This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.
Google" books
https://books.google.com

©farles bultbois.

- .
-

Digitized by GOOgle

Sir Ifaac Newton's

MATHEMATICK
 PHILOSOPHY

More eafly Demonstrated.

BOOKS worit by W. Whiston, M. A.

I. T HE Elements of Euclid, with felect Theorems out of Archimedes. By the Learned Andrew Tacquet. To which are added, Practical Corollaries, fhewing the Ufes of many of the Propofitions. The whole abridg'd, and in this Third Edition publith'd in Englif $h_{\text {on }}$
II. Aftronomical Leetures read in the Publick Schools at Cambridge. Whereunto is added, a Collection of Aftronomical Tables ; being thofe of Mr. Flamffeed, 'corrected; Dr. Hall:y; Monficur Caffini; and Mr. Strest. For the Ufe of Young Students in the Univerfity. And now done into Engli/h.
III. An Accoun of of Surprizfing Meteor feen in the Air, March the $166 \mathrm{~A},-17 \frac{1}{15}$. at Night Containing, I. A Defcription of this Meteor, from the Aut or's own Obfervations. 2. Some Hiftorical Accounts of the like Meteots before; with Extrafts from fuclis Letters and Accounts of this, as the Author has seceiv.a. - - The principal Phxnomena of this Meteor. 4. Conijectures for their Solution. 5. Keafons why our Solutions are fo imperfect. 6. Inferences and Obfervations from the Premifes: Thie Secorid Edifion.:
IV. An Humble and Serious Addrefs to the Princes and States of Exrope, to Admit, or at leaft openly to Tolerate the Chriftian Religion in their Dominions. Containing 1, A Demonftration, that none of them do, properly fpeak-. ings. Admit or openty Tolerate the Chriftian Religion intheir Dominions at this Day. 2. The true Occafions, why it is not Admitted or openly Tolerated by them. 3. Some Reafons, why they ought to Admit, or at leaft openly Tolerate this Religion. 4. An earneft Addrefs to the feveral European Princes and States, grounded on the Premires, for the Admiffion, or at leaft the open Toleration of the fame Chriftian Religion in their Dominions.

All Printed for W. T A Y L O R, at the Ship in Pater-Nofter-Row.

Sir Ifaac \mathcal{N} (ewton's MATHEMATICK PHILOSOPHY More eafily Demonstrated:

 W I T HDr. Halley's Account of C O M ETS Illuftrated. Being Forty LECTURES Read in the Publick Schools at Cambridge.

By William Whiston, M. A. Mr. Lucas's, Profeffor of the Mathematicks in that Univerfity.

For the Ufe of the Young Students there.

In this Englifh Edition the Whole is Corrected and Improved by the A U T H OR.
consecte by, Cimn vealikistoni dife I/1so
$L O N D O N$:

Printed for J. Senex at the Globe in Salifbury-Court; andW. Ta ylor at the Ship in Pater-Nofer-Row. 1716.

Matbematical Pbilofopby.

LECTURE:I.

FTER having difpatch'd the Matters of pure Aftronomy, we proceed unto the other Part of our Work, the Philofophy of the Famous Sir Ifaac Newton. For we are purpos'd to trace the Steps of that Great Man, and to fet forth his principal and moft hable Philofophical Inventions in a more eafy Method; that fo we may bring that (as I may fay) Divine Puilofophy within the Reach and Comprehenfion of thofe,' whio are but indifferently perhaps "exercis'd in the Mathemaricks; and commuricate the Knowledge thereof as far as may be. But fince that it is neceffary for any one that would undertake this Philofophy, that befides forme Knowledge of Geomerry, Arithmetic, and Aftronomy, he fhould alfo be furnin'd with the Knowledge of the true Laws of Motions; and efpecially fhould underftand fomething of the Nature and Properties of thofe Curve Lines, which are called the Conic Sections; the Nature of our Purpofe, which, as was 'faid, was oo direAt our felves chiefly to Mathematicians of the B lower
lower Form, and who only underftand the firft Elements of Geometry and Aftronomy; therefore 'tis requir'd of us, that we fhould in the Beginning touch upon, and in fome meafure explicate; as well the Conic Sections, as the of late demonftrated Laws of Motion; that no one through his being ignorant of thefe Things, may lofe his Labour in his Study of that Philofophy which we have now in hand. For indeed, as to the firft Laws of Motions and Collifions, Des Cartes was fo miferably miftaken about them, when he went about to eftablifh them, and hath fo boldly impos'd upon the World falfe Rules concerning Collifion and Reflection of Bodies, that it is worth the while to endeavour to root out of the Minds of Men the Prejudices which have fprung from thence.

We fhall therefore begin with the Conic Sections; and before we go about any thing elfe, give Some Knowledge and Underftanding of thofe Lines which are interwoven with all the Philofophy of the Famous Neivtan, who fhews that all the Paths, whether of the Planets or Comets of our Syftem, are according to fome or other of the faid Sections. But we fhall not fpend fo much Time about this Matter, as to deliver the Conic Elements in any other than a fummary Way, or otherwife than by bringing into View out of the Writers of Conics, and efpecially the Famous De La Hire; the Natures, and chief Properties, and Affections of there Curve Lines without their Demonftrations, affuming them for demonftrated. And forafmuch as although the faid Lines may be fet forth by mere Delineations in a Plane, as will be done afterwards; yet the Geometricians, as well the Moderns as thofe of old, have for the moft part expounded them by the Sections of a

Cone; and becaure alfo thefe Curves can in no other, way be fhew'd all together, and at once, and confequently, the mutual Relation and Cognation which is betwixt them, cannot in any other way of explicating them be fo clearly made known: For thefe Reafons, I fhall, in the firft place, -open the Natures of thefe Lines, and fet them farth by the Sections of a Cone, propofing to explicate them by Delineations on a Plane afterwand ${ }_{m}$ m
If ypu take any immoveable Point without à Plane in which a Circle is defrrib'd, and imagine a right Line drawn through that Paint, and produce:d infinimety both ways, to be mov'd about the Gircunperence of the Circle, the Superficies which will arife from this Motion, is called a Conical Surface; and the Surfaces on both Sides the immoyeable Point taken conjunctly, are termed Surfaces vertically oppofice : The immoveable Point, common to boch, is nam'd the Vertex; the Circle, the Bafe ; and the Solid comprehended under the Conical Surface and the Bafe, and which may be fappos'd to be infinitely produc'd, is called a Cone; to which Solid, that generated beyond the Vertex is borh equal and like. The Right Line, which is drawn from the Vertex to the Center of the Circle which is the Bafe, is the Axis of the Cone: Which Right Line if it be perpendicular to the Plane of the Bafe, the Cone is called a Right Cone; but if not, an Oblique or Scalene one. Further, a Plane howfoever pofited, fo that it pafferh not through the Verrex it felf, doth cut the Conic Superficies, and is called, A Secant or Cutting Plane; and another Plane which doth pafs through the Vertex, and is every where Parallel to the Secant, goes by the Name of :the Vertical Plane ; and that Curve Line B_{2} which
which the Conic Superfcies deferibes tir the Cute ting Plane, is called a Conic Section; which Section varies according to the different Inclinations of the Cutting Plane to the Cone.

Hence will arife three Cafes: (ı.) When the Vertical Plane toucheth the Conical Surface or Surfaces, and then the Section in the Cutting Plane is called a Parabola.. (2.) When the Vertical Plane neither touches nor cuts either of the Surfaces, then the Section is called an Ellipfis. (3.) When the Vertical Plane cuts one of the Surfaces, and confequently the other, then the Secant Plane alfo cuts both Surfaces, (fince it is Parallel to the Vertical one) and the Sections are called Hyperbole, Oppofita, or oppofite Sections.

If therefore the Secant, and the Vertical Plane, be fo mov'd round in a Parallelifm each to other, that the Vertical Plane doth fometimes cut the Bafe, fometimes touch the Conic Superficies, fonietimes is placed wholly without the Cone; -It is manifeft, that by thofe Conical Superficies, divers Speecies of Hyberbola's, divers Parabola's, and divers Species of Ellipfis, will be delineated in the Secant Plane.: And moreover we plainly fee, what a near Affinity there is betwixt all thefe Lines: For if the Section be parallel to the Bafe, or even in a Scalené Cone, if it be fubcontrarily pofited, it will be a Circle; which therefore is defervedly reckon'd amongft the Conic Sections, as being one of the Extremes of the Ellipfis; from which then, if you proceed by a gradual Change of the Inclination of the Cutting Plane, there will be produc'd infinite Species of Ellipfes; until at length the Inclination becoming Parallel to the Side of the Cone, the other Extreme of the E1lipfis paffeth into a Parabola. But then the Inclination of the Cutting. Plane being never fo

Matbematical \cdot Pbilofophy. 5

little changed further, there will arife an Hyperbola; of which there are infinite Species, according to the divers Inclination of the Vertical Plane within the Cone. So that the Ellipfes do on this Side end in a Circle, and on that in a Parabola; the Parabola on this Side in an Ellipfis, and on that in an Hyperbola; the Hyperbolx on one part in a Parabola, and on the other in a ftrait Line. But becaufe the Conical Delineation of the Regular Curves may feem too difficult to many, I hall purfue it no farther, but proceed to that Expofition of thefe Lines, which is us'd by Cartes and others, and is perform'd by an eafy Delineation of them upon a Plane.

For a right Conception therefore of the Production and Nature of an Ellipfis, let (Plate 1. Fig. r.) H and I be two Points, or two Nails or little Pegs, about which let there be put a Thread BHI ; and then putting your Finger, or a Pin, to the Thread, and keeping the fame always in an equal Tenfion, move your Finger round from the Point B, until you return to the fame Point B again. By this Revolution of the Point B , is defrrib'd the Curve Line, called the Ellipfis, which differs from the Delineation of a Circle only in this, that a Circle hath only one Center, but the Ellipfis hath, as it were, two Centers; which indeed, if the faid Points H and I , their Diftance vanifhingaway, fhould come together into one, the Elliptic Curve would become perfectly. Circular. But by how much the greater the Diftance is betwixt thofe Points; the fame Length of the Thread ftill remaining; fo much the farther is this Figure remov'd from the Circular. So that according to the divers Proportion of the Diftance HI to the Thread BHI, or to the Line DK, which is equal to the fame Thread made lefs by the

Diftance HI, divers Species of Ellipfes will be defcribed. But then, if the Length of the Thread Thall be increas'd or diminifh'd, in the fame Proportion as the Diftance of the Points H and I Shall be increas'd or diminifh'd, there will be defcrib'd indeed divers Elliples, but which are all of the fame Species, or like to one another. From whence it appears, that Ellipfes are not only innumerable in Magnitude but in Species alfo, and reach from a Circle to a Right Line : For like as when the Points H and I meet together, the Ellipfis becomes a Circle; fo when they are remov'd from each other half the Length of the Thread, it becomes a Right Line, both Sides meeting together. From whence alfo it is manifeft, that every Species of Ellipfes is no lefs different from any other, than the Extremes of them are different on this Side from a Circle, and on that from a Right Line. It alfo appears from this Delineation, that if from a Point taken at Pleafure in the Elliptick Periphery, as the Point B, you draw two Lines to the two Central Points; thefe two Lines BH and BI taken together, will be equal to the greateft Diameter DK; and confequently that the Sum of them is always given: Which thing the Conftruction it felf Shews. For that Part of the Thread, which is extended from I to B, and from thence back to H, is the fame with that which returneth from I to F, and from thence back to H ; and again, that Part of the Thread which reaches from D to H , is the fame with that which reacheth from K to I , or DH is equal to IK ; therefore IB +BH , which by the former is equal to $I D+D H$, is equal to $I D+I K$, that is, to KD .

And thus much for the Production of the Figure in a Plarte; we fhall now fubjoin the Names

Matbematical Pbilofopby.

of the chief Lines in it, and the moft notable Properties thereof; fo as to give fome Sort of Knowledge at leaft of this moft Noble Curve, for the more right underftanding true Aftronomy, and the Courfes of the Planets.

In Fig. 2. Plate 1. DFKR is an Ellipfis; C the Center ; the Points H and I , the Foci thereof; DK the greater Axis, or the Tranfvers Axis, or the principal Diameter, or Latus tranfverfum, the Tranfvers Side; FR is the leffer Axis: All the Right Lines paffing through the Center C are Diameters: All Right Lines terminated at the Periphery, and which are divided into two equal Parts by any Diameter whatever, are called Ordinates, or Lines orderly applied, to wit, with refpect to that Diameter. Thus M G paffing through the Center, is a Diameter; and PK which is divided into two equal Parts by the fame, is an Ordinate thereof, or a Line orderly applied thereto. That Part of every Diameter, which is intercepted betwixt the Vertex thereof and the Ordinate, as $\mathrm{M} \mu$, is call'd the Abfciffa or Abfcifs thereof, (as being cut off from the fame Diameter:) A Line drawn from the Vertex of the D_{i} ameter, parallel to the Ordinates thereof, as $n \theta$, is a Tangent to the Ellipfis in that Vertex. A Diameter parallel to the Ordinates of another Diameter, and which confequently hath its Ordinates parallel to the former Diameter, is term'd a Conjugate Diameter. Thus GM and VT are conjugate each to other, and the Ordinate PK is parallel to the Diameter VT, and the Ordinate KE to the Diameter GM. The Ordinate to the greater Axis, which paffeth through either of the Foci, as MA in the firft Fig. is term'd the principal Latus rectum, or the Parameter of the greater Axis.

Now the moft notable Properties of this Ellip:fis are thefe: (r.) The Ordinates of every Diameter, which by the foregoing Definitions are bifected by the Diameter, are parallel each to other.
(2.) The Ordinates of the Axes are perpendicular to the Axes themfelves: But the Ordinates of the reft of the Diameters are oblique to their Diameters; and in Ellipfes of divers Species, fo much the more oblique, at equal Diftances from the Axis, by how much the Proportion of the greater Axis to the leffer is the greater; but in the fame Ellipfis, fo much the more oblique, by how much the more remote the Diameters are from the Axes.
(3.) There be only two Conjugate Diameters, which are equal each to other; thofe, to wit, whofeVertices are at equal Diftances from theVertices :of the Axes. Thus the Diameter V T is conjugate and equal to that other GM, where, to wit, VF is equal to MF, and VD equal to MK.
(4.) The obtufe Angle VCM of thefe two Diameters, which are conjugate and equal, is greater, and the acute Angie VCG is lefs than every other Angle contain'd by the reft of the Diameters that are conjugate to each other.
(5.) If the Lines $\mu \mathrm{P}$ and $\nu \mathrm{B}$ be Semi-ordinates to any Diameter, as MG; the Square of the Se-mi-ordinate $\mu \mathrm{P}$ is to the Square of the Semi-ordinate $\nu \mathrm{B}$, as is the Rectangle $\mathrm{M} \mu \times \mu \mathrm{G}$ to the Rectangle $\mathrm{M} v \times \nu \mathrm{G}$; that is, $\mu \mathrm{Pq}$ is to the Re_{-} gtangle comprehended under the two Parts, into which the Diameter is divided by the Ordinate KP , as $\imath \mathrm{Bq}$ is to the Rectangle undenthe Parts of the Diameter made by the Ordinate AB .

Matberiatical Pbilofophy.

(6.) The Parameterp or Latus retium of any Diameter is a third Proportional to that Diameter, and its Conjugate. That is (in Figure r.) if the Diameter DK, is to its conjugate Diameter EF, as EF to Y, then Y is the Parameter or Latus rectum of the Diameter D K. Whence A M, an Ordinate to the Axis thro' the Focus, is as above, equal to the principal Parameter, and is a third Proportional after the greater and leffer Axis. For the Axes are the principal Pair of conjugate Diameters.
(7.) The Square of every Semi-ordinate, as y manis MI in the firft Figure is lefs than, the Rectangle made of any Abfcif whatever, las IK) drawn into the Latus regtum of its own Diameter", (or than IK $\times Y_{1}^{\prime,}$ And in the other Figure, " $P \mu q$ is lefs than the Rectangle made, of the Abfcifs $\mathrm{M} \mu$, and the Latus rectum of M G ${ }^{1 \cdot 3}$ From which Defect, or énлeris this Section hath its Name.
(8.) If from any Point,as B in the firft Figure; you draw the right Lines BH and BI to the Foci, the Sumof them will be equal to the greater Axis, as was Thew'd above. And if the Angle I B H comprehended by thofe Lines be bifected by the right Line ba ; the Line a is perpendicular to the Tangent V B in the Point B, that is, to the Curve in the Point of Contact. . .
(9.) The Curvature, with refpect to the Center of the Ellipfis, is at divers Diftances from that Center in the Quadruplicate Proportion of thofe Diftances directly : As, if CK be double of CF, the Curvature in the greater diftance K , hall be to the Curvature in the leffer diftance F, as 16 is to I_{4} and if C:K be Treble, C F, the Curvatute in K, will be to that in F as 8 I to F . And fo of the reft.:
10. The Curvature of the Elliptic Arches,with refpect to the Focus, is in divers Diftances from that Focus, in the fimple Proportion of the Diftance directly. Thus, if HD be half of H K, the Curvature at D, if you refpect the Focus ; XH will be half of that at K, refpecting the fame Focus, and fo of the reft. And the Thing is the fame in a Parabola and Hyperbola.
(ir.) The Diftance of a Body turn'd round in an Ellipfis, about the Focus H, from the fame Focus, is the greateft of all in the Point K, leaft of all in the Point D, and mean in the Points E and F; and that mean diftance HF is equal to the greater Half-Axis D C or CK ; as is manifeft from the Production of the Ellipfis.
(12.) The vanifhing Subtenfe of the Angle of Contact, parallel to the Diftance from the Focus, at an equal perpendicular Interval from that diftance, always remains given and unvaried in the fame Ellipfis, yea and in the fame Parabola and Hyperbola too. Thus if $\mathrm{d} \mathbf{Z}$ be always given; $g \mathrm{~d}$ alfo will always remain given in a diftance infinitely fmall:
(13.) The Area of the Ellipfis is to the Area of the Circle circumfcrib'd, as the leffer Axis is to the greater; $;$ and fo are all correfpondent Parts whatever amongtt themfelves, ms MIK, mIK; and the Ordinates to the greater Axis, as M I are divided by the Elliptic Periphery always in thefame Proportion; fo that MI is to mI always in the fame Proportion; to wit that of the leffer. Axis to the greater. And we are to reafon in the fame manner concerning a Circle infcrib'd in the Ellipfis.
(14.) All Parallelograms de'fcrib'd about the conjugate Diameters of the Ellipfis, and comprehending the Ellipfis, are equal. Thus the Parallec... : :

Matbematical Pbilofophy.

logram $\alpha \beta y \gamma^{\delta}$ is equal to that other sinn; and thus it is every where.
(15.) If a right Line always paffing through one of the Foci be fo mov'd, that the Elliptic Area defcrib'd by the fame is proportional to the time ; the Angular Motion of a right Light drawn from the other Focus to the former Line, will be almoft equable. Thus in the former Fi gure, if the Angulat Motion of the Line H B be fo attempered, that the fame being according to the reciprocal Proportion of the Diftance accelerated or retarded, doth defcribe the Area DHB proportional to the time, the Angular Motion KIB, about the other Focus I will be almoft proportional to the time, and confequently without any notable Acceleration or Retardation, and nearly equable ; that is to fay, where the Ellipfes doth not differ much from a Circle.

$$
\text { Feb. 7. } 170 \frac{3}{4} .
$$

Lect. II.

O pafs now from the Ellipfis to the Parabola, let D I be an Infinite right Line, and IL another perpendicular to it. Then there being taken in the Line DI any Point F, let the Line FI be bifected in the Point T. And let there be taken Two Threads joined together in the Point T, one TI, the other TF. And let a Pin fixed to the Threads in the Point T be moved to the Right and Left, in fuch a manner, that when the Pip is in any other Pofition as in P , the Thread

12 Matbematical Pbilofophy.

TI which here becomes PL be always perpen: dicular to IL, or, which is the fame Thing parallel to DI, but equal to the Thread TF, which in this Cafe becomes P F, ever paffing thro' the Point F. And the Curve thus generated by the Pin, infinitely produced both ways, is called a Parabola. In which gPiTsRo is the Periphery ; ID the Axis or principal Diameter; F the Focus. The Point T the principal Vertex; an Ordinate to the Axis througly the Foculs is equal to the principal Latus Rectum. All right Lines ni, or R Z Parallel to the Axis,are Diameters, as dividing the Lines i h and $K T$ which are Parallel to the Tangents at their Vertices inte Two equal Parts ; and they are called Diameters. belonging to the Vertices in which they termi-: nate, as T,i.

Now the principal Properties of a Parabola are thefe.
(r_{4}) Every Diameter or right Line parallel to the Axis, bifects all the Lines within the Figure which are parallel to the Tangent of the vertical Point. Which bifected Lines are as hath beens: faid called Ordinates.
(2.) The Ordinates of the Axis are perpendicular thereto: But the Ordinates of the reft of the Diameters are oblique to their Diameters; and fo much the more oblique, by how much the Vertex of the Diameter is further remov'd from the principal Vertex of the Parabola.
(3.) The Latus rectum, or Parameter to every Diameter, is a third Geometrical Proportional after any abfciffe and its femi-ordinate; that is the Latus rectum of the Diameter (in), (or that of the Vertex (i) is y; if it be thus; as the Abfcifs (iq) is to the Semi-ordinate ($q \mathrm{k}$) fo is that Semiordinate (qk) to y .
(4.) The
(4) The principal Latus rectum, or that belonging to the Axis, is equal to the Ordinate ($\mathrm{h} i$) parfing through the Focus; and fourfold of F T, the leaft diftance of the Focus from the principal - Vertex.
(5.) The Latus rectum belonging to any Vertex or Diameter, is alfo fourfold of the diftance of that Vertex from the Focus. Thus the Latus red Cum of the Vertex s is fourfold $F s$, and fo it is every where.
(6.) The diffance of any Vertex or Point in the Parabola whatfoever from the Focus, is equal to the leaft diftance of the fame from the Line L L, which is perpendicular to the Axis, and is diftant from the principal Vertex by a Quarter of the principal Latus rectum. For by the Conftruction, the Line FP is equal to PL.
(7.) The Square of every Semi-ordinate, as (q k) is equal to a Rectangle made of the Latus rectum, of the fame Vertex as Y, and (iq) the Ablciffe of the Diameter of the Vertex. And from the Equality of the nagaboin, or Comparifori in the Figure, betwixt the Rectangle and the Square of the Semi-ordinate, withour any Excefs For Defect, the Name of the Section is derived.:'
(8.) When therefore, the Latus rectum in any Diameter is given, the Abfciffes are as the Squares, or in the duplicate Proportion of the Semi-ordinate. Thus TF is to TG as iFq is to gGq ; and fo likewife is iq to ir, as the Square of gT is to the Square of rla ; and thus every where. From whence alfo, when the Abfcifs of the Axis is equal to the principal Latus rectum, or fourfold of the diftance from the Vertex, it will be equal to its femi-ordinate.

14 Matbematical Pbilofophy.

(9.) The Angle comprehended by any Tangent whatever, and a Line from the Focus, is equal to an Angle comprehended by the fame Tangent, and any Diameter or the Axis. .Thus the Angles Iif and pin are equal. From whence indeed, (which thing is to be noted by the way) all the Rays of Light which fall upon the Concave part of the Surface-produced by the Convolution of, the Parabola about the Axis, which fall, L fay, upon the fame Parallel to the Axis, will be reflected from a Concave Paraboloid Figare to the Focus F, and will beget there a moft vehement burning; from which Property indeed the Point F hath the Name of Focus ; and hath communicated the fame Name to the like Points in 2 n Hyperbola and Ellipfis.
(io.) A Parabola, like as an Hyperbola, doth not enclofe a Space, but is ftretched forth in infinitum.
(ri.) A Parabolic Curve always tends more and more in infinitum to a Parallelifm with its Diameters, but can never reach thereto.
(12.) If two Parabolx's be defcribed with the fame Axis and Vertex, the Ordinates to the connmon Axis will be cut off by the Parabolx in a given Proportion ; and the Area's comprehended by the fame Axis and Ordinate, and the refpective Curves will be in the fame given Proportion to one another.
(13.) Every Parabolic Space, comprehended betwixt the Curve and the Ordinate, is to the Parallellogram made of the fame Bafe and Altitude in a Subfefquialteral Proprortion, that is; as 2 is to 3, and to the external Space in a double: Proportion, or as 2 is to I . So qiT is to qiI as 2 is to 3, and to iIIT as 2 is to 1 . From whence it becomes eafy to fquare the Parabola.
(14.) The

Matbematical

F14.) The diftance betwixt the Vertex of the Axis, and the Point where any Tangent whatever interfects it, as I, is equal to the Abfcifs of the-Axis which belongs to the Ordinate apply'd from the Point of Contact. So TI is equal to TF; and thus it is every where.
(15.) All Parabolx's are like, or of the fame Specios; as are alfo all Circles.
(16.) If a Diameter be continued through the Point of meeting of Two Tangents, this Diameter will bifect the Line that joins the Cont tacts. Which Property of the Parabola is: likewife to be applyed to the Ellipfis and Hyper boda.

And thus much for the Parabola-We now come to the Hyperbota (Fig. 4. Plate. ..) Take a Staff or Rule of a fufficient Length as: I B, let I and H be two Central Points anfwering to the Foci of an Ellipfis, tin which let Nails be faftned; then there being tied to one endi of the Stick 2 Rope or Thread, twofold fhorter than the Stick, let the other end thereof be bor'd through, and fo fixed upon the Nail I ; but as for the ather end of the Rope let it-be fixed by a Knot upon the ather Nail H; which done, laying your Finger upon the Point: B, -where the Rope and Staff are tyed together, let your Finger defcend fo long that you have thereby now applyed and joyn'd the whole Rope to the .Staff or Rule, the Staff having been in theimean while, as it needs muft, wheel'd about the Gentre I. And thus you have defcrib'd by the Point B, the Vertex. of the Anghe HBI. Curve Line, X B D which is part of an Hyperbola, the whole confifting of that Curve wich waill refult from the Curve X B D, which hath adddd to it the Curve Y D, the Product of the Rulve and Work as turn'd to the other

16 Matbematical Pbilofopby.

Side. Furthermore, if you transfer the Hole or Knot of your Rope to the Nail I, and faften the end of the Staff upon the Nail H, you will defribe another Hyperbola vertically oppofite to the former, which is altogether like and equal thereto. But then, if without changing any thing in the Rule and Nails, you fhall only apply a longer Rope, you will defcribe an Hyperbola of a different Species from the former ; and if you fhall ftill lengthen the Rope fomewhat, you will thave another Sort of Hyperbola ; until at length making the Rope double in length of the Rule; vou will have the Hyperbola chang'd into a right Line. But if you alter the Diffance of the Nails in the very fame' Proportion, in which you change the difference betwixt the Length of the Rope and that of the Stick; in this Cafe you will have Hyperbolx mark'd out, which are altogether of the fame Species, but have their fimilar Parts differing in Magnitude. And lafty, if the Length of the Rope and Rule be equally increas'd their Difference in the mean while, and the In terval of the Nails remaining the fame; ; not a different Hyperbola either as to Species or Magnitude will be defcrib'd, nor any other than a greater Part of the fame Hyperbola. And this for the Mechanical Conftruction of an Hyperbola in a Plane.
But it is to be acknowledg'd, that many Properties of an Hyperbola are better known from another manner of generating the Figure; which Way is this: (See Fig. ऽ. Plate I.) Let LL and MM be infinite Right Lines interfeging each other in any Angle whatever in the Point C: From any Point whate:er, as D or e , let Dc , Dd, be drawn parallel to the firft Lines, or (ec, (dd;) which with the Lines firft drawn make the Parel-

Matbematical Pbilojopby.

Parallelograms as D c C d, or e e c C d : Now conceive two Sides of the Parallelogram as Dc, Dd, or ec, ed, to be fo mov'd this way and that way, that they always keep the fame Paralielifm, and that at the fame time the Area's always remain equal : That is to fay, that Dc and e c remain always Parallel to MM , and D d or ed always Parallel to L1; and that the Area of every Parallelogram be equal to every other; one Side being increas'd in the fame Proportion wherein the other is diminifh'd. By this means the Point D or e will defcribe a Curve-Line within the Angle comprehended by the firft Lines; which is altogether the fame as was deferib'd above, both by the Section of a Cone, and Cartes's Delineation. And in like manner, in the Angle vertically oppofite will be defcrib'd a like and equal Hyperbola, if fo be the Parallelogrami C c Kd, equal to the former, be fuppos'd to be mov'd in the fame manner as before: Which Hy perbola's are, as was faid before; called oppofite Sections, or oppofite Hyperbolx. Now in either of the two Figures, DK is the Tranfvers Axis, or Tranfvers Diameter of the Hyperbola, or the Oppofite Sections: The Point \mathcal{C} is the Ceniter: The Points H and I the Foci: And in the 2d Figure; all the Lines paffing through the Center C, as ih are Diatheters. But if Hyperbolx be defcrib'd in the following Angles, as $\mathrm{LCM}, \mathrm{MC}$ L, thofe Sections will be called the Following Sections; and if she Diftance of the primary Vertex of thofe Hyperbolx from the common Center C, as $C \beta$, or $C \gamma$, be equal to the Semi-tangent $K i$, or $K a$, at the primary Vertex of thefe, thofe Sections fhall be called Conjugate Sections : And all the Figures togerher will be to be named the Hyperbolic Syfterí.

18

Matbematical Pbilofopby.

Furthermore, ($\mathrm{i} h$) the Ordinate to the Axis through the Focus, is equal to the principal Latus rectum, or the Parameter of the Axis; and an indeterminate Diameter, whether of the following Sections, or of the former, which is parallel to the Ordinates of any determinate Diameter, is called the Conjugate Diameter of the fame : and hath its Ordinates parallel to the former Diameter.

And now we come to the principal Properties of the Hyperbola, and the oppofite Sections, which are as follows:
(r.) Any Diameter or right Line paffing thro' the Center, bifects all its Ordinates; that is, all the Right Lines which are terminated on both Sides by the Hyperbolic Periphery, and thofe parallelLines that are bifected by anyDiameter whatever, are called the Ordinates of that Diameter.
(2.) The Ordinates of the Axis are perpendicular to the fame: But the Ordinates of the reft of the Diameters are oblique to their Diameters; and fo much the more in divers Species, at equal Diftances from the Axis, by how much the Difference of the Angles including the $\mathrm{Hy}-$ perbolx is the greater; and in the fame Hyperbola, fo much the more oblique, by how much the Diameters are remov'd from the Axis.
(3.) If any Lines, as $H h$ and $Q s$, be Semiordinates to any Diameter whatever, as K D; the Square of the Semi-ordinate Hh is to the Square of the Semi-ordinate $Q S$, as the Rectangle KHDH is to the Rectangle K Q, DQ: And fo the Square ($\mathrm{b} \mathbf{n}$) is to the Square ($\mathrm{a} K$,) as the Rectangle (ib hb) is to the Rectangle (i a ha); and thus every where.
(4.) The Latus rectum, or Parameter of every Diameter, is a third Geometrical Proportional after
after the Diameter, and the Conjugate thereof, (or its Tangent, which is equal to it:) That is, the Latus rectum of any Diameter, as DK is Y, if it be thus; as the Diameter DK is to its Conjugate β, or its equall ($\omega \boldsymbol{r}$); fo that Conjugate $\beta \gamma$, or that Tangent (α,) is to y. And as the Ordinate to the Axis through the Focus is the principal Latus reStum, fo it is more than Quadruple of the leaft Diftance of the Focus from the Vertex:
(ヶ.) The Square of any Semi-ordinate whatever, as (Qr r) is greater than a Rectangle made of the Abfifs D Q, drawn into the Latus rettums of its own Diameter, as y : And in like manner, the Square of the Semi-ordinate ($\mathrm{b} n$) is greater than the Rectangle of the Abfcifs ($\mathrm{i} b$) into the Latus rectum of the Diameter (hi.) From which ímefCoxin, or Excefs, this Section hath its Name.
(6.) If from any Point of the Hyperbola, as (B) in the former Figure, there be drawn Right Lines to both the Foci, as BH, BI, the Difference of thefe Lines will be equal to the Axis DK ; as will eatlly appear from the Delineation it felf.
(7.) If the Angle H B I, comprehended by Lines deawn to the Foci, be bifected by the Right Line E B, that Right Line will be a Tangent to the Hyperbola in the Point B.
(8.) The Right Lines L L, and M M, which enclofe the Hyperbolis, are Afymprots of the Hyperbolx, i. e. they are fuch unto which on both Sides the Curve approacheth nearer and nearer, but is never able to touch or. coincide with the fame.
(9.) The Species of Hyperbolx are various? according to the different Magnitude of the Angle LCM comprehended by the'Afymptots: But

20 Matbematical Pbilofopby.

that Angle remaining the fame, the Species of the Hyperbola remains unchang'd ; but according to the different Magnitudes of the Parallelograms, by which the Hyperbolx are defcrib'd, Hyperbolx of divers Magnitudes do arife: But if the Angle contain'd by the Afymptots be a right Angle, the Hyperbola is called Equilateral or Rectangular, and the Latu's rectum of all the Diameters will (as it is in a Circle) be equal to their Diameters. And laftly, if Hyperbolx be defcrib'd about the fame Axis, in divers Angles of the Afymptots, the Right Lines perpendicular to the Axis will be cut off in a given Proportion by them all ; and the Spaces likewife enclos'd by the Right Lines or Ordinates, the produced Axis, and the Curves, will be in the fame given Proportion.
(10.) If the Diftances from the Center of the Hyperbola be taken in a Geometrical Proportion in one of the Afymptots, fo that CI, CII, CIII, CIV, CV, CVI, be continuedly proportional geometrically; and if from thofe Points there be drawn parallel to the other Afymptot, the Lines, $\mathrm{I}_{1}, \mathrm{II}_{2}$, III $_{3}, \mathrm{IV}_{4}, \mathrm{~V}_{5}$, VI 6 ; the Spaces I 2 , II 3, III 4, IV 5 , V 6, will be equal amongft themfelves. And confequently, if that Afymptot C M be fuppos'd to be divided, according to the Proportion of Numbers exceeding one another in a natural Series, thofe Spaces will be proportional to the Logarithms of all thofe Numbers.

Feb. 14: 170 $\frac{3}{4}$.

Lect.

Matbematical Pbilofophy.

Lect. III.

AVING now expounded feverally the Curve Lines, called the Conic Sections; let us now compare thein to gether,and briefly confider, whatAffinity there is betwixt them, what mutual Refpect they bear to one another, and what Difference there is among them.

Let the Point A therefore (fee Fig. 5. Plate r.) be the Center of the Circle F XBY, and the common Focus of all the Sections: [And it is indeed a certain Center, as it were, of all the Sections: And the Ordinate to the Axis through the Focus, or Latus rectum, doth in moft of them more agree with the Diameter of the Circle parfing through the Center thereof, than the Axis it felf of the Section doth :] Then let the Point F be the principal Vertex of all the Sections; and FXBYa Circle, the Center of which Figure, as being only an Extream Ellipfis,falls in with the Foci, (where XY will be, if I may fo fpeak, the Latus rectum of the Circle paffing through the common Focus or Center, and equal to the reft of the Diameters.) Let FGHI be an Ellipfis lefs Curve on the Vertex than the Circle is ; the remoter Focus of which Ellipfis is the Point C ; FH the principal Diameter or greater Axis; G I the leffer Axis; ef the principal Latus rectum, which is more than double to $A R$, the Diftance of the Vertex F from that Focus A, but lefs than Quadruple thereof. But it is to be noted, that C 3 another

82 Matbematical Pbilofopby.

another Ellipfis alfo may be drawn more Curve in F than the Circle; but then it is defcrib'd about the Point A , as the remoter of the Foci. But then after the greater Ellipfis, the Center thereof departing further in infinitum, there arifeth the Conic Section LdFcK, which we call a Parabola; which indeed is half of an Ellipfis infinitely long; the Axis whereof is the Infinite $\mathbf{F H}_{2}$ and (cd) the Latus rectum: Which fame is Quadruple of the Diftance of the Vertex from the Focas AF. As for the Curvature of the ParaboIa in the Vertex \mathbf{F}, it is lefs than that of the Ellipfis, as is eafy to be feen. Then laftly, the Hyperbola MiFIN follows, whofe Parameter, or principal Latus rectum (il) is more than Quadruple to A F, the Diftance from the Focus: and the Curvature thereof in the Vertes F , is lefs than that of the Parabola, and will infinitely be diminifh'd, the Angle TEV, contain'd by the Afymptots, being increas'd in infnitum, until $2 t$ length the Afymptots falling into one Right Line, the Hyperbola it felf with its Afymptots, end in the Right Line OP perpendicular to the Axis. From whence it is to be noted, (r.) That the Conic Sections are in themfelves a Syftem of Regular Curves allied to each other; and that one is chang'd into another perpetually, when it is either increas'd or diminifh'd in infinitum. Thus the Circle, the Curvature thereof being never fo little increas'd or diminifh'd, paffeth into an Ellipfis; and the Ellipfis, its Center going away infinitely, and the Curvature being by that means diminifh'd, is turn'd into a Parabola : And when the Curvature of the Parabola is never fo little chang'd, there arifeth the firf of the Hyperbolx ; the Species whereof, which are innumerable, will all of them arife orderly by a gradual Diminution
nution of the Curvature, until the Curvature vanifhing away, the laft Hyperbola ends in a Right Line perpendicular to the Axis. From whence it is manifeft, that every Regular Curvature like to that of a Circle, from the Circle it Celf unto a Right Line, is a Conical Curvature, and is diftinguih'd with its peculiar Name, according to the divers Degree of that Curvature. (2.) That the Latus rectum of a Circle is double to the Diftance from the Vertex ; that all the Latera recta of the Ellipfes are in all Proportions to that Diftance betwixt the Double and Quadruple, according to their different Species: That the Latus rectum of the Parabola, is juft Quadruple to that Diftance: and laftly, that the Latera recta of Hyperbolx are in all Proportions beyond the Quadruple, according to their various Kinds. (3.) That all the Diameters in a Circle and Ellipfis interfect one another in the Center of the Figure within the Section: That in the Parabola they are all parallel amongit themfelves, and to the Axis; but that in the Hyperbola they interfect one another, but this without the Section, in the common Center of the oppofite Sections. (4.) That the Curvature, with refpect to the Focus in all thefe Figures, is increas'd or diminifh'd proportionably to the Increafe or Diminution of the Diftance from the Focus. For although by reafon of the Obliquity of the Tangents, the Curvature for the moft part feems greater in a leffer Diftance from the Focus, and lefs in a greater ; yet the true Curvature, which is to be defin'd by the Subtenfe of the Angle of Contact, is on the contrary greater in a greater Diftance, and leffer in a lefs, and greater or lefs in prcportion to the Increafe or Diminution of the Diftance ; as was above noted, and will be more fully open-

24 Matbematical Pbilofophy.
ed in the Sequel. And thus much for the Conic Sections.

And forafmuch as we fhall make fome fort of Ufe of the Line called the Cycloid, we fhall briefly defcribe it.

If upon the Right Line A E (fee Fig.i. Plate 2.) the Wheel or Circle A B C D be roll'd along, until the Point A, in which it at firt touched the faid Line, doth again after an entire Revolution meet and touch the fame in E; the generating Circle ABCD will defcribe the Line AE equal to its own Periphery, and the Point A by its Compound Mation will defcribe the Curve Line AFE, which is called a Trochoid or Cycloid: The Length of which Line is Quadruple to the Diameter of the generating Circle; and the Cyt cloidal Space comprehended by this Curve, and the Subrenfe A E, is triple the Area of the generating Circle. Moreover, any part whatever eftimated from the Vertex, as FI is every where double the Chord of the Circle Fb, and the Tangent thereof G IH is perpetually parallel to the fame Chord Fb . And thus much for the Cy cloid.

Now after this preparatory fhort Explication of the Conic Sections; we come to our proper Work: Intending to proceed next to the true Laws of Motion, both thofe commonly known, and thofe which were lately found out and eftaplifh'd by the Famous Sir Ifaac Nespton.

In the fetting forth of whofe Noble Inventions, we fhall generally make ufe of the very Words of that great Man; but yet fo, that every where we fhall endeavour to explicate, demonftrate; and to make clear and plain to all, what either Words or Things feem more obscure and diffcult.

Definitions.

(r.) BODY or Matter is an extended Sub: ftance, Solid, or Impenetrable, of it felf merely Paffive, and indifferent to Motion or Reft ; but capable of any fort of Motion whatever, and of all Figures and Forms. I call it a Subftance extended, becaufe that it poffeffeth fome part of extended Space ; but Solid and Impenetrable : not becaufe it cannot be penetrated by Space, or perchance by other incorporeal Subfances, but becaufe it is impenetrable by all other Matter ; and upon that account it doth eminently claim the Name of Solid. I put in the Definition [its being indifferent to Motion and Reft] not that I reckon Motion, as well as Reft, a Thing plainly Negative or Privative, but becaufe the Conception of a Body, as in Motion, is as eafy and familiar as of a Body at Reft. I call it in it felf Paffive, becaufe we perceive nothing of Action or Energy, or of a Power of moving it felf, either in its Nature or Affections; but on the contrary from all the Phænomena of Motions we every where meet with its meer Inactivity. But I fay that it is capable of any fort of Motion and of all Figures and Forms; fince the daily Appearances in the World, and infinite Experiments; doe fhew this to be the Nature of it: Time; Space, Place, and Motion, as being things fo well known to all, fcarce need to be defined. But however, for the taking away fome Prejudices out of Mens Minds, it is very expedient, that with the famous Nezpton we fhould diftinguifh thefe Quantities into Abfoldte and Relative, True and Apparent, Mathematical and Vulgar, and fo in a fors

26 Matbematical Pbilofopby.

fort defcribe them ; which for Order's fake fhall be done in the following Definitions.
(2.) Time Abfolute, True, and Mathematical, is an eternal and equable Duration, compounded of Parts, fucceeding each other in an immutable Order. For in it felf, and its own Nature it flows equably. Nor doth it depend on the Motion of Things, much lefs on their Reft, nor indeed upon their Exiftence. For whether any thing were mov'd or not, whether any Thing did exift, or nothing at all were in Being, it would be all one in this Cafe. Time flows equably, whatfoever relation any other Things have to one another.
(3.) Relative Time, or that which is Apparent and Vulgar, is fome fenfible and external Meafure of Duration (whether it be by Motion, or fome other way; whether it be Accurate, and even or uneven;) which is vulgarly ufed inftead of the true time, as an Hour, Day, Month, Year, the Duration of the World, or any Syftem from the beginning to the End, סvc. In Aftronomy, Abfolute Time is diftinguih'd from Relative, by the Equation of the Vulgar Time : For the Na tural Days are unequal, which are neverthelefs commonly taken for equal in the meafuring of time. This Inequality Aftronomers correct, that they may meafure the Heavenly Motions by a truer Time. It is poffible, that there may be no ${ }^{*}$ even Motion at all by which Time may be accurately meafured. All Motions may be accelerated and retarded, but the flowing of abfolute Time cannot be chang'd. The Duration or Perfeverance of the Exiftence of Things is the fame, whether their Motions be fwift, now, or none at all. Confequently this Duration is juftly diftinguifh'd from its fenfible Meafures, and collected
from

Matbematical Pbilofopby.

from them by Aftronomic Equation. For this is that which Aftronomers have labour'd after; namely, that from the unequal Motions of the Heavenly Bodies, they might find an equable Motion about fome Center; from whence they may more eafily and accurately meafure Duration, that flows equably.
(4.) True, Abfolute, Mathematical Space, is an Extenfion Penetrable, Indifcerpible, Immoveable, Infinite, Eternal, and every where like to it felf. Whether or no fuch an Extenfion doth really exift diftinct from Matter, is another Queftion. But that this is the common Notion of Space with all, muft be allowed by every reafonable Man; and therefore, is to be taken as a Definition ; for fo Geometricians do at firft define a Circle, a Square, a Triangle, doc. not troubling themfelves with the Queftion, whether fuch Figures do really exift or no. We ought therefore to lay down a Defcription of Space fhould be laid down aforehand, leaft afterwards there fhould arife Strife about Words ; as we may afterwards enquire whether it be the Idea of a Thing really exiftent.
(5.) Relative Space (which alfo as I fuppofe is commonly called Place) is the Meafure of $A b-$ folute Space, or any moveable Dimenfion, which is defin'd and determin'd by our Senfes, from its Pofition with refpect to certain Bodies, and is commonly us'd by the Vulgar for immoveable Space. As the Dimenfion of an Aereal, Celeftial, or Subterraneous Space, is defined by its Pofition in refpect of the Earth. So Space, Abfolute and Relative, are the fame in Species and Magnitude, but do not always remain the fame in Number: That is, if we confider the Space or Cavity contain'd in any Veffel, whitherfoever the Veffel is mov'd,

28 Matbematical Pbilofophy.
mov'd, the Space or Cavity included within the Sides thereof will always be of the fame Nature, by reafon that the nature of Space is every where fimilar to it felf; and will remain likewife of the fame Magnitude, becaufe of the given Magnitude of the containing Veffel. But it doth not remain the fame Space numerically, for that is changed perpetually by the Motion of the Veffel. In like manner, if the Earth be mov'd with an annual Motion about the Sun, the Space of our Air which relatively, and in refpect of the Earth remaihs ftill the fame, that is of the fame Nature and Quantity, will fometimes be one part of Abfolute Space; fometimes another, and fo will abfolutely and really be changed perpetually. For, indeed, as the Order of the Parts of Time is unchangeable, fo likewife is the Order of the Parts of Space; although the Things which are in them are continually mov'd and chang'd. For Times and Spaces are, as it were, the Places of themfelves, and of all other Things; which are placed in Time as to order of Succeffion, and in Space as to order of Situation. They are Places by their Effence, and it is abfurd to fay that the primary Places can be mov'd. Thefe therefore are the Abfolute Places; and the Tranflations which are from thefe Places, are the only Ablolute Motions. But then, becaufe the Parts of Space cannot be feen in themfelves, or diftinguifh'd from each other by our Senfes, inftead of them therefore we ufe fenfible Meafures; defining all Places from the Pofitions of Things, with refpect to fome Body which we look upon as unmov'd, and their Diftances from the fame; and eftimating all Motions with refpect to the faid Places, and fo far as we conceive Bodies to be tranfferr'd from them.And thus inftead of abfolutePlaces
and Motions, we make ufe of Relative ; and this indeed not unfitly in common Affairs: But in Philofophical Matters we ought to abftract from the Senfes: for it is poffible, that no Body is really. quiefcent, to which Places and Motions may not in this manner be referr'd to.
(6.) An abfolute Place is that part of the ablolute Space which the Body poffeffeth.
(7.) A Relative Place is that part of Relative Space which a Body poffeffeth. I fay that Place is a part of Space, not the Situation of a Body, or the ambient Surface as fome have defin'd it. For the Place of equal Solids are equal ; and the fame quantity of Matter always poffeffeth the fame Quantity of Space, of whatfoever Figure or Denfity it is. As for Example, The Places of a Sphere, and of a Cube of the fame ablolute Magnitude will be equal, or they will fill and be adequate to equal Places; although the ambient Surfaces, by reafon of the diffimilitude of the Fi gures will be unequal ; and fo in all other Figures. Further, the Motion of the whole is the fame with the Sum of the Motions of all the Parts, that is, the Tranflation of the whole from its Place is the fame with the Sum or Aggregate of the Tranflations of all the Parts from their Places; and confequently, the Place of the whole is the fame with the Sum of the Places of the Parts, and therefore is Internal, and in the whole Body. But Situations properly fpeaking have no Quantity, and cannot be faid to be greater or leffer, neither are fo much Places as Affections of Places.
(8.) Abfolute Motion is a Tranflation of any Body or Subftance from one abfolute Place, or immoveable Space, into another abfolute Place or immoveable Space.

30 $\overline{M a t b e m a t i c a l ~ P b i l o f o p b y . ~}$

(9.) Relative Motion is a Tranflation of a Bo: dy from a Relative Place or fome moveable Space, into fome other Relative Place, or moveable Space; or a transferring. of a Body from the Neighbourhood of fome ambient Bodies into the Neighbourhood of others; or laftly, a Tranflation of a Body from its Situation amongft fome certain Bodies into another Situation.

Thus in a Ship which is under Sail, the Relative Place of a Body is that part of the Ship in which it is ; or that part of the whole Cavity which fuch a Body fills; and which confequently is mov'd with the Ship: And the Relative Reft of that Body, is the abiding thereof in the fame part of the Ship, or Cavity. But the true Reft thereof is its continuance in the fame part of the immoveable Space. From whence if the Earth did truly reft, the Body which relatively refts in the Ship, would be mov'd truly and abfolutely with the fame Velocity wherewith the Ship is mov'd on the Earth.

But if the Earth be alfo mov'd ; the true and ablolute Motion of the Body will arife, partly from the Motion of the Earth in the unmov'd Space ; partly from the Relative Motions, both of the the Earth and of the Body in the Ship ; and from thefe Relative Motions will arife a Relative Motion of the Body on the Earth.So if that Part of the Earth in which the Ship is, be really mov'd towards the Eaft with a Velocity of roord Parts, and the Ship be carried towards the Weft by the IVind with a Velocity of Ten Parts ; and the Mariner walk in the Ship towards the Eaft with one Part of Velocity : The Mariner will be mov'd truly and abfolutely in the unmov'd Space towards the Eaft with rooon Parts of Velocity, and Relatively on the Earth towards the Weft with Nine Parts of Velocity.

Feb. 28. 170 $\frac{1}{4}$.
LEC.

Matbematical Pbilofopby.

$$
L_{\text {е с т. }} \mathrm{IV} \text {. }
$$

 E have already laid down fome Definitions by way of Preparation to the Newtonian Philofophy. We will now fuper-add a General Scholium appertaining to the two laft Definitions.
A General Scbolism.] Reft and Motion Abfolute and Relative, are diftinguilh'd one from another by their Properties, Caufes, and Effects.

It is plain by what hath been faid, that altho' any two Bodies, each of which doth truly reft, do alfo reft betwixt themfelves; yet it doth in no wife follow from their refting betwixt themfelves; that they do truly reft: For there may be fome truly Quiefcent Body in or far beyond the Region of the Fixed Stars, with refpect to which both the faid Bodies do change their Pofition.

But from the Situation of Bodies in our Regions, in refpect of one another, we cannot difcover whether any of them keep a given Pofition in refpect of that remote one ; and fo true Reft cannot be defined by their Situation between themfelves. The Property of Abfolute Motion is, that thofe Parts which keep given Pofitions to the Wholes, participate of the Motions of thofe Wholes : For all the Parts of Revolving Bodies endeavour to recede from the Axis of Motion.

And the Impetus of moving Bodies arifes from the conjoint Impetus of each of their Parts: Therefore in Ambient Bodies, thofe move which are relatively at reft. And therefore true and abfolute

32 Matbematical Pbilofopby.

folute Motion cannot be defined by a Tranflationi from a Vicinity of Ambient Bodies, confider'd as at Reft. Thofe Ambient Bodies ought not only to be look'd upon as Quiefcent, but alfo to be truly fo: But all included Bodies, befides their Tranflation from the Neighbourhood of Ambient Bodies, alfo participate of the true Motion of thofe Bodies ; and that Tranflation being taken away, they are not truly, but only feem to be at Reft. For Ambient Bodies are to the included ones, as the outward Part of the Whole is to the inward one, or as the Shell to the Kernel. But if the Shell be mov'd, the Kernel or part of the Whole is wifo mov'd together, without a Tranlation from the Shell.
In like manner, if a Relative Place be moved, a Body therein plac'd is alfo mov'd ; and a Body which is moved from a moved Place partakes of the Motion of its Place. So the Motion of any one walking backwards and forwards in a Ship whilft it is under Sail, is greater or leffer in refpea of the Earth, or Shore, according as it tends towards the fame or contrary Part with the Ship. But if he fland ftill in any certain Part of the Ship, he partakes of its'Motion, and moves with the fame Celerity: And if it tends towards the fame part of the Ship, in refpect of the Earth it will be moved: fwifter than the Ship, if to the contrary nower : And fo we ought to reafon concerning the Motion of the Earth if it doth move. Therefore, all the Motions which are made from moved Places, are only Parts of Whole and Abfolute Motions ; and every entire Motion is compounded of the Motion of the Body from its firf Place, and of the Motion of this Place from its Place; and fo on; till we come to an unmoved Place; as appears in the above-mentioned Example.Whence

Motions entire and abfolute can be defined by unmoved Places only : And therefore abfolute Motions are referred to unmoved Places, and relative Motions to moveable Places: But Places are not unmoved, unlefs they all keep the fame Pofitions to one another from Infinity to Infinity; and therefore unmoved Places always abide and conftitute the Space which we call immoveable.
The Caures by which true and relative Motions are diftinguifhed from one another, are the Forces imprefled on Bodies to generate Motion. True Motion is neither generated nor changed, unlefs by a Force impreffed on the Body it felf. For fince any Part of Matter whatfoever is inactive and merely paffive, it cannot be moved without fome Force impreffed from fome other Place, nor thruft from its State without fome Force which may change its State. But relative Motions (fuch only as Cartes owns) may be generated and changed without Forces impreffed on the Bodies themfelves. For it is fufficient, if Forces be impreffed on other Bodies, to which the Relation is made to alter that Relation in which the relative Reft or Motion of thele confift, if thofe other Bodies give way. So indeed, according to Cartes, it is fufficient that the Earth only be revolved, in order to the relative Motion of the Fixed Stars ; and that the Earth will be at Reft, while it is carried round the Sun in the Solar Vortex, if it is in the fame Ambient Parts of fubtil Matter; altho' together with thofe Parts it annually performs a whole Revolution in the Ecliptick, and is abfolutely moved about the Sun. Again, true Motion is always changed by Forces impreffed on the moved Body. But relative Motion is not neceffarily changed by thefe Forces: For if the fame Forces are fo impreffed on other Bodies

34 Matbematical Pbilofopby.

alfo to which there is a Relation, that the relative Situation be preferved, that Relation will alfo be preferv'd, in which the relative Motion confifts. As if a Syftem of Bodies be moved among themfelves after what manner foever, and an equal Force act upon equal Parts of the Syftem, according to parallel Lines, altho' that Force really changes the true Motion of every Part, neverthelefs it will not change the relative one: For the Pofitions and relative Motions of the Parts acting equally and by parallel Lines, with remain among themfelves as they were before. Therefore every relative Motion may be changed, tho' the true be preferved, (viz. by the Mutation of the Motions of other Bodies,) and preferved where the true is changed; as appears from the laft Example: And therefore true Motion doth not confift in Relations of any Kind.

The principal Effect whereby Abfolute and Relative Motions are diftinguifh'd one from the other, is a Force whereby a Body departs, or endeavours to depart from the Axis of the Circular Motion. For in a Circular Motion barely relative, this Force is none at all; but in a true and abfolute one, it is greater or lefs according to the Quantity of the Motion. If a Bucket, which hangs upon a long Rope, be turn'd round perpetually, fo that the Bottom of it always remains parallel to the Horizon, and the Axis of the Motion perpendicular thereto, until the Rope by twifting is become very ftiff: Then fill it with Water, and let both Bucket and Water be at reft ; then by a fudden Force will the Bucket turn about with a Motion contrary to the former ; and by the Strings untwifting it felf, it will continue in this Motion. The Surface of the Water will at firt be plain, and parallel to
the Horizon, as before the Motion of the Veffel : But after the Veffel by a Force imprefs'd on the Water by little and little, hath at length caus'd that the Water fhould begin to be turn'd about fenfibly in the Form of a Whirl-pool, as it were; it will depart by degrees from the Middle, and will afcend to the Sides of the Veffel, putting on a Concave Form ; and will afcend with a fwifter Motion, more and more, until at length performing its Revolutions in equal Times with the Veffel it felf, it comes to reft relatively in the fame. Now this Afcent fhews an Endeavour of departing from the Axis of the Motion. For although the Receffion from the Axis of the Motion be in it felf perpendicular to the Axis, yet feeing the Veffel doth in that Place hinder the actual Receffion, the Force will be imprefs'd upon the next Particles, and become renfible where it hath room ; and becaufe the true Circular Motion will be greater in Particles which are moft remov'd from the Center, forafmuch as it is communicated to them from the Veffel firft, and chiefly by reafon of the greater Circles and greater Celerity which is towards the Circumference, the Parts more remote from the Center will recede the more from that Center: And thus that Afcent of the Water arifeth from its true Circular Motion, and is meafured by its Endeavour of receding from the Center. And it is to be obferv'd, that the true Circular Motion is in this Place altogether contrary to the relative Motion. For at firft, when the relative Motion of the Water, with refpect to the Veffel, was the greateft of all, forafmuch as the Veffel was whirl'd about, the Water remaining almoft unmov'd; and confequently the Water it felf, which is contain'd, was moft fwiftly mov'd to the contrary Part, in refpect of

36 Matbematical Pbilofopby.

 the Veffel, without any true Motion in it felf; then, I fay, that relative Motion excited no Endeavour of receding from the Axis ; the Water as yet remain'd plain and Level: But after that the Relative Circular Motion of the Water decreas'd, and the True fenfibly begun, the Afcent to the Sides of the Veffel fhew'd an Endeavour of receding from the Axis; which Endeavour Chew'd the true Circular Motion, more and more increafing, until it became the greateft, which was when the Water came to reft in the Veffel relatively. It is plain therefore, that the faid Endeavour depends not upon a Tranflation of the Water, in refpect of the Ambient Veffel. (Where the Veffel alone is moved, and from thence a relative Motion only is given to the Water.) And therefore true Circular Motion is not to be defined by fuch Tranflations. There is only one true Circular Motion of every revolving Body, to which one fingle Endeavour anfwers, as its proper and adequate Effect: But relative Motions, according to divers Relations to divers Bodies, and divers Situations, according as this or that Body is refpected, are innumerable, and tend towards all Parts at once; and as it is with Relations in general, are deftitute of all true Effects, any farther than they participate of true Motions. From whence alfo in their Syftem, who would have the Heavens below the Sphere of the Fixed Stars to be turn'd round, and to carry the Planets along with them ; the Planets which relatively reft in their Heavens, are notwithfanding truly mov'd, as well as the Heavens themfelves: For they change their Pofitions according to their different Periods of Revolutions, which is the Cafe of Bodies really moved.Accordingly the Stars themfelves, as Parts of the Revolving Spheres, partake of their Motion,Mation, and endeavour to recede from the Axis.

Therefore the Relative Quantities, which we have now diftinguifh'd from the true, are not thofe very Quantities which they are reckon'd to. be, as the Space contain'd betwixt the Walls of a Chamber, the Diurnal Motion of the Stars, \&rc. but they are their fenfible Meafures, (whether true or falle) which are vulgarly made ufe of inftead of the true meafured Quantities themfelves. Wherefore, if the Significations of Words are to be defin'd f om their Ufe, by the Names of Time, Space, Place, and Motion, thefe Meafures are properly to be underftood; and the Expreffion will be unufual and purely Mathematical, if the abfolute Quantities themfelves be underftood. And therefore as they do Violence to the Holy Scripture, who there interpret thefe Words, as intending the abfolute Quantities; fo alfo do thofe who from the Reft affign'd to the Earth, and Motion to the Sun, in the Words of the Scripture, are wont to difpute concerning the true Frame of the World, contrary to evident Reafons of Aftronomy and Philofophy; as they do likewife, if f:ch there be, who from the Words wherein ic is predicted, That Time Shall be no more, do from thence collect, that Eternal Duration, or Abfolure Time, Shall be annihilated. Nor do thofe any whit lefs defile Mathematicks and Philofophy, who confound the true Quantities with their Relations and vulgar Meafures.

Now to know the true Motions of Bodies, and actually to diftinguifh them from the apparent, is indeed difficult; becaufe the Parts of the unmoveable Space in which the Bodies are truly mov'd, do not encounter the Senfes. Yet notwithftanding; the Cafe is not altogether defperate ; for we
have certain Tokens and Arguments of the fame, partly from the apparent Motions which are the Differences of the true, partly from that Force which is the Caufe and Effect of the true Motions. As if two Globes, tied together by a Cord at an even Diftance from each other, fhould be rolled-round about a Center of Gravity common to both, the Endeavour in the Globes of departing from the Axis of the Motion, would fhew forth it felf in the ftretching of the Cord; and from thence the Quantity of the Circular Motion might be computed. Then, if any equal Force whatever fhould be at the fame time impreffed upon the Alternate, that is, the diametrically oppofite Faces of the Globes, to increafe or diminifh the Circular Motion; that is, if one fhould be imprefs'd on one Part, and the other on the contrary Part at the fame time, the Increafe or Decreafe of the Circular Motion would be feen front the increas'd or diminifh'd Tenfion of the Cord. And from thence, at length, would be found, Which are the Faces of the Globes on which the Force ought to be'impref'd, for the augmenting the Motion molt of all; to wit, the hinder Faces, or thofe which in the Circular Motion do follow. But the Faces which follow being known, and by confequence the oppofite ones, or thofe which go before, the Determination of the Motion will be known. After this manner, both the Quantity and Determination of this Circular Motion might be found in any immenfe Vacuum, where there is nothing fenfible and external with which the Globes might be compar'd. If now there Chould be placed in that Space fome far diftant Bodies, kepeping a given Pofition one with refpect to another, fuch as are the Fixed Stars in our Regians; it could not be known from the relative

Tranflation of the Globes amongft Bodies, whether the Motion were to be attributed to thefe or thofe; like as we upon the Earth cannot by any apparent Motion of the Fixed Stars, determine whether it be the Earth or they that is indeed mov'd: But if the Cord be minded, and it be found that the Tenfion thereof is the very: fame which the Motion of the Globes requir'd, we might conclude that the Motion is in the Globes; and then at length from the Tranflation of the Globes amongtt the other, collect the Determination of the Motion. For feeing that from the Tenfion of the Cord, it would be manifeft, that the Motion is truly in the Globes, and not in the remote Bodies; the Motion of the Globes, as well in refpect of Velocity as Direction, will eafily be determin'd by thofe Bodies, which are defervedly now to be look'd upon as unnov'd. And in this way we collect the annual Motion of the Earth, as being exactly proportional to the Cen-tri-petal Force towards the Sun; and likewife eafily gather the Stability of the Fixed Stars from the annual Motion of the Earth. Then the Motion of the Earth, and Stability of the Fixed Stars being known, it is as eafy to deduce from thence the Velocity and Direction of the annual Motion. But in what manner true Motions are to be collected from their Caufes, Effects, and different Appearances; and on the other hand, in what manner, from Motions either true or apparent, their Caufes and Effects are to be gathered, will be taught more largely in the Procefs.
(ro.) The Quantity of Matter is the Meafure of the fame, arifing from the Denfity and the Magnitude thereof conjunctly.

Air, which is as denfe again as fome other Air, and poffeffes double the Space, is Fourfold of the other. And if a Cubic Veffel contain Air, which by compreffion is reduced into a leffer Cube, the Denfity in the leffer Cube will be to that in the greater, as the greater Cube is to the lefs; or in the Triplicate Proportion of the Sides reciprocally ; and the Diftances of the Particles of Air which are like; and in like manner pofited, will be in the Proportion of the Cubic Sides. The fame Thing is to be underftood of Snow and Powders condens'd by Compreffion or Liquefaetion; and there is the like reafon of all Bodies in whatfoever manner condens'd. We have no regard in this Place to a Medium pervading the Infterftices of the Parts, if there be any fuch. But we fhall call this Quantity of Matter, which is to be reckon'd from the Denfity and Magnitude conjointly, every where hereafter Body or Mafs. And the fame is known by the Weight of every Body ; for an equal Quantity of Matter, of what fort foever it is, doth equally gravitate; as is manifeft by Experiments of Pendulums which have been moft accurately made, as will be taught in the Sequel. And from hence indeed, that we may. note this by the way, It is certain, that either there is no 不thereal Medium pervading the Pores of Bodies; or if there be any, feeing it doth in no wife gravitate nor hinder the Motion of Bodies, it ought to be reckon'd Matter differing from that of all other Bodies; yea, in fpeaking properly, it deferves not the Name of Body or Matter at all. But we fhall have occafion to fay more of this hereafter.
(ir.) The Quantity of Motion is the Meafure of the fame, arifing from the Velocity, and from the Quantity of the Matter conjunctly.

The

Mathematical Pbilofophy. 4I

The Motion of the Whole is the Sum of the Motions of all the Parts; and confequently in a Body double of fome other, and mov'd with equal Velocity, the Motion is Twofold of the Motion which is in the other Body; and in the Double Velocity of the greater Body Fourfold. The Quantity of Matter therefore is equal to the Rectangle of the Denfity drawn into the Magnitude ; and the Quantity of the Motion equal to the Rectangle of the Velocity drawn into the Quantity of the Matter. From which Principle the Forces of Machines are eafily deduced. For wherefoever in the Equilibrium of Machines a Body is greater, there the Celerity of that Body will be fo much the leffer, and where the Body is the lefs, the Celerity will be fo much the greater ; fo that the Quantity of Motion refulting from the Body, as drawn into its own Velocity, is equal on both Sides; as will be more largely fer forth afterwards.
(12.) The innate Force of Matter is a Power of refifting, whereby every Body, as much as it: can, perfeveres in its own State of Refting; or Moving uniformly ftrait forwards in a right Line.

This Force is proportional to the Body, and differs nothing from the Inactivity of the Body, but in the manner of conceiving it, by which it comes to pafs, that a Body is not without difficulty put out of its State whether of Reft or Motion. From whence, by a very fignificant Name it may be called the Force of Inactivity. But a Body exercifeth this Force only when it is acted upon by fome Force from without ; under which exercife of its Innate Force it is confidered in a Double Refpect ; to wit, as Refiftance and Impulfe. Refiftance, as far as it ftruggles with the impreffed.

Force,

Force, in order to préerve its own State ; Impulfe, as the fame Body by hot eafily giving way to the Force of the refifting Obftacle, endeavours to change its State.Indeed, it feems moft proper to attribute Refiftance to quiefcent, and Impulfe to moving Bodies; and I thould affign any Impetus whatfoever, where one of the Bodies is at Reft, to the pofitive Force of the moved Body, rather than to the Negative Force of the quiefcent one.
(13.) The impref'd Force is an Action exercis'd on a Body for the changing its State, whether of Reft or uniform direct Motion.

Thus this Force confifts in Action alone, and remains not in the Body at all after the Action. For the Body perfeveres in every new State by its fole Force of Inactivity. Now Force imprefs'd is from divers Caufes, as from a Blow, a Preffure, or Tendency to a Center.
(14.) The Centripetal Force is that, whereby a Body is drawn, impell'd, or in fome way or other tends to a Center.

Of this Sort is Gravity, whereby a Body tends to the Center of the Earth ; the Force Magnetic, or that whereby Iron tends to the Center of the Loadftone ; the Attraction or ftretching of the Cord to retain the Stone that is whirl'd round in a Sling. - Hither alfo is to be referr'd that Force, whatfoever it is, whereby the Planets are continually held back from rectilineal Motions, and compell'd to revolve in Curvilinear Ones. The Quantity of this Centripetal Force is of Three Sorts, Abfolute, Accelerating, and Moving.
(I5.) The Abfolute Quantity of Centripetal Force is the Meafure of the fame, greater or leffer, according to the Efficacy of the Central Caufe, which propagates it from the Center all round about.

Matbematical Pbilofopby. 43

abouit. Thus the Strength of Magnets is different, and greater,Cateris Paribus, in the greater Magnet; and leffer in the lefs. The Attraction or Tenfion of the Cord greater in the Circumvolution of a greater Stone than in that of a lefs; and in tho fwifter Circumrotation of the fame Stome than in a Slower. And thus we may conceive, that the Gravitation of Bodies to the Sun, which is : Body fo much greater than the Earth, is grearen at an equal diftance than the fame is towards the Earth.
(16.) The Accelerating Quantity of this Centripetal Force is the Meafure of it in divers Diftances from the fame Center; which is proportional to the Velocity which it produceth in a giver time.

As the Virtue of the one and the fame Magnet (in which confequently the Abfolute Quans t ity remains the fame) is greater in a lefs diftance than in a greater; the gravitating Force in the Surface of the Earth is fomething greater about the Poles than about the Equator ; it is greater alfo near the Surface of the Earth than at a greater Diftance from the Center. But this Accelerating Force, which is diftinctly to be noted, is at equal Diftances from the Center every where the fame; and this in all Bodies whether they be Heavy or Light, Great or SmaH, Solid or Ftuid ; thar is to fay, if you do here abitract from the refiftance of the Air:' Which Thing is prov'd by the equally fwift Defcent of all falling Bodies in Tubes emptied of Air ; and from the Motion of all Pendulums, what Matier or Magnitude foever, vibrating together in like Circles or Cycloids.
(17.) The Moving Quantity of the Centripetal Force, is the meafure of the fame Proporti-

44 Matbematical Pbilofophy.

onal to the Motion which it generates in a given time.

This Force is the propenfion of the whole Body towards the Center, which is eftimated by the Quantity of the Force contrary thereto, which is requir'd to the hindring its Defcent, which is called the Weight of a Body, and is greater in a Body which is greater ; and greater In the fame Body by how much it is nearer to the Earth. The Abfolute Quantity therefore of this Force we are treating of, is defin'd from Magnitude, or at leaft from the Strength and Efficacy of the Central Body. The Accelerating is that Force as perpetually decreafing in the Increafe of the Diftance, and on the contrary. The Moving Force is the Weight it felf; which arifeth from the Body or.Mars drawn into the Accelerating Force. From whence the Abfolute Force being given, the moving Force in a given Body will be as the Accelerating; and the Accelerating being given it will be as the Body. Thefe three Forces therefore are referr'd to three Things, to Bodies, to the Places of Bodies, and to the Center of Force. The Motive Force refpects the Body and the Endeavour and Propenfion thereof to the Center, as compounded of the Endeavours and Propenfions of all the Parts. The Accelerating refers to the Place of the Body in the Medium as the Efficacy of the fame Abfolute Force according:to divers Diftances from the Center ; and the Abfolute Force refpects the Center or Central Body it felf,as endowed with fome Power, without which the moving Forces are not propagated round about; whether that Power or Caufe be theCentral Body (as theMagnet in theCenter of the Magnetick Force,) or the Earth in the Center of the gravitating Force, or be fome other Thing which

Matbematical Pbilofopby.

which doth not appear. At leaft, this is a Mathematical Conception, and fufficient for our prefent Purpofe; for we do not yet confider thePhyficalCaufes of thofeForces. The Accelerating Force therefore is to the Motive as Swiftnefs is to Motion ; for from the fame, as multiplied into the Quantity of the fame Matter, the Moving Force arifes, like as the Quantity of Motion arifech from the Celerity multiplied into the Body. For the Sum of the Actions of the Accelerating Force upon each Particle of the Body, is the Moving Force of the Whole ; from whence, where the Accelerating Gravity is the fame, the Moving Gravity or Weight is as the Body. And in the fame Body where the Acceleration is diminifh'd, as in the upper Regions, the Weight is likewife diminifhed. Thus where the Accelerative Force is Twofold lefs, the Weight of a Body Twofold or Threefold lefs, will become Fourfold or Sixfold lefs. Furthermore, we call Impulfes and Attractions Acced lerative and Motive in the fame Senfe. And we ufe the Words [Attraction, Impulfe, and Propenfion to a Center:] indifferently and promifcuoully; We at prefent confidering thefe Forces not Phyfically but Mathematically, as was faid before, and. now fay again, to Caution our Reader from underftanding us, as Meaning and Defining Phyfical Caufes or Reafons of Motions, or attributing to Centres, which are Mathematical Points, true ; and proper Phyfical Force ; when at any time we. fay that the Centers draw, or have Force in them. And fo far we have given you the Definitions requifite to be premis'd to Sir IJaac Newton's Philofophy.

Feb. 28. 170…

46 Matbematical Pbilofopby.

$$
\mathbf{L} \boldsymbol{E} \boldsymbol{c}
$$

Axioms or Lawes of Motions.
1.
 V ER Y Body perfeveres in its own prefent State, whether it be that of Reft, or uniform direct Motion; unlefs it be compelled by fome Force imprefs ${ }^{\circ} \mathrm{d}$, to change that State.
Projectiles hold on their Motion, fo far as they are not hinder'd by the Refiftance of the Air, or their own Gravity. A Top, whofe Parts by cohering continually draw themfelves from the Rectilineal Motion, ceaferh not to be whirl'd about, fo far as is not retarded by the Air, or the unevennefs of the Surface, on which it turns. But the greater Bodies of Planets and Comets maintain their Motions, whether Progreffive or Circular, much longer in Spaces lefs refifting. This Law of Motion is indeed the fundamental Law of all, and is moft evident from the merely Paffive Nature of Matter ; which makes it naturally as impoffible for'a Body of it felf to ftop its own Motion once begun, as it is for it to move it felf originally.
(2.) All Motion is of it felf Rectilinear.

For Motion cannot be conceived, but it muft be:directed and determin'd towards fome Place or other, and it will by the Law foregoing keep the fame Direction which it firft had, until it be hinder'd or put out of its way by fome Extrinfic Caufe.

Matbematical Pbilofopby. 47

And confequently, whenever any Body is mov'd in a Curve, that Curvature muft needs pro: ceed from External Force ; and therefore muft ceafe when that Force ceafeth. Which, when it doth, then by this and the foregoing Law, the Motion will be continued in a Right Line, which is the Tangent of the Curve, at the very Point of the faid ceafing Force, or in the laft Rectilineal Direction. Thus it is in a Stone wheel'd about in a Sling, which llipping out of the Sling is not now carried forward in its former Circle or any Circle at all, but in a Tangent of the former Circle ; where indeed, by reafon of the Force of Gravity, compounded with the projectile Force, it defcribes a Parabolic Line : But of this afterwards.
(3.) All Bodies carried about, endeavour to recede from the Center of their Motion ; and by how much the Motion is the fwifter, this Endeavour is the greater.

For feeing Bodies do of themfelves tend unto a Rectilineal Motion, or that which is according to Tangents of Curves; and feeing all the Parts of the Tangents are further diftant from the Center of Motion, than the Parts of the Curves, unto which the Bodies are drawn by the Centripetal Force : It is manifeft, that that Endeavour of going off according to Tangents, doth as mach draw back the Bodies from the Center, as the Centripetal Force draws them to it, and is exactly equal to the contrary Endeavour of the Centripetal Force.
(4.) The Mutation of Motion is proportional to the moving Force imprefs'd ; and is according to the right Line in which that Force is imprefs'd. If any Force generates any Motion, 2 Double Force will generate a Double one, a Treble 2 Treble

48 Matbematical Pbilofophy.

Treble one; and this whethier the Force be imprefs'd all at once, or fucceffively.

And then this Motion impress'd, (for as much as it is always determin'd to the fame Part, with the generating Force) if the Body on which the Impreffion is, was before in Motion, either is added to the Motion thereof, as confpiring together with it; or fubducted therefrom, as being contrary thereto ; and thus it either increafeth or diminifheth the former Velocity. But if the Impulfe be oblique, it is added obliquely, and compounded with the former Motion, according to the Directions of both. So that if it were at right Angles, the Velocity as confidered in the firft Line will. neither be increas'd nor diminifh'd.
(5.) Re-action is always contrary and equal to Action. That is, the Actions of Two Bodies acting upon each other, whether they be Impulfes or Attractions, are always directed each to the contrary Part, and are alfo equal.

Whatfoever preffeth or draweth another thing, is equally preffed or drawn thereby. If you prefs a Stone with your Finger, your Finger is equally prefs'd by the Stone. When a Horfe draws a Stone tied to a Rope, the Horfe will equally be drawn back to the Stone: For the Rope, which is diftended on both Sides, will, with the fame Endeavour of relaxing it felf, draw the Horfe to the Stone, as it doth the Stone to the Horfe; and will fo much hinder the Progrefs of one, as it forwards the Progrefs of the other. If one Body dafhing upon another, fhall by its Force in any fort change the other's Motion, it will alfo reciprocally undergo the like Change in its Motion, to the contrary Part, by the Force of the other, and this by reafon of mutual Preffure. But then by thefe Actions are made equal Changes,
not of Velocities but Motions ; to wit, in Bodies not otherwife impeded. For Mutations of Velocities made to the contrary Parts, fince the Motions are equally changed, are reciprocally proportional to the Bodies: We may thew the Matter briefly thus in Attractions. Let fome Obflacle be fuppos'd to be interpos'd betwixt the Bodies A and B, which attract each other, to keep them from meeting together. If either of the Bodies, as A, be more drawn towards B, than B is towards A; the Obftacle will be prefs'd more with the Action of A upon it, than with that of B , and confequently will not remain in an 不quilibrium. The ftronger Preffure therefore prevailing, will make that the Syftem of the three Bodies will be mov'd directly unto that Part which is from A to $\mathrm{B}_{;}$and fo in a free Space will be mov'd in infinitum in that Direction, with a Motion continually accelerated: Which is abfurd and contrary to the firft Law of Motion. For by that, the Syftem ought ${ }^{\circ}$ to perfevere in its State, whether of Refting or moving right forwards ; and conlequently the Bodies will equally prefs the Obftacle, and fo will equally be attracted to each other. And the Thing is the fame if there be no Obftacle ; for the ftronger Motion will in the Meeting overcome the Weaker, and carry beth Bodies to the fame Part, and according to its own Direction. Wherefore, either there is no Actraction in a Syftem of Bodies where the firft Law hath Place,fuch as the Solar one is, as we fhall hereafter clearly demonftrate it to be hereafter; or the Attraction is mutual and equal. The Famous Sir Iface Neypton hath made an Experiment of the Matter in the Magnet and Iron If thefe be feparately put in two proper Veffels, fwimming clofe to one another in a ftanding Water; neither will prevail over the orher, E

50 Mathematical Pbilooopby.

but with an Equality of Attraction on both fides; they will fuftain their mutual Endeavours on one another, and at length being in Equilibrio will be at reft. So likewife, the Gravity betwixt the Earth and its Parts is mutual and equal. If the Globe of the Earth HEFGKI (fee Fig. 2. Plate 2.) be divided into Two unequal Parts by a Plane GE, the Gravity of the Part EGF, towards the reft of the Earth, will be equal to the Gravity of the reft of the Earth towards this Part : which is prov'd thus. Imagine the Earth to be divided by Parallel Planes into three Parts, EGF, HKI, EGKH ; of which EGF. and HKI, are equal to each other, and lye upon the middle Part E G K H. Here it will be manifeft, that the middle Part EGK H, doth by its own Weight incline to neither of the Parts, but hangs, as we may fay, in 压quilibrio betwixt both, and fo refts. But the Extream Part HKI lies with its whole Weight upon the middle Part, and urgeth that towards the other Extream Part E G F. And therefore, the Force wherewith the Sum of the Parts HKI, and EGKH, tends towards the Third Part E G F, which is equal to the Weight of the fame Parts, is equal to the Third Part E G F. And therefore if the Earth be divided by any Plane whatever, as E G into Two Parts E G F and E G I, the Force wherewith the greater Part E GI tends to the leffer EGF is equal to the Force wherewith the leffer Part tends to the greater ; and unlefs thofe Weights were equal, the whole. Earth would give place to the greater Weight, and in yielding to it would fly away, and there would no Place be found for it ; which, as before, is abfurd, and contrary to the firft Law.

Matbematical Pbilofophy.

(6.) If of two equal Bodies, roid of Elafticity, one of them which is, in Motion meets the orber at reft, upon the meeting they will both be carried forwards together, to the fame part, with half the Velocity of the Bady which was.moved. For the Body put in Motion, will in the Shock communicate its Motion fo long to the other quiefcent Body.,tilh that moves withi the fame.Velocity with it felf. For whilf the Velociry of the mov'd Body is greater than the Velocity of that which was before quiefcent, the former Body will ftill force the other, and accelerate its Motion ; but affoon: as the Body that was quiefcent hath gotten a Velocity equal to what the moving Body moves with it can force it no further, but follows it clofely. And thus the Motion of the former being now. equally divided betwixt them, it appears that they are both carried with half the Velocity which the former had before.
(7.) If two equal Bodies, void of Elafticity; do directly meet each orher with the fame Velocity, they upon the Collifion will both of them reft.

For fo much as either of them tends to go for: ward it is repelled by the other: And fo thefe Two equal Forces, or Quantities of Motion, tending to the contrary Parts, will deftroy one anooher; whereupon, there being no new Caule of Motion, they muft needs both of them reft. In which Cafe, the Morion wholly perifhethy contravy to the Opinion of Cartes, who would have the fame Quantity of Motion always to remain in the World.
(8.) If two unequal Bodies, deftitute of Elafticity, mieer one another with fuch Velocity; that by how much the greater exceeds the other in Magnicude, by fa much it is exceeded by the lef-

52 Matbematical Pbilofopby.

 fer in Swiftnefs, fo that the Velocities are reciprocal to the Bodies; they will both reft after. the meeting.For the Motions which are directly oppofite. to each orher, being as to the Quantities of themequal; they will deftroy: one another, as before.
(9.) If a moving Body Atrike another at reft, (but both void of Elafticity) how unequal foever they be in Bulk and Quantity of Matter,they will both move after the fhock with the fame Velocity towards the fame Parts; as in the Sixth Law : And the common Velocity will be fo much lefs than the firft, as both the Bodies together aregreater than the Body firft moved. For fince all the Motion of the former Body is now divided between the two Bodies, the Velocity will be fo much diminifhed, as the Quantity of Matter to be moved is increafed:

Corollary, Therefore, when the Bodies are given,there will be alfo given the Proportion of the Velocity of the moved Body before the Shock, to the common Velocity of the Bodies after the Shock. For as both Bodies together are to the moved Body, fo will the Velocity of the moved Body before the Shock, be to the common Velocity of both after the Sliock.
(ro.) If two unequal Bodies, void of Elafticity, which are carried with equal Velocity to oppofite Parts, hit againft one another, the Quantity of Motion in both, taken cogether after the Collifion will be the difference only of the former Motions.; for the leffer Quantity of Motion on eicher Part will be equivalent to an equal Quantity of Motion on the other Part, and as above will deftroy it ; wherefore, there remains only the Excefs of the Motion, as the fole Caufe of it after the Shock. And the Cafe will be juft the

Matbematical Pbilofophy. 53

fame, as if the Body that had: the greater Quantity of Motion, ftruck another at reft with that difference of Motions, and after the Shock ought to be calculated in the fame manner.
(in.) If two equal Badies, woid of Elafticity; be mov'd with unequal Velocity: towards the fame. Part, upon their Collifion there will remain the fame Quantity or Sum of their Motion, but the common Velocity will be-the half of both the former Velocities; put together.

For the Exgafs of Velocity will now be divided equally betwine both Bodiess and fo they will go away together with a mean Velocity.
(r2.) If in two untequal Bodies, void of Elafticity, the Greater overtakes, the Leffer, the common Velocity, after the Shock, will be greater than half the Sum of the former Velocities. And on the contrary; it will be lefs when the leffer Body overtakes the greater. For if the Bodies, were equal, it would, by the foregoing, be juft half that Sum. Wherefore it will be more or lefs than half, in proportion to the Greatnefs or Smallnefs of the hindmoft Body.

Corollary, Therefore the Velocities and Magnitudes of Bodies before the Shock being given, it will be eafy to compute the common Velocity of the Bodies after the Shock. For the Sum of the Motions, divided by the Sum of the Bodies, gives the common Velocity, when the Motions are made towards the fame Parts; or the difference of the Motions divided by the Sum of the Badies gives the common Velocity, when the Motion is, towards the contrary Parts.

Scholium, Thefe are the true Laws of Motion in Bodies, which yield fomewhat, but do not reftore themfelves, or are endued with no elaftic Force; and the fame Laws may perhaps hold alfo

94 Mathematical P..bilo「apby.

in Bodies perfealy hardjfo that they be not Elatic, But'the Rules of Motion in Bodies perfectly Elaftic, or which reftore theffelves with the fame Force wherewith they are comprefs'dare altogether difs ferent from the former, and therefore require a diftinct and 'feparate Conifideration. Atid forafmuch; as the Collifions of thefe Bodies do afford many both difficult and notable Phonomena ; and the famous Monfieur Hugens hath undertaken in a pofthumous Work to explicate and demonftrate them ; bur this indeed not without much going'about, and a long Pomp of Arguments and Figutes according to the manner of the old Geometricians, we fhall deliver the Laws of Motion off: Elaftic Bodies according to his Order, but in a briefer Method and one that is more natural ; that fo Beginhers may be able inifome meafure to comprehend the Cettainty and Phyfical Origin of thefe Laws; the firf and fundamental one of which is this,
(r3.) If a Body petfectly Elaftic dalheth uporn another Body of the fame fort which is Quiefcent and Equal ; after the Shock the Motion will be wholly transferr'd into that which was quiefcent before, and with the fame Celerity, but the Body which was mov'd before, will now reft. For the impelling Body, whether it wefe Elaftic or no, will by the Sixth Law communicate half of its Motion to the other, and begin to go along with the other with the fame Pace; and by iss Elafticity, the Force of which is equal to the Force of the direat Inapulfe, it will communicate the other half of its Motion; from whence it comes, that the Motion of the Body before quiefcent, will now be equal to that which the Impellent had before ; and confequently, that feeing fo much of Motion as the Impellent. eransfers to the other, fo much it loferh of its
own Motion, the Motion upon the whole will be convey'd into the Quiefcent, the Impellent having loft its Motion.

Corollary (1.) If a greater Body dafheth upon a leffer, the former will not reft, but only be mov'd more flowly; and the other which before refted will, in its being mov'd, gain a greater Velocity indeed than was in the Impellent, but a lefs Quantity of Motion.

Coroll. (2.) If a leffer Body dafheth upon a greater, it will not reft but go back; and the Quiefcent will gain a lefs Velocity indeed, but a greater Quantity of Motion than was in the Impellent.

Coroll. (3.) If a Body, put into Motion, hit upon divers Bodies contiguous to one another, and quiefcent, they will all reft but the laft or furtheit of them ; and this will be mov'd wth a Celerity, equal to, or greater or lefs, than that of the Impellent, according as the Impellent Body is equal to, or greater or lefs than the laft Body. Thefe Carollaries follow naturally from the prefent Law of Motion, and therefore feem to require no Special Demonftration.
(x4.) If two Bodies perfectly Elaftic, which are equal, but mov'd wirh an unequal Celerity, dath one upon another, they, wherher they were before carried to the fame part or to the contrary, will after the Contact be mov'd each with that Celerity which the other had before.

For if they tend towards the fame Parts, the common Velocity on both Sides being taken away, there will only remain the difference of the Velocities as the fole Caufe of the Change in the Shock; and fince by the foregoing Law that Velocity will be communicated to the flower Body, it follows, that the ftriking Body fhall lof

56 Matbematical Pbilofophy.

that Excefs of Motion, and the flower Body get ir ; that is, in orher Words but the fame Senfe, they will move with each others Velocities. And in like manner, we may demonftrate the fame in the fecond Cafe, where the Bodies carried towards different Parts are fuppofed to ftrike one another. For the common Velocity being taken away on both Sides, the difference of Velocity, which after the Shock tends the contrary way, and will not at all change the former common Velocity, will remain as before, the fole Caufe of changing the Velocity ; which by the foregoing Law will be transferred from the fwifter to the flower Body: Whence as before, it will follow, that elaftic equal Bodies after the Shock will move with each others Velocities.
(If.) Any Body how great foever, may be moved by any Body how fmall foever, with any Yelocity whatfoever. This Law of Motion is indeed an Axiom, manifeft in it felf, and wants no Demonftration:
(1к.) When two Bodies, perfectly Elaftical, are dafh'd one upon the other, they depart from one another with the fame Celerity wherewith they approach'd one to the other ; that is, not with the fame abfolute Celerity perhaps, "but with the fame relative Celerity. This Law indeed is the Foundation of all the following Laws of Motion. The Thing was before prov'd concerning two Elaftical Bodies which are equal, when it was demonftrated, that in their departure from each other, there are the fame True and Abfolute Celerities on both Sides, the Seats of them only Being chang'd. And therefore it is neceffary, that the Relative Velocity of departing from one another be the fame with that of coming towards one another. Now concerning Bodies unequal it is thus fhew'd. Ifà

Matbematical Pbilofophy. 57

 greater Body ftrikes a leffer, which is either quiefcent, or at leaft moved flower, it will communicate fome of its Motion to the quiefcent or flower Body ; and the Elafticity being laid afide, it will not reft ; and by fuch Communication together with the quiefcent or flower Body it will continue to go on with a direct Impulfe, and alfo by the Elaftick Re-action accelerate that quiefcent or flow Body, until it recede from it felf with the fame Velocity, by which it had withftood its Motion, and compreffed its Elafticity ; that is, by which it felf approached the other. Indeed, the greater Body muft neceffarily imprefs this Velocity on the leffer ; but it cannot imprefs a greater-; (altho the leffer Body of it felf is capable of a greater:) for as foon as the quiefcent or llower moved Body hath gotten a Degree of Velocity equal to the Impulfe or former Relative Velocity, it will fly' thience, and will fuftain no farther Impulfe whatfoever. But if a leffer Body ftrike a greater, either quiefcent or moved flower, it is impoffible the leffer Body fhould imprefs the whole Excefs of its Velocity on thie quiefcent or flower Body, (for that will be in that Cafe only whère the Bodiês were equal, as we juit now faw in the 13 th and ruth Cafes.) But in the Communication of the Motion, the Excefs of the fwifter is loft, even when the Elafticity is not confridered. And while the Bodies go on together in that manner, the hindmoft will react-on the foremof antil they are feparated with the fame:Relative Velocity, with which at firt they came together - fonin this, and only in this Cafe canthe Elaftic Fopre be equal to the Impulfe; or racher fo far, and no farther can the leffer Body fuffer the Re-action. as in the former Cafe. But in thofe Bodies which mutually frike one another
58 Matbematical Pbilofopby.

ther with unequal Velocities, we muft take away the common Velocity from both, fo that it will generate the fame Velocity after the Shock but the Seats changed ; but then there will be left only the difference of the Velocities,as the fole Caufe to change the Velocity; which Caure indeed will not ceafe, but in Acting and Re-2cting, the Bodies will depart from one another with the fame Relative Velocity, with which they came together. And the Matter will every where depend on this, that the Elaftick Forces, every where equal to the impreffed, produce their Whole and Pure Effects only; which cannot be done any otherwife, than if the Relative Velocity of Receding, exactly anfwer to the Relative Velocity of approaching.
(17.) If two Bodies perfectly Elaftical, do each return to the Impulfe with the fame Celerity wherewith they rebounded from it; they will each of them, after the Second Impulfe, require the fame Celerity as they had before the firft Meeting. For by realon of the given Quantity of the Stroke in the Collifion, there will be given therewithal a certain Rectangle, whofe two Factors are the Diftances from the Point of Concourfe, both the primary diftance, and that to which they return on both Sides after the ift Conflict ; if therefore we divide the Rectangle by the firf Diftance, there will come forth the fecond Diffance as the Quotient ; and if we divide it by the fecond Diftance we fhall obtain the firft Diftance for a Quotient; and fo perpetually. From whence it follows, that thofe Diftances as defcrib'd in a given time, or the Velocities of coming to, and receding from one another, do anfwer to each other mutually, and follow one upon the other.
(18.) In two Bodies which meet one another, wherther they be Elaftic or not Elaftic, there doth not:always remain che fame Quantity of Motion as was before, but it may be greater or lefs. This Propolition, which directly contradicts Cartes, we deduced out of the: Seventh Law, as to Bodies not Etaftic; andic follows out of the laft Law fave one, concerning Bodies Elaftic. For feeing the Quantity of motion is eftimated from the Cele sity drawnituto the Matter; and feeing in Bodics howfoever unequal, and unequally mov'd, the thing is indeed thus, that the Sum of their Velocities, or the Refative Velocity remains given, the Quantity of Motrion will be very tunequal, as the greater or leffer Body gainsa:greaper or leffer Part of the entire refpective yolociry; -as wild more clearly appear from that computation of Motions which will prefently follow.
(19:) If a Body perfectly Elaftical, which is grieater, meers in leffer onelwhich is quiefcent, it will give a Velocity to it lefs than the double of ics own. For feeing, after the:Impulfe, the Bodies ought to be feparated foom aach orher with the fameirefpective Velocity, with which they came to one another, that is, in the prefent. Cafe with the Velocity with which the greater was mov'd before'the Impulfe.; if the Velocity of the quiefcent Body were idouble to the Velocity :of the Body incufring, ithen after the Motion commanioated too the Qaiefcent, the Inpallentiought to igo fortwaid withithe fame Celerity, which it foad before, without tamy diminution of it:which is abblard.
(:20.) If two :Badtes perfectly Elaftic, the, Celerities whereof are in reciprocal Proportion , to their Magnitudes, meet oneanother directly and oppofitely, they willtboth rehound with the fame Celerity

60 Matbematical Pbilofophy.

Celerity with which they came to each other: For feeing the Force which arifeth from the mere Impulfe of Bodies without any confideration of the Elafticity, is on both Sides equal, they by the Eighth Law will mutually fuftain and deftroy each other ; fo that there will remain no Caufe of Motion but the Elaftic Force ; which feeing it is on both Sides equal will beget equal Motions on both Sides; and confequently both the Bodies will rebound with the fame Celerity which they had before.

Sccolium, A Problem. There being given two unequal Bodies perfectly Elaftic meeting one another directly, beth of which are mov'd or one only, and the Celerity of both, or of the one, if only one be mov'd,being alfo given,to find the Celerities with which both are mov'd after the Meeting. Let it be made thus, as the Sum of the Bodies, is to the Double of the Second Body, fo is the given refpective Celerity of Approach to the other Celerity. The Difference betwixt this laft found Celerity, and the Celerity of the firft Bo: dy before the Impulfe (or in one Cafe the Sum of them, to wit,' where the firft Body in the Motion goes beforte) will give the Celerity of the firt Body after the Meeting; which Celerity being fubducted out of the whole refpective Celerity given, the remainder will be the Celerity of the fecond Body after the Meeting. Which Rule is thus demonftrated: The Velocity of the firft Body after the Meeting will be the Difference betwixt the Velocity of the firft before the Meeting and the whole Velocity, where the Bodies are put to be equal, fo that the Sum of the Bodies is equal to the Double of the fecond Body, as appears from the r4th Law : It is therefore maniteft, that all the Difference, that is, the Motion

Matbematical Pbilofopby. 6r

of the firft Body after the Meeting, doth arife from the Difference of the Sum of the Bodies, and the double of the fecond Body; and confequently is proportional to the fame. Which is the very Thing that the prefent Analogy fuppofeth.

For Example : Let. the firft Body be moved towards the right Hand with the Celerity of Six Parts ; and the fecond to the contrary Part with the Celerity of Four Parts : Let the firf Body alfo be quadruple of the fecond Body. The refpective Velocity therefore of approach will be of ro Parts, $6+_{-4}=10$. And the Sum of the Bodies will be of Five Parts. It will therefore be thus; as the Sum of the Bodies $=5$ is to the Difference of them $=2 ; \mathrm{fo}$ is the whole refpective Velocity $=10$ to ${ }^{2 \times 100}=4$; the Difference of which Velocity, and of the Velocity of the firft before the meeting $=2$, will give the Velocity of the firft after the meeting. From whence the Velocity of the fecond after the Meeting will be found to be of Twelve Parts, QE I.

But If the other Body doth reft, the Celerity thereof after the Meeting will eafily and immediately become known by the former Analogy. To wit, if the greater Body in the former Example be put to be unmov'd, the Motion thereof will immediately be found thus. For as the Sum of the Bodies $=5$, is to the Double of the fecond Body $=2$; fo is the whole refpective Velocity $=4$, to the Velocity of the Second after the Meeting $={ }_{5}^{2 k_{4}}=\frac{8}{3}$ or ${ }_{5}^{13}$. For the Difference betwixt the Celerity of the firf Body before the Meeting, which was none at all, and this Celerity, will be the very Celerity of the firft after the Meeting, and confequently the Velocity of the fecond will be Parts ${ }_{5}^{12}$ or ${ }_{5}^{12}$.
(21.) The Celerity which a greater Body perfectly Elaftic, gives to a leffer perfectly quiefcent which is perfectly Elaftic, hath that Proportion to that Vekociry, which the leffer moved with the like Celerity gives to the greater which is quiefcent, which the Magnitude of the greater hath to the Magnikude of the lefs. For by reafon of the given refpective Velocity in both, and the Sum of the Bodies alfo given, the Computation will be alike in both Cafes; to wit, as the given Sum of the Bodies is to the given refpective Velocity ; fo is the double of the greatep Body or the double of the leffer to the fought Velocity. The Velocities therefore are as the Bodies, QED.

Sobolium, We fhall in this Placo, by way of Corellary, annex the three remaining Theorems of Hugens hitherto belonging, (albeit the Demonftration of them is longer than agrees to this Place) both becaufe they are in themfelves moft noble Theorems, and becaufe, they may fufficiently appear manifeft from 2 Calculation taught under the foregoing Problem.
(1.) Two Bodies perfealy Elaftic meeting one another, that which is produc'd from drawing the Magnitudes of each into the Squares of their $n-$ fpective Velocities, being added together, both before and after the meeting of the Bodies, will be found equal on both Sides; if to wit, the Propartions both of the Magnicudes, and of the Velocities, be exprefs'd in Numbers or Lines.
(2.) If any Body perfectly Elaftic, meets another Body which is quiefcenr, whather greater or lefs; it will give a greater Celerity thereto, by an interpos'd Elaftic Body of a mean Magnitude, which is likewife quiefcent, than if it hit upon. it without the Interpofition of the other Body :

Matbematical Pbilofophy. 6_{3}

And it will confer upon it the greateft Celerity of all, if the interpos'd Body be a mean proportional betwixt the Extreams.
(3.) By how much the greater Number of Bodies perfectly Elaftic, is interpos'd betwixt two unequal Bodies perfectly Elaftic, whereof the one refts and the other is mov'd, by fo much the greater quantity of Motion will be produced in the quiefcent Body: But the greateft Motion of all will be convey'd through the Multitude of the interpos'd Bodies, if the interpos'd ones, together with the Extremes, do conftitute one continued Series of Geometrical Proportionals.

And it is to be noted, that it appears. from the two laft Theorems, according to the Author's Computation; that if there be given an 100 Bodies placed in a Line, which are in a double Proportion, and the Motion begins at the greateft, the Celerity of the leaft will be to the Celerity of the greateft; as $14,760,000,000$ to 1 or thereabouts. But if the Motion begins with the leaft, the Quantity of the Motion will be increas'd in the End, in about that Proportion which 1 bears to $4,677,000,000,000$. Where in the former Cafe is feen a moft prodigious increafe of Celerity ; and in the latter, a more ftupendious Augmentation of the Quantity of Motion.
But to conclude, what things Hugens afferted (that I may advertife this at length) concerning all Bodies, or at leaft concerning all Bodies perfectly hard, we have all along with our Famous Mathematicians Wallis and Newton, demonftrated of Bodies perfectly Elaftic only. Nor certainly, ought they to be otherwife underftood or affirm'd. For the Laws of Motion which agree to Bodies not Elaftic, are for the moft part altogether different from thefe, as is abundantly manifeft

64 Matbematical Pbilofopby.

from what hath been faid, and therefore ought in no wife to be mingled together with the Laws of Elaftics. But as to what concerns Bodies imperfectly Elaftic, we fhall deliver their Laws out of the famous Nenton in the following Lecture.

> May 8. 17004.

(1)

> L e c т. VI.

Law. Wh((22.)
 Time defcribe the Diagonal of a Parallelogram with Forces. conjunct, that it would do the Sides with thofe Forces feparate.
(In Fig. 3. Plate 2.) Let the Body A be carried in a given time by the fingle Force A B,imprefs'd according to the Direction of the Line A B; from A to B; and by the fingle Force A C imprefs'd according to the Line A C let it be carried in the fame time from A to C; and let the Parallelogram A B DC be compleated; I fay, that by both the Forces imprefs'd together, it will be carried in the given time from A along the Diagonal unto D. For becaufe thefe Forces imprefs'd together are not oppofite one to the other, they can in no wife deftroy one another, but will beget a certain Motion which is in the middle betwixt both. For feeing the latter Force A C, acts according to the Line A C, which is Parallel and Equal to B D, this. Force ought not at all to change the Velocity of coming to the Line BD, which is produc'd by the former Force. Therefore
the Body will come in the fame time to the Line B D, whether the latter Force be impreffed or no; and confequently the Body, in the End of the given time will be found fomewhere in that Line B D. And by the fame Argument, fince the former Force A B, acts according to the Line A B, which is Parallel and Equal to C D, this Force ought not at all to change the Velocity of coming to the Line C D, which was generated by the latter Force. Therefore the Body would come in the fame time to the Line CD, whether the former Force were imprefs'd or no ; and confequently in the End of the given Time will be found fomewhere in that Line C D. And therefore it is neceffary, that in the End of that time the Body fhould be found in D, the Concourfe of the two Lines B D and C D. Furthermore, feeing the fame Thing may in altogether the fame manner be demonftrated of innumerable Points d, d, d, obc. in the fame Diagonal Line; it is manifeft; that the Body with thefe Forces conjoin'd, ought always to defcribe this Diagonal Right Line. Q. E. D.

Coroll. (1.) The Forces being given, the Velocity arifing from the Conjunction of them will be fo much the greater, by how much the Directions of the firft Forces do the more confpire together, or by how much the Angle BAC is the lefs; and fo much the lefs as the Directions of thofe Forces are the more oppofite to one another, or the Angle BAC is the greater: And the Velocity of both Directions which tend to go according to the Parallel Lines A C, B D, and A B, $C D$, parallel to the Lines $B D$ and $C D$, or any others whatfoever, is in no wife chang'd by the conjunction of thefe Forces, but always remains

66 Matbematical Pbilofopby.

the fame, as is manifeft from what has been demonftrated in this Propofition.

Coroll. (2) The fame Diagonal Line A D, may be defcrib'd from the conjunction of innumerable Pairs of Forces. Thus, if inftead of the former Force AB you fuppofe, another, to wit AE ; and for AC put AF, and then compleat the Parallelogram A.EDF, the Line A D being the common Diagonal: The Body A from the conjunction of thefe Forces will defcribe the fame Line A D which it did before, as is manifeft from the Propofition. . And there is the fame Reafon for any other Pair of 'Forces whatever, by which the Sides of a Parallelogram, whole Diagonal is A D, ought to be defcrib'd.

Coroll. (2.) Therefore the Forces being given both in Magnitude and Direction, there is alfo given one right Line to be defcrib'd, to wit the Diagonal of a Parallelogram : but the defcrib'd Line or Diagonal being given, the Forces are not thence given, nor the Directions by which that Parallelogram was delcribi,"For the Sides of a Parallelogram being given, and the Angle included, there is given therewithal the Parallelogram it felf, and confequently the Diagonal of that Parallelogram; but a Line being givent in Length and Direction for a certain Diagonal, the Parallelogram it felf is not from thence given ; to wit, becaufe the Line maxy be the Diagonal of innumerable Parallelograms. For as the Sides of the Parallelogram, without the included Angle, do derermine no cértain Diagonal fónéther doth the Diagonal without the adjacent Angles derermine any certain Sides.:

Coroll. (4:) Where the primary Forces B A, B, D (fee Fig. 4: Plate 2.) are equal, and comprehend the Angle A B D of 120 Degrees, the Velocity refulting from the conjunct Forces, will be the fame
fame as that of either of the Separate Forces; and the Directions of the Force only will be chang'd ; for in this Cafe the Triangles A BC and BCD will be Equilateral, and compofe a Rhombus; and the Diagonal therefore BC will be equal to either of the Sides.

Coraill. (ऽ.) Where the primary Forces are equal, and the Angle included by the Sides is a right Angle, the Velocity arifing from the Forces conjoin'd will be incommenfurable to either of them Separate; to wit, becaufe the Diagonal of a :Square is incommenfurable to the Side.

Scholium. What has been fpoken in this Prqpoftion, and jts Corollaries, concerning reà Motions; and Velocities, is to be applied to any Endeavours or: Tendencies to Motion whatever: Thus, if the Bady A in the former Figure be impell'd by two Forces, which have that Proportion anongit themfelves, which the Lines A C and A B have, and alfo are impell'd accordsing to the Directions of the fame Lines, or be prefs'd, or drawn in thofe Directions, or any other way send, according to the fame, although netual Moaion fhould not predently follow by rea'fon of fome Obftacles, yet norwithftanding the Impulfe or Force arifing from the conjoin'd Forcess tends apcording to the Direction of the: Diagonal A D, and the Velocity to be produced is to be expref'd or reprefepted by, the Line AD, as will more eafily be underftood from what follows.
(23.) All Forces and Motions whatever may be refolv'd into ingumerable Forces and Motions; and on the contrary, direct Forces, and rectilinear Motions, may be compounded of innumerable oblique Metions and Eorces,

Thus

68 Mathematical Pbilofopby.

Thus in the former Figure, the Line and Diroction of the Motion is the lame, whether it be compounded of the Forces AB, A C, or of the. Forces AE, AF, or arife from one fingle Morion imprefs'd according to the Line AD. And on the other Hand, any Motion whatever along the Line A D, although it may arife perhaps from one fingle Force impelling right forward, yet may be confidered as compounded of AB, AC, or AE, AF, and innumerable other the like; forafmuch, as the very fame Motion would arife from all thofe combin'd Forces. And in the fame manner are we to reafon of Motions more compounded. For in the firft Place, having confidered a Diagonal Line as refulting from two Forces combin'd ; we may then reduce thofe two unto one fingle Force, and conceive a third Force as fuperadded ; which being join'd to the former, will produce a Motion, along another Diagonal of fome fecond ParaHelogram, and then may we in our Conception fuperinduce a fourth Force, and after that a fifth, and fo on infinitely. Nor can indeed any direct Force, where there is occafion to refolve it into more, be otherwife refolv'd than thus. Now this Compofition and Refolution of Forces occurs very frequently, and is abundantly confirm'd from Mecbanics, as we fhall now hew with our Author.

If unequal Rays OM, ON (fee Fig. s. Plate 2.) going forth from \mathbf{O}, the Center of fome Wheel, do by the Threads M A, N P, fuftain Weights in Equilibrium, and the Forces of the Weights unto the moving of the Wheel be requir'd : Through the Center O let the Line K OL be drawn, meeting the Threads which fuftain the Weights perpendicularly; and from the Center O with $O L$, the greater Interval of the two

O K, OL, let there be defcrib'd a Circle meating the Thread M A in D; then through O and D let there be drawn the right Line $O D$; to which let DC be perpendicular, and AC Parallel; and let the Parallelogram D C A be compleated. Now becaule it nothing matters, whether the Points of the Threads K L D be faftned or not faftned to the Plane of the Wheel ; the Weights will be of the fame Force, whether they be hanged on the Points K and L , or thofe D and L ; for (fetting afide the Weight of the Thread) the Gravity of the fame Body is the fame wherefoever the Thread is fixed, fo it be in a Line perpendicular to the Horizon : Let therefore the whole gravitating Force at A be reprefented by the Line A D as the Diagonal of a Parallelogram, that from the Proportion of the Diagonal to the Side of the Parallelogram, we may come to know where it is, that one of the Forces is none at all. Now that whole Force which A D defigns may be refolv'd into innumerable Pairs of Forces, but feeing others are foreign to our Purpofe, let it be refolv'd into Dc (or AC) and DC; the one to wit according to the direction of the protracted Radius D O, the other Perpendicular to the fame Radius. One of thefe Forces AC or c D, by reafon that it draws the Radius O D directly from the Center (for it tends from D to c in the Protracted Radius) is of no force at all for the moving the Wheel ; but the other Force DC which draws the Radius DO perpendicularly, is of the rame Force as if it drew the Radius OL, equal to OD perpendicularly: But feeing the Wheel doth by the Hypothefis reft in Equilibrio, the Weight P will be to the Weight A, as the Force DC is to the Force DA. For the whole Force of the Weight \mathbf{P}

70 Matbematical Pbilofopby.

araws the Radius OL perpendicularly, "and f : confers its whole. Force to the moving of the Wheel ; but only that Part of the entire Weight: A reprefented by the Line A D, I fay, only that Part of this Weight which is expounded by D C, draws the Radius OD, which is equal to OL perpendicularly, the Force of the other Part which tends according to the Radius O being wholly loft ; that Part therefore DC only avails to the moving of the Wheel. Since therefore, becaufe of the Equilibrium fuppos'd on both Sides, she entire Force of the Weight P is equivalent only to a certain Part of the Weight A, to wit, to $D C$; it is manifeft, that the Weight A ought to be fo much greater than the Weight P, by how much the Diagonal DA is greater than the Side DC ; and that becaufe of the Declination of the Body A from the perpendicular DC. As. therefore the Weight A is to the Weight P , fo' is DA to DC; that is, becaufe of like Triangles $\mathrm{ADC}, \mathrm{DOK}$, as OD or OL is to O K , therefore the Weights O and P , which are reciprocally as the Rays OL and OK which are placed in a ftraight Line, will be of the fame Force on both Sides, and confequently ftand in an Equilibrium. And this indeed is the moft known, and the fundamental Property of the Balance, Leaver, and Axis in Peritrochio, which from the refolution of Forces is eafily demonftrated. But if either of the Weights bè greater than in this Proportion, its ftronger Force will prevail, and fuffice to move the Wheel. But if the Weight π, equal to the Weight P; be partly hang'd upon the Thread $\mathrm{N} \pi$, and doth partly lye upon the Oblique Plane $\pi \mathrm{G}$; let NH and $\boldsymbol{\pi} \mathbf{H}$ be drawn, the former Perpendicular to the Horizon, the latter to the Plane πG; and let the Parallelogram

Matbematical Pbilofoply. . 71

rallelogram $\pi N R H$ be compleated. And if the entire Force of the Weight ${ }^{\text {s tending downwards, }}$ be reprefented by the Line NH, it may be refolv'd into the Forces π N, R N. Now if to the Thread πN, fome Plane as $\pi \mathrm{Q}$ were perpendicular; cutting the other Plane $\pi \mathrm{G}$ in a Line parallel to the Horizon, and the Weight π lay wholly upon thefe two $\pi Q, \pi$ G; the Weight π would prefs thele Planes perpendicularly, to wit $\pi \mathrm{Q}$ by the Force $\pi \mathrm{N}$, and the Plane $\pi \mathrm{G}$ by the Force R N. And therefore if the Plane $\pi \mathrm{Q}$ fhould be taken away, that the Weight fhould ftretch the Thread, becaufe the Thread doth now by fuftaining the. Weight fupply the Place of the Plane which is taken away, it will be ftretch'd with the fame Force \boldsymbol{N} wherewith the Plane was before prefs'd. From whence the Tenfion of this Oblique Thread will be to the Tenfion of the other perpendicular Thread $\mathrm{P} N$, as $\pi \mathbf{N}$ is to NH ; and therefore if the Weight be increas'd in the Proportion of $\mathbb{N H}$ to $\mathbf{N} \pi$, it will fuftain the Weight A, and the Wheel will not be mov'd. From whence, if the Weight π be to the Weight A in the reciprocal Proportion of the leaft Diftances of their. Threads AM PN from the Center of the Wheel, or as KO to OL, and alfo in the direct Proportion of NH to $\pi \mathrm{N}$; that is, joining both Proportion's together, as the Recanggle KO \times N.H to the Rectangle OL $x \pi N$, the Weights will be of equal Forice to the moving of the Wheel ; and confequently they will furtain each,other in an Equilibrium, as any one may eafily find upon Tryal.

Corollary (i.) From hence we may difcoper a new way formeafuring alleffer Weights from qnee given Weight. Far if the Plane $\boldsymbol{\pi}$ G, perfectly polifh'd, bee placed gradually at divers Degrees of

72 - Matbematical Pbilofopby.

Inclination, the fame Weight π or P will be equivalent to divers Weights whatfoever lefs than it Self; to wit, in the Proportion of the Line πN to HN. And confequently, if a Table fhould be made, of the Proportions of the Lines πN and HN in the divers Degrees of Inclination ; it will be eafy from the Inclination of the Plane πG, $a^{\text {and }}$ one only given Weight τ or P to examine and determine the Weights of all Bodies lefs than π or P .

Coroll. (2.) Hence likewife we may eftimate the Velocities or Weights of Bodies, defcending or declining in any Plane whatfoever: Let AB be the inclining Plane, and (fee Fig. 6. Plate 2.)of the Body defcending along that Plane, or leaning upon it ; let the entire Force of its Gravity be reprefented by the Line $d f$ perpendicular to the Horizon; and let that whole Force be refolv'd into two Forces fc , and $\mathrm{f} g$, of which let the one be perpendicular to the inclined Plane, for the bearing of which therefore that Plane adequately fufficeth; and let the other be put Parallelwife with refpect to the inclined Plane, which therefore is fitted for exciting a Motion, or at leaft for procuring an Endeavour towards Motion without any Impediment. The Motion therefore or Weight in the inclined Plane, is to the Motion or Weight in the Plane perpendicular to the $\mathrm{Ho}-$ rizon, as the Side $f g$ is to the Diagonal Line fd ; that is, becaufe of the likenefs of the Triangles $f g d$ and $A B C$ as $A C$ is to $A B$, or as the Radius is to the Secant of the Angle BAC; which is a Propofition very well known in Mecbanics.

Caroll: (3.) From hence alfo the Force of the Wedge appears. Let (Fig. 7. Plate 2.) C C A be a Wedge ftruck by a Maller with a direct Blow; let

Matbematical Pbilaoopby. 73.

the whole Force of the Stroke be expreffed by the Line DA; and let it be refolv'd into twa Forces DQ and DR ; the one of which let be perpendicular to the Face of the Wood C A, and confequently directly fet to remove the fame Face, and the other DR parallel to the fame Face, and confequently pofited to go forward directly; and let the fame be underftood of the other half of the Wedge DAC. The removal then of the lateral Obftacle, according to the Line $D Q$, is to the Progrefs of the Force downwards, according to the Line $D R$, as $D Q$ is to $D R$; that is, becaufe of the Triangles DQA, DCA, which are like, as DC is to DA ; or the force of the other Part being computed, as C C is to D A ; which alfo is a moft known Property of a Wedge, and univerfally receiv'd in Mechanics. Or, if we be minded to difpatch the Matter with Sir Ifaac Nesvton out of what has been before demonitrated; The Weight x, in the laft Figure fave one, lying upon the two oblique Planes $\pi \mathrm{Q}, \pi \mathrm{G}$, will have the Nature of a Wedge betwixt the interval Faces of the cloven Body; and from thence the Force of the Wedge and Mallet will be known. for the Force wherewith the Weight π preffeth upon the Plane πQ, is to the Force wherewith the fame is impelld, either by its own Gravity, or by the Stroke of the Mallet, according to the Line perpendicular to the Horizon, as $\pi \mathbb{N}$ is to NH; and is to the Force wherewith it preffech upon the other Plane πG, as πN is to N R. Nay the Force of the Screw likewife may be collected by the like divifion of Forces, forafmuch as the fame, in our Autbor's Opinion is a Wedge forced by a Leaver.

74 Matbematical Pbilafopby,

Scbolium, The ufe therefore of this Compofition and Refolution of Motion, appears of very wide Extent, and from its Clearnefs demonftrates its own Truth, fince all the Mechanic Science, which is diverlly demonftrated by Authors, depends upon the Things which have been now faid : For from thefe are deriv'd the Forces of the Machines which are wont to be compos'd of Wheels, Screws, Leavers, and Weights, afcending directly or obliquely, and the reft of the Mechanic Powers; as alfo the Force of Mufcles for moving the Bones of living Creatures.

$$
\text { Octob. 2;, } 1704 .
$$

$$
\begin{array}{llll}
\mathbf{L} & \text { e } & \text { T. } & \text { VII. }
\end{array}
$$

HE Quantity of Motion which is collected, by taking the Sum of Motions made to the fame Part,and the difference of thofe made to the contrary Parts, is not chang'd by the Actions of Bodies one upon another.

For Action, and the contrary to it Re-action, are equal by the Fifth Law ; and confequently by the Fourth, they make equal Mutations of Bodies towards the contrary Parts. Therefore, if the Motions be made to the fame Part, whatfoever is added to the Motion of the Body, which flies away, will be fubducted from the Motion of that which follows,fo that the Sum fhall remain

Matbematical Pbilofophy. 75

main as before. But if Bodies meet one another in the fame Line, there will be an equal fubdu. ction from the Motion of both, and confequently the difference of the Motions made to contrary Parts will remain the fame. As if the Spherical Body A be Threefold greater than the Spherical Body B, and have two Parts of Velocity; and B follows in the fame right Line with ro Parts of Velocity; and confequently the Motion of the BodyA,refulting from its Velocity and Magnitude together, is to the Motion of the Body B, eftimated in the fame manner as 6 is to ro; therefore the Sum of the Motions to the fame Part is of 16 Parts. In the meeting together therefore of the Bodies \mathbf{A} and B, if the Body A, according to the Quantity of its Elafticity, doth gain three Parts of Motion, or four or five, the Body B Mall lofe fo many ; and confequently the Body will go forward after Reflection, with Nine Parts, or Ten, or Eleven, and -B with Seven, or Six, or Five, the Sum of Sixteen Parts, remaining always as before; as the thing will always happen in Bodies not at all, or at moft in a lefs degree Elaftic. But if the Body thall gain 9, 10 , or 1 r , or 12 Parts, and fo go forwards, after the meeting with Fifteen Parts in all, or Sixteen, or Seventeen or Eighteen; the Body B, whilft it lofeth fo many Parts as A gains, either will go forward with one Part having loft Nine ; or it will reft, its progreffive Motion of Ten Parts being wholly loft ; or it will go back with one Part, having loft its Motion, and (as I may fay) one Part more, or it will retrocede with two Parcs, becaufe of the progreffive Motion of twelve Parts which was taken away. And fo the Sums of the confpiring Motions is +1 , or $16+0$; and alfo the Differences of the contrary Motions $17 \cdots$, or 18--2, will always be of Sixteen Parts, as it was before the Meeting or Reflection; which

76 Matbematical Pbilofophy.

will happen alfo in Bodies imperfectly Elaftic, as may fufficiently be underftood from the Laws of Motion before delivered, and is afterwards to be faid concerning Bodies imperfectly Elaftic. But the Motion wherewith Bodies go forwards after Reflection being known, there will be found the Velocity of the fame after the Reflection, by faying it is to the Velocity which was before the Reflection, as the Motion after is to that which was before. As in the laft Cafe, where the Motion of the Body A was of Six Parts before the Reflection, and of Eighteen afterwards, and its Velocity was of two Parts before the Reflexion; its Velocity will be found to be of Six Parts after the Reflexion, by faying according to the Golden Rule ; as Six Parts of Motion before the Reflexion is to Eighteen Parts afterwards, fa is the Velocity of two Parts before the Reflexion to Six Parts of Velocity after. For feeing the Quantity of Motion doth arife from the Velocity and Magnitude conjunctly, in a given Body the Quantity of Motion will be eftimated from the Velocity alone, and confequently the Quantity of Motion and Velocity will be directly proportional to each other. But if Bodies not Spherical, or which move in divers right Lines, fall one upon another obliquely, and their Motions after the Reflexion be required; the fituation of the Plane, by which the concurring Bodies are touched in the Point of Concourfe, is to be confidered and known. Thus the Motion of both Bodies is to be diftinguifh'd into two, one perpendicular to the Plane, the other parallel to the fame; but the parallel Motions, by reafon that they are in no wife oppofite to each other, the Bodies acting upon one another, according to a Line perpendicular to this Plane, the fame are to be retain'd

Matbematical Pbilofopby. 77

after the Reflexion as well as before; and equal Mutations to the contrary Parts are to be attributed to the perpendicular Motions, in fuch fort, that the Sum of the confpiring Motions, and the difference of the contrary ones remain always as before. As for Example : Let the Body A (fee Fig. 8. Plate 2.) which is Spherical, and perfectly Elaftic, be threefold of the Body B, which is allo Spherical and perfectly Elaftic, and let A have two Parts of Velocity, reprefented by the Line A E, divided into two equal Parts; and let the Body B meet it obliquely according to the right Line B E, in the Angle A E B, with ten Parts of Velocity, reprefented by the Divifion of the Line BE into Ten Parts equal amongt themfelves, and to the former ; let the Angle A E B be bifected by the right Line O EM; Let A G and BO be let down perpendicular to the Line EO; and the Parallelograms ACEG, BOED be compleated. The Plane then which paffeth through O M, will be that by which the Spherical Bodies will be touched in the Point of Concourfe; and the oblique Motions along the Diagonals A E and $B E$ will be diftinguifh'd on both Sides into two, to wit AE into AG and AC, and BE into BO and BD ; one of which Motions AG and BO, or CF and ED are perpendicular to the Plane of Concourfe; to which alone therefore, as being directly oppofite to each other, and tending to the contrary Parts EC and E D, all the change of the Motions in the Concourfe is to be referred, in the mean while that the other AC and BD, or GE and OE which are parallel each to the other, and in the Point of Concourfe tend wholly unto the fame Part, are fo far from being contrary to one another, that they are rather to be reckon'd to confpire together direetly,

78 Mathematical Pbilofopby.

rectly, and confequently are to be retain'd after the Reflexion as well as before. Wherefore let EI be equal to EG, and EM equal to EO; and that we may eftimate the Mutations of Motions made to the contrafy Parts, and to be directed according to the Line C D; let us make the computation accarding to the Twentieth Law of Motion, borrowed from Hugens. Let it be made then, as the Sum of the Bodies A and $\mathrm{B}=4$ is to the double of the Body $B=2$; fo is $C D$ the refpective Celerity; of the approach; which is of Twelve Parts, (for becaufe the Triangles AGE, BOE are like; A G or CE is to BO or ED as: $A=2$ is to $E B=10$; and confequently, $A E+E B=12$) to the half of $G D=C F$ 표 6. Ahd the Difference, betwixt the Celerity of Six Parts, and the Celerity of the Body A before the Impulfe which was of: Tiwa Parts, which is equal to : 4 , will sive the Celerity wherewith the Body A will be mov'd after the Concourfe; which Celerity being taken away out of the whote tefpective Celerity, which was before the Impulfe, to wit, $12-4=8$, there semalas the Celerity of the Body B after the meeting i Lee therefors E N be of Four Parts, and E L of 8 , and the Payallelograms: ENHI, and ELKM being compleated, and the Diagonals ETH and: E:K being drawn, the Bodies A and B in the' famy. time in which they haftened to the Meeting before, according to the Diagonals $A: E$ and $B E$ will come after, the Meeting, to the Points H and K, being refleated into the Diagomals EH, and EX; and the: Motion af ohe Bodys A will bs of $4 \times 3=12$. Parts; and the Motion of the Body B $=8 \times I \mp 8$ Parts; the difforence of which Motions is, Four Parts; which was alforthe difference of the Motions before the Meeringx 2

Wherefore

\square
Digitized by mOO Ole

Matbematical Pbilofopby.

Wherefore in this Cafe the Quantity of Motion which is collected by taking the difference of the Motions mate to the contriary Parts, is not changed by the Action of the two Boties upon one another ; and confequently in Bodies dafhing one upon another obliquely, this Rule holds good, as well as in Bodies which direaly meot one another. Now from thefe Reflexions, there are wont to arife circular Motions of Bodies about their own Centres: But we fhall have no occafion to confider thefe Cafes in what follows; and it would be too long to demonftrate all the Things hereto appertaining. -

$$
\text { A Lemma to the } 2 \text { sth Lavy. }
$$

* If two right Lines given in Poficion, A C and B D, (Ffg. I. Plate 3.) be terminated at the given Points A and B, and have a given Proportion to cone another ; and the right Line CD, whertwith the indeterminate Points C and D are join'd, be divided in the given Proportion in'K"; I fay, that the Point K will be placed in a tight Line given in Pofition

For let the right Lines A C and BD (if they be not Parallel) met together in the Point $\mathbf{E} ;$ and in BE let BG° be taken in the fame Proportion to AE as is B D to A Ci: And let FD be equal to E G." Here EC will tbe to $G D$, that is, to $E F$, equal by Hypothefis to $G \mathbf{D}$, as $A C$ is to $B D$, and confequently will be in the Proportion given; ${ }^{i}$ therefore the Tridngle EFC will be given in Species (to wit as having the Angle C EF, and the Proportion of the Sides about the fame Angle given) let C.F be cut in L in that given Propottion, and fo there will be given in Species the Triangle EFL (by reafon

80 Matbematical Pbilofopby.

of the given Proportion of the Sides about the given Angle EFC;) and therefore the Point L will always be plac'd in the Line E L given in Pofition. Join L K ; and becaufe of F D which is given, as being equal to E G given, and the proportion of LK to FD which is given, the fame to wit as that of CK to CD, LK will be given. Let EH be taken equal to LK, and EL K H will be a Parallelogram, for LK is parallel to FD, and confequently to EH the protracted part of the fame Line, to which it is by the Hy pothefis equal. Therefore the Point K is placed in HK a fide of a Parallelogram which is given in Pofition. Q. E. D. But then, if the right Lines A C, B D, be parallel each to other, the Point of Concourfe will be infinitely diftant, that is none at all ; and all the Lines EC, EL, HK, E D, will be parallel to one another.(fee Fig. 2: Rlate 3.) In which Cafe the Lemma is thus demonftrated. Let the. Points terminating the Lines A C, B D, which have a given Proportion, be join'd by the Lines A B, CD, and let thefe joining Lines be protracted to meet together in Q; through the Point K which divides the Line $C D$ in the given Proportion, let HK be drawn parallel to A C and B D : I fay, that the Point K is placed in the right Line HK given in Pofition. . For wherefoever the Points C and D are taken in the right Lines A C, and B D, the Line joining thefe Points will tend to the Point Q, as in the Points c and d , and the joining Line c d will be divided in that given Proportion by the Line H K: For according to the Hypothefis, and in this Figure Ac is to Bd as AC is to BD ; as alfo according to the Hypothefis and in this Figure ck. is to $c \neq$ as CK is to CD. It is manifeft there-

Mathematical Pbilooophy.

fore in this Cafe, that the Point K is always placed in the right Line given in Pofition.

Coroll. (r.) If two Points go forwards together with an uniform Motion in right Lines, and their diftance be divided in a given Proportion, the dividing. Point will be placed in a right Line given in Pofition ; and that Point as K - will be mov'd uniformly in that right Line. For, becaufe of the Uniform and Even Motion of both Points, the Lines of Motion which they defcribe at the fame time will always be in a given Proportion, to wit, in the Proportion of the Celerities which are on both Sides equable : From whence it is manifeft by the things already demonftrated, that the Point K will always be carried in the right Line HK. But that it is carried uniformly, and with an equable Motion, will be thus demonftrated: HK is always equal to E L, and EL increafeth in the fame Proportion as the Lines EC and EF proportional to it, which Lines are alfo proportional according to what hath been already faid, to AC and BD, along which the Bodies are mov'd at the fame time. EC therefore is to E F, as A C to BD ; from whence, fince thofe Lines by the Uniformity of the Motion do increafe equally ; EL alfo, and H K, which is proportional to the fame, will alfo increafe equally; or, which is the fame thing, the Point K will be carried with an uniform and equable Motion along the Line HK. Q. E. D. And we may argue in like manner in the fecond Cafe where the Lines were fuppos'd parallel. Nor is: there need of more Words in fo plain a Matter. The truch of the Lemma will likewife be concluded concerning a folid Place by almoft the like Demonitration, vizi. if yous conceive a Plane cutting the leaft diftance of the

Lines in the fame Proportion and perpendicular to the fame diftance ; and if you imagine Lines let fall perpendicular to the faid Plane, the Demonftration will be as in this Propofition, if inftead of the Lines of Motion, fuppos'd in different Plahes, we ufe the Lines joining the Perpendiculars, which will be in the fame Plane.

Coroll. (2.) If both Points go forwards unto the fame Part, the dividing Point will alfo go forwards unto that Part: From whence in every Cafe, that dividing Point K will either reft or be mov'd uniformly in a right Line. If one of the Points be mov'd unto this Part, another to the contrary, the Point K will be mov'd more flowly unto one Part or the other, according as the Proportions of the greater Celerity, or of the diftance from the Point K fhall require : Or laftly, if thofe fhall be Proportions of Equality, and prevail on neither fide, the dividing Point will be mov'd to neither Side, but wholly reft.
(25.) The common Center of Gravity of a Syftem of Bodies doth not change its State either of Motion or Reft, from the Aations of the Bodies amongft themfelves, (whether they be Attractions or Impulfes;) and therefore the common Center of Gravity of all Bodies acting upon one another (Actions and Impediments, whether External or otherwife gotten being excluded) doth either reft, or is mov'd uniformly ftraight forwards. For if two Bodies or Points, as C D go forwards with an uniform Motion in the right Lines A C, B D, and their (fee Fig. 1, 2. Plate 3.) diftance CD be divided in a given Proportion; (as the Line always paffing through the Centers of the mov'd Bodies is divided by K the common Center of Gravity of both in a given Proportion, to wit, that which is reciprocal to the Bodies) their common
mon Center of Gravity K, will either reft or be mov'd uniformly in theLine KH.Therefore if any Number of Bodies be mov'd uniformly in right Lines, the common Center of any two of them either refteth or goeth forwards uniformly in a righe Line ; becaufe that the Line connecting the Centers of thofe Bodies which go forward uniformly in right Lines, is divided by the common Center of Gravity in a given Proportion; in like manner, the common Center of thefe two, and any third Body whatever, either refts or goes forwards uniformly in a right Line ; becaufe that the diftance of the Center of Gravity of thefe two, and of the Center of the third, is divided thereby in a given Proportion, to wit, a reciprocal Proportion to the third Body, and the Syftem of the two : For the common Center of Gravity of the two goes forwards uniformly in a right Line, and confequently is to be reckon'd as if it were the Center of a fingle Body. In the fame manner, the common Center of Gravity of thefe Three and any Fourth, either refts or goes forwards uniformly in a right Line; becaufe the diftance betwixt the Center of Gravity of the Three, and of a Fourth, is divided in a given Proportion; and fo on in infinitum. Therefore in a Syftem of Bodies which are altogether free from Actions upon one another, and others alfo imprefs'd from without ; and which confequently do either reft or are mov'd uniformly in feveral right Lines, the common Center of Gravity of all either refts or is mov'd uniformly ftraight forwards. Moreover, in a Syftem of twó Bodies acting upon one another, fince the Diftances of the Centers of both from the common Center of Gravity is reciprocally as the Bodies, the Relative Motions of the fame Bodies, of coming to that Center or de-

84 Matbematical Pbilooopby.

parting from the fame, (wherher the one be from Actraction, or a Centripetal Force, or the other be from an Impulfe or a Centrifugal Force) are equal betwixt themfelves, and the Velocities of Accefs or Recefs are reciprocally proportional to the Bodies, that is, directly proportional to the Diftances from the Center of Gravity of both. From whence, by thofe Actions the diftance from the Center will be proportionally increas'd or diminifh'd ; and therefore that Center is neither advanced forwards nor retarded, nor fuffers any change in its own State as to Motion or Reft, from the equal Changes made to the contrary Parts, and confequently the Actions of thefe Bodies amongft themfelves, whether they repel one another or attract, do not any ways alter the State of the common Center of Gravity. Now in a Syftem of more Bodies, becaufe the common Center of Gravity of any two acting mutually upon each other, doth not in any wife by reafon of that Action change its State ; and the common Center of Gravity of the reft fuffers nothing therefrom; but the diftance of the Centers of thefe two is divided by the common Center of all the Bodies into Parts reciprocally proportional to the Sums total of the Bodies whofe Center of Gravity they are, and confequently thole two Centers keeping their State of Motion or Reft, the common Center of Gravity of all will alfo keep its State; from hence it is manifeft, that that common Center of all never changeth its State as to Motion or Reft, becaufe of the Actions of two Bodies betwixt themfelves. But in fuch a Syftem of all, the Actions of all amongft themfelves are either of two Bodies; in which Cafe the common Center of Gravity of the whole Syttem is nothing

Mathematical Pbilofophy.

thing chang'd, as we have already fhewn ; or compounded of the Actions which are betwixt Couples of Bodies; and therefore they will fuperinduce no change in the State of Motion or Reft to the common Center of Gravity. For if by the Action of A upon B, the State of the Center of Gravity is nothing chang'd, nor by the Action of C upon B ; neither will the fame be difturb'd by the conjunct Forces of C and A upon B. Wherefore, feeing that the common Center of Gravity, when Bodies do not act upon one another, either refts or goes forwards uniformly in fome ftraight Line; the fame will continue notwithftanding the Actions of Bodies one upon another, either always to reft or to go forwards in a right Line uniformly, unlefs it be moved from this State by fome extrinfic Force imprefs'd upon the Syftem. There is the fame Law therefore of a Syftem of Bodies as to perfeverance in the State of Motion or Reft, that there is of one fingle Body. For the progreffive Motion, whether of a folitary Body or of a Syftem of Bodies, ought always to be eftimated from the Motion of the Center of Gravity.

Octob. 30, 1704.

G 3
Lect.

86 Matbematical Pbilofophy.

Lect. VIII•

(26.)

 H E Motions of two Bodies included in a given Space, and partaking of the Motion thereof, are the fame amongft themfelves, whether that Space refteth, or that the fame is mov'd uniformly ftraight forward without a Circular Motion.For the difference of the Motions tending to the fame Part, and the Sums of thofe which tend to the contrary Parts, are the fame at the beginning in both Cafes (by the Hypothefis) ; and from thefe Sums or Differences arife the Congrefles or Shocks whereby the Bodies encounter one another, [to wit, of the Sums of the Motions tending to the contrary Parts, and the Differences of the fame when tending to the fame Part.] Therefore by Law 4th, the Effects of the Congreffes will be equal in both Cafes, and therefore the Motions amongft themfelves in one Cafe will remain equal to the Motions amongt themfelves in another. For the common and uniform Motion of the Space, and included Bodies which tends to the fame Part, will either by equally accelerating all, as in cafe they all tend to the fame Part with the Space it felf, or by adding fo much to one as it takes away from another, as in thofe which tend to the contrary Parts, make that the Forces at the Meetings of the Bodies will be in no wife changed. This fame thing is prov'd by a manifeft Experiment ; for all Mo-

[^0]tions are in the fame manner in a Ship, whether it refteth, or be carried uniformly ftraight forwards.
(27.) If Bodies be mov'd in any wife amongft themfelves, and be preffed with equal accelerative Forces according to parallel Lines, they will all continue to be mov'd in the fame manner amongit themfelves, as if they were not preffed with thofe Forces. For thofe Forces will move all the Bodies equally as to Velocity, whilft they act according to the Quantities of the Bodies to be mov'd, and in parallel Lines; and therefore they will not change their Pofitions and Motions in refpect of one another.

A Lemma to the Experiments following :

The Velocity of a pendulous Body in the low-' eft Point of any Circle, is always as the Chord of the Arch which is defcrib'd in the falling. (See Fig. 3. Plate 3.)

Let C A B be a right Angle, \mathbf{C} or \mathbf{H} a moveable Body hanging by the Thread CA or HA upon the Center A, which will fall down in the Arch C B or H B. I fay that the Velocity of the Body C, in the loweft Point B, is to the Velocity of the Body H in the fame Point, or rather the Velocity of the fame Body falling firft along the Arch C B, and afterwards the Arch HB, is as the Chord C B is to the Chord H B. For the Velocity of the Body, falling through the Arch C B, as we thall demonftrate by and by (Coroll. 5. Prop. 6. following) is in the loweft Point B (that Velocity, to wit, wherewith the Body would go on to be mov'd in a right Line, which toucheth the Circle in B, if it fhould leave the Thread in B) is, I fay, the fame, as that G 4 which

88 Matbematical Pbilofopby.

which the Body would have in the Point F, if it had fallen perpendicularly along CF. And by the fame, the Velocity of the Body which falls from H according to the Arch HB , is the fame as that which it would have in the Point K, if it fhould fall perpendicularly along H K : [the fame Celerity, to wit, being imprefs'd in Spaces betwixt parallel Planes, whether the Tranfit through thofe Planes be perpendicular, as in Bodies falling perpendicular to the Horizon; or whether it be oblique, as in pendulous Bodies defcribing circular Arches, as will be more fully made appear afterwards.]Therefore the Velocity of a Body defcending along the Arch HCB, is to the Velocity of the fame defcending along the Arch HB , as the Velocity of a Body falling along CF, is to the Velocity of that which falls down HK. But (by Coroll. Prop. 4. beneath) The Velocity of a Body falling down in CF, is to the Velocity of a Body falling down in HK , in the fubduplicate Proportion of the Line C F to the Line H K ; and (as will appear from Prop. 2. following) the Chord C B is to the Chord H B in the fame fubduplicate Proportion of CF to H K. From whence it follows, that the Velocity of the Body defcending along the Arch C B, is to the Velocity of a Body falling down the Arch H B in the loweft Point B, as the Chord C B is to the Chord H B. Q. E. D.

Corollary. From hence is to be corrected the Error of Hugens, or rather of his Editors, who fuppofe that the Proportion of Velocity in the Point B , is the fame as that of the Lines themfelves C F, HK, when it is only the fubduplicate Proportion of the fame, as we have al-
> * De vi Centrifugh. pr 426,427.
ready demonftrated from the Principles of Hugens himfelf.

A general Scbolium. The truth of there Laws hath heretofore been prov'd by Sir Cbrifopher Wren before the Royal Society by the Experiment of Pendulums; which thing the famous Mariotte hath taken upon him to fet forth and declare in an entire Book. But that this kind of Experiments may agree with the Theories, regard is to be had not only to the Elafticity of the Pendulous Bodies, but alfo to the Refiftance of the Air. Let the Bodies A and B (fee Fig. 4. Plate 3.) hang by the parallel Threads A C and BD upon the Centers C and $\mathrm{D}:$ From thefe Centers, and at equal Intervals, let there be defcrib'd the Semi-Circles EAF, GBH, bifected refpectively by the Radii CA and DB. Let the Body A be drawn unto any Point of the Arch EA•F as R, and the Body B being withdrawn, let it be let down from thence, and return after one Vibration, compounded of going and returning, to the Point V. Here R.V is the Retardation from the refiftance of the Air. Of this R V let S T be made a fourth part, placed in the middle; and let R Q be equal to QV ; and thus $\mathrm{S} T$ will reprefent the retardatio nvery near which is in the Defcent from S to A. For if in the Double both Afcent and Defcent, the Retardation be R V, the Retardation in one Afcent or one Defcent will be one fourth Part thereof. And feeing two Arches be greater, and two be lefs than the Arch Q A, the refiltance of the Air is to be taken neither in the greateft Arches, nor in the leaft, but in a mean betwixt them. From whence the fourth Part $\mathbf{S} \cdot \mathrm{T}$ is neither to be placed at the higheft Part R, nor at the loweft V, but in a middle one which is betwixt both. Now let the Body B be reftor'd.

90
 Matbematical Pbilofopby.

into its Place : Let the Body A fall from the Point S; and the Velocity thereof in the Point of Reflection A, will, without fenfible Error, be the fame, as if it had fallen in a Vacuum from the Point T ; the Body A by falling fomething higher, compenfating the Refiftance of the Air; and therefore, according to the juft now demonftrated Lemma, let this Velocity of the Body in the Point A be reprefented by the Chord of the Arch T A. After the Reflexion, let the Body A come unto the Place s; and the Body B to the Place k, whether the Bodies be Elaftic or not. Let the Body B be taken away, and the Place (u) be found, from which if the Body A was let down, and fhould after one entire Vibration return to the Point (r) ; (st) may be a fourth Part of ($\mathrm{r} u$) which ($s t$) is fituate alfo as before in the middle : And by the Chord of the Arch (t A) let the Velocity which the Body A hath after its Reflexion in the Point A be reprefented; for (t) will be the true and correct Place unto which the Body A, the refiftance of the Air being taken away, ought to have afcended; and by the like Method will the Place (k) be to be corrected, that to wit, to which the Body B afcends, and the Place (1) to be found, that to wit, unto which the Body ought to have afcended in a Vacuum. By this means we may try all this fort of Experiments in like manner as if we were placed in a Vacuum. Then at laft the Body A is to be drawn into the Chord T A, which reprefents its Velocity, that the Motion of it in the Point A juft before the Re flexion may be had; and afterwards into the Chord ($\mathrm{t} A$), that the Motion of the fame in the Point A prefently after the Reflexion may alfo be had : As in like manner the Body B is to be drawn into the Chord (Bl) that the Motion of it prefently

Matbematical Pbilofopby.

after Reflection may be had ; and by the like Method where two Bodies are let down together from divers Places, there are to be found the Motions of both, as well before as after the Reflection, and then thofe Motions are to be compar'd at length betwixt themfelves, and the Effects of the Reflexion to be collected. By experiencing the thing in this manner in Pendulums of ten Feet, and this in Bodies both equal and unequal, and by making that the Bodies fhould meet together from very great Intervals,as of Eight,Twelve,or Sixteen Feet, the Fahous Sir Ifaac Nevpton always found, without an Error of Three Inches in the meafures, when the Bodies did directly meet each other, that the change of the Motion to the contrary Parts was equally in both Bodies, and confequently that Action and Re -action, according to the fifth Law were always equal. As if the Body A fhould fall upon the Body B, which is at reft, with Nine Parts of Motion, and feven Parts being loft in the Conflict, fhould go forward after the Reflexion with two Parts only, the Body B would rebound with thofe Seven which A loft. If Bodies meet one another, A with Twelve Parts of Motion, and B with Six ; and A returns with Two, B would return with Eight; there being made to wit, a fubduction of Fourteen Parts on both Sides. Let Twelve Parts be fubducted from the Motion of \mathbf{A}, and there will remain nothing; let there be fubftracted other two Parts, and then there will be a Motion of Two Parts unto the contrary Part. And fo as tó the Motion of the Body B of fix Parts, by fubducting 14 Parts, there will arife Eight Parts of Motion the contrary way. But if the Bodies fhould be carried to the fame Part, A more fwiftly with fourteen Parts, and B more flowly with five

92 Matbematical Pbilofophy.

five Parts, and after the Reflexion A fhould go forward with five Parts,B would go forwards with fourteen, there being made a Tranflation of Nine Parts from the Body A to the Body B,and fo in all other Cafes. . The Quantity of Motion which was collected from the Sums of the confpiring Motions, and the difference of the contrary ones, was never found in the Tryals of the forefaid great Man to be changed by the Congrefs or Collifion of Bodies. For the Error of one Inch or two in the Meafures is to be attributed to the difficulty. of performing every thing with due exactnefs. For it was not an ealy thing to let down the Pendulums juft at one time, fo that the Bodies fhould dafh one upon another in the loweft Place AB; then to note the Places s and k, to which the Bodies afcended after the Congrefs, was difficult; and in the Ballsthemfelves which were to be us'd, the unequal Denfity of the Parts, and the irregular Texture arifing from other Caufes muft needs bring in fome fort of Errors. But further, left any fhould object, that the Rule, for the proving of which this Experiment was invented, doth prefuppofe either that the Bodies are abfolutely hard, or at leaft perfectly Elaftic, of which fort there are none perhaps to be found in natural Compofitions; we add, that the Experiments now defcrib'd do fucceed as well in foft Bodies as in Bodies Hard and Elaftic ; thefe Experiments not depending at all upon the Condition of the Hardnefs or Elafticity of Bodies. For if the thing were to be tryed in Bodies not perfectly Hard or Elaftic, the Reflexion ought only to be diminifh'd in a certain Proportion according to the Quantity of the Elaftic Force which is diminifh'd. In the Theory of Wren and Hugens, Bodies abfolutely hard return from one another with the Relative Velocity of
the Congrefs; but with the famous'Wallis it is altogether to be faid, that this holds in Bodies per-. perfectly Elaftic only; and it is to be afferted, that other Laws have place in Bodies not Elaftic, whether foft or hard, that obtain not in Elaftio ones; as is abundantly manifeft from what has been above opened. And particularly thofe Bodies only which are perfectly Elaftic, do after mutuab Collifions return from one another with the $\mathrm{Ve}-$ locity of the Congrefs, according to the r6th Law of Motion thereto belonging. In thofe which are imperfectly Elaftic, the Velocity of the Return is to be diminifh'd together with the Elaftic Force, and in the proportion of the diminution of the fame : becaufe that that Elaftic Force (unlefs where the Parts of the Bodies are hurt by the Meeting, or fuffer fome kind of Extenfion as under a Mallet) feems to be in it felf certain and determinate, and makes Bodies to returr from one another with that Relative Velocity; which is in a given Proportion to the Relative Velocity before the Concourfe. Which thing Sir Ifaac Newton did thus experiment in Balls made of Wool, moft ftraitly wound up and preffed together; firft by letting down Pendulums, andmeafuring the Reflexion, he found the Quantity. of the Elaftic Force ; then by this Force he computed the Reflexions which were to be expected in other Cafes of Congrefs, and the Experiments anfwer'd. The Balls always return'd from one another with a relative Velocity, which was to the Relative Velocity of the Concourfe, as the Number Five is to Nine. Balls of $f_{\text {: }}$ Steel were almoft perfectly Elaftic, for they return'd almoft with the very Velocity of the Concourfe ; thofe of Cork with fomething lefs; but in Glafs Balls the Proportion was of about Fifteen to Sixteen.

94 Mathematical Pbilofophy.

And by this means, the Fifth I aw of Motion as to .Stroaks and Reflexions was prov'd by Dr. Wallis's Theory, which plainly agrees with Experience. Sir: Ifaec Newton doth alfo thew in this Place briefly that this Rule holds alfo in Attractions; to wit, that the Quantity of Motion, collected by: gathering the Sum of the Motions made to the fame Part; and the difference of thofe which are made to the contrary Parts; is not changed by the Actions of Bodies amongft themfelves; whole reafoning in this Matter we confidered above under the Fifth Law, and confequently fhall at prefent omir it, and come to the reft of his Obfervations belonging to the prefent Place. As therefore: Bodies in Concourfe and-Reflexion are of the fame Force, whofe Velocities are reciprocally as the implanted Force or the Bodies themfelves, as may be underftood from the Eight and Seventeenth Laws, and Hugens's Eighth Propofition ; fo in moving Mechanic Inftruments, Agents are of the fame Force, and fuftain each other by contrary Endeavours, whofe Velocities, eftimated according to the determination of their Forces, be reciprocally as their Forces. Thus. Weights are of equal Force to the moving the Beam of a Pair of Scales, which in the Vibration of the Balance are reciprocally as their Velocities up and down; that is, the Weights if they afcend and defcend perpendicularly, are of equal Force betwixt themfelves when they are reciprocally, as the Diftances of the Points on which they are hanged from the Axis of the Balance. But if being hinder'd by oblique Planes, or fome other Obftacles, they afcend and defcend obliquely, thofe Weights are Equipollent, which are as the perpendicular Afcent and Defcent, and this becaufe of the determination of Gravity downwards. Thus in a

Matbematical Pbilofophy. 95

Wheel or Pulley, the Force of the Hand which directly draws the Rope, is to the Weight afcending either directly or obliquely, as is the Velocity of the perpendicular Afcent to the Velocity of the Hand drawing the Rope,the Hand will fuftain the Weight in Equilibrio.In Watches, and the like Inftruments which are fram'd of little Wheels put together, if the contrary Forces for the further ing and hindring the Motion of the Wheels be reciprocally, as the Velocities of the Parts of the Wheels on which they are imprefs'd, they will futtain one another. The Force of a Screw to prefs a Body, is to the Force of the Hand turning round the Handle, as the circular Velocity of the Handle in that Part where ic is prefs'd by the Hand to the progreffive Velocity of the Screw towards the preffed Body. The Force with which the Wedge lies upon the Two Parts of the cloven Wood, is to the Force of the Mallet upon the Wedge, as the Progrefs of the Wedge according to the determination of the Force imprefs'd upon it by the Mallet, is to the Velocity wherewith the Parts of the Wood give Place to the Wedge according to Lines perpendicular to the Forces of the Wedge. And the Reafon is the fame in all Machines. Their Effigacy and Ufe confifting only in this, that by diminifhing the Velocity we may increafe the Horce, and on the contrary. From whence in all Kinds of fit Inftruments that fo much talk'd of Problem is folv'd, of mo-ving-a given Weighe by any given force, or of overcoming any other given Refiftance by any given Force how fmall foever. For if Machines be fo form'd, that the Velocities of the Agent and Refiftents are reciprocally as the Force, the Agent will fuftain the Refiftent, and overcome the fame with a difparity of

96 Mathematical Pbilofopby.

Velocities : Certainly, if the difparity of Velocities be fo great, that it will overcome even all Refiftance, which is wont to arife as well from the Attrition of Bodies contiguous, fliding one iipon another, as from the Cohefion of Bodies continuqus, and which are to be Ceparated one from another, and the Weights of Bodies to be lifted up; all that Refiftance being overcome, the Force redounding will produce an Accelerafion of Motion proportional to it felf, partly in the Parts of the Machine, partly in the refiding Body. But to treat of, and handle Mechanics a's it ought to be done, belongs not to our Purpofe ; we by thefe Things only fhew how far and wide this Rule extends, and how certain the Fifth Law of Motion above delivered is. For if the Action of the Agent be eftimated from its Force and Velocity conjunctly, and the Re-action of the Refiftent from the Velocities of each of its Parts, and their Force in refifting, arifing from their Attrition, Cohefion, Weight and Acceleration; Action and Re-action will be in all Kinds of Inftrumentsequal one to the other ; and fo far forth as the Action is propagated by the Inftry ment, and at length imprefs'd upon every'refifting Body, its laft Determination will always be contrary to the determination of the Redaction.:?

Corollary, From thefe two Liaws of Motion now fufficiently explain'd and prov'd, ithe grofs Errors of Des Cartes about the fame do manifeftly appear; whofe Laws of Motions, are fo:far from agreeing every where with the true Laws of the fame, that they are rather found every where to difagree with them. And confequently it is no wonder, if he in like manner err'd in the reft of the Phenomefa of Nature. : The Laws of Motion being now 'difpatch'd, we come unto the Propofitions.) November 6th, 1704.

LECT.

Matbematical Pbilofopby.

Lect. IX.

Propositions.

I.

 HE laft Proportion of the Tangent Subrenfe or Chord to the Curve Arch which belongeth to them, is the proportion of Equality ; that is, the Tangent, Arch, and Chord, where the leaft Arch of all, or that which vanigeth away is taken, do at lergth end in one and the fame Line. And the fame thing is to be underfood of the Sine. Let A b be the Arch of a Circle or fome other Curve, which is as little as may: be; let Af be the Tangent thereof, and A b the Subtenfe : I would know what is the Proportion of thefe Lines one to another if they be taken as near as mayibe to the Point A, or if the Point b doth as it were coincide with the Point A; and I fay; that the Proportion of the Arch, whether to the Tangent above, or to the Subrenfe below, is the Proportion of Equality. For from the Nature of Curves it is manifeft, that all the difference betwixt the Tangent and Subtenfe of any Arch whatever doth arife from the length of the intermediate Arch, and that the difference is always fo much the greater, as the Arch which is taken is the greater, and fo much the lefs by how much the Arch which is taken is the lefs; from whence it follows, that in an Arch the leaft that may be the difference will be the leaft that may be, and in an Arch infinitely fmall, fuchas we now intend, the Difference will be infiniteIy fmall, or none at all. And if the Difference betwixt the Tangent and the Subtenfe be none at all, much more fhall the Difference betwixt the Tangent and the intermediate Arch be none at all, or the Difference betwixt the Subtenfe and that Arch ; fince that Arch is every where of an intermediate Lengeh betwixt the Tangent and the Subtenfe. And this Equality of the leaft Tangents, Arches and Subrenfes, and of Sines alfo, is a Thing which Geometricians have always fuppofed and acknowledged ; whilft they have gonfidered the Perimeters of Curves, as being innumerable Sides of Pölygons, and as arifing from the Coalefcence of the infcrib'd and circumfcrib'd Figures, 'the Difference betwixt them 'vahilhing away.

CorollaryIf therefore it dan be dernbonftrated, that d b D b (Fig. 5. Plate 3.) the Subtenfes of the Atigles of Contact, are always betwixt themfelves in the duplicate Proportion of the Subtenfes A b, A B, as will prefently be done, it will from thence fol'low, that the fame vanifliing Subtenfes are alfo in the dirplicate Proportion of their conterminous Arches A b, A B, or of the Sines cb; C B ; becaufe the Subtenfe Ab doth in the foregoing Cafe fall in, and become the fame with the Arch A b or its Sine $c b$, and fo doth at length the fubtenfe A with the $\mathrm{Arch} A B$, or its Sine C B.

If. The Subtenfes of the Angles of Contact in Cícles, are always in' the duplicate Proportion - of the Subtenfes of the cothterminous Arches.

Let there be in the fame Figure any two Arches as AB and 'A'B ; and D B, d'b equal to AC and A c, the verfed Sines of the fame Arcfies) the 'Subtenfes of the Angle of Contact. To thefe Subtenfes (by Book the 3d, Prop. 31. of the

Elements)

Matbematical. Pbilofophy.

Elements) G B and G b drawn from the Poiṇt \mathbf{G} will be perpendicular ; let the Rectangles $A D B C$, and Adbc be compleated. This done, the Square of AB (by VI. 8. of the Elements with VI. 17. of the fame) is equal to the Rectangle of A G into A.C or D B ; and in like manner, the Square of $A \cdot b$ is equal to the Rectangle under A G and Ac or d b. And confequently, the Proportion of the Square of A B to the Square of $A b$, is the fame as that of the Rectangle un$\operatorname{der} A G$ and $D B$, fo that under $A G$ and $d B$; that is, (by VI. I. Elements) the fame as of the Line DB to the Line db. Q. E. D.

Corollary. Therefore any Subtenfe whatever of $\$. the Angle of Contact, as D B or $\mathrm{d} b$ is équal to the Square of the, Chord applied to the Diameter of the Circle. For as A G is to AB, to is AB to AC or DB:From whence by the Golden Rule, $\mathrm{BD}=\frac{\mathrm{AB} \times \mathrm{AB}}{\mathrm{AG}}$ or $=\frac{\mathrm{ABq}}{\mathrm{AG}}$. And in like manner, $A G$ is to $A b$ as $A b$ to $A c$ or $d b$; from whence $d b=\frac{A b q}{A G}$ Q.E.D.

Coroll. (2.) In the leaft Segments of perfpective Glaffes, the Altitudes or Axes of the Segments AC, and Ac, are to be reckon'd to have the fame Proportion betwixt thenfelves, which the Squares of the Bafes or Apertures $E b$ and R B Ơc. have. (fee Fig. 5. Plate 3.) For we have, Thew'd that A C and A c have the Game, Proportion as the Squares of the Subtenfes ; and feeing in very fmall Arches the Subrenfes or Sines, or their Doubles R B and E B are almoft in the fame Proportion amongft themfelves; it follows, that the Altitudes alfo A C and Achave almoft the fame Proportion as the Squares of the double Sines RB and Eb, that is, of the Apertures. Q. E. D.

100 Matbematical Pbilofopby.

Coroll. (3.) In very fmall Angles, the Excefs of the Secants above the Radius, are alfo very near as the Squares of the Subtenfes, or Sines, or Tangents, or even of the Arches. For thofe Exceffes (fee Fig. 5. Plate 3) \mathbf{b},f and BF, do in that Cafe coincide with the Subtenfes of the Angle of Contact bd and B D, and confequently have the fame proportion amongt themfelves as they. Thus you may fee in the Tables of Secants, that the Radius of the Circle being put to be of 10000000 of equal Parts, the Excefs of the Secant of two firf Minutes is of two Paits, and that of the Secant of Four firft Minutes is of Eight Parts ; from whence the difference of the former Secant, and the Radius, is fourfold of the difference of the latter Secant to the double Arch, and the Radius ; that is, thofe Differences are betwixt themfelves as the Squares of the Arches ; and fo of the reft.

Coroll. (4.) The Nafcent or Evanefcent Subtenfes of the Angle of Contact, are in the duplicate proportion of the conterminous Arches. Forthey are every where, by what hath been demonftrated before, in the duplicate Proportion of the Chords. But feeing the Chords do at laft end in the Arches, that is, in Diftances infinitely fmall do coincide with them, and are equal to them, as we demonftrated above, thofe Subtenfes in like manner will in the prefent Cafe be in the duplicate Proportion of the Arches.

Coroll. (s.) From whence alfo in the fame Cafe, according to the firft Corollary of this Propofition, the vanifhing Subtenfe of the Angle of Contact, will be equal to the Square of the Arch it felf, applied to the Diameter of the Circle.

Coroll. (6.) Hence is gathered that Noble and Fundamental Theorem of Sir Ifaac Newton, and

Matbematical Pbilofophy. $10 \mathbf{I}$

of Mr. Hugens alfo; to wit, that in the circular Motion of a Body, the Centripetal Forces, or the Gravities toward the Center are every where, as the Squarcs of the Velocities of the Arches, defcrib'd at the fame time, applied to the Diameters or Radii of the Circles. For (in Fig. 6. Plate 2.) let the revolving Bodies B and b defcribe the Circumference of the Circles BD and bd,and in the fame given Time let them defcribe the infinitely frmall Arches B D and b d ; becaufe by the ir Innate Force alone they would defcribe the Tangents B C, b c equal to thefe Arches; by the firft Law of Motion it is manifeft, that there is fome centripetal Force which perpetually draws back the Bodies from the Tangents to the Circumferences of the Circles; and confequently, thefe are one to another in the firf Proportion of the Nafcenc Lines $C D$ and $c d$; that is, as $\frac{B D q}{B G}$ is to $\frac{h d q}{b g}$; or, by taking half the Divifors, as $\frac{B D q}{B S}$ to $\frac{\mathrm{bdq}}{\mathrm{bs}}$ and becaufe the Velocities are in the Proportion of the Arches defcrib'd at the fame time, thofe Forces will be as the Squares of thofe Velocities applyed to the Radii of the Circles. But if the Circles be equal betwixt themfelves, then by reafon of the given Diameters thofe Forces will be as the Squares themfelves of the Arches defcrib'd at the fame time, or of the Velocities; as we will hew more fully afterwards.

Coroll. (7.) By means of thẹ foregoing Corollary, we gather the Proportion of the Centripetal Force to any known Force, as that of Gravity. For fince that Force in the time that the Body defcribes the Line B C, or an Arch equal to ir,

102 Matbematical Pbilofophy.

impells the fame along the Line $C D$; which in the beginning of Motion is equal to the Square of that Arch B D, applied to the Diameter of the Circle. And fince every Body by an uniformly accelerated Motion, or the fame Force continued towards the fame Part always, doth defcribe Spaces in the duplicate Proportion of the Times, as will prefently be fhewed (under Prop. 4.) that Force in which time the revolving Body doth defrribe any given Arch, will make the fame Body, going right forwards, defcribe a Space equal to the Square of that Arch applied to the Diameter ; and confequently, is to the Force of Gravity as that Space is to the Space which an heavy Body in falling doth defcribe in the fame time. As for Example, fromi the Experiments of Pendulums, and other ways it is manifeft, that all Bodies whatever defcribe in à Vacuum 16,14 Englifh Feet in one Second of Time whillt they are falling by the Force of Gravity : I therefore would know what Proportion the Centripetal Force, whereby the Moon is held in its Orbit bears to the Force of Gravity with us ? For this purpofe the Square of the Arch of the Moon's Orbit, which is defcribed in one Second of Time, is to be divided by the Diameter of the Orbit; and fo we fhall find the Line which the Moon (if the circular Motion thereof were deftroyed, and it defcended as an heavy Body towards the Earth) would defcribe in the fame time. The mean Diftance of the Moon from the Center of the Earth is about Sixty-Times the Earth's femi-Diameter, or of about Englijh Feet in Number 1257696000 . The Circumference therefore of its Orbit, if reduced to a Circular, will be of about 7897834380 Feet; which Periphery, fince the Moon defcribes it in the Space of a periodical Month, or 27 Days, 7 Hours, 43 Minutes, that is, in 2 2 30580 Seconds;

Matbematical Pbilofophy. t. 3

let the Circumference 7897834380 be divided by 2360580 the Seconds which belong to the fame, and the Quotient 3346 will give the Length of the Arch defcribed by the Moon in a fecond of Time in Englifh.Feet, the Square whereof III 128976 being divided by the Diameter 2515392000 will give goo443 Parts of an Engligh Foot to be defcribed in one Second by the Moon falling, and in one Minute $16[14$ Feet, or thereabouts; therefore the Centripetal Force, or Gravity of the Moon, is to the Centripetal Force of Bodies with us upon the Surface of the Earth, as 443 Hundred Thoufandth Parts of one Foot is to 16 L14 Feet, that is almoft as x to 3600 . And confequently, the Force of Gravitation towards the Earth at the diftance of the Moon is only the $3600 t h$ Part of the Force of Gravity with us.
III.The Velocities of a Body accelerated by any uniform urging Force whatever, are betwixt themfelves, as the Times are wherein that uniform Force is imprefs'd ; that is, in Double the Time Double, in Treble the Time Treble of it felf, and in Four times the Time a Quadruple Velocity. For if the Accelerating Force be Equable and Uniform, which is here fuppos'd; and the Body confequently, whether it refted at the Firf, er was mov'd with any Celerity, doth receive equal Degrees of Velocity, and an equal Increafe in equal Time ; it is manifeft, that the Velocity of the Body is exattly proportional to the Time. For if in every given Particle of Time that Force doth generate a certain Velocity, it will be able in the next equal fmall Portion of Time to generate a Velocity like and equal to the former; and So tikewife in the Third, and Fourth, and Fifth, Orc. Particle of Time, and fo in infinitum. From whence the entire Velocity will every where be

104 Matbematical Pbilofapby.

as the Space of Time, in which that Accelerating Force is ipprefs'd on the Body. Q. E. D.

Corollary. Seeing therefore it is manifeft by Experiments, that all Bodies whatever being accelerated by the Force of Gravity, do reçeive increafes of Velocity every where proportional to the Times; it is manifeft, that the Force of Gravity doth act uniformly, and doth affect Bodies moft fwiftly defcending, as well as quiefcent. From whence it appears, that the Gravity of Bodies is to be afcrib'd to no Preffure of the Air, or Impulfe of either, nor to the Mechanical Endeavour of any Mater towards Motion. For all thefe Impulfes or Endeavours would moft of all affect a Body'ar Reft, and by how much the more fwiftly the Body fhould be mov'd, they would fo much the lefs continually urge it, until at length, the Celerity produc'd becoming equal to the Force of the Caufe which generates it, all the Impulfe would ceafe, and no Acceleration of Motion follow thence forward.

Some Lemmata to the 4 th Prop.

-(r.) Odd Numbers being added to themfelves continually do make all the Square Numbers. Thus One is the firft of odd Numbers, and the firt alfo of Square Numbers. But if the Number 3, which is the Second odd Number be added to One, there is made the Number Four, the Second of Square Numbers ; and if the Number Five be added to Four there is made the Number Nine, the Third Square Number, and $f 0$ on in infinitum. We fhall bring Two Demonftrations of this Lem-

Pract. Arithm. Book V.Chap. I. Theor. 7 : ma, one out of Tacquet; the other out of our own Store. Tacquet Shews the Thing thus. In the natural

Matbematical Pbilofopby. 105

tural Progreffion, faith he of odd Numbers, r, 3, $5,7, \delta^{\circ} c$. the total Sum is equal to the Square of the Number of the Terms. For according to the Nature of Arithmerical Progreffion, the Sum of all the Terms is equal to the Product of Half the Sum of the Extremes, drawn into the Number of the Terms : But half the Sum of the Extremes of an Arithmetical Progreffion of odd Numbers, beginning with Unity, is equal to the Number of the Terms, (for it goeth on from Unity by Two's fuperadded, whilft the Number of the Terms increafeth only by Ones) and confequently, that Product is equal to the Square of the Number of the Terms, and therefore the Sum Total of odd Numbers, beginning with Unity, is equal to the Square of the Number of the Terms, Q. E. D, We demonftrate it thus: Let (ac) or (ab) (fee Fig. 7. Plate 3.) be Unity, and (a d) the Square of Unity; I fay, that the Addition of the odd Numbers, $3,5,7,9, \delta^{2}$. is neceffary to make the Squares (ah, a n, a s, 22, a A) of all Numbers proceeding from Unity ; for to the making the Second Square, or the Square of the Number Two, there are Three other Squares of Unity to be added to (ad) to wit, the Two lateral Squares ($\mathrm{c} d$ and d f) and the Diagonal Vertical Square (i g.)And then through all the reft of the Terms, the Number of the Squares to be added is alwass to be increas'd by Two for the making up of the reft of the Squares; to wit, three Squares (ki, 1 h , and g g) correfponding to the Three which were added before are firft to be added, then another Square (h p) becaufe that the Square, added by the Side of the Diagonal, doth always require a Pair of correfponding Squares to be fuper-added, to. which at length is to be added another Diagcnal Square (m o). And thus it is every where (the Number

106 Mathematical Pbilofopby:

Number of the Squares to be added always, exceeding the former by Two,) that the Squares (ad, a h, a n, a s, ơc.) from Unity may be compleated. From whence it plainly appears, that the continual Addition of uneven Nambers begets all Square Numbers, Q. E. D. But he that will be content with an Induction, carried on without End, may fafely enough pafs By this way of demonftrating the Thing ; howbeit it is indeed fo eafy, that it will not require much Attention of Mind to comprehend it.

Lemma (2.) If a Body doth in a givén time depart gradually and uniformly from Reft, and by that means defcribe a certain Line ; the fame Body in the fame given time will,from the laft Celerity acquired, if it be uniformly continued, defcribe a Line double to the former. For fince the Body in departing from Reft acquired a certain Degree of Velocity by equal increafes, the Line defcrib'd by the fame, will be to be diftinguifh'd into innumerable Lines greater each to the former gradually : And if thofe little Lines gradually increafing, were difpos'd not Length-wife but orderly at the Sides, they would compofe a certain Triangle, (abc) or at leaft, according to Cavallier's Method of Indivifibles, are to be reckon'd to compofe one ; where the Vertical Point of the Triangle, to wit (a) is the Point of Reft, and the Bafe (c b) defigns the laft (fee Fig. 8. Plate 3.) Line of Motion, and the reft of the Parallel little Lines, the Lines of the diverfe Ve locity which the Body had paffed through. Now if we had put the greateft Line (I b) to have been meafured in the fame full time, or had difpos'd from the Point (a) to the Bafe (r b) fo many Times equal to the greateft, as we had before difpos'd Lines gradually increafing, we had com-

Mathematical Pbilofopby. $10 \neq$

pos'd a Parallelogram, double to the former Triangle, (I. 4I. of the Elements.) And confequently, the uniform Motion, gradually increas'd from the Point of Reft, is in the given time double to the former, Q. E.D.
IV. The Lines which Bodies by any urging uniform Force do defcribe, are in the duplicate proportion of the Times, i. e. if the Times be Seconds, One, Two, Three, Four, Five, ơc. the whole Lines defribib'd will be amongft themfelves, as One, Four, Nine, Sixteen, Twenty-five, © $\boldsymbol{\sigma} \boldsymbol{c}$. which are the Squares of the former. For if any Body whatever, by any urging uniform Force whatever, fhall as it falls defcribe in the leaft Portion of Time, as one Second, fome Line ; in the fecond equal Portion of Time it will defrcibe a Line equal to the former, by reafon of the continuation of a Force equal to the former; and becaufe of the gradual Acquiftion, and Increafe of the Velocity of Motion, it fhall by Lemma the Second defribe a Line double to the former ; therefore from both Caufes conjoin'd it will now defcribe a Line treble to the former. But in the Third Particle of Time, by reafon of the Force, of Gravity ftill acting, a Line equal to the former will be defrrib'd ; and becaule of the Velocity of the former, which was double to B, continued in the equal Time a Line will be defcrib'd double to the former, that is, quadruple of the firft, and fo from the Forces conjoin'd a Line will be defcrib'd five-fold of the Firft ; and fo forwards from the continual Impreffion of Gravity a Line equal to the firft will always be to be added, and then another Line equal to the firft by reafon that the Velocity is continually increas'd by one Part; and confequently, two Parts or Lines equal to the firf are every time to be added; and confeqently,

108 Matbematical Pbilofophy.

the entire Lines defcrib'd in every fucceffive Particle of Time will be to be defign'd perpetually by odd Numbers. Seeing therefore (by Lemma r.) the odd Numbers added one to another do orderly make all the Square Numbers, the Lines of thefe Moments added together will neceffarily make the entire Lines of the Moments to exceed the latter the foregoing in a duplicate Proportion, or in the Proportion of a Square Number to a Square Number. Thus if in one Second of Time Bodies be carried downwards by the Force of Gravity about Sixteen Englijh Feet, as is manifeft from Experience; they will in two Seconds be carried Sixty-four Feet, and in three one Hundred Forty-four Feet, or thereabouts.

Or according to Galilaus in his Syfema Cofmicum, we may demonftrate the Propofition thus. (Fig. 8. Plate 3.) Let equal Times be reprefented by equal Lines $a b, b c, c d, d e$, and the Velocity in the end of the firft time $b \mathrm{~g}$, by the Line (b_{r}). Seeing then, that Velocity which the falling Body hath in that Place, was acquir'd not together and at once, but gradually, and in a certain Space of time, reprefented by the whole Line (a b) from the continual and uniform accelerating Force ; therefore it - is neceffary, that it Thould have had all the leffer Degrees of Velocity before it got that Velocity; from whence thofe former Degrees of Velocity will be reprefented by leffer Lines drawn from the Parts of the Time $a b$ parallel to the Line; and feeing the

Prope. 3. foregoing. Velocity doth increafe uniformly with the Times, thofe Lines according to the Method of indivifibles will conftitute and compofe the Triangle (ab 1). Therefore the whole Line which Mall be defcribed from all thofe Velocities join'd together,

Matbematical Pbilofophy. 109

ther, will be proportional to the Aggregate of all thofe Lines, that is, to the Triangle (a b); and will rightly be reprefented by that Triangle. But in the fecond time, when the Body fhall now have acquir'd a Velocity proportional to the Line (b_{1}) and reprefented by the fame; with that only Velocity continued, it will defcribe a Line double to the former, and confequently to be reprefented by the Parallelogram (a bih) or (bin $\dot{k} \mathrm{c}$) double to the Triangle (a bi); and over and above, by the new Velocity, arifing as before, from the perpetual and uniform Incitation of the fame Force, a Line will be defcribed equal to the firft Line ; therefore if you add both Forces together, in the fecond Time, the Line defcrib'd will be treble to the former, and to be reprefented by the Trapezium ; and the Sum of the Lines defcrib'd in the firf and fecond Time, will be to the Line defcribed in the firft time alone as the Triangle (ac2) is to the Triangle ($\mathrm{a} b \mathrm{I}$); that is, in the duplicate Proportion of the homologous Sides (a c) and (a b) which reprefent the Times; or as the Squares of the Times themfelves. In like manner, in the third Time the Body with the Celerity hitherto acquir'd, or the mere permanence of the Motion now gor, will.defcribe a Line to be reprefented by the $\mathrm{Pa}-$ ralletogram (c 2 nd); and by the new added Force arifing from Gravity fti0, and continually uniformly inciting, will defcribe a Line to be reprefented by the Triangle (2 n 3.) From whence the Line defcrib'd in the third Time will be fivefold of the Firf, and to be reprefented by the Trapezium (2 cd 3); and the Sum of the Lines in the firft, fecond, and third Times, will be to the Line defcribed in the firft time only, as the Triangle (ad_{3}) is to the Triangle (ab_{I}) or as

110 Matbematical Pbilofophy.

the Squares of the Times (a d) ; and (ab) and fo in infinitum.

Corallary, Since according to what hath been before demonftrated, Celerity is every where proportional to the time, and feeing the Lines defribed by Bodies falling down be in the duplicate Proportion of the Times, the fame Lines will alfo be in the duplicate Proportion of the Celerities, or as the Squares of the Velocities. As for Example, if the Velocities laft acquir'd of two Bodies falling to the Earth, be one to the 'other, as the Number Two is to One, the Heights of the Fall thall be betwixt themfelves as Four is to One. If the Velocity' of one Body be treble to the Velocity of the other, the Height of the Defcent of the fame Thall be Ninefold of the Height'of the Defcent of the other. And fo on ad infinitum.

Narv. 13, 1704.

$$
\mathbf{L} \mathbf{E} \mathbf{C} \text { T. X. }
$$

F a Body thall begin to tend :upwards with that fame Velocity which it had acquir'd in the End of its Defcent, it will afcendto the fame Altitude in the fame Time, from whence it before defcended, and. Shall equally,lofe its Velocity in equal Times.

For by Force of what was demonftrated in the laft Propofrion it appears, that the Velocity once acquir'd, as (3.d) will always:de-

-

Matbematical Pbilofopby. ini

raribe an equal Parallelogram, whether the Body afcend or defcend : But feeing the new Force of Gravity in the Defcent increafes by the Triangle ($3 \mathrm{~m} 4 ;$) and in the Afcent diminifheth the fame by an equal Triangle; it is manifeft that the Trapezinm now to be defcribed in the Afcent -will be equal to the Parallelogram before defcrib'd in the Defcent, to wit the Trapezium 32 cd ; and fo on.From whence the Lines defcrib'd which sare proportional to thefe Trapeziums, and the Velocities proportional to the Bafes of the Trapeziums, will every where be the fame in the Afcent that they were in the Defcent; until at length'the Body reacheth to the laft Point of the Afcent in the fame time that it had defcended frem it.
VI. The Celerities of heavy Bodies acquir'd by - aefcending upon divers Inclinations of Planes will -be equal, if the Elevations of the Planes or their perpendicular Altitudes be equal.

Let E G be a Line perpendicular to the Horizon; and EF a Line inclin'd to the Horizon (Fig.i. Plate.4.) in any Angle whatever, and let' G A be perpendicular to E.F. I fay, that any heivy Body whatever will acquare the fame Velocity in defcending along the inclined Line EF, which it would acquire in the Line EG by the perpendicular Fall. For from what was demonftrated before, the Force of Gravity in the oblique Plane

> Corol. 2. Law
> of Mot. 23.

E F, is to the Force of Gravity in the perpendicular EG, as AB is to AC, or, on account of the likenefs of the Triangles ACB, EFG, as EG to EF; or becaufe the Triangle EGA is like to them, as E A is to E G. From whence, by reafon of the divers Forces, the Motion and Velocity of the Body defcending along

E A in the inclined Plane, will be to the Motion and Velocity of the Body defcending along E G, the Time of the perpendicular Defcent being given, as EA is to EG, or as EG is to EF; and the Velocity of the Body defcending along EA, unto the Velocity of the fame defcending along E F, will be in the fubduplicate Proportion of EA to EF, that is, in the Pro-
VI. 8. Elements. portion of E A unto E G. Therefore the Velocity of the Body in the Point A, is to the Velocity of the Body in the Point F, and to the Velocity of the fame defcending perpendicularly in the Point G, in the fame Proportion, to wit, that of the Line E A to the Line EG, or that of the Line E G to the Line E F. From whence it appears, that thofe Velocities are equal one to the other. Q. E. D.

Coroll. (r.) Whilft a Body falling perpendicularly defcribes the Line E G, another falling obliquely, will defcribe the Line EA, determined by the Perpendicular G A.

Corcll. (2.) The Time of the perpendicular Fall is to the time of the oblique Fall, in the fubduplicate Proportion of the Line EA to the Line EF; or as the Line EA is to the Line EG, that is, in the proportion of the perpendicular Altitude EG to the oblique Line EF. From whence, by how much the Velocity is diminifh'd on account of the diminution of the Force, it is increas'd, by reafon of the increafe of the time ; fo that in the fame perpendicular Altitude there always remain the fame Velocity, whatfoever may be the obliquity of the inclined Plane to the Horizon.

Coroll. (3.). The Times of Defcents upon Planes diverlly inclin'd to the Horizon, but whofe Elevation or perpendicular Altitude is the fame,

Matbematical Pbilofophy. 113

fame; ' and 'betwixt themfelves as the Lengths of the Planes: For the time of Defcent by EF is to the time of Defcerit by E G, (Fig. 1. Plate 4.) according to what hath been already demonftrated,'as EF is to E G; and the time of Defcent thro' E G is to the time of Defcent thro' E H as E G to E H from whence by equality of Proportion, the time of Defcent through E F will be to the Time of Defcent thro' E G; as E F is to E H, Q.E. D.

Corbll.: (4.) If a Body defcend from the fame perpendicular Altitude, with a continued Motion thirough how many foever and whatfoever contiguous'" Planes, as E I, I K, K L, howfoever inclin'd, it will always acquire the fame Velocity in the End quired by falling perpendicularly from the fame Heighth: : For'by the Dermination of Mr. Hu gens; the fame will be the Velocity, according to what hath been already demonitrated, of the Body (Fig. I. Plate 4.) falling to the Point I, whether fefall along EI or MI; from whence the Velociey will alfo be the fame in its going along IK, as in falling along $\mathbf{N} \mathbf{K}$; from whence the Velocity will be the fame at the Point K, whether the Fall were through E I or IK or along MK, or even NK ; from whence will follow that there will be the fame Velocity in falling along K L at the Point L, which would be the Befcent were atcording to one fingle Plane NL, ior two Planes) MK and KL, or even three Planeś, EI, IK, KL; the fame to wit, according to what hath been already demonftrated, which the Body falling perpendicularly could acquire at the Point G. Q. E. D.

Corall: (5_{5}): Hence it is alfo manifeft, according to the Determination ofthe fame Hugens, that a Body defcending along the Circumference of a Circle; or a Cycloid, or any Curve Line wharever, the

114 Matbematical Pbilofophys

fame Velocity will always be acquir'd, if it defcend from an equal Altitude ; and that that Velocity will be fo great as the Body ought to acquire by a perpendicular Fall from the lame Altitude. For Curve Lines are as it were, compounded of many innumerable right ones; and fince the Propofition is true in any rectilinear Perimeters whatever, and how many foever, it will be true likewife where they are in Number infinite, that is, where they end in Curve Lines. Q.E. D.

Coroll. (6.) Hence it alfo appears, that if an heavy Body's Motion be turned from a Defcent upwards, it will afcend unto the fame Heighth from whence it came, along whatfoever Plane contiguous Surfaces, and in what fort foever inclin'd it fhall be carried. For as before, (Prop. s. Fig. I, Plate 4.) the fame will be the Velocity in any Point K and I, whether the heavy Body defcend or whether it afcend; from whence certainly the fame will be the Limit of the afcending or defcending Velocity, the fame the Term of it at the Point E. From whence alfo, if there bean infinite Multitude of Planes ; that is, if the Surface be Curve, the Body will arife along the Curye Line alfo unto the Height from whence it came, and no higher:

Coroll. (7.) If a Body falls perpendicularly, or defcends along any Surface whatever; and then fhall; from the Force acquir'd by the Defcent be carried upwards along any other Surface; it will have in Afcending and Defcending the fame Velocity in Points of equal Heighth. And if the Plane or Surface of the Afcent be like and equal to the Surface of the Defcent, it will afcend in equal time in which it defcended. There Things do fo clearly follow from the Things already demonftrated, that there needs ao more Words about them.

Matbematical Pbilofophy. 11.5

Lemmata to the 7 th Propofition:

(1.) If a Curve Line be of that Nature that it will every where fuftain the Force of Gravity in proportion to its length ; fo that by how much the Part of the Line to be defcrib'd is the greater, by fo much will the accelerating Force be the greater, and altogether in the fame Proportion; and by how much the part of the Lipe which is to be defcrib'd is the lefs, by fo much tha lefs will the accelerating Forces be, and this in the fame Proportion; the Times of Defcent along fuch a Curve, whether the Arches defcrib'd be greater or lefs, will always be equal to one another. For the Velociry in the given Time is as the moving Force; if therefore the Line to be defcrib'd be alfo as the fame moving Force, it will be likewife as the Velocity ; but if the Velocity of the Morion be every where as the Line to be defcribed, it is manifeft, that any Line whatever, whether great or fmall, ought to be defcrib'd in the fame time. But that this is the Nature and Property of the Cycloid is what comes to be demonftrated in what follows.

Lemma (2.) Let D A C (Fig. 2. Plate 4.) be a Semi-cycloid, D F A half of that Circle which produced the Cycloid; and from any Point in the Cycloid as B , let there be drawn the Line BE parallel to the Bafe D C, meeting the SemiCircle DFA in E; then let the Chord AE be drawn, and from the Point B in the Cycloid the Line B L, parallel to the Chord AE; the Line BL will be a Tangent to the Cycloid in the Point B.

Lemma (3.) And the Arch of the Cycloid A B will be equal to the double Chord A.E. Thefe

II6 Matbematical Pbilooopby.

two Lemmata are manifeft from the Elements of the Cycloid ; and we have them demonftrated by the famous Sir Cbrifopber Wren anid others. - Vol.i. P. 533, שc.
VII. In a Cycloid inverted, whofe $A \dot{x}$ is is erected perpendicular, the Times of the 'Defcent' wherein a Body let down from any Point whatever in it, comes to the loweft Point A, always equal betwixt themfelves.

Let BA and OA be any Arches whatever in the Cycloid, and BL and ON the Tangents in the Points B and O; and let EA and FA be Chords of the Semicircle D F A or parallel to the faid Tangents, by Lemma the fecond: let A F be produced to the Point K. There are therefore by the third Lemma, Lines to be defcribed by the Body placed in one Cafe at B, in the other at Q, which:are betwixt shemfelves as the Chord E A is to the Chord FA ; but the Force in the direction of the Tangent. BL , or the Chord FA parallel thereto, is in the fame Proportion to the Force in the direction of the Tangent ON, or AF which is parallel thereto. For (Fig. 2. Plate 4.) as the Square of $\mathrm{E} A$ is to the Square of F A, fo is the verfed Sine EP to the verfed Sine FP; or fo is KM to EP; or fo is K A to FA. Therefore the Chord A E is a Geometrical Mean proportional bétwixt the Chord AF and the Line A K ; and conféquent-: ly AF, A E, AK $\because \because$. But the Force of Gravity,

Corol. 2. to Lave 23. according to what hath been demonftrated, which is in the Plane $A^{\prime \prime} E$, is to the Force of Gravity in the Plane AF, as AK is to AE; that is, as the Chord $A E$ is to the Chord A F ; and thus every where. But the Line to be defcribed is asthe fame A E is to the fame AF; and confequently the accelerating
lerating Force is every where in the fame Proportion as the Line which is to be defcribed, and therefore the Times of the Defcent are every where equal. Q. E.D.

Corotl. (土.) If therefore we form other entire Semi-Cycloids QRT, QS C like and equal to the former A T and A C, the Vertices whereof touch the Bafe of the other at the Points T and C; and the heavy Body V hangs from the Center Q upon the Thread QRV, which is equal to Q D A, or the double of D A ; and be mov'd betwixt thofe Semi-Cycloids Q R T, QS C, the pendulous heavy Body will,from the Evolution of the Thread defcribe the entire primary Cycloid, as is manifeft from the Properties of the Cycloid, and will perform the Vibrations of what Amplitude foever, even to the greateft of them T A C, in the fame times exiactly, and fo that the Center of the Ofcillation fhall always be in the Curve Line it felf T A C.

Coroll. (2.) Seeing all Vibrations whatever in a Cycloid are always in equal Times, and feeing the leaft Vibrations in the leaft Arch of the Circle, the Radius whereof is Q A, and in the leaft Arch of the Cycloid TA C, by reafon of the manifelt Coincidence in this Cafe of the Arch of the Circle and of the Cycloid in the loweft Point are the fame ; it is manifeft that the time of every Vibration in the Cycloid is equal to the time of the leaft Vibration in a Circle, the Radius whereof is double to the Diameter of the Circle which produced the Cycloid.

Coroll. (3.) By reafon alfo of the fame Coincia dence of the leaft Arches of the Circle and Cycloid in the loweft Point, the Vibrations in the Circle will be fo much the more in equal Times, by how much' the defcrib'd Arches are the lefs;

118 Matbematical Pbilofophy.

fo that in very fmall Arches they may very well be'reckon'd to be in equal times.

Coroll.(4.)Therefore in Pendulum Clocks which have longer Strings or Wires for the pendulous Bodies to fwing by ; the Times of the Vibrations of the leffer Arches which are defcribed, come nearer to an Equality, than they do where the Strings or Wires are fhorter ; and confequently, the former Clocks are to be preferr'd far before the latter.

Coroll. (s.) The Times of Vibrations in divers Cycloids are in the fubduplicate Proportion of the Cycloids or Radii QA; or the Lengths of the Pendulums are in the duplicate Proportion of the Times ; this will eafily appear from what was demonftrated (Prop. 4.) before, as applied to the prefent Cafe. But it is to be noted, that the fame Thing is alfo to be underftood of the Times of Vibrations in Circles as well as in Cycloids. Thus, becaufe a Pendulum of 39 L 25 Inches perform any Vibrations whatever in a Cycloid, and alfo the leaft Vibrations in a Circle in the time of one Second, a Pendulum of 157 Inches would make the like Vibrations in the time of two Seconds, and one of 353L25 Inches in the Space of 3 Seconds.

Coroll. (6.) Since the Times of all Vibrations whatever are equal in a Cycloid only ; and upon this Account only are to be reckon'd equal in the leaft circular Arches; to wit, becaufe the Arches of the Cycloid and Circle coincide no where elfe but in the loweft Points, they being in every other Place fufficiently different from one ano-ther : It is manifeft, that the Vibrations in Arches of a Circle are fo much the lefs Ifochronal, by how much the greater they are; and confequent-

> Horolog. \mathbf{a} Scillat. P. 9. ly, that in larger Arches they are far etrough remord from Ifochronifm. And according to Hugens, the time

Matbematical Pbilofopby. 119

time of Defcent in a Quadrant of a Circle, is to that which is in the leaft Arch, as 34 to 29, fuppofing that the Vibration is made in a Vacuum. Which therefore will arife to a very fenfible Difference when we compare the greateft Vibrations and the leaft together.

Coroll. (7.) Becaufe it appears from Experiments, and the Computation made thereupon, that each fingle Vibration to and fro, where the Pendulum is 96 L 85 Inches long (each one I mean in a Cycloid, and the leaft in a Circle) is perform'd in $94 L^{25}$ Thirds of Time, or $\mathrm{i}^{\prime \prime}$. $34^{\prime \prime \prime} \mathrm{L} 25$. And becaufe, by what Hugens hath demonftrated, the Time of Vibration is to the time of the perpendicular Fall along the Quadruple of the Diameter of the generating Circle; or along double the Length of the Pendulum $=193176$ Inches, or 16LI Englifh Feet, as the Circumference of the Circle is to the Diameter doubled; or as $94[25$ Thirds of Time to 60 or one Second, [for 355: $226: 94^{\prime \prime \prime}$ L25: $60^{\prime \prime \prime}=\mathrm{r}^{\prime \prime} ;$] thence it follows, that

Horol. Ofc. P. $57,58.8$ de vi Centrifug. Prop. 12. an heavy Body will defcend by the Force of its Weight 16 L Eniglifh, or is $\frac{1}{12}$ Feet of Paris, in the fpace of one Second. Which Velocity of Defcent, deduced from the pendulary Experiments, agrees notably with the faid Author's Experiments about falling Bodies; and therefore is to be accounted for certainly true.

Coroth. (8.) Therefore the perpendicular line of a falling Body being given for any face of time, the Line of Defcent, whether Perpendicular or Oblique, is given for any other Space of Time; as being alway's in the duplicate Proportion of the Time. Thus in a direct Fall, as ten Seconds Square = roo is to the Square of one Second $=1$; fo is 16 ro Englifh Feet defcrib'd in ro", to 16 LI Feet defcrib'd in one Second. And in oblique Defcents
fcents it is not much otherwife. For the Lines of Defcent in an oblique: Plane are by the fame, Reafon one to another as the Squares of the Times; all the Difference : is, that the Force of Gravity which is the Caufe of the Defcent, is to be diminifh'd in this Cafe in the Proportion of the Perpendicular Line to the oblique. (See Fig. y. Plate 4. Coroll. 1. Pr. 6.) For fince the oblique heavy Body, as we fhew'd before, defcends in the fame time through the Line EA, that the Perpendicular doth through the Line E G ; it is -manifeft, that the moving Force is every where in the fame Proportion. Therefore if we put the Cafe, that the heavy Body defcends along a Plain fo very oblique, that E G is only a third Part of E F; what we have to do is only to diminifh the Force of the Gravity in the fame Proportion, fo that the Body be fuppos'd to defcend along a Line of sL37 Fees only in the fpace of one Second, and the Calculation will be the fame as in thẹ direct Fall.

November 27, 1794.

Lect. XI.

LL.Projectiles, not perpendicular to the Horizon, defcribe Parabola's, fo far as they are not hindred by the refiftance of the Air.
(Fig. 3. Plate 4.) Let any Body be fuppofed at T , and let it in any given time tend by the Force of the Horizontal Projection according to the Tangent TE, from T to a, fo far as it is not hinder'd by fome other Forces: Then let the Force

Matbematical Pbilofopby. I2I

Force of Gravity furpervene, which acts in the Line TK perpendicular to the Horizon, or any of the Lines parallel to it, (al, b m, c n, do, ep.) for by reafon of the great diftance of the Center of the Earth, thofe Lines are to be accounted for Parallel. Since therefore, the Force of the Projection begets an uniform equable Motion, according to the Direction Te or FI, Gm, Hn_{n} L:ó, K p, which are parallel to the fame T E, and the Velocity of this Motion, according to the primary Direction, fiff Corol. r. Law fers nothing from the Force of Gravity that fupervenes; the Body will in the end of the firft time be found fomewhere in the Line (al); of the fecond Time fomewhere in the Line. $\mathrm{b} \mathbf{m}$, of the third fomewhere in $\mathbf{c} \mathbf{n}$, of the fourth fomewhere in d 0 , as being Lines parallel and equi-diftant. Then let us confider the Force of Gravity as fupervening, from which alone in the mean while, that the Body would by the projectile Force alone defcribe the Line T a, it is carried downwards according to any little Line T F or al, fo that if there were no other moving Force but this of Gravity, the Body would in the End of the firft time come to the Line F1. Since therefore, the Velocity of this Force fuffers nothing from the combination of the projectile Force therewith, any more than the Velocity of this latter fuffers from it, the Body, notwithftanding the projectile Force will be found fill in the end of the firft time in the Line Fr. From whence it appears, that in the end of every time, it muft by the Conjunction of thefe Forces be found in the Interfections of thofe Lines al and Fl, bmand Gm, drc. to wit, in the end of the firf time in the Point L, of the fecond in the Point M, of the third in n, of the fourth in o, and fo on. Since therefore, if al be of one Part,

122

Matbematical Pbilofopby.

bm is $4, \mathrm{cn}$ is 9 , do is 16 , e p is 2ς, and fo on, they being amongft themfelves by Prop. 4. ats the Squares of the Times or Diftances T a, T B, Tc, T d, Te ; and from the Nature of the compound Motion, TF is to T G, as Fl fquared is to $\mathbf{G m}$ fquared, and to in the reft. And fince', according to the primary Property of the Parabo I , the Ablciffes of any Diameter whatever TF and T G, are alfo betwixt themfelves as the Squares of the Semi-ordinates FI and Gm, it is manifeft, that the Points $1, m, n, 0, p$, are in the Curve of a Parabola,the principal'Diameter whereof is T K ; and T F, T G, TH, T.I, T K, are the Abfiffes, and FI, G m, H n, I o, K p, are the Semi-ordinates. And feeing all the Things here demonftrated do alike belong to any Diameter whatever, how oblique foever the Tangent of the fame may be to it, as well as to the Axis; it is manifeft, that the Trajectories of all Projectiles are univerfally truly parabolic; that is, fo far as they are not hindered by the Refiftance of the Mediüm. Q. E. D.

Coroll. (r.) Hence we may learn the Foundations of the Art of Gunnery. For fince all Projectiles carried to any Inclination whatever, do defcribe Parabola's greater or leffer, or at leaft a greater or leffer Part of the fame Parabola, fo far as they are not hinder'd by the refiftance of the Air, and feeing the Air is of fmall or no moment for the retarding the Motion of thefe Projectiles, by reafon of their Solidity, and the Velocity of the Motion ; it is plain that the principles of that Art are to be taken from the Nature of the Parabola. The Ufe of this Corollary extends it felf a great way, and' will be illuftrated in the Sequel by many Examples taken out of the faid Art.

Matbematical Pbilofophy. 123

Co.oll. (2.)'The Velocity of a Projectile being given, whatfoever the Angle of Inclination may bo, there will alfo be given the diftance of the Focus of the Parabola, from the Point where the Projection begun. Let 5 (See Fig. 4. Plate 4.) be the Point of the Projection, where the Projectile being thrown along the Tangent sv , begins to move in a parabolic Curve, and let $s v$ be the Line to be defcrib'd by the Body in any given time by the projectile Force alone; let allo vc , or $s \mathrm{r}$ be a little Line to be defrerib'd by the force of Gravity alone in the fame given time. In the end therefore of that time, the Projectile will be found in the Point of the Parabola ; and by reafon of the given Force of Gravity as well as of Projection, there will be given alfo, whatfoeven may be the Inclination of the Tangent to the Horizon, the Lines v cor sf and sv or cv , that is, the Abcifs of the Diameter so, and the femi-ordinate of the fame; the third Proportional of which two is the Latus reetum belonging to the Vertex s; which therefore will neceffarily be given when the former things are given. From whence alfo, the fourth Part of that Latus rectum, which is the diffanice of the Vertex sfrom the Focus of the Parabola, will alfo be given. Although, therefore, from the fame Velocity of Projection, divers Parabola's will be defcrib'd in divers Elevations, yet the Foci of them all will be equidiftant from the Vertex or Point where the Motion began, and confequently will be placed in a Circumference, whofe Center is in that Point, Q. E. D.

Coroll. (3.) The Horizontal Range is then the longeft, when it is directed according to a line which is in the middle betwixt the Horizontal and perpendicular Lines, or in an Angle of

124 Matbematical Pbilofopby.

45 Degrees above the Horizon. For, feeing the principal Vertex of any Parabola whatever, defcrib'd by Projectiles, is in the greateft Height of the Projectile, under which in the Axis it felf the Focus D F is placed; feeing the Diftance of the fame Focus from the Vertex is given : Seeing laftly, the Horizontal Range will be the longeft where $s \mathrm{~F}$, the diftance of the Vertex s , from the Focus, is meafured by eg an Ordinate to the Axis paffing through the Vertex s; fince thefe things. are fo,the Horizontal Range will certainly be the longeft, where sF the diftance of the Vertex s from the Focus, coincides with sg the Ordinate to the Axis ; for otherwife, by reafon of the given diftance of the Focus, 3 Fsg will be greater than SF doubled: But where $s \mathrm{~F}$ coincides with $\mathbf{s g}, \mathbf{s g}$ will be double to s F , and confequently, the Horizontal Range will be the longeft," where sF coincides with $\mathbf{s} g$; that is, where the Angle $y \mathrm{sh}$ is half-right. For the Angle vs f comprehended by the Tangent vs and $s \mathrm{~F}$, the diftance of the Vertex s from the Focus is always equal to the Angle bso, comprehended by the fame Tangent, and so the Diameter of the Parabola. If therefore, the Angle b so be an half right one, v s F will alfo be an half-right one, and confequently the Angle os F will be a right one, and the Line s F will become sh , and will coincide with the Ordinage sg , and the Ordinate sg will be the longeft Horizontal Range of all.

Coroll. (4.) Since therefore, the Tangent of the Parabola doth only in that Cafe comprehend with the Diameter an half right Angle, where it toucheth the fame at the Extremity of the principal Latus rectum, which paffeth through the Focus; it is manifeft; that every longeft Horizontal Caft will be comprehended betwixt that

Matbematical Pbilofophy. 125

Part of the parabolic Curve that is placed above the latus reflum, the Focus it felf being in the Horizontal Line ; and that the higheft Altitude from the Horizon in this Cafe is T F, a Quarter of the principal Latus rectum.

Coroll. ((5.) If the Angle of Elevation differs equally from an thalf-right one, whether it be greater or lefs, the greateft Horizontal Range will egualty be diminifi'd, For becaufe of the right Angle hso, and the Angles vis F , os b , which are equal one to the other, their Excef's or Defet with reference to a right Angle, will be equal to the Angle Fsh, whether the Focus be above the Horizontal Line, as in the greater Eletation, or beneath it, as in the lefs Elevation." But the acure Angle Fs h, and the right one Fh s; and the Side F s being given, thiere is piven withal the Side sh the femi- drdinate' of the Axis, and sg the ordinate determining the Hotizontal Range. Thus in two Projections of equat Velocity, where the Angles of Elequation are one of 40, the other of so Degrees the Horizontad Range will be equal on both sidés, atid in like minner in the Degrees 30 and 60, zo and 70 , 60 , as's is well knownt to them that pratire this Art. ${ }^{i}$ Coroll. (6.) The Horizontal Diftainces produced in' a'given Velocity't in divers Angles of Elevation, are as the right Sines of the double Angles of Elexation. To wit, "as "gs is "every where, To is, $\mathrm{h} s$ the half there'f; ; but in the fight Angled, Triangle Fhs, becaufe of the given Radius F. \mathbf{F}, and the Angle h Fs, double to o so, the Angle. of the Tangent and perpendiciliars h will be every where the fight Sine of that Arigle; and confequently, the Hotrizontal Diftances will always be betwixt themfelves ás fhófe' Sines.

126 Matbematical Pbilofopby.

Coroll. (7.) The Times of every Horizontal Range from a given Velocity in divers Degrees of Elevation, are betwixt themfelves as the right Sines of the Angles of Elevation. Let one Body be thrown (fee Fig. 4. Plate 4.) according to the Angle of Elevation 1 cd , and another agcording to the Angle L A D. I 'ay, that the time in which the firft Body reacheth through the Parabolic Arch c TI to the Point l, fituate in the fame Horizontal Plane with the Point c, will be to the time in which the Jatter Body reacheth along the Arch AtL (Fig, 5. Plate 4.) to the Point L, fituate in the fame Horizontal Plane with the Point A, as the Sine of the Angle d cl is to the Sine of the Angle DA:. For let there be in there Figures, as taken together, \triangle A equal to $\mathrm{dc}: \Delta \mathrm{e}$ allo (becaufe of the Equality of the Time, in which the Bodies together would de(cribe the equal Lines $d \mathrm{c}$ and Δ a by the projeetile Force alone) will be equal to d l. Bit by the Nature of a Parabola before declared, D L is to $\Delta \mathrm{e}$ as DA fquared is to $\Delta \mathrm{A}$ fquared; ; or as BI fquared is to DI fquared. Therefore DL, $\Delta i, \Delta 0$, are three Lines continually praportional. And fince (Prop. 40) the Lines $D L_{\text {s }} \Delta$ are in the duplicate Proportion of ihe Times, Δi, and Δe will themfelves be in.the proportion of the Times; therefore, the former Time will be to the latter, as $\Delta \mathrm{e}$, or d 1 is to $\Delta i_{\text {, }}$, that is, as the Sines of the Angle of Elevation d G 1 and D.A. Q. E. D.

Corall. (8.) The greateft Heights of Projectiles. in a given Velocity in divers Angles of Elevation, are one to another as the Squares of the right Sines of the Angles of Elevation. To wit, as dl or Δ e fquared is to ΔI fquared, io are the greatef Altitudes d 1 or $\Delta \mathrm{e}$ to DL . Q. E. D.

Matbematical Pbilofopby. 127

Corall. (9.) The greatef Altitude of Projectiles in a given Velocity, is where the Projection is perpendicular to the Horizon, and is the 4th Part of the Latus rectum, which in a given Velocity is glways given ; as in this Cafe the Parabcla ending in a right Line, the Vertex T (Fig. 4. Plate 4.) caincides with the Focus F, and the higheft Altitude becomes equal to Fs a quarter of the given botes recinm ; and confequently, which is to be noted by the way, half of the longeft Horizontal Rapge, as we thall prefently demontrate.

Carall: (fo.) The Angle of Projection being given, but the Velocity being chang'd, both the highe Al Altitude, (Fig:4. Plate 4o) that is, the principal Vertex of the Parabola, and the longef Horizontal Range, or: the Ordinate sg will be changed in the duplicate Proportion of the Velop city. The former Part is manifen from what has been before demonftrated, Ceeing the Altitudes of the Lines, or their Afcents, or Defcents, are always in the duplicate Proportion of the Velocities by Prop. 4n foregoing. And from this part of the Propofition the othen alfo follows; for, becaufe of the likenefs of alt Parabola's, and of the like mefs of the Parts of like Figures on hoth Sides, if the Altitude Th be changed in the duplicate Proportion of the Velocity, the reft of the Lines 2llo, as sh and sg will be changed in the fame Proportion. But the latter part of the Corollary may alfo be eafily deduc'd otherwife, and from of the Nature of the Parabola it felf; for let us put the Velocity to be twofold greater than it was before, in this Cafe, in what time the Projectile would defcribe before the Line $s . v$, it will now defcribe the double of that Line; but becaufe of the Uniformity of the Force of Gravity, the

128. Matbematical Pbilofopby.

Line ve or sir will not be changed. Therefore; as vc or sr given is' Double to the Eititers ${ }^{\prime}$ fo is that double Line to another Line, to Wit, the Latus Rectum of the Vertex's, which is Four fold of the Latus Rectum that 'belonged' to' that Vertex before. From whence the Fourch Part of this Latus Rectum, or sF, will be Fourfold alfo op SF the fourth Part of the forther Lator Reitumb and becaufe of the Likenefs of the Triangles $\mathrm{sFh}, \mathrm{sFh}$ in both Cafes, the Lines sh and sg will be Fourfold alfo of themfelves, "sh and 's g ;" and fo in the teft. The lorgeft Horizontal Range therefore in a Velocity Twofold greater, is Foutfold greater, m a treble "Velociry Ninefold, ànd fo in infinitum. Nay, indeed it is generally to be afa firmed, that all the Lines in a Parabola whide ard like, and in the like manner placed, arevalyay'g increas'd and diminifh'd 'in the dúplicate Proportion of the Increafe and Biminution of "the iVe,' locity; as may be gathered from whet has been: already faid.'

Coroll. '(t, r ')' The longeft Horizorital Range of every Parabola, is equal to half the Latas Requmi belonging to the Vertex that terminates the prind cipal Latus Rectum. For in that Cafe, F s'isequal to sh ; but Fs is the fourth Patt of the latas Rectum belonging to the faid Vertex ; and sg is double to sh ; from whence s g is half the longeft Horizontal Range of that Latus Rectum.

Coroll. (12.) Hence we may determihe the longeft Horizontal Range belonging to every Degree of Velocity. For let it be made rhur, ias the Line sr, defcrib'd in bne 'Second of Time by the Force of Gravity $=16$ rimgligh Feet, is to the Velocity of the Projectile sv, or rc, to bo computed in the fame Time; fo is that Velocity to a fourth Number, which will give the Latus

Matbematical Pbilofopby. 129

Recfum of the Vertex sin the fame Feet: But the half of this Number will give the longeft Horizontal Range, as is abundantly manifeft from what hath been faid. Thus, if the Projectile Velocity be fo great, that it would carry the Ball One Thoufand Englifh Feet in one Second, fay 16LI: 1000: 1000: 62112 the Latus Rectum of the Vertex s in Englig Feet. The longeft Horizontal Range therefore is 3 ros 6 Peet; beyond which Diftance, as nothing can be reach'd, fo within the fame it may reach any affign'd Place whatever, as will be fhewn in the next.

Coroll. (13.) Probl. (1.) To reach by a Pro: jectile, in a Given Velocity, any Place whatever affign'd in an Horizontal Plane, not diftant $2-$ bove half of the Latus Rectum of the Vertex s. Let the Place be at the Diftance of 20,000 Englijh Feet, and the Velocity be the fame which was fuppos'd in the foregoing Corollary. Becaufe therefore the Velocity is given, there is given the Latus Rectum of the Vertex where the Projectile will begin its Motion in a Curve, and confequently the 4 th Part thereof, or the Line Fs, to wit, of 15528 Feet. But according to what was faid before, $s h$ is 10000 Feet. From thefe things therefore, let there be found the Angle hsF by this Analogy, as sh is to s F, or as 10000 is to 15528 ; fo will the Radius be to the Secant of the Angle Fsh, to be found by the Table of Secants; to wit, $49^{\circ} .47^{\circ}$. Which Angle being taken out of a right one, or fuperadded thereto, will give the Sum of the equal Angles $\nabla s \mathrm{~F}$ and $0 \leq \mathrm{b}$; the half of which v sF , or $0 \leq \mathrm{b}$, will determine the Angle which the Tangent $v b$ ought to comprehend with the Perpendicular so; to wit, of $90^{\circ} .-49^{\circ} .47^{\circ}=40^{\circ} .12^{\circ}$. (or $90^{\circ} \times 49^{\circ}$. $47^{\circ} .=139^{\circ} .47^{\circ}$.) the half of which is 20°.

130 Matbematical Pbilofopby.

$6^{\prime} .30^{\prime \prime}$. or $69^{\circ} .53^{\prime} \cdot 30^{\prime \prime}$. to wit, according as we would have the Elevation greater or leffer than the Mean. If therefore a Leaden Ball be thrown with the given Velocity in the faid Angles, it will delcribe the Parabola required, and confequently reach the Place affign'd, without any orher Declination from the Mark, than what the Refiftance of the Air makes, which indeed is fo fmall, that it ought not to be regarded. Thus we have'folv'd the Problem, and taught how, with a given Vecity, to hit any Mark in any Horizontal Plane; which is not too far diftant.

Ćadoll. (14). Problem (2.) To reach by a Projectile Motion, in a given Elevation, \because any Place affign'd in an Horizontal Plane; that is, from the Diftance of the Place given'sg, and the Angle hsv given to determine the Velocity s. \mathbf{v} !' 'Here the Quadruple of s will give the Latus'Rectumbelonging to the Vertex st: That sv therefore may be found, $\mathbf{v c}$ or sr is to be drawn into the Quadruple'of's \mathbf{f}; and from thence will arife a Rectangle équal to the Square of v's or cr ; the Luadratick Root therefore beibet extracted Gut of that Rectangle, there will be found t s or e ry that Semi-ordinate which the'Pebjectile ought to defcribe in one Second of Time.: As for Example: Let sg , the Diftarice of the Objedt, be as before, to wit, 20000 Englifh Feet, und the given Angle h s v $69^{\circ} .53^{4} \cdot 30^{\prime \prime}$. The Angle Fsv, or osb, will be of $20^{\circ} .630^{\circ}$, and the Angle Fsh of $49^{\circ} .47^{\circ}$. Whence, from the Tables of Sines, the Proportion of the Lime $\mathrm{s} h$ to Fs will be that of 10,000 to 15,528 . From whence Fs will be given, and the Eatu's Rectium of the Vertex s of 62 II 2 Feet; which Number be: ing drawn inte v or $\mathrm{s} r=16[\mathrm{r}$ Feet, there will arife the Rectangular Number ¥oqa,000, the fquare
. Matbematical Pbilofopby. . 13 i
Cquare Root whereof is 1000, which affords the Number of Feet in the Line s \mathbf{v}. If therefore in the given Angle, the primary Velocity of the Projectile be fuch, as to carry it One Thoufand Feet in one Second of Time, it will reach the Mark g placed in the Parabolick Curve s Tg, if it is not a little retarded by a very fmall Refiftance of the Air. And the Computation is altogether the fame, if the Angle Fsv, or os b, were fuppos'd to be $69^{\circ} \cdot 53^{\prime} \cdot 30^{\prime \prime}$. as will eafily appear from what was faid in the laft Corollary foregoing.

Coroll. (15.) Hence alfo, from the Elevation given, or from the Velocity given, any Place whatever, as 1 may ba reached that is placed out of the Horizontal Plane; that is, if in the fame Parabola produc'd, if there be Occafion, we note fome other Point, as g , placed in the Horizontal Plane. For the fame Caft which reacheth to the Place g, will alfo-reąch unto 1 , or any other Place fituate in the fame Parabola.

Coroll. (16.) The Velocity of a Body which defcribes a Parabola, is every where as a right Line drawn from T, the Vertex of the Parabola unto the Middle of the Semi-ordinate; or as part of the Tangent drawn betwixt the Point of Contact m , and the Axis; that is, às the Secant of the Angle of Elevation above thể Horizon. (See Fig. 3. Plate 4.) For the Line to be defcrib'd in the given Time, is as the Diagonal of the Pa rallelogram m QR P.; the Side whereof $m Q$ is always given, and in P is equal to bm doubled, or to SG. Therefore the Velocity in the Point m , is to the original Velocity in the Point T , as $m R$ is to $P R$, or as $S m$ is to $G M$; and thus it is every where. Therefore the Velocity in m, any Point of the Parabola, is to the Velocity on, which is any other Point of the Parabola, as the

132 Matbematical Pbilooophy.

Part of the Tangent Sm is to Part of the Tangent X_{4}, both being taken betwixt equi-diftant Diameters bm and TG; that is, as the Secants of the Angles of Elevation. Q. E. D.

Coroll. (17.) The leaft Velocity of all therefore is in T, the Vertex of the Parabola ; and the Velocity is always by fo much the greater, by how much the greater the Diftance is from that Vertex.

Corall. (18.) If therefore the Velocities of Bodies, thrown in divers Angles, be in the Proportion of the Secants of the Angles of the Elevation above the Horizon, they will all of them defribe the fame or an equal Parabola, that is, Parts of the fame or an equal Parabola; Parts greater, where the Angle of Elevation is greater, and leffer where the faid Angle is lefs. But if the Velocities be in fome other Proportion, they muft needs defcribe divers Parabola's, or Parts of divers.

Decemb. 4. 1714.

Lect. XII.

A Lemma to the gtb and following Pro. pofitions.
 H E Quantity of the Centripetal Force of Bodies mov'd round in Circles, is to be eitimated from two things conjunctly, to wir, the Curvature of the Arches defcrib'd at the fame time, and the Velocity of the Motions in that Curvature. For

Mathematical Pbilofopby. 133

For fince all Motion is in it felf Rectilinear, and Bodies can be mov'd in Curves only by a centripetal Force imprefs'd from without ; it is reafonable that the Velocity being given, we fhould determine the Curvature, which is generated from an extrinfic centripetal Force only, proportional a the fame Force. And on the other Side, fince to greater centripetal Force is requir'd to the making the fame Curvature, where the Velocity of the Projection, or of the equable Original Motion is the greater, and a lefs centripetal Force is requir'd where the faid Velocity is the lefs: It is reafonable that the Curvature being given, we fhould determine the centripetal Force, proportional to the fame Velocity. As therefore in comparing Rectangles,we determine their true Proportions by thofe of their Longitudes and Latitudes: fo it is likewife to be done in the comparing of centripetal Force ; by defining, to wit, their true Proportions in every given Time, from the Proportions of their Curvatures and Velocities conjunctly. Let it therefore be laid down for a certain Truth, That the Proportions of centripetal Forces are every where to be eftimated from the Proportions of their Curvatures and Velocities conjunety.

Scbolium, For the Underftanding the true Proportions of Curvature and Velocity, we are to obferve, that the Curvature is every where equal in the leaft equal Angles, if the Subtenfes of the Angles of Contact be one to another, as the Radii or Diftances from the Center; as the Proportion of like Figures doth aleogether require : And if the Curvature doth recede from that Proportion of the Diftances, the Proportiona of the Excefs or Defect are to be taken for che true Proportions of exceeding or deficient Curve-

134 Matbematical Pbilofophy.

ture, which are afterwards to be computed! But as for the Velocity, it is every where to be con fider'd according to that Degree in which it ferves to promote the Angular Motion, and confequently every. where in a Line Perpendicular to the Radius, or, which comes to the fame, it is to be eftimated in the leaft Circular Arch. For wherefoever the Direction of the Motion is either up: Watds'or downwards,' by how much the Velocity is iticreas'd, by fo much is the Curvature always diminifh'd; and fo on the contrary : The Quantity which arifeth from the conjunia Forces of the Rame, being yet in no wife chang'd; which is to be obferv'd every where.

PX. If two Bodies do in equal (Fig. 5. Plate 3.) Times run over Two whole tinequal Circumferences bdge, and BDGE, with an egatable Motion, the centripetal Force in the gredter Circumfetence will be to that which is in the feß, ak the Circumferences are one to another direitly, or, whicth is the fame, as their Diameters or Radif.

For becaufe of the Curvature given on both Sides, to wit, that of a whole Circle ; the centriptral Force in the greater Circumference will be to that which is in the Lefs, as the Velocities of the Bodies; that is, as the Circumferences of thé Eftcles, directly. Q. E.D.

Cotbllary ؛ If the periodic Times of Bodies re--olving in Circles be Equal, then both the Velocities, and the eentripetal Fortes proportional to the fafie, wilf be one to another, as the Circumferencess or Diameters of the Circles directly ; and $\delta_{5} \mathrm{~T}$ e contrary, ifthe centripetal Forces of BOdige revolving th Circles, be one to the other, as The Circumferénces or Rzdii of the Circles di-

Matbematical Pbilofaphy. 35

rectly'; then their Velocities will alfai k in the fame Proportion, and the periodic', Times will be equal.
cordis (20) If the Force: of fome'central-attraCive Body:be direaty dis the Diqances from the fame Center ; the periodic. Times of aH Bodies revolxing in Circles about the central Body will be equal. And the fame Thing is to be afferted of Elliples.g fince their entire Curvatures be equal to the entire Curvature of any Cirole whatever.; and their Circumference: an indermediate one, as it were betwixt the Circumferences of Circles' taken on this Side and on that. From whenceifrom the Equality of periodical Times in Gitcles' whether greatedor leffer than Ellipfes, it will be obvious enaughto afcribe the fame Equality of periodic Times, to the intermediate Ellipfes alfo-about their Cemters. :

XIf: two Bodies revolve in the fame, or equal Cirefos' utiah unequal Celerities, but both with an equable Mbtion, the centripetal force of the Swifter will be to that of the Slower, in the Propdrtiontiof the Celerities duplicated ; or as the Squares of the Arohes defcribed together. For becaute of ha giventurvature of equal Gircles in 1 ehourt Arches; ihcrealing together with the Vajothey; the Curvaturd afo will increafe: in the fame Proportion, therefora the centripetal Force,
 and thé vetocicy conjunct, will bai io a igiveg Tiffecin Proportions of the Arch, tro the Arch defriled at the tantie Time; upon Acornnt of the Velocity; and in Proportion of the fame Arch, atefermaid at the fame Tiore; confider'd in re-
' fjegeof thie Cutratufe' ; from whence iby whe Conjunteazancof both Piopertions; - the Icemeripetal

$$
K_{4}
$$

Square,

136 Matbematical Pbilofopby.

Square,) in the duplicate Proportion of the Arches defcrib'd at the fame Time ; or as the Squares of thofe Arches. Q. E. D.

Coroll. (r.) Since the Periodic Times in equal Circles are reciprocally Proportional to the Velocities, the centripetal Forces will be reciprocally in the duplicate Proportion of the periodic Times, or as the Squares of the periodic Times reciprocally ; fo that by how much the Square of the periodic Time is the greater, the centripetal Force is fo much the lefs; and by how much that Square is the lefs, fo much the greater is the centripetal Force, and in the fame Proportion.
Coroll. (2.) If many Bodies be mov'd in Circles about many Centers, each about their own, and this at the fame Diftance every one from the Centers; the attraative Force of the central Bodies will eafily appear, fince they are amongft themfelves as the Squares of the Times reciprocally ; and the Velocities alfo will eafily appear, fince they be in the reciprocal Proportion of the pariodical Times.
XI. If two Bodies be carried in unequal Circles with equal Velocity, their centripetal Force will be in the reciprocal Proportion of their Circumference or Diameters; fo that in the teffer Circumference there will be the greater centripetal Force, and in the greater the lefs.
For becaufe of the given Velocity , the centripeal Force in the given Time, will be as the Curwature of equal Arches; that is as the Cifcumferences, the Diameters or Radii directly: \mathbf{Q}. E. D.

Coroll. (x.) Since the periodic Times in Bodies equally fwift, are betwixt themfelves in the fame Proportion, as the Circumferences to be defcribed; if the periodic Times of Bodies mov'd

Matbematical Pbilofopby. 137

 mov'd in divers Circles, be directly as the Citcumferences of the Circles, the centripetal Forces will be as thofe Circumferences or Radii reciprocally; and on the other Hand, if the centripetal Forces be as the Radii or Diftances reciprocally, the periodic Times will be as the Radii direaly.Coroll. (2.) If the Force of any attractive central Body be reciptocally as the Diftances of Bodies from the Center; fo that by how much the nearer Bodies approach thereto, fo much the greater the central Force is; and by how much they are more remov'd, fo much the lefs is that Force: The peroidic Times of Bodies, plac'd at divers Diftances, will be as thofe Diftances directid, and the Velocities of thofe Bodies will be equal.
XII. If two Bodies be mov'd in unequal Circles, with an unequal Velocity, in the fub-duplicate Proportion of the Circumferences; Diameters, or Radii, the centripetal Forces will be equal every where, and neither increas'd in the A'ccefs or Recefs.

For becaufe of the greater Velocity in the greater: Circle, and this in the fub-duplicate Proportion of the Circumferences, the centripetal Force is to be increas'd in the greater Circle in the fame Proportion. And becaufe of the greater Curvature in the leffer Circle, and this in the fub-duplicate Proportion of the Circumferences, the centripexal Force is to be increas'd reciprocally in the leffer Circle It is therefore manifelt, That the centripetal Forces are to be increas'd on both Sides in an equal Propottion, and confequently that they are till equalon both Sides, Q.E. D.

138 Matbematical Pbilofopby

As for Example, Let the Radius of the greater Circle be Fourfold of the Radius of the leffer Gircle, or as 4 to r ; and let the Velocity in the greater be to the Velocity in the leffer, in a fubduplicate Proportion of the Radii, or at 2 to I. Seeing now the Curvature of the greater is equal to the Curvature of the leffer, in like Afches, and in Arches equal, is to the fame reciprocally as the Radii $;$ it is neceffary thet in a double Arch, which the double Velocity in the greater, will defcribe in the given Time, the Curvature flould be half of the other. The Velocity therefore: of the former Body is to that of the latter, as' 2 to 1; and the Curvature of the latter to the Curwature of the former, as 2 to $1 .{ }^{\prime}$. From whe we the Quantity of the centripetil Force in the forthers will be to the Quantity of the fame in the latedr; as a Rectangle made of the Velocity of the former, drawninnto the Curyatite thereof, orlas $2 \times \mathrm{I}$, is to a: Recangle'tof the Velocity of the latter, andithe: Curvature of the fame conjuriaty, or as I $\times 2$; that is; in the Proportion of equali: ty : And thus every where.
\therefore Corall. ((\dot{i})) Sthce tho periodic Times be is this Cafe one tion another, in ithel fub-duplieate putporz
 dii, the Squares of thei derfedio. Times inufh be betwixt thetoflores ab! the Greimferemestitary If therefort !the Squires rof the pefiodit: Tithes he one to: another as: the ciraumferintesictuc. etho centripettod Foree will be equat in al Diftandes; and the Velocities it the fub-dupticate Pfoportion
 on the: pthec Hand, rifithereehtipetal "Pdrees 'be equall in all Diftances!' the defarates of rateptifoi dic Times, will be as the Diftances or Radii ; and

Matbematical Pbilofophy. 139

the Velocities fill in the fub-duplicate Proportion of the fame.
Coroll. (2.) If the centripetal Force of aty attractive central Body be altogether the fame in ah Diftances, the Velocities will be in the fubidat plicate Proportion of the Diftances; and the Squares of the periodic Times will be to oine $2-$ nother, as thofe Diftances or Diáheters, of Cir ${ }^{2}$ cumferences.
XIII. If two Bodies be mov'd in unegqait Circles, with an unequal Velocity, in the fub-duplicate Proportion of the Circumferences; obc. reciprocally; fo that in the greater Ciricle the Velocity be the leffer, and in the leffer Citctlé the preater, and this in the faid fub-duplicate teciprocal Proportion, the centripetal Force will be reciprocally as the Squares of the Radii or Di: ftances.

For becaufe of the leffer Curvature in the greater Circle, and this in the ferquialteral reciprocal Proportion of the Radii ; and becaufe of the leffer Celerity alfo in the greater Circle, and this in the fub-duplicate Proportion of the Radii, the centripetal Forces to be derit'd from thefed conjunct Proportions will be in the duplicate fecis procal Proportion of the Radii, or reciprocally as the Squares of the Radii, ' Q. E. D.
For Example: Let the Radius of the greatelt Gircle be Ninefold of the Raditus of the leffer, or as' 9 to I ; and let the Velocity ini the greater be to the Velociry in the leffer, in the Subduplicate Proportion of the Radii reciprocally, of as ito $\%$ Seeing the Curyature of the greater is to that of the leffer as before, that is, in like Archies equall and in equal Arches reciprocally' as the Radil ; IE muift needs be, that in an Arcti equal to the Thip Part only of the other, which the Third Part of

140 Matbematical Pbilofophy.

the other's Velocity will defcribe in the Given Time, fhould be in the Greater only one 27th Part of the other, or as 1 to 27. Therefore the Velocity in the greater Circle is to that in the Jeffer as 1 to 3, and the Curvature in the greater to that in the lefs, as I to 27 . From whence the Quantity of the Centripetal Force in the greater, will be to the Quantity of the fame in the leffer, as a Rectangle of the Velocity and Curvature in the greater conjuncly, or as $1 \times 1=1$ is to the Rectangle of the Velocity and Curvature in the lefs conjunctly, or as $3 \times 27=81$; that is, as the Square of the Radius of the lefs $10=1$ is to the Square of the greater $=81$. And fo every where. For the Periodic Times will be to one another, as 27 is to 1 ; that is, in the Sefquialteral Proportion; for 27 is a Geometrical Mean Proportional betwixt 9 and 8 r ; and confequently the Proportion of 27 to 1 , contains the Proportion of 9 to 1 ; and the halved Proportion of 81 to 9 , or the Subduplicate of 8 x to $27,[\mathrm{r}: 3: 9: 27: 8 \mathrm{I}: \%$. O] and thus every-where.

Coroll. (1.) Seeing the Periodical Times in this Cafe are one to another in the Sefqui-plicate Proportion of the Radii, the Squares of the Periodical Times will be betwixt themfelves as the Cubes of the Radii. If therefore the Squares of the Periodic Times be betwixt themelves as the Cubes of the Radii, the Centri-petal Forces will be betwixt themfelves as the Squares of the Radii reciprocally; and the Velocities ftill in the Subduplicate Proportion of the Radii reciprocally. And on the other hand, if the Centri-petal Forces be inverlly as the Squares of the Diftances or Radii, the Squares of the Periodical Times will be betwixt themfelves as are the Cubes of the Radii,

Matbematical Pbilooopby. 141

and the Velocities ftill in the Subduplicate Proportion of the Radii reciprocally.

Coroll. (2.) If the Centri-petal Forces of any Central attractive Body whatever be in divers Difances from their Center, as the Squares of thofe Diftances reciprocally, the Velocities of Bodies revolved in the divers Diftances will be in the Subduplicate Proportion of thofe Diftances reciprocally ; and the Proportion of the Periodical Times duplicated, will be equal to the Proportion of the Diftances triplicated, or the Squares of the Periodical Times will be betwixt themfelves as the Cubes of the Radii.
Coroll. (3.) If the Motion be in an Ellipfis, then let the Middle Diftance betwixt the greateft and the leaft be taken ; and then alfo the Squares of the Periodical Times will be as the Cubes of the Radii as well as in Circles.
XIV. If two Bodies be carried in unequal Circles with an unequal Celerity; fo that by how much greater the Radius, Diameter or Circumference is, fo much the lefs the Velocity is; and by how much the lefs the Radius is, fo much the greater is the Velocity, and this in the Reciprocal Proportion of the Radii, the Centri-petal Forces will be as the Cubes of the Radii reciprocally.

For becaufe of the leffer Celerity in the greater Circle, and this in the Reciprocal Proportion of the Radii ; and by reafon alfo of the leffer Curvature in that Circle, and this in the Duplicate Reciprocal Proportion of the Radii, the Centripetal Forces to be deriv'd fromi thofe Conjunct Proportions will be in the Reciprocal Triplicated Proportion of the Radii, or as the Cubes of the fame reciprocally.

1142
 Matbematical Pbilofaphy.

\therefore As for Example: Let the Radius of the greater Circle be Twofold of the Radius of the lefs, or -as 2 to 1. And let the Velocity in the greater be to the Velocity in the lefs Reciprocally as the Radii, or as 1 to $2:$ In this Cafe the Curvature of thie greater will be to the Curyature of the lefs in the Given Time as 1 to 4: Therefore the Velociny in the leffer,' is to the Velacity in the greater, -asia or and the Curvature in the lefs, to the Cuivature in the greater, as 4 to I . From whence stie. Quantity of the Centri-petal Force in the lefs, will be to the Quantity of the fame in the greater ; as the Rectangle $2 \times 4=8$ is to the Rectangle $x \not x=1$, or as the Cubes of the Radii reoiprocally ; and fo every-where.
\because Coroll. (1.) Since the Periodic Times be in this Cafe in the Duplicate Proportion of the Ra--dii) if the Squares of the Periodic Times be toetwixt themfelyes, as the Biquadrate of the Radifle: which: is the fame, if the Periodic Times vhemelyes be one to another as the Squares of the Radi; the Centri-petal Forces will be betwixt thermfelves as stie Cubes of the Diffances or Radii inverfely, and the Velocities inverfely as the Radiie: Arid on the other hand, if the Centri-petal Forces be inverfely as the Cubes of the Diftances, the Periodic Times will be betivixt themfelves as the Squares of the Radii ; and the Velocities ftill as the Radir themfolves inverfely....

Coroll. (2.) : If the Centri-petal Forces of any Central attractive Body whatever be in divers Diftances from their Center, as the Cubes of thofe Diftances reciprocally, the Velocities of Bodies revolved in divers Diftances will be in the Reciprocal Proportion of the Diftances; and the Perio-

Matbematical Pbilatiphy. 143

dic Times in the Duplicate Proportion of thofe Diftances.

Coroll: (3.) : All the fame Things concerning Times, Velocities, and Centri-petal Forces, whereby Bodies defcribe like Parts of any Curves whatever which are like, and have their Centers in the like manner pofited, do follow from the DemonItrations of the foregoing Matters which were applied to Circles in particular, as applied to the other Cafes.

Scholium. Since the Cafe of Propofition 13th hath place in the Celeftial Bodies; to wit, that the Squares of the Periodic Times are every-whete one to another as the Cubes of the Diftances $;$ and that confequently the Centri-petal Forces ate as the Squares of the Diftances reciprocally, and the Velocities in the Gub-duplicure Proportion of thofe Diftances yeciprocally: Since, I fay, this Cafe hath place in the Syftem of the World, and this'aldine, as our Countrymen, Sir Cbrifopher wisen, Dr. Hook, and Dr. Halley have feverally Collected; and that the fame is now generally received amongt Atronomers; This moft noble Cafe requires to be more largely and diligently confider'd in what follows; while the Confequences of the ref are but more lightly and. curforily touched upon.

Dec. II. 1y ${ }^{2} 4$.

144 Matbematical Pbilofopby.

Lect. XIII.

 HE Area's, which revolving Bodies do defcribe by Radii, drawn unto an uninovable Center of Force, do both lie in immovable Planes, and are proportional to the Times, and fo in any given Time everywhere equal ; the Velocity of Motion in the leffer Diftance, and the Slownefs thereof in the greater fo tempering the Defcription of the Area's, that from thofe various Diftances no difference of the Spaces run over in the given Time doth ever arife.

For let the Time be divided into equal Parts, and in the firft fmall Time let the Body by its innate Force, or by a projectile Motion defcribe in the firft Part of Time, any right Line, as A B. (See Fig. 6. Plate 4.) The fame Body in the fecond equal Part of Time, if nothing hinder'd, and no other Force was imprefs'd on it, would go ftraight forward to B c, defcribing the Line B c, equal to AB, fo that the Area's A S B, B S c, made by the Radii drawn to the Center S, would be equal. But when the Body comes at the Point B, let a centripetal Force, whether it be an Atcraction, or fome Preffure tending to the Center S, ad upon the fame Body by one fingle Impulfe, which is to the projectile Motion as any Right Line, as Bg to Bc ; this new Impulfe will make that the Body Chould decline from the Right Line Bc, and go forwards in another Right Line,

Mathematical Pbilofophy. 145

to wit, BC the Diagonal of the Parellogram BgCc; fo that the $2 d$ equal Part of Time being com-

Law of Mot. 22 . foregoing. pleated, the Body will be to be found at the Point C , in the fame Plane with the Triangle A S B. Join S C, and the Area defcrib'd by the Radius drawn from the Center to the Body, that is, the Triangle SBC will be equal to. the Area of the former; that is, to the Triangle S B c, (by I. 37. of the Elements,) and confequently to the firt Triangle SAB, to which, by what was faid before, SBC is equal. By the like Argument in the 3 d equal Part of Time, the Body would reach by the Projectile Force (which being once imprefs'd doth ftill endure) from C to d ; fo that the Line Cd, which is to be defcribed, would be equal to C B that was laft defcrib'd. But if any Centripetal Force whatfoever, whether greater or lefs than the former, fhould again act upon the Body in the Point C, the Body in the. End of the 3 d Time will be found fomewhere in the Line Dd parallel to SC, and would be carried along CD the Diagonal of a certain Parellogram h DdC to a certain Point D; fo that the Triangle SDC would be equal to the Triangle SdC, and confequently to the Triangles S CB, SBA, which are equal one to the other ; and by the fame Reafon, if the Centripetal Force acts fucceffively in D, E, F,making that the Body Thould in each equal little Portion of Time defcribe a feveral Diagonal, all thefe right Lines will lie in the fame Plane, and the Triangles S E D,S F E will be defcribed equal to the former. Now, let the Number of the Triangles be increas'd, and their Latitude decreas'd infinitely, their ultimate Perimeter ADF will become a Curve Line, the Sides of a Polygon ending in a

146 Mathematical PbiloJophy.

Curve, and by reafon of the continued and ne ver-ceafing Action of the Centripetal Force, the Bodywill perpetually be drawn back from the Tangents of the Curve, and the Areas likewife by the fame Reafon as before, will ftill be defcrib'd in an unmoveable Plane, and be proportional to the Times. 2. E. D.

Coroll. (i.) Therefore the Velocity of a Body revolved about a Center, which is eftimated according to a Line perpendicular to the Radius, will be in the reciprecal Proportion of the Diftances; for otherwife the Equality of the Areas could in no wife be kept.

Coroll. (2.) The Angular Velocity of a Body about the Center of Force, will likewife be in the reciprocal Duplicate Proportion of the Diftances. For fince the true Velocity is in the fimple reciprocal Proportion of the Diftances, as we have feen already, and the Diftance of the Center is the greater by how much the Motion is the llower, and in the fame Proportion ; it is manifeft, that that angular Velocity with refpect to the Center of Force, is in the duplicate Proportion of the Diftance reciprocally.

Coroll. (3:) Where the Pofition of the Tangent is perpendicular to the Radius, or Diftance from the Center, and the Velocity of the projectile Motion makes the Centrifugal Force exactly proportional or correfpondent to the Centripetal Force of the Central Body ; the Body will neither approach to the Center, nor recede from it, but will be carried perpetually with a circular Motion about that Center.

Coroll. (4.) But where the Pofition of the Tangent is oblique to the Radius, although the Velocity of the Projectile Motion be proportionate and correfpondent to the Centripetal Force, that Cent-tripe-

Matbematical Pbiloophy. 147

trípetal Force wilf fomewhat increafe even the leaft defcending Motion by confpiring together with it, and romething diminith even the leat afcendifg. Motion by oppofing it ; until at lengch the increas'd Motion exceeds the Centripetal Force, and the Body which before defcended comes now to afcend; and the diminifh'd Motion at length yields to the Centripetal Force, and the Body which afcended before doth again defcènd.
Coroll. (5.) From fuch like Circumftances ought to arife the Motions of Bodies revolved in Elliples about any Center whatever. For although the Body be fuppos'd to be now fituated in the Courfe of its Revolution, at the leffer Axis of the Ellipfis, the Central Body poffeffing the Focus, or at the triean Diftance, and the Velocity of the Projectile Motion be fuppofed alfo in that place to correfpond exactly to the Centripetat Force; yet hotwithftanding, becauife of the oblique Pofition of the Tangent in the fame Place,the Motion will become not Circulär but Elliptic; whilit the Body, as it is in defcending, doth by little and little acquire a new Force, by which it mày aftèrwards afcend; and as it is in afcending, doth by degiees lofe fome Force by which it áfcended before; until at length the Centripetal Force overcoming it, be compell'd to defcend : And thus perpetually. From wherice it is mani-feft;- by what means an Elliptic Motion may arife from a Motion imprefs'd according to an Oblique Line; in the mean while that the very fame Motion imprefs' ${ }_{2}$, according to a perpendiciilar Line; would have produc'd a Motion altogeiher Circular.
Corol.(6.)If in Vacuo the Area's defcrib'd be not pros

148 Mathematical Phileopby.

portional to the Times of the Defcription, the Forces do not tend unto a Concourfe of the Rays. For if they tended thither, the Areas would neceffarily be proportional to the Times. Which is contrary to the Hypothefis.

Coroll. (7.) In all Mediums, if the Defcription of the Areas be accelerated, the Forces tend not unto the meeting-together of the Rays, but confpire rather with the Projectile Motion ; if the Defcription of the Areas be retarded, that is, more than the Refiftance of the Medium requires, the Forces tend not unto the meeting-together of the Rays, but are rather oppofite to the Projectile Motion.
XVI. Every Body which is mov'd in a Curve Line, and doth by a Radius drawn to fome Point, either immoveable, or going forwards uniformly with a Rectilineal Motion, defcribes Areas about that Point proportional to the Times, is urged or imprefs'd by a Centripetal Force tending to the Game Point.

Cafe (1.) For becaufe of the Equality of the Triangles Sc B, S C B (fee Fig. 6. Plate 4.) defcrib'd upon the fame Bafe S B, the Points C and and c will be (by I. 39. of the Elements) in the Line C c parallel to the Bafe; and confequently the Figure Bc Cg will be a Parallelogram, in which the Sides Bc and $B g$ reprefent the Forces, and BL is the Diagonal: And therefore the Body placed at B, is incited by the Force Bg tending to S the Center of the Forces; and fo likewife in all the Points, C, D, E,F. 2. E. D.

Cafe (2.) And it is the fame thing, whether the Plane in which the Body defcribes the Curvilinear Figure doth reft, or whether it be mov'd together with the Body, the Figure defcribed, and its Central Point S uniformly ftraight forward. Where-

Mathematical Pbilofopby.
 149

Wherefore the Demonftration of the former Cafe will hold in this alfo.

Scbolium. A Body may be urged by a Centripetal Force, which is compounded of divers Forces, (as for Example, the Force of heavy Things towards the Center of the Earth; is compounded of Forces tending to all the Parts of the Earth, as will appear afterwards;) And in this Care the Senfe of the Propofition is, that that Force which is compounded of all, when it is reduc'd to one, tends to the Center of that Force.
Coroll. (r.) Seeing therefore in the Syftem of the Primary Planets the Areas deffrit'd by Ray's dawn to the Center of the Sun; are always proportional to the Times; as is well known to Aftrotromers, the Planets are perpetually urged by a Force, teading to the Center of the Sun; and in the fame manner muft we reafon concerning the Seoondary Planets, as revolved about their Primasy ones; Saturn, fupiter, and the Earth.
Corall. (2.) As the Velocity of divers Bodies abdat 2 Center of Force; where that Force is ast the Squares of. the Diftances inverfely, is in diwers Circles in the fubduplicate Proportion of the Diftances inverfely, as we demonftrated before; fo from this and the foregoing Propofition it folboivs fithat the Welocity' of the fame Body defribing any Ecoentric Orbit, takenias placed in its divers Diftances from the Centeri, Iet the Condition of the Centripetal Force be what it will, is
 syobe eftimated by a Circular Arch, or in a Line perpendicular to the Radius as before: The Caufe oflyonsich divers : Velocity is this, that in divers "OCiroles :hye Areas in that Cafe are not equal on both Sides, but according to the Greatnefs of the Diftance greater, and in the fame Proportion of

150 Alathermatical: Pbildopipy.

the Magnitude alfo greater; wheh notwithftanding, in the Revolution of the fame Body; whe Equaliny of the-A reas doth aitogether require a Velocity reciprocally proportional to the Diftance. Thus, if two Planets, are revolv'd about the Sun in: divers Circles, the Redin: of which do exceed one the other in the Quadruple Proportion, the remoter Planet would be carried wish a Velocity which is only double to that of the orher: Bat if the fame Planet, performing its Circuits in a very Eccentric Ellipfis, be placed fometimes at a gtearer, fomerimes:af a leffer Diftance: and the fame, as before ; exceeding and falling thort byturns in the: Quadruplo Proportion, the Velocity will be in the reciprocal Proportion af the Diftainees; and in the leffer Diftangecexanty Quadrapler of the other; and fo in any Diftances whatoveri Which thing oughit to be kept in mind, in the Contemplation of the whols Planetary Syftem.
XVII. Every Body, which by a Rasy drawn to the Center of any pother Body: how foever mov'd, defcribes Areas about that Body proportional io the; Times; is arged by a Force compounded iof a Centripetal Force tending to therbther Body, and of all the accelerative Force wheresvith the: other Body is urged. For, if firt of allithe Plamesıand the Center of Forces iin: the Plaiteridar riff ${ }_{2}$ the Areas will be proportional oosther Times; and if both Bodies be agcelerated withithe fame Celerity áccording to parallel Lines, the :Areas will ftill ré. main proportional to the Times sFom whences fince by the Hypothefis the Areas temain'propor; tional to the Times, both the Centripetal Force; the Gaufe of them, will remain, and the acoeletative Force will temain every where the fame*. tommon Caufe of Gelerity.

Mathematical Pbilofophy. $\mathbf{F I}$

Cotoll. (I.) If any Body whatever doth with a Ray drawn to the Center defcribe Areas proportional to the Times, and there be fubducted from the whole Force wherewith the former Body is urged, whether Simple or Compound, the whole accelerative Force wherewith the latter Body is urged, all the remaining Force wherewith the former Body is arged, will tend unto the other Body, as to the Center.

Coroll. (2.) And if thole Areas be nearly proportional to the Times, the remaining Force will tend to the other Body very near.

Coroll. (3.) And on the other hand, if the remaining Force doth come very near to the tending to the other Body, thofe Areas will very nearly be proportional to the Times.

Corall, (4.) If a Body doth with a Ray drawn to another Body defcribe Areas, which, when compared with the Times, are very unequal thereto ; and that other Body doth either reft, or is moved uniformly ftraight forwards, the Action of. a Centripetal Force tending to the other Body; is either none at all, or is mingled and difturbed by other Forces. And the whole Compound Force, if it be fuch a Force, will be directed to fome other Center, whether immoveable or moveable, the Areas defcribed about which will be proportional to the Times. The fame thing holds where another Body is mov'd with any Motion whatever, if fo be the Centripetal Force be taken to be that which remains after the Subduction of the whole Force, which acts upon that other Body.

Scholium ((.) Becauire an equable Defcription of. Areas is a Token of a Center, which that Force: wherewith the Body is affected doth refpect, and

152 Mathematical Pbilofopby.

the Body by this Centripetal Force is retain'd in a Curvilinear Orbit; and all Curvilineal Motion is rightly faid to be made about that Center, by the Force of which the Body is drawn back from the Rectilinear Motion, and perpetually recain'd in its Orbit: In what follows, we thall make ufe of that equable Defcription of Areas, as the $\mathbf{I n}$ dex of a Center, about which the Motion which is in a Curve is perform'd in free Spaces.

Scholium (2.) This 17th Propofition, with its Corollaries, appertains to the underftanding the true Syftem of the World. For although all Planetary Motions are to be derived from a Projectile Motion once impreffed according to Tangents; and a Centripetal Force continually urging; yet thofe Centers unto which the Centripetal Forces tend, are alfo mov'd themfelves, together with the Bodies that are revolved about them. Thus the Circulations of the Chrcumfaturnian, and Circumjovial Planets, and of the Moon, do proceed from a Projectile Motion once imprefs'd upon each, and from a Centripetal Force tending to the Centers of Saturn, Fupiter, and the Earth refpectively; albeit, in the mean while thofe Central Bodies, together with their whole Satellitium, be mov'd about the Sun, the common Center of all the Primary Planets.
XVIII. A Problem. There being given in any' Three Places whatfoever, the Velocity wherewith the Body deferibes a given Figure, by a Force tending unto fome common Genter or Point, to find that Center:

Let Three Right Lines, P T, TQV, V R, (Fee Fig. r. Plate 5.) touch a defcribed Figure in fo many Points, P, Q, R, whilft they meet together in T and V. Let there be erected P A, Q B, R C, perpendicular to the Tangents in the Points

Matbematical Pbilofopby. $\quad 153$

Points of Contat, and let them be reciprocally proportional to the Velocities of the Body in thofe Points ; that is, let PA be to QB as the Velocity in Q is to the Velocity in P; and QB to R C as the Velocity in R is to the Velocity in Q. At the Extremities of the Perpendiculars A, B, C, let AD, DBE, EC be drawn at right Angles to the Perpendiculars, or parallel to the Tangents, and meeting together in D and E. Let TD and VE be drawn inferfecting each other in S; and from the Point E , let Er and Ev be parallel to the Perpendiculars C R and BQ refpeaively. And in like manner from the Peint S, letDp and $D \times$ be parallel to the Perpendiculars $A P$ P BQ refpectively. Then laftly, from the Point Slet S , $\mathrm{St}, \mathrm{S} q$ be parallel to the fame Perpendiculars refpeetively, or perpendicular to the Tangents: I fay, that the Point 5 is the Center which is fought. For fince the Body revolving, and placed facceffively in the Points P and Q , doth by Rays drawn to the Center of Force in

Prop. 1 5. foreis going Schol: of I. 41. Elements. equal Time defribe equal Areas, or equal Triangles; fince alfo thofe Triangles together defrribed, are as the Velocities, or as the Lines together defcribed in P and Q drawn into the refpective Perpendiculars, let fall from the Center to the Tangents P T, Q T. Thofe Perpendiculars will be reciprocally as the Velocities, and confequently as the Perpendiculars $\mathrm{D} p$ and $\mathrm{D} \times$ directly. But becaufe of the Likenefs of the Triangles TDx, TSt, and TDp; TSq; as is Dp to Dxx, fo is the Perpendicular Sq. to the Perpendiculars t. And by the like Reafon, $a s$ is Ev to Er , fo is the Perpendicular St to the Perpendicular S s. Añdfeeing this can be true only in this Point Sthe Concourfe of theLinesTD\&VE,

154 Matbematical Pbilofophy.

it is manifeft; that S is the Center of the: Centripetal Force Q.E.D.

fan. 29. 170ร.

 LECT. XIV,

XIX.
 Fa Body be mov'd in an Ellipfis about the Center of the, fame 3 the Centripetal Force will be directly as the Diftance of the Body from the fame Center. For the Curvature every where in like Arches is in the quadruplicate Proportion of the Diftance; but the Velocity is in the fimple Proportion of the fame Diftance inverlly. From whence the Curvature, defcrib'd in a given Time, will be in the duplicate: Proportion of the Diftance, and the Velocity in the fimple Proportion of the Diftance inverly; and the Centripetal Force, which is to be eftimated in this Cafe by the Excefs of the Proportion of the Curvature above that of the Velocity, will be directly as the Diftance. Q.E.D.

Corollary. If an Ellipfis, the Center thereof paffing away infnitely, be turn'd into' a Parabola, the Body will be mov'd in this Papabola, and the Force now tending to a Center infinitely diftant will become equable. This is the Theorem of Ga lilao demonftrated by us above in Prop. 8, 2nother Method, And if a Parabolic Section of a Cone, the Inclination of the Plane to the Cone that is cut thereby being chang'd,
chang'd, be turned into an Hyperbola ; the Body will be moved about its Center in the Perimeter of the Hyperbola; the Ceniripetal Force being turn'd into a Centrifugal one, and that Force bei ing greater in a leffer Diftance, and leffer in 2 greater Diftance; ; as the Nature of fuch Force doth altogether require.

Coroll. (2.) If the Centripetal Force of any attractive Body whatever be directly as the Diftance, fo that in a greater Diftance the Attrálion be it the fame Proportion alfo greécer; a arid in a leffer Diffance lefs; the Body will be mor'd: in the Ellipfis about a Ceneral Body Corol.3,4,5: placed in the very Center of the Elip- of Prop. 1s. fis, or perchance in a Circle which the Ellipfis may pafs into; for, according to the Situation of the Tangent, of which before, the Body will be mov'd either in a Circle, or in an Ellipfis.

Corell. (3.) And the Periodic Times of Revo; lutions made in all Figures about the fame. Center will be-equal, as we alfo fhew'd before. Cerol.2;P.q. XX. If a Body be mov'd in a Spiral Line, which citits all the Radii in the fame: Angle, the Centripetal Force will be reciprotcally as the Cubo° of the Diftance from the Center of the Spirat For in the divers Parts of the Spirals the Curver ture offlike Arches is equal, and chati of equal Arches is reciprocally as the Diftance. But whill Bodies reviolve in Spirals, the Celerity will be Every where ;reciprocally as the Diftance; and from chence alfo the Curvature will, in, the given Trime, be reciprocally in the duplicate-Proportion of the Diftance. Therefore the Centriperat Force; which proceeds from the Proportiofis of the Curnanire and Celerity conjunaly, will he in che triplicate: Proportion of the Diffancepretipios +u)

156 Matbematical Pbilofopby.

cally, or reciprocally as the Cube of the Diftance.
Corollary. If the Force of any attrative Body be in the triplicate Proportion of the Diftances from the Center reciprocally, all Bodies, the Directions of the Projectile Motions whereof are nor perpendicular to the Radii, with what Velocity foevor they go forth, will be mov'd in a Spiral which citrs all the Rays in a given Angle; and
the firt Body afcends, it will afcend infinitely ; if it defcendss; it will defcend to the Center in a Space of Time eafily to be found from the Quantity of the Spiral Area.
Scboliumm If there were any regular Curve, the Curvature whereof from any Central-Point whatever were in a duplicate Proporticn of the Diftance direaty; any Body whatever would revolve in it, if :fo be the Centripetal Forces were amongft themfelves in the reciprocal Proportion of the Diftancess. For if the Curvature; in equal Angles, were according to the Hypothefis in the duplicate Proportion of the Diftance diretty, the Curvatare would in a given Time be always equal to it felfinall Diftances; ; and fince the Velocity is always reoiprocally asithe Diftance, the Centripetal Forces, to be eftimated from the Curvaturs and Velocity conjunoly; would be as the:Diftance teciprocally, anid the Body would be movid in that Curve $2 . E$. D. So likewife, if thene were any regular Curve, the Curvature whereof frome any Cental Point whatever, were in the triplicate Proporiion of the Diftance directly, any Body whatever would revolve in it, if fo be the CentripetaI Förce were in all Diftances equat: For if the Curvature in equal Anglee were, by the Hypothefis, in she triplicate Proportion of the Diftance direaty, the

Matbematical Pbilofopby. 157

Curvature in the given Time would always be directly as the Diftance; and fince the Velocity is always as the Diftance reciprocally, the Centripetal Forces, by reafon of the Equality of the direct and reciprocal Proportions,would always be equal, and a Body would be mov'd in that Curve.
XXI. If a Body be mov'd in an Ellipfis abous its Focus, the Centripetal Force will be every where in the duplicate Proportion of the Diftance from the fame Focus reciprocally. For, as we nored above, the Curvature with refpect to the Focus in divers Parts of Ellipfes, Parabolx, and Hyperbolo, is every where in like Arches directly as the Diftance, and in equal Parts always equal : Now the Velocity every where is in the reciprocal Proportion of the Diftance. Therefore in Arches defcribed in the fame time, the Curvature is reciprocally as the Diftance from the Focus, and the Celerity is likewife in the fame reciprocal Proportion : From whence the Centripetal Force, to be eftimated from the conjunct Proportions of the Curvature and Celerity, will be in the duplicate Proportion of the Diftance from the Focus reciprocally. உ. E. D.

Coroll. (1.) If the Force of any attractive Body whatever be in the duplicate Proportion of the Diftances from the Center reciprocally ; all Bodies, at leaft where the Directions of the Proje ctile Motions are not perpendicular to the Radii, whatfoever Velocity of Motion alfo they may have, will be mov'd in Ellipres, one of whofe Foci will be paffefs'd by the Central Body : unlefs the Velocity of the Projectile Motions befo great, as to be able to turn the Ellipfis into. Parabola's, or even Hyperbola's.

Coroll. (2.) If a Body, according to the Law of the Centripetal Force here affign'd, be mov'd in an Ellipfis about one of the Foci, the Periodic Time of the Body, moving in the Ellipfis, will be to the Periodic Time of a Body mov'd in a Circle,' the Radius whereof is in the Middle betwixt the greateft Diftance and the lealt, or equal to the greater Semi-axis, in the Proportion of Equality. For fince the whole abfolute Curvactire of the Ellipfis is equal to the Curvature of the Circle; and the Sum of the abfolute Velocities in equal Arches above and below the mean Diftance, becaufe of the equal Change of the Motion in an equal Arch, is always equal to the Velocity in a mean Circle ; it is manifeft, that the Centripetal Force is equal; and confequently that the Periodic Times are allo equal one to another. Or we will rather demonftrate it thus: Let the fame abfolute Velocity be fuppofed in the mean Diftance, which is in a Circle defcrib'd with the fame Semi-diameter; the Angle then, according to the Conic Properties, or Area defcribed in the Circle, will be to the Angle orArea defcrib'd at the fame time in the Ellipfis, as the greater Semi-axis' is to the leffer; and in the fame Proportion alfo; according to the Conic Properties, is the entire Area of the Circle to the entire Ared of the Ellipfis. From whence, becaule of an equable Defcription of Areas on both Sides, the Periodic Times alfo will be on both Sides equal.

Coroll. (3.) Therefore the Periodic Times in Ellipfes are between themfelves in the Sefquialteral Proportion of the greater Axes, as well as in Circles.

Coroll. (4.) Confequently the greater Axis being given, there is given withal the Periodic Time.

Matbematical Pbilofopby. 159

Coroill. (5.) Seeing the Proportion of the Cur*ature and Celerity in a Parabola and Hyperbola Is the fame, with refpect to the Focus'; by the fame Reafon as before, a Body will be mov'd in: a Parabola and Hyperbola about the Focus.

Scholitiom. Having now difpatch'd in a more eafy Method, the Demonftrations of the fundamental Propofitions of Sir Ifaac Newton ; I will take Liberty for a Conclufion, to adjoin another Demonftration of the laft Propofition, which is the moft Noble of all; and moft of all accommodated to the Mundane Syftem; which Demonftration comes more up to Geometrical Rigor, and is that which I once tranfcrib'd from a Manufript of Sir Ifaac Newton's himfelf.

A Propofition.

If any Body whatever be attracted towards the Focus of an Ellipfis, and if the Quantity and Proportion of the Attraction be fuch, that they make the Body to revolve in the Elliptic Perimeter ; the Attraction in the leaft Diftance will be to the Attraction in the greateft, both Diftances being taken at the greater Axis, as the Squares of the Diftances of the Body in thofe Points from the Focus of the Ellipfis reciprocally.

Let (in Fig. 2. Plate 5.) A E C D be an Ellipfis; A and \mathcal{C} the Extremities of the greater Axis: F the Focus whither the centripetalForce tends ; and AFE, CF D, thofe Areas which a
Body doth by Radii drawn to the Fo-. Prop. 15.; cus, defrribe in an equal Spacer of:
Time. Now thofe Areas are equal one to another, as being proportional to equal Times; that is,

160 Matbematical Pbilofopby.

Scholium to
I. 4 I . Elements.
VI. 14. Elements. the Rectangles $\frac{1}{2} \mathrm{AF} \times \mathrm{A}$, and IFC $\times \mathrm{DC}$, are equal to each other; that is on the Hypothefis that the Arches AE and CD are taken fo fmall, that they may fafely enough be reckon'd for Right Lines. Therefore AE is to CD, as FC is to FA. Let us now fuppofe the Right Lines A M and CN to touch the Ellipfis in the Points A and C, and the little Lines E M and D N [to be fupplied in the Figures $]$ to be from the Points E and D perpendicular to thofe Tangents. Now becaufe the Curvature of Ellipfes (that is, if we confider it in generul, and in equal Arches with refpect to the Center of the fame) is equal at both Extremities, thefe Perpendiculars EM and DN will be betwixt themfelves, (Coroll. 4. Prop. 2.) as the Squares of the Arches A. E and CD. EM therefore is to D N, as FC fquare is to FA fquare. But in the fame time, in which the Body will from the Force of Attraction defcribe the Elliptick Arches A. E and CD from A to E, and from C to D.; the fame without that Attraction would have defcribed the Tangents AM and CN equal to thofe Arches. The Forces of the Attractions therefore which draw the Body back from the Tangents to the Carve, to wit, from M to E, and from N. to D, are alfo betwixt themfelves as thofe little Lines ME and ND fubtending the Angles of Contact; which are defcrib'd at the fame time: The Attraction therefore at the Point A is to the Attraction in the Point C, as the little Line ME to the little Line N D; that is, by the Things already demonftrated, as F C fquare is to FA fquare; or as the Squares of the Diftances reciprocally. \& E.D.

Matbematical Pbilofophy. i61

This Demonftration refpects only the Extremities of Ellipfes; thofe which follow will apply the fame Propofition to any Parts of Ellipfes whatfoever.

Lemma. If a right Line touch an Ellipfis in any Point whatfoever, and if a Line be drawn through the Centre of the Ellipfis parallel to the Tangent, which may interfect a ${ }^{2}$ d Line drawn through the Point of Concact and either of the Foci ; that Part of the 3^{d} Line which is pofited betwixt the Contact, and the Interfection, will be equal to half the greater Axis.

Let (Fig. 2. Plate 5.) A PCQ be af Ellipfis: AC the greater Axis: O, the Center : Ff the Foci; \mathbf{P} the Point of Contact: O G the Line parallel to the Tangent; and PG that Part of the Line FP, which lies betwixt the Contact and the parallel to the Tangent. I fay that $P G$ is equal to $C O$, or to half the greater Axis.

For join the Points PF ; and draw the Line $\mathbf{f} \mathbf{H}$ parallel to O G. Becaufe the Lines Ff and FH are bifected in the Points O and G, A.C will be equal to the Sum of the Lines PF and Pf, that is, to the Sum of the two Lines PF and PH, (by the Conics) or to the double of the Line P G. And therefore the half of AC, that is C O, is equal to P G.- Q. E.D.

Anotber Lemma. Any right Line whatever drawn through either of the Foci of the Ellipfis to the Periphery, is to the Diameter of the Ellipfis which is parallel to the fame, as the fame Diameter is to the greater Axis of the Ellipfis.

Let APCQ (Fig. 2. Plate 5.) be an Ellipfis: A C the greater Axis: Ff the Foci: O the Center: P Qany Line drawn through the Focus F :

162 Matbematical Pbilofophy.
VOS the Diameter of the Ellipfis parallel to PQ. Here PQ: V S. A C, will be \because. For let $f p$ be drawn parallel to QFP, cutting the Perimeter of the Ellipfis in the Point p. And join the Points $P p$ by the Line $P p$ cutting VS in the Point T. Then draw the Line PR which may touch the Ellipfis in the Point P, and cut the Diameter VS produced in the Póint R. There will now be by the Conics OT: OS: OR \div. But OT is half the Sum of FP and $f p$, or of $F P$ and $F Q$: and confequently $O T$ doubled is equal to PQ . OS alfo doubled is equal to VS, and by the Lemma before demonftrated, $O R$, or $P G$ doubled, is equal to AC. Wherefore $\mathrm{PQ}: \mathrm{VS}: A C$ are \because. Q.E. D. Coroll. $\mathrm{AC} \times \mathrm{PQ}=\mathrm{VSq}=4 \mathrm{OSq}$.
Lemma. (3.) If the right Line FP he drawn from either of the Foci of the Ellipfis to any Point in the Perimeter thereof: And to the Point \mathbf{P} the Tangent of the Ellipfis Px ; and if the little Line x y (See Fig. 3. Plate 5.) , fubtending the Angle of Contact, parallel to the Line $\mathbf{P Q}$; the Rectangle of the fubtending little Line, and of the fame Line produc'd to the remoter Part of the Perimeter, is to the Rectangle of the greater Axis of the Ellipfis, and of the firft Line which was produc'd alfo to the Perimeter of the Ellipfis, as the Square of the Perpendicular Difance betwixt the fubtending little Line, and the firft Line is to the Square of the leffer Axis.

For let AK B L be an Ellipfis: A B the greater Axis: KL the leffer: \mathcal{G} the center: Ff the Foci: P any Point defign'd in the Perimeter: F P the firft Line drawn through the Focus \mathbf{F} to P: PQ the fame Line produc'd unto the Elipfis: $\mathbf{P x}$ the Tangent: xy the little Line fubtending the Angle of Contact: XI the fame fubtenfe pro-
produc'd to the Remoter part of the Perimeter : yz the Perpendicular Diftance of the Subtenfe and the firft Line. Thefe things fuppos'd, 1 fay that the Rectangle yxI is to the Rectangle $\mathbf{A B} \times \mathbf{P} \mathbf{Q}$, as is y \mathbf{z} Square to $K L$ Square. For let V S a Diameter of the Ellipfis be parallel to the firft Line, and G H another Diameter parallel to the Tangent $S \times$, or the conjugate Diameter to the former Diameter. The Rectangle yxI will then, by the Conics, be to P.x Square, or the Square of the Tangent, as the Rectangle S C V is to the Rectangle GCH; that is, as SV Square is to G H Square: Now, by the Conics, all Parallelograms defcrib'd about the conjugate Diameters of every Ellipfis are alfo equal betwixt themfelves. From whence it follows, that the Rectangle of the double of PE drawn into GH will be equal to the Rectangle of the Axes ABxKL: And confequently (by VI. 14. of the Elements) GH is to $\bar{K} \mathrm{~L}$ as A B, that is, by the firft Lemma, as the double of PD is to the double of PE ; or, becaufe of the likenefs of the Triangtes yzP and PED (when the Point y coincides with the Point P) as $P x$ is to $y z$. Therefore $P x$ is to GHas yz to KL: And confequently Px Square is to G H Square, as y z Square is to $\mathrm{K} L$ Square, (VI. 22. of the Elements). But by what hath been already affum'd, $P \times$ Square is to $G H$ Square, as the Rectangle $y x I$ to $S V$ Square: And SV Square (by the Corollary of the 2 d Lemma) is equal to the Rectangle of $\mathrm{AC} \times \mathrm{PQ}$. Therefore the Rectangle y XI is to the Rectangle $\mathrm{AC} \mathrm{\times PQ}$, as yz Square is KLq. Q.E.D. Coroll. (I.) If $y z$ be given, and confequently yz Square, yx Square will alfo be given, and confequently $y x$ it felf: That is, if the leaft Perpendicular Diftance of a Point taken in the

164 Matbematical PbiloJopby.

Elliptic Perimeter from the Line drawn through the Focus, be given in divers Diftances from that Focus whatfoever ; there will alfo be given the vanifhing little Line,fubtending in the fame Place the Angle of Contact. For by what hath been juft now demonftrated, fince y z is given by the Hypothefis, and KL is alfo given; and fince, as the Rectangle $y \times \times \times I$ is to the Rectangle $A C \times P Q, f_{0}$ is $y z$ fquare to $K L$ fquare : It will alfo be, the Line $\times I$ ending at laft in the Line $P Q$, as $y \times \times P Q$ is to $A C \times P Q$, fo is $y z$ fquare to KLq: But as $\mathrm{y} \times \times \mathrm{PQ}$ is to $\mathrm{AC} \times \mathrm{PQ}$, (VI. r. Elem.) fo is $\mathrm{y} x$ to AC. Therefore, as $\mathrm{y} x$ is to AC, fo is $y z$ fquare to $K L$ fquare ; and by inverting, as KL fquare is to yz fquare, fo is AC to . y ; fince therefore the reft of the Things are given, the Subtenfe $y x$ will alfo be given. Q.E.D.

Coroll. (2.) I may alfo in this Place infer, that the Curvature of an Ellipfis with refpect to the Focus is every where in the Proportion of the Diftance from the Focus directly. For fince $\bar{y} z$ the vanifhing Subtenfe of the Angle of Contact in a given Perpendicular Diftance, in all Diftances from the Focus is the fame; yx in Diftances proportional to the Radius F P at equal Angles, will be (by Coroll. 4. Prop. 2.) in the duplicate Proportion of the Radii. From which duplicated Proportion, there being taken away, as it ought to be, the Proportion of the Radius, the Proportion of the Curvature in divers Diftances will be left ; the fame, to wit, with the direct Proportion of the Radii. Although therefore the Curvature of divers Circles in the fame Angles, is with refpect to the Center every where equal ; yet in Ellipfes, on the contrary, it is continually changed in divers Diftances from the Focus, and in a greater Diftance becomes greater, in a leffer Diftance lefs;

Matbematical PbiloJopby. 165

and this in the Proportion of the Increafe or Dimunition of the Diftance; as we noted before.
Coroll. (3.) To conclude, we may transfer boththe foregoing Corollaries to a Parabola and Hyperbola : For what Things have been once demonftrated of an Ellipfis, are to be underftood to agree to a Parabola alfo; becaufe of the Coincidence of Ellipfes infinitely long with Parabola's: And then the Affections of Ellipfes and 'Parabola's, becaufe of the mutual Agreement of all Conic Sections, are to be applied to Hyperbola's, changing thofe Things which the nature of the Line requires to be changed. Wherefore I may now affert, that the vanifhing Subtenfe of the Angle of Contact at all equal Perpendicular Diftances from the Radius, is in every Conic Section always equal to it felf; and that the Curvature confequently in equal Angles is in the direct Proportion of the Diftances.

Feb. 5. 170 ?

$$
L_{\text {éc т. }} \mathrm{XV} \text {. }
$$

 Cbolium. By almoft the fame Reafoning whichSirII. Neevton made ufe of forfinding out the Proportions of the vanilhing Subtenfes with refpect to the Focus of the Ellipfis; I may undertake to determine the Proportions of the fame Subtenfes in Ellipfes with refpect to the Center, M 3 by

166 Matbematical PbiloJopby.

Princ. Mathe. Eook I. Pr. 10.
by what he hath demonftrated; viz.that y z fquare, drawn into $S C$ fquare, (Fig. 4. Plate 5.) and -then applied to the Line $\mathrm{y} x$; is equal to.the double of KC fquare drawn into CB fquare, and then applied to the Line S.C; or $\mathrm{yzq} \times \mathrm{SC}$ cube $=2 \mathrm{KCq} \times \mathrm{CBq} \times \mathrm{yx}$. If therefore $\mathrm{z} y$ be given, and confequently zy fquare, becaufe of the Solid $2 \mathrm{KCq} \times \mathrm{CBq}$ which is alfo given; $\mathrm{y} \dot{\mathrm{x}}$ will be every where as S C cube, or in the triplicate r:opertinn of the Diftance directly. If therefore zy be t: - - as it ought to be; becaufe the Subtenfe of tie Angle of Contact, is in the duplicate Proportion of the Arch, the Subtenfe $y \mathbf{x}$ will be in the quintuplicate Proportion of the Diftance ; or the Proportion of the Diftance being Subducted, the Curvature it felf will ftill be in a quadruplicate Proportion of the Diftance direatly; or as the biquadrate of the Diftance directly.

Anotber Propofition. If a Body be drawn to one of the Foci of an Ellipfis, and from that attraction revolve in the Elliptic Perimeter, the Forces of the attraction will be every where, as the Squares of the Diftances from the fame Focus directly.

For (in Fig. 4. Plate. 5.) Let P be the Place of a Body revolving in an Ellipfis at any Moment of Time, and PX the Tangent of the Ellipfis in that Point; along which Tangent the Body would go forward with an uniform Motion, if it were affected with no aitraction: Let the Point X be the Place whither the Body would reach in a given very fmall Space of Time; and let Y be the Place in the Perimeter of the Ellipfis, whither it doth from both Forces actually reach in the given Time, Let the Time be divided into very fmall qual Parts, that

Matbematical Pbilofopin. 167

that they may be accounted Phyfical Moments or Points: Let the attraction now act not continuedly, but by Intervals, but thofe very little ones; once to wit, in the beginning of every Phyfical Moment ; fo that the firft Force of the Actraction may Act at the Point P; the 2d at Y; and fo at equal Intervals perpetually : So that the Body may be mov'd along the Chord of the Arch PY, and then along the Chord of the following Arch, and fo on. Now becaufe the attraction in the Point P is directed towards the Point F, and draws down the Body from the Tangent PX unto the Chord PY; the litcle Line X Y produc'd by that Force of the attraction in P will be proportional to that Force, and parallel to its Direction, that is to the Line P F. Produce the Lines XY and PF unto the Elliptic - Perimeter in I and Q ; join the Points F, Y : and let Y Z be let down Perpendicular to F P. (Fig. 4. Plate 5.) Let A B be the greater Axis of the Ellipfis, and KL the leffer. And by Lemma the 3d, the Rectangle Y X I will be to the Rectangle $\mathrm{AB} \times \mathrm{PQ}$, as is Y Z fquare to KL fquare. And confequently the Line Y X will be equal to the Solid of $\mathrm{AB} \times \mathrm{PQ} \times \mathrm{YZq}$, applied to the Solid XI \times KLq. In the fame manner, if py be the Chord of another Elliptic Arch, which the Body defcribes in the given Phyfical Moment of Time equal to the former; and $p x$ the Tangent of the Ellipfis in the Point P; and $x y$ the Subtenfe of the vanifhing Angle of Contact parallel to the Line $p F$; and if $x y$ and $p F$ cut the Perimeter of the Ellipfis in q and i ; let yz from the Point y be let down perpendicular, to pF ; the Subtenfe $\mathrm{y} x$ will by the former Reafon be equal to the Solid made of AB into

168 Matbematical Pbilofopby.

$x i \times K L$ fquared ; that is, becaufe A B and KL are given and ftanding Quantities, as $\frac{P Q}{X I} Y Z$ fquar'd to $\frac{\mathrm{pq}}{\mathrm{x}} \mathrm{yz}$ fquared. But becaufe the Lines P Y, py, are defcribed by a revolving Body in equal Times, the Areas defcribed, or Triangles PYF, pyF are equal : And the Rectangles PB $\times \mathrm{YZ}$, and pFxyz are double thofe Triangles they are equal : And YZ is to y , as pF to PF ; and confequently $\frac{P Q}{X I} Y Z$ quared, is to ${ }_{x} \underset{\mathrm{i}}{\mathrm{Pq}} \mathrm{yz}$ fquar'd, as $\frac{P Q}{X I} p F$ fquared is to $\frac{p q}{x i} p F$ fquared.

Therefore, as $Y X$ is to $y x, f o$ is $\frac{P Q}{X I} P F$ fquared to $\frac{\mathrm{Pq}}{\mathrm{x}} \mathrm{PF}$ fquared; that is, the Attraction in P is to the Attraction in p , as $\frac{\mathrm{PQ}}{\mathrm{XI}} \mathrm{pF}$ fquare is to $\frac{\mathrm{pq}}{\mathrm{x}} \mathrm{P}$ PF fquared. Now, fuppofe the Times taken infinitely fmall to be equal, in which a Body defcribes the Subtenfes PY and py ; fo that the Attraction may be continued, and the Body revolv'd in the Perimeter of the Ellipfis:
In this Cafe the Lines PQ and XI coincide; but pq and xi have been already fuppofed equal, therefore the Quantities $\frac{P Q}{X I} \mathrm{pF}$ fquared, and $\frac{\mathrm{Pq}}{\mathrm{Xi}}$ PF fquared, become PF fquared and $P \mathrm{~F}$ fquared. Therefore the Attraction in P , or the Line $X \mathrm{Y}$, will be to the Attraction in p , or the Line xy ; as p F fquared is to PF fquared; or reciprocally, as the Squares of the Diftances from the Focus. 2.E.D.

And

Matbematical Pbilofophy. 169

And the fame Propofition may be applied to the Parabola, as the Extreme of Ellipfes, and alfo to the Hyperbola: But fince there are no Coleftial Bodies that we know of, that are carried about in Hyperbola's ; I fhall not fearch out for a particular Demonftration of them.
XXII. The Velocity of a Body moving in a Parabola about a Body placed in the Focus, the Force whereof is in the reciprocal duplicate Proportion of the Diftances, is every where to the Velocity of a Body revolving in a Circle in the fame time, in the fubduplicate Proportion of the Number, Two to Unity; or as the Diagonal of a Square to its Side, that is, as 10 to 7 nearly.
For, fince the Diftance of a Body from the Central Body was fuppofed every where the fame, the Force of Attraction, or Line fubtending any Angle of Contact, will be always equal in any given Space of Time: And the Velocity in a Parabola will be ta the Velocity in the Circle, as the Tangent of the Parabola to the Tangent of the Circle ; to wit, where the Subtenfe is every where equal.' But the leaft Tangent in theParabola,by theConics, is equal to the fquare Root of the Rectangle of the Subtenfe drawn into the Latus Rectum of that Vertex. And the leaft Tangent in the Circle is equal to the fquare Root of the Rectangle of the Subtenfe drawn into the Diameter of the Circle. But becaufe both III. 36. Elem: Subtenfes are given, and the Latus Rectum of the Vertex of the Parabola is, by the Conics, double to the Diameter of the Circle; or as two to one: The firf Rectangle will be double to the laft, or as 2 to 1 ; from whence the Tangents or fquare Roots will be among themfelves, as the fquare Root of the Number two to one, or as the Diagonal

170
 Matbematical Pbilofopby.

Diagonal of a fquare to its Side ; that is as ten to feven nearly. 2.E.D.
Coroll. (r.) Since therefore the Velocity in a Parabola is to the Velocity in a Circle, at the fame Diftance from the Focus, in a given Proportion; to wit, as $\mathbf{r} .2$ to I . And fince the Velocity in divers Circles is in the fubduplicate reciprocal Proportion \&f their Radii, the Velocity of a Body defcribing a Parabola at divers Diftances from the Focus will alfo be in the fubduplicate reeiprocal Proportion of the Diftances.

Coroll. (2.) The Velocity of a Body revolving in an Ellipfis, is lefs than in a Parabola ; and in an Hyperbola, greater at the fame Diftance from the Focus: From whence the Velocity in an Ellipfis, will be to the Velocity-in a Circle in a lefs Proportion than \boldsymbol{r}. 2 to \mathbf{x}; and in an Hyperbola; in a greater at the fame Diftance from the Focus.

Coroll. (2.). Therefore the Velocity of a Body, at any Diftance from the Focus, being known, the Figure of its Trajectory may be alfo known; to wit, whether it be a Circle, Ellipfis, Pazabola, or Hyperbola: And from a more accurate Calculiss, if it be an Ellipfis, or Hyperbola, what Species of thofe Figures it is that a revolving Body ought to defcribe.
Corell. (4.) It follows from what was juft now demonftrated, that if any Body be moved according to any right Line whatever (unlefs it tends directly to the Focus) with any Velocity, and be acted upon at the fame time by a Centripetal Force reciprocally proportional to the fquare of the Di flances from the Center; the Body will be moved in one of the Conic Setions, having the Focus in the Center of Forces: To wit, if theLine, according to which the Projectile Motion of the Body tends, be perpendicular to the Radius, and the Velo-

Velocity equipolient to the Attraction ; that is, if the Velocity in any given very fmall Space of Time, be equal to the fquare Root made of the Subtenfe of the Angle of Contact of that Circle drawn into its Diameter, that Body will be moved in a Circle. But if the Velodity be equipotlent to the Attraction; and the Line of Direction oblique to the Radius, the Body will be moved in an Ellipfis, the periodic Time whereof wou'd be equal to the periodic Time of the Circle in which it will move. - But if the Velocity be greater or lefs than the Velocity before affigned, fo neverthelefs where it is greater, that it be not increafed above the Proportion of the fquare Root of the Number Two to Unity, that Body will be moved in an Ellipfis, in the firf Cafe giteater, and in the laft leffer than the Circle. But if the Velocity be to the Velocity in the Circle, as the fquare Root of 2 to 1 , the Body will be mov'd in a Parabola. If, laftly, the Velocity be greater, the Body will be mov'd in an Hyperbola.
XXIII. Problem. The Centripetal Force being reciprocally proportional to the fquare of the Diftance from the Center, to define the Times in which Bodies in falling ftrait down wou'd reach the Center. (See Fig. 5. Plate 5.)

Upon'the fame principal Axis or tranfverfe Di-' ameter, AB, let there be defcribed the Extrome Ellipfes; to wit, the Circle ADB, and the Right Line AB; from the Equality of thefe Tranfverfe Diameters', the Periodic Times will be equal on both Sides; and confequently the Times of the half Revolutions will be equal to one another. (Coroll. 4. Prop. 21.) That is, the Time of Defcent by the Diameter, is equal to the Time of Revolution along the Semi-circumference. Since therefore by what hath been de-

172 Matbematical Pbilofopby.

monftrated before, it is eafy to determine that Time of the half Revolution, it will alfo be eafy to define the Time of the direct Defcent. As for Example : The Time of the Lunar Half-period contains 19671Ls Minutes; where, to wit, the Diameter of the Orbit is double to the mean Diflance from the Center of the Earth. And this Time is to the Time of the Half-period for half the Diftance, which is the thing we now enquire for, in the fequi-alteral Proportion of the Diftances; that is, almoft as 2828 is to 1000 , or as 19671 L is to 6955 L . From whence the Time of the Half-period, in half the Diftance (or in cafe the Diameter of the Orbit was but half of what it is,) that is, the Time of the direct Fall to the Center of the Earth of a Body placed at that Diftance from the Earth in which the Moon is really placed, will contain 695sLs Minutes; or 4 Days, 19 Hours, $55^{\prime}, 30$ ". In this Space of Time would the Moon, if the Motion thereof was ftopp'd, and the Earth remain'd unmoveable, fall to the Center of the Earth. And by the fame Reafoning, the Time of the Fall of any Planet may eafily be determined, as is actually done in the following Scbolium.

Scholium. Since therefore the Time of the Half-period of every Planet diminifh'd in the Proportion of rooo to 2828, is the Time of the direct Fall to the Center, the following Table, which is built upon that Foundation, will thew the Times of the Fall of all the Planets to theif refpective Centers.

Of the Planets about \mathcal{F} upiter:

Of the Planets about Saturn.

The Moon, as above, would fall to the Earth in the Space of 4 Days, 20 Hours.

Feb. 19. I_{70}

Lect

174 Matbematical Pbilofophy.

Lect. XVI.

XXIV. Centripetal Force is recipros cally proportional to the fquare of the Diftance, to define the SpaceswhichBodiesfalling right downwards would defcribe in any given Time.

If the Body doth not fall perpendicularly, it will defcribe fome Conic Section, the nether Focus whereof Xbecaufe of the Defcent of a projectile Motion which is here fuppos'd) will agree with the Center of Force, as is manifeft from what goes before, Prop. 21. Let that Conic Section (fee Fig. 5. Plate 5.) be the Ellipfis ARBP; where the Velocity of the Projection is to the Welocity wherewith the Body would revolve in a Circle at the fame Diftance, in a leffs Proportion than is the fquare Root of the Number Two to Unity, (Coroll. 2. Prop. 22.) Let S be the nether Focus of the Ellipfit, and upon the greater Axis of the Ellipfis AB, let there be defrrib'd a Semi-circle A.D B. And the right Line DPC being fuppos'd to pafs through the falling Body perpendicular to the Axis,and the Lines DS and PS being drawn to the'Center, the Area ASD will be proportional to the Area A SP, and confequently to the Time. For (by VI. I. Elements,) as CD is to CP, fo is the Area of the Triangle SCD to the Area of the Triangle SCP. And according to the Conics,as the fame CD is to the fame C P, fo is the Circular Area CAD to the Ellip:

Matbematical Pbilofophy.

Elliptic Area C AP ; and confequently A S D the Sum of the former Areas, will be to ASP the Sum of the latter, as CD to CP, (V. 12. of the Elements;) or as the greater Axis of the Ellipfis to the leffer Axis of the fame ; and confequently in the given Proportion, or proportional to the Time. Now A B the greater Axis of the Ellip. fis, or Diameter of the Circle remaining, let the Latitude or leffer Axis of the Ellipfis be perpetually (diminifh'd; here, by the Force of what hath been already demonftrated, A S D will ftill remain proportional to the Time. Yea, let the Latitude be diminifh'd infinitely, fo that the Elliptic Orb A P B may at length coincide with the Axis A B: and the Focus S with B the Term of the Axis: the Body will defcend in the right Line A C: and the Area ABD will become in this Cafe alfo proportional to the Time. From whence, if a right, Line perpendicular to the Axis as CD, be fuppos'd to be mov'd downwards always parallel to it felf, fo that the Area A B D fhould be every where proportional to the Time, the Point C will determine the Place, unto which the Body would reach that falls downwards to the Center in the fame given Time.

As for Example. Let A B the mean Diftance of the Moon from the Center of the Earth, be as before about 1257696000 feet; it is required that we Chould determine the Place of the Moon falling ft raight down, in the firft Day of the Fall. It is known from what hath been already demonftrated, (Corol. 7. Prop. 2) that if the Motion of the Moon fhould ceafe, it would fall about $16\left[\mathbf{I}_{1}\right.$ Englifh Feet in the Space of one Minute. From whence (by Coroll. of Prop. 5. Select Prop. out of Archimedes,) the Circular Area ABD will be of about $894^{83} 812704000$ fquare Feet, [as being

176 Mathematical Pbilofoply.

equal to the Rectangle of cd drawn into the half of A B. From whence, feeing there are 1440 Minutes in a whole Day, the Circular Area ABD belonging to the whole Day will be of about 128856690293760000 fquare Feet; but the given Time is one whole Day, or 1440^{\prime}. .If therefore we can define the Point D , fo that the Area ABD fhould be of 128856690293760 000 fquare Feet, the Sine of the Arch A D, that is, CD will determine the Line AC which is defcrib'd in that Time, as being the verfed Sine of the fame Arch. But that Area is equal to the Rectangles $\frac{1}{2} C D \times O B$, and $\frac{1}{2} A D \times O B$, or to the Retangle $\frac{1}{2} \mathrm{CD} \times \frac{1}{2} \mathrm{AD} \times \mathbf{O}$ B. If therefore the given Area be divided by the Semi-diameter OB,the Quotient will give the half of CD and OB. From the Table of Sines therefore that Arch is to be fought, the half of which beirrg fuperadded to the half of its own Sine, will yield that Quotient. But that Quotient is by Calculation of 204909120 Feet; or by reducing it to a Circle, whofe Radius is of 10000000 , will contain 3258484 of thofe Parts. And if in the Tables of Sines, we look for the Sine of 19 Degrees and almoft s I Minutes, the Sine of one Minute multiplied by 11302909×1130, will give 3287170 Parts, as belonging to the Arch AD, which is of 18 Degrees and 50°, the Sine of which Arch is of $\mathbf{3 2 2 8 1 6 5}$ Parts; fo that the Sum of both will be of 6515335^{\prime}; the half whereof is 3257667 , which agrees with the firft Number $\mathbf{2 2} 88484$ exactly enough. The Line CD therefore' is the Sine of $18^{\circ} 50^{\circ}$, and the Line defrib'd in that Space of Time is the verfed Sine thereof, which is 535382 Parts long; that is, by reducing it to the Semi-diameter of the Moon's Orbit 33667390 Feet long, that is

Mathematical Pbilofopby. 177

6,376 Miles and 2, 1 io Feet. And in the fame manner it will be defin'd, in what time the Moon would defcend to the very Center of the Earth. But becaufe we have deduced that before by another and more ealy way of Computation, we Shall not profecute it any further here.

Coroll. If the Figure R P B be not an Ellipfis, but an Hyperbola or Parabola, the thing will be difpatch'd in the fame manner by a Rectangular Hyperbola, or any Parabola; but by reafon of the Difficulty of the Practice, and that it is not neceffary, we fhall pafs it by here.

Coroll. (2.) The Times wherein any Bodies would fall to the Center from divers Diftances, ane betwixt themfelves in the Sefqui-alteral Proportion of thofe Diftances directly. For the Line Ac, that in a given Time is produc'd at divers Diftances, is reciprocally in the duplicate Proportion of thefe Diftances. From whence ad the leaft Sine, will be in the fubfefquiplicate Proportion of the Diftance reciprocally; and the Area ic d $x \cdot A \cdot B$ defcrib'd at the fame time, in the fub-duplicate Proportion of the Diftance directly. From whence, fince the entire femi-circular Area A DB is in the duplicate Proportion of the Diftance directly, the Time proportional to the fame will be in the fefquiplicate Proportion to the piftagce directly. 2. E. D.

As for Example. Let another AB be double to this AB; then the vanifhing Subrenfe of the Angle of Contact, or the little Line A c, will be only a 4 th Part of the other Ac: And the Sine $c \mathrm{~d}$ will be fub-fefquiplicate of $\mathrm{c} d$, or as the Side of the Square to the Diameter; that is, 7 to 10 almoit: the Area alfo $\frac{1}{2} \mathrm{~cd} \times \mathrm{AB}$ will be to $\frac{1}{2} \mathrm{~cd}$ $\times A B$ wedbrigh, as $2 \times 7=14$ is to \times 10 Fonrivom whence, the Area defcribed in the

178 Matbematical Pbilofophy.
greater Diftance will be to the Area in the.lefs, but which is defcribed in the fame time, nearly as 14 to 10 , or as the Diameter in a Square is to the Side. But the entire Area to be defọribed by the greater Line AD in the Defcent, is to the Area to be defcribed by the leffer Line BD in the Defcent, as 4 to 1 , or 40 to 10 . Therefore the Time of the Defcent in the greater Diftance, will be to that in the leffer, in that Proportion in which the Ratio of 40 to 10 exceeds that of 14 to io. But the Proportion of that Excefs is the fame as that of 40 to 14 , or as the Diameter of a Square is to the Quadruple of the Side. From whence the Lines are betwixt themfelves, as the Diameter of a fquare is to the Quadruple of the Side; that is, in the fefqui-alteral Proportion of the Diftances directly. 2. E. D.

Coroll. (3.) If therefore we fuppofe any one of the primary Planets, as alfo of the Secondaries of Saturn and 'Fupiter, to fall to that Center of its Orbit, and have the Times of that Defeent already defin'd and computed; it win be eafy from the known Diftances of the reft, to define the Times alfo of their Defcent; which thing we have perform'd before upon another Ground, and therefore fhall not repeat it again.

Coroll. (4.) Since therefore the Velocity in an Elliplis in a mean Diftance from the Focus; that is, the Velocity of a Body falling to O, the Center of anEllipfis whenit ends in a rightLine, is equal to the equable Velocity of a Body revolved in a Circle, the Radius whereof is BO ; it is manifeft, that the Velocity of a Body falling in \mathbf{O}, the very middle of the Space, is equal to the Velocity of a Body revolved in a Circle at the fame Diftance. From whence it alfo follows, that the Velocity of a Body falling at a remder? Diftance,

Matbematical Pbilofophy.

is lefs than the circular Velocity, and at a nearer Diftance greater.
XXV. A Problem. If the Centripetal Force be proportional to the Altitude, or the Diftance of Places from the Center directly, to define the Times in which Bodies falling down will defcribe any given Spaces.

If the Body doth not fall perpendicularly, it will defcribe fome Conic Section, the Center whereof will agree with the Center of Force, as appears from what hath been already faid, Prop. 19. Let (Fig. 6. Plate s.) the Conic Section be the Ellipfis A R P B: Let O be the Center thereof; and upon A B the greater Axis of the Ellipfis, let there de defcribed the Semi-circle ABND, and let the right Line D P C pafs through the falling Body perpendicular to the Axis. Which done, and the Line DO and PO being drawn to the Center, the Area A O D will, by the Conics, be proportional to the Area AOP, and confequently to the Time. For, as before (by VI. I Elements) as CD is to C P, fo is the Area of the Triangle OCD to the Area of the Triangle OCP. And allo, by the Conics, as the fame C D is to the fame C P, fo is the circular Area C A D to the Elliptic Area CAP; and confequently, the Sum of the former Areas A OD will be (V. 12 Elements) to A OP the Sum of the latter Areas; as $C D$ is to $C P$; or, by the Conics, as the greater Axis of the Ellipfis is to the leffer Axis of the fame; and confequently in a Proportion given, proportional to the Time. Now A B the greateft Axis of the Ellipfis or Diameter of the Circle remaining, let the Breadth of the Ellipfis, or its leffer Axis, be continually diminifh'd; and by the Force of what hath been already demonftrated, the Area A OD will remain proportional to N^{2} the

180 Matbematical Pbilofophy.
the Time. And let that Breadth be diminifh'd infinitely; fo that the Elliptic Orb A R B P may now fall in with the Axis, the Body will defcend in the right Line AC, and the Area AOD. will in this Cafe alfo be proportional to the Time. From whence, if a right Line perpendicular to the Axis, as CD, be fuppos'd to be mov'd always downwards parallel to it felf, fo that AOD may be every where proportional to the Time, the Point C will determine the Place unto which the Body in falling down will reach in the given Time.
Coroll. (r.) Becaufe of the Equality of the circular Area that is every where to be defcribed in equal Time about the Center of the Circle; the Motion of the Point D will always be equable, and will defcribe equal Arches in a given Time.

Coroll. (2.) The Times therefore of Bodies falling and defcribing what Spaces foever, as AC, are betwixt themfelves as the Arches themfelves AD; and the Spaces defcribed AC, are as the verfed Sines of thofe Arches.
Coroll. (3.) But the Velocities produced in any Places whatever, as in \mathbf{C}, are as the right Sines of the Arches A D. For let the Line cd be drawn parallel to $C D$, at a Diftance infinitely fmall, and let $d D$ the Tangent of the Circle be drawn. Whilft therefore the Point D defcribes the Tangent $d \mathrm{D}$, the falling Body defcribes the little Line c C equal to de ; and becaufe of the given Velocity of the Point $\mathrm{D}, \mathrm{d} \mathrm{D}$ will alfo be given in length for the given Time. In the Triangle therefore $\mathrm{de} D, \mathrm{~d} \mathrm{D}$ the Radius of the. Circle will be given, and de the right Sine of the Angle d De . And becaufe of the Likenefs of the Triangles de D, COD, the Radius in

Mathematical Pbilooophy. 181

that Place will be OD, and the Line CD the right Sine of the Angle A OD; Therefore the Velocity in all Points whatever, as C, is as the right Sine of the Arch A D. 2. Es D.

Coroll. (4.) The Times in which Bodies fall from any Places whatever to the Center, are always equal. For fince, by the Hypothefis, the accelerating Force, and confequently the Velocity arifing, is as the Line to be defcrib'd; it is manifeft, that the Times of Defcent are every where equal. 2. E. D.

Coroll. (5.) Since, by what hath been demon ftrated before, (Corol. 3. Prop. 19.) the periodic Times of all Bodies revolving about the Center of Ellipfes are equal, the Quarters alfo of the periodic Times A BP.V will be equal. And fince this is true in all Ellipfes whatever, it will be true alfo in the Extremes of Ellipfes on this fide, and on that; to wit, in the right Line A O, and the Quadrantal Arch A N; that is, the Times.wherein one Body in falling comes from any Place whatever, as A unto O, and another in revolving defcribes a Quadrantal Arch, will be equal every where. 2.E.D.

Scholium (r.) Since therefore the periodic Time of the Moon about the Earth, is (per Schol. Prop. 14.) to the periodic Time of any other Body revolving about the Center of the Earth at the Diftance of a Semi-diameter of the Earth, in the fefqui-alteral Proportion of the Diftances; and fince within the Surface of the Earth, the Centripetal Force is every where in the direct Proportion of the Diftance, as will hereafter be demonftrated : It will not be unpleafant to produce an Example of the foregoing Reafoning : and to shew by Calculation, in what Space of Tine heavy Bodies would defcend to the Center, down

182 Matbematical Pbilofophy.

fome empty Hole or Pit which reaches thither: For the finding therefore, according to what hath been already demonftrated, the Quarter of the periodic Time at the Surface of the Earth, as being the Time of the Defcent of Bodies from the Surface to the Center of the Earth: Let it be made thus; as is the Cube of the Moon's Diffance, $60 \times 60 \times 60=216000$, to the Cube of the Semi-diameter of the Earth $\mathrm{I} \times 1 \times \mathrm{I}=1$; fo is the fquare of the Moon's Period $39343^{\prime} \times 39$ $343^{\prime}=1547871649$ to the fquare of the Period in the Surface of the Earth $=7166 \leqslant 07$, the fquare Root whereof 84 LL 6 will yield the Minutes in Time, in which a Body or Planet at the Diflance of the Semi-diameter of the Earth from the Center would perform its whole Period about it. The Quarter of which Number 21LIS, will Shew the Space of Time in Minutes, in which all heavy Bodies whatever would fall thro' the Semiddiameter of the Earth to the Center of the fame. And fince in all Diftances whatever, the Time of falling is the fame, as hath been already fhew'd, (Coroll. 4 . foregoing); it is manifeft, that all Bodies would defcend, and fall from any Place to the Center in $2 r$ Minutes, and is Seconds.

Schol. (2.) But if the Time of the Fall through any given Space whatever be requir'd to be found without the Ufe of $A l g e b r a ;$ as for Example, thro' a 4th Part of the Semi-diameter; feek in the Tables of Sines, what Angle that is, the verfed Sine whereof is a 4th Part of the whole right Sine ; to wit, the Arch A D which is of $41^{\circ} 25^{\prime}$. From whence the Time of the Fall (fee Fig. 6. Plate ¢.) along AC, the 4th Part of the Semi-diameter, will be to the Time of the whole Fall to the Center, as the Arch AD is to the Quadrantal Arch A N, (Corol. 2 foregoing) or as $41^{\circ} 25^{\prime}$ is to 90°. And

-

Digitread by Google
1

Matbematical Pbilooophy. 183

And fince $90: 41^{\circ} 25^{\prime}::: 21^{\prime}$ 15 ${ }^{\prime}$ horary Minutes: 9^{\prime} L97 or $9^{\prime} 58^{\prime \prime}$: It is manifeft, that any Body whatever would fall down a 4 th Part of the Semidiameter of the Earth in 9 Minutes, and $58 \mathrm{Se}-$ conds. And that the Velocity in the Point C is to the greateft Velocity, or that which would be at the Center it felf, in the Proportion of the Right Sine CD to the whole Sine ON, (Corol. 3. foregoing) or as 66153 is to 100000 , as is moft manifeft from what hath been juft now demonftrated.

$$
\text { April 7. } 1705 .
$$

Lect. XVII.
XXVI.

Problem. A Body being carried about a Focus in a given parabolic Trajectory, to find the Time in which a given Arch has been or will be defcrib'd, whether in the Afcent or Defcent.
Let \mathbf{F} (in Fig. x. Plate 6.) be the Focus of the Figure, T the principal Vertex, Tl or Ts the given Arch defrrib'd, or to be defcrib'd: Tt or Tq the Abfcifs of the fame Arch, which is alfo given, the Arch being given: tl or q s the Semiordinate, which alfo is given, the Arch being given. The Time wherein the Arch Tl or Ts is defcribed, is requir'd: The Parabola being given, the Latus Rectum of the fame, and confequently TF the Fourch Part thereof is given. From the Centripetal Force of the Central Body, there N 4 is

184 Matbematical Pbilofopby.

is alfo given the Velocity of the Body at the principal Vertex; or that which (by Prop. 22. foregoing) is to the Velocity of a Body defrribing 2 Circle, the Radius whereof is T F , as the fquare Root of the Number Two is to Unity. From whence alfo there will be given the leaft Area to be defcrib'd by the Radius TF in any the leaft Time which is given. But the Area FTl or FTs, is equal to two thirds of the Rectangle $\mathrm{T} \mathbf{x} \times \mathrm{tl}$, or $\mathrm{Tq} \times \mathrm{q}$ s. To which, if there be added the Triangle $\mathrm{F} t 1$ in the former Cafe, and in the latter the Triangle Fq s be taken away from the fame, there will alfo be given the Area Ftl or Fts; which being divided by the leaft Area defrribed at the Vertex T, in any very fmall Time given, will give the Time fought.
As for Example. Let the Parabola given be that which the Comet that was feen

See Newton, p. 494,8-498. in Europe in the Year 1680, defcrib'd in the End of that Year, and the Deginning of the next. Let F q be equal to the Semi-diameter of the great Orb, to wit, of roooo equal Parts, fuch as the Latus Rectum contains 236 L 8 ; and confequently FT of 59 L 2 Parts, and the whole Abrcifs T q of Parts 10,0 99 2 2. Let us alfo fuppofe the Comet to have been in the Vertex of the Parabola, or in its Pe rihelium T, December 8. Four Minutes after Noon. For the finding the Velocity of the Comet in the Vertex of the Parabola, let there be found in the firf place the Velocity of a Planet revolving in a Circle at that Diftance, by this Analogy: as is the fquare Root of the Diftance FT, of $5 \varsigma_{2}$ Parts $=7 \mathrm{~L}$, to the fquare Root of the Diftance F q, of 10,000 Parts $=100$;
Prop. 13. fo is the annual Velocity of the Earoh, to the Velocity of a Planet defcri-

Matbematical Pbilofopby. 185

defcribing a Circle, the Radius whereof is FT. Then, as the fquare Root of the Number two =1L4I4 is to Unity; fo will the Velocity of a Comet in the Vertex of its Parabola be, to the Velocity of a Planet in a Circle at the fame Diftance. But the Earth, by the mean Velocity of the fame, defcribes 11195 Parts in the Space of one Minute, and 747:100: : L195: 1/5s2. From whence the Velocity of the Comet in its Perihelium, will be that which in the Space of one firft Minute defcribes $\frac{1 L 414}{1} \mathrm{I} \mathrm{L}_{515}=2 \mathrm{~L} 19$ Parts, fuch as the Semi-diameter of the great Orb contains ro000, and fuch that scl 2 of them are contain'd in the leaft Diftance of the Comet. The Area therefore defcrib'd in that given Time by the Comet, with a Radius drawn to the Center of the Sun, is equal to the Rectangle of $\frac{1}{2} \varsigma 9 L 2 \times 2 L 99$ $=64 \mathrm{~L} 824$ fquare Parts. That therefore we may at length find the Space of Time wherein the Parabolic Arch Ts, where Fq is equal to the Semidiameter of the Orbis magnus, is defcrib'd, we will compute the Area TsF, and compare it with the former Area which was defcrib'd in one Minute. Therefore, as TF of $59 l_{2}$ Parts is to T q of 10059l2 Parts; fo let the fquare of F H of $118 \mathrm{~L}_{4}$ Parts $=14018$ Ls6, be to 2382018 L6r fquare Parts; the fquare Root whereof $=1543 \mathrm{~L} 3$ will, by the Conics, be equal to the Semi-ordinate qs: Which being drawn into half the Diftance $\mathbf{F q}$ $1543\left[3 \times \frac{1}{2} 10000=7716500\right.$, the Area of the addititious Triangle Fqs will come forth. But the whole Parabolic Area Tqs is equal to two 3 ds of the Kiectangle under T q of roos $9 \mathrm{l}_{2}$ Parts, and Sq of 1543 L 3 Parts, or to the fquare Parts of $\frac{2}{3} 15524363$ L; $6=10349575 L 57$. From which Number, let there be deducted the Triangle Fs q

186 Matbematical Pbilofophy.

of 7716500 fquare Parts, the remaining deferibed Area will be of 26,3075 Ls7 fuch Parts; which being divided by the Parts of the Area belonging to one firft Minute, there comes forth $\frac{26330755 L 7}{64[824}$, the Space of Time fought; or that in which the Comet would defcribe the Arch Ts $=406 \mathrm{IL} 9$ $=28^{d} \cdot 4^{h} \cdot 59^{\prime}$. Wherefore the Arch Ts will be defcrib'd in 28 Days, and almoft 5 Hours. And the Comet poffers'd the Point s on the sth of $\mathcal{F a}$ zuary, about 4 hours Afternoon. Which alfo exactly agrees with Sir Ifaac Newton's Scheme deduc'd from Obfervations.

If therefore we, from fuch Calculations, fhall once have the Times rightly defin'd, wherein any Comet defcribes any Arches whatever, as T s of a Parabola, or rather an Ellipfis, fo eccentric that it may fafely be reckon'd for a Parabola, by the inverfe Method we may be able alfo to define exactly enough, the Arches belonging to any given Times; I mean the fame way of working by which, in Kepler's Hypothefis and Tables, we are wont to find the Ceoquate Anomaly of the Planets from their mean Anomaly in a given Ellipfis.

Coroll. (r.) Seeing therefore the ablatitions Triangle Fsq vanifheth away in the Point h, the Area to be computed at that Time will be equal to two 3 ds of the Rectangle of TF drawn into Fh; or $\frac{2}{3} \varsigma 9 L 2 \times 118 \mathrm{~L} 4=4676 \mathrm{~L} 8$, and confequently the Time belonging to this Area will be equal to $\frac{4676[8}{64[824}=1$ h. $12^{\prime} .9^{\prime \prime}$. So that $T h$, the Arch betwixt the principal Vertex and the Ordinate to the Axis through the Focus, was defcribed in I h. $12^{\prime} .9^{\prime \prime}$. And the Comet poffefs'd the

Matbematical Pbilofophy. 187

the Point s December the 8th, 17 Minutes after One in the Afternoon.

Coroll. (2.) Hence alfo the Space of Time wherein any given Arch is deferibed, doth eafily become known ; viz. by computing the Time from the Perihelium to both Places, and taking away the fhorter Time from the longer: For by that means the Interval of Time belonging to the given Arch will become known. Thus the Time agreeing to the Arch $\mathrm{Th}=\mathrm{I}$ h. $12^{\prime} .9^{\prime \prime}$. being deduc'd out of the Time agreeing to the Arch Ts $=28^{\text {d }} \cdot 4^{\mathrm{n}} \cdot 59^{\mathrm{\prime}}$, the Remainder is the Interval of Time belonging to the Arch hs $=28^{\mathrm{d}} .3^{\mathrm{h}}$. 46'. 5 I'. And fo every where.

Coroll (3.) Hence alfo is deriv'd the Method of finding the defcribed Arch from the given Time. For feeing that at the Point h the ablatitious Triangle F q s, and the addititious one F tl, doth always vanifh away; and confequently the Area in that Place may be eafily computed, as being in our Example of $4667 / 4516$ quare Parts: Since alfo in that Place TF is half FH; and fince, laftly, the Abfcifs TF doth always increafe in the fame Proportion, in which the fquare of its Ordinate FH increafeth : any Time whatever, or the Area proportional thereto, being given, the Arch belonging to the fame will alfo be given ; if that Quantity of proportional Increments or Decrements be taken, that $\frac{1}{2} \mathrm{q} s \times \mathbf{F q}$ being taken out of $\frac{2}{3} \mathrm{qs} \times \mathrm{Tq}$ the Remainder be the Quantity of the given Area. Thus, that I may find the Arch T of $28^{\text {d }} .14^{\mathrm{h}} .59^{\prime \prime} .=40619^{\prime}$, that is, that which belongeth to the Area of 2633075 L 57 . fquare Parts; Ifeek in the Tables of fquare Numbers, if I would work without Algebra, where fuch a Number is to be found, (the Line T F being taken for Unity, and the Area FT

188 Matbematical Pbilofophy.

FTh for the fquare of Unity; or for ${ }^{\frac{2}{3}} \mathrm{TF} \times \mathrm{Fh}$ $=a 5_{3} \mathrm{~d}$ Part of the whole Area; and Fh being taken for the Number two:) That the Numbers to be added to Unity being proportional, the fquare of the Numbers to be added to two $\frac{1}{2} q \mathrm{~s} x$ $\mathrm{q} F$ being taken out of $\frac{2}{3} \mathrm{q} 5 \times \mathrm{Tq}$, the Remainder may be the given Area $=563$: Which Number will occur no where elfe, but where $\mathbf{F q}$ is to F T as 10000 to 59 l2, or as 167 to I nearly. From whence it is manifeft, that the fought Arch is no other but that of which T T of 100 s 9 L 2 Parts is the Abfcifs. But fince this Method confifts in making Effays, and is indirect, it is not fo artful. However, what hath been here delivered contains enough in it, to Shew in fome meafure the Origin and Method of compiling Tables.

Scbolium. Note, That Sir Ifaac Ncewton's Geomer trical Method doth fhew directly, from the given Time, the defcrib'd Arch; that is,' if F T be made to $t y$, as the Time belonging to the Area ThF is to the given Time, the Point t poffeffing the Middle of the Line T F, and $t y$ being drawn perpendicular to T F ; the Diftance from the Focus F will be equal to $y s$: From whence the Circle defcrib'd from that Radius
see Newton, Book I. Prop. 30. will determine the Point. But fince this Method is not fo fit for Calculation, we pals it by in this Place.
Scholium. Hitherto we have chiefly expounded the Motions of Bodies attracted unto an unmoveable Center, fuch as farce is in the whole Compafs of Nature. For Attractions are wont to be unto Bodies, and the Actions of the Bodies attracting and attracted, are always mutual and equal, as we fhew'd before, (Lave of Motion 5.) ; fo that neither can the Attrahent reft, nor the Attracted,

Mathematical Pbilofopby. 189

tracted, if they be two Bodies; but muft both, as it were, by a mutual Attraction, where the projectile Motion of both is duly imprefs'd upon them, be revolv'd about the common Center of Gravity. And if there be more Bodies, (which are either attracted by a fingle one, or attract each other mutually) thefe ought to be fo mov'd among themfelves, that the common Center of Gravity fhould either reft, or be mov'd uniformly in 2 ftraight Line, as we fhew'd before, (Lavy of Mation 25. .) For which Reafon, we proceed to fet forth the Motion of Bodies, as mutually drawing each other; confidering the Centripetal Forcemas Attractions, altho' indeed fpeaking phyfically, they may perhaps be more rightly called Impulfes. For we look not here fo much at the phyfical Caufes, as at the Effect it felf, confidering and meafuring things in a Mathematical Way, and ufing an eafy and familiar Term, though in the ftrict Notion of it perhaps it may not agree.
XXVII. Two Bodies attracting one another, defcribe like Figures both about the Common Center of Gravity, and about one another ; that is, whilf they really defcribe like Figures about the Common Center of Gravity, the Eye being placed in either of the two, and not perceiving, its own Motion, or that of the Center of Gravity, a Figure like to the fame will feem to it to be defcrib'd.

For the Diftances from the Common Center of Gravity are reciprocally Proportional to the Bodies, and confequently in a given Proportion to each other ; and by Compofition in a given Proportion unto the whole Diftance betwixt the Bodies. But thefe Diftances are carried about their Terms, with a common Angular Motion, becaule

190
 Matbematical Pbilofopby.

becaufe lying always in a ftreight Line, they do not change their Inclination to one another. But Right Lines which are in a given Proportion to one another, and are carried about one another with an equal Angular Motion, defcribe altogether like Figures about the fame Points (in Plains which either reft together with thefe ℓ Points, or are mov'd with any Motion which is not Angular.) And therefore the Figures which are defcrib'd by thefe revolving Diftances are equal. 2. E. D.

Scbolium. Thus the Earth and the Moon are caaried by a Monthly Motion about the Common Center of Gravity of both. But to us placed on the Earth, to whom neither the Motion of our own Seat, nor of the Center of Gravity, as being an Invifible Point, is perceptible, the Moon alone feems to be carried about; and fo it muft needs happen in all the reft of the Syftems of the Planets.
XXVIII. If two Bodies attract one another with any Force whatever, and be in the mean while revolv'd about a common Center of Gravity ; a Figure like and equal may.be defcrib'd by the fame Force about either Body unmov'd, to the Figures which the Bodies fo mov'd defcribe a about one another.

In Fig.2. Plate 6.Let S and P be revolv'd about C ;' the common Center of Gravity; S from S to T, and P from P to Q; from a given Point s let $s p$ and $s q$ be drawn, equal and parallel to $S P$, TQ. Here the Curve pq v, which the Point p defcribes about the unmoved Point s , will be like and equal to the Curves, which the Bodies S and P defcribe about each other ; and confequently, by our laft Propofition, like to the Curves S T and PQV, which the fame Bodies defcribe about C , the

Matbematical Pbilofophy. 191

the common Center of Gravity; and this fo becaufe the Proportions of the Lines S C. C P, and $S P$, or $s p$ to one another are every where given.

Cafe (r.) That common Center of Gravity C, either refts, or is uniformly mov'd ftraight forward, by the 2 th:Law of Motion. Let us firft fuppofe it to reft; and in s and p let.two Bodies be placed, the unmof ${ }^{3} d$ one in s, the mov'd one in p ; and let them be refpectively like and equal to S and P. Then let the right Lines $P R$ and $p s$ touch the Curves $P Q$ and $p q$ in P and p; and let. $C Q$ and $s q$ be drawn forth unto R and r. Here becaufe of the likenefs of the Figures $C P R Q$ and sprq, Q will be to q , as $\mathbf{C} P$ is to sp ; and confequently in a given Proportion :' Therefore if the Force wherewith the Body P is attracted to the Body S, and confequently towards the intermediate Center \mathbf{C}, fhould be to that wherewith the Body p is attracted towards the Center s in that fame given Proportion; thefe Forces would in equal Times always.draw Bodies from the Tangents P R, and $p r$ to the Arčhes P Q, pq-by Intervals : Proportional to thófe Forces R Q. r q ; and confequently the latter Force would make that the Body p fhould be turtn'd round in the Curve p q v, which would be like to the Curve $P \mathrm{P} \mathrm{V}$, in which the former Force inakes the Body P to be turn'd about ; and the Revolutions would be compleated in the fane Times. But becaule thefe Forces are not to one another in the Proportion of C P to sp; bat (by reafon of the Similitude and Equality of the Bocies δ^{\prime} and s, P and p, and the Equality of the Diftancess P, $s . p$) equal to one another, the Bodies will ter attracted equally from the Teingents; and therefore that the latter Body p

192 Mathematical Pbilofophy.

fhould be drawn thro' the greater Interval ra; greater Time is requir'd, and this in the fubduplicate Proportion of the Intervals; becaufe the Spaces defcribed are in the duplicate Proportion of the Times by Propofition 4. Therefore let the Velocity of the Body p be fuppos'd to be to theVelocity of the Body P in the fub-duplicate Proportion of the Diftance $s p$ to the Diftance CP; fo that in Times which are in the fame fub-duplicate Proportion, the Arches PQ, pq may be defcribed, which are in the entire Proportion like to one anocher : In this Cafe, the Bodies P, p which are always attracted by equal Forces, will defcribe about the quiefcent Centers C and s_{j} like Fighres $\mathbf{P Q V}, \mathrm{pq}$. the latter whereof $p q v$ is like and equal to the Figure which the Body P defcribes about the moved Body.S. e. E. D.

Cafe (2.) Let us now fuppofe that the common Center of Graviry, together with the Relative Space in which the Bodies are moved amongft sherufetves, goes forwards uniformly in a Right Line; by the 26th Law of Motion, all the Motions will be perform'd in the Space as before; and confequently the Bodies will defcribe about one another the fame Figures as before; which therefore will be like and equal to the Figure p q $\%$. 2. E. D.

Coroll. (2.) The periodic Time about the unmov'd Body s, will be greater than the periodic Time about the moved Body S, or rather that which is about C the, Center of Gravity: and that in the reciprocal Proportion of the Angles defcribed at the fame time; that is, in the fubduplicate Proportion of the Radii $\mathrm{S}_{\mathrm{g}} \mathrm{p}$ and CP_{3} that is, in the fubduplicate Proportion of the Bodies $S+P$ to the Body $S_{0}:$ Thus, if the Moon p fhould
fhould be moved abow s, which is the Earth unmov'd, at the fame Diftance that it is: And fince the Quantity of the Matter in the Moon is about one 4oth Part of the Quantity of Matter in the Earth; the periodic Time of the Moon would be greater than that periodic Time of the fame, which is at prefent, nearly in proportion of the Number 40 to the Number 391498 . For it is 40: 39L498:39:- From whence, fince the periodic Time of that Planet is now $27 \mathrm{~d} .7^{\mathrm{h}} .43^{\prime}$, or 39343^{\prime}; in the other Cafe it would be 3984 r , or $27{ }^{\text {d. }} \mathbf{1 6}^{6 \mathrm{~b}} . \mathrm{x}^{\prime}$.
Coroll. (2.) Hence two Bodies drawing one another by Forces direatly proportional to their Diftances, defcribe (fee Prop. 19.9.) boch abbut the common Center of Gravity, and about each ocher Ellipfes Concentrical, and which have their Centers in the Centers of the Forces. And on the contrary, if fuch Figures be defcribed about the Centers of Ellipfes, the Centripetal Forces are directly proportional to the Diftances from thofe Centers.
Coroll. (3.) Two Bodies drawing one another by Forces reciprocally proportional to the square of their Diftancess, (fee Prap. 2x:) do both abuyt the Common Center of Geavity, and aboureach, other, deferibe Conical Sections, which have: their Foci in the Center, about which the Figures are defribed. And on the contrary, if fuch. Figures be defrribed about the Focus of Cunic Section; the Centripetal Forces are reciprocally: proportional to the Squares of the Diftances. -... i,

Coroll. (4) Any Two Bodies revolving about a comman Center of Gravity, (fee Prop. if:) do by their Rays drawn to that Center, and to fach: other, defribe Areas proportional to the Timus,

194 Matbematical Pbilofopby.

by reafon of the perpetual Direction of the Rays, or Centripetal Forces to thofe Centers.
May 14. 1705.

Lé т. XVHI.

XXIX. 登 Firg. 2. Plate 6.) which are revolv'd about a common Center of Gravity, do attract each. other with a Force reciprocally proportional to their Diftance from the Center : the Tranfverfe Axis of the Ellipfis, which either of them, as P defcribes about the other S, will be to the Tranfverfe Axis of the Ellipfis, which the fame Body P might defcribe in the fame periodic Time about the other at Reft, as the Sum of the two Bodies S + P is to the firft of two Proportionals betwixt this Sum, and that other Body S. For if the defcribed Ellipfes were equal one to the other, the periodic Times would be, by the laft Propofrion, in the fubduplicate Proportion: of the Body \mathcal{S}, to the Sum of the Bodies $S+P$. Now, if the periodic Time be diminifh'd in this Proportion in the latter Ellipfis, the periodicTimes will become equal: And the Tranfverfe Axis- of that Ellipfis will (by Prop. 13.) be diminih'd inthe Proportion, of which this Subduplicate is the Sefquiplicate ; that is, in the Proportion of which the entire Proportion of S to $S+P$ is triplicate; and confequently will come to be to the tranfverfe Axis of the other Elliplis; as the firft of the
two

Matbematical Pbilofophy.
 195

two mean Proportionals betwixt $S+P$, and S is to $S+P$. And inverly, the tranfverfe Axis of the Ellipfis, defcribed about the moved Body, will be to the tranfverfe Axis of that defcribed about the Body unmov'd, às $S+P$ is to the firft of the two mean Proportionals betwixt $S+P$ and S. Q.E.D.

Thus, if the Moon's mean Diftance from the Earth; that is, half the tranfrerfe Axis of the Ellipfis defcribed in the Suppofition of the Earth's being unmoved, be of 60 Semi-diameters of the Earth, in Proportion to the given periodic Time; that Diftance will be greater than 60 Semi-diameters of the Earth, on the Suppofition of theCircumrotation both of the Earth and the Moon about a common Center of Gravity; and that in the Proportion of the Sum of the Earth and the Moon to the firft of the two mean Proportionals betwixt the Sum of the Earth and of the Moon, to the Earth; or in-the Suppofition of the Moon's being a 4oth Part of the Earth, as 40 is to 39166. For $39: 39 \mathrm{~L} 33$: 39 l 66 : 40 . From whence, fince the Diftance of the Moon in the Hypothefis of the Earth's being unmoved, is put to be of 60 Semi-diameters of the Earth; it will be, in the other Hypothefis, of 60 Semidiameters.

Coroll. From what was juft demonftrated, it follows, that if two Bodies drawing each other by any Force whatever, and which are not moved from any thing elfe, nor impeded, be moved in any fort whatever ; their Motions will be the fame in effect, as if they did not attract each other, but were both attracted with the fame Force by fome 3d Body placed in the common Center of Gravity: And the Condition of the attracting Force will be the fame, in refpect of the Diftance of the. Bodies from that common Center, and in

1я6 Matbematical Pbilofopby.

refpet of their whole Diftance betwixt thenrfelves. For that Force wherewith the Bodies draw each other, becaufe it tends to the Bodies, tends to the intermediate common Center of Gravity; and the Diftances from the Center of Gravity, are every where proportional to the Diftances of the Bodies; and confequently the Forces are the fame, and do in the fame Proportion increafe or decreafe, as if they proceeded from the intermediate Body in the Center of Gravity.
XXX. Many Bodies, whofe Forces are proportional to the Quantity of Matter, and in the direct Proportion of the Diftances, may be mov'd in divers Ellipfes about-their Centers, in fuch fort that their Motions may continue perpetually without any Perturbation, and that the common Center of Gravity of them all may in the mean while reft:

In the firff place, let the two Bodies T and L (fee Fig. 3. Plate 6.) be fuppos'd to have D for the common Center of Gravity. If a projectile Motion be once imprefs'd in due Proportion according to parallel lines fituate in the fame Plane, but according to Directions contrary to both, thefe Bodies will defcribe like Ellipfes, having their Centers in D the common Center of Gravity, as "we fhewed above;' Prop. '19.

Now let S, a ${ }^{\text {d }}$ Body, draw the two former T and $\mathrm{L} ;$ with the accelerating Forces S . T and SL, and be reciprocally drawn by ahem. The Force ST may, by the 22d Law of Motion, be refotv'd in the Forces S D, D T; and the Force S L into the Forces SD, DL. But the Forces D T, D L, which are as TL the Sum of them: [For fince the Proportions of the Parts TD and D L do always remain the'fame, the Proportion of 'the whote: alfo $T L$ will remain the fame in all the Diftates

Matbematical: Pbilofophy.

of the Bodies T and L.] And the accelerating Forces of the Bodies themfelves T and L, are as the Diftances T L; and the additional Force arifing from the Body S, and tending according to the Line T L, is, as we have already feen , as the fame Diftances TLa Therefore the Sum of the Forces TD and L. D_{r} refpecting the Center of Gravity, are as the Diftances D T and T Le.But thefeare greater than the former Forcesy and confequently will make that thofe Bodies flopld defribe Ellipfes, either like to the former, with 2 fwifrer Motion, if the projectile Force be accelerated in Proportion to tho additional Centripetal Force; or of another, Species, if that projectile Motion remain given. The remaining accelerating. Forces SD and SD, whilft theydraw thofe BCdies equally, and according to the Lines TI, LK, parallel to DS, do nothing at all change their Situations each to other, but caufe that they fhould equally approach to the Line I K perpendicular to S D. But that Accefs, to the Line IK will be hindred, by caufing that the Syftem of the Bodies T and L; that is, that D the Center of Gravity of the Two on one Part, and the Body S on the other, ?hould be revolv'd with due Velocities in the given. Plane about C the common Center of the Threge, according to parallel Lines. The Body S by fuch a Motion (becaufe that the Sums of the Motions, being on both Sides directly proportional to the Diftance SD , and confequently to thofe CD and CS, do draw the Bodies towards the Center C:-) The Body S, I fay, for this Reafon will (by the faid Motion) defcribe an Ellipfis about the fame Point $\mathrm{C}:-$ and the Point D will defcribe an Ellipfis on the contrary Part ; in the mean while that the Bodies T and I;goon to defcribe their Ellipfes, as before, about the movable, Center D.

198 Matbematical Pbilofopby.
Ncw, let a fourth Body, as V, be added, and it will be concluded by the like Argument, that this and the Point \mathbf{C} may defcribe Ellipfes about B the common Center of Gravity of them all; the Motions of the former Bodies TL and S about the Centers D and C fill remaining, but fomething accelerated: And the thing will be the rame in cafe of more Bodies.

Coroll. (r:) The Cafe of a Syftem of Bodies revolving about other Bodies, where the Centripetal Forces are directly as the Diftances, affords exact Ellipfes, fuch as are in no wife difordered by the Addition of more Bodies. But by how much the more the Quantities of the Centripetal Forces depart from this Proportion, the Bodies muft neceffarily, ceteris paribus, the more diforder and difturb one another's Motions.

Coroll. (2.) But if the Centripetal Forces be reciprocally as the Squares of the Diftances, and 2 Syftem of two or more leffer Bodies revolving about a common Center of Gravity placed in the Focus of the Ellipfis, be preffed on one Side by 2 Body far greater than any of them, but fufficiently remote; and be preffed in fuch fort, that the common Center of Gravity of them all becomes not far diftant from the Center of the greater Body, the common Center of Gravity of the Syftem of the leffer Bodies will defcribe an Ellipfis about the greateft Body, or rather about the common Center of Gravity of them all. But divers Inequalities will arife in the Motions of the Jeffer Bodies, which we thall explain in what follows. Such indeed as Aftronomers have noted in our Moon from moft certain Obfervations.

Coroll. (3.) But the greateft Diforder of all will arife in the leffer Syftem, if the greateft Bo-
$d y$

Matbematical Pbilofophy. 199

dy fhould attract divers Parts of that Syftom unequally at equal Diftances; that is, if the divers Kinds of the various Bodies fhould gravitate unequally, or in divers Degrees towards the greateft Body; efpecially if the Inequality of this Proportion fhould be grearer than the Inequality of the Proportion of the Diftances from the greateft Body. For if the accelerating Force, whillt is acts equally, and according to parallel Lines, does nothing at all difturb the Motions of Bodies amongft themfelves, a Difturbance muft neceffarily arife from the Inequality of the Ation; and muft be greater or leffer, according to the greater or leffer Inequality. The Exceffes of the greater Impulfe, whilft they act upon fome Bodies, and not upon others; or at lefs upon fome than others, will neceffarily change their Situation amongft themelelves. And chis Difturbance being added to the Difturbance which arifeth neceffarily from the Inclination and Inequality of the Lines, will make the wholeDifturbance the greater.

Coroll. (4.) From whence, if the Parts of the leffer Syftem fhould be moved in Ellipfes about the Focus, or in Circles abont the Center, without any other Difturbance of their Motions, than what proceeds from the Inclination and Inequality of Lines drawn from the greateft Body; it is manifeft, that the accelerating Forces of all the Parts of the Syftem towards the greateft Body, are in equal Diftances equal ; and that all the Bodies comprehended in the leffer Syftem, do equally gravitate towards the greateft Body at equal Diftances.

Coroll. (5.) Hence it is alfo manifeft, that the Parts of that leffer Syftem are either urged by no accelerