the lowest points are proportional to the tensions at the

extremities.

12. All Lemniscates are similar.



56 NEWTON,

LEMMA VI.

If any arc ACB given in position be subtended by a chord

AB, and ifat any point A, in the middle ofcontinued cur-

vature, it be touched by the straight line AD produced in

both directions, then, ifthe points A, B, approach one an-

otherand ultimately coincide; the angle BAD contained by

the chord and tangent will diminish indefinitely and ulti-

mately vanish.

For, if that angle does not vanish, the arc ACB will contain

with the tangent AD an angle equal to a rectilineal angle,

D

D

B

E

and therefore, the curvature at the point A will not be con-

tinuous, which is contrary to the hypothesis, that A was in

the middle of continuous curvature.

Definitions ofa tangent to a curve.

32. (1 ) If a straight line meet a curve in two points

A, B, and if B move up to A, and ultimately coincide with A,

AB in its limiting position is a tangent to the curve at the

point A.

If two portions of a curve, EA and AB, cut one another at a

finite angle in A, there are two tangents, AD, AD' , which are

the limiting positions of straight lines AB and AE when B and

Emove up to A along the different portions AE and AB of the

curve respectively. And similarly, if there be a multiple point

in A, in which several branches of the curve cut one another

at finite angles.

(2) The tangent is the direction of the side of the polygon,

of which the curve is the curvilinear limit, when the number of

sides are increased indefinitely.
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This is founded on the same idea of a tangent as defini-

tion (1).

(3) The tangent to a curve at any point is the direction of

the curve at that point.

In order to apply geometrical reasoning to the tangent by

employing this definition, we are obliged to explain the notion of

the direction of a curve, by taking two points very near to one

another, and asserting that the direction of the curve is the limit-

ing position of the line joining these points when the distance

becomes indefinitely small, which reduces this definition to the

preceding.

Observations on the Lemma.

33. "Curvatura
Continua, " if we consider curves as the cur-

vilinear limits of polygons, requires the curves to be limits of

polygons whose angles continually
increase as the number of the

sides increase, and may be made to differ from two right angles

by less than any assignable
angle before the assumption

of the

ultimate form of the hypothesis.

If, however, as we increase the number of sides and diminish

their magnitude, one of the angles remains less than two right

angles by any finite difference, the curvature of the curvilinear

limit is discontinuous , and the form is that of a pointed arch ; in

which the two portions cut one another at a finite angle.

A curve may be of continued curvature for one portion be-

tween two points, while for another its curvature changes " per

saltum."

Thus, if ABC be a curve forming at B a pointed arch, it
may

be of continued curvature from B to A and from C to B, though

not from to A.

In this case the tangents in passing from C to A assume all
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positions intermediate to CT, Bt, and Bt' , TA, but at B they

pass from Bt to Bt' without assuming the intermediate positions.

34. "In medio curvaturæ continuæ," implies that the point

A in the enunciation of the Lemma is not such a point as B

in the last figure, but that, in passing from a point on one side

of A to another on the other side, the tangents pass through all

the intermediate positions .

The curvature is supposed to be in the same direction in the

figure of the Lemma, which in all curves of continued curvature

is possible, if B be taken sufficiently near to A at the commence-

ment of the change in the construction .

If the point A be not " in medio curvaturæ continuæ,” two

tangents AD, AD' may be drawn at A to the two parts of the

curve, and the curve BCA makes a finite angle with one of the

tangents AD'.

But, even in this case , the angle between the chord and

that tangent which belongs to the portion of the curve con-

sidered, continually diminishes and ultimately vanishes.

Definition of the subtangent.

35. The part of the line of abscissæ intercepted between the

tangent at any point and the foot of the ordinate of that point is

called the subtangent.

36. The subtangent may be employed as follows, to find a

tangent at any point of a curve.

Let OM, MP be the abscissa and ordinate of a point P in

U T

P
R

M N X

a curve, and let Q be a point near P, ON, NQ its abscissa

and ordinate.
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Let QPU meet OX the line of abscissæ in U; then, if PR

parallel to OM meet QN in R ;

Now as

PM MU : QR PR

:: QN- PM : ON- OM.

approaches to P, the limiting position of QPU is

that of the tangent at P (Lemma VI) , viz. tPT,

and PM MT is the limiting ratio of

QN- PM: ON- OM.

This ratio determines the position of T, and therefore of the

tangent at P, and, if the ordinates be perpendicular to the

abscissæ, is the trigonometrical tangent of the angle made by the

tangent with the line of abscissæ.

Illustrations.

1 .
To find the subtangent in the common parabola .

Since :PM² QN² :: OM : ON;

.. QN² – PM² : PM² :: ON— OM : OM,

-
and QN- PM : PM :: ON– OM : MT,

QN+PM : PM :: 2 : 1 , ultimately,

:. QN² – PM² : PM² :: 2 ( ON- OM) : MT,

.. MT=20M.

2. Surface of a segment of a sphere.

Let AKH be the portion of a circle which generates by revo-

lution round AH the spherical segment, O the center of the circle,

PQ the chord of a small arc, PM, QN perpendicular to AH.

Let AOCD be the rectangle circumscribing the quadrant, and

generating the circumscribing cylinder.

Produce MP, NQ, HKto meet CD in p, q, k. Since PQ is

in its limiting position a tangent at P, PQ is ultimately perpen-

dicular to the radius OP, also pq is perpendicular to MP ;
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.. PQ pq :: OP : PM, ultimately,

and the surface generated by PQ is ultimately 2πPM.PQ

(Art. 17) ,

= 2π . OP.pq = the surface generated by pq.

DE P q k

K

P

A H aM Nm H

The same is true for each side of the inscribed polygon, when

the number is indefinitely increased.

Hence, the surface generated by AK, or the surface of the

spherical segment, is equal to the surface of the circumscribed

cylinder cut off by the plane of the base of the segment.

COR. Hence also, the surface of any belt of a sphere cut off

by two parallel planes is equal to the corresponding belt of the

cylindrical surface.

3. Center ofgravity ofa belt ofthe surface of a sphere con-

tained between parallel planes.

The moment of the belt generated by PQ with respect to the

plane through A, perpendicular to AH, is evidently ultimately

equal to that of the belt generated by pq ; therefore the moment

of any belt generated by K'K is equal to that of the correspond-

ing belt by k'k.

Hence, the centers of gravity of the two belts are coincident,

viz. in the bisection of HH' , that is, the distance of the center of

gravity of a spherical belt, contained between parallel planes, is

half-way between the two planes.

4. Volume of a spherical sector.

Let the spherical sector be generated by the revolution of the

sector AOP.
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The volume of the spherical sector is equal to the limit of the

sum of a series of pyramids whose vertices are in O, and the sum

of whose bases is ultimately the area of the surface of the seg-

ment, and the volume of each pyramid is base × altitude.

Hence the volume of the spherical sector is one-third of area

of the surface of the spherical segment × radius

= .2π.AD.Dp . AO

=

2π

.AM.AO

3

2πAО³

3

vers POA.

5.
Center ofgravity ofa spherical sector.

If we suppose each of the pyramids on equal bases, they may

be supposed collected in their centers of gravity, whose distances

are 40 from O ultimately, and they form a mass which may

be distributed uniformly over the surface of a spherical segment

whose radius is AO, viz . that generated by ar, whose center of

gravity is in the bisection of am, rm being perpendicular to AH.

Therefore the distance of the center of gravity of the spherical

sector from O

=
= 1 (Oa + Om)

= 1 Oa (1 + cos rOa)
=

=2 OA . cos² POA.

If the angle POA become a right angle, the distance of the

center of gravity of the corresponding sector, which in this case

becomes the hemisphere, is OA, as in page 30.

6. If SY be the perpendicular on the tangent PY at P in a

curve, Y will trace out a curve, and ifYZ be a tangent to the locus

ofY, SZperpendicular to it,

SY SP . SZ.=

Let P' be a point near P, SY' perpendicular on P'P, SZ

perpendicular on Y'Y.

Since angles SYP, SY'P are right angles, a semicircle on

SPpasses through Y, Y ; therefore the angles SY'Y, SPY, in



62 NEWTON.

the same segment are equal, and the right angles SZY', SYP

are equal ; therefore the triangles SPY, SY'Z are similar,

and SZ SY' :: SY : SP,

Z

but, ultimately, as P' moves up to P, P'PY' becomes the tangent

at P, and Y'YZ that at Y to its locus, also SY' = SY;

.. SZ. SP= SY².

V.

1. In the curve in which the abscissa varies as the cube of

the ordinate, shew that the subtangent is three times the ab-

scissa .

2. IfPY a tangent to an ellipse at P meet the auxiliary circle

at Y, and ST be perpendicular to the tangent at Y, ST varies in-

versely as HP.

3. AB is the diameter of a semicircle AQB, in which AM

is taken equal to BN, QN is an ordinate, AQ meets the ordinate

corresponding to AM in P, the locus of P is the Cissoid ; shew that

the subtangent at P : AM :: 2AN : 2AN + AB.

4. In the Lemniscate, if SY be perpendicular to the tangent

at Q, and SA be the greatest value of SQ, shew that

SQ³= SY . SA².
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LEMMA VII.

If any arc, given in position, be subtended by the chord AB,

and at the point A, in the middle of continued curvature,

a tangent AD be drawn, and the subtense BD, then, when

B approaches to A and ultimately coincides with it, the

ultimate ratio ofthe arc, the chord, and the tangent to one

another is a ratio ofequality.

For whilst the point B approaches to the point A, let AB,

AD be supposed always to be produced to points b and d

at a finite distance, and bd be drawn parallel to the sub-

tense BD, and let the arc Acb be always similar to the

arc ACB, and have, therefore, ADd for its tangent

at A.

B

D d.

But, when the points B, A coincide, the angle bad by the

preceding Lemma, will vanish, and therefore, the straight

lines Ab, Ad, which are always finite, and the arc Acb

which lies between them [and is of continuous curvature

in one direction, if the change commence when B is near

enough to A], will coincide ultimately, and therefore will

be equal.

Hence also, the straight lines AB, AD, and the intermediate

arc ACB, which are always proportional to them, will

vanish together, and have an ultimate ratio of equality to

one another.

COR. 1. Hence, if through B, BF be drawn parallel to the

tangent, always cutting any straight line AF passing
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through A in F, this BF will have ultimately to the

vanishing arc ACB a ratio of equality, since, if the paral-

A

G

C

lelogram AFBD be completed, it has always a ratio of

equality to AD.

COR. 2. And if, through B and A be drawn many straight

lines BE, BD, AF, AG cutting the tangent AD and BF,

parallel to it ; the ultimate ratio of all the abscissæ AD,

AE, BE, BG and of the chord and arc AB to one another

will be a ratio of equality.

COR. 3. And, therefore, all these lines in every argument

concerning ultimate ratios may be used indifferently one

for the other.

Observations on the Lemma.

37. The subtense of the angle ofcontact of an arc is a straight

line drawn from one extremity of the arc to meet, at a finite

angle, the tangent to the arc at the other extremity.

This subtense is the secant which defines the limited line

called, in the Lemma, " the tangent."

The chord is called by Newton " the subtense of the arc ,"

see Lemma XI.

38. In the construction for this Lemma, BD must be a sub-

tense, i. e. inclined throughout the change of position at a finite

angle to the tangent or chord, for, otherwise , the angles BAD

and ABD being both small, the ultimate ratio of the chord to

the tangent might be any finite ratio instead of being one of

equality.
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This is the only limitation of the motion of BD; the follow-

ing figure represents changes which may take place in the ap-

proach towards the ultimate state of the hypothesis.

D"

B

D' D

C

B

с

d

Here b, d are the distant points, that is, points at a finite

distance from A ; BD, B'D' , B"D" are consecutive positions of

the subtense, when B approaches towards A, and db, db' ,
db" are

parallel to these, Ac'b' , Ac" b" are the forms of Acb changed so as

to be always similar to the corresponding portion of ACB cut off

by the chord.

39. It should be remarked that the curve -Acb is not inter-

mediate in magnitude to the two lines Ab, Ad, but only in

position, for example, Ab may be equal to Ad, if BD make equal

angles with the two lines, and the curve line is greater than

either Ab or Ad; but it becomes in all cases less bent, until it is

ultimately rectilinear; hence the three Acb, Ab, Ad will be

ultimately equal, the only alternative being that the curve

becomes doubled up as in the figure, which is precluded by the

supposition that the curvature, near A, is continued in the same

direction throughout the passage from Bto A.

NEWT. F



66 NEWTON

40. The subtense ultimately vanishes compared with the arc.

:

For BD ACB :: bd : Acb,

and since bd vanishes, and Acb remains finite, in the limit, the

ratio BD ACB ultimately vanishes. In curves of finite cur-

vature it will be afterwards seen that BD varies as the square of

ACB ultimately.

41. Iftwo curves of continued curvature which do not in-

tersect have a common chord, the length of the exterior curve is

greater than that of the interior, if the curvature of the interior

be always in the same direction.

Let AcdeB, ACDEFB any two polygons, having a common

side AB, be such, that the first lies entirely within the second,

E

A B

and that neither has internal angles, the perimeter of the first is

less than that of the second.

For, produce Ac, cd, de to meet the perimeter of the exterior

in c' , d', e'.

Then AC + Cc' > Ac' ;

Similarly

.. ACDEFB> Ac'DEFB.

Ac'DEFB> Acd'EFB,

and so on ;

therefore, a fortiori, ACDEFB> AcdeB.

And, since the same is true in the limit when the number

of sides is increased indefinitely, the curvilinear limits of the

polygons have the same property, and the proposition is proved.
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The polar subtangent and the inclination of the tangent to the

radius vector, at any point ofa spiral.

42. Let S be the pole, PTthe tangent to the curve at any

point P, and let ST, perpendicular to SP, meet PT in T;

then ST is called the polar subtangent at the point P.

43. To find the inclination of the tangent at any point of

a curve to the radius vector.

Let be a point near P, QM perpendicular to SP, pro-

duced if necessary, QR the circular arc, center S, meeting SP

in R.

Let QP meet ST in U, then

SU : SP :: QM : PM,

and MR QM :: QM : SM+ SR,

S

T

M

and, when approaches indefinitely near to P, QM vanishes

compared with SM+SR ; therefore MR vanishes compared with

QM or PM;

.. SU : SP :: QM : PR, ultimately ;

.. ST : SP is the limiting ratio of QR : PR ; or QR : SQ~ SP.

Hence ST, and also the trigonometrical tangent of the angle

SPTbetween the tangent and the radius vector can be found.

44. To find the inclination ofthe tangent to the radius vector

in the Cardioid.

F 2
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If Bap be a circle whose center is S and diameter BC, pm

an ordinate at p, produce Sp to P, making SP= Bm, P traces

out the Cardioid APS.

T

D R

B n m C

Making the same construction as before , Art. (43) ,

ST : SP :: QR : SQ ~ SP ultimately.

Let SQ meet the circle in q, and draw the ordinate qn,

then, SP- SQ = mn ;

and QR pq :: SQ : Sq

:: SP Sp ultimately ;

also pq mn : Sp : pm ultimately ;

.. QR : SP- SQ :: SP : pm ultimately ;

.. ST : SP :: Bm : pm ;

.. PTS= pВm = PSA ;‹ L

whence the cardioid cuts SA at right angles at A, touches SB at

S, and cuts the circle at an angle equal to half a right angle.

VI.

1. RQq is a common subtense to two curves PQ, Pq, which have

a common tangent PR at P. When RQq approaches to P, RQ and

Rq ultimately vanish ; is the ratio RQ: Rq ultimately a ratio of

equality ?

2. Prove that the circular measure of an angle which is less

than 90° lies between the trigonometrical sine and tangent of the

angle.



LEMMA VII. 69

AB is a diameter of a circle, P a point contiguous to A,

and the tangent at P meets BA produced in T : prove that ulti-

mately the difference of BA, BP is equal to one half of TA.

4. From a point in the circumference of a vertical circle a chord

and tangent are drawn, the one terminating at the lowest point,

and the other in the vertical diameter produced ; compare the

velocities acquired by a heavy body in falling down the chord

and tangent, when they are indefinitely diminished.

5. In any curve, if Q be the intersection of perpendiculars to

two consecutive radii vectores through their extremities, and SY be

the perpendicular from the pole S on the tangent at P, prove that

ultimately SP = SY. SQ.

6. Prove that the extremity of the polar subtangent from the

focus of a conic section is always in a fixed straight line,

7. PQ, pq are parallel chords of an ellipse whose center is C ;

shew that if p move up to P, the areas CPp, CQq are ultimately

equal.

8. In the hyperbolic spiral, in which the radius vector varies

inversely as the spiral angle, prove that the subtangent is con-

stant.

9. In the spiral of Archimedes, in which the radius vector varies

directly as the angle, prove that if a circle be described, of which

a radius is the radius vector of the spiral, the polar subtangent

will be equal to the arc of the circle subtended by the spiral

angle.
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LEMMA VIII.

If two straight lines AR, BR, make with the arc ACB, the

chord AB, and the tangent AD, the three triangles RACB,

RAB, and RAD, and the points A, B approach one an-

other; then the ultimateform of the vanishing triangles is

one ofsimilitude, and the ultimate ratio one ofequality.

For, whilst the point B is approaching the point A, let AB,

AD, AR be always produced to points b, d, r at a finite

distance, and rbd be always drawn parallel to RD, and let

the arc Acb be always similar to the arc ACB, and there-

fore have Dd for the tangent at A. Then, when the points

D

B

с

B, A coincide the angle bad will vanish, and therefore the

three triangles rAb, rAcb, rAd, will coincide, and are

therefore in that case similar and equal. Hence also, RAB,

RACB, RAD, which are always similar and proportional

to these, will be ultimately similar and equal to one an-

other.

COR. And hence, in every argument concerning ultimate

ratios, these triangles can be used indifferently for one

another.

Observations on the Lemma.

45. If RBthroughout the change in the hypothesis make a

finite angle with RA, the three triangles rAb, rAcb, rAd remain
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always finite, and are ultimately identical and equal. But, ifthe

angle ARB is ultimately not finite, for example, if RB revolve

round a fixed point R, the three triangles rAb, ... become in-

finite, since moves to r' and so on to an infinite distance, and

there is the same kind of objection to dealing with these in-

D' D

finite triangles, as to reasoning immediately upon the relation

of the triangles RAB, RAD in the former case.

In this case we can at once deduce the equality of the tri-

angles without producing AD to a point d at a finite distance.

For, the ratio of the difference of RAD and RAB to RAB is

BD : RB, which vanishes ultimately, since RD is finite in

this case ; hence, RAB and RAD and also the curvilinear trian-

gle, which is intermediate in magnitude to them, are ultimately

in a ratio of equality.
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LEMMA IX.

Ifa straight line AE and curve ABC, given in position, cut

one another in a finite angle A, and ordinates BD, CE be

drawn, inclined at another finite angle to that straight line,

and meetingthe curve in B, C ; then, if the points B, C

move uptogether to the point A, the areas ofthe curvilinear

triangles ABD, ACE, will be ultimately to one another in

the duplicate ratio ofthe sides.

For, as the points B, C are approaching the point A, let

AD, AE be always produced to the points d, e at a

finite distance, such that

Ad Ae : AD : AE,

d

DE

G

g

and let the ordinates db, ec be drawn parallel to DB,

EC meeting the chords AB, AC produced in b, c.

Then, [since Ab : AB :: Ad : AD

Ae AE :: Ac : AC,

and therefore Ab Ac :: AB : AC,]

a curve Abc can be supposed to be drawn always similar

to ABC, while B and C move up to A.

Let the straight line Ag be drawn touching both curves at

A, and cutting the ordinates DB, EC, db, ec in F, G, f, g.

[Now areas ABD, Abd, by Lemma V, are always in the

duplicate ratio of AD, Ad, and areas ACE, Ace, in the

duplicate ratio ofAE, Ae, and AD : Ad :: AE : Ae ;

therefore ABD : Abd :: ACE Ace.]
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If, then, the points B and C move up to A and ultimately

coincide with it, the angle cAg will ultimately vanish, and

the curvilinear areas Abd, Ace will coincide with the recti-

linear triangles Afd, Age, and therefore will be ultimately

in the duplicate ratio Ad, Ae.

But ABD, ACE are proportional to Abd, Ace, always, also

AD, AE are proportional to Ad, Ae ; therefore also areas

ABD, ACE are ultimately in the duplicate ratio of

AD, AE.

Observations on the Lemma.

46. By a finite angle is to be understood an angle less than

two right angles, and neither indefinitely small nor indefinitely

near to two right angles.

The angles between AD and the curve and between AD and

BD are different finite angles, because otherwise BD would not

meet the curve.

47. It is not necessary that d and e be fixed , but only that

they remain at a finite distance from A, and that the proportion

be retained.

The student, by reference to Arts. 38 and 45, will be able to

exhibit the change in the figure which will correspond to a

change of the position of B and C in the progress towards the

ultimate position.

48. When the angle CAG vanishes, the curvilinear areas

Abd, Ace coincide with the rectilinear triangles Afd, Age, and so

are in the duplicate ratio of Ad : Ae. But if the angle DAF

be not finite those triangles will not themselves be finite, and

the object aimed at by producing to a finite distance will not be

attained.

The fact is, that the triangle Adb is made up of the triangle

Adf and the curvilinear triangle Afb, of which the latter is in-

definitelysmall ultimately, and the former is finite ; therefore , inthe

Lemma, Afb vanishes compared with Afd ; but this is not the

case if Adfbe indefinitely small, and the ratio AAFB : ▲AGC

must be found by another process, and it will be found, by re-
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ferring to Lemma XI, that the ratio is that of cubes of the arcs

ultimately, ifthe curvature of the curve at A be finite.

49. If the angle DAF be greater than a right angle, the

figure may assume a form in which AD lies below ABC, in

this case, DB, EC, ... must be produced to meet the tangent,

and the argument proceeds in the same manner as before.
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LEMMA X.

The spaces which a body describes [from rest] under the

action ofany finite force, whether that force be constant or

else continually increase or continually diminish, are in

the very beginning of the motion in the duplicate ratio of

the times.

[Let the times be represented by lines measured from A ,

along AK, and the velocities generated at the end of

those times, by lines drawn perpendicular to AK. Sup-

pose the time represented by AK to be divided into a

number of equal intervals, represented by AB, BC, CD,...

A B C K

let Bb, Cc, Dd, ... Kk represent the velocities generated

in the times AB, AC, ... AK respectively, and let Abcd...

be the curve line which always passes through the ex-

tremities of these ordinates. Complete the parallelograms

Ab, Bc, Cd,...

In the interval of time denoted by CD, the velocity con-

tinually changes, from that represented by Cc, to that

represented by Dd, and therefore, if CD be taken small

enough, the space described in that time is intermediate

between the spaces represented by the parallelograms Dc

and Cd ; therefore the spaces described in the times AD,

AK are represented by areas which are intermediate be-
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tween the sums of the parallelograms inscribed in, and

circumscribed about, the curvilinear areas ADd and AKk

respectively.

Therefore, by Lemma II, the number of intervals being in-

creased, and their magnitudes diminished indefinitely, the

spaces described in the times AD, AK are proportional to

the curvilinear areas ADd, AKk.

Now the force being finite, the ratio of the velocity to the

time is finite, therefore Kk : AK is a finite ratio, however

small the time be taken ; hence, if AT be the tangent to

the curve line at A, meeting Kk in T, KT : AK is a finite

ratio ; therefore the angle TAK is finite, or AK meets the

curve at a finite angle.

Hence, by Lemma IX, if AD, AK be indefinitely dimi-

nished,

area ADd area AKk :: AD² : AK² ;

therefore, in the beginning of the motion, the spaces de-

scribed are proportional to the squares of the times of

describing them. Q. E. D.]

COR. 1. And hence it is easily deduced, that the errors of

bodies, describing similar parts of similar figures in pro-

portional times, which are generated by any equal forces

acting similarly upon the bodies, and which are measured

by the distances of the bodies from those points of the

similar figures, to which the same bodies would have arrived

in the same proportional times without the action of the

disturbing forces, are approximately as the squares of the

times in which they are generated.

COR. 2. But the errors which are generated by proportional

forces, acting similarly at similar portions of similar figures,

are approximately as the forces and the square of the times

conjointly.

COR. 3. The same is to be understood of the spaces which

bodies describe under the action of different forces. These

are, in the beginning of the motion, conjointly, as the forces

and the squares of the times.
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COR. 4. Consequently, in the beginning of the motion the

forces are as the spaces described directly, and the squares

ofthe times inversely.

COR. 5. And the squares of the times are as the spaces de-

scribed directly and the forces inversely.

The proof given in the original Latin is as follows :

Exponantur tempora per lineas AD, AE, et velocitates

genitæ per ordinatas DB, EC; et spatia, his velocitatibus

descripta, erunt ut areæ ABD, ACE his ordinatis descriptæ ,

hoc est, ipso motus initio (per Lemma IX) in duplicata

ratione temporum AD, AE. Q.E.D.

50. This proof has been amplified in order to exhibit in

what manner the description of areas, by the flux of the ordi-

nates, corresponds to that of spaces by the velocities represented

by the ordinates ; also to shew the propriety of the application of

the ninth Lemma, by reference to the definition of finite force,

which may be stated as follows :

"A force is finite when the ratio of the velocity generated in

any time to the time in which it is generated, is finite, however

small the time be taken.”

Observations on the Lemma.

51. In the proof of this Lemma, time is represented by the

length of a straight line, and a distance traversed by a body is

represented by an area.

If the length of a straight line be always proportional to the

period of time elapsed , the straight line is a proper representa-

tion of the time. Thus n inches has the same ratio to one inch

that n seconds has to one second ; and on this scale the length n

inches is a proper representation of n seconds.

If an area is always in the same ratio to the unit of area

that the length of a straight line is to the unit of length, the area

is a proper representation of the length of the straight line.

Thus, if Ab be one foot, AB, n feet, Ac an inch, and AC, t

inches : complete the parallelograms ABDC, Abdc, and Bc,

ABCD contains nt such areas as Abdc.
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If now a particle move with a uniform velocity of n feet

a second, and AC represent t seconds, on the scale of one inch to

a second ; the parallelogram Bc represents the space travelled

d

B

D

over in the first second, since it contains n times the parallelo-

gram Abdc, and ABDC represents the space travelled over in

t seconds.

There will be no difficulty in the representation of a period

of time by a line, or of a distance by an area, if the student

bears in mind that periods of time and lengths of lines , although

existing absolutely, are only estimated by their ratios to certain

standard periods, and standard lengths, and they are therefore

determined whenever these ratios are given, which may be given

either directly in numbers or by the comparison of any magni-

tudes whatever ofthe same kind.

52. COR. 1 , 2. If bodies describe orbits under the action

of certain forces, and small forces, extraneous to those under the

action of which the orbits are described, be supposed to act upon

the bodies, the orbits are disturbed slightly, and the errors

spoken of are the linear disturbances of the bodies, at any time,

from the positions which they would have occupied at that time,

if the extraneous forces had not acted.

Thus, in calculating the motion of the Moon considered as

moving under the attraction of the Sun and Earth, it is conve-

nient to estimate the motion which she would have, if subjected

to the attraction of the Earth alone, and then to calculate what

would be the disturbing effect of the Sun upon this orbit.

53. If AB be a portion of an orbit described by a body in

any time, AC the portion of the orbit described when a disturb-

ing force is introduced, BCis " quam proxime" the space which

would have been described in the same time from rest by the
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action of the disturbing force alone. When the time is taken

small, but not indefinitely small, the expression, in the statement

of the corollaries, " approximately," is necessary for two rea-

sons ; for, in the first place, the position of the body in space is

not the same, at the end of any interval in the lapse of the time,

as if the body had moved from rest under the action of the dis-

turbing force alone, and therefore the magnitude of the force is

not the same generally either in direction or magnitude ; and, in

the second place, since the force is not generally uniform, the

variation according to the duplicate ratio of the times is not

exact, except in the limit.

But, when the times are taken very small, the variation of

direction and magnitude of the force may be neglected, as an

approximation to the true state of the case.

54. Application of the method of Lemma X to determine

the space described in a finite time from rest by a particle under

the action ofa constantforce.

In this case, since the acceleration is constant, the velocity

varies as the time.

Hence, the curve Ak is a straight line, because the ordinates

vary as the abscissæ.

Therefore, the space which is described in the time repre-

sented by AK is represented by the area of the triangle AKk,

and the space, which would be described uniformly in the same

time with the velocity acquired at the end of that time, is repre-

sented by the rectangle whose diagonal is Ak, or twice the area

of the triangle AKk ; therefore the space described in the

time t= Vt= ft, where V is the velocity at the end of the

time t, and ƒ the acceleration caused by the force in an unit

of time.

55. General geometrical representation of the space de-

scribed by a body in a finite time when it moves with a variable

velocity.

PROP. If a curve be found, such that the ordinate at each

point represents the velocity corresponding to a time represented

by the abscissa, then the space described by the body will be
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represented by the area bounded by the curve, the line of

abscissæ, and the ordinates corresponding to the commencement

and end of the time of motion.

Let OA, OB represent the times at the commencement and

end ofthe interval during which the motion of the body is to be

examined. Let OM be any other time, and let AC, MP, BD

P

A M N R

D

represent the velocity at the end of the times represented by

OA, OM, OB; CPD the curve which passes through the ex-

tremities of all such ordinates as MP.

Let AB be divided into any number of small portions , such

as MN; NQ the ordinate corresponding to ON. Complete the

parallelograms PMNq, QNMp, and suppose corresponding paral-

lelograms to be constructed on all the bases corresponding to

MN.

The body during the time represented by MN moves with

a velocity, which, if MN is taken small enough, is intermediate

in magnitude to the velocities represented by PM and QN, and

the space described during that time is intermediate in magni-

tude to the spaces which would have been described with uniform

velocity equal to those represented by PM and QN, or to the

spaces represented by the areas PN, QM.

Hence the whole space described in the interval of time

represented by AB is greater than that represented by the

inscribed series, and less than that by the circumscribed series

of parallelograms, which, by the Lemma II, are ultimately equal

to the area ACDB, when the number of portions into which

AB is divided is indefinitely increased , and their magnitudes

diminished ; therefore the proposition is proved.
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56. COR. 1. The velocity is the limit of the ratio of the

space to the time when the time is indefinitely diminished.

The velocity V at the time OM is represented by MP,

therefore, if T be the time represented by MN, VT : space

described in time T :: MP .MN: area PMNQ, but MP . MN

= area PMNq= area PMNQ, ultimately ; therefore VT= space

described in time T, ultimately. Whence the truth of the pro-

position.

57. COR. 2. The velocity is measured by the space which

would be described in an unit of time if the velocity remained

uniform during this time.

Let MR represent the unit of time . Complete the paral-

lelogram PMRr. Then PMRr represents the space described

in an unit of time, with the velocity at time OMcontinued uni-

form, and since MR is constant, therefore PMRr varies as PM;

therefore the velocity is properly represented by PMRr, and the

proposition is proved.

58. Geometrical representation of the velocity generated by a

finite and variable force in a given time.

PROP. Ifa curve be found such that the ordinate at each point

represents the accelerating effect of the force corresponding to

a time represented by the abscissa, then the velocity gene-

rated in a body in a given time, moving in the direction of

the force, will be represented by the area bounded by the

curve, the line of abscissæ , and the ordinates corresponding to

the commencement and end of the time considered.

The proof proceeds in a manner similar to that given in (55) .

The student can supply it, employing the same figure , in which

the ordinates now represent the accelerating effect of the force

at the times represented by the corresponding abscissæ, and ob-

serving that the motion of the body is accelerated during the

time represented by MN by a force whose accelerating effect is

intermediate in magnitude to those represented by PM and QN,

if MN is taken small enough, and the velocity generated is in-

termediate to those which would have been generated by uniform

forces equal to those whose accelerating effects are represented

by PM, QN, that is, to the velocities represented by the areas

PN, QM.

NEWT. G
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59. And, as before, the force at any time is measured by

the limit of the ratio of the velocity generated to the time in

which it is generated.

Also, the force at any time is measured by the velocity

which would be generated in an unit of time, if the force con-

tinued uniform during that time, and equal to the force at the

given time.

60. Geometrical representation of the square of the velocity

generated by a force, which acts upon a body moving in the direc-

tion ofthe force's action, when the force is described as depending

in any manner upon the distance from any fixed point in that

direction.

Let OAB be the line of motion of the body, O a fixed

point in this line, and when it arrives at a point M, let MP be

taken to represent the accelerating effect of the force acting

upon it.

P

P

ข

M N R

D

Draw a curve CPD whose ordinates shall represent the

accelerating effect of the force, for the different positions of the

body at the foot of the ordinates .

Let AB be the space traversed by the body, and let it be

divided into any number of small portions, of which suppose

MN one, and let QN be the ordinate at N, PMNq, QNMp

complete parallelograms .

If during the time occupied in describing MN the force

remained constant, the difference of the squares of the velocities

at M and N would be represented by 2MN . PM or 2MN . QN,

or by twice the parallelograms PN or QM, according as the

uniform force was that represented by PMor QN.
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Hence the difference of the squares of the velocities at M

and N is represented by an area lying between 2PN and 2QM,

if MN be sufficiently diminished ; hence it follows by reasoning

similar to the above that the difference of the squares of the

velocities at A and Bis represented by twice the area ACDB.

61. Hence we obtain another measure for the force cor-

responding to the position M. For the increase of (velocity)²

in MN is represented by 2 area PMNQ,

and PM= limit
PMNq

MN

=limit
PMNQ

MN
;

therefore the accelerating effect of the force at M is measured by

increase of the (velocity)² in MN
the limit of

2MN

Application to the determination of the motion of a particle,

under various circumstances.

1. To find the space travelled over in a given time t" by a

body moving with a velocity which varies as the square ofthe time

from the beginning ofthe motion.

Let AB represent the time, and let BC perpendicular to AB

represent the velocity at the end of that time, i. e . let BC repre-

sent the space which would be described in the next unit of

time, if the body, instead of moving with constantly increasing

velocity, were to move with uniform velocity for an unit of time.

from the end of the time represented by AB.

D

P

R

P U

A M

Let AB be divided into any number of equal portions of

which MN is one, and let MP, NQ represent the velocities at

the end of the times represented by AM, AN.

Then, since MP : NQ : BC : AM : AN : AB²,

G 2
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a parabola, whose vertex is at A can be described, touching AB

and passing through P, Q, C and the extremities of all ordinates

described on MP.

Hence, the space described in the time represented by AB is

represented by the parabolic area ABC or AB. BC.

And ifp be the velocity at the end of 1 " , pť² that at the end

of t" ; then pt.t = pts is the space described in the time t.

Or, we can further illustrate the meaning of Art. 51 , by em-

ploying another method of representing the space.

Join AC, and let pM, qN be the ordinates, and suppose

the figure to revolve round AB, pM generates a circle which

xpM² AM', therefore this circle may be taken to represent the

velocity at the time corresponding to AM, and the solid gene-

rated by pqNM represents the space described in time MN.

The whole space is therefore represented by the cone generated

by ABC, or AB.π BC², which gives the same result as

before.

2. To find the space described from rest at any time by a

particle under the action of a force, whose accelerating effect

varies as the mthpower ofthe time.

This problem is more simply solved by applying directly

the method of summation, since in order to find the area of

the curve, constructed as in Lemma X., we should eventually

be obliged to have recourse to that method.

Let the time t be divided into n equal intervals , and let the

acceleration by the force at the time t be pt" ; hence, at the com-

rt

mencement of the (~ + 1) th interval, the acceleration will bep ( )",

and, if the force be continued uniform during this interval, the

t

velocity generated will be p ()" , and if the same arrange-

ment be made during each interval the whole velocity generated

1m + 2m + ... + n

will be
m+1

n

- 1m

-pt +1, hence, when the number of

intervals is increased indefinitely, it follows, by the reasoning of

Lemma II. that the velocity at the time t =
ptm+1

m + 1
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In the same manner, if the velocity at the commencement of

each interval, were continued uniform during the interval, the

space described could be shewn to be

1m+1 + 2m+¹ + ... + n − 1 ] m+1

in +2
n

-
ptm+2

;

m + 1

whence, proceeding to the limit, the space described in the

time t =

3
.

ptm+2

(m + 1) (m + 2)

To find the velocity acquired from rest, when a body is

acted on by an attractive force whose accelerating effect varies

as the distance from a fixed point.

Let S be the fixed point, A the point from which the motion

commences, and let AB, perpendicular to SA, represent the

accelerating effect of the force at A.

B

མ

B

N M A

Join SB, and from any point M, let MP, perpendicular to

SA, meet SB in P; then, since PM : BA :: SM : SA, PM

represents the accelerating effect of the force at M, and, by Art.

61, (velocity)² at M is represented by 2 × area BAMP.

Let V be the velocity which the force , continued uniform

from A, would have generated in the space AS; describe the

circle AQR with centre S, and produce MP to Q.

(velocity) at M : V² :: 2 area BAMP : AS.AB

:: ASAB- ASMP : ASAB

:: SA - SM2 : SA2

:: QM² : SA²;

therefore, velocity at M: V :: QM : SA,

or, velocity at M= V sin QSA.
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If μ. SA be the measure of the accelerating effect of the

force at A, since V is represented by the rectangle AS, AB,

V² = μ . AS²; therefore the velocity at M= √μ . QM.

4. Time of describing a given space from rest under the

action ofa force varying as the distance from a fixed point.

Making the same construction as before, let t = time from

Mto N; therefore t x velocity at M= MN, ultimately.

Now, MN : QR :: QM : QS, ultimately

:: Q
M : SA

:: velocity at M : V

tx velocity at M : tV;

.. tV= QR,

and Vx time from A to Marc AQ ;

hence, time in AM=
arc 4Q 1

× circular measure of QSA.
-

√μ.AS √μ

5. Space described by a body moving in a medium, in

which the resistance varies as the velocity, when no other force

acts on the body, varies as the velocity destroyed.

Let the time AK be divided into equal portions AB, BC,

CD, ...; and let Aa' , Bb' , ... be the velocities at the beginning of

times, the space in time AK is represented by the area a'AKk'.

a

་

A B C D

d

a

K

Suppose the force of resistance to be constant throughout the

intervals of time AB, BC, ... and equal to the amount at the

commencement of each, and let Aa, Bb, ... be the measures of

those forces ;
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.. Aa : Bb : :: Aa' : Bb' :...... .........

and the velocity destroyed is represented by the limit of the sum

of the parallelograms aB, bC, ...... or the area aAKk ;

therefore, velocity destroyed in time AK : space described

:aAKk a' AKk' : Aa Aa' :: resistance : the velocity,

hence , since the resistance varies as the velocity, the velocity

destroyed varies as the space described.

6. A particle slides down the smooth arc of a cycloid,

whose axis is vertical, and vertex downwards, to find the time

of an oscillation .

Let AB be the vertical axis of the cycloidal arc APL, L the

point from which the particle begins to move, PQ a small arc of

its path, LR, PM, QNperpendicular to AB.

B

R

P
M

N

=Let v velocity at P, and T= time in falling from B to A ;

therefore v² = 2g . RM, and 2AB=gT”. (1) .

But, by the properties of the cycloid, (see Appendix II.)

AL' 4AB . AR,
=

AP²=4AB . AM;

. AL -AP2 = 4AB. RM. (2) .

Take Al, Ap, Aq, on the tangent at A respectively equal

to AL, AP, AQ, and let pt, qu perpendicular to Al be ordinates

to a circle whose center is A and radius Al ;

.. AL² — AP²= Al² — Ap² =pt² ;
-
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and, by (1) , v²T² =4AB.RM; .. pt = vT by (2) ;

.. v²T²= 2gT²RM;

=4AB.RM=pť², by (2) ,

hence, pt would be described with uniform velocity v in time T,

and, ultimately, P.Q is described with velocity v ;

hence, time in PQ : T:: QP: pt

:: pq :pt

tu At ultimately ;

hence, time in PQ = T × circular measure of ▲ tAu ultimately ;

and time in LA = Tx

π π

2

-

2√24B;by
; by (1),

hence, the time of an oscillation =

2AB

9

The result shews that the cycloid is a tautochronous curve,

that is, the time is the same from whatever point the particle's

motion commences.

7. A particle is subject to the action of aforce, whose accele-

rating effect varies as the distance from a fixed point, in the

direction of which it acts, the particle is projected from a given

point in a direction perpendicular to the direction ofthe force at

that point, to find the path described by the particle.

Let the force tend to C, and let A be the point of projection ,

P the position of the particle at any time.

a

B

n
P

P'

m b MA

Let CB, perpendicular to CA, be the distance in which a

particle would be reduced to rest, if projected from C with the

velocity of projection.
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Describe circles Bb, Aa having the common center C, and

draw CpP' cutting the circles in p and P', and draw pn perpen-

dicular to CB, and pm, P'Mto CA.

Referring to Prob. 4, it will be seen that two particles start-

ing respectively from rest at A, and with the velocity of projec-

tion at C, under the action of the same force, would arrive

simultaneously at Mand n, since the time in both cases is pro-

portional to the angle P'CA.

But the particle in the proposed problem is acted on at P by

a force which is represented by PC, whose accelerating effect

parallel to AC and CB is represented by MC and PM, there-

fore the acceleration in AC is the same as that of the particle

supposed to move in AC from rest, and the retardation parallel

to BC the same as that of the particle in CB, projected from C.

Therefore P is in the intersection of пр and MP',

and PM : P'M :: pm : P'M

:: Cp : CP

:: CB: CA;

therefore the required path of the particle is an ellipse whose

semiaxes are CA and CB.

COR. 1. If μ . CP is the accelerating effect of the force at P,

and V the velocity of projection , V² = µ . CB².

Also, area ACP∞ area ACP'

∞ angle ACP'

∞ time from A to P,

or the area swept out by the radius vector is proportional to the

time.

COR. 2. Also (velocity)' at P = sum of the squares of the

velocities of the particles at M and n

= µ . P'M² + µ.pn² = µ . CD²,

where CD is the semidiameter conjugate to CP.
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VII.

1. If the square of the velocity of a body be proportional to

the space described from rest, prove that the accelerating force is

constant.

2. At what point of the proof of the Lemma X. is it assumed

that the body starts from rest ?

3. State the proposition by which Lemma X. is replaced, when

the body, instead of starting from rest, commences its motion with a

given velocity.

4. How may the acceleration be measured at any time by

reference to the velocity curve which is employed in the proof of

the Lemma.

5. Two points move from rest, in such a manner that the ratio

of the times, in which the same uniform acceleration would generate

their respective velocities at those times, is constant. Shew that

their respective accelerations, at any times bearing that ratio, are

equal.

6. If a body move from rest under the action of a force, which

varies as the square of the time from the beginning of the motion,

shew that the velocity at any time varies as the cube of the time,

and the space described as the fourth power of the time.

7. If the velocity after a time t from rest be equal to a (2t + t³),

what will be the shape of the curve in the figure, and the space

described in any time ?

8. When a body moves from rest at A under the action of a force

which varies as the square of the distance from S(= µ.SM³ at M), the

square of the velocity at M =

2μ

3
-(SA³—SM³).

9. If the curve employed in the proof of the Lemma be an arc

of a parabola, the axis of which is perpendicular to the straight line

on which the time is measured, prove that the accelerating effect of

the force will vary as the distance from the axis of the parabola.

10. If a body be acted on from rest by a repulsive force which

varies as the distance from a fixed point, find the velocity when the

body arrives at any position.

11. A particle is placed in the line joining two centers of

attracting force, the accelerating effect of which varies as the dis-

tance, find the time in which the particle oscillates.

12. Two forces reside at S, one attractive and whose accelerating

effect on a particle varies as the distance from S, and the other con-

stant and repulsive ; prove that, if a particle be placed at S it will

move until it be brought to rest at a point which is double the

distance from S, at which it would rest in equilibrium under the

action of the forces.
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LEMMA XI.

The vanishing subtenses of the angle of contact in all curves

which have finite curvature at the point of contact, are

ultimately in the duplicate ratio of the chords of the con-

terminous arcs.

Case 1. Let AB be the arc of a curve, AD its tangent at

A, BD the subtense of the angle of contact BAD perpen-

dicular to the tangent, ABthe chord of the arc.

Let AG, BG be drawn perpendicular to the tangent ADand

the chord AB respectively, meeting in G; then let the

A a D

Дъ

C
B

I

g

1
9

points D, B, G move towards the points d, b, g, and let I

be the point of ultimate intersection of the lines BG, AG,

when the points B, D move up to A.

It is evident that the distance GI may be made less than any

assigned distance by diminishing AB.

But since the angles ABD and GAB are equal, and also the

right angles BDA, ABG, the triangles ABD, GAB are

similar ; therefore BD : AB :: AB : AG, or BD.AG=AB²,

and similarly, bd . Ag = Ab² ;

:. AB² : Ab² = BD.AG : bd.Ag;
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therefore the ratio AB² : Ab² is a ratio compounded of the

ratios ofBD bd, and AG : Ag.:

But, since GI may be made less than any assigned length, the

ratio AG Ag may be made to differ from a ratio of

equality less than by any assigned difference ; therefore the

ratio AB Ab may be made to differ from the ratio

BD bd less than by any assigned difference.

Hence, by Lemma I., the ultimate ratio AB² : Ab² is the same

as the ultimate ratio of BD : bd. Q. E.D.

Case 2. Let now the subtenses BD', bd' be inclined at any

given angle to the tangent ; then, by similar triangles

D'BD, d'bd,

but ultimately,

BD' : bd' : BD bd,

BD bd AB² : Ab² ;

therefore ultimately, BD' : bd' :: AB² : Ab³,

Q. E. D.

Case 3. And although the angle D' be not a given angle,

ifBD' converges to a given point, or is drawn according to

any other [fixed] law, [by which the angle D' remains finite,

sinceBD' is a subtense, ] still , the angles D', d', constructed

by this law common to both, continually approach to

equality and become nearer than by any assigned differ-

ence, and will be therefore ultimately equal, by Lemma I.,

and hence BD', bď , are ultimately in the same ratio as

before. Q. E. D.

COR. 1. Hence, since the tangents AD, Ad, the arcs AB, Ab,

and their sines BC, bc, become ultimately equal to the

chords AB, Ab ; their squares also will be ultimately as the

subtenses BD, bd.

COR. 2. The squares of the same lines are also ultimately

as the sagittæ of the arcs, which bisect the chords, and

converge to a given point : for those sagittæ are as the sub-

tenses BD, bd.
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COR. 3. And therefore the sagittæ are in the duplicate ratio

of the times in which a body describes the arcs with a given

velocity.

COR. 4. The rectilinear triangles ADB, Adb are ultimately

in the triplicate ratio of the sides AD, Ad, and in the ses-

quiplicate ratio of the sides DB, db , since these triangles

are in the ratio compounded of AD : DB and Ad : db. So

also the triangles ABC, Abc are ultimately in the triplicate

ratio of the sides BC, bc. The sesquiplicate ratio is the

subduplicate of the triplicate, which is compounded of the

simple and the subduplicate ratios .

COR. 5. And, since DB, db are ultimately parallel and in

the duplicate ratio of AD, Ad, [ therefore, this being a

property of a parabola, ] at every point at which a curve

has finite curvature an arc of a parabola can be drawn

which ultimately coincides with the curve ; and the curvi-

linear areas ADB, Adb will be ultimately two thirds of

the rectilinear triangles ADB, Adb : and the segments AB,

Ab the third parts of the same triangles. And hence these

areas and these segments will be in the triplicate ratio

as well of the tangents AD, Ad as of the chords and arcs

AB, Ab.

SCHOLIUM,

But, in all these propositions, we suppose the angle of contact

to be neither infinitely greater nor infinitely less than the

angles of contact which circles have with their tangents ;

that is, that the curvature at the point A is neither infi-

nitely great nor infinitely small, in other words, that the

distance AI is of finite magnitude.

For DB might be taken proportional to AD³, in which case

no circle could be drawn through the point A between the

tangent AD and the curve AB, and the angle of contact

would be infinitely less than that of any circle.

And, similarly, if different curves be drawn in which DB

varies successively as AD , AD , AD , &c., a series of

angles of contact will be presented which may be con-

tinued to an infinite number, of which each will be
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infinitely less than the preceding. And if curves be drawn

in which DB varies as AD , AD , AD , AD , AD , &c.,

another infinite series of angles of contact will be obtained,

of which the first is of the same kind as in the circle, the

second infinitely greater, and each infinitely greater than

the preceding. But, moreover, between any two of these

angles, an infinite series of other angles of contact can be

inserted , of which each may be infinitely greater or in-

finitely less than any preceding ; for example, if between

the limits AD and AD³ there be inserted AD , AD59

AD", AD³, AD , AD , AD" , AD" , AD" , &c. And again,

between any two angles of this series there can be in-

serted a new series of intermediate angles differing from

one another by infinite intervals. Nor does the nature of

the case admit any limit.

13 11

The propositions which have been demonstrated concerning

curved lines, and the included areas, are easily applied to

curved surfaces and solid contents.

These Lemmas have been premised for the sake of escap-

ing from the tedious demonstrations by the method of re-

ductio ad absurdum, employed by the old geometers. The

demonstrations are certainly rendered more concise, by the

method of indivisibles ; but, as there is a harshness in the

hypothesis of indivisibles, and on that account it is con-

sidered to be an imperfect geometrical method ; it has

been preferred to make the demonstrations of the follow-

ing propositions depend on the ultimate sums and ratios

of vanishing quantities and on the prime sums and ratios

of nascent quantities, i . e. on the limits of sums and ratios ;

and therefore to premise demonstrations of those limits

as concise as possible. By these demonstrations the same

results are deducible as by the method of indivisibles ;

and we may employ the principles which have been

established with greater safety. Consequently, if, in

what follows, quantities should be treated of as if they

consisted of particles, [indefinitely small parts, ] or small

curve lines should be employed as straight lines, it would

not be intended to convey the idea of indivisible, but of
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vanishing divisible quantities, not that of sums and ratios

of determinate parts, but of the limits of sums and

ratios : and it must be remembered that the force of such

demonstrations rests on the method exhibited in the pre-

ceding Lemmas.

An objection is made, that there can be no ultimate pro-

portion of vanishing quantities ; inasmuch as before they

have vanished the proportion is not ultimate, and when

they have vanished, it does not exist. But by the same

argument it could be maintained that there could be no

ultimate velocity of a body arriving at a certain position

at which its motion ceases ; for that this velocity, before

the body arrives at that position, is not the ultimate velo-

city ; and that, when it arrives there, there is no velocity.

And the answer is easy : that, by the ultimate velocity is to

be understood that, when the body is moving, neither be-

fore it reaches the last position, and the motion ceases, nor

after it has reached it, but at the instant at which it arrives ;

i. e. the very velocity with which it arrives at the last posi-

tion, and with which the motion ceases.

"

And similarly, by the ultimate ratio of vanishing quantities is

to be understood the ratio of the quantities, not before

they vanish, nor after, but with which they vanish. Like-

wise also, the prime ratio of nascent quantities is the ratio

with which they begin to exist. And a prime or ultimate

sum is that with which it begins to be increased or ceases

to be diminished.

There is a limit, which the velocity can attain at the end

of the motion, but cannot surpass. This is the ultimate

velocity. And the like can be stated of the limit of all

quantities and proportions commencing or ceasing to exist.

And since this limit is certain and definite, to determine

it is strictly a geometrical problem. And all geometrical

propositions may be legitimately employed in determining

and demonstrating other propositions which are themselves

geometrical.

It may also be argued, that if the ultimate ratios of vanishing
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quantities be given, the ultimate magnitudes will also be

given, and thus every quantity will consist of indivisibles,

contrary to what Euclid has demonstrated of incommensur-

able quantities, in his tenth book of the Elements.

But this objection rests on a false hypothesis. Those ulti-

mate ratios with which quantities vanish, are not actually

ratios of ultimate quantities, but limits to which the ratios

of quantities decreasing without limit are continually ap-

proaching ; and which they can approach nearer than by

any given difference, but which they can never surpass, nor

reach before the quantities are indefinitely diminished.

The argument will be understood more clearly in the case of

infinitely great quantities. If two quantities, of which the

difference is given, be increased infinitely, their ultimate

ratio will be given, namely, a ratio of equality, yet in this

case the ultimate or greatest quantities of which that is the

ratio will not be given.

In what follows, therefore, if at any time, for the sake of

facility of conception, the expressions indefinitely small, or

vanishing, or ultimate be used concerning quantities, care

must be taken not to understand thereby quantities deter-

minate in magnitude, but to conceive them in all cases

quantities to be diminished without limit.

Curvature of Curves.

62. The curvature of a curve at any point is greater or less.

as the amount of deflection from the tangent at that point, in the

immediate neighbourhood of the point, is greater or less .

Two curves have the same curvature at two points , taken

one in each, if at equal distances from the points of contact, in

the immediate neighbourhood of those points, they have the same

deflection from the tangents at those points .

63. An exact geometrical test of equality of curvature may

be obtained as follows :

If AB, ab be two curves which have the same curvature at
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A, a respectively, draw the tangents AC, ac and take AC = ac.

A a

B

Draw subtenses BC, be inclined at equal angles to the tangents.

If BC and bc were equal , for all equal values of AC, ac, the

curves would be equal and similar. If BC : bc be ultimately

a ratio of equality, when AC, ac are taken indefinitely small,

the curves will have the same deflection from the tangents in the

immediate neighbourhood of A, a, or the curves will have the

same curvature at those points .

If the chords AB, ab be drawn, it is an immediate conse-

quence that the ultimate ratio of the angles BAC, bac is a ratio

of equality. These angles are called the angles ofcontact.

Hence, curves have the same curvature at two points, taken

one in each , if, equal tangents being drawn at those points , and

subtenses inclined at any equal angles to the tangents, the limit-

ing ratio of the subtenses is a ratio of equality, or, if the limiting

ratio of the angles of contact be a ratio of equality.

64. The curvature of one curve is infinitely greater or infi-

nitely less than that of another if the limiting ratio of the sub-

tense of the first to that of the second be infinitely great or infi-

nitely small.

65. The ratio of the curvature of one 'curve to that of

another at two points, or of the curvature of the same curve at

two different points, is the limiting ratio of the subtenses drawn

from the extremities of equal tangents and inclined at equal an-

gles to the tangents.

66. The curvature of a curve is said to be finite, at any

point, when the ratio of the curvature at that point to that of any

circle whose radius is finite, is a finite ratio.

67. The curvature ofa circle is the same at every point.

Let A, a be any two points on a circle, AC, ac equal tan-

gents at A, a, CB, cb subtenses perpendicular to the tangents ,

NEWT. H
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OD, Od perpendicular to the subtenses produced ; therefore

CD = cd, each being equal to the radius, and BD = bd ; hence

BC=bc always, and therefore ultimately, when the arcs are in-

definitely diminished, BC : bc is a ratio of equality ;

d

B

a

C

therefore the circle has the same curvature at any two points.

68. In different circles the curvature varies inversely as

the radii.

In the last figure, produce CB to the circumference in E.

Then, A C²= CB. CE, also , if A'C ' be a tangent to another circle,

and A'C' be taken equal to AC, and the same construction be

made, A'C' C'B' . C'E' ;
=

.. CB. CE C'B' . C'E' ;
=

and CB : C'B' :: C'E' : CE;

and, ultimately, when AC, A'C' are indefinitely diminished,

CE=2A0,

: . CB : C'B' :: A'O' : AO, ultimately,

or the curvatures are inversely proportional to the radii.

Measure of Curvature.

69. The curvature of a circle is the same at every point ;

the curvature of different circles varies inversely as the diameters

of the circles ; and a circle can be constructed of any degree of

finite curvature by varying the magnitude of the diameter.
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Hence, a circle can always be found, whose curvature at any

point is equal to that of a curve at a fixed point.

The curvature of a curve at any point is therefore completely

determined, when the diameter of the circle is found, which has

the same curvature as the curve at the given point.

The diameter of the circle, which has the same curvature as

the curve at a given point, is called the diameter of curvature of

the curve at that point.

The chord of the circle , drawn in any direction , is called the

chord ofcurvature in that direction.

The circle itself is called the circle of curvature, and is the

circle which has the same tangent as the curve at any point, and

also the same curvature.

70. Any other curve might have been chosen to establish a

standard measure of finite curvature ; but, since no curve but the

circle has the same curvature at every point, it would then have

been necessary, after selecting the curve, to specify the point at

which the curvature might form the measure of curvature.

Thus, ifthe standard curve were a parabola, we must choose

the curvature of the parabola at the vertex or at the extremity

of the latus rectum or at some determinate point, by which to

obtain the measure.

The inconvenience is obvious.

General Properties of the Circle of Curvature.

71. If a circle be drawn touching a curve at a given point,

and cutting it at a second point, as the second point approaches

indefinitely near the point of contact, the circle assumes a limit-

ing magnitude, and evidently satisfies the condition that it has

the same curvature as the curve at that point.

72. Since a tangent at any point is the limiting position of

a side of a polygon terminated in that point, and inscribed in the

curve, when the number of sides is increased indefinitely : so the

circle of curvature at any point is the limiting circle which passes

through the extremities of two consecutive sides of the polygon

either terminated in that point or commencing from that point.

H 2
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73. No circle can be drawn whose circumference lies between

a curve and its circle of curvature, in the neighbourhood of the

point at which the circle ofcurvature is drawn.

For, let AQ be the arc of the curve, Aq of the circle of

curvature ; and let, if possible, another circle be drawn, of which

the arc AS lies between the curve and circle, and having there-

fore the same tangent AR at A, and let RQ, the subtense per-

pendicular to the tangent, cut the circles in S, q.

A Ꭱ

Q

S

q

Then SR: qR is ultimately in the inverse ratio of the diameters

of the circles ; therefore SR is ultimately unequal to qR ; but,

since qR and QR are ultimately in a ratio of equality, SR

which is intermediate in magnitude is ultimately equal to either,

which is absurd ; therefore no circle, &c.

This proposition corresponds to Euclid , III , Prop. XVI.

74. The circle ofcurvature generally cuts the curve.

For the curvature of the curve at different points taken

along the curve continually increases or continually diminishes ,

until it arrives at a maximum or minimum value.

If therefore the circle of curvature be drawn at any point,

on the side on which the curvature is increasing, as we proceed

from the point, the curve lies within the circle, and on the other

side, on which the curvature is diminishing, the curve lies without

the circle ; which proves the proposition in the general position

of the point.

For the particular case, in which the point is at a position

of maximum or minimum curvature, as at the extremities of the

axes of an ellipse, if the curvature be a maximum the curvature

at adjacent points on either side is less than that of the circle of

curvature at the point under consideration , therefore the circle

lies entirely within the curve on both sides near the point of

maximum curvature ; and similarly, it lies without the curve at

points of minimum curvature.
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We can illustrate this by reference to the polygon inscribed

in the curve ; see the figure in the following page.

If, in a curve, equal chords AB, BC, CD, DE, ... be placed

in order, generally the angles ABC, BCD, CDE, ... increase or

decrease, commencing from any point, which property of the

polygon has in the curvilinear limit, when the chords are dimi-

nished indefinitely, the corresponding property, that the curvature

decreases or increases continually.

Suppose the angles are increasing from B, in the circle de-

scribed about BCD, let BA', DE' be placed equal to BC or CD.

Then, BA' and DE' lie on opposite sides of the perimeter of

the polygon, whence, if we proceed to the limit, the circle of

curvature at a point in the middle of increasing curvature cuts

the curve.

If the angles ABC and DEF be each less than the angles

BCD, CDE, supposed equal , the curvature decreases and then

increases, and the circle about BCD passes through E, and BA,

EF lie within the circle, and proceeding to the limit, the circle

of curvature lies without the curve, near the point of minimum

curvature.

Evolute of a Curve.

75. If the circles of curvature be drawn at every point of

a curve, the centers of those circles lie in a curve which is called

the evolute of the proposed curve.

Properties ofthe Evolute.

76. The extremity of a string unwrapped from the evolute of

a curve traces out the curve.

Let ABCDE be any equilateral polygon, and let a'a, b'b, c'c,

d'd be drawn perpendicular to the sides from the middle points

a', b' , &c. , these intersect in the angular points abcd ... of an-

other polygon.

..:If a string were wrapped round a'abcd the extremity a'

would as the string was unwrapped pass through the points

a'b'c'd'.

Let now the number of sides of the polygon be increased and

the magnitude diminished indefinitely.
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...The points a'b'c' . are ultimately in the curve which is the

limit of the polygon, and since a, b, c, ... are the centers of the

circles described about ABC, BCD, ... a, b, c, ... are ultimately

the centers of the circles of curvature at a'b'c' and the curve
....

A B

A

D

ď

E

E

which is the limit of the polygon abcd ... is the evolute of the

curve a'b'c' ... , and the property proved for the polygons is true

for the limits of the polygons, therefore the extremity of the

string unwrapped from the evolute traces the curve of which it

is the evolute. This property gives rise to the name ofevolute.

The curves formed by the unwrapping of the string from the

evolute are called involutes.

77. The tangent to the evolute of a curve is a normal to the

curve.

Since b'b is ultimately the tangent to the evolute and is

perpendicular to BC which is ultimately the tangent to the

curve a'b'c' therefore the tangent to the evolute is a normal

to the curve.

Propositions on Diameters and Chords of Curvature.

78. If a subtense be drawn from the extremity of an arc

of finite curvature, in any direction, the chord of curvature

parallel to that direction is the limit of the third proportional to

the subtense and the arc.

Let PQ, Pq be arcs of a curve and its circle of curvature

at P, PRthe common tangent, RQq the direction of a common.

subtense, meeting the circle in U.
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Draw the chord PV parallel to RQ. Therefore, since

Rq.RU PR², RU is the third proportional to Rq and PR.

P R

But, ultimately, when PQ is indefinitely diminished ,

RU= PV, and PR = PQ, by Lemma VII. also , Rq = RQ by

the property of the circle of curvature.

Therefore PV is the limit of the third proportional to RQ

and PQ.

COR. The diameter of curvature is the limit of the third

proportional to the subtense perpendicular to the tangent and

the arc.

79. The chord of curvature at any point of a parabola

drawn through the focus, and in the direction of a diameter, is

equal to four times the focal distance ofthat point.

Let AP be a parabola, P any point, RQ a subtense parallel

to the diameter PMx, QM the ordinate at Q, S the focus.

Then, by a property of the parabola, QM²=4SP.PM; therefore

4SP is a third proportional to PM and QM, i. e. to RQ

and PR;

Ꭱ

R

P -XC
M

Y

A. K
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Hence, 4SP is the limit of the third proportional to the

subtense QR and the arc PQ, and is therefore equal to the chord

of curvature at Pin direction of the diameter.

And, since PS, PM are equally inclined to the tangents at

P, the chords in those directions are equal ; therefore, the chord

of curvature through S is four times the focal distance SP.

80. One fourth of the diameter of curvature at any point

ofaparabola is a third proportional to the perpendicular from

the focus on the tangent at that point, and the focal distance of

that point.

For, draw SY, QR' perpendicular to PR, and let PI be the

diameter of curvature at P.

Then PI : PQ :: PQ : QR' ultimately ;

: . PI : PR :: PR : QR' ultimately.

But, PR 4SP:: QR : PR;

.. PI: 4SP:: QR : QR' ultimately,

:: SP : SY,

since the triangles SYP, QR'R are similar ;

.. 4SP² PI. SY;
=

therefore PI is a third proportional to SY and SP.

81.
The chord of curvature at any point of an ellipse drawn

through the center of the ellipse, is a third proportional to the

diameter through that point and the diameter conjugate to it.

Let P be any point in an ellipse, PCG the diameter, DCD'

conjugate to it, Q any point near P, QR a subtense parallel

B

M

A

S K H

T
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to CP, QM an ordinate parallel to DC, PV the chord of curva-

ture drawn through C.

Then, PV. QR = P Q² = QM², ultimately,

and QM PM.MG : CD2 : CP²;

.. PV. QR : QR.MG :: CD² : CP², ultimately.

.. PV : 2CP :: CD² : CP², ultimately :

.. PV. CP: CP2 : 2CD2 : CP2,

and PV. CP= 2CD2;

or 2CP : 2CD :: 2CD : PV;

or PV is a third proportional to PG and DCD'.

82. The chord of curvature at any point through the focus

is a third proportional to the major axis, and the diameter

parallel to the tangent at that point.

Draw the focal distance SP cutting the diameter DCD'

in E, let PV' be the chord of curvature through S, and draw

the subtense QR' parallel to SP.

Then PV' : PV :: QR : QR' , ultimately,

:: CP : PE, by similar triangles ;

.. PV' . PE= PV. CP= 2CD² ;

.. PV ' is a third proportional to 2PE and DCD' ,

and 2PE is equal to the major axis.

Similarly for the other focus H.

83. The diameter of curvature at any point, is a thirdpro-

portional to twice the perpendicularfrom the point on the diameter

parallel to the tangent and that diameter.

Draw QR" perpendicular to the tangent, and PF perpendi-

cular to DCD' , and let PI be the diameter of curvature.

PI: PV :: QR : QR" ,

:: CP : PF;

.. PI.PFPV. CP- 2CD2;

.. PI is a third proportional to 2PF and DCD'.

84. Since the chord of curvature in any direction varies

inversely as the subtense QR, drawn in that direction, it is easily

seen that, if PL be the portion of the chord intercepted between
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Pand DCD', the chord of curvature at P in the direction PL is

the third proportional to 2PL and DCD'.

85. The propositions concerning the chords and diameter

of curvature of an ellipse may be proved in the same words for

the hyperbola, employing the following figure.

H C

E

R

R

E

F M

AS K

86. The radius of curvature at any point of a conic section

is to the normal in the duplicate ratio of the normal to the semi-

latus rectum .

Let PK be the normal, PO the radius of curvature, L the

semi-latus rectum .

I. For the parabola,

PO 2SP :: SP : SY,

:: SY : SA,

.. PO 2SY :: SP : SA,

:: 4SP. SA Ľ²;

and PK 28Y, or PK2 =4SP. SA;=

.. PO PK :: PK² : L².

II. For the ellipse or hyperbola,

PO.PF CD , and PK. PF= BC²;
=

.. PO : PK :: CD² : BC²,

:: AC : PF";
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and AC PF :: AC . PK : PF.PK= BC²= L . AC,

:: PK : L;

.. PO : PK :: PK² : L².

87. To find the chord common to a conic section and the

circle ofcurvature at any point.

If a circle intersect a conic section in four points, as PQUR,

and these points be joined in pairs by two lines , these lines

α

will be equally inclined to the axis of the conic section. Thus,

in the conic section , PQ, RU are equally inclined to the axis.

For, if UR, QP intersect in O, OR . OU= OP. OQ, hence

the diameters of the ellipse parallel to UR, QP are equal, and

therefore equally inclined to the axis .

Let Q and R move up to and ultimately coincide with P, then

the intersecting circle becomes the circle of curvature at P, and

PQ is in the direction PT of the tangent, ultimately, and RU

assumes the position of the chord common to the conic section

and the circle of curvature at P. Hence, if PV be drawn at an

equal inclination with PT to the axis, PV will be the common.

chord required.

And if VI be drawn perpendicular to PVmeeting the normal

at P in I, PI is the diameter of curvature at P.

88. To find the radius of curvature of a curve defined by

the relation between the radius vector and the perpendicular from

the pole on the tangent.
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Let PY, PP'Y ' be consecutive sides of a polygon inscribed

in a curve, SY, SY' perpendicular on these sides ; PO, P'O per-

pendicular to the same sides intersecting in O, P'U perpen-

dicular SP, and SY, PY ' intersect in W.

Describing a semicircle PYY'S on SP

< YPWYSY' = POP',▲

and WYP= OP'P;

therefore the triangles POP', WPY are similar.

P

P
W

ΟΙ

.. PO : PP' :: PW : YW;

also PP' : SP:: PU : PY' , by similar triangles P'UP, SY'P ;

therefore, since PW= PY' ultimately,

PO SP :: PU : YW

:: SP ~ SP' : SY~ SY', ultimately.

Also, if PV be the chord of curvature through S,

PV 2PO : SY : SP;

.. PV : 2SY : SP~ SP' : SY- SY', ultimately.

89. Two tangents AT, BT are drawn at the extremities of

an arc AB, to prove that AT is ultimately equal to BT, when AB

is indefinitely diminished.

Draw TCUVin any direction making a finite angle with the

tangents, and meeting the circles of curvature at A and B in UV.

Then since the circle of curvature at A is the limit of the circle

which passes through C and has the tangent AT, and similarly

for that at B, we have ultimately,
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TA TB : TC . TU : TC . TV,

and TU= TV, ultimately ; .. TA = TB, ultimately.

T

C

Ꮴ

COR. Ifthe subtense BD be drawn

AT+ TB= AB= AD, ultimately ;

therefore, Tis ultimately the point of bisection of AD.

90. To find the radius and chord of curvature through the

pole, at any point ofan equiangular spiral.

Let SP, SQ be radii drawn to two points P and Q, near to

one another, let the tangents PR, QR at P and Q intersect in R,

and let the normals PO, QO intersect in O ; join OR, SR.



110 NEWTON.

Then, since angles SQR, SPR are equal to two right angles ,

and each of the angles OQR, OPR is a right angle , the circle

which passes through P, R, and Q will also pass through S

and O, and OR will be its diameter ; therefore OSR is a

right angle.

Hence, proceeding to the limit , O is the center of the circle of

curvature at P, and OSP is a right angle.

Therefore OP is the radius of curvature, and 2SP is the

chord of curvature through the pole.

If a be the angle of the spiral, OP = SP cosec a.

91. The following is an illustration of Art. 88 .

Since SY SY' :: SP : SP',

SY: SP SY-SY' : SP~ SP',

:: 2SY: chord of curvature atP, byArt. 88 ;

therefore the chord of curvature at Pthrough S = 2SP.

92. To find the radius and vertical chord of curvature of

a catenary.

Let PQ be a small arc of a catenary, RSPT, QStangents at

Pand Q, PM, QN ordinates, TOMthe directrix .

T

R

P

M N G

By the triangle of forces QSR (see Appendix II) .

Tension at P weight of PQ :: SR : QR ;
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.. PM: PQ :: SR : QR,

:: PQ QR ultimately ;

therefore 2PM is the limit of the third proportional to QR and

PQ, and is, therefore, the vertical chord of curvature.

Hence, the normal PG is equal to the radius of curvature.

Also, PG : PM :: PT : TM,

:: tension at P : tension at A,

:: PM: A0;

hence the radius of curvature at P is a third proportional to

AO and PM.

93. To find the chord of curvature at any point of the

cardioid, through the focus.

Reverting to the construction used in Art. 44 , it is easily

seen that SY being perpendicular to PT, the triangles PSY,

pBm, and CBp are similar ;

T

Q

RD

B n m C

.. SY : SP :: Bm : Bp,

:: Bp BC;

.. SY : SP :: SP : BC,

and by Article 88 , we have, ultimately,

chord of curvature : 2SY : SP~ SP' : SY- SY',

and (SY - SY "²) BC = SP³ — SP'³ ;

. ultimately SP~ SP' : SY ~ SY' :: 2SY.BC : 3SP²,

:: 2SP : 3SY;

4

therefore the chord of curvature through ‚S = 1 . SP.
3'
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1 .

VIII.

Prove that the focal distance of the point in the parabola at

which the curvature is one-eighth of that at the vertex is equal to

the latus rectum .

2. Prove that the diameter of curvature at the vertex of the

major axis of an ellipse is equal to the latus rectum : and shew that

the ratio of the curvatures at the extremities of the axes is that of

the cubes of the axes.

3. Apply the property that the radius of curvature at any point

of an ellipse is to the normal in the duplicate ratio of the normal to

the semi-latus rectum, to shew that the radius of curvature at the

extremity of the major axis is equal to the semi-latus rectum.

4. Find for what point of an ellipse the circle of curvature

passes through the other extremity of the diameter at that point,

shew that the distance of this point from the center is the side of the

square of which AB is the diagonal.

5. In a rectangular hyperbola, the diameter of curvature at any

point, and the chords of curvature through the focus and center are

in geometrical progression.

6. Prove that at a point P in an ellipse for which the minor

axis is a mean proportional between the radius of curvature and

the normal, PC = AC - BC. Shew that this is impossible unless

AC 2BC.

7. If the radius of curvature for an ellipse at P is twice the

normal, prove that CP= CS.

If moreover AC = 2BC, prove that CP- 3PM.

8. Prove that the distance of the center of curvature, at any

point of a parabola, from the directrix is three times that of the

point.

9. SK drawn parallel to the tangent at a point P of a parabola

meets any chord of curvature PV in K, prove that PV . PK= 4SP².

10. Prove that the chord of curvature through the vertex A of a

parabola 2PY :: 2PY : AP, Y being the intersection of the tan-

gents at P and A.

11. If the circle of curvature at a point P of a parabola passes

through the other extremity of the focal chord through P, and the

tangent at P meet the axis in T, prove that the triangle PST will

be equilateral.

12. If Pp be any chord of an ellipse, PT, pT tangents at P

and p, shew that the curvatures at P and p are as the cubes of pT

and PT.

13. Shew that the sum of the chords of curvature through a

focus of an ellipse at the extremities of conjugate diameters is con-
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stant. Also, if p, σ be the radii of curvature at those points, prove

that po is constant.

14. Prove that the portion of the diameter of curvature, inter-

cepted between the line joining the extremities of the two chords of

curvature through the foci of an ellipse, and the point of contact

2BC2

P, is

PF

15. A hyperbola touches an ellipse, having a pair of conjugate

diameters of the ellipse for its asymptotes. Prove that the curves

have the same curvature at the point of contact .

16.
Prove

that the rectangle
, contained

by the chords
of curva-

ture parallel
to the asymptotes

at any point
of a hyperbola

, varies
as

the fourth
power

of the conjugate

diameter
.

17. EF is a chord of a given circle passing through a given

point S; construct the ellipse of which E is one point, S one focus,

and the given circle the circle of curvature to the ellipse at E.

18. A circle is a circle of curvature, at a fixed point in the

circumference, to an ellipse, one focus of which lies on the circle,

shew that the locus of the other focus is also a circle.

19. AB is the chord of a conic, and also the diameter of curva-

ture at A, prove that the locus of the center of the conic is a

rectangular hyperbola, whose transverse axis is coincident in direction

with AB, and equal in length to
AB.

20. If x, y be the co-ordinates of a point P of a curve OP

passing through the origin 0, the diameters of curvature at O is

x²+y²

x sin a ~y cos a
ultimately, a being the inclination of the tangent at

O to the line of abscissæ.

Hence shew that, if the equation of a curve be

y² + 2ay - 2ax = 0,

the radius of curvature at the origin is 2√2.a.

21. Shew that the evolute of an equiangular spiral is a similar

spiral, and also that the extremities of the diameters of curvature

lie in a similar spiral.

22. Prove that the chord of curvature at any point of the

Lemniscate drawn through the focus is two-thirds of the radius

vector.

Observations on the Lemma.

94. In the proof of Lemma XI, AI is the limit of the

third proportional to BD and AB, hence it is the diameter of

curvature to the curve at A.

NEWT. I
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95. For an example of a law according to which in Case 3 ,

the directions of the subtenses may be determined, we may sup-

pose that they always pass through a point given in position , at

a finite distance from A, or, that they always touch a given

curve; but it must be observed that the case, in which they touch

a curve which has the same tangent AD at A, is excluded,

since in this case the angles D', d' do not in the limit remain

finite, a property required in the name subtense .

96. COR. 2. If a line be drawn from the middle point of

an arc of a curve, making a finite angle with the chord, the

part intercepted between the chord and the arc is called the

sagitta of the arc.

97. COR. 5. The parabola mentioned in this corollary is a

parabola of curvature at that point ; for, since DB is taken in

any given direction , the proportion BD : bd :: AD² : Ad² proves

that the curve is ultimately in the form of a parabola, and that,

therefore, the line through A drawn in the given direction is the

corresponding diameter of the parabola of curvature.

Hence, the axis of the parabola may be taken in any as-

signed direction .

If the subtenses be perpendicular to the tangent, the parabola

of curvature is the parabola whose curvature at the vertex deter-

mines the curvature of the curve , since the axis is perpendicular

to the tangent, and if 4AU (fig. page 117) be the third propor-

tional to the subtense and arc, the limiting position of U is the

focus of the parabola.

By means of this corollary, the proposition alluded to under

Lemma IX. Art. 48 , is established ; viz . that the ratio of the

areas which takes place of the duplicate ratio, obtained in that

Lemma, is the triplicate ratio of the same lines, when the line

AE, instead of cutting the tangent at a finite angle, coincides

with the tangent.

98. In order to shew the danger of falling into an error

by a careless employment of the propositions proved in the

first section, the following fallacious proof may be noticed of

the proposition, that if, in figure Art. 101 , BT be a tangent to
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a curve BC of finite curvature at the point B, and BT be taken

equal to the arc BC and CT be joined, CT is ultimately par-

allel to the normal at B. Join BC, then BT: CBis ultimately

a ratio of equality, by Lemma VII ; therefore CBT being an

isosceles triangle ultimately, CT is perpendicular to the line bi-

secting the angle CBT, and therefore to the tangent BT, since

BT and BC ultimately coincide with the bisecting line.

The fact is that Lemma VII. only allows us to assert that

BT and the chord BC differ by a quantity Tt which vanishes

compared with either of them, and therefore Tt may ∞ BC ;

but, by Lemma XI, CT BC2 ; hence Tt : CT may possibly

be a finite ratio, or CT may be ultimately inclined at any finite

angle to BT, at least as far as the reasoning given in the above

proof is concerned.

∞

99. The following is a rigid proof of the proposition stated

in the preceding article.

Let the tangent at C meet BT in D, and produce BT to

F, making DF= DC, in BT take BE the chord BC, and

join EC, TC, FC.

=

Since the arc BC is intermediate in magnitude between

BD+ DC and BC, therefore, BT being equal to arc BC, the

point Tlies always between E and F. But the triangles BCE,

BCF being both isosceles, each of the angles BEC, BFC is

ultimately a right angle, therefore the angle BTC, which is less

than BEC and greater than BFC, is also ultimately a right

angle.

Hence CT is ultimately parallel to the normal at B.

100. The sagitta of an arc is ultimately one quarter of the

subtense drawn at the extremity ofthe arc parallel to the sagitta.

Let the sagitta FE bisect the arc AB in E, and be pro-

duced to the tangent at A in G, and BD be a subtense parallel

to FE.

B

I 2
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Then, EG : BD :: AE² : AB², ultimately ; .. BD =4EG,

also BD FG :: AD : AG :: AB : AE, ultimately ;

.. BD=2FG4EG; hence FE= EG = 1BD, ultimately.

101. If BT be a tangent at B, AB, BC, equal chords of

a curve offinite curvature, drawn from B, and AB be produced

to c, making Bc = AB, and Cc be joined meeting BT in T, cT is

ultimately = CT, when the arcs AB, CB are diminished in-

definitely.

For, if AU be drawn parallel to CT, meeting the tangent

in U, CT : AU :: AB² : BC² ultimately,

U

A

B
T

therefore CT= AU ultimately ; hence, if BV be drawn parallel

to AC meeting Cc in V, TV vanishes compared with CT,

also, CVcV, therefore 2TV is the difference between CT and

cT, which vanishes compared with either of them, therefore

CT= cT ultimately.

102. Scholium. Let AB, AC be two curves, having a

common tangent AD at A, and let subtenses DB, DBC ofthe

D d

B

angles of contact be drawn from D at any point in the tangent

in the same direction, and let BD∞ AD", CD ∞ AD" in the

curves AB, AC respectively.

Draw dbc a common ordinate from a fixed point d, parallel

to DBC.

and

Then
AD : Adm :: BD : bd,

AD" : Ad" :: CD : cd,
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and if m be greater than n, n +r suppose,

AD" . AD" : Ad" . Ad" :: BD : bd ;

.. CD . AD : cd . Ad :: BD : bd

:: BD.AD : bd . AD" ;

.. CD : BD :: cd . Ad" :: bd . AD",

and since b, c, d are fixed , and AD vanishes in the limit, there-

fore CD is infinitely greater than BD ; also, since the angles of

contact, BAD, CAD, are ultimately proportional to BD, CD,

it follows that, if in two curves the subtenses vary according

to different powers of the arcs or tangents, the angle of contact

of that curve in which the index of the power is the least is

infinitely greater than the angle of contact of the other.

Illustrations.

1. To construct for the axis and focus of the parabola of

curvaturefor any direction ofthe parallel subtenses.

A d C D

B

T

Let ABbe the curve of finite curvature, BD, bd parallel sub-

tenses, draw AE parallel to either.

Draw AU perpendicular to AD, and AS making angle

UAS UAE; then since AE is a diameter of the parabola,

AS is in the direction of the focus.

=

Also, if44S be taken a third proportional to BD and AD,

the limiting position of S will be the focus of the parabola.

2. To find the locus of S when BD is inclined at different

angles to AD.

Let BC be perpendicular to AD, and AUbe chosen so that

4AU AC AC : BC,
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the limiting position of U is the focus of the parabola whose

curvature at the vertex is the same as that of the curve at A,

and AD : 4AS :: BD : AD ultimately :

therefore, since AD= AC ultimately,

AU : AS :: BD : BC,

and SAU ▲ DBC ;

hence, if we join SU, the triangles SAU, CBD are similar,

and ASU BCD a right angle ;L = L =

therefore the locus of S is a circle on AU as diameter.

3. ABC is an arc offinite curvature, and is divided so that

AB : BC :: m : n, a constant ratio.

Join AB, AC, BC, and shew that, ultimately,

segment ABC :: 3 ::( + )AABC

For by Cor. 5. Lemma XI .

seg
AB : seg ABC :: AB³ : ABÇ³

3

:: m³ : (m + n)³

3

seg BC seg ABC :: n³ : (m + n)³ ;

.. seg AB+seg BC : seg ABC :: m³+ n³ : (m + n)³,

and AABC seg ABC-seg AB- seg BC;
=

.. ▲ABC seg ABC :: 3 (m²n + mn³) : (m + n)³

IX.

(m + n)²
:: 3 :

mn

2
n

:: 3 : +

1. Shew that the directrices of all parabolas touching a curve of

finite curvature at any given point, and having the same curvature at

that point as the curve, pass through a fixed point.

2. Determine a parabola of curvature in magnitude and position

for any point in a circle, when the subtenses are inclined at 45° to

the tangent.

3. Find the focus of the parabola of curvature, whose vertex

is at that of a cycloid, and the locus of the foci of all parabolas which

have the same tangent and curvature at that point.
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4. If AEB be the chord, ADthe tangent, and BD the subtense,

for an arc ACB of finite curvature at A, find the limit of the ratio

area ACBE area ACBD, as B approaches A.

5. An arc of continuous curvature PQR is bisected in Q, PT is

the tangent at P; prove that, ultimately, as R approaches P, the angle

RPTis bisected by PQ.

6. If BC be the chord of an arc BAC of continued curvature,

A, D the middle points of the arc and chord, does AD pass through

the center of curvature ultimately, when the arc is indefinitely

diminished ?

7. A, B, C are three points in a curve of finite curvature :

when A and C move up to B, and ultimately coincide with it, the

circle circumscribing the triangle formed by the tangents at A, B,

and C will ultimately cut the normal at B in a point which is at a

distance from B equal to half the radius of curvature there, and

the triangle formed by those tangents is ultimately half of the

triangle ABC.

8. Two curves of finite curvature touch each other at the

point P, and from T, a fixed point in the common tangent, a secant

is drawn cutting one curve in the points A, B, and the other in

A', B', and the lines PA, PA', PB, PB' are drawn ; prove that, if the

secant move up to and ultimately coincide with the tangent, the

angles APA', BPB' will be ultimately in a ratio of equality.

9. In a segment of an arc of finite curvature a pentagon is

inscribed, one side of which is the chord of the arc, and the remain-

ing sides are equal. Shew that the limiting ratio of the areas of the

pentagon and segment, when the chord moves up towards the tangent

at one extremity, is 15 : 16.

10. APQ is a curve of continued and finite curvature, P and Q

are two points in it, whose abscissæ along the normal at A are

always in the ratio m : 1 , and from B, C two points in the normal,

straight lines BPb, CPc, BQb', CQc' are drawn to meet the tangent

at A. Shew that when P and Q move up to A, the areas of the

triangles bPc, b'Qc' are ultimately in the ratio m³ : 1 .

11. AB is an arc of finite curvature at A, and a point P is

taken such that AP : PB is in the constant ratio ofm : n. Tangents

at A and B intersect the tangent at P in T and R, and AB is joined .

Prove that the ultimate ratio of the area ATRB to the segment

APB, as B moves up to 4, is 3 (m² + mn + n³) : 2 (m +n)³.

12. PQ is the chord of a closed curve cutting off an arc of

constant length, the tangents at P and Q meet in T, a line bisecting

the angle PTQ meets PQ in R ; if R' be taken in PQ the same dis-

tance from P and Q that R is from and P, prove that R is the

intersection of the chord PQ with the consecutive chord P'Q'.



SECTION II.

Centripetal Forces.

PROP. I. THEOREM I.

When a body revolves in an orbit, subject to the action of

forces tending to a fixed point, the areas, which it de-

scribes by radii drawn to the fixed center offorce, are in

one fixed plane, and are proportional to the times of

describing them.

Let the time be divided into equal parts, and in the first

interval let the body describe the straight line AB with

F

f

E

d

2

B

uniform velocity, being acted on by no force. In the

second interval it would, if no force acted, proceed to

c in AB produced, describing Bc equal to AB : so that

the equal areas ASB, BSc described by radii AS, BS,

CS drawn to the center S, would be completed in equal

intervals.
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But, when the body arrives at B, let a centripetal force tend-

ing to S act upon it by a single instantaneous impulse, and

cause the body to deviate from the direction Bc, and to

proceed in the direction BC.

Let c be drawn parallel to BS, meeting BC in C, then,

at the end of the second interval, the body will be found

at C, in the same plane with the triangle ASB, in which

Bc and CC are drawn. Join SC; and the triangle SBC,

between parallels SB, Cc, will be equal to the triangle

SBC, and therefore also to the triangle SAB.

In like manner, if the centripetal force act upon the body

successively at C, D, E, &c. causing the body to describe

in the successive intervals of time the straight lines CD,

DE, EF, &c. these will all lie in the same plane ; and the

triangle SCD will be equal to the triangle SBC, and SDE

to SCD, and SEF to SDE.

Therefore equal areas are described in the same fixed plane

in equal intervals ; and, componendo, the sums of any

number of areas SADS, SAFS, are to each other as the

times of describing them.

Let now the number of these triangles be increased, and

their breadth diminished indefinitely ; then their perimeter

ADF will be ultimately a curved line ; and the instanta-

neous forces will become ultimately a centripetal force,

by the action of which the body is continually deflected

from the tangent to this curve, and which will act con-

tinuously ; and the areas SADS, SAFS, being always

proportional to the times of describing them, will be so

in this case. Q.E.D.

COR. 1. The velocity of a body attracted towards a fixed

center in a non-resisting medium, is reciprocally propor-

tional to the perpendicular dropped from that center

upon the tangent to the orbit.

For the velocity at the points A, B, C, D, E are as the

bases AB, BC, CD, DE, EF of equal triangles, and since

the triangles are equal these bases are reciprocally pro-

portional to the perpendiculars from S let fall upon them.

[And the same is true in the limit, in which case the
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bases are in the direction of tangents to the curvilinear

limit, therefore the velocity, &c.]

COR. 2. If on chords AB, BC of two arcs described in

equal successive times in a non-resisting medium by the

same body the parallelogram ABCV be completed, and

the diagonal BV of this parallelogram be produced in

both directions in that position which it assumes ulti-

mately when those arcs are diminished indefinitely, it will

pass through the center of force.

COR. 3. If, on AB, BC and on DE, EF chords of arcs

described in a non-resisting medium in equal times, the

parallelograms ABCV, DEFZ be completed ; the forces

at B and E are to one another in the ultimate ratio of

the diagonals BV, EZ, when the arcs are indefinitely

diminished.

For the velocities of the body represented by BC, EFin

the polygon, are compounded of the velocities repre-

sented by Bc, BV and Ef, EZ; and those represented

by BV, EZ, which are equal to cC, fF, in the de-

monstration of the proposition were generated by the

impulses of the centripetal force at B and E, and are thus

proportional to those impulses. [And the same is true

in the limit, in which case the ultimate ratio of the

impulses at any two points is the ratio of the continuous

forces at those points. ]

COR. 4. The forces by which any bodies moving in non-

resisting media are deflected from rectilinear motion

into curved orbits, are to one another as those sagittæ

of arcs described in equal times, which converge to the

center of force and bisect the chords, when those arcs

are indefinitely diminished.

For the diagonals of the parallelograms ABCV, DEFZ

bisect each other, and these sagittæ are halves of the

diagonals BV, EZ when the arcs are indefinitely di-

minished. [And the same is true whether ABC and

DEFbe parts of the same or of different orbits described

by bodies of equal mass, if the arcs be described in

equal times.]
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COR. 5. And therefore the accelerating effects of the same

forces are to that of the force of gravity as those sagittæ

are to vertical sagittæ of the parabolic arcs which projectiles

describe in the same time.

COR. 6. All the same conclusions obtain, by the Second Law

of Motion, when the planes, in which the bodies move

together with the centers of force which are situated in

those planes, are not at rest, but are moving uniformly and

parallel to themselves.

The statement of the proposition in the original Latin is ,

"Areas, quas corpora in gyros acta radiis ad immobile cen-

trum virium ductis describunt, et in planis immobilibus

consistere, et esse temporibus proportionales."

Observations on the Proposition.

103. In all cases of motion of bodies, it is of great importance

for the student to distinguish between the forces themselves

under the action of which the bodies may be moving, and the

effects which these forces produce.

It is only by an examination of the motion of a body that we

are able to infer that it is , or is not, acted on by any force ; if we

find that the body is moving with uniform velocity in a straight

line, we infer that it is, during such motion, acted upon by no

force, or that the forces which are acting upon it are in equi-

librium ; if we find that there is any change of direction or velo-

city, gradual or abrupt, we infer that the body is moving under

the action of some force or forces ; if the change be gradual, we

infer that such forces are finite, by which we mean that the

forces require a finite time to produce a finite change whether of

direction or velocity ; if, on the contrary, the change be abrupt,

we infer that the forces are what are called impulsive, that is ,

such as produce a finite change in an instant.

Since then, in order to make any inference with respect to

the forces supposed to act, a clear conception of the motion of
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a body must be first attained, it becomes necessary for the

student to be able to describe the motion of a particle of matter

as he would that of a point, independently of the causes of such

motion.

In doing this he must give a geometrical description of the

line traced by the point either in a plane or in space, and then

he must describe the rate, uniform or variable, with which this

line is traversed.

He may then proceed to attribute any change of direction or

velocity to the action of forces upon the particle, whose motion

he has been examining.

104. In accordance with this method of separating the geo-

metry of the motion from the causes of the deviations, the first

proposition would be stated in such a manner as the following :

"When a point moves in a curve, in such a manner that the

accelerations at every point are in the direction of a fixed point,

the areas, which it describes by radii drawn to the fixed point to

which the accelerations tend, are in one fixed plane, and are pro-

portional to the times of describing them."

And, generally, if the words force and body, employed by

Newton, be replaced by acceleration and point, the resulting

statements will be in accordance with this geometrical method

of description . It will then be easy to use such terms in the

proofs, as will not imply, in the manner of expression, the action

of force ; thus, instead of saying " let a centripetal force tending

to S act upon the body by a single instantaneous impulse, " we

may use the words, " let a finite velocity be communicated to the

point in the direction of S."

105. It should be carefully observed, that, before proceeding

to the limit, it is proved that any polygonal areas SADS,

SAFS, are proportional to the times of description of their

perimeters ; so that ultimately these areas become finite curvi-

linear areas , described in finite times.

106. In proceeding to the ultimate state of the hypothesis, it

is concluded readily from Lemmas II, and III, that the curvi-

linear areas are the limits of the polygons ; but a greater

difficulty arises in the transition from the discontinuous motion
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under the action of instantaneous impulsive forces to the con-

tinuous motion under the action of a continuous force tending

to S. For, in the curvilinear path of the body which is the limit

of the perimeter of the polygon , the direction of the motion at

the angular points of the polygon is different, and also the

deflection from the direction of motion is twice as great in the

polygon as it is in the curve.

Now, although we may assume that the curvilinear limit of

the perimeter of the polygon may be described under the action

of some force, is that force the same which is the limit of the

series of impulses ?

The centripetal force supposed to act with a simple in-

stantaneous impulse , " impulsu unico et magno, " is supposed to

generate a finite velocity at once, which effect a finite force can-

not produce.

If, instead of this imaginary impulse, we suppose a force

finite, but very great, and acting for a very short time, the

effect upon the figure would be to round off the angular points

of the polygon.

The transition from the impulses to the continuous force, in

the ultimate form of the hypothesis, must be considered as

axiomatic , like the ultimate equality of the ratio of the finite arc

to the perimeter of the inscribed polygon.

107. We can, however, shew that if the curvilinear limit of

the polygon be described under the action of some continuous

force tending to S, the effect of this force, estimated by the quan-

tity of motion generated in the interval between the impulses , is

ultimately the same as that generated by the impulse.

Consider first the geometrical properties of the limit of the

polygonal perimeter .

Let BT, CUbe tangents at B, C, to the curvilinear limit,

and let Cc intersect BT in T (fig. page 120) .

Now, since Cc ultimately vanishes compared with Bc, BC

and Bc or AB and BC are ultimately in a ratio of equality, and Cc

is ultimately bisected by BT (Art. 101 ) ; also, CU= BU= UT,

ultimately (Art. 89) .

Consider next, the effects produced by the different kinds of

force which act in the two cases.
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In the polygonal path, the impulsive force at B generates

a velocity with which the body describes Cc in the time t, in

which AB or BC is described, the measure of the effect of the

Cc

force is therefore the velocity t

In the curvilinear path, the deflection from the direction BT

at B, in the same time t, is TC, by means of the continuous

action of finite forces, and if we suppose the force ultimately

uniform in magnitude and direction , the measure of the ac-

celerating effect of the force is and the velocity generated

in that time is

2TC

t2

t =•

Cc

t

2TC

t²
"

Hence the effects of the finite and impulsive forces measured

by the quantity of motion produced are the same.

108. We can also shew that a continuous force, which gene-

rates the same quantity of motion as the impulse at B in the

time from B to C, would cause the body on arriving at C to

move in the direction of the tangent to the curvilinear limit of

the perimeter.

For the velocity due to the action of the finite force at the

end of time t being ultimately in the direction TC, and that

2TC.

t

BT 2TU

in the direction BT being ; therefore TC, UT re-

t t

present the velocities in those directions ; therefore UC is the

direction of motion at C, that is, the body moves in the direction.

of the tangent at C.

109. COR. 1. The corollary may be proved directly from

the proposition, for the proportionality of the areas to the times

of describing them is true if the force suddenly cease to act, in

which case the body proceeds in the direction of the tangent.

Let V be the velocity at the point A, ASB the curvilinear

area described in any time T, AT V. T the space described

if the force cease to act.

=

Join ST and draw SY perpendicular to AT, then area

ASB triangle SAT= 1V. T × SY, also area ASB ∞ T;
=

1

.. V ∞

SY'
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Again, ifh be twice the area described in the unit of time

B

Y

employed in estimating the accelerating effect of the force tend-

ing to S and the velocity V of the body,

2. area SAB=hT;

.. h= V.SY.

By the use of this area the proportions employed by Newton

may be converted into equations , for the convenience of calcu-

lation.

If bodies move in curves for which the areas, described in

the same time, are not equal ,

√ ∞

h

SY'

110. COR. 4. The statement in this corollary requires modi-

fication, for, unless the forces be considered only with reference

to their accelerating effects , or unless the bodies be supposed of

equal mass, they will not be proportional to the sagittæ.

111. COR. 5. The object of this corollary is to determine

the numerical measure of the central force which governs the

motion of a body, when the circumstances of the motion are

known for it supplies us with the ratio of this force to the force

ofgravity on the same body at any place, the measure of which

can be determined by experiment.

Application ofthe Proposition.

112. PROP. When the force, instead of tending to a fixed

point, acts in parallel lines, the property ofthe motion enunciated
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in the proposition may be replaced by the property that the

resolved part of the space described perpendicular to the direc-

tion ofthe force is proportional to the times.

This is immediately deducible from the second law ofmotion,

since there is no force in the direction perpendicular to that of

the forces, and the velocity in that direction is uniform.

That this is the result of the properties in the proposition

may be shewn by removing the center of force to an infinite

distance.

A

B

M N

If S be the center of force , AMN perpendicular to SB, the

area ABCS is proportional to the time of describing AC, and

the areas AMNS and ABCS are ultimately equal when S is

removed to an infinite distance in BMS, hence the triangle ASN

is proportional to the time, and therefore the base AN, which

varies as the triangle ASN, is also proportional to the time,

which therefore , since CN is ultimately perpendicular to AN,

proves the proposition .

113. PROP. If a body describe a curvilinear orbit about a

force tending constantly to a fixed point, the area described in a

given time will be unaltered, if the force be suddenly increased

or diminished, or if the body be acted on at any moment by an

impulsive force tending to that point.

For, if in the polygon the impulse at any point B be in-

creased or diminished by any force tending to or from S, the

only effect is to remove the vertex C of the triangle SBC to
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some other point in the line cC parallel to BS, hence the area

will be unaltered, and the argument which establishes the

equality of polygonal areas in a given time proceeds as before.

In the limit the curvilinear areas in a given time are un-

altered.

If at B the new force introduced be impulsive, the angle

ABC remains less than two right angles when we proceed to

the limit, and the parts of the curve cut one another at a finite

angle.

Hence, in any calculation made upon supposition of such

changes of force, the value of h (Art. 109) , will be the same

before and after the change of the force.

Apses.

114. DEF. In any orbit described under the action of a

force tending to a fixed center, a point at which the direction

of the motion is perpendicular to the central distance is called

an apse, the distance from the center is called an apsidal

distance, and the angle between consecutive apsidal distances

is called an apsidal angle.

Thus, in the ellipse about the center, the four extremities of

the axes are apses, there are two different apsidal distances,

and every apsidal angle is a right angle.

In the ellipse about a focus , the apses are at the greatest and

least distances, and the apsidal angle is two right angles.

115. In a central orbit described under the action offorces

tending to a fixed point, each apsidal distance divides the orbit

symmetrically, if the forces be always equal at equal distances.

It is easily shewn that, in any orbit described by a body

under the action of forces tending to a fixed point, the forces de-

pending only upon the distance , if a second body be projected

at any point with the velocity of the first in the opposite direc-

tion, it will proceed to describe the same orbit in the reverse

direction, under the action of the same forces.

For, let ABC be a portion of the polygon whose limit is

the curvilinear path of the body, and produce AB to c, and

CBto a, making Bc = AB, and Ba = CB.

NEWT.
K
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The impulse at B is measured by cC when the body de-

scribes ABC, and if the motion be reversed , the same impulse

at B would cause the body to move in BA, with the velocity

which it had in AB, since aA = c C. And the same is true

a

D

B
A

F

S

throughout the polygonal path, hence the assertion is true

for the whole path, described under the action of impulses which

are always the same at the same points, and therefore pro-

ceeding to the limit, the statement made for any orbit is proved.

Hence, since the forces are equal at equal distances on

both sides of the apse , the path of the body from an apse

being similar and equal to the path which would be described

if the velocity were reversed at the apse, is similar to the path

described in approaching the apse ; whence the proposition is

established.

116. There are only two different apsidal distances, and

all apsidal angles are equal.

For, after passing a second apse, the curve being symme-

trical on both sides, a third apse will be in such a position that

the apsidal distance is the same as for the first apse, and all the

apsidal angles are shewn similarly to be equal.

117. COR. Hence a central orbit can never re-enter unless

the ratio of the apsidal angle to a right angle be commensurable,

and if it be so the curve will always re-enter.

Illustrations.

1. If a body describe an ellipse under the action of a force

tending to one ofthe foci, the square ofthe velocity varies inversely

as the distance from that focus, and directly as the distance from

the other.
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The square of the velocity
∞

1

SY

∞ HZ2,

and HZ SY :: HP : SP;

.. HZ.SY : SY :: HP : SP,

SP

and HZ.SY= BC ; .. SY² ∞c

HP'

HP

and the (velocity)² - SP'

2. The velocity is greatest when the body is at the extremity

ofthe major axis which is nearest to the focus to which theforce

tends, and least at the other extremity.

For SY is the least in the first and greatest in the second

position.

3. The velocity at the extremities of the minor axis is a

geometric mean between the greatest and least velocities.

=
For at this point HZ BC, and at the extremities of the

major axis the values of HZ are Sa and SA,

and BC = SA. Sa.

4. In the equiangular spiral described under the action of a

force tending to the focus, the velocity ∞

For, SY SP.

1

SP '

5. Iftheforce tends to the center ofthe elliptic orbit described

by a body, the time between the extremities ofconjugate diameters

is constant.

For the area PCD is constant.

X.

1. If different bodies be projected with the same velocity from

a given point, all being attracted by forces tending to one fixed

point, shew that the areas described by the lines drawn from the

fixed points to the bodies are proportional to the sines of the angles

of projection.

K 2
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2. When a body describes a curvilinear orbit under the action

of a force tending to a fixed point, will the direction of motion or

the curvature of the orbit at any point be changed, if the force at

the point receive a finite change ?

3. From the center of a planet, a perpendicular is let fall

upon the plane of the ecliptic ; prove that the foot of this perpen-

dicular will move as if it were acted on by a force tending to the

sun's center.

4. A body moves in a parabola about a center of force in the

vertex, shew that the time of moving from any point to the vertex

varies as the cube of the distance of the point from the axis of the

parabola.

5. In a parabolic orbit described round a force tending to the

focus, shew that the velocity varies inversely as the normal at any

point. Shew also that the sum of the squares of the velocities at

the extremities of a focal chord is constant.

6. A body describes a parabola about a center of force in the

focus ; shew that its velocity at any point may be resolved into

two equal constant velocities, respectively perpendicular to the axis

and to the focal distance of the point.

7. If the velocity at any point of an ellipse described about

the center can be equal to the difference of the greatest and least

velocities the major axis must not be less than double of the minor.

8. If an ellipse be described under the action of a force tending

to the center, shew that the velocity varies directly as the diameter

conjugate to that which passes through the body ; also that the

sum of the squares of the velocities at the extremities of conjugate

diameters is constant.

9. In an ellipse described round a force tending to the focus,

compare the intervals of time between the extremities of the same

latus rectum, when AC = 2CS.

10. In the ellipse described about the focus S, ASHA' being the

major axis, time in AB : time in BA' :: π- 2e : π + 2e.

11. A body describes a parabola about the focus ; if the seg-

ments PS, Sp of the focal chord PSP be in the ratio n : 1 , prove

that the time of describing pA : time of describing AP

:: 3n + 1 : n³ (n + 3).

12. In an ellipse described about a focus, the time of moving

from the nearest focal distance to the extremity of the minor axis
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is m times that from the extremity of the minor axis to the greatest

focal distance ; find the eccentricity, and shew that, if there be

a small error in m, the corresponding error in the eccentricity varies

inversely as (1 +m)³.

13. If a body move in an ellipse under the action of a force

tending to the center, shew that the velocity at any point perpen-

dicular to either focal distance is constant ; and that the sum of

the squares of the velocities at the extremities of any pair of semi-

conjugate diameters resolved in any given direction is constant.

14. If a body move in an ellipse about the center, having given

any point P in the ellipse, determine geometrically the points

P1 , P2, P3 , &c ... so that the time in PP₁ , PP , PP ,... may each be
P32

1

equal toth of the periodic time. Also, shew that if the times
n

2 39in AP,, P,P,, P¸P¸, PB be equal, and v, v ,

ties at A, P , P , P, B respectively,21

2

20 vvbe the veloci-
19 29

2 (v, " + v¸³ + v¸³) = 3 (v² + v²²).1

2

2 3

39

15. If a body describe an ellipse under the action of a central

force tending to one of the foci, shew that the sum of the velocities

at the extremities of any chord parallel to the major axis varies

inversely as the diameter parallel to the direction of motion at those

points.

16. If the velocities at three points in an ellipse described by

a particle, the acceleration of which tends to the focus, be in

arithmetical progression, prove that the velocities at the opposite ex-

tremities of the diameters, passing through these points, are in

harmonical progression.

17. A particle describes an ellipse about a center of force in

one of the foci ; if lines be drawn always parallel to the direction

of motion at a distance from the center of force proportional to

the velocity of the particle, these lines will touch a similar ellipse.

18. A hyperbola is described under the action of a repulsive

force tending from the center, and at any point P of the curve,

PQ is taken along the tangent at P, proportional to the velocity at

P ; prove that the locus of Q is a similar hyperbola.

19. Prove that, in an equiangular spiral described by a body

about a force tending to the pole, the time in any arc varies

as the difference of the squares of the focal distance of the ex-

tremities.

20. Two particles revolve in the same direction in an oval

orbit round a centre of force S, which divides the axis unequally,

starting simultaneously from the extremities of a chord PQ, drawn
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through S. Prove that, when they first arrive in positions R, T

respectively, such that the angle RST is a minimum, the time from

R to the next apse will be an arithmetic mean between the times

from Pto the next apse, and to Q from the last apse.

21. Two equal particles are attached to the extremities of a string

of length 21, and lie in a smooth horizontal plane with the string

stretched, if the middle point of the string be drawn with uniform

velocity v in a direction perpendicular to the initial direction of the

string, shew that the path of each particle will be a cycloid, and that

Ιπ

the particles will meet after a time
2v

22. The velocity in a cardioid described about a force tend-

ing to the pole varies in the inverse sesquiplicate ratio of the

distance.

23. The velocity in the Lemniscate varies inversely as the cube

of the central distance, when a particle moves in the curve round

a force tending to the center.
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Every body, which moves in any curve line described in a

plane, and describes areas proportional to the times of de-

scribing them about a point either fixed or moving uni-

formly in a straight line, by radii drawn to that point,

is acted on by a centripetal force tending to the same

point.

Case 1. Let the time be divided into equal intervals, and,

in the first interval, let the body describe AB with uni-

form velocity, being acted on by no force ; in the second

interval it would, if no force acted, proceed to c in AB

produced, describing Bc equal to AB; and the triangles

ASB, BSc would be equal. But, when the body arrives

Z

d

CT

at B, let a force, acting upon it by a single impulse,

cause the body to describe BC in the second interval of

time, so that the triangle BSC is equal to the triangle

ASB, and therefore also to the triangle BSc ; therefore

BSC and BSc are between the same parallels, hence BS
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is parallel to cC, and therefore BS was the direction of the

impulse at B.

Similarly, if at C, D, ... the body be acted on by impulses

causing it to move in the sides CD, DE, ... of a polygon,

in the successive intervals, making the triangles CSD,

DSE, ... equal to ASB and BSC, the impulses can be

shewn to have been in the directions CS, DS ... Hence,

if any polygonal areas be described proportional to the

times of describing them, the impulses at the angular

points all tend to S.

The same is true if the number of intervals be increased

and their length diminished indefinitely, in which case

the series of impulses approximates to a continuous

force tending to S, and the polygons to curvilinear areas,

as their limits. Hence the proposition is true for a

fixed center.

Case 2. The proposition will also be true, if S be a point

which moves uniformly in a straight line, for, by the

second law of motion, the relative motion will be the same,

whether we suppose the plane to be at rest, or that it

moves together with the body which revolves and the

point S, uniformly in one direction.

COR. 1. In non-resisting media, if the areas are not pro-

portional to the times, the forces do not tend to the

point to which the radii are drawn, but deviate in conse-

quentiâ, i. e. in that direction towards which the motion

takes place, if the description of areas is accelerated ; but

if it be retarded, the deviation is in antecedentia.

COR. 2. And also in resisting media, if the description of

areas is accelerated, the directions of the forces deviate

from the point to which the radii are drawn in that direc-

tion towards which the motion takes place.

SCHOLIUM.

A body may be acted on by a centripetal force compounded

of several forces. In this case, the meaning of the pro-

position is, that that force, which is the resultant of all,
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tends to S. Moreover, if any force act continually in a

line perpendicular to the plane of the areas described,

this force will cause the body to deviate from the plane

of its motion, but will neither increase nor diminish the

amount of area described, and therefore must be neglect-

ed in the composition of the forces.

Observations on the Proposition.

118. The description of an arearound a point in motion may

be explained by the following construction for the relative orbit,

in the case of motion about a point which is itself moving uni-

formly in a straight line.

Let SS' be the line in which S moves uniformly and let the

body move from A to B in the same time as S moves from S

to S', and let P, o be simultaneous positions of the body and of S.

A

σ

P

P

Q

B
B'

S

If PP' be drawn equal and parallel to σS, and the same

construction be made for every point in the path of the body,

the curve AP'B' , which is the locus of P' , is the orbit which

the body would appear to describe to an observer at S, who

refers all the motion to the body.

"

This is clear, since SP' is equal and parallel to σP, and

therefore the distance of the body, and the direction in which it

is seen, is the same in the two cases.

If QQ' be corresponding points near P and P', and the force

at σ be supposed to act impulsively, the relative motion round o

will be unaltered if we apply to both P and σ velocities equal

to that of σ and in a contrary direction , but in this case σ will
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be reduced to rest and the velocity of P will be the velocity

relative to σ. Take PQ and oo ' , which are described in the

same time, to represent the velocities of P and σ, and let Qq be

equal and parallel to o'o, then Pq represents the velocity of P

relative to σ: and, since Q'q So' - o'o = P'P, P'Q' is equal

and parallel to Pq, and therefore the velocity in the orbit AB'

about S at rest, is equal to the relative velocity about S in

motion.

=

119. COR. 1. Reverting to the polygonal area, if the tri-

T

T

B

A

angle SBC' be greater than the triangle SAB, the impulse at B

is not in the direction BS, but BU, parallel to cC' , that is, if the

areas are not proportional to the times but are in an increasing

ratio, the direction of the force deviates towards the direction in

which the description of areas is accelerated : and vice versâ,

when the description is retarded.

120. COR. 2. The effect of a resisting medium is to retard

the motion, or, supposing it the limit of a series of impulses, we

must conceive an impulse at B, in the case of the polygon, in the

direction BA; if therefore the description of areas be accelerated ,

the impulse applied at B in the direction BU' must act still

further in consequentiâ than that in BU, in order that, with the

impulse corresponding to the resistance of the medium, it may

produce a resultant impulse in the direction of BU.

The effect of the resistance alone is to retard the description

of areas.

If the force act in consequentia, the resistance of this force
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and the resistance of the medium may act in the direction BS,

and the proportionality of the areas to the time be preserved.

121. PROP. Let ABCDE be any plane curve, S any point

in the plane, to shew that, generally, the curve can be described

under the action of a force tending to or from S, with finite velo-

city, the velocity at any given point being any given velocity.

For arcs AB, BC,.... can be measured from any point A,

along the curve, such that the areas SAB, SBC, ... are all equal,

D

B

E

and of any magnitude. Also a body can be made, by some force

to move along the curve with finite velocity, so as to describe the

arcs AB, BC, ... in equal times, unless the tangent to one of the

arcs, as DE, pass through S, in which case, if the arcs be indefi-

nitely diminished , DE : AB is not finite ultimately.

Hence by Prop. II. a body can move with finite velocity

under the action of some force tending to or from S, generally.

122. COR. 1. Since in making the motion of the body such

that it shall describe equal areas in equal times we are only con-

cerned with the ratio of the velocities, the velocity at any point

ΑA may be any given velocity.

123. Cor. 2. Or if we please we may suppose the force at

any point any given force ; for, in the case of the polygon, the

velocity generated by the impulse at B is to the velocity in AB

as cC to Bc, hence the impulse at B may be of any magnitude

if we choose the velocity in AB properly.



140 NEWTON.

124. COR. 3. The ratio of the velocities is the same at two

given points , for all forces tending to a given center , under the

action of which the curve can be described.

125. Cor. 4.

ellipse under the

Hence a body canHence a body can move throughout any

action of a centripetal force tending to the

center or focus, the force depending only on the distance , since in

these cases the curve is symmetrical on opposite sides of any

apse ; or about any point within the ellipse, if the forces do not

depend only on the distance, since no point within an ellipse lies

on any tangent .

126. COR. 5. In the case of a circle, S being an external

point, a body can move with finite velocity under the action of

a force tending to the point S, in the portion which is concave to

S, and from S, in that which is convex to S; but not from one

portion to the other.
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Every body, which describes areas proportional to the times

of describing them by radii drawn to the center ofanother

body which is moving in anymanner whatever, is acted on

by a force compounded of a centripetal force tending to

that other body, and of the whole accelerating force which

acts upon that other body.

Let the first body be L, the second T, T moves under the

action of some force P, L under the action of another

P

T

P

force F. At every instant apply to both bodies the force P

in the contrary direction to that in which it acts, as repre-

sented by the dotted arrows.

I will continue to describe about T, as before, areas propor-

tional to the times of describing them, and since there is

now no force acting on T, T is at rest or moves uniformly

in a straight line.

Therefore, (by Theor. 2) the resultant of the force F and the

force P applied to L tends to T.

Hence F is compounded of a centripetal force tending to T,

and ofa force equal to that which acts on T. Q. E. D.

COR. 1. Hence, if a body L describes areas proportional to

the times of describing them by radii drawn to another

body T ; and from the whole force which acts upon L,

whether a single force or compounded of several forces,
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be taken away the whole accelerating force which acts

upon the other body T; the whole remaining force,

which acts upon L, will tend to the other body T as a

center.

COR. 2. And, if these areas are very nearly proportional to

the times of describing them, the remaining force will tend

to the other body very nearly.

COR. 3. And conversely, if the remaining force tends very

nearly to the other body T, the areas will be very nearly

proportional to the times.

COR. 4. If the body L describes areas which are very far

from being proportional to the times of describing them,

by radii drawn to another body T ; and that other body

T is at rest, or moves uniformly in a straight line : then,

either there is no centripetal force tending to that other

body T, or such centripetal force is compounded with

the action of other very powerful forces, and the whole

force, compounded of all the forces, if there be many, is

directed towards some other center fixed or moving.

The same holds, when the other body moves in any manner

whatever, if the centripetal force spoken of be understood

to be that which remains after taking away the whole force

acting upon the other body T.

SCHOLIUM.

Since the equable description of areas is a guide to the center

to which that force tends, by which a body is principally

acted on, and by which it is deflected from rectilinear

motion, and retained in its orbit, we may, in what follows,

employ the equable description of areas as a guide to

the center, about which all curvilinear motion in free space

takes place.

Illustration.

127. As an illustration of the last propositions and their

corollaries, we may state some of the observed facts in the motion
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of the Moon, Earth, and Sun, and make the deductions corre-

sponding to them.

Suppose the Moon's orbit relative to the Earth to be nearly

eircular, and let ABCD be this orbit, E the Earth .

S A

D

M

B M₂

M3

C

1. The areas described by the radii drawn from the Moon

to the Earth are nearly proportional to the times of describing ;

hence the resultant force on the Moon tends nearly to E.

2. If ESthe line joining the centers of the Earth and Sun

meets the Moon's relative orbit about the Earth in A, C, and

DEB be perpendicular to ES, the description of areas is accele-

rated as the Moon moves from D to A and from B to C, and

retarded from A to B and from C to D ; hence the direction of

the resultant force on the Moon in the positions M₁, M₂, M¸ , M¸,

is in the directions of the arrows slightly inclined to the radii

drawn to E.

From these observed facts , we see that when the force, under

the action of which E moves, is applied to the Moon in the

contrary direction , the remaining force tends in the directions

of the arrows.

Bythe supposition that the Earth and Moon are acted on

by forces tending to the Sun, whose distance compared with EM

is very great, and that the differences of the forces on these

bodies are not very great, the circumstances of the description

of areas in the motion of the Moon are accounted for.
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The centripetal forces of equal bodies, which describe dif

ferent circles with uniform velocity, tend to the centers

of the circles, and are to each other as the squares of

arcs described in the same time, divided by the radii of

the circles.

The bodies move uniformly, therefore the arcs described

are proportional to the times of describing them ; and

the sectors of circles are proportional to the arcs on

which they stand, therefore the areas described by radii

drawn to the centers are proportional to the times of de-

scribing them ; hence, by Prop. II, the forces tend to the

centers of the circles.

Again, let AB, ab be small arcs described in equal times,

D

B

a d

с

S

L

E

G

9

AD, ad tangents at A, a, ACSG, acsg diameters through

A, a. Join AB, ab, and draw BC, be perpendicular to

AG, ag.

By similar triangles, AC : AB :: AB : AG,

:. AC. AG = (chord AB)² ;

:. AC ac ::

AG

(chord AB)² . (chord ab)²

ag
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But, ultimately, when the arcs AB, ab are indefinitely dimi-

nished, since AC, ac are sagittæ of the double of arcs AB,

ab, and are therefore, by Prop. I. Cor. 4, ultimately as the

forces at A and a, therefore ultimately,

force at A : force at a
(chord AB)²

AG

(chord ab)²

ag

(arc AB)² . (arc ab)²

AG
? by Lemma VII.

ag

Take AE, ae two arcs described in any equal finite times,

then AE : ae :: AB : ab, since the bodies move uniformly,

and this is also true in the limit ;

AE² ae²

therefore, force at A force at a :::

AS as

Q. E. D.

COR. 1. Since these arcs are proportional to the velocities

of the bodies, the centripetal forces will be in the ratio

compounded of the duplicate ratio of the velocities directly,

and the simple ratio of the radii inversely.

That is, if V, v be the velocities in the two circles, R, r the

radii, F, fthe centripetal forces,

AE ae : V : v ;

:. F : ƒ ::

V2 v²

R

COR. 2. And since the circumferences of the circles are de-

scribed in their periodic times, the velocities are in the

ratio compounded of the ratio of the radii directly and

the ratio of the periodic times inversely ; hence the cen-

tripetal forces are in the ratio compounded of the ratio of

the radii directly, and of the ratio of the squares of the

periodic times inversely.

IfP, p be the periodic times in the two circles respectively,

2πR Σπη R

V : v :: :
P Ρ P

22 Ꭱ r

:. F : ƒ ::

R r P
p

NEWT. L
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COR. 3. Hence, if the periodic times be equal, and therefore

the velocities proportional to the radii, the centripetal

forces will be as the radii ; and conversely.

If P = p, then Vv : Rr ;

V2 v2

:. F : ƒ :: :: R : r.

R γ

COR. 4. Also if the periodic times are in the subduplicate

ratio of the radii, the centripetal forces are equal.

That is, if P² p² :: R : r, then F=ƒ, by Cor. 2.

COR. 5. If the periodic times are as the radii, and therefore

the velocities equal, the centripetal forces are reciprocally

as the radii ; and conversely.

COR. 6. If the periodic times are in the sesquiplicate ratio

of the radii, and therefore the velocities reciprocally in

the subduplicate ratio of the radii, the centripetal forces

are reciprocally as the squares of the radii ; and con-

versely.

That is, if P² : p² :: R³ : r³,

R2 2.2 1

then V2 : v2 ::

P2p2 · p² R

V2 1 1

:. F:f :

Ꭱ R2 22

COR. 7. And, generally, if the periodic times vary as any

power R ofthe radius R, and, therefore, the velocity vary

inversely as the power R1 ; the centripetal force will vary

inversely as R2n-1 ; and conversely.

COR. 8. All the same proportions can be proved concern-

ing the times, velocities, and forces, by which bodies de-

scribe similar parts of any figures whatever, which are

similar and have centers of force similarly situated, if the

demonstrations be applied to those cases, uniform de-

scription of areas being substituted for uniform velocity,

and distances of the bodies from the centers offorce for

radii of the circles.
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Let AE, ae be similar arcs of similar curves described by

bodies about forces tending to similarly situated points

S, s ; and let AB, ab be small arcs described in equal times ;

E

BD

b d

aA

BD, bd subtenses parallel to SA, sa ; A V, av chords of cur-

vature at A, a, so that, by similar figures, we have

AV av : AS : as.

Then, force at A force at a DB : db, ultimately,

::

AB2 ab2 AB2 ab2

:
": ultimately ;::

AV av SA sa

and if V, v be the velocities at A, a, since AB, ab are

described in equal times,

AB : ab :: V : v, ultimately ;

ᏙᎸ v2

.. force at A : force at a ::

SA sa
,

corresponding to Cor. 1.

Again, if AB, ab be small similar arcs described in times

T, t, instead of being arcs described in equal times, and

P, p be the times of describing similar finite arcs AE, ae,

T: P : area ASB : area ASE

area asb area aset : p ;

. Tt P : p ;

and this, being true always, is true when AB, ab are in-

definitely diminished.

BD bd

Hence, F : f ::
T2 t2

ultimately,

SA sa

::

corresponding to Cor. 2.

P2
"

L 2
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COR. 9. It follows also from the same proposition, that the

arc, which a body, moving with uniform velocity in a circle

under the action of a given centripetal force, describes in

any time, is a mean proportional between the diameter of

the circle, and the space through which the body would

fall from rest under the action of the same force and in the

same time.

For, let AL be the space described from rest in the same

time as the arc AE, then since, if BD be perpendicular

to the tangent at A, BD is ultimately the space described

by the body, under the action of the force at A, in the

time in which the body describes the arc AB, and the

times are proportional to the arcs ;

:. AL BD :: AE : AB2 ;

:. AL.AG BD.AG AE² : AB² ;

and BD . AG = (chord AB)² = (arc AB)², ultimately ;

therefore AL.AG= AE ,

that is, AL AE AE AG.

Q. E. D.

SCHOLIUM.

The case of the sixth Corollary holds for the heavenly bodies,

and on that account the motion of bodies acted upon by a

centripetal force, which decreases in the duplicate ratio of

the distance from the center of force, is treated of more

fully in the following section.

Moreover, by the aid of the preceding proposition and its

corollaries, the proportion of a centripetal force to any

known force, such as gravity, can be obtained. For, if

a body revolve in a circle concentric with the earth by

the action of its own gravity, this gravity is its centripe-

tal force.

But, from the falling of heavy bodies, by Cor. 9, both the time

of one revolution and the arcs described in any given time

are determined.



PROP. IV. THEOREM IV. 149

In

And by propositions of this kind Huygens in his excellent

tract, De Horologio Oscillatorio, compared the force of

gravity with the centrifugal force of revolving bodies.

The preceding results may be proved in this manner.

any circle let a regular polygon be supposed to be de-

scribed of any number of sides. And if a body moving

with a given velocity along the sides of the polygon be

reflected by the circle at each of its angular points, the

force with which it impinges on the circle at each of the

reflections, will be proportional to the velocity ; and there-

fore the sum of the forces, in a given time, will vary as

the velocity and the number of the reflections conjointly.

But if the number of sides of the polygon be given, the

velocity varies as the space described in a given time, and

the number of reflections in a given time varies, in dif-

ferent circles, inversely as the radii of the circles, and, in

the same circle, directly as the velocity. Hence, the sum

of the forces exerted in a given time varies as the space

described in that time increased or diminished in the ratio

of that space to the radius of the circle ; that is, as the

square of that space divided by the radius, and therefore,

if the number of sides be diminished indefinitely so that

the polygon coincides with the circle, the sum of the

forces varies as the squares of the arc described in the

given time divided by the radius.

This is the centrifugal force by which the body presses

against the circle, and to this the opposite force is equal,

by which the circle continually repels the body towards

the center.

Symbolical representation of Areas, Lines, &c.

128. In the statement of the proposition the words " arcuum

quadrata applicata ad radios" in the text of Newton , is rendered

the squares of arcs divided by the radii. Such expressions

AB2

as

AG

may be regarded as representations of lines, (e. g. this
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expression denotes AC,) whose lengths are determined by such

constructions as the following :

To AG apply a rectangle whose area is that of the square on

AB, and let AC be the side adjacent to AG ; AC is thus

obtained by applying the square on AB to AG. The propriety

AB2

AG
of the symbol employed to represent a line AC, assumed

from algebra, is obvious, since the number of units of area in

the square on AB and in the rectangle whose sides are AG,

AC are the same, hence if m, n, r be the number of units of

2
m²

length in these lines m² = n × r, and r = —-

129. If symbols of this kind, viz.

N

AB2

"
AG

be used in the

same manner as a fraction, we may either treat them numerically,

considering AB² to represent the number of units of area con-

tained in the square on AB, and AG as the number of units of

length in AG, and thus apply the rules of Arithmetical Algebra ;

or, we may look upon AB as the absolute representation of an

AB2

area, and AG as that of a line, in which case has no mean-

AG

ing except by interpretation . In this interpretation we are

guided by the principles upon which Symbolical Algebra is ap-

plied to any science, the laws of operation by symbols being the

same in Arithmetical and Symbolical Algebra, and the symbols

being interpreted so that these laws are not contradicted . Thus

if, in the application to Geometry, the symbol A be supposed to

denote an area equal to that of a rectangle whose sides are re-

presented by a and b, the assumption that A =ab or ba supposes

that ab= ba ; hence, the laws remain the same as in Arithmetical

A

Algebra, and 4 = b ; so that the interpretation is legitimate,
a

A

α

that, if a rectangle be applied to a, whose area is A, denotes

the other side ofthe rectangle.
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Observations on the Proposition.

130. In the statement of the proposition the word ' equal'

has been inserted before ' bodies , ' in order to make the theorem

correct, whether we suppose the centripetal force to be estimated

with reference to the momentum or the velocity generated.

It would, perhaps, be better to state the proposition as

follows ; " the forces, under the action of which bodies describe

different circles with uniform velocity , are centripetal and tend

to the centers of the circles, and their accelerating effects are to

each other, &c. ," for it is not known, prior to the proof, that

the forces are centripetal.

131. CORS. 1 and 9. The first corollary asserts that the

centripetal forces or bodies moving in different circles vary

V2

as but the ninth shews that the accelerating effects of the

R

centripetal forces are in each circle equal to

V2

R

For, if V be the velocity, F the accelerating effect of the

force in any circle, T the time of describing any arc, VT is the

length of the arc, FT" is the space through which the body

would move under the action of the same force continued con-

stant, in the same time in which the arc is described , therefore

1FT² : VT :: VT : 2R ;

.. V²= FR.

132. Scholium . In uniform circular motion the centripetal

force is employed in counteracting the tendency of the body to

move in a straight line, which it would do, according to the first

law of motion, with the uniform velocity which it has at any

point of the circle, if the centripetal force were suddenly to cease.

to act . This tendency to recede is improperly called a centrifugal

force ; for the effect of a force being to accelerate or retard

the motion of a body, or to alter its direction , if the tendency

could properly be termed a force and the centripetal force which

counteracts it were removed, it would accelerate or retard the

motion of the body, or alter its direction, which it does not.
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The only sense in which the term centrifugal force can be

used with propriety as a force, is obtained by the consideration

of relative equilibrium , in which case, if the same centripetal

force acted on the body, the centrifugal force would keep it in

equilibrium, if the body were at rest, as it would appear to be

to an observer moving with it.

Thus, if a body be supported on the surface of the earth

supposed spherical, since the body describes a circle about the

axis of the earth with uniform velocity, the pressure of the sup-

port, the attraction tending to the center of the earth, and the

centrifugal force will be in statical equilibrium, the centrifugal

force being equal to that force which would cause the body to

describe the circle which it actually does describe.

133. In this case of circular motion the force is exerted

not in accelerating or retarding the motion, but in changing its

direction.

Thus, referring to the figure of Prop. I., if the direction of

the impulse at B bisect the angle ABC, the triangle CBc is

isosceles, and BC= Bc = AB : therefore, the velocities in BC

and AB are equal, and the effect of the impulse has been to

change the direction without altering the velocity of the body.

Hence, the regular polygon inscribed in a circle center S, can

be described with uniform velocity under the action of impulses

tending to the center ; and, by similar triangles SBC, CBc,

Cc : BC : BC : BS.

And, if V be the uniform velocity in the polygon, T the time

in a side BC, BC= V.T;

.. Cc =

V2T2

BS

Ifnow the number of sides be indefinitely increased, Ce will

be ultimately twice the space through which the body will be

drawn from the tangent by the continuous force, see Art. 107 ;

Сс V2

T2 BS

therefore =
will be the measure of the accelerating

effect of the centripetal force tending to the center of the circle.
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Illustrations of Circular Motion.

134. A small body is attached by an inelastic string to a

point on a smooth horizontal table, to determine the tension of the

string when the body describes a circle.

If the body be set in motion by a blow perpendicular to the

string, the string will remain constantly stretched, and the only

force which acts on the body in the horizontal plane being in the

direction of the fixed point, the areas described round this point

will be proportional to the time, and the body will move in a

circle with uniform velocity.

Letv be the velocity of projection, and 7 the length of the

string, then the accelerating effect of the tension of the string

v2 v2

ī
is ; that is, is the velocity which would be generated from

rest by the action of this tension continued constant, therefore the

tension of the string : the weight of the body :: Τ

22

: g.

Ex. If a velocity of two feet a second be communicated

perpendicular to a string whose length is a yard,

v² lg :: 4 : 3 × 32 :: 1 : 24,

1

hence the tension is 4th of the weight, and the time of

revolution is evidently

2πι

seconds =

v

6π"

2

22"

= 3 x nearly,
"

7

66"
=

= 9".4, nearly.
7

2. If a particle be attached by a string ofgiven length to a

point in a rough horizontal plane, and a given velocity be commu-

nicated to it, perpendicular to the string supposed tight, find the

tension ofthe string at any time, the time in which it will be

reduced to rest, and the whole arc described.

Let V be the velocity of projection, 7 the length of the string

in feet, v the velocity at any time t.

In any short time 7 reckoned from the time t if the velocity

change from v to v ' , the accelerating effect of the tension changes
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v2

T'

12

from to therefore, when 7 is indefinitely diminished, since

ī

v2

Τ
these accelerations are ultimately equal, is the accelerating

effect of the tension at the time t.

Again, if μ be the coefficient of friction , the retarding effect

of friction is µg, which is constant, hence the velocity destroyed

in the time t, since friction is the only force acting in the

direction of the tangent, is μgt, and v = V- μgt.

Therefore the particle comes to rest in

V2

scribing the arc feet.

2μg

V

нд

seconds after de-

The tension of the string at the time t : the weight of the

v2

particle ::

(V - µgt)²

2

:::
g; and

V

mg

is the time in which

V
2

-t)"the particle is reduced to rest, therefore the tension <

∞

ug

the square ofthe time which elapses before the particle comes

to rest.

3. Supposing that the Moon describes a circle with uniform

velocity about the center of the Earth as its center, to find the ratio

ofthe centripetal acceleration ofthe Moon to gravity at the Earth's

surface.

=
Let n number of seconds in the Moon's periodic time,

R= the radius of the Moon's orbit in feet ; therefore the velocity

of the Moon is

2πR

n

1

R•

2

and (2 ) is the measure of the acce-

lerating effect of the force exerted on the Moon, and the measure

of the same for gravity at the Earth's surface = 32.2 ; hence ,

the ratio required is

4π²R

n
2 : 32.2.

4. A body is suspended by a string from a fixed point, and

being drawn out ofthe vertical is projected horizontally so as to

describe a horizontal circle with uniform velocity. Find the

velocity and tension.

Let A be the point of suspension, BCthe radius of the circle

described ; therefore , the circle being described uniformly, the .
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resultant force on the body tends to the center B, and the

measure of the accelerating effect of this resultant force is

in the direction CB.

V2

BC'

Let T, W be the tension of the string, and the weight of the

body, acting in CA, and parallel to AB, respectively,

T

B

E

VW
D

.. TW CA : AB,

V2

also, BC g CB : AB ;
вс

g :

•. V²_J
.B
C²

AB

and, if CD be perpendicular to AC, BC²= AB . BD ;

therefore the velocity is that due to the space BD.

XI.

1. If the sixth power of the velocity, in circles uniformly de-

scribed, be inversely proportional to the square of the periodic time,

shew that the law of force varies inversely as the square of the

radii.

2. Given the Earth's radius, the force of gravity at the

Earth's surface, and the periodic time of the Moon, supposed to

describe a circular orbit about the Earth, find her distance from

the Earth's center.

3. Compare the areas described in the same time by the

planets, supposed to move in circular orbits about the Sun in the

center, exerting a force which varies inversely as the square of the

distance.

4. If F be the measure of the acceleration of a force which

tends to a given center, and a body be projected, from a point at
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a distance R from the center, at right angles to this distance, with

velocity V, such that V² = F.R, shew that the body will describe a

circle.

5. If the forces by which particles describe circles with uniform

velocity vary as the distance, shew that the times of revolution are

the same for all.

6. If the velocity of the Earth's motion were so altered that

bodies would have no weight at the equator, find approximately the

alteration in the length of a day, assuming that, before the altera-

tion, the centrifugal force on a body at the equator was to its

weight 1 288.

7. Aparticle moves uniformly on a smooth horizontal table, being

attached to a fixed point by a string, one yard long, and it makes

three revolutions in a second. Compare the tension of the string

with the weight of the particle.

8. A body moves in a circular groove under the action of a

force to the center, and the pressure on the groove is double the

given force on the body to the center, find the velocity of the body.

9. If a locomotive be passing a curve at the rate of twenty-four

miles an hour, and the radius of the curve be of a mile ; prove

15

11

that the resultant of the forces which retain it on the line, viz. of

the action of the rails on the flanges of the wheels, and the horizontal

part of the forces which act perpendicular to the inclined road-way,

ofthe weight of the locomotive, nearly.is

10. If a body be attached by an extensible string to a fixed

point in a smooth horizontal table, to find the velocity with which

the body must move in order to keep the string constantly stretched

to double its length.

If W be the weight of the body, and nW be the weight which if

suspended at the extremity of the string would just double its length ,

7 the length of the string, shew that the square of the required

velocity = 2nlg.

11. Two equal bodies lie on a rough horizontal table, and are

connected by a string, which passes through a small ring on the

table ; if the string be stretched, find the greatest velocity with

which one of the bodies can be projected in a direction perpendicular

to its portion of the string without moving the other body.

12. One end of a string is attached to the vertex of a smooth

cone, which stands with its axis vertical, and the other to a particle,

which revolves in a circle on the surface of the cone. If 2a be the

length of the string, 2a the vertical angle of the cone, and the

velocity be that which would be acquired in dropping from rest

through a height a vers a, prove that the tension of the string will

be equal to the weight of the particle.
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PROP. V. PROBLEM I.

Having given the velocity with which a body is moving at

any three points of a given orbit, described by it under

the action offorces tending to a common center, to find

that center.

*

Let the three straight lines PT, TQV, VR, touch the given

orbit in the points P, Q, R respectively ; and let them

meet in T and V.

Z

Ꭱ

E

B

X P M T

Draw PA, QB, RC perpendicular to the tangents, and in-

versely proportional to the velocities of the body at the

points P, Q, R, i. e. such that

PA QB : vel'. at Q : vel'. at P,

QB RC :: veľ . at R : veľ . at Q.

Through A, B, C draw AD, DBE, CE at right angles to PA,

QB, RC meeting in D and E. Join TD, VE ; TD and

VE produced, if necessary, shall meet in S the required

center offorce.
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For, the perpendiculars SX, SY, let fall from S on the tan-

gents PT, TQV, are inversely proportional to the velo-

cities at P, Q (Prop. I. Cor. 1 ), and are therefore directly

as the perpendiculars AP, BQ, or as the perpendiculars

DM, DN on the tangents. Join XY, MN, then, since

SX : SY :: DM DN and the angles XSY, MDN are

equal, therefore, the triangles SXY, DMN are similar ;

:. SX : DM :: XY : MN,

:: XT : MT,

and the angles SXT, DMT are right angles ; therefore, S,

D, T are in the same straight line.

Similarly S, E, V are in the same straight line, and therefore,

the center S is in the point of intersection of TD, VE.

Q. E. D.

XII.

1. If AB, BC, CD the three sides of a rectangle be the direc-

tions of the motion of a body at three points of a central orbit, and

the velocities are proportional to these sides respectively, prove that

the center of force is in the intersection of the diagonals of the rect-

angle.

2. If the velocities at three points of a central orbit be re-

spectively proportional to the opposite sides of the triangle formed

by joining the points, and have their directions parallel to the same

sides ; prove that the center of force is the center of gravity of the

triangle.

3. Three tangents are drawn to a given orbit, described by a

particle under the action of a central force, one of them being parallel

to the external bisector of the angle between the other two. If the

velocity at the point of contact of this tangent be a mean proportional

between those at the points of contact of the other two, prove that the

center of the force will lie on the circumference of a certain circle.
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If a body revolve about a fixed center offorce, in any orbit

whatever, in a non-resisting medium, and if, at the ex-

tremity ofa very small arc, commencing from any point

in the orbit, a subtense ofthe angle ofcontact at that point

be drawn parallel to the radius from that point to the

center of force, then the force at that point tending to

the center is ultimately as the subtense directly and the

square ofthe time of describing the arc inversely.

Let PQ be the small arc, PS the radius drawn fromP to S,

the center of force. RQthe subtense of the angle of con-

Q'

PY R

T

tact at P, parallel to PS. T the time of describing PQ.

F the accelerating effect of the force at P.

Then, when the body leaves P, it would, if not acted on by

the central force, move in the direction PR, and if the force

Fcontinued constant in magnitude and direction through-

out the time T, QR would be ultimately the space through
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which it would have been drawn by F in that time ; there-

2QR

fore ultimately, F :
CC

תוצ

QR

та

COR. 1. Draw QT perpendicular to SP, and let h = twice

the area described in an unit of time.

Then, F=

2h² QR

SPQT2

ultimately.

=

For area PSQ = hT, (Prop. I.), also, since triangle PSQ

= SP.QT, and area PSQ = triangle PSQ, ultimately,

(Lemma VIII.) ; therefore hT= SP.QT, ultimately ;

hence, ultimately, F= 2

QR 2h2 QR

=

712 SPQT2*

COR. 2. Draw SY perpendicular on PR.

Then F
=

2h2 QR

SY2' PQ²'
ultimately.

For triangle PSQ = triangle PSR=18Y.PR ;

therefore hTSY.PR= SY.PQ, ultimately ;

QR 2h2 QR

hence, ultimately, F = 2
T2 SY2PQ *

COR. 3. If the orbit have finite curvature at P, and PV be

the chord of the circle of curvature whose direction passes

through S, PV. QR= PQ², ultimately ;

:. F==

2h2

SY2.PV

COR. 4. If V be the velocity at P, then V =

and F-=
2QR 2QR (PQ

T2

=

PQ2

:. F=

2

(PQ)* , ultimately,T

2V2

PV'

or V² =
2F.PY

PV

4

Po, ultimately,

that is, the velocity at any point of a central orbit at which

the curvature is finite, is that which would be acquired by

a body moving from rest under the action of the central

force at that point continued constant, after passing through
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a space equal to a quarter of the chord of curvature at

that point drawn in the direction of the center of force.

COR. 5. Hence, if the form of any curve be given, and the

position of any point S, towards which a centripetal force

is continually directed , the law of the centripetal force can

be found, by which a body will be deflected from its direc-

tion of motion, so as to remain in the curve. Examples of

this investigation will be given in the following problems.

Observations on the Proposition.

135. In Newton's enunciation of the proposition , the sagitta

of the arc, which bisects the chord and is drawn in the direction

of the center of force, is employed instead of the subtense used

in the text, but it is easily seen that these are ultimately propor-

tional, by reference to Art. 100.

The variations by which Newton expresses the results of the

first three corollaries, are replaced by equations, in order to facili-

tate the comparison of the motion of bodies in different orbits

and the forces acting upon them.

136. The figure employed in proof of the proposition is

drawn upon supposition that the force is attractive, the orbit

being concave to the center of force ; the same proof applies also

to the case of a repulsive force, if the curve be drawn in the

direction of the dotted line PQ' and the same construction be

made.

The exception however should be made, that the method fails

in the particular positions, in which the body is at the points of

contact of tangents drawn from the center of force to the curve ;-

in such cases QR does not ultimately meet the tangent at a finite

angle or is not a subtense , the result of the proposition is there-

fore not demonstrated for these particular positions . For a further

description of the case see the note, Arts. 147 and 148, on the

next proposition.

137. In the proof it is assumed that the body moves ulti-

mately in the same manner as if the force P remained constant

in magnitude and direction , in which case the body would

NEWT. M
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describe a parabola, whose axis is parallel to PS, and which is

evidently the parabola which has at P the same curvature as

the curve.

Bythis consideration the proposition contained in Cor. 4 can

be readily proved .

For, since the body moves in a parabola under the action

of a constant force in parallel lines, the velocity at P is that

acquired by falling from the directrix under the action of the

force at P, continued constant, i . e . through a space equal to the

distance of the focus of the parabola, which is equal to a quarter

of the chord of curvature at P, drawn through S.

138. The supposition that the force at P continued constant

in magnitude and direction , causes the body to move in a curve

which is ultimately coincident with the path of the body, may be

justified by considering that, if PQ' be the arc of the parabola

described on this supposition in the same time as the arc PQ

actually described, the error ' Q is due to the change in the

magnitude of the forces and the direction of their action in the

two cases ; now, the greatest difference of magnitude varies as the

difference of SP and SQ ultimately, and the ratio of the error

from this cause to Q'R vanishes ultimately ; also, since PSQ

vanishes ultimately, the ratio of the error, arising from the change

of direction, to QR vanishes ; therefore, Q'Q : Q'R vanishes, and

the curves may be considered ultimately coincident.

L

139. It is evident that the results of the Proposition and of

the fourth corollary are true of the resultant of any forces, under

the action of which any plane orbit is described, for this resultant

may be supposed ultimately constant in direction and magnitude,

in which case the curve described is a parabola ; and the velo-

city at P is that acquired by falling from the directrix, whose

distance is a quarter of the chord of curvature at P, drawn in

the direction of that resultant force . Hence, in this case also,

ifF be the accelerating effect of the resultant of the forces, QR

the subtense parallel to the direction of the resultant,

PV

V2 =2F.
QR

and F= 2 limit

4
2

T2
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Homogeneity.

140. COR. 1 , 2. In the expressions for Fobtained in these

corollaries, it is of great importance to observe the dimensions.

of the symbols.

Thus h, being a measure of the rate of description of areas,

is of two dimensions in linear space and of -1 in time ; there-

fore h² . QR is of five in space, and of - 2 in time, and SP² . QT²

2h2. QR

is of one dimensionof four dimensions in space ; hence, Sp² . QT²

-in
space and of 2 in time, and represents

either
twice

the space

through
which

a force
would

draw
a body

in an unit of time , or

the velocity
generated

by the force
in an unit of time, either

of

which
may be taken

as the measure
of the accelerating

effect
of

the force
; moreover

this unit is the same by which
the magnitude

of h is determined

.

Hence, if the actual areas, lines, &c. be represented by the

symbols, and not the number of units, as mentioned in Art. 128,

every term of an equation or of a sum or difference must be

homogeneous, or of the same number of dimensions , both in space

and time ; for example, PQ + V. T representing a line, V must

be of 1 dimensions in time.-

141.

Tangential and Normal Forces.

To find the accelerating effect of the components ofthe

forces, under the action of which a body describes any plane curve,

taken in the directions ofthe normal and tangent at any point.

Let PQ be a small arc of the curve described under the

action of any forces, F, Gthe measures of the accelerating effect

of these forces, in the direction of the tangent and perpendicular

to it. Then, if V be the velocity at P, T the time of describ-

ing PQ, the forces may be supposed ultimately to remain the

same in magnitude and direction , and if QR be perpendicular to

PR, we have ultimately PR V.T+ F.T', and QR = G.T²,

and the ratio of F.T : V.T vanishes ultimately ; hence, if p be

the radius of curvature at P,

2p:
=

PR2

QR

=

-

2V2 V2

ultimately ; and G =

PG

M 2
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V2

therefore,

ρ

is the measure of the normal acceleration estimated

towards the center of curvature.

Also, if PU= V. T be measured in PR, UR is ultimately

described under the action of the tangential compo-spacethe

nent ;

2UR_2 (PR-V.T) ,
ultimately,

ןיצ
. F=

T2

2 (PQ- V.T)

T2
ultimately. (1) .

Again, if V' be the velocity at Q, since this velocity is ulti-

mately the component of the velocities whose squares are

V²+2F. PR parallel to PR, and 2 G. QRin RQ ;

.. V" = V²+2F. PR + 2G . QR, ultimately,

and QR PR or PQ vanishes ultimately ;

.. F=

V¹² - V2

2PQ

" ultimately. (2) .

Or, again, by Art. 59 , since V'- V is ultimately the velocity

generated in the direction of the tangent, by the tangential

force continued constant,

V'- V

F==
"

T
ultimately. (3) .

142. To find the velocity at any point of an orbit described

under the action ofany forces in one plane.

Let AB be any arc of an orbit, V, v the velocities at A and

B, and suppose the arc AB divided into a large number of small

portions of which PQ is one, vr , vt velocities at Pand Q, FtheVr+1

accelerating effect of the tangential component of the forces at P,

Vr+12v,2 =2F.PQ, ultimately,

and - V is obtained by taking the limit of the sum of thev²

magnitudes 2F.PQ corresponding to the different arcs when

their number is indefinitely increased.

That this is rigidly correct may be shewn by considering that

V₁₁₁² —v‚² : 2F.PQ is ultimately a ratio of equality ; therefore, by

2
-

"

2
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Cor. Lemma IV, or Art. 24 , the limiting ratio of the sums is also

a ratio of equality.

Radial and Transversal Forces.

143 .
To find

the accelerating

effect
of the components

of

forces
, under

the action
of which

a body
describes

any plane

curve
, taken

in the direction
of a radius

vector
drawn

from
a

fixed
point

, and perpendicular

to it.

Let PQ be a small arc described in the time T; QRU,

PU parallel and perpendicular to SP, P, Q the measures of the

accelerating effects of the components in PS and PU, PR a tan-

gent at P.

R T

Q

P

N

19

n

If V be the velocity at P, make PT= V. T, draw TN per-

pendicular to SP, and let Qq be the arc of a circle, center S.

Since the forces may be considered ultimately constant in

magnitude and direction ,

P. T² = Nn = Nq +

Qn²

2Sq'

ultimately.

Let h be twice the area which would be described in an unit

oftime by radii from S, if the transverse force at P ceased to act,

then Qn . SP TN. SP= h . T, ultimately,
=

and ifP' be the measure of the accelerating effect of a force, under

the action of which the body would move in PS, so that its dis-
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tance from S would be always equal to that of the body in PQ at

the same time, P' . T² = Nq, ultimately ;

also,

Qn²
h2T2

28q 2SP3
ultimately ;

h2

:. P= P' +

SP

-
Again, if, at Q, h ' corresponds to h , h' – h , the increase of h,

is due to the increase of velocity in direction PU, which is equal

to Q. T, ultimately ;

-
(h' − h) T= Q. T. SP, ultimately ;

and Q =

h' -h

SP.T'
ultimately.

Angular Velocity.

144. DEF. Angular velocity of a point, moving about an-

other fixed point, is uniform, when equal angles are described

in equal times, by radii drawn to the fixed point.

Uniform angular velocity is measured by the angle described

in an unit of time.

Variable angular velocity is measured by the angle which

would be described by a radius in an unit of time, if moving with

uniform angular velocity equal to the angular velocity at the

time under consideration ; this is the limit of the angle, described

in a time T, divided by T, when T is indefinitely diminished ;

for, let PSQ be the angle described about S in a time T,

then, since this may be ultimately supposed to be described

uniformly with the angular velocity at P, the angular velocity at

Px T= PSQ, ultimately.

145. To find the angular velocity in a central orbit.

Let PQ be a small arc described in the time T, draw QN

perpendicular to SP, and let h= twice the area described in an

unit of time.

=
h . T= twice the area PSQ QN. SP ultimately ; if the

angles be supposed estimated in circular measure,
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QN

PSQ=
=

SQ'

ultimately ;

.. h.T= SP. SQ × ‹ PSQ, ultimately ;

S

therefore the angular velocity
= 4

PSQ

T
ultimately,

-
h

SP2

146. To find the angular velocity ofthe perpendicular on the

tangentfrom the center offorce.

Draw SY perpendicular on the tangent PY, and let PV be

the chord of curvature through S.

The angle described by SY in the time T is equal to the

angle between the tangents at P and Q, or to the angle PVQ,

.. angular vel. of SY : angular vel. of SP :: 2 PVQ : 4 PSQ

:: 2SQ : VQ, ultimately ;

therefore the angular velocity of SY

Illustrations.

=

L

2h

PV. SP

1. Two equal rings P, Q slide on a string whichstring which passes round

two fixed pegs A, B in a smooth horizontal plane ; the rings are

brought together, and then projected with equal velocities, so as to

keep the string stretched symmetrically. Shew that the tension of

the string varies inversely as the distance AP.
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Let the figure represent the position of the system at any

time.

Let CR bisect AB and PQ, and let DEbe drawn parallel to

CR, so that EP = PA, then EPR = AP+ PR is constant ;

D C G B

E R

therefore DE is fixed, and P moves in a parabola whose focus

is A, and directrix DE.

Also , the tensions of the string in PA, PQ being equal and

equally inclined to the tangent to P's path, the resultant of these

tensions, which are the only forces acting in the plane of the

curve, acts in the normal, hence the rings move with uniform

velocity equal to the velocity of projection V, and , if T be the

measure of the accelerating effect of the tension, PGthe normal,

the radius of curvature,
P

V2

2Tcos APG= see Art. 141 ,

=

"

ρ

and 2p cos APG chord of curvature through A = 4PA ;

therefore , T=

as PA.

V2 1

APA PA
that is, the tension varies inversely

2. A body revolves in a smooth circular tube under the action

ofaforce tending to any point in the circumference, and varying

as the distance from that point. Find the pressure on the tube, and

the point where there is no pressure, the motion commencing from

a given point.

Take A the center of force, C that of the circle, let B be the

point of starting, PQ a small arc, BD, PM, QN ordinates to the

diameter through the center of force , Am, Qn perpendicular on

CP; let μ . PA be the measure of the accelerating effect of the

force at P, therefore μ.mA, μ . Pm are those of the tangential

and normal forces, μ.PMand μ .AM respectively.
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-
(vel .)² at Q — (vel. )² at P= 2µ . PM. PQ = 2µ . CP . MN, ulti-

mately, see Art. 141 , (2) , whence, taking the limit of the sum-

mation for all the small arcs in BP, (vel.) at P= 2µ.CP.DM.

B
D

m

n

M

N

A

Also,

(vel.) 2 at P

CP
=μ.AM the accelerating effect of the

pressure on the tube, the upper or lower sign being taken accord-

ing as the pressure is from or towards C; therefore the pressure

on the tube has for the measure of its accelerating effect

± µ (AM– 2DM) = ± µ (3AM− 2AD) ;
-

hence the pressure is outwards from B until AM=}AD, at

which point there is no pressure, and inwards from that point to

the corresponding one on the opposite side , having its greatest

value at A, and the outward pressure at B is half the inward

pressure at A.

3. To find the tension ofa string by which a body is attached

to the center ofa vertical circle in which it revolves.

Let P be the position of the body at any time, u the velocity

at A the lowest point, CPthe radius of the circle,

(vel.) at Pu -2g . AM,

and the accelerating effect of the tension of the string is mea-

sured by

u² -29.AM

CA

+9.
CM

CP
;

therefore the tension of the string : weight of the body

:: u² - 2g . CA + 3g . CM : g . CA.
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COR. 1. In order that the complete circle may be described,

since the string must be stretched at the highest point where

- CA must be written for CM, u²or > 5g . CA, and if the

circle be just described the tension at the lowest point is six

times the weight.

COR. 2. If the body oscillates , the extent of the oscillation

is given by the consideration that at the extremity P' of the arc

ofoscillation there is no velocity, therefore u² = 2g . AM', and AM'

is less than AC, otherwise the string would not be stretched ;

therefore in this case, the tension of the string at A

=
2AM'+AC

AC
× weight of the body.

4. Find the force under the action ofwhich a body may de-

scribe the equiangular spiral uniformly.

The velocity being constant there is

measured by (vel . ) ÷ radius of curvature

only a normal force

V2 sin a

= Art. 90.

SP

5. Find the force tending to the pole of the cardioid, under

the action ofwhich the curve is described.

Since PV = 1 SP, and (vel.) ² :=
=

SY2

h2 h². BC

SP3

see Art. 93 ;

3h2 .BC 1

therefore the accelerating effect of the force is

2SP SP

6. If in a smooth elliptic tube a particle be placed at any

point, and be acted on by two forces which tend to the foci, and

vary inversely as the square of the distances from those points;

shew that the pressure at any point varies inversely as the radius

of curvature.

Let O be the point of starting, PQ a small arc described by

the body, QT, QUperpendiculars on SP, HP.

Take
μ'μ

SP2 HP2
R, as the measures of the accelerating

effects of the forces, and of the pressure of tube.
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Then, employing the usual letters for the lines ofthe figure, the

accelerating effect of the tangential component of force to Sis

μ PT μ (SP- SQ)

SP² PQ

=µ
μ

=
μ

SP. SQ . PQ PQ.SQPQ.SP , ultimately ;

D

A S

в
о
е

JU

P

and similarly for the force tending to H;

H a

12μ

.. (vel.)² at P— (vel.)² at Q =

2μ'

HP HQ210)- (346-24)SQ SP

"

.. (vel.) at P=
2μ 2μ 2μ 2μ

+

HP HO SO SP'

Also,

(vel.)² at P PFμ μ
=

+
PE HP2

ρ

M:) HP² – R,
-

ρR, if p be the

radius of curvature at P,

PF
and 2p. PE== PV :=

2CD2
=

AC

.. R.p =

μ' . SP μ . HP

+
AC.HP AC. SP

2μ'

HP

2μ' 2μ μ' м
=

+
HO SO AC AC

=

which is constant ;

2SP.HP

-

AC
;

2μ2μ 2μ'

SP+ +SP HO SO

μ'SO HO

+
HO SO

;

.. R∞ •

XIII.

1. A body is attached to a point by a thread, and is projected so

as to describe a vertical circle, prove that, if T₁ , T be the tensions

of the string at the extremities of any diameter, the arithmetic mean

between T,, T, is independent of the position of the diameter, and

that TT is six times the component of the weight in the direction

of the diameter.

2
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2. A string of given length l is capable of sustaining a weight W.

One end is fixed, and a given weight W' less than W, attached to the

other end, oscillates in a vertical plane, find the greatest arc through

which the body can oscillate without breaking the string.

3. A ring slides on a string hanging over two pegs in the same

horizontal line, find the tension of the string at the lowest point, if

the ring begin to fall from the point in the horizontal line through

the pegs, the string being stretched.

4. A body slides down a smooth cycloidal arc, whose axis is

vertical and vertex downwards, find the pressure at any point of the

cycloid, and shew that, if it fall from the highest point, the pressure

at the lowest point is twice the weight of the body.

5. A particle moves in a circular tube, under the action of a

force which tends to a point in the tube, and whose accelerating

effect varies as the distance, shew that, if the particle begin to move

from a point at a distance from the center of force equal to the

radius, there is no pressure on the tube at an angular distance from

the center of force equal to cos¹ .

6. In a central orbit, shew that the centripetal force is to the

force, which would cause it to approach directly with its paracentric

velocity in the orbit, as 2SP3 : 2SP³ - SY² . PV.

7. A curve is described by a body under the action of a central

force, the measure of whose accelerating effect is , prove that the

angular velocity of the perpendicular on the tangent is to that of the

radius vector :: µ : V³.

8. Orbits, having a common point, are described about the same

center of force, and the (velocities) at the common point vary as the

sine of the angle between the radius vector and the tangent ; prove

that the centers of curvature of the orbits at this point lie in a circle.

9. A particle, constrained to move on an equiangular spiral, is

attracted to the pole by a force proportional to the distance, prove

that, at whatever point the particle be placed at rest, the times of

describing a given angle about the centre of force will be the same.

10. Given the Sun's motion in longitude at apogee and perigee

to be 57′ 10″ and 61 ' 10" ; find the eccentricity of the Earth's orbit,

supposed to be an ellipse about the Sun in one of the foci.

11. A body is describing an ellipse round a center of force in

one of the foci ; prove that the velocity of the point of intersection of

the perpendicular from that focus upon the tangent at any point of

the orbit is inversely proportional to the square upon the diameter

conjugate to the diameter through that point.
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12. If a particle begin to move from any point of a smooth

parabolic tube, being attracted to the focus by a force which varies

inversely as the square of the distance, prove that, on arriving at the

vertex, the pressure on the tube is equal to the attraction on the

particle placed at the point of intersection of the tangent at the

vertex with that at the starting-point.

13. A particle moves in a smooth elliptic groove, under the

action of two forces tending to the foci and varying inversely as the

squares of the distances, the forces being equal at equal distances.

Prove that, if the velocity at the extremity of the axis major be to

that at the extremity of the axis minor as AC to BC, then the

velocity at any point varies inversely as the normal ; and find the

pressure on the tube.

14. A particle is attached to a point C by a string, and is

attracted by a force which tends to a point S, and varies inversely as

the square of the distance from S. Find the least velocity with

which the particle can be projected from a point in CS, or CS pro-

duced, so as to describe a complete circle. If CS be less than the

length of the string, prove that the tension is a maximum at a point

D, where SD is perpendicular to CS, and that if CS is half the length

of the string, the two minimum and the maximum tensions are in

the ratio, 0, 4 and 33.
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A body moves in the circumference ofa circle, to find the law

of the centripetal force, tending to any given point in the

plane ofthe circle.

Let APV be the circumference of the circle, S the given

point to which the centripetal force tends, PV the chord

T

B Y

P

A

of the circle drawn through S from P, the position of the

body at any time. And let SY be drawn perpendicular to

PY, the tangent to the curve at P.

By Prop. VI. Cor. 3, if F be the measure of the accelerating

effect of the centripetal force,

F ==
2h2

SY2.PV '

and, since the angles SPY, VAP are equal, and also the

right angles PYS, APV, the triangles SPY, VAP are

similar ;

:. SY : SP :: PV : VA ;
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. F:=

2h² . VA2

SP2.PV ;

therefore, since h and VA are given, F varies inversely as

SP2.PV³.

COR. 1. Hence, if the given point S to which the centri-

petal force tends, be situated on the circumference of the

circle, V coincides with S, and F varies inversely as SP5.

COR. 2. The force, under the action of which a body P

revolves in a circle APTV, is to the force, under the

action of which the same body P can revolve in the same

circle in the same periodic time about any other center

of force R, as RP² . SP to SG , SG being a straight line

drawn from the first center S, parallel to the distance RP

of the body from the second center of force R, to meet PG,

a tangent to the circle.

For, by the construction of this proposition, since the peri-

odic times are the same, the areas described in a given

Ꭱ

T

G

time are the same ; therefore, h is the same for both

centers, hence, if PRT be the chord through R, the

force tending to S ; the force tending to R

:: RP.PT : SP2.PV";

but, by similar triangles TPV, GSP,

PT PV : SP : SG;

:. force tending to S : force tending to R

:: RP . SP : SP . SG

:: RP SP : SG³.
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COR. 3. The force, under the action of which a body P re-

volves in any orbit about a center of force S, is to the force,

under the action of which the same body P can revolve in

the same orbit in the same periodic time about any other

center of force R, as RP² . SP to SG³, SG being the

straight line drawn from the first center of force S, parallel

to RPthe distance of Pfrom the second center of force R,

to meet SG the tangent to the orbit.

For, in each case, the body may be supposed for a short

time to be moving in the circle of curvature, and the

forces are the same as those which would retain the

body in the circular orbit ; therefore, since the areas de-

scribed in a given time are equal, the ratio of the forces

is RP2 . SP : SG .

Observations on the Proposition.

147. In the figure employed in the proposition , the force

is supposed to be attractive, but the investigation of the law

of force applies also to the case in which the center of force

A

P

T

Y

C
B

S is exterior to the circle, in which case the force is repulsive

through the arc BC, which is convex to the center of force,

and contained between the tangents drawn from S to the

circle.

It is important, however, to observe that this problem is to
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find what would be the law of force tending to S, under the

action of which a body would be moving, supposing that it

could move in the circle, or any portion of the circle, under

the action of such a force, but it does not assert the possibility

of such a motion, which is considered in Art. 126 .

In fact, the complete description of a circle ABC, under the

sole action of a central force tending to an external point S, is

impossible, because, as the body approaches the point B, the

component of the velocity perpendicular to SB remains finite

however near the body approaches B, and since there is no

force to generate a velocity in the opposite direction , the body

must proceed to describe an arc BU on the opposite side. SB

would be a tangent to both curves, because the velocity in di-

rection BS becomes larger than any finite quantity, as the body

approaches B, and therefore the angle between BS and the

direction of motion is indefinitely small at B.

That a finite velocity in the direction perpendicular to SB

could remain up to B, may be shewn by producing SB to T

in the tangent PY at P; then the component of the velocity

h SY

at P perpendicular to SB is
=

h

==

h

SY ST ST SB'

body arrives at a point very near to B.

when the

148. The force at a point indefinitely near to B cannot be

properly determined by the method of Prop VI. , because the

F

D

d

N
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lines parallel to the direction of the force from which the mea-

sures of the force are obtained are not subtenses, or sagittæ, being

not inclined in this case at a finite angle to the tangent.

But it can be seen in another manner from the polygon of

Prop. I, that the force is infinitely great, when the distance from

Bbecomes infinitely small.

Thus, if CDEF be a portion of the polygon whose limit

touches the radius from S between D and E, the angle between

DEand DS or ES may be made as small as we please, hence

the velocity generated by the impulse in the directions DS

and SE becomes infinitely great compared with the velocities

in CD and EF

In the figure, the impulses at D and E, whose directions.

are denoted by the arrows, have corresponding to them, in the

limit, the forces on opposite sides of the tangent, which are

attractive and repulsive respectively.

149. If a circle be described by a body under the action of

aforce tending to a point in the circumference, the force varies

inversely as the fifth power of the distance from that point, at

allpoints at a finite distance from S.

For, in this case, PV= SP, and SY : SP :: SP : SA ;

2h2 SP2 2h2 SA2

SP3 SY2

. F=

2h2

SY .PV

=

.. Fo •

SP5

1

SP5

We may also observe here that the possibility of a descrip-

tion of a circle is not asserted , but only the law of force re-

quired in case of description of any portion of the circle. The

complete description of the single circle is , in fact, impossible ,

for, under the action of the force obtained, the body would pass

to the other side of the tangent on arriving at S, then pro-

ceed to describe another equal circle, and, on arriving again at

S, again describe the original circle.

1

150. COR. 3. The orbit being the same, and also the

periodic times about S and R being equal, the value of h, in



PROP. VII. PROBLEM II. 179

the two cases, is the same ; also, the force tending to S for

the orbit being of the same magnitude at P as that under the

action of which the circle of curvature would be described, and

SY, PV being the same in the orbit and the circle, h is also

the same (Prop. VI. Cor. 3) ; and similarly h is the same

in the circle and orbit described about R ; therefore it is the

same in the circle described about S and R as centers of force,

and hence Cor. 2 applies.

Velocity in the Circular Orbit.

151. To find the velocity in the circular orbit described

under the action of a force tending to any point in the plane

of the orbit.

h h SP h VA

The velocity at P=
=

SY SP SY SP ' PV

1

SP. PV'

COR. If S be in the circumference of the circle, and

be the measure of the accelerating effect of the force,

µ = 2h²SA²;

hence, the velocity at P=

1h . VA

=

SP2
•

SP2

Or, we may employ the result of Prop. vI, Cor. 4 ,

V2 = F.

PV μ SP

2 SP5 2

•

1 1

.. V= ∞

SP2

μ

SP

Absolute Force.

SP2

152. If the force upon a body placed at any distance

from the point S varies inversely as the nth power of that

distance, the magnitude of the force is determined, or its ratio

N 2
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to any given force, as that of gravity, when the distance SP is

given. The measure of the accelerating effect of the force is

written where μ the constant part of this measure is an
μ

SPR

μ

algebraical symbol of n + 1 dimensions, is the space which

SP

represents the velocity generated in a body in an unit of time

by a constant force equal to the force acting on the body at P.

If the unit of space
is the measure of the accelerating= α,

μ

a"

effect of the force on a body at an unit of distance, and μ is

called the Absolute Force, being the measure of the accelerating

effect ofthe force at an unit of distance x the nth power of that

unit. The absolute force is not the measure of the accelerating

effect of any force, unless the symbols be treated numerically,

in which case is twice the number of units of space through

which a constant force , equal to the force at an unit of distance,

would draw a body from rest in an unit of time.

Law of Force in a Circular Orbit.

153. The law of force may be expressed in terms of the

distances SP, for SD, Sd being the greatest and least distances

of the body from S, SD . Sd = SP. SV; see figure, page 176.

.. SP. PV SP² ± SD . Sd,
=

+ or - according as S is within or without the circle ;

:. F=

2h .AV . SP

(SP² ± SD . Sα)³ °

If S be on the circumference of the circle, Sd = 0,

. F:=

2h2 .AS2

SP

•

If S be exterior to the circle, SD . Sd SB , and the lower

sign is taken ;

=

2h2AV² . SP

.. F=

(SP²— SBª)³ *
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Periodic Time.

154. To find the periodic time in a circular orbit described

under the action of a force tending to a point in the circum-

ference.

Let P be the periodic time, R the radius of the circle, and

μ
let be the measure of the accelerating effect of the force

SP5

at P,

h. P= twice the area of the circle = 2πR²,

and μ 2h AS² = 8h²R² ;

.. P=

4√2πR³

μέ

155. To compare the periodic times in the same circle when

described under the action of a force tending to a point in

the circumference, and a force tending to the center, of the same

magnitude as the force at a distance equal to the radius of the

circle.

Let P' be the periodic time, and V the uniform velocity in

the circle in the second case,

1.

V² = .R; .. V=

μ

R5

and P' . V= 2πR; .. P' =

Illustrations.

με

R2,

2πR³ P

με 2√2

Whentheforce in a circular orbit tends to a point within

the circle, to find the point at which the true angular velocity

is equal to the mean angular velocity.

The true angular velocity is measured by

2π

h

SP2,

the mean

if Pbe the periodic time ; but

h . P = 2πR ;

angular velocity byP,

h

therefore at the required point,
= and SP= R,

SP2 R2

h
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or, the perpendicular from the required point upon the line.

joining Sto O the center of the circle, bisects OS.

2. If the measures of the accelerating effect of the force

at the greatest and least distances SD, Sd, from the point to

which the force tends, when a body describes a circular orbit,

be the radius and twice the diameter respectively, the unit oftime

being a second, to find the number of seconds in passing from

D to d.

Since

8h2R2

SD2 . Dd3

= R, and

8h2R2

Sd2 . Dd³

= 4R ;

.. SD 2Sd, and 3Sd Dd = 2R,= =

and, if T the number of seconds from Dto d,=

h. T-TR', and

.. h = 2R . Sd
=

4

h2

ᏚᎴ

=4R² ;

3п

4
1 R² ; .. T =
3

XIV.

1. Compare the forces by which a body attracted separately to

two centers of force may describe the same circle in different periodic

times.

2. If SB (fig. page 176) be perpendicular to the diameter DSd,

prove that the forces at D and d are as dB* : DBª.

3. If μ be the absolute force in a circular orbit described under

the action of a force tending to a point in the circumference, prove

that the time in a quadrant commencing from the extremity of the

diameter through the center of force is (w + 2) R³ . (2) * .

In what unit of time is the result expressed ?

V³

F

4. Prove that is finite, however near the body approaches

the tangent from S, if S be without the circular orbit.

5. Prove that, if the law of force tending to S, a point without a

circle, be the law of force under which part of the circle can be de-

scribed, the body will move near B as if acted on by a force tending

to B and varying inversely as the cube of the distance from B.

Also give reasons for supposing that no force acts at the point B.
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6. OE is a radius perpendicular to the diameter through S, in a

circular orbit about a central force tending to a point S within the

circle, SB an ordinate, perpendicular to OS, shew that, if the force at

B be an arithmetic mean between the forces at the greatest and least

distances, OE³ = SB . SE².

7. Prove that, if a circle be described about a force tending to a

point in the circumference, and PQ be a chord parallel to the dia-

meter through that point, the times of describing equal small arcs

near P and Q differ by a quantity which varies as PQ.

8. A point describes a circle, with an acceleration tending to any

point within the circle. Prove that, if three points be taken at which

its velocities are in harmonical progression, the velocities at the other

extremities of the diameters, passing through those points, will also

be in harmonical progression.

9. Apply the proposition contained in Cor. 3, to prove that if

in an elliptic orbit described under the action of a force tending

to the center, the force varies as the distance from the center, then

the force tending to the focus varies inversely as the square of the

focal distances.

10. Deduce, by Cor. 3, the law of force, when a parabola is

described under the action of a force tending to the focus, from the

constant force parallel to the axis, under the action of which the same

parabola may be described.
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A body moves in a semicircle PQA under the action of a

force tending to a point S so distant that the lines PS, QS

drawn from the body to that point may be considered

parallel ; to find the law offorce.

Let CA be a semidiameter of the semicircle drawn from the

center perpendicular to the direction in which the force

acts, cutting PS, QSin Mand N, and join CP.

R

Z

Q

Α'

E

T

N M C

Let PRZ be the tangent at P, ZQT perpendicular to PMS

meeting PRZin Z, and let SNQ meet PRZ in R.

Then the force at P∞

QR

SP2.QT
ultimately, if the arc PQ be

indefinitely diminished, and SPmay be considered constant ;

also by Euclid III. 36, QR . (RN+ QN) = RP², and, since

RQ is parallel to PT, and the triangles PZT, CPM are

similar, RP QT :: ZP : ZT :: CP : PM;

QT QT² RP² PM2

= =

QR RP QR CP2

2PM³

·
(RN+ QN)

=

CP
ultimately ;

hence, force at P, which ultimately
∞

1
QR

QT¹², ∞PM²
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Aliter.

In fig. page 176, draw OE a semidiameter perpendicular to

SD, and let the distance SP cut the circle in V, and OE in

M, then, by the preceding proposition,

F
-

8h2R2

SP2.PV3'

and, if S be very distant, the ratio of PM : SM or SO

vanishes ; therefore, SP= SO ultimately, and PV is ulti-

mately perpendicular to OE and equal to 2PM ;

:. F =

h2R2

SO2.PM3

1

PM

SCHOLIUM.

A body moves in an ellipse, hyperbola or parabola, under the

action of a force tending to a point so situated and so dis-

tant that the lines drawn from the body to that point may

be considered parallel, and perpendicular to the major axis

of the ellipse, the axis of the parabola or the transverse

axis of the hyperbola. To shew that the force varies in-

versely as the cube of the ordinates.

Let AMG be the axis to which the direction of the forces

may be considered perpendicular, PM, PGthe ordinate

and normal, PO the diameter of curvature, PV the chord

of curvature in direction PS.

P

A M

V

2h2 2h2 PG2

Then F
=

SY.PV SP².PV · PM² '



186 NEWTON.

since SY : SP :: PM : PG ;

PG2 PG3 1

:. Fo ∞

PM . PV PM³. PO PM3 '

since PO PG3, see Art. 86.

Observations on the Proposition.

156. It has been shewn in Art. 112, that the equable de-

scription of areas may, in the case of forces acting in parallel

lines, be replaced by the uniformity of the resolved part of the

velocity in the direction perpendicular to that of the forces. In

the proof given in the text, when S is removed to an infinite dis-

tance h and SP are both infinite magnitudes, but the expression

h

is finite, for area SPQ described in the time T is ultimately
SP

equal to area SMN whose base is equal to uT, if u be the com-

ponent of the velocity perpendicular to the direction of the

ha

forces , therefore hTuT. SP ultimately, and = u , hence,
SP2

the acceleration due to the force , when a body describes the

semicircle , is

u²R2

PM3

157. The accelerating effect of the force, acting in parallel

lines, may be obtained directly from the proposition of Art. 112 ,

as follows.

Let u be the constant component of the velocity V, perpen-

dicular to the direction of the force, and let F be the accelerating

2V2 V2

=

PV 'PM'
effect of the force, therefore F=

also Vu PZ : ZT :: CP : PM;

.. F=

u². CP2

PM³ •

158.

Extension of Scholium.

When a body describes any curve under the action of a

force tending to a point S, so distant that the lines drawn from S
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to the body may be considered parallel, to find the law offorce,

and the velocity at any point.

Let APbe any curve, AMG the line to which the forces are

perpendicular, PM, PG the ordinate and normal at the point P,

PVthe chord of curvature in the direction of the force, PO the

diameter of curvature.

Let F be the accelerating effect of the force at P, u the

component of the velocity V in the direction AMG;

.. V : u :: PG : PM,

also PV PO :: PM: PG;

2√2

. F:= =

:

2u² . PG2 PO 2u2 . PG³

=

PV PM².PO˚PV PO.PM³'

PG

and the velocity = u . PM

Illustrations.

1. A cycloid is described by a particle, under the action of a

force acting in a direction parallel to the axis ; find the accelera-

tion and the velocity at any point.

In the cycloid P0 = 4PG, and PM.AB= PG², AB being

the length of the axis ;

2u2 . PG2 PG

PM

u² . AB
=

PO

∞
1

ΡΟ 2PM2 PO¹'

.. F=

PG AB 1

and the velocity at P= u . = u . OC

PM PG PO

2. A particle moves in a catenary under the action offorces

acting in vertical lines ; find the accelerating effect of the force,

and the velocity at any point.

Let AM be the directrix , AB the ordinate at the lowest

point.

Then PG PM :: PM : AB and PO PG;

2u² . PG³ 2u2 . PM

=

. F:=

PO.PM3
∞PM∞ PO³,

AB2

PG

and the velocity at P= u.

PM

= 2 . -PM.
PM AB
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XV.

1. A body is moving in a semicircle under the action of a force

tending to a point, so distant that the lines drawn from the body

to that point may be considered parallel ; if the center of force be

transferred to the center of the circle, when the direction of the

body's motion is perpendicular to that of the force, its magnitude

at that point being unaltered, prove that the body will continue to

move in the circle.

2. If a cycloid be described under the action of forces in the

direction of the base, the force at any point varies inversely as

AM.MQ; AM, MQ being the abscissa and ordinate of the correspond-

ing point of the generating circle.

3. A catenary is described under the action of a horizontal

force, prove that the force varies as the distance from the directrix

directly, and the cube of the arc from the lowest point inversely.
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If a body revolves in an equiangular spiral, required the

law ofcentripetalforce tending to the pole of the spiral.

Draw SY from S, the pole of the spiral, perpendicular to

the tangent PY, and let PV be the chord of curvature at P,

whose direction passes through S ; then, since the angle

SPY is constant, SY varies as SP, also PV varies as SP;

therefore the centripetal force varies inversely as SY'. PV,

and therefore inversely as SP³.

Observations on the Proposition.

159. In the proof of the proposition, it is assumed that

PV∞ SP; that this is the case may be shewn by the considera-

tion that, if PQ, pq be any arcs of an equiangular spiral sub-

tending equal angles at S, SPQ and Spq will be similar figures ,

and the subtenses QR, qr parallel to SP, Sp respectively, will be

PQ² . pq²

proportional to those radii , therefore :: SP : Sp.

QR qr

160. To find the measure of the accelerating effect of the

force tending to the pole, under the action of which a body de-

scribes an equiangular spiral.

Prove, first, as in Art. 90, that PV= 2SP, and then pro-

Iceed as follows :

Let F be the measure of the accelerating effect of the force

tending to the pole, a the angle of the spiral,

then, F =

2h2

SY.PV

2h2

SP2 sin' a . 2SP

=
μ

SP3

where μ=h² cosec² a.

161. To find the velocity ofa body describing an equiangular

spiral under the action ofaforce tending to the pole.

м

If be the accelerating effect of the force tending to S;

SP3
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h

the velocity at P=
=

h με 1
= ∞

SY SP. sin a SP SP

162. To find the time of describing any arc of the equi-

angular spiral.

Let AL be any arc, SA, SL bounding radii, P the time of

describing the arc. Then, as proved in page 31 ,

area SAL = | (SA² ~ SL²) tan a = h.P;

.. P=

SA² ~ SL2

2h

tan a =

SA²- SL2

2μ+ cos a

Illustration.

In any orbit, described under the action of a force tending to

any point S, when the angle between the tangent PY and the

radius SP is a maximum or minimum, the velocity is equal to the

velocity in a circle at the same distance about the same force in the

center.

For, the curve, near this point, may be considered an equi-

angular spiral ultimately, since the angle is constant for a short

time ; therefore the chord of curvature is = 2SP, and V²=F.SP.

XVI.

1. In different equiangular spirals, described under the action of

forces tending to the poles which are equal at equal distances, shew

that the angular velocity varies at any point as the force and the

perpendicular on the tangent conjointly.

2. The angular velocity of the perpendicular on the tangent is

equal to that of radius.

3. The velocity of approach towards the focus, called the para-

centric velocity, varies inversely as the distance.

4. A body is describing a circle, whose radius is a, with uniform

velocity, under the action of a force, whose accelerating effect, at

any distance r, is . Prove that, if the direction of its motion be

deflected inwards through any angle a, without altering the velocity,

the body will arrive at the center of force after a time

a²

2μ sin a

•

5. Deduce from the time in an equiangular spiral, the time of

passing from one point to another, when a body moves along a

straight line with a velocity which varies inversely as the distance

from a fixed point in that line.
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If a body is revolving in an ellipse, to find the law of cen-

tripetal force tending to the center ofthe ellipse.

Let CA, CB be the semiaxes of the ellipse, P the position of

the body at any time, PCG, DCD' conjugate diameters,

Q a point near P, QT, PFperpendiculars from Q and Pon

PG, DD' ; draw QU an ordinate to PCG, QR a subtense

parallel to CP.

B Ꭱ

D

T

K

V F

D'

Then F:=

2h2 QR

CPQT
2

ultimate
ly

.

But, by similar triangles QTU, PFC,

QT PF2
=

QU2 CP2,

and
QU²

PU.UG

=

CD2

CP² ;

QT2

:.

PU.PU CP4 CPA

PF . CD2 AC² . BC

"

UG = 2CPultimately, and PU= QR ;

..

QT

2QR

.. F= limit of

=
AC². BC²

CP3

2h . QR

CP .QTCP.Q1*

=

ultimately ;

h” . CP

∞ CP;

AC .BC
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therefore the force is proportional to the distance from the

center.

Aliter.

If CY be perpendicular on the tangent at P, and PV be the

chord of curvature at Pthrough the center =

2CD2

CP'

Art. 81 .

Then F=

2h2

CY2.PV

1.CP h2
= = CP.

PF2.CD2 AC². BC² '

COR. 1. And conversely, if the force be as the distance, a

body will revolve in an ellipse having its center in the

center of force, or in a circle, which is a particular kind

of ellipse.

COR. 2. And the periodic times will be the same in all

ellipses described by bodies about the same center of force.

For the periodic time in any ellipse

2 × area of ellipse

h

2πAC.BC

h

and the forces, at different distances in the same or different

h2

AC2.BO
=μ isellipses, vary as the distance ; therefore

the same in different ellipses, therefore the periodic times

in different ellipses is the same, and =

2π

Αμ

SCHOLIUM.

If the center of an ellipse be supposed at an infinite dis-

tance, the ellipse becomes a parabola, and the body will

move in this parabola ; and the force, now tending to a

center at an infinite distance, will be constant and act

in parallel lines. This theorem is due to Galileo. And,

if the parabola be changed into a hyperbola, by the change

of inclination of the plane cutting the cone, the body will

move in this hyperbola under the action of a repulsive force

tending from the center.
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Velocity in an Ellipse about the Center.

163. To find the velocity in the elliptic orbit under the action

ofa force tending to the center, the measure of whose accelerating

effect is μx distance.

h

The velocity at P=
=

CY

h.CD

CY. CD

་

h.CD

AC.BC '

h2

and н
=

AC² . BC2 ;

therefore the velocity at P= √μ . CD.

Aliter.

PV CD2

(Vel.)2 at P = F.
2

= μ.CP. CP;
СР

164.

.. vel . at P= √μ . CD.

To compare the velocity in an ellipse about the center

with the velocity in a circle at the same distance.

(Velocity) in a circle, rad. CP= µ.CP.CP;

.. vel. at P : vel. in circle, rad. CP :: CD : CP.

165. If a hyperbolic orbit be described under the action of

a repulsive force tending from the center, the force varies as the

distance, and the velocity at any point as the diameter of the con-

jugate hyperbola parallel to the tangent at the point.

This may be proved exactly as in the case of the ellipse ,

employing the proper figure.

166. To find the time in any arc ofan elliptic orbit about a

force tending to the center.

LetPbe any point of the orbit, Q the corresponding point in

the auxiliary circle to the ellipse,

time from A to P∞ area ACP ∞ area ACQ ∞ 2 ACQ,

2π

and periodic time = ;

Αμ

2π

.. time in AP : :: ACQ : four right angles ;

.. time in AP circular measure of ACQ ÷√μ.

NEWT.

-
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Notes.

167. If, at a given point, the velocity of a body be known,

and the direction of its motion ; to determine the curve which

the body will describe under the action of a given centripetal

force, which varies as the distance from the point to which it

tends.

Let Pt be the direction of motion at P, V the velocity at P,

μ. CP the measure of the accelerating effect of the force tending

to C.

B

D

R

MA
T

On PC produced , if necessary, take PV equal to four times.

the space through which a body must move from rest, under the

action of the force at Pcontinued constant, in order to acquire

the given velocity V; so that V² = 2µ CP . ‡PV.

Draw CD parallel to Pt, a mean proportional to CP and

†PV, and let an ellipse be constructed with CP, CD as semi-

conjugate diameters, then PV is the chord of curvature at P

through C.

In this ellipse let a body revolve under the action of a

force tending to C, whose magnitude at Pis that of the given

force , see Arts. 121 , 123, then, when it arrives at the point P,

it will be moving in the direction Pt, also the square of the

velocity at P= μ . CD² = µ . CP . ¿PV= V², or the velocity at P,

in the constructed ellipse, is V. Hence the body revolving

in this ellipse is under the same circumstances as the proposed

body, in all respects which can influence the motion of

a body ; therefore the proposed body will describe the ellipse

constructed as above.
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A direct solution of the problem, which is solved syntheti-

cally in the last Article, is given in pages 88 and 89 .

168. Geometrical construction for the position andmagnitude

ofthe axes ofthe elliptic orbit, described by a body about the center,

when the velocity at a given point is known, and also the direction

of motion.

Produce CP to R, making PR a third proportional to CPand

CD; bisect CR in U, and draw UO perpendicular to CR, meet-

ing the tangent at P in O, and with center O describe a circle

passing through C, R, and cutting the tangent in T and t;

.. PT . Pt CP . PR = CD³.=

Let TC intersect the ellipse in A, A' , and draw PM parallel

to the diameter conjugate to ACA' ;

then PT2 : CD² :: TA . TA' : CA

:: CT - CA : CA2,

.. PT PT. Pt :: CT- CT. CM : CT. CM,:

.. PT Pt : MT : CM;:

hence, Ct is parallel to PM, and CT, Ct are in the directions of

conjugate diameters ; but TCt is a right angle, therefore CT,

Ct being in the direction of perpendicular conjugate diameters ,

are the directions of the axes of the ellipse, and if PM, Pm be

perpendiculars from P upon these directions, the semiaxes are

mean proportionals between CM, CT, and Cm, Ct. Q.E.F.

169. Equations for determining the position and dimensions

ofthe orbit.

Let μ. R be the measure of the accelerating effect of the force

at the distance CP= R, V the velocity, a the angle between CP

and the direction of motion at the given point P. Let a, b be the

semiaxes of the ellipse, the angle which the larger axis makes

with the distance CP.

☎

Then V² = μ . CD2, and CD2 + CP² = a² + b² ;

.' . a² + b² = + R2.

μ

Also V. Rsin a = h = √μ . ab ;

(1)

02
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.. ab

V.R sin a

=
(2)

Αμ

and, by the properties of the ellipse,

R2R2

my cos² + sin² =: 1.

b2
(3)

The equations (1 ) , (2) and (3) determine a, b and w, whence the

magnitude and position of the ellipse is determined.

We can obtain an equation for a, immediately in terms of

the data, as follows :

( -1) sin' w ( 1 ) cos" , by (3),

ᎡᎡR2 R2

a² +b²

R

a²b²

=

D2

= cosec²a ( 1 +
( 1 +MR) , by (1) and (2) ,

μR²

cosec²α . by (2),

R2

V2 ,

( -1 ) ( 1-4)

Cos²

R2

b2

1

sin²

-
R2

cos²a sin2

cosec² a 1+

... cot 2a =12
(cot

= cot²a;

sin cos

cot a

μR2
;

- 2

tan a cot² a- 1 + cosec² a .

= cot 2a + cosec 2a .
μ.R2

V2
;

μR2

V2

(4)

whence is known immediately from the initial circumstances of

the motion.

170. Ifthe force be repulsive, the equations for determining

a, b, ☎ are

V2
a² — b²= Rª² _ V²¸

"

μ
(1)
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and

R2

ab =

VRsin a

cos³@ -
R$

b⁹

sin³@ == 1.

(2)

(3)

The direction and magnitude of the axes of the hyperbola

may be determined geometrically, by observing that the asymp-

totes are the diagonals of the parallelograms of which the conju-

gate semi-diameters are sides, and that the axes bisect the angles

between the asymptotes.

171.

Resultant of any number offorces.

When a particle is acted on by any number offorces,

which tend to different centers, and vary as the distance from those

centers, to find the resultant attraction.

Let μ.R, μ'. R be the magnitudes of two of the forces at the

distance R ; A, Bthe centers to which they tend, P the position

of a particle acted on by the forces.

P

H
K

G B

Let G be the center of gravity of two particles at A and B

whose masses are in the ratio of µ to μ', join PA, PB, PG.

The components of the force μ .PA, in the directions PG,

GA, are μ. PG and μ. GA, and those of the force p' . PB, in the

directions PG, GB, are μ' . PG and μ' . GB, but µ . GA = µ' . GB,

therefore the resultant of the forces tending to A and B is

(μ +μ') PG, which is a single force of magnitude (µ +µ') R, at

the distance R, tending to the center of gravity of masses μ, μ

placed at A and B.
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If "R be the magnitude of a force at the distance R, tending

to C, the resultant attraction is that of a force tending to the

center of gravity H of particles at C and G, whose masses are in

the ratio μ" : μ + μ' , which varies as the distance from H, and

whose magnitude at the distance R is ( ++µ") R.

And generally, the resultant of any number of forces is a

single force, tending to the center of gravity of a system of parti-

cles whose masses are proportional to the magnitudes of the

forces at the unit distance, and whose magnitude at any distance

is the sum of those of the forces at the same distance.

172. COR. 1. If every particle of a solid of any form attract

with a force which varies as the mass of the particle and the dis-

tance conjointly, the resultant attraction of the solid upon any

body is the same as that of the whole mass of the solid collected

into its center of gravity.

173. COR. 2.

whose center is B,

as μ' is greater or

If any of the forces be repulsive, as that

G will lie in AB or BA produced , according

less than μ, and the resultant of the forces ,

tending to A and from B, will be (μ - μ) PG from G, or

(μ - μ') PG towards G.

Illustrations.

1. A body revolves in a circular orbit about a force which

varies as the distance, and tends to the center ofthe circle, and the

center of force is suddenly transferred to a point in the radius

which at the moment ofchange passes through the body; to find

the subsequent motion ofthe body.

(1) Since the force varies as the distance and is attractive,

the orbit will be an ellipse.

(2) And, since the force is a finite force, the body will move

in the same direction as before, at the moment of the change.

(3) Also, the velocity will, for the same reason, be un-

altered, at that moment, since the force requires a finite time to

produce an effect.
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Let CA be the radius passing through the body at the mo-

ment of change, CB perpendicular to CA, μ . CA the force at

distance CA, V the velocity in the circle.

B"
B B'

AT

A
SI S

=
Then Vμ. CA. CA = µ . CA ; and if S, the new point to

which the force tends , be in CA, let AB' be the ellipse described,

by (1) ; SAis one of the semiaxes of the ellipse, since A is an

apse, by (2) , and , SB' being the other, if a body revolved in this

ellipse round S, μ. SB" would be the square of the velocity at

A, the same as in the circle, by (3) ; that is, μ . SB' = µ . CA ,

and therefore SB' = CA CB ; hence the magnitude and posi-

tion of the two semiaxes SA and SB' are known, and therefore

the ellipse is completely determined.

=

The ellipse lies without the circle at A, because, the velocity

being unaltered, the force has been diminished in the ratio of

SA CA, and therefore the curvature diminished in that ratio.

If S had been in AC produced, as at S' , the force would

have been increased, and the orbit AB" would be within the

circle near A.

The greatest distance from CA which the body reaches is in

all cases the same for this lawof force, because the component of

the force perpendicular to CA is the same at the same distance

from CA in whatever curve the body moves ; therefore, in each

orbit, the velocity being the same at A, the velocity perpen-

dicular to AC is destroyed by the force at the same distance

from AC.

2. Abody is describing a circle about aforce which varies as

the distance and tends to the center ; if the center, to which the

force tends, be suddenly transferred to a point in the circumference,
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at an angular distance of 60° from the position ofthe particle at

any time, to determine the orbit described.

The orbit is an ellipse, since the force is attractive.

A

D' F B' S
D

P

Let P be the position of the body at the instant the center of

force is transferred from C, the center of the circle, to S, where

SCPis an equilateral triangle.

The velocity at P is √μ . CP= √μ . SP; and, since it is un-

altered by the change of the center of force , the semidiameter

conjugate to SP is equal to SP.

=

Draw DSD' perpendicular to CP, meeting it in F, and take

SD SD' SP. Construct an ellipse having SP, SD as equal

conjugate semidiameters ; SA, SB the semiaxes bisect the angles

PSD, PSD'.

The ellipse so described is the orbit required.

Prove the following construction :

On CP as diameter describe a circle cutting SD' in B', A' ;

SA' , SB' are the lengths of the semiaxes.

Explain why the orbit is exterior to the circle.

3. Two bodies whose masses are m, m' revolve in an ellipse,

under the action of a force tending to the center ; shew that if

they are at one time at the extremities of two conjugate diameters,

they will always be so, and in this case find the locus of their cen-

ter ofgravity.

Let P, D be their positions at any time, CP, CD being semi-

conjugate diameters . Let the ordinates MPQ, NDR meet the

auxiliary circle in Q and R.
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Since the angles ACQ, ACR are always proportional to the

times ; RCQ will always be a right angle ; therefore the bodies

will always be at the extremities of conjugate diameters.

R

K
Q

B

P

N C H MA

Let GHbe the ordinate of their center of gravity.

Join RQ and produce HG to RQ in K;

.. KH : GH= QM: PM, a constant ratio ,

also, RK: KQ = DG : GP,

therefore CK is constant, or the locus ofKis a circle,

hence, the locus of G is an ellipse , whose axes are proportional

to those of APD.

Shew that the semi-major axis : CA :: (m² + m²²) § : m + m'.

4. A body is composed of matter which attracts with a

force varying as the distance ; shew that, however a particle be

projected, unless it strikes the body, it will describe its orbit in

the same periodic time.

This is obvious immediately from Art. 171 , relating to the

resultant of attracting forces .

5. A body moves in an ellipse under the action ofa force

varying as the distance : if the velocity at any point be slightly

increased byth of itself, find the consequent changes in the axes

ofthe ellipse.

1

If the body be at the end of one of the equal conjugate dia-

meters, when the change takes place, shew that each axis is in-

th of itself, and that the apse line regredes throughcreased by

1

2n

a small angle, whose circular measure is

1 ab
-

n a -b
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When V is changed to V ( 1+
( 1 + 1) ,

let the corresponding

1

changes of a, b, and be aa, bß, and y: a, ß, y, and n

being so small that we may neglect their squares.

Then by the equations of Art. (169) , and notes ( 1) , (2) , (3)

in page 198,

a² (1 + a)² + b² (1 +B)²

V2

=-

μ

1\2

+ R²,
(1 + 2)²+

and, a² + b² =

.. a²a + b²ß

V2
=-

+ R²;

μ

V2

=

μη

(1)

α

Again, a'b' ( 1 + a) ' (1 + 9)' ■ V sina ( 1 + 1) .a²b² :
=

and a2b2 =

.. a + ß
=

1

n

μ

V2R2 sin² a

μ

(2)

whence it is easily shewn that

a
-

B

a² – R² = R² — b²-

=

In the particular case proposed ,

1

n (a² — b²)
-

a²+ b²

R2= .. =

1

2n

-
=ß.

R2

Also, cos² (@ + y) +() +

R2

b2
sin² (☎ + y) = 1 +

+
1/

R2 R2

b2

R2

and cos² + sin² = 1 ;
a"

2
1

.. (— — 4 ) (sin'" (a + 7 ) — sin² ∞ ) = {};

..

b²

-
{sin² - ☎

a²

( - )

R2

sin (2~ + y) sin y = -1 ;
a²

R

n
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and, since the axes bisect the angles between equal conjugate

diameters,

ab = R2 sin 2w,R²

therefore y, being expressed in circular measure,

=
ab

n (a² — b²) *
-

6. In any position of a particle describing an ellipse, under

the action of a force tending to the center, the center offorce is

suddenly transferred to the focus, prove that the sum of the axes

of the given ellipse is to the difference in the duplicate ratio of

the sum to the difference ofthe axes of the new orbit. Find the

eccentricity ofthe new orbit, and shew that its major axis bisects

the angle between the focal distance and the major axis of the

g̀iven ellipse.

Employing the equations of Art. (169) , if a, ẞ be the semi-

axes of the new orbit, P the position of particle when the

center is transferred to S,

a² + B² = CD²+ SP2 = SP . HP+ SP² = 2a . SP

aß = CD . SY,

and SY² : BC² :: SP : HP :: SP² : CD² ;

... 2aß = 2b . SP;.

•. (a + B)² : (a− ẞ)² :: a + b : a − b ;

and, if e and e be the eccentricities of the old and new orbits ,

since

e² = 1

.*.

མ

―

-

b

a

b2

a²

=

2aB

a²+B²

=

-

a²

(a² - B²\

a² + B²

B²
2e

2

1 + e '

SP2 SP2

Also, cos²@ +
sin² ☎ = 1 ,

a² B2

(a² — B²)² = 4 (a² — b²) SP² ;
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.. a³ — ß² = 2ae . SP;

.. a² = a (1 + e) SP,

and B² = a (1 − e) SP;

a (1 - e²)

SP

= -

-

= ( 1 − e) cos² ☎ + (1 + e) sin² ☎

= 1 - e cos 2w ;

.. 2π= ▲ PSA,

hence, the major axis of the new orbit bisects the angle be-

tween PS and the major axis of the original orbit.

Or, by the geometrical construction of Art. 168 , since PR is

a third proportional to SPand CD, and therefore is equal to HP,

the circle, which determines T and t, passes through H, and the

arcs HT, TR are equal, that is, STbisects the angle PSA.

1.

XVII.

Shew that the velocity in an ellipse about the center is the

same as that in a circle at the same distance, at the points whose

conjugate diameters are equal.

2. A body is revolving in a circle under the action of a force

tending to the center, the law of force at different distances being

that the force varies as the distance ; find the orbits described when

the circumstances are changed at any point as follows :

(1) Ifthe force be increased in the ratio of 1 : n.

(2) Ifthe velocity be increased in the ratio 1 : n.

(3) If the force become repulsive, remaining of the same mag-

nitude.

(4) If the direction be changed by an impulse in the direction

of the center, measured by the velocity which is equal to that in the

circle.

3. Ifa body be projected from an apse, with a velocity double of

that in a circle at the same distance, find the position and magnitude

of the axes of its orbit.

4. A particle is revolving in a circle acted on by a force which

varies as the distance ; the center of force is suddenly transferred

to the opposite extremity of the diameter through the particle,

and becomes repulsive ; shew that the eccentricity of the hyperbolic

orbit = 4√5.
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5. An elastic ball, moving in an ellipse about the center, on

arriving at the extremity of the minor axis strikes directly another

ball at rest ; find the orbits described by both bodies.

6. The particles of which a rectangular parallelopiped is com-

posed attract with a force which varies as the distance, and a body is

projected so as to describe a curve on one of the faces supposed

smooth ; find the periodic time.

7. A body is projected in a direction making an angle cos

EN

-1 1

√3

with the distance from a point to which a force tends, varying as

the distance from it, and the velocity √2 × velocity in the circle at

the same distance ; prove that one axis is double of the other and that

the inclination of the major axis to the distance is cos¹ .

8. CX, CY are straight lines inclined at any angle, and a force

tends to C, and varies as the distance from C. If from various points

in CY different particles are projected parallel to CX at the same

moment, and with the same velocity, they will all arrive at CX at

the same time and place ; and they will also do so, if the force

cease to act for any interval of time.

9. From points in a line CA between C and A particles are

projected at right angles to CA, with velocities proportional to their

distances from A, C being a center to which the force tends, and

the force varying as the distance ; find the ellipse of greatest area

which is described .

10. A particle is projected from a point P, in a given ellipse,

perpendicular to the major axis, and is acted on by a force which tends

to the center C, and varies as the distance from it ; and the velocity

is that in a circle whose radius is CS ; prove that the major axis of

the orbit is equal to that of the given ellipse, and that CP² = the sum

of the squares of the semi-minor axes of the orbit and of the given

ellipse ; also that the tangents of the inclinations of CP to the major

axes of the elliptic orbit and of the given ellipse are in the duplicate

ratio ofthe minor axes.

11. A number of particles move in hyperbolas, under the action

of the same repulsive force from their common center. Shew that, if

the transverse axes coincide, and the particles start from the vertex

at the same instant, they will always lie in a straight line perpendi-

cular to the major axis. If the hyperbolas have all the same

asymptotes, shew that the particles will at every instant be in a

straight line passing through the center, if they be so at any given

time.

12. Four equal bodies are placed in a smooth elliptic groove

at the extremities of equal conjugate diameters, and are acted on

by their mutual attraction, which varies as the distance. Shew that,

if they be projected with the same velocity, equal to that with which

they would revolve in a circle, passing through them all, they would
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exert no pressure on the groove, and the sum of the squares of their

velocities would never vary.

13. If a triangle ABC be inscribed in an elliptic orbit, described

by a particle under the action of a force tending to the center, so that

its center of gravity coincides with the center of the ellipse, prove

that the velocities of the particle at A, B, C will be proportional to

the opposite sides of the triangle, and also that the times from A to B,

Bto C and C to A will be equal to one another.

14. Two particles are projected in parallel directions from two

points in a straight line passing through a center of force, the

acceleration towards which varies as the distance, with velocities

proportional to their distances from that center. Prove that all

tangents to the path of the inner cut off, from that of the outer, arcs

described in equal times.

15. A body is revolving in an ellipse under the action of a

force tending to the center, and when it arrives at the extremity

of the major axis, the force ceases to act until the body has moved

through a distance equal to the semi-minor axis, it then acts for

a quarter of the periodic time in the ellipse ; prove that, if it again

ceases to act for the same time as before, the body will have arrived

at the other extremity of the major axis.

16. Two ellipses are described by two particles about a common

center, the axes of the two are in the same directions, and the sum

of the axes of one is equal to the difference of those of the other ;

prove that, if the particles be at corresponding extremities of the

major axes at the same moment, and be moving in opposite directions,

the line joining them will be of constant length during the motion,

and will revolve with uniform angular velocity.

17. A small bead slides on a smooth wire in the form of an arc

of a circle, under the action of a force, tending to a point in the

circumference of the circle, and varying as the distance. If the bead

be initially situated at the opposite extremity of the diameter passing

through the center of force, and just displaced, prove that, whatever

be the length of the arc, the sum of the squares on the axes of the

elliptic orbit, which the bead will describe after leaving the wire, will

be equal to the square on the diameter of the circle.

18. A point is moving in an equiangular spiral, its acceleration

always tending to the pole S. When it arrives at a point P, the law

of acceleration is changed to that of the direct distance, the actual

acceleration being unaltered. Prove that the point will then move

in an ellipse, whose axes make equal angles with SP and the tangent

α

2
to spiral at P, and that the ratio of the axes is tan : 1 , where a is

the angle of the spiral.



SECTION III.

On the Motion of Bodies in Conic Sections, under the

action ofForces tending to a Focus.

PROP. XI. PROBLEM VI.

If a body is revolving in an ellipse, to find the law offorce

tending to a focus of the ellipse.

D

RᎡ

x

E

S

A

H

F

K

Let S be the focus to which the force tends, Pthe position of

the body at any time, PCG, DCK conjugate diameters, Q

a point near P, QT, PF perpendiculars on SP, DCK, from

Q, Prespectively, PRa tangent at P, QR parallel to SP, Qxv

parallel to PR, meeting SP in x, and PC in v, and let SP,

DCK intersect in E.

2h2 QR

Then F-=

SP²• QT² '

minished.

ultimately, when QTis indefinitely di-
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But, by similar triangles QT , PFE,

QT2 PF2 PF2

Qx

= =
2

PE AC

CD2Qv²

CP2
Now,

Pv.vG

and

Pv

QR

=

=

BC

CD2

by the properties of the ellipse,

Pv CP

=

Рх PE'Pa

by similar triangles ;

Qv⁹ CD2

..
=

"

QR.VG CP.AC '

and vG = 2CP, Qx = Qv, ultimately ;

..

QT2 2BC2
-

QR AC
= L, ultimately,

if I be the latus rectum of the ellipse ;

F=

2h2 1

L'SP²

1

SP2 .

Aliter.

Since the force tending to the center of an ellipse, under the

action of which the ellipse can be described, varies directly

as the distance CP from the center C ; let CE be drawn

parallel to the tangent PQ to the ellipse ; then if S be any

point within the ellipse, and SP, CE intersect in E, force

tending to C : force tending to S

:: CP. SP2 : PE³ (Prop. VII. Cor. 3) ;

.. force tending to S

8
PE 1

SP2 SP2,

since PE is constant.

PROP. XII. PROBLEM VII.

If a body is revolving in a hyperbola, to find the law of

force tending to afocus ofthefigure.

The investigation is exactly the same as in the last propo-

sition, employing the subjoined figure.
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Also, repulsive force from C∞ CP, and by Prop. VII. Cor. 3,

force from C force to S : CP. SP2 : PE , whence force

to Soc

1

SP2,

since PE is constant.

G

K

F

D

R

E

Y
TQ

A S

In the same manner as in these propositions, it can be shewn

that the repulsive force tending from a focus, under the

action of which the body describes the opposite branch

of the hyperbola, varies inversely as the square of the

distance.

PROP. XIII. PROBLEM VIII.

If a body is moving in a parabola, to find the law offorce

tending to the focus.

Let S be the focus of the parabola, P the position of the

body at any time, Q a point near P, PRY a tangent at P,

QR parallel to SP, Qxv parallel to PR, meeting SP in x,

and the diameter through Pin v, QT, SY perpendicular to

SP, PYrespectively.

Then F
=

minished.

NEWT.

2h² . QR

SP2 , ultimately, when QP is indefinitely di-

P
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Since SP, Pv make equal angles with the tangent, Pav is an

isosceles triangle, therefore Pv = Px = QR, and by similar

triangles

QT

Qx

SY
=

SP2

=

-
AS . SP

SP2

=
AS

SP'

and Qu² 4SP.Pv = 4SP. QR ;

P

X
R

Y
T

A

also, QxQv, ultimately,

QT2 AS QT2

4SP. QR

or = 44SL, ultimately ;

SP' QR

:. F=
2h 1

L'SP2

1

SP2

COR. 1. It follows from the last three propositions, that if

any body move from the point P in any direction PR,

with any velocity, and be at the same time acted on by

a centripetal force, which is inversely proportional to the

square of the distance, the body will move in some one of

the conic sections, having a focus in the center of force, and

conversely.

For when the focus, the point of contact, and the position of

the tangent are given, a conic section can be described

which will have a given curvature at that point. But when

the force is given and the velocity of the body, the curva-

ture is known ; and two orbits touching one another cannot

be described with the same centripetal force, and the same

velocity at the point of contact.

COR. 2. If the velocity, with which a body leaves its posi-

tion P, be such that the body would describe the small
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space PR in some very small time, and in the same time

the centripetal force were able to move the same body

through the space RQ, this body will move-in some conic

section whose latus rectum is the limit of

lines PR, QR are indefinitely diminished.

QT

QR

when the

In these corollaries the circle is included as a particular case

of an ellipse ; and the case is excepted in which the body

moves in a straight line to the center of force.

Observations on the preceding Propositions.

174. If u be the absolute force, in any conic section, whoseμ

latus rectum is L, described under the action of a force tending to

2h2

the focus, μ = and μ is given, either when the force at any
L'

point is given, or when the velocity at any point in a given conic

section is given, for, in the latter case, L and V. SY or h are

given.

175. Ifwe assume the chord of curvature through the focus

for any point in an ellipse or hyperbola, we obtain the law of

force from the expression F=

2h2

SY2.PV

For, PV. AC = 2CD2 = 2SP.HP;

and SY : BC² :: SP : HP;

.. F=

h².AC h² .AC
=

SY .HP.SP BC . SP2.

Similarly for the parabola,

since PV= 4SP, and SY² = AS. SP,

F=
2h2 h²

AS. SP.PV 2AS . SP

176. COR. 1. It is assumed in this corollary that a conic

section can be described under the action of a force tending to the

focus : see Art. 121 .

P 2
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Ifany number ofbodies revolve about a common center, and

the centripetal force varies inversely as the square ofthe

distance ; the latera recta ofthe orbits described are in the

duplicate ratio ofthe areas, which the bodies describe in the

same time by radii drawn to the center offorce.

For in each orbit the latus rectum is equal to the limit of

QT

(by Cor. 2, Prop. XIII.) when the arc PQ is made in-

QR

definitely small .

But QRin a given time is ultimately in the different orbits as

the centripetal force, that is, reciprocally as the square of

the distance SP.

Hence, ultimately,

QT2

QR

ос
QT . SP², or the latus rectum is in

the duplicate ratio of QT. SP or of twice the area PSQ de-

scribed in the given small time, which, since the area in each

orbit is proportional to the time, varies as the area described

in any given time.

COR. Hence the whole area of the ellipse, and the rect-

angle under the axes, which is proportional to it, varies

in a ratio compounded of the subduplicate ratio of the

latera recta and the ratio of the periodic time.

For the whole area is as QTx SP described in a given small

time, multiplied by the periodic time.

PROP. XV. THEOREM VII.

On the same supposition, the squares ofthe periodic times in

ellipses are proportional to the cubes ofthe major axes.

For, by Prop. XIV. and the Corollary, since QT.SP, in each

ellipse, described in a given small time varies as

BC

and

AC

the area AC.BC, the periodic time, which varies as the

area divided by QT. SP, AC .
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COR. Hence the periodic times in ellipses are the same as in

circles whose diameters are equal to the major axes of the

ellipses.

Observations on the preceding Propositions.

177. Prop. XIV. and its Corollary may be also proved as

follows.

Let h, h' be the double areas described in the same time

in any two of the orbits, L, L' the latera recta ; then, since

the absolute forces are the same in the different orbits,

2h2

L

=

2h'2

L'

.. L L'h² :L' :: h² : h'² ;

or the latera recta are in the duplicate ratio of the areas described

in a given time.

COR. Let P, P' be the periodic times in any two of the

orbits.

Then the areas are as hP : h'P' :: Lª‚P : L'³.P.

178. To find the periodic time in an ellipse described under

the action ofa given force tending to thefocus.

Let Pbe the periodic time, μ the absolute force, thenм

h.P= twice the area of the ellipse = 2πAC . BC ;

AC.h

and
μ
=

BC2
;

BC

.. P= 2πAC. = 2πAC.
*

h

(49) =2= 40+
ACI

Therefore, in different ellipses described about the same

center of force, the squares of the periodic time vary as the cubes

ofthe major axes.



214 NEWTON.

179. Tofind thetimefrom an apse to any point ofan elliptic

orbit described under the action ofa force tending to the focus.

Let ASa be the apsidal line, A being the further apse, AQa

the circle on the major axis as diameter, P any point in the orbit,

Qthe corresponding point in the circle. Join SP, SQ, CQ.

D

B

R

N M

Time in AP periodic time :: area ASP : TAC.BC:

area ASQ TAС²,:

and area ASQ sector ACQ + triangle SCQ
=

1 1

= {| AC .AQ + {| SC. QM;
2

therefore, if u be the circular measure of ACQ, and e the

eccentricity ofthe ellipse,

1

area ASQ = 1, AC² (u' + e sin u ')

and time in AP :

2πAC

:: u' +esinu : 2π,

ᎪᏟ

με
(u' + esin u') .i . e. the time from the further apse to P is

Similarly, if u is the circular measure of aCQ, the time from

the nearer

AC

apse is (u — e sin u) .

4

180. DEF. < aCQ, from the nearer apse, is called the eccen-

tric anomaly, aSPthe true anomaly, and the mean anomaly is

the angle which would be described in the same time as aSP

by a body moving with uniform angular velocity equal to the

mean angular velocity in the ellipse.
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181. To find the relations between the mean, the true, and the

eccentric anomalies.

Let m, v, and u be the three angles .

Since the mean angular velocity in the ellipse is 2π divided

by the periodic time, or

μέ

AC 'ᎪᏟ

m =uesin u, Art. 179,

and if a, e be the semi major axis and eccentricity

SP cos va cos u --ae ;

(1 − e²) cos v e + cos v

.. COS = + e= ;
1 + e cos v 1 + e cos v

1 - 1Cos u - e 1 ---- COS V

;

1 + cos u

=

-=
и

... tan

2

1 + e 1+ cos v

1 e V

tan

+ e 2

Also SP AC+ e . CM
=

--
= a (1 − e cos u).

182. To find the time ofdescribing any anglefrom the vertex,

in a parabolic orbit.

Let P be any point in a parabolic orbit whose axis is ASM,

S being the center of force ; draw PM an ordinate to ASM.

Then √2μ . AS is twice the area described in an unit of time.

Therefore time in AP

1

=

2 area ASP

(2μ .AS)

4

3

-
(2µ . AS)¹ ( AM. MP–SM. MP).

Let ASP- 0 and AS = a ;

Ө 0

.. SP cos2 =

2

SY cos

2

=
AS;

0

.. AM= SP- AS a tan²

PM= 2 (a . AM) ¹² = 2a tan

0

=

2'

;
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MP 4

.. time in AP=

(2μα)

2a

=

AM- AM+ AS

are,

μ

tan

0 1

+ tan³

3 •9.

Kepler's Laws.

183. The three laws known by the name of Kepler's Laws

I. That planets move in ellipses having the Sun's center in

one focus.

II. That the areas swept out by radii drawn from the

planet to the Sun's center are, in the same orbit, proportional to

the time of describing them.

III. That the squares of the periodic times are propor-

tional to the cubes of the major axes.

These laws were discovered by Kepler from observations

made on the planet Mars , and stated by analogy as general laws.

184. Kepler's laws, although not rigidly true, are suf-

ficiently near to the truth to have led to the discovery of the law

of attraction of the bodies of the solar system. The deviation

from complete accuracy is due to the facts, that the planets are

not of inappreciable mass, that, in consequence, they disturb

each other's orbits about the Sun, and, by their action on the

Sun itself, cause the periodic time of each to be shorter than

if the Sun were a fixed body, in the subduplicate ratio of the

mass ofthe Sun to the sum of the masses of the Sun and Planet ;

these errors are appreciable although very small , since the mass

of the largest of the planets , Jupiter, is less than 1th of the

Sun's mass.

Deductions from Kepler's Laws.

185. From the law of the equable description of areas,

stated as the second law, it is deduced , by Prop . II . , that the

forces acting on the planets are centripetal forces tending to the

Sun's center.

But this law gives no information regarding the nature or

intensity ofthe forces.
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186. From the elliptic motion of the planets , as asserted

in the first law, it is deduced, by Prop. XI . , that the force which

acts upon each planet varies inversely as the square of the dis-

tance from the center of the Sun.

187. From the relation between the periodic times and

lengths of the major axes, stated in the third law, it is inferred ,

by Prop. xv., that the planets are acted on by the same centri-

petal force; and that the attraction, being the same for all

bodies, independently of their form and substance, is not of the

nature of the elective action of chemical or magnetic forces .

188. The same laws hold for the motion of the satellites of

Jupiter, Saturn , and Uranus, and the first two for our Moon,

their respective primaries taking the place of the Sun in the

statement of the laws.

Hence it is inferred that forces tend to the centers of the

planets, varying according to the same law as the forces tending

to the Sun.

189. By such deductions the law of gravitation is rendered

probable, that every particle attracts every other particle with a

force which varies inversely as the square ofthe distance.

The law thus suggested is assumed to be universally true,

and calculations are made of the effects of the action of the

bodies of the solar system upon one another in disturbing their

elliptic motion ; and also of the disturbances of the motion of the

satellites due to the want of exact sphericity in the primaries ;

and these calculations have been found to agree with the results

of most minute astronomical observations.

Predictions of the return of comets have been fulfilled ,

founded on the supposition of the truth of the law, and the

existence and position of a planet have been recognized , before

its discovery by actual observation , from its assumed action ac-

cording to this law upon another planet.

Thus the law of gravitation has satisfied every test which

could be applied to it , and it is therefore proved to be true as far

as our system is concerned.
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On the same supposition, the velocities ofthe bodies are in the

ratio compounded ofthe inverse ratio ofthe perpendiculars

from thefocus on the tangent and the subduplicate ratio

ofthe latera recta.

For, in any two orbits,

h h'

V : V ' ::

SY SY'

L¹ L'

:: :

SY SY''

COR. 1. The latera recta of the orbits are in the ratio com-

pounded of the duplicate ratio of the perpendiculars and

the duplicate ratio of the velocities.

For L L :: h² : h'²

:: V.SY : V.SY"

COR. 2. The velocities of the bodies, at their greatest and

least distances from their common focus, are in the ratio

compounded of the ratio of the distances inversely, and the

subduplicate ratio of the latera recta directly.

For the perpendiculars on the tangents are these very dis-

tances.

COR. 3. And therefore the velocity in a conic section, at

the greatest or least distance from the focus, is to the

velocity in a circle at the same distance from the center

in the subduplicate ratio of the latus rectum to twice that

distance.

For the latus rectum of a circle is the diameter, therefore if

SA be the greatest or least distance, velocity in the conic

' section velocity in the circle

L* (284 )

SA SA
:: L : (254) .
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COR. 4. The velocities of bodies revolving in ellipses are, at

their mean distances from the common focus, the same as

the velocities of bodies revolving in circles at the same dis-

tances ; that is, (by Cor. 6, Prop. IV.) in the inverse subdu-

plicate ratio of the distances.

For the perpendiculars are now the semiaxes minor, that is

SY BC, and the distance SB= AC, therefore velocity in
=

the ellipse at the mean distance

the same distance

L¹ (2AC)*

velocity in the circle at

?

:: :

BC AC
:: L :

(2BC)

AC
9

therefore the velocities are equal.

COR. 5. In the same figure, or in different figures having

their latera recta equal, the velocity varies inversely as the

perpendicular from the focus on the tangent.

COR. 6. In the parabola, the velocity varies in the inverse

subduplicate ratio of the distance of the body from the

focus, in the ellipse it varies in a greater, and in the hyper-

bola in a less inverse ratio.

For the (velocity)²

which in the parabola

OC
1

SY2,

1

SP

HP 2AC - SP

in the ellipse CC OC

SP SP

HP

in the hyperbola
CC CC

SP

2AC +SP

SP

COR. 7. In the parabola, the velocity of the body at any dis-

tance from the focus is to the velocity of a body revolving

in a circle at the same distance from the center, in the

subduplicate ratio of 2 : 1 ; in the ellipse it is less, in the

hyperbola greater than in this ratio.

For, velocity in the conic section velocity in the circle at the

same distance

LA

SY

(2SP)

SP

(L.SP\

2SY

: 1

:: √2 1 in the parabola,
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BC2.SP 122014

AC.SY2)

: 1 ::

HP

AC
: 1 in the ellipse or hyperbola,

andHP < 2AC in the ellipse, and > 2AC in the hyperbola.

Hence also, in the parabola, the velocity is everywhere equal

to the velocity in a circle at half the distance, in the ellipse

less, and in the hyperbola greater.

COR. 8. The velocity of a body revolving in any conic section,

is to the velocity in a circle at the distance of half the latus

rectum, as that distance is to the perpendicular from the

focus on the tangent.

For, the velocity in the conic section : the velocity in the circle

at distance L ::

LA L

SY L

: :: L : SY.

COR. 9. Hence, since (Cor. 6 , Prop. IV.) the velocity of a body

revolving in a circle is to the velocity in any other circle in

the inverse subduplicate ratio of the distances, the velocity

ofa body in a conic section will be to the velocity in a circle

at the same distance as a mean proportional between that

common distance and half the latus rectum to the perpen-

dicular from the focus on the tangent.

For velocity in a circle at distance L : velocity in a circle

at distance SP :: SP : ( L) , therefore velocity in conic

section velocity in circle at distance SP

:: (¿L.SP)¹ : SY.

Notes.

190. To find the velocity in a conic section described under

the action ofa force tending to the focus.

In the central conic sections

h²

1/2
μ.Β(2

= =
μ.H

P

SY AC. SY AC . SP

or else, V2 F.1PV =
= ·

μ CD

SP AC

μ.HP

=

SP.AC
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but, HP= 2AC - SP, in the ellipse ,

and, HP SP- 2AC, in the hyperbola, force repulsive,
=

= SP+2AC, in the hyperbola, force attractive ;

м

.. V2 == 2 F

SP

In the parabola,

Ꮴ .=

72

SY2

SP

AC

μ.2SA 2μ
=

SA . SP SP

μ
2SP:=

SP2
•

2μ

SP

μ

S
P(2

SP
- for the

AC
square

or else, V² F. ¿PV=
=

191. The expression
of the ve-

locity in the ellipse , reduces itself to that for the hyperbola under

an attractive force by changing the sign of CA, which corresponds

to the opposite direction in which AC is measured in the hyper-

bola ; it reduces to that for the hyperbola under a repulsive force

by changing the sign of μ, which corresponds to changing the

direction of the force ; and to that for the parabola by making

AC infinite.

192. To compare the velocity in the ellipse or hyperbola with

that in the circle at the same distance.

Let U be the velocity in the circle,

U2
μ- SP=

м
=

SP SP

SP

.. V² : U² :: 2 ≈

AC
: 1 ,

V := U

SP

2 +

AC

The Hodograph.

193. DEF. If from any point lines be drawn representing

in direction and magnitude the velocity of a particle describing
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an orbit under the action of a force tending to a fixed center, the

locus of the extremities of these lines is the Hodograph.

This name is given to the curve by Sir William Hamilton,

in his work on Quaternions.

h

194. Since the velocity in a central orbit is if SQ be

h

SY'

SY'

the locus of will be the polar reci-taken in SY equal to

procal of the orbit with respect to a circle the square of whose

radius is h ; and if it be turned about S through a right angle

will be the hodograph of the orbit.

195. PROP. If a conic section be described under the action

ofa force tending to a focus, the Hodograph is a circle.

For, in the case of the ellipse or hyperbola, the velocity

varies inversely as SY, and therefore directly as HZ, to which

its direction is perpendicular, and the locus of Z is a circle.

And, in the case of a parabola, AY being the tangent at the

vertex, AU perpendicular to SY,

SY : AS :: AS : SU,

therefore SU varies as the velocity, and the locus of Uis a circle.

Illustrations.

1. The hodograph for an ellipse, described under the action

ofa force tending to the center, is a similar ellipse.

For CD is parallel to the direction of motion and propor-

tional to the velocity.

2. The hodographfor a hyperbola, described under the action

of a force repelling from the center, is a hyperbola similar to the

conjugate hyperbola.

3. Thehodographfor a hyperbola, described under the action

ofa constant force parallel to the axis, is a straight line parallel

to the axis.

CC
"

For the square of the velocity ∞SP SY2, and the locus of

Y is a horizontal line, therefore , since SY is perpendicular to

the direction of motion , and proportional to the velocity, turning

the locus of Y through a right angle, the hodograph is a ver-

tical line.
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Given that the centripetal force is inversely proportional to

the square ofthe distance from the center, and that the

absolute force ofthe center is known ; it is required to find

the curve which will be described by a body which is pro-

jected from a given point with a given velocity in a given

direction.

Let V be the velocity, PYthe direction of projection from P,

S the point to which the force tends, and let PUbe mea-

sured on PS, produced if necessary, equal to twice the

space through which the body must be drawn from rest by

the action of the force at P continued constant, in order

that the velocity V may be generated ; therefore since the

absolute force is given, PU is given. Draw PG perpen-

dicular to PY, and PHso that HP, orHP produced, and

SP make equal angles with PG. Draw UG perpendicular

to PG and join SG.

Here three distinct cases arise :

L

I. If PU is equal to 2SP, S is the center of a circle described

about PGU, and SGP = SPG = HPG ; therefore SG,

produced either way, will not meet PH.

4

H

L

G

T S

U

In this case, draw GL perpendicular to PS, and with S as

focus, and 2PL as latus rectum describe a parabola, whose

axis is in the direction SG.
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Then PUis half the chord of curvature at P through S.

II. If PU be less than 2SP, SGP is greater than SPG

or HPG, therefore SG produced meets PH in H.
L

L

A

Y

D
ZL

T

G H JA T

ED'

In this case, with S andH as foci, and SP+PHas major axis,

describe an ellipse, then PU is half the chord of curvature

at Pthrough S.

III. If PUbe greater than 2SP, SGP is less than SPG,

and angles SGP, HPG are together less than two right

angles, therefore GS produced meets PHin H.

K
F

Y

JA'
TAS

Z

In this case, with Sand H as foci, and HP- SPas transverse

axis, describe a hyperbola, then PU is half the chord of

curvature at Pthrough S.
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In all these cases, a body may be supposed to revolve in the

conic section described, under the action of the force tend-

ing to S, Art. 121, and the velocity at Pis that due to fall-

ing through one-fourth of the chord of curvature through S,

or half PU, under the action of the force at P supposed

constant, and is therefore equal to V, the velocity of the

projected body ; also, since SP and HP, or HP produced,

make equal angles with PG, PY is a tangent, therefore the

direction of motion is that of the projected body.

Therefore, the circumstances of the two bodies are the same

in all respects which can influence the motion at the point

P, and they will therefore describe the same orbits ; that

is, the projected body will describe a conic section of that

kind which corresponds to the velocity.

The orbit, therefore, will be an ellipse, parabola, or hyper-

bola, according as PUis less, equal to, or greater than 2SP,

that is, since VF. PU, according as V2 is less, equal to,

or greater than 2F. SP or twice the square of the velocity

in a circle whose radius is SP.

COR. 1. Hence if a body move in any conic section, and be

disturbed from its orbit by any impulse, the orbit in which

it will proceed to move may be discovered. For, by com-

pounding the motion of the body with that motion which

the impulse alone would generate, the motion and direc-

tion of motion will be found, with which the body will

proceed from the point at which the disturbance took

place.

COR. 2. And if the body be disturbed by any continuous

extraneous force, its course can be determined, approxi-

mately, by calculating the changes which the force produces

at certain points, and estimating from analogy the changes

which take place at the intermediate points.

SCHOLIUM.

If a body Pmove in the perimeter of any conic section, whose

center is C, under the action of a centripetal force tending

to any given point R, and the law of force be required,

NEWT. Q
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draw CG parallel to RP and meeting in G the tangent PG

to the conic section.

Then, by Prop. VII. Cor. 3, the force tending to R : the force

tending to C :: CG³ : CP.RP², but the force tending to C

varies as CP, therefore the force tending to R∞

Observations on the Proposition.

CG3

RP² •

196. In the solution of Prob. IX. it is assumed that if, in

any conic section, & be the intersection of the axis and normal

at P, and GU, parallel to the tangent, meet SP in U, PU is

half the chord of curvature at any point P.of a conic section,

drawn through the focus ; this property may be proved as

follows.

1. In the ellipse and hyperbola, let PG meet the conjugate

diameter in F; then CD . PF- AC. BC, and PG . PFBC²;

.. PU=

CD2

AC

=

..

PU PE CD

= =

PG PF BO'

PU PG BC CD

CD¯BC¯PFAC '

half the chord of curvature at P through S.

Also, if GL be perpendicular to SP, PL is equal to the semi-

latus rectum.

PL PF

..
=For, PG PE PL=

2. In the parabola,

BC2

AC

= half the latus rectum .

PU SP

and PG2SY;
=

PG SY'

: . PU=2SP= half the chord of curvature at Pthrough S.

.. PL==

Also,

2SY2

SP

=

PL SY

PG SP;

=

2SA half the latus rectum.=
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197. An elegant direct investigation of the path ofa body

projected at any inclination to the line drawn to a given center, to

which a force tends which varies inversely as the square of the

distance, is given in Goodwin's Course of Mathematics, being

due to R. L. Ellis , Esq. of Trinity College ; in that investigation

the properties of the hodograph are introduced , and the path is

shewn to be the locus of a point whose distance from a fixed

straight line is in a constant ratio to its distance from the center

of force.

For the outlines of the following demonstration, also depend-

ing on the properties of the hodograph, I am indebted to Pro-

fessor Tait, of Edinburgh, to whom I proposed the problem to

shew that the feet of the perpendiculars from the center offorce

on the direction of motion of the projected body always lie in a

circle or straight line.

198. General properties ofthe hodograph, connected with the

motion ofa body in a central orbit.

Let ABC be a portion of a polygonal perimeter described

under the action of impulses tending to S, as in Prop. I.

A

B

Y

d
D

Z

U

Z'

r'

T

Draw SY, SZ, perpendicular to AB, BC; produce YS, ZS

to Y' , Z' making YS. SY' ZS. SZ.
=

Then SY' , SZ' represent the velocities in AB, BC in magni-

tude, and are perpendicular to the directions of motion ;

.. SY' : SZ' :: Bc : BC,

and Y'SZ' = YSZ= YBZ;

Q 2
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therefore the triangles CBC, Y'SZ' are similar, and Y'Z' is per-

pendicular to BS produced.

Also, if Y'Z' U' ...be the polygon corresponding to ABCD...,

making the same construction for each side successively,

Y'Z' Cc : Z'U' : Dd :: ......

therefore the perimeter Y'Z'U'... varies as the sum of the velo-

cities generated by the impulses in the corresponding portion of

the perimeter of the original polygon, and the line joining the

extremities of the perimeter represents the resultant of those ve-

locities in magnitude, and is perpendicular to its direction.

If we proceed to the limit, in which case ABCD ... becomes

the central orbit, and Y'Z'U' ... the hodograph turned through a

right angle, we obtain the following results :

1. If a body describe any curve under the action of a force

tending to S, and YS, perpendicular to the tangent at any point

P, be produced to Y' , so that SY' . SY is invariable, the tangent

to the locus of Y' is perpendicular to PS.

2. Any finite arc of the locus of Y' varies as the sum of

the velocities generated by the central force in the passage

through the corresponding arc of the trajectory.

3. The chord of the arc represents the resultant of the

velocities generated by the central force , and is perpendicular to

its direction.

199. To shew that if the central force vary inversely as

the square ofthe distance, a body, projectedfrom any point in any

direction, will describe a conic section.

The velocity generated in any small given time varies ulti-

mately inversely as the square of the distance, also the angle

described in the same time varies ultimately inversely as the

square of the distance, therefore, the velocity generated varies as

the angle described ; hence, by Lemma IV., the velocity gene-

rated in a finite time varies as the whole angle described .

Now, by result ( 1 ) of the last proposition , the angle de-

scribed is equal to the angle between the tangents at the ex-

tremities of the corresponding arc of the locus of Y' , and, by (2) ,
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the velocity generated varies as the arc of that locus ; there-

fore the locus is such that the angle between the tangents at the

extremities of any arc varies as the arc, which is a property

peculiar to the circle.

If the circular locus of Y' be constructed, and Sbe within

or without the circle, let Y'S meet the circle in y, then Sy

varies inversely as SY' and therefore directly as SY, hence the

locus of Yis similar to that of y , and therefore is a circle.

=

If S be upon the circle, let the extremity E'of the dia-

meter through S correspond to E, so that SE' . SE SY' . SY,

therefore SY SE SE' : SY', hence SEY := 4 SY'E' ,

therefore SY is perpendicular to SE, and the locus of Y is a

straight line.

Hence, the feet of the perpendiculars from the center of force

on a tangent to the body's path lie in a circle or straight line,

which is a property of a conic section only, since straight lines

drawn according to a fixed law can only have one envelope.

Therefore, the path will be an ellipse, parabola, or hyperbola,

according as Slies within, upon , or without the perimeter of the

locus of Y.

200. Equations for determining the elements of the elliptic

2μ

orbit, when V² <
SP

Let V be the velocity of projection , a the angle SPYbetween

SPand PY, the direction of projection, fig. page 224, μ the abso-

lute force, the angle PTS between PY and the major axis ,

let a, b , e be the semiaxes and eccentricity of the orbit, L the

latus rectum, and SP= R;

.. V²:=

μ.HP
μ

R

R

SP. 40- (2-4).
α

Also, μ.L = h² = V2R2 sin² a;

(1)

b2 V2R2 sin² a

11
a (1 − e²) =

- =

α
μ

(2)

Draw SY, HZ perpendicular to the tangent, and HK to SY,

then SHcos SHK=HK= YZ= (SP+ PH) cos SPY;

.. 2ae cos = 2a cos a ;

=
.. e cos y cos c. (3)
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Also, SHsin SHK
=
SK= SY- HZ;

.. 2ae sin

.. e sin y = (?

.. tan y
-
R

=

=

(SP– HP) sin a

-
= {R— (2a — R) } sin a ;

− 1)

- sin a ;

( -1)tanα

R

-(1- V)

=

a

tan a. (4)

The equations (1) and (2) determine a, b and e, and (4) de-

termines immediately from the given circumstances of pro-

jection, (3) is also a convenient equation for determining the

position of the axes when e has been previously found.

Instead of (3) or (4) we might employ the equation

L

2R

V2R sin² a

=1+ e cos ASP:=

μ

to determine the angle ASP, which also gives the direction of

the axes.

201. Equations for determining the elements ofthe hyperbolic

orbit, when V2 >

2μ

SP.

[72 μ
= 2+

R

R

(1)

b2

μ =µa (e² — 1 ) = V²R² sin² α ,
α

(2)

and SH cos SHK= HK= YZ= (HP– SP) cos a ; fig. p. 224,

.. e cos y = cos a.

Also, SHsin SHK= SK = SY+HZ ;

.. 2ae sin

.. tan

={R + (2a + R)} sin a ;

=

R

(2 + 1)a

+ 1 tan a

RV2

-( - 1) tana ;

=

(3)

(4)
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or, as in the case of the ellipse,

L V2R sin' a
= 1 +e cos ASP=

2R
μ

202. Equations for determining the elements ofthe parabolic

orbit, when V2 –=
2μ

SP'

SY²= AS . SP, fig. page 223 ; .. AS= R sin² a,

and PTS - a,

(1)

(2)

(1) and (2) are equations which completely determine the position

and dimensions of the orbit.

203.
To find the elements of the orbit described under the

action ofa repulsive force varying inversely as the square of the

distance from the pointfrom which theforce tends.

Let Hbe the point from which the force tends, HP=R,

V²= =
μSP μ HP- 2AC

HP.AC HP AC

μ
R

=

R α( -2).
(1)

The other equations are similar to those in Art. 201 .

Illustrations.

1. A body is revolving in a circle under the action ofa force

which tends to the center and varies inversely as the square of the

distancefrom it. When the body arrives at any point, iftheforce

begin to tendto the point of bisection ofthe radius through the body,

to determine the orbit described by the body.

Let CA be the radius, S the new center of force. Then

since the force is finite, the velocity at A is unaltered, and A is

ofthe new orbit.an apse

Also (velocity) in the circle =

μ

CA

•
μ 2μ

CA = < ; hence
CA SA

the body moves in an ellipse, and

μ

CA

=
μ

SA(2 - 54).
(1)

α

·. a = 2/3 SA = | CA,

b2

3

μ
SA² ; (2)

CA
and µ = 1' = .84';

μ h²

α
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.. b' = ¦ . CA. a =

b2 3

1 CA².

Also 1--1---=

Aliter.

= = ·

Instead of equation (2) we might determine e from the con-

sideration that A was one extremity of the major axis ;

.. SA = a (1 ± e) ;

3

..1 ± ete = , and e =

2

1

2

since the upper sign must be taken, and therefore A is the

greatest focal distance.

The orbit lies entirely within the circle, since the force at A

is increased, and therefore the curvature is greater than that in

the circle.

2. Ifthe new center of force be in the bisection of the

radius which, ifproduced, passes through the body, to determine

the orbit,

3

hence (2-4),

=
μ μ

CA SA

SA

The orbit must be elliptic, since
=

CA 2
< 2;

SA

α

SA

α

·
.. a = 3CA ;

1

2

= 2 -
3 1

2

and SA = a (1 ± e) ;

and A, in the new orbit, is the nearest point to S.

In this case the force, and therefore the curvature, is dimi-

nished, which accounts for the orbit being exterior to the circle.

3. A particle, acted on by a force which varies inversely as

the square ofthe distance, is projected from afixed point, with a

velocity which is to the velocity in a circle at the same distance as

√5 : 2, making an angle whose sine is with the linejoining

2

√5

the point ofprojection to the fixed point ; shew that the eccentricity
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ofthe orbit is , and that the major axis is perpendicular to the

distance ofprojection.

V2=
5
μ μ
= 2

4 R R

-

µa (1 − e¹) = V³ . Rºª . — = µR ;μα

(1)

(2)

.. a = R, and R is the semi- latus rectum, which proves the

e cos y = cos a ;

proposition.

Or, since (3)

3 1

and by (1) and (2) ,
1 - e2 =- and e=

12

4'

cos := 1

.. cos y
=

2

√5

--

=

4
=

1

sin a ;

hence, the angle between the direction of projection and major

axis is

π

2

―
a, that is, the major axis is perpendicular to the dis-

tance of the point of projection.

4. A body revolves in a circle under the action of a force

tending to the center and varying inversely as the square of the

distance. Find the orbit described, if the force suddenly tend to

a point S in the circumference of the circle, at an angular dis-

tance 60°from the body.

The square of the velocity at A
= =

μμ

CA SA

velocity is unaltered at A by the change,

=

SA (2-5
4
) ,

μ μ

SA

2

.. a = SA,
α

and, since the

that is, A is the extremity of the minor axis of the new orbit ;

hence, the major axis is parallel to the tangent at A, or perpen-

dicular to CA, and the center is in the bisection of CA.

The curvature is less than that of the circle, because the

normal force is diminished by the change.
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5. A body, revolving in an ellipse, under the action of a

force tending to a focus S, has the direction of its motion altered

at a given point of its path, the velocity remaining unaltered ;

to determine the corresponding change in the position of the

major axis:

Since the velocity, as well as the distance SP, in the new

orbit is the same as in the old , the length of the major axis is

the same ; therefore PH is the same in the two orbits ; that is ,

the other focus lies in a circle whose center is P, and SP, PH

make equal angles with the new direction.

6. Tofind at what point ofan elliptic orbit a slight alteration

may be made in the direction of motion, the velocity remaining

unaltered, so that the direction of the major axis may be the same

as before.

The direction of the major axis being unaltered, SH must

be a tangent to the locus of H, hence P must be at one of the

extremities of that latus rectum which does not contain the

center of force.

7. Prove that if, when a body is at the extremity of the

latus rectum which does not contain the center of force, the

direction of motion is deflected through a small angle, without

altering the velocity, the alteration of the eccentricity is to the

circular measure ofthe angle of deflection as BC² : AC².

For, let P be the position of the body, HH' the small arc of

the circle described by H, which nearly coincides with the

P

A S ΠΠ
ΑA'

direction of the major axis, HPH ' is double the angle of de-

flection, and

H'S HS HH'

2AC 2AC'

or

240'
is the change of eccentricity ;
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.. change of eccentricity : deflection of direction

::

HH' HH'

2AC 2HP

:: HP: AC :: BC2 : AC2.

8. Ifa body, moving in an ellipse about the focus, be acted on

by an impulse towards the focus, when it arrives at the extremity

ofthe latus rectum, the axis major will be unaltered in direction .

For, the force being central, h is unaltered ; therefore, if SL

be the semi-latus rectum, μ . SL is unaltered, or SL is the semi-

latus rectum of the new orbit, and the axis major is perpendi-

cular to SL.

9. The velocity at any point of an ellipse about a force in

the focus is compounded of two uniform velocities, perpendicular

to the radius vector, and perpendicular to the major axis .

не

h

Let S be the center of force, HZ perpendicular on the tan-

gent at P, join CZ. Then HZ, ZC parallel to PS, and CH are

Y

A

P

Z

A
MH

M'

perpendicular to the three directions ; therefore the velocity re-

presented by HZ in magnitude is the resultant of the two repre-

sented by CZ and HC; but the velocity perpendicular to

h h

HZ; therefore the velocities , perpendicular to HC
HZ=

SY-b2

·

h

and CZ, are

b2

and
ae, α =

h не

bza h

b2

and , since μ
= h².

α

10. A particle moving in an ellipse under the action of a

force tending to the focus has a very small velocity

ημ

h
impressed
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upon it in the direction of the focus ; shew that the corresponding

changes ofthe eccentricity and angular distance of the apse are

given by the equations

e'- en sin 0,

e (0'- 0) = n cos 0.

For, since the impressed velocity is towards S, in the new

μ

h

orbit is still the velocity perpendicular to the radius vector : and

the velocity perpendicular to the new major axis, is com-

έμ

h
"

pounded of the two velocities in direction PM, and ½ in PS.

εμ

h

ημ

h

Let PM' be the perpendicular on the new major axis ; then

M'SM and M'PM, being angles in the same arc of a circle

about SPM, are equal , and the velocity in PM' and its com-

ponents in PMand PS being as e' , e and n,

e' sin M'PM= n sin SPM,

e' cos M'PM= e + n cos SPM;

-
therefore, since M'PM= 0' – 0 is small , and SPM= 90° – 0, the

proposition is proved.

XVIII.

1. The velocity in an ellipse at the greatest distance is half that

with which a body would move in a parabola at the same distance

required the eccentricity of the ellipse.

;

2. A body, moving in a parabola about a center of force in the

focus, meets at the vertex with an obstacle which diminishes the

square of the velocity by one fourth, without altering the direction of

the motion ; shew that the body will afterwards move in an ellipse

whose axis major is equal to the latus rectum of the parabola.

3. If, from each point of a hyperbola described under the action

of a force in the farther focus, a particle moves from rest, under the

action of the force at that point continued constant, until it acquires

the velocity ofthe body moving in the hyperbola, and then stops ; find

the locus of the particles. If r, r' be the radii vectores for the hyper-

bola and locus, 2ar' = r².

4. A body revolves in an ellipse about a center of force in the

focus S. Shew that there is always some determinate point at
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which the absolute force may be supposed to change suddenly

from μ to nu, so that the subsequent path of the body may be

a parabola about S in the focus, provided n is not situated beyond

the limits ( 1 + e) and ( 1 - e). Prove also that the latus rectum of

the ellipse : that of the parabola :: n : 1 .

5. A particle, describing an ellipse about a force in the focus,

comes to the point nearest to the center of force ; find in what ratio

the absolute force must then be diminished in order that the particle

may proceed to describe a hyperbola, whose eccentricity is the re-

ciprocal of that of the ellipse.

6. The ratio of the axes of the Earth's and Venus's orbits

is 18 13 ; find the periodic time of Venus.

7. A body is projected, with a velocity of 100 feet per minute,

from a point whose distance from a center of force, which varies in-

versely asthe square ofthe distance, is 32 feet, the velocity in a circle

at that distance being 80 feet per minute ; find the periodic time.

8. If a body be projected with a given velocity about a center

of force which varies inversely as the square of the distance, shew

that the minor axis of the orbit described will vary as the perpendi-

cular from the center of force upon the direction of projection ; and

determine the locus of the center of the orbit described.

9. The velocity in a parabola round the focus is suddenly

diminished in the ratio of /2 : 1 ; shew that the semi-major axis of

the new orbit will be SP, and that the semi-minor axis will be a mean

proportional between SPand AS.

10. A particle describes an ellipse under the action of a force

tending to a focus ; shew that the velocity at any point may be re-

solved into two velocities respectively perpendicular to the two focal

distances, each of which varies as the distance from the focus to

which the force is not tending.

11. A comet, moving in a parabola, is describing sectorial areas

about the Sun at the same rate as a planet moving in a circle, of

which the radius is half the latus rectum of the parabola ; shew that

the planet will move through about 76° 22′ of longitude, while the

comet passes from one extremity of the latus rectum to the other.

12. Two bodies describe the same ellipse, under the action of

forces tending to the center and a focus respectively, the forces being

such that, at the point where they are equal, the velocities of the

bodies are also equal ; shew that the periodic times of the two bodies

are as 1 ±e : 1 , e being the eccentricity of the ellipse.

13. Supposing the velocity of a body in a given elliptic orbit

to be the same at a certain point, whether it describe the orbit in

a time t about one focus, or in a time t about the other, prove that,
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2a being the major axis, the focal distances of the point are equal

to

2at'

t+ t'

and

2at

t+ t '

14. The perihelion distance of a comet moving in a parabolic

orbit is half the radius of the Earth's orbit, supposed circular. The

planes of the orbits coinciding, find the time in days from perihelion

to the point of intersection of the orbits.

15. Of all comets moving in the ecliptic in parabolic orbits,

that which has the latus rectum of its orbit equal to the diameter of

the Earth's orbit will remain within the latter for the longest period,

the Earth's orbit being considered circular.

16. Two ellipses are described by two particles about the same

center of force in the focus ; the eccentricities are and ½ √3 re-

spectively, and the major axes are coincident in direction and equal

in length. Compare the times which each body spends within the

orbit of the other.

17. A body is moving in a given parabola under the action

of a force in the focus ; and, when it comes to a distance from the focus

equal to the latus rectum, the force suddenly becomes repulsive ; de-

termine the nature, position, and dimensions of the new orbit.

18. A particle is describing an ellipse under the action of a force

tending to the focus ; if, on arriving at the extremity of the minor

axis, the force has its law changed, so that it varies as the distance,

the magnitude at that point remaining unchanged, prove that the

periodic time will be unaltered, and that the sum of the new axes

will be to their difference as the sum of the old axes to the distance

between the foci.

19. An ellipse and its auxiliary circle are described by two

bodies in the same periodic time under the action of forces which

vary inversely as the square of the distance. Prove that, if they are

simultaneously at either extremity of the major axis, the differ-

ence of the times of arriving at equal distances from the minor axis

varies as the distance of either from the major axis .

20. If the force, tending to the focus of an ellipse, become re-

pulsive when a particle describing the ellipse is at an angular

distance from the nearer apse, shew that the eccentricity of the

hyperbola described after the change is (e² + 4e cos 0 + 4)³, e being

the eccentricity of the ellipse.

21. A body revolves in a parabola under the action of a force

tending to the focus, and when it arrives at a point whose distance

from the axis is equal to the latus rectum, the force is suddenly

transferred to the opposite extremity of the focal chord passing

through the body. Shew that the new orbit will be a hyperbola
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whose axes are as 2 : 1 , and that the conjugate axis and the direc-

tion of motion at the point make equal angles with the focal chord.

22. A body moves in an ellipse about a focus, and is at the extre-

mity of the minor axis when its velocity is doubled. Find the new

orbit, and shew that the body will come to an apse after describing

a right angle, if the ratio of the axes of the given ellipse be 2 : 1 .

23. A body revolves in an ellipse about a center of force in its

center. When the body comes to the extremity of the axis major,

the law of the force is supposed to change suddenly to that of the

inverse square of the distance, the magnitude at that point being

unaltered ; find the elements of the new orbit. Shew that the

eccentricity of the new orbit is the square of that of the old.

24. If PO is perpendicular on the directrix from any point

of an elliptic orbit described by a particle about the focus S, and

when the particle is at P, the force suddenly tends to O instead

of S, prove that the new orbit may be a parabola if e > , and that,

in this case, SP passes through the intersection of the two circles,

one described on SH as diameter, and the other with center S and

radius SA, the shortest focal distance.

25. A body, describing an ellipse about a center of force in S,

has a velocity equal to its own communicated in the direction PH,

which causes it to describe a circle ; determine the eccentricity ofthe

original orbit, and shew that the diameter of the circle is four times

the latus rectum of the ellipse.

26.
A body is revolving in an ellipse under the action of a force

tending to the focus S, and, when it arrives at the point P, the center

of force is suddenly transposed to the point S' in PS produced so

that PS' is equal to the major axis of the ellipse, and the force be-

comes repulsive ; shew that, if HP be produced to H', and PH'= PH,

the length of the transverse axis of the hyperbola described is SP,

and H' is the other focus.

27. Prove that the rate, at which areas are described about the

center of a hyperbolic orbit described by a particle under the action

of a force tending to a focus, will be inversely proportional to the

distance of the particle from the center of force.

28. If the velocity of a particle at P, moving in an ellipse

under the action of a force tending to the focus S, be slightly in-

creased in the ratio 1 : 1 + n, shew that the major axis will be

increased slightly by m . HP, where m : 2n :: 2AC : SP, and that

it will revolve through a small angle whose circular measure is

PM
m .

SH'
PM being the ordinate at P.

29. A body revolves in an ellipse about the focus from nearer

to farther apse, and the angle which its direction makes with the
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focal distance is constantly being increased without altering the

velocity ; shew that the motion of the apse line will change from

progression to regression, when the true anomaly of the instantaneous

+ 2 tan-¹e, e being the eccentricity.orbit is

П

2

30. A particle is describing an ellipse about a center of force in

the focus, and the absolute force is suddenly diminished one half ;

shew that the chance of the particle's new orbit being a hyperbola

is π - 2e : 2π, all instants of time being supposed equally probable

for the change.

31. Two particles are revolving in the same direction in an

ellipse under the action of a force tending to the focus ; prove that

the direction of the motion of one as it appears to the other is

parallel to the line bisecting the angle between their distances from

the focus.

32. A force tends to the center of a given circle, and varies in-

versely as the square of the distance ; prove that all elliptic orbits

which can be inscribed in any triangle inscribed in the circle will be

described by a particle, under the action of the force, in the same

periodic time.
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SECTION VII.

ON RECTILINEAR MOTION.

PROP. XXXII. and PROP. XXXVI.

To find the time ofmotion and the velocity acquired, when a

body falls through a given space from rest, under the

action of a force which varies inversely as the square of

the distance from a fixed point.

Let S be the center of force, A the point from which the body

begins to fall.

A

P
M

B

Let APA' be a semiellipse, whose focus is S, and axis major

ASA', AQA' the circle upon AA' as diameter, MPQ a

common ordinate ; let C be the common center, and join

CP, CQ, SP, SQ.

Ifa body revolve in the ellipse under the action of the force

tending to S, the measure of whose accelerating effect at a

μ
distance SPis p ;

SP2

time in AP time in APA' :: area ASQ semicircle AQA'

NEWT.

:

:: sector ACQ +ASCQ : semicircle AQA' ;

Ꭱ
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TAC AC.arc AQ + SC.QM

therefore, time in AP =

με
TAC2

This is true, whatever be the magnitude of the minor axis

BC, and therefore when it is indefinitely diminished, in

2BC2

which case the diameter of curvature at A
=

AC

0, and

therefore the body has no velocity at A ; that is, the elliptic

motion ultimately degenerates to a rectilinear motion in

which the body starts from rest at A.

Also, since AS . SA' = BC²,

SA' ultimately = 0 ; : . SC = AC = {SA ;

SA

therefore, time in AM =· (54) . (arc AQ+ QM).

2μ

Again, the velocity in the ellipse at P is

(μ . (2AC
. (24CSP) *

AC.SP

and, when the minor axis is indefinitely diminished, the

velocity at M, in the rectilinear motion of the body,

-
(2µ (AS– SM) )1404 2μ .AM\

AS.SM

=

AS.SM

"

COR. If a body be projected directly towards or from a

center, to which a force tends which varies inversely as

the square of the distance, the time and velocity acquired

in a given space may be determined by means of an ellipse,

parabola, or hyperbola, whose latus rectum is indefinitely

diminished, so constructed that at the point of projection

the velocity is properly represented.

Notes.

204. It must not be supposed that the motion will be repre-

sented throughout by the ultimate motion in an ellipse, whose

axis minor is indefinitely diminished, in which case the body

would return to A ; for, since in this case the ellipse passes

through S, we are precluded from applying the results of the

second and third sections in determining the motion of the body

after arriving at S ; but we may correctly apply these results to

determine the motion before arriving at S.
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In order to determine the motion after arriving at S, we

must observe that at S the force is zero, since its direction is

indeterminate , although, when the body is at any point very

near to S, there will be a very great force tending towards S;

on approaching S, therefore, the velocity will continually in-

crease, and the body will pass through S with very great

velocity ; but the motion will be retarded, according to the same

law, as rapidly as it was generated , and the body will proceed

to a distance equal to SA on the opposite side of S.

PROP. XXXVIII.

To findthe time of motion and the velocity acquired when

a body falls through a given space from rest, under

the action ofa force which varies as the distance from a

fixed point.

Let S be the center of force, A the place from which the

body begins to move ; make SA' SA, and on ASA' as
=

M Q

B

major axis describe a semiellipse APA', and a semicircle

AQA', and let MPQ be a common ordinate.

Suppose a body to revolve in the ellipse, under the action

of the force tending to S, the measure of whose accele-

rating effect at P is μ . SP, then, time in AP∞ area ASP

-sector ASQ angle ASQ;

therefore time in AP : time in ABA' :: arc AQ : πAS,

and time in AP=

π arc AQ 1 arc AQ

TAS

= X

μ
AS

;

and the same is true when the minor axis is indefinitely

diminished, in which case the velocity at A vanishes, since

the diameter of curvature vanishes.

R 2
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Therefore the elliptic motion is reduced to the rectilinear

motion of a body originally at rest at A, and the time in

AMis thus shewn to be

1
arc AQ

X

νμ
AS

Again, the velocity in the ellipse at P

=√μ . SD, where SD is conjugate to SP

= √µ (AS² + BS² — SP²) ;

therefore the velocity at Min the rectilinear motion

=√µ (AS² — SM²)¹ = √µ.MQ.

COR. Time from A to S=

π

2√μ'

or the time of reaching S is the same whatever be the

initial distance.

SECTION VIII.

PROP. XL. THEOREM XIII.

Ifthe velocities oftwo bodies, one ofwhich isfalling directly

towards a center offorce and the other describing a curve

about that center, be equal at any equal distances they

will always be equal at equal distances, iftheforce depend

onlyon the distance.

Let S be the center of force, and let one of the bodies be

moving in the straight line APS, the other in the curve

P

P

m

AQq. Suppose the velocities at P, Q to be equal, and
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let Qq be an arc of the curve described in a short time.

With center S and radii SQ, Sq describe circular arcs

QP, qP, let SQ meet pq in m, and draw mn perpendicular

to Qq.

Since the centripetal forces at equal distances are equal,

they will be so at P and Q, and Pp, Qm may represent

them ; Pp is wholly effective in accelerating P, Qn is the

only effective part of Qm on Q, the component nm being

employed in retaining the body in the curve.

Also since the velocities are equal at P and Q, the times

of describing Pp, Qq are ultimately proportional to Pp,

Qq, when the time is indefinitely diminished.

Hence, force at P in PS force at Q in Qq :: Pp : Qn,:

and time in Pp : time in Qq :: Pp Qq,

.. vel' acquired at p : vel' acquired at q :: Pp² : Qn . Qq,

but Qn . Qq = Qm² = Pp² ;

therefore the velocities added in Pp and Qq are equal, and

the actual velocities at p and q are equal.

By proceeding in the same way through any number of small

times, the proposition is proved.

XIX .

1. Ir a particle slide along a chord of a circle, under the

action of a force tending to any fixed point, and varying as the dis-

tance, the time will be the same for all chords, provided they ter-

minate at either extremity of the diameter which passes through

the center of force.

2. If the velocity of the earth in its orbit were suddenly de-

stroyed, find the time in which it would reach the sun.

3. A particle moves from any point in the directrix of a conic

section, in a straight line towards a center of force, which varies

inversely as the square of the distance, in the corresponding focus.

Prove that when it arrives at the conic section, the velocity

I being the latus rectum.

=

L

4. A perfectly elastic ball falls from rest towards a center of

force varying inversely as the square of the distance, and when it has



246 NEWTON.

fallen half the distance it is reflected by a plane, so as to move

in a direction making an angle a with its former direction ; shew

that the eccentricity of the ellipse subsequently described is cos a.

5. A perfectly elastic ball falls from a distance a towards a

center of force varying as the distance. When it has described a

space a it impinges at an angle of 45° on a plane and is reflected .

Shew that the semiaxes of the orbit subsequently described will

be a cos 60° and a sin 60°. Suppose that the ball again impinges

on the opposite side of the same fixed reflecting plane, shew that it

will be reflected to the center, and that the time of arriving at

the center will be five times the time of falling directly to it.

6. Suppose e to be the elasticity of the ball in the last prob-

lem, prove that, if the angle of incidence = tan-¹tan¹ √e, the subsequent

orbit will have its axis major or minor in the direction in which

the ball was originally falling, according as the distance from the

center C to the point of impact is greater or less than

a

e

1+e '

7. A particle of mass m is attached by an elastic string to

the center of a repulsive force whose measure of acceleration is

μ × distance. If the natural length of the string be a, and the

modulus of elasticity A. ma, shew that the greatest distance to which

the particle will proceed, supposing it to start where the string is

a, and that the time of returningof its natural length, will be

to its starting point will be

λ+μ

λ-
μ

2π
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ON THE GEOMETRICAL PROPERTIES OF CERTAIN

CURVES.

Cycloid.

205. DEF. If, in one plane , a circle be conceived to roll

along a straight line, any point on its circumference will de-

scribe à curve called a Cycloid.

Let C, D be the points where the tracing point P meets the

straight line, on which it rolls. A the point where it is furthest

from CD, ABthe corresponding diameter of the circle.

The revolving circle is called the generating circle, AB is

called the axis, A the vertex, CD the base.

206. If RPS be the generating circle in any position , then,

since the points of the base and circle come successively in

contact, CS arc PS, CB and BD are each half of the cir-

cumference of the circle, and BS arc RP.

=

207. To draw a tangent to a cycloid.

Let the generating circle be in the position RPS, then con-

sidering a circle as the limit of a regular polygon of a large

number of sides , it will roll by turning about the point of con-

tact, which is at rest for an instant, being an angular point of

the polygon ; therefore P moves perpendicular to SP, for an

instant, or in the direction PR of the supplemental chord, which

is therefore the tangent at P.

If AQB be the circle on AB as diameter, PQM an ordi-

nate perpendicular to AB the tangent at P is parallel to the

chord QA.

208. To find the length of the arc of a cycloid.

Let RPS be the position of the generating circle corre-

sponding to the point P in the cycloid, let P' be the position
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of P, when the circle has turned through a small angle POp,

and therefore moved through a space Pp, so that P'p is

parallel to the base, and equal to Pp ; hence the triangle PpP' is

C
D B

M

n

P

A R

isosceles, and if pn be drawn perpendicular to RP, PP' = 2Pn

= 2 (RP- Rp) ultimately ; therefore the cycloidal arc from the

vertex decreases twice as fast as the supplemental chord, and

they vanish together,

.. arc AP 2RP= 2AQ.
=

209. To find the relation between the arc and abscissa.

Let AMbe the abscissa of the point P,

AM: AQ AQ : AB;

.. AP² = 4AQ² = 4AB . AM.

210. To find the area of the cycloid.

Let P' be any point in the cycloid CP'C' (see the figure

in the next page) , P'S the chord of the generating circle which

touches the cycloid , and let Q' be a point in the cycloid nearP' ,

then the arc P'Q' ultimately coincides with P'S. Let Q'N',

Q'N be the complements of the parallelogram whose diagonal is

P'S, and sides parallel and perpendicular to the base, these are

equal ultimately ; therefore, by Lemma IV. , the cycloidal area

CNP' circular segment SP'N'.
=

211. COR. The exterior portion CBC' is equal to the area

of the semicircle, and the whole parallelogram BCB'C' is the

rectangle under the diameter and semi-circumference of the

generating circle, and is equal to four times the area of the

semicircle ; therefore the cycloidal area CC'B' is three times

the area ofthe semicircle.
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equal212. To shew that the evolute of a given cycloid is an

cycloid, and that the radius of curvature of a cycloid is twice the

normal.

Let APC be half the given cycloid, AB the axis, A the

vertex, and BC the base. Produce ABto C', making BC' equal

to AB, and complete the rectangle BCB'C', and let the semi-

cycloid C'P'C be generated by a circle whose diameter is equal

R
B'

P
Q"

CB
N

Q
M

P

A

R

to that of the generating circle of the given cycloid, rolling on

C'B' ; Cis the vertex, and CB' the axis ofthis cycloid.

Let SPR, SP'R' be two positions of the respective gene-

rating circles, having their diameters RS, SR' in the same

straight line, P, P' the corresponding points of the cycloids.

Join SP, PR and SP', P'R'.

By the mode ofgeneration, arc SP= SC, and arc SPR= BC ;

.. arc PR BS= C'R' = arc P'R' ;
=

.. PSR P'SR' ; and PSP' is a straight line.= 4

Also, arc P'S arc PS;
=

.. P'SP-2P'S
=

.. chd. P'S chd. PS;
=

P'Cthe cycloidal arc ;

also P'SPtouches the cycloid C'P'C at P' ;

therefore, a string fixed to the cycloid at C' , and wrapped over

the arc of the semicycloid, will when unwrapped have its ex-

tremity in the arc of the given cycloid ; hence, the evolute of a

semicycloid is an equal semicycloid, and the radius of curvature
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at Pis 2PS or twice the normal. If another equal semicycloid

be described by the circle rolling on B'C' produced, the extremity

of the string wrapped on this curve will trace out the remainder

of the given cycloid.

Thus a pendulum may be made to oscillate in a given

cycloid.

213. To find the time of oscillation of a heavy particle

moving in a smooth cycloidal arc whose axis is vertical.

A direct method of solving this problem is given in page 87 ,

but it can be solved by means of the proposition given in Ap-

pendix I. Prop. xxxvIII.

The particle being in any position P is acted on by a force

the measure of the accelerating effect of whose component in

direction of the motion is

RP 9

9. RS 2RS

= ·
9

AP, and 9 is constant.

2RS' 2AB

or

The tangential acceleration at every point is the same as

if the particle moved in a straight line under the action of a

force varying as the distance tending to a point in the line.

Therefore, the time of falling from any point to A is

π 2AB

2V
g

"

and the time of an oscillation from rest to rest

2AB

√24B9

being the same for all arcs of vibration.

The length of the string which by the contrivance of the

last article makes a particle oscillate in this cycloid is 2AB= 1

suppose ; therefore the time of the oscillation of a pendulum

of length 7 =π

214. To find the time of a very small oscillation ofa simple

pendulum suspendedfrom a point.

A simple pendulum is an imaginary pendulum consisting of

a heavy particle called the bob, suspended from a point by means

of a rod or string without weight.
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In this case the pendulum describes the small arc of a circle

which may be considered the same as a cycloidal arc the axis

of which is half the distance of the bob from the point of

suspension.

The time of oscillation from rest to rest is π

g

215. To count the number of oscillations made by a given

pendulum in any long time.

In consequence of the liability to error in counting a very

great number of oscillations, since in the case of a seconds pen-

dulum for each hour there would be 3600 oscillations, it becomes

necessary to adopt some contrivance for diminishing the labour.

For this purpose the pendulum is made to oscillate nearly in the

same time as that of a clock ; it is then placed in front of

that of the clock, so that near the lowest positions the rod

of the pendulum and a cross marked on the pendulum of the

clock may be in the field of view of a fixed telescope.

Suppose that after n oscillations of the given pendulum

they are again in coincidence close to the same position ; if

there be m such coincidences in the whole time of observation,

the number of oscillations in that time is mn, and the only

labour has been to count the n oscillations, and to estimate the

number of the coincidences before the last one observed.

216. To measure the accelerating effect of gravity by means

ofa pendulum.

Let g be the measure of this effect or the velocity generated

by the force of gravity in a second.

Let be the length of a simple pendulum which makes n

oscillations in m hours, then

3600m

η

= number of seconds in one

oscillation = π
g=

9

π²ln²

(3600)³m² ,

in whatever unit of

length is estimated .

This would be a very exact method of determining g, if we

could form a simple pendulum ; but it is impossible to do this,

and it is only by calculations of a nature too difficult to be

explained here that it can be shewn how to deduce the length of
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the simple pendulum, which would oscillate in the same time as

a pendulum of a more complicated structure.

217. The seconds pendulum at any place is the simple pen-

dulum which at the mean level of the sea at that place would

oscillate in one second.

If I be the length of the seconds pendulum, 7 the length

of a pendulum making n oscillations in m hours ;

3600m

n

• π

:: L==

g

=π

n°7

(60)*m²

218. To determine the height of a mountain by means ofa

seconds pendulum.

Let x be the height of the mountain above the mean level

of the sea, L the length of the seconds pendulum for that place,

a the Earth's radius, all expressed in feet ; n the number of

oscillations lost by the pendulum in 24 hours.

If g be the accelerating effect of gravity at the mean level

of the sea, then

ga²

(a + x)²

tain, supposing the earth composed of spherical strata ; therefore

will be that at the top of the moun-

I (a + x)²

^
=

g
a²

the time of oscillation at the top will be π,

a + x

a
>

L

in seconds, since π
-
1 ;

-
.. (24 × 60 × 60 — n)

х
-

24 × 60 × 60

a + x

α

- 24 × 60 × 60,

hence 1+
=

a 24 × 60 × 60
2

n

х n n²

and +

α 24 × 60 × 60 (24 × 60 × 60) ²

nearly ;

therefore, if a 4000 x 1760 x 3,

x =

4000 × 1760 × 3

24 × 60 × 60

n + ......

245n2

= 245n +

24 × 60 × 60
nearly,

and the height of the mountain will be 245n + 0027. n².

If n = 10, the height = 2450 ·27 feet.
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219. To find the number of seconds lost in a day, in con-

sequence ofa slight error in the length of the seconds pendulum ;

and conversely.

Let N be the number of seconds in a day, L the length of

the seconds pendulum ; L+λ that of the incorrect pendulum ;

N- n the number of oscillations in a day.

. (N- n)π/

.. 1+

λ
-

=

N2

N.

¯¯¯(N— n)² ²

λ 2nN- n²

=

L¯ (N- n)² '

Nλ

and n = nearly ;

2L

whence n can be found from λ, or λ from n.

Epicycloid and Hypocycloid.

220. DEF. The curve traced out by a point on the circum-

ference of a circle, which rolls upon that of a fixed circle, is called

an Epicycloid if the rolling circle be on the exterior of the fixed

circle, a Hypocycloid, if it be on the interior of the fixed circle.

221. To find the radius of curvature of an epicycloid.

Let AB, BC be consecutive sides of a regular polygon

P'

P

A

B
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of m sides, AB, Bc of another regular polygon of n sides equal

to those of the former, and which rolls on the outside of it, AB

being the coincident sides in any position.

Let P be any angular point of the latter which generates a

figure composed of a series of circular arcs such as PP', P' being

the position ofPwhen Bc, BC coincide.

Produce PA, P'Bto meet in 0.

Then, APB , and ‹ PBP' = < cBC =
n

2π 2π

+ ;
m n

.. ▲POB=2π

1

+

m n

- -

sin 2π

PO

PB
sin π

1

m

+

2 1

+
m n

If we proceed to the limit, the polygons become circles ,

and the curve traced out by P is the epicycloid ; and PO is

ultimately the radius of curvature.

And if a, b be the radii of the fixed and rolling circles ,

m : n :: a : b,

and ultimately PO = PA.

1

2π +

m

2 1

π +

m

therefore the radius of curvature is 2PA .

a +b

a + 2b '

where PA is the chord drawn from the generating point to the

point of contact.

=
Ifa∞ , or the fixed circle becomes a straight line , the

epicycloid becomes a cycloid, and the radius of curvature is

twice the normal as in Art. 212.

222. To find the form of the evolute of the epicycloid.

Let FA be the fixed circle, APE the rolling circle in any

position, Pthe generating point, CAE a line drawn from the
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A

P

E

a

G

center of the fixed circle, meeting the rolling circle in A, E.

Produce PA to 0, so that

PAO PA : 2a + 2b : a + 2b,

or AO : PA :: a : a + 2b.

Draw the chord EQ parallel to PA, and join CQ.

Then, since AO : EQ :: AC : EC :: a : a + 26,

O, the center of curvature of the epicycloid FP at P, lies in CQ,

and, since CO : CQ :: CA : CE, the curve traced out by 0,

is similar to that traced out by Q, and if a circle be drawn,

whose radius Ca : CA :: CA : CE, the evolute is an epicycloid .

Ff, for which the fixed circle is af, and the diameter of the

rolling circle is Aa ; fbeing the centre of curvature correspond-

ing to G, the position ofP when furthest from C.

If a = ∞ , FA and af become straight lines , and Aa = AE,

whence the evolute of the cycloid is an equal cycloid ; com-

pare Art. 212.

223. To find the area of the epicycloid.

Recurring to figure , Art. 221 ,
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Area APP'B=APAB+ sector PBP'

1

= APAB+ PB². 2π +
11)

π 2 (m + n)

ultimately,
n m

=▲PAB+ PB . PA . sin−

= APAB {1 + 2 (a + b)} ,
α

hence, by Lemma IV, Cor. , the area of the segment AFP of

the epicycloid is equal to the corresponding segment of the

circle × ( 3 +
(3+

26).

If a =∞ , the area of the cycloid is three times that of the

generating circle. Compare Ex. 5, page 39.

224. To find the length of any arc of the epicycloid.

By the properties of the evolute, see figure, Art. 222, the

arc OF of the evolute = OP=2AP.

a+b

a+26

and the arc of the

epicycloid generated by Q from the highest point

= OFa + 2b =2AP.

a

a+ b

a

Therefore, the arc GP from the highest point G of the

epicycloid GPF

=
a+ b

= 2EP. = 2EP, when a = ∞ ; compare Art. 208 .

a

225. The corresponding properties of the hypocycloid may

be proved by adapting the investigations for the epicycloid to the

case of the internal rolling ; and the results will be obtained by

writing -b for b in the preceding results .

Thus, ifthe diameter of the fixed be double that ofthe rolling

circle, the hypocycloid becomes a straight line, which coincides

with the result of Art. 222, since a + 26 = 0 , and therefore the

radius of curvature at every point is infinite.
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Equiangular Spiral.

226. DEF. 1. If a series of radii SA, SB, SC, ... be drawn

inclined at equal angles, and AB, BC, CD, ... be drawn making

equal angles SAB, SBC, ... with these radii respectively, the

curvilinear limit of the polygon ABCD ... , when the equal

angles ASB, BSC, ... are indefinitely diminished, is the Equi-

angular Spiral.

227. DEF. 2. If an indefinite line SP revolve uniformly

about a fixed point S, while another point P advances or re-

cedes on that line with a velocity which varies as the distance

from S, it will trace out the Equiangular or Logarithmic Spiral.

The second definition follows immediately from the first,

since, fig. page 31 , SA- SB : SB- SC : SA : SB, the tri-

angles SAB, SBC, ... being similar.

Since the limiting positions of the sides of the polygon are

those of tangents to the curve, the inclination of the tangents to

the radii at any point is a constant angle ; whence the equiangular

spiral is the spiral which cuts all the radii drawn from a fixed

point at a constant angle.

228. To find the length of an arc of an equiangular spiral

contained between two radii.

Let a be the angle SAB,

and let SB SA :: λ : 1 a constant ratio, λ < 1 ;

: . BC : AB :: CD : BC :: :: λ : 1 ;...

1 + λ + λ²+ ... 1,: 1 + λ+λ²+ :.. AB+BC+... AB

:: 1 - λ" : 1 - λ

:: SA (1 − x") : SA− SB ;

hence, proceeding to the limit, since SL= X". SA,

arc AL SA SL :: AB : SA- SB ultimately ;
-

.. arc AL= (SA – SL) sec a.

NEWT. S
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Catenary.

229. DEF. The Catenary is the curve in which a uniform

and perfectly flexible string, of which the extremities are sus-

pended at two points, would hang under the action of gravity,

supposed to be a constant force acting in parallel lines.

The directrix is a horizontal straight line whose depth below

the lowest point is equal to the length of string whose weight is

equal to the tension at the lowest point.

The axis is the vertical through the lowest point.

230. The tension at any point of the catenary is equal to the

weight of the string which if suspended from that point would

extend to the directrix .

A

V

U

B

D

M

Ꭱ

TO

Let A be the lowest point of a uniform and perfectly flexible

string hanging from two points under the action of gravity, P

any other point, AO the length of string whose weight is equal

to the tension of the string at A.

Take a point B in OA , or OA produced, and let OM, BC

drawn horizontally meet a vertical PMin Mand C.

If a string pass round pegs at APCB, it is evident that

there will be a position of equilibrium whatever be the length

of the string, or the position of BC, and for some length and

some position of BC the tangent at A will be horizontal.

Also, since BDC will hang symmetrically, the tensions of

the string on Band C will be equal , and BDC may be removed

and replaced by equal lengths BO, CM of the string, without
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disturbing the equilibrium of AP, therefore the tension of the

catenary at P is equal to the weight of a string of length PM.

231. The catenary may also be considered as the limit of

the polygon formed by a series of equal rods ofthe same sub-

stances, jointed freely at the extremities and suspended from

two fixed points, when the length of the rods is indefinitely

diminished.

The proposition of the preceding article may then be proved

as follows.

The equilibrium will be undisturbed if each rod be replaced

by two weights at the extremities , each equal to half that of the

rod, connected by a string without weight.

Let AB, BC, be two consecutive positions of the strings ,

N

M

B

weights equal to those of the rods being placed at A, B, C' ; let

AM be vertical and BM horizontal, and produce CB to meet

AM in D, draw DN perpendicular to AB.

The forces which keep B in equilibrium act in the directions

of the sides of the triangle ABD, and are proportional to them.

Therefore, ultimately, the difference of the tensions of AB

and BC is to the weight of the rod AB as AN : AD, or as

AM : AB; hence the difference of the tensions at A and B is

the weight of a rod of length AM.

Therefore, proceeding to the limit, and summing by Lemma

IV, the difference of tensions at any two points of the catenary

is equal to the weight of string which is equal in length to the

vertical depth of one point below the other, whence the truth of

the proposition.

$ 2
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232. If a circle be drawn on the ordinate perpendicular to

the directrix as diameter, it will meet the tangent at a point

whose distance from the point of contact is equal to the arc of the

catenary.

Let PT be the tangent at P, meeting the directrix MO in T,

then , since the arc AP supposed to become rigid is kept at rest

by the tensions at A and P, parallel to MT, TP and the weight

parallel to PM, TPM is a triangle of forces ;

.. weight of AP : tension at P :: PM : PT;

.. AP : PM :: PM : PT;

and if MUbe perpendicular to PT,

PU: PM PM : PT;

.. PU= AP.

COR. Tension at A : weight of AP :: MT : PM;

.. AO : PU :: MT : PM :: MU : PU;

.. AO =MU.

233. To draw a tangent to a catenary at any point.

With center 0, and radius OA, describe a circle AV, draw

PN horizontal meeting the axis in N, and NV touching the

circle in V, PT parallel to NV is a tangent to the catenary

at P.

For, join OV, and draw MU perpendicular to PT, therefore

OV is equal and parallel to MU;

234.

.. MU= OV = AO ; .. PU is a tangent.

If an equilateral hyperbola be described, having center

O and AO the semi transverse axis , the ordinate of the hyperbola

is equal to the are ofthe catenary.

For, let AR be the hyperbola,

=
then, VN (NO+ OA) AN= RN² ;

.. RN= VN= PU=AP.

Lemniscate.

235. DEF. The Lemniscate is the locus of the feet of the

perpendiculars drawn from the center of a rectangular hyperbola

upon the tangent.
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236. To find the inclination of the radius from the center

of the lemniscate to the tangent at any point.

Z

P

N T

AMS

Ν

R

Let CY be perpendicular on PT the tangent at the point P

in the hyperbola. CY= PF;

.. CY.CP= PF.CD = A C²,

since CP= CD in the rectangular hyperbola,

Draw the ordinate .PM, then CT. CM= AC²= CY.CP;

.. CY CT : CM : CP;

‹and CMP, CYP are right angles ; .. PCM= < ACY.

Draw CZperpendicular on the tangent at Yto the lemniscate.

Therefore ZCY and YCPare similar triangles, see page 61, 6 ;

.. 4ZYC CPY= complement of twice YCA.

237. To find the perpendicular on the tangent at any point

of the lemniscate.

CZ.CP CY , and CY. CP= AC²;=

.. CZ : CY :: CY² : AC² ;

.. CZ.AC²= CY³.

238. To find the chord ofcurvature through the center.

Let YV be the chord of curvature ;

: . YV : 2CZ :: CY- CY' : CZ - CZ' , ultimately, (Art. 88) ,

and (CZ- CZ') AC² = CY³ — CY";
-
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.. CY- CY' : CZ- CZ' :: AC : 3CY2 ;

.. YV 2CZ :: CY: 3CZ;

.. YV= CY.

239. To find the radius ofcurvature.

The radius of curvature

== |YV.

CY CY2 AC2

=

CZ 3CZ 3CY

= }}CP

= of the radius of curvature at the corresponding point of the

hyperbola.

240. To find the area ofthe lemniscate.

The sectorial area ACQ may be shewn by Lemma IV. to be

equal to the triangle CRN where CQ meets the auxiliary circle

in R, and RN is perpendicular to CA.

241. To find the law offorce tending to the center, under the

action ofwhich the lemniscate may be described.

F==

2h2

CZ2.YV CZ.CY

3h2

= =

3h2AC

CY

1

∞

CY •

242. The velocity varies inversely as the cube of the distance.

243. To findthe time in any arc ofthe lemniscate.

Time in AQ =

CN.NR

h

AC2. CN. NR
=√3.

μέ

244. To find the poles ofthe lemniscate.

Let S, Hbe the foci of the hyperbola, s, h the middle points

of CS and CH.

H

Z

Z'

A S
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Draw SY'Z' perpendicular to the tangent to the hyperbola,

meeting the auxiliary circle in Y' , Z' , and join s Y ' , sZ' , sY,

hY.

Since CssS, the perpendicular from s on YY' bisects it ;

therefore sY ' = s Y, and similarly hY= hZ= sZ'.

The altitude of the triangle Y'CZ' is double that of Y'sZ' ,

upon the same base ;

.. AY' CZ' = 2.AY'sZ',

and CS . Ss CS² = AC² = SY' . SZ' ;

therefore a circle
may

=

be drawn circumscribing CsY'Z' ;

.. ¿ Y'CZ' = < Y'sZ' ;

.. sY'.sZ' = {CY' . CZ' = { CA² ;

.. sY.hY= 1CA²,

which is the property of the poles of the lemniscate.

For this proof I am obliged to Professor Tait.

XX.

1. IF the base of a smooth cycloidal arc be horizontal, and its

plane inclined at an angle of 30° to the horizon, and a smooth heavy

particle make a complete oscillation in n seconds, find the radius of

the generating circle.

2. A particle describes a cycloid with uniform velocity ; prove

that, if, through any point, straight lines are drawn parallel in di-

rection, and proportional in magnitude, to the acceleration at each

point of the cycloid, the locus of their extremities is a straight line

parallel to the base of the cycloid.

3. A particle describes a cycloid under the action of a constant

force, which tends from the center of the generating circle ; sup-

posing the particle to be projected along the curve with such a velo-

city that it comes to rest at the vertex, find the velocity and pressure

on the curve at any point.

4. A cycloidal arc is placed with its axis vertical, and vertex

upwards, and a particle is projected from the cusp up the curve with

a velocity due to a height h, shew that, if a be the length of the

axis, the length of the latus rectum of the parabola described after

h2

leaving the curve will be
a'
h being less than 2a.
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5. If, along the several normals to an epicycloid, a system of

particles move from the curve under the action of a force, tending

to the center of the fixed circle, and varying as the distance, prove

that they will all arrive at the fixed circle at the same instant.

6. Two equal circles roll on the circumference of a third fixed

equal circle, the centers of the three being always in the same

straight line ; prove that the straight line joining the two points of

the rolling circles, one of which was initially in contact with the

fixed circle, and the other at the opposite extremity of the diameter

passing through its point of contact, always passes through a fixed

point.

7. Prove that the diameter through the point of a rolling

circle which generates an epicycloid, always touches another epicy-

cloid generated by a circle of half the dimensions.

8. Prove that the locus of the middle point of the tangent to

an epicycloid having three cusps at any point, limited by the points

in which it again meets the epicycloid , will be a circle.

A hypocycloid of n cusps has at any point a tangent drawn,

prove that the length of the tangent, intercepted between the gene-

rating circle and the point of contact, is to the arc measured from

the point to the vertex of the branch in which the point is taken, as

n : 2 (n- 1) .

10. A bead slides on a hypocycloid being acted on by a force

which varies as the distance from the center of the hypocycloid and

tending to it ; prove that the time of oscillation will be independent

of the arc of oscillation.

11. A plane curve rolls along a straight line, shew that the

radius of curvature of the path of any point, fixed with respect to

the curve, is r being the distance of the fixed point from

202

r-p sin o'

the point of contact, the angle between this line and the fixed

line, and p the radius of curvature of the curve at the point of con-

tact.

12.
An equiangular spiral rolls along a straight line, shew that

its pole describes a straight line.

13. A particle describes an equiangular spiral with uniform

velocity, prove that its acceleration at any point is inversely propor-

tional to the distance of that point from the pole.

14. If a perfectly elastic particle, describing an equiangular

spiral under the action of a force tending to the pole, impinge on a

smooth plane, it will describe after impact another equiangular

spiral.

15. If the velocities of two particles describing different equi-

angular spirals, under the action of forces tending to the poles, be

the same at a given time, and the ratio of the absolute forces be that
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of the squares of the cosines of the angles of the spirals, prove that

the velocities will be always equal at the same time.

16. A particle moves in an equiangular spiral about a force in

the pole, shew that the hodograph is a similar spiral ; and if it be

traced by a point, shew that the velocity of the point varies as the

cube of that of the particle.

Shew also that the hodograph might be described freely in the

same manner under the action of a force varying as the fifth power

of the distance from the pole, and inclined at a constant angle to the

radius vector.

17. Prove that, if a catenary roll on a fixed straight line, its

directrix will always pass through a fixed point.

18. Prove that the portion of the tangent to that involute of

a catenary which passes through the lowest point of the catenary,

intercepted between the directrix and the point of contact, is of

constant length.

19. A particle slides down a tube in the form of a catenary,

whose plane is vertical, and vertex upwards, the velocity at the

vertex being that due to falling from the directrix ; prove that the

pressure at any point varies inversely as the distance from the

directrix.

20. If a parabola be described touching the asymptotes of a

rectangular hyperbola, and having its focus in the corresponding

lemniscate, its chord of contact will touch the hyperbola.
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XXI.

1. Find the limit of

is indefinitely increased .

1.2 +2.3 + ... + n (n + 1 )

n³

when n

2. Prove, without finding the actual values, that the chords

of curvature through the focus and center, and the diameter of

curvature at any point of an ellipse, are as

1 1 1

:

AC CP PF

How does it appear that the chords of curvature through the

two foci are equal ?

3. A body describes an ellipse about one focus ; prove that

it always moves as fast towards one focus as from the other.

4. A particle describes a parabola round a force in the focus.

A is the vertex, L the extremity of the latus rectum, P a point

whose distance from the axis is the length of the latus rectum.

Prove that the time in AL : time in LP :: 2 : 5.

5. A body perfectly elastic , revolving in an ellipse about

the focus, strikes a hard plane ; if p, 0 be the angles which the

direction of its motion makes respectively with the focal distance

and the plane , shew that the periodic time will be unaffected,

and that the new minor axis will equal the former minor axis

sin ( +20)

sin o

X

6. In question 5 , find what would be the eccentricity of the

new orbit if the old orbit were a circle. And if the old orbit

were a parabola, find what would be the inclination of the axis

of the new orbit to the axis of the old one.

7. A balloon was found to be sailing steadily before the

wind at an invariable elevation above the earth. A seconds.
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pendulum suspended in the car was observed in 50 minutes to

make 2997 oscillations ; at what height was the balloon, suppos-

ing the radius of the earth to be 4000 miles, nearly?

8. Shew how to find the weights of equal bodies on planets

which have secondaries.

XXII.

1. Ifthe sides of a right-angled triangle vary, while its area

remains constant, determine the ultimate ratio of the changes in

the sides adjacent to the right angle.

2. The curvatures at the extremities of the major and minor

axes of an ellipse are as 8 to 1 ; find the eccentricity.

3. If a particle describe an ellipse under the action of a force

tending to the focus, and v, v' be the velocities at two points

equally distant from the axis on the same side, V the velocity at

the extremity of the minor axis ; prove that ev' = Vº.Ꮴ .

4. Shew that, an ellipse being described under the action of

a force tending in a direction perpendicular to the major axis , the

velocity varies as the secant of the angle which the direction of

motion makes with the major axis.

5. A hyperbola and its conjugate are described by particles

round a force in the center. They are at an apse at the same

instant ; shew that they will always be at the extremities of con-

jugate diameters. Also if v , v' be their velocities,

12

v² — v¹² = µ (a² — b³) .- v' '= —

6. A body is projected with a velocity equal to that in a

circle at the same distance at an angle of 30º, and acted on by a

central force varying as the distance ; determine the position,

form , and magnitude of the orbit.

7. When force ∞ (dist. ) , shew that however the absolute

force be altered so that similar ellipses are described, the propor-

tionate alterations of the absolute force and mean distance are

the same.

8. Find the time of oscillation in a cycloid ; and the

height of a mountain to the top of which if a seconds pendulum
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be carried, 43 oscillations are lost in a day ; prove that it is

about two miles high.

9. Shew that in the elliptic orbit described under the action

of a force tending to a focus , the angular velocity round the other

focus varies inversely as the square of the diameter parallel to the

direction of motion.

XXIII.

1. AB is an arc of finite curvature in any curve ; the tan-

gents at A and B intersect each other in T; and around the

triangle ABT a circle is described ; when Bmoves up to A, this

circle ultimately bisects the diameter of curvature and all the

chords of curvature.

2. Deduce the expression for the diameter of curvature at

any point of a plane curve from the definition , that the circle of

curvature is the limiting position of the circle passing through

three consecutive points of a curve.

3. If the eccentricity of an ellipse be , the time of moving

under the action of a force tending to the center from one extre-

mity of the latus rectum to the other is (3 + 1) .

π

4. Given the velocity and direction at two points of a

central orbit, find the locus of the center of force.

5. If at any point of an ellipse, described under the action

of a force tending to the focus, the velocity be increased in the

ration : 1 , prove that the latus rectum will be increased in the

ratio n² : 1 .

6. If a closed string, lying on a smooth horizontal plane,

pass loosely round three vertical pegs in the angles of an equi-

lateral triangle, and if a bead be projected along the string so as

to keep it stretched tightly, shew that the tension of the string

will have two minimum values, and that they will be inversely

proportional to the free lengths of the string in the two cases.

7. If the earth's orbit be taken an exact circle, and a

comet be supposed to describe round the sun a parabolic orbit

in the plane of the ecliptic ; shew that this comet cannot
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possibly continue within the earth's orbit longer than the

3π th

part of a year.

8. A body describes a hyperbola, under a repulsive force

tending from the farther focus, and when the body arrives at

the vertex, the force suddenly becomes attractive ; shew that, if

the new orbit be a parabola, e' the eccentricity of the hyperbola

3 ; if the new orbit be an ellipse of eccentricity e , e' ± e = 2 .
=

9. A particle slides down the arc of a vertical circle,

starting from rest at a given point ; find the point where it will

leave the curve.

XXIV.

1. Find the ultimate ratio of the area of a segment of a

circle to the area of a triangle on the same base, and whose

vertex divides the arc in a given ratio when the arc is dimi-

nished without limit.

2. From a point in the circumference of a vertical circle

a chord and tangent are drawn, the one terminating at the

lowest point and the other in the vertical diameter produced ;

compare the velocities acquired by a heavy body in falling down

the chord and tangent when they are indefinitely diminished .

3. A flat ring is revolving about its center with a given

angular velocity ; find the law of force under the action of

which it would continue to revolve exactly as before if cohesion

among the particles of which it is composed were destroyed.

4. A hollow cylinder consists of particles attracting with

force varying as the distance ; shew that, if a particle be pro-

jected along the interior with any velocity, in a plane perpen-

dicular to the axis, it will continue to make isochronous oscilla-

tions between points at equal distances above and below the

middle section.

X
5. If a body be projected with a velocity = √2 × velocity

in a circle at the same distance at an angle of 45°, determine the

orbit completely. Force (dist. )-ª .

6. Supposing the major axis of an ellipse 200 feet, the
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eccentricity , and the periodic time 10 days ; find the

number of square inches in the area swept out by the radius

vector in 1".

7. A particle describes an ellipse, the center of force

being situated at any point within the figure. Shew that at

the point where the true angular velocity is equal to the mean

angular velocity, the radius vector is a mean proportional be-

tween the semiaxes.

8. A body describes an ellipse about a center of force in

the center; prove that if r, r' be two radii vectores and a the

angle between them, the time of describing the intercepted arc

1

= sin-1

μ

rr' sin

si
na
).ab

What is this time when rr' sin a = ab, and the periodic

time in the ellipse = 12 days ?

9. A body describes a circle to the center of which it is

connected by a string ; it is attracted to a point in the circum-

ference by a force varying as the distance ; shew that if the

string be always kept stretched, the greatest and least velocities

are in a ratio less than √3 : 1 .

10. A particle moves from any point in the directrix of a

conic section, in a straight line towards a center of force, which

1

∞

(dist.)2

9 in the nearer focus. Prove that, when it arrives at

the conic section, its velocity = (

Αμ

latus rectum/

XXV.

1. ACB is an arc of a curve of continued curvature ; find

the ultimate ratio of the area of the triangle, formed by joining

the points A, B, C, to that of the triangle included between the

tangents at those points .

2. Apply Lemma IV. to prove that the area included

between a hyperbola and the tangents at the vertices of the

conjugate hyperbola is equal to the area included between the

conjugate hyperbola and the tangents at the vertices of the

hyperbola.
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3. The circle of curvature at any point of an ellipse

cannot pass through the center unless the eccentricity be greater

than

1

√2

•

4. Having given rad . of

that gravity in latitude λ = G

earth = 4000 miles nearly, shew

cos2x

1 -

289

sidered spherical, and G gravity at the pole.

the earth being con-

5. The sides a, b , c of a triangle are composed of matter

attracting directly as the distance, with an intensity which

would equal μx at the distance x, if the whole matter were

collected at a point ; from D, E, F, the middle points of the

sides, three particles are projected in the directions DE, EF, FD,

with velocities whose squares are µc, µa, µb. If S be the sum

of the areas ofthe three orbits , and A be the area of the triangle,

shew that S=TA.

6. A particle is attached by an elastic string to a center of

attractive force of constant intensity, and of such magnitude that

it would exactly double the length of the elastic string. The

string is now stretched and the particle projected at right angles

to it. Shew that the particle will begin to move in an ellipse ;

but if the velocity of projection be less than the velocity in a

circle at the same distance, the ellipse will be deserted after a

certain interval of time.

In the latter case find the velocity and direction of motion at

the moment of leaving the ellipse.

7. The latus rectum of a comet's parabolic orbit is equal to

the diameter of the earth's orbit supposed circular ; if the earth

describe an arc of its orbit equal to the radius in 58 days, find

how long the comet takes to move from one extremity of the

latus rectum to the other.

8. Shew that if a body describe an ellipse of very small

eccentricity under the action of a force tending to a focus, the

angular velocity about the other focus will be very nearly uniform.

9. Shew that the intersection of the string of a cycloidal

pendulum, which makes complete oscillations with the base of

the cycloid, moves uniformly along the latter.
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10. If two points describe the same ellipse in opposite

directions with accelerations tending to the center, prove that

the chord joining them will move parallel to itself, with a velo-

city proportional to its length .

11. A particle, describing an ellipse about the focus , im-

pinges upon a plane placed at the extremity of the latus rectum

through the center of force perpendicular to the major axis.

If the coefficient of elasticity be equal to the eccentricity of

the ellipse, prove that the major axis of the new orbit is half

that of the old.

12. A body is describing an ellipse about the focus S, and,

when it arrives at the mean distance, the force is doubled,

shew that the new line of apses passes through the foot of the

perpendicular from the other focus upon the tangent.

XXVI.

1. If AB, A'B' , two chords of a curve of equal length , cut

each other in T, shew that if A'B' approach to and coincide

with AB, then AT : BT= tan a tanß, ultimately, where a ,

B, are the angles that AB makes with the tangents at A and B.

2. PQR is an equilateral triangle, in which P, Q are points

on a parabola, of which the focus lies on PQ, and PR is

parallel to the axis ; shew that the circle described about PQR

is the circle of curvature to the parabola at P.

3. The angular velocities of a body moving in an ellipse

about a force in the center are 4° and 9° per hour at the ex-

tremities of the major and minor axes respectively ; find the

periodic time.

4. A particle is to be projected from a given point, and

in a given direction , and to be acted upon by a central force

varying as the distance ; the eccentricity of the orbit described

will be least if the velocity of projection be such that the line

joining the point of projection with the center of force is one of

the equi-conjugate semi-diameters .

5. When a body describes a parabola about the focus, the

intersection of its direction with the axis of the parabola moves
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most rapidly when the body is at the extremity of the latus

rectum .

6. Sir John Herschel states that the great comet of 1843

passed within a distance equal to 4th of the sun's radius from

the sun's surface. Taking the sun's diameter as 882,000 miles ,

and the earth's distance from the sun as 95,000,000 miles, find

the velocity of the comet at perihelion .

7. AB is the vertical axis of a cycloid , A the highest point,

AM, AN are the abscissæ of points at which a body begins to

slide down the arc of the cycloid, and at which it leaves the

curve ; prove that Nis the middle point of MB.

8. A particle moves in a smooth elliptic tube, at the foci

of which are situated two centers of force of unequal intensity,

the one attracting and the other repelling, according to the law

of the inverse square ; find the pressure. Shew that there exists

a certain circle, such that a particle placed anywhere on its cir-

cumference, and abandoned to the free action of the forces , will

describe an ellipse having those centers of force for the foci.

9. A body, acted on by a central force which varies in-

versely as the square of the distance, is constrained to move in

a circle whose radius is a, and center is at distance b from the

center of force ; it is projected with velocity V from the nearer

extremity of the diameter which passes through the center of

force ; shew that, in order that it may complete the circuit,

2μ 2μ
V2 must at least =

b a+b 'απ

-

10. In an elliptic orbit about the focus, when a particle is

at a distance r from the focus, the direction of motion is turned

through a small angle, shew that the corresponding change

in the apsidal line is

and e the eccentricity.

δα

ae²a (1 +e² = 2) ,
2a being the major axis ,

11. Find the locus of a point, in order that the resultant

attraction of a uniform rod upon it may pass through a given

point, equidistant from the extremities of the rod ; the law of

attraction being that of the inverse square.

NEWT.
T
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1

12. A body moves in elliptic arcs about a center of force

varying as situated in a perfectly elastic plane perpen-

(dist.)

dicular to the plane of the orbits ; shew that those arcs are

portions of similar ellipses whose major axes are equally inclined

to the elastic plane, and that the time between the first and third

impact is equal to that between the second and fourth.

XXVII.

1. ABC is an isosceles triangle, base BC ; P, Q are points

on CA, CB such that AP= 2BQ ; find O , the point of ultimate

intersection of PQ, AB as P and Q move up respectively to

A and B. Prove that OB : AB :: AB : 2BC~AB.

2. If a line move parallel to the base of a cycloid , find the

limiting ratio of the segment of the cycloid to the correspond-

ing segment of the generating circle, as the line becomes infi-

nitely near to the vertex.

3. A body revolves in an ellipse under the action of a

force tending to the focus ; if a , ß be the angular velocities at

the extremities of any chord parallel to the major axis, the

пb / 1 1

+periodic time will be ava
2a

2

4. A heavy particle is projected horizontally from any

point in the interior of a surface of revolution , whose axis is

vertical ; the velocity being that due to the height above a given

horizontal plane of the point of projection, find the form of the

surface so that the particle may always remain in the horizontal

plane of projection.

5. Shew that from the moon's periodic time of 27 days

we may deduce that gravity is the force which keeps her in

her orbit ; her distance from the earth's center being 60 times

the earth's radius.

6. Two straight lines AB and BC are united at B, and AB

revolves about A, BC about B with the same uniform angular

velocity, shew that the acceleration on C tends to A and varies

as CA.
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7. An elastic string just fits a fixed straight tube when

it is of its natural length ; it is fixed at one end, and pulled out

at the other, so as to double its length ; a particle, fixed at

the free end, is then projected at right angles to the string

along a smooth horizontal plane with the velocity which it

would acquire in falling freely, under the action of gravity,

through a space equal to the length of the tube ; prove that

the weight of the particle must be g of that which would double

the length of the string, in order that it may describe an ellipse

whose eccentricity is

8. A particle is describing a parabola under the action

of gravity ; when it is at one extremity of the latus rectum,

gravity is replaced by a force tending to the other extremity

of the latus rectum and varying as the distance, such that the

accelerating effort in that position is equal to that of gravity .

Shew that the ratios of the axes of the ellipse described to

π

the latus rectum of the parabola are 2 √√2 COS and 2√2 sin .

9. A body is revolving in an ellipse about the center of

force tending to a focus, and, when it arrives at the farther

apse, another body is projected with the velocity which the

first body had at the extremity of the minor axis. Shew that

the eccentricities of the two orbits will be equal, and that the

bodies will meet at the same point, after m revolutions of one,

m³ ~ nj

and n of the other, if the eccentricity is

m³ +nj

•

10. A particle describes an ellipse round a force in one

focus ; at what point of the orbit may a given finite change be

made in the direction of the motion without changing the

position of the apse line ?

11. If P be a point in a cycloid and O the corresponding

position of the center of the generating circle, shew that PO

touches another cycloid of half the dimensions .

12. Prove that it is possible that an equiangular spiral may

be described by the action of a constant force , acting at a con-

stant angle ẞ to the radius vector, if cos a cos ẞ = 1- } cosec² α,

a being the spiral angle .

T 2
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XXVIII .

1. Prove that, in an ellipse , the sum of the chord of

curvature at any point through the focus , and the focal chord

parallel to the diameter through the point, is constant.

2. A given curve is freely described with an acceleration,

tending to a given point S, and equal at any point P to & (SP) .

Prove that, if SY be drawn perpendicular to the tangent at P,

and on SY, produced if necessary, a point Q be taken, such

that SQ . SY a constant, then the locus of may be freely

described by a point of which the acceleration tends to S,

the normal component of which acceleration is proportional

to

1

$ (SP) ·

=

3. The number of oscillations lost by a second's pendulum

at the top of a mountain is found to be 10 in 24 hours , shew

that the height of the mountain is about 2444 feet.

4. An ellipse and a hyperbola have the same center and

foci. They are described by particles, under the action of

forces in the center of equal intensity. If a, a' be their semi-

transverse axes , the square ofthe velocity of each body at a

point where the curves cut = µ (a² — a'²) .
-

5. A particle describes an ellipse about a center of force

in the focus, and another particle describes the circle upon the

major axis about another force in the same point in the same

periodic time. If the particles start simultaneously from the

vertex, prove that the line joining them is always perpendicular

to the axis.

Also shew that the velocity at any point in the circle is

inversely proportional to the corresponding focal distance in the

ellipse .

-2

6. Bodies describing ellipses about a given center of force

which ∞ (dist.) pass through a given point with the velocity

in a circle at that distance ; the locus of the vertices of the

ellipses is a cardioid, the center of force being the pole.

7. Two particles move in different planes about a center

which attracts with a force varying inversely as the square of
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the distance, the one in a circle, the other in an ellipse ; the

orbits have two points in common, and at either of these points

the velocity of one particle is to that of the other as n to 1 .

Determine the eccentricity of the ellipse.

8. If an imperfectly elastic particle fall from an infinite

distance, under the action of a central force varying inversely

as the square of the distance, and impinge, before arriving at

the center of force , on a small plane area inclined to the direc-

tion of its motion, shew that, if the orbit after the first im-

pact be a circle, the elasticity is ; and shew that after an

infinite number of impacts, twice the major axis of the final

orbit is three times the distance of the area from the center

of force.

9. An ellipse is described about a center of force in the

focus. A parabola is described with its axis coincident in di-

rection with the minor axis, so as to pass through the points

X, X', where the axis-major produced meets the directrices,

the latus rectum being 2ae . If we draw any line parallel

to the axis-minor cutting the ellipse in P, the parabola in Q,

and the axis-major in N, then will QN be the space due to the

velocity at the point P.

10. The envelope of a series of circles, whose centers are

on the circumference of a given ellipse, and which all pass

through a focus , is a circle whose center is the other focus.

11. A body is attached to the end of a string, which just

winds round the circumference of a circle, in whose center there

is a repulsive force μ (dist. ) . Prove that the time of unwinding

=
2π

μ

=

Also, find the tension of the string at any time.

12. A particle is projected from a given point P, with a

given velocity V, and is acted on by a force which varies in-

versely as the square of the distance, and tends to a point S;

prove that there are two directions of projection for which the

direction of the major axis will be the same ; if a be the

angle between these directions and e, e' the eccentricities , then

µ (e' − e) = V². SPsin a.
-
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XXIX.

1. Shew that the limit of the whole length of the hypo-

cycloid or epicycloid corresponding to a complete revolution of

the generating circle is eight times the radius of the funda-

mental circle, when that of the generating circle is indefinitely

diminished .

2. A particle describes with uniform velocity an equiangular

spiral whose constant angle is 45° ; shew that its motion may

result from the attraction of a center of force varying as

1

dist. '
which itself moves with the same uniform velocity in a

certain other similar and equal spiral.

3. The circle of curvature at the point P of a parabola

cuts the curve in Q, PM is an ordinate at P; prove that the

area PAQ is sixteen times that of PAM.

4. The velocity of a body describing a hyperbola by the

action of a repulsive force in the center is at any point the same

as if it had been repelled to that point in a straight line from

rest when at a distance from the center = √a² — b².
2
-

5. Two bodies describing the same ellipse about the same

center of force in the focus start together from the two ex-

tremities of the major axis. The angles which they have de-

scribed will have the greatest difference, when the area included

between their distances from the focus is half the area of the

ellipse .

6. One body is describing a parabola about the focus, and

another a circle whose center is in the focus, and 4n times the

radius of the circle is equal to the latus rectum of the parabola.

Prove that, if the bodies are simultaneously at both points of

intersection,

-1
√2 (2n + 1 ) √1 − n = 6 sin¹ √n, or 6 cos¹√n.

-

7. A given quantity of matter, consisting of particles

which attract with forces varying as the distance, is formed

into a thin hemispherical shell. Shew that, whatever be the

size of the hemisphere, a particle placed at a given angular
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distance from the vertex will always reach that point in the

same time.

8. A particle moves in an elliptic tube under the attraction

of a material line joining the foci, each element of which attracts

with a force varying inversely as the square of the distance.

Shew that the velocity is constant ; and find the pressure on the

tube when the particle is at the extremity of the minor axis.

9. From a given point S, within a given closed curve, per-

pendiculars are let fall on the several tangents to the curve, let

the locus be the curve Y. The given closed curve then rolls on

a given straight line, so that S traces out a curve X.

Prove that the lengths of X and Y are equal , and that the

area included between X, the given straight line, and two ordi-

nates, is double of the sectorial area of the corresponding portion

of Y.

10. If a particle move in such a manner that its acceleration

is constant in direction , shew that the hodograph is a straight

line parallel to the direction of the acceleration .

XXX.

1. If any number of particles be moving in an ellipse

about a force in the center, and the force suddenly cease to

1

act, shew that, after the lapse of of the period of a complete
2π

revolution, all the particles will be in a similar, concentric, and

similarly situated ellipse.

2. If a particle in a smooth elliptic groove, under the

action of two centers of force in the foci , each varying inversely

as the square of the distance, the absolute forces being the same,

be placed at the extremity of the axis-minor, prove that the

equilibrium will be unstable ; but if at the extremity of the

axis-major it will be stable, and in this latter case shew that

/b²)

the time of a small oscillation is π ÷2eµ+.-

3. Two bodies of equal mass and whose coefficient of elas-

ticity is , are revolving in the same ellipse (eccentricity = )
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but in opposite directions round a center of force in the focus :

they impinge upon one another at the nearest apse : determine

the distances at which they will afterwards impinge on each

other : and shew that the whole time from the first impact to

their falling into the center of force is

π (5p)³

where·

2μ

"
14

the least distance at first, and μ the absolute force.

P
is

4. A body is projected about a center of force ∞ (dist.)-2

perpendicular to the distance : shew that as the velocity of

projection is increased the center of the curve moves through

the center of force to infinity, it then suddenly starts back to

the other side of the point of projection and goes off to infinity

in that direction . But when the force ∞ dist. the nearer focus

moves to a given point and then suddenly starts at right angles

to its previous direction .

5. Two perfectly elastic balls are moving in concentric

circular tubes in opposite directions and with velocities propor-

tional to the radii : at an instant when they are in the same

diameter and on opposite sides of the center the tubes are re-

moved and the balls move in ellipses under the action of a force

of attraction in the common center of the circles varying in-

versely as the square of the distance. After one has performed

in its orbit a complete revolution and the other a revolution

and a half, a direct collision takes place between the balls and

they interchange orbits : find the relation between the radii of

the circles and between the masses of the balls.

6. A body describes an ellipse in a free medium under the

attraction of two equal forces, one in each focus, varying at

any point as

1

²,
c²

c being the semiconjugate diameter at that

point : if the medium were to resist with a force varying as any

function of the velocity, the body might be made to describe

the same ellipse in the same manner by increasing the force

in one focus and diminishing that in the other by a quantity

which varies as

с

" b being the semiaxis-minor.

c²- b²
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7. An attractive force equal to

μ
resides in each focus

(dist.)2

of a smooth elliptic groove ; if a particle start from the end of

the major axis with a velocity

2Νμα

it will reach the end of
"

b

παλ

the minor axis in a time 1

Ανμ

a, b, e being the semi-axes and eccentricity.

8. A curve is traced out by a point P in a straight line

of given length, which moves with its extremities in the arc

of an ellipse ; shew that the area included between the ellipse

and the locus of P is cc' , c and c' being the distances of P

from the extremities of the line.



SOLUTIONS OF PROBLEMS.

1.

2.

3.

I.

The limits are zero in (1 ) , ∞ in (2) , and a in (3) .

The limit is 3 for case ( 1) , and for case (2) .

a : b.

8. The chord of intersection ultimately makes the same.

angle with one of the fixed sides, which the straight line joining

the middle point of the moving side with theopposite angle

makes with the other.

11. The circles, which have their centers between the ver-

tex and focus, do not intersect.

II.

6. The distance from the base is one-fourth of the height.

8. The mass is half that of a uniform rod whose density is

equal to the greatest density of the given rod.

9. The mass is to that of a homogeneous circle, whose

density is that of the given circle at the circumference, as

2 : m +2 .

10.

curve is

1.

The volume generated by the closed portion of the

по

4a

III.

Shew that the volumes generated by the quadrant and

the portion of the square exterior to it are as 2 : 1 , by inscribing

in them rectangles whose finite sides are respectively perpen-

dicular and parallel to the axis about which the figure revolves.

4. Prove that the two centers of gravity coincide.

5. The mass is one-third of that of a uniform rod of density

equal to the greatest density of the given rod.

6. The volume is a quarter of that of a cylinder on the

same base and of equal height.

IV.

10. The constant angle between the radius and tangent

must be the same in both.
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VI.

1. Only if the curves have the same curvature at P.

4. The velocities are as 1 : √√2.

VII.

7. The curve will be a parabola passing through A, whose

center is at a distance a below AK, and whose axis meets KA

produced at an unit of distance from A, the latus rectum is

1

and the
space

1

described in time t=
18
3
a (3ť³ + t³) .

10. If SM be the accelerating effect at M, the square of

the velocity at M= µ (SM² – SA²), A being the starting point.

11. If µD, µ'D be the accelerations at a distance D, the

time is

π

μ+μ

IX.

1. The fixed point is in UA produced, (fig. page 117) , at a

distance from A = UA.

2. The focus of the parabola is in the chord perpendicular

to the subtenses, at a distance from the point of contact equal to

a quarter of the chord, and the directrix is parallel to the chord,

meeting the common normal at a distance from the point of con-

tact equal to half the radius.

3. The focus is in the base of the cycloid , and the locus re-

quired is the circle on the axis as diameter.

4. 1 : 2.

X.

2. The direction will not be changed, but the curvature will

be changed in the ratio of the new force to the old.

9. 47π ·3 √3 : 8π + 3 √/3.
-

12. The eccentricity

ga²

1

=

-- m

1 + m

XI.

π

2

2. (9 ) , P being the periodic time , a the Earth's radius,
4π72

and g the accelerating effect of gravity.



284 NEWTON.

3. The areas vary in the subduplicate ratios of the radii.

6. The days would be shortened nearly in the ratio 17 : 1 .

7. 54π² : 161.

8. The square of the velocity is 3FR.

11. The velocity = (ugl) .

XII.

3. The circle touches the two tangents at the points where

they are intersected by the third.

2. cos-¹

(3W'W)

·

XIII.

3. If a be the inclinations of the moving portions of the

string to the horizontal line, the tension required is tothe weight

ofthe ring as 2 - cos 2a : 2 sin a.

4. If horizontal lines through the positions of the body at

starting and at any given time meet the axis AB in N and M,

the pressure at that time is to the weight of the body as

MN+BN is to the normal.

10. The eccentricity is 01686 .

13. The pressure at P is to the pressure if the particle were

at rest at B, as the curvature at Pis to that at B.

14. Let CS= c, and a be the length of the string, and let

A, Bbe the points nearest to and farthest from S in the circle

described.

If S be within the circle, the minimum tension being at A,

the least velocity , at A, is (ua) , and the greatest tension, at D, is
a - c

1

9

-
a - 2c

- c)25a Wa² - c² (a — c)

If S be without the circle, the minimum tension is at B, and

the least velocity of projection from A is

greatest tension at A is
2μ (3c² — a²)

(c² — a²)²
-

μa (3a + 5c)

(c + a)² (c − a) '
-

the

which becomes 6g if S is

at an infinite distance, remaining finite in magnitude, so that
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μ

3
1
0

= g , in which case the force acts in parallel lines ; compare

page 170, Cor. 1.

XIV.

1. If P, P' be the periodic times about two centers of force

S and S' , PSV being drawn as in page 175, the forces will be

in the ratio P'2 . SP'². P'V'³ : P².SP² . PV³.

3. The unit of time is the same which is employed in fix-

ing the measure of the accelerating force.

XVII.

2. Ifthe change take place at A, C being the center ;

1

(1) The semi-axes are CA and CA.

√n

(2) The semi-axes are CA and n . CA.

(3) The orbit is a rectangular hyperbola, whose vertex

is at A.

(4) The axes are (√5 ± 1 ) CA, and the inclination of the

major axis to CA is tan 2.

-1

3. The axes are 2 CA and 4CA.

5. The minor axis of the ellipse is one of the axes of

each orbit, and the other axes are respectively

m (1 + e)

m + m'
times the major axis of the original ellipse.

m - em'

m + m'

and

6. IfμD be the measure of the accelerating effect of an unit

of mass at a distance D, and m be the number of units of mass in

the parallelopiped , the periodic time will be

2π

Δημ

9. The point of projection corresponding to the greatest

ellipse is the point of bisection of CA.

1. 1.

XVIII.

5. It must be diminished in the ratio 1 : e.

6. Nearly 225 days.

7. About 8' 40".
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8. The locus of the center is a circle.

14. Nearly 39 days .

16. The angles of the circle on the major axes as diameter

corresponding to the points of intersection of the orbit are 30°

and 60º, and the ratio is √3 (2π+ 3) : 8π – 9.
-

17. The transverse axis is equal to the semi-latus rectum ,

and is perpendicular to the axis of the parabola; the eccentricity

is √3.

25. The eccentricity
===
√21

6

XIX.

2. The time to the sun is 64 days and a half.

XX.

4n2

1. The radius is

π²

3. Iff be the constant acceleration from the center, the

AB

square of the velocity is AB . AM, and the pressure = PG f

1. The limit is .

XXI.

6. The eccentricity would be sin 20 ; the inclination = 40.

7. The height was 4 miles 7 yards.

XXII.

1. The required ratio will be that of the sides.

2. The eccentricity = √ √3.

6. The axes are √3 ± 1 times the distance of the point of

projection, and are inclined to it at 15° and 75°.

XXIII.

4. A straight line passing through the intersection of the

tangents, and making with them angles whose sines are inversely

proportional to the velocities.

9. The particle starting from a given distance from the

horizontal diameter leaves the curve at two-thirds of that dis-

tance.
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XXIV.

1 . If m n be the given ratio , the required ratio will be

(m +n) ² : 3mn.

2. One is double of the other.

3. The force tends to the center, and varies as the distance.

6. The number required is 47 V11.

8. One day.

XXV.

1. The former is double of the latter.

6. If c be the initial , a the natural length, ƒ the constant

acceleration , u the velocity of projection in the latter case, v, a

the required velocity and angle,

Î (c²— a²)+v² = ² (c² — a²) + u² , and sin a =
α

си

av

7. 78 days.

XXVI.

3. Two days and a half.

6. 366 miles per second.

11. The locus is a circle passing through the extremities of

the rod and the given point.

2. The ratio is 2 : 1 .

XXVII.

4. A paraboloid of revolution .

10. Ifẞ be the finite change, PMperpendicular to the axis,

and HPM=ẞ, HP=

a (1 - e²)

1- e sinB

XXVIII .

7. The eccentricity is √n² 1 .

11.

time t.

The tension : weight of the body :: 2aµ³t : g at the

XXIX.

2. The path of the center of force is the evolute of the given

spiral.

μ

8. If be the accelerating effect of the attraction of an
1)2

unit of mass collected in a point upon a body at a distance D,
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n the number of units of mass in the material line, Wthe weight

of the body, v its velocity, the pressure on the tube

/v2b

= Wx
μη

a'g abg

XXX.

1. The ellipse is the locus of the angular points of the cir-

cumscribing parallelogram whose sides are parallel to conjugate

diameters : the semi-axes are a √2, b√2.

2. If & be the inclination of the normal at a point P near

A, shew that the force in the tangent has an accelerating effect

4μea²

b
. sin 4, and 6 =

a.A
P

b2

3. Shew that at every impact the major axis is diminished

to th, that the eccentricity is unaltered, and that the greatest

distance in each orbit is the least in the preceding. The dis-

tances at which they impinge are p, ip, AP, AP, &c.

5. The masses are equal, and if r, s be the radii of the

circles

до3 S

= 1-

2

6. The motion being the same in both cases, the velocity

in the resisting medium is constant, and therefore the resistance

constant also. Hence, shew that ±fbeing the two new focal

forces, fcos a is constant, and thence deduce the result.

7. If PP' be an arc described in a small time, PMQ, Q'P'M'

common ordinates for the ellipse and auxiliary circle, DN that of

the extremity of the conjugate diameter to CP; shew that velo-

city at P =

2 μα

CD
"

.. time in PP':

or

=

2 μα CN√

CD CD

MM' CD2

·

2√μa QM

=

MM' e QM²+b²

2Νμα QM

=
2 √μa QM

CD2
parallel to AC ;

παλ

4 (MM)=

QQ_π

= , ultimately ;

1 (πa²e²
.. time from A to B=

+ b².77)
―

and making the summation from A to B,

Σ (MM' . QM) = ™ª² , and Σ

QM

2

a

=

=

2'

παλ

2Νμα 4
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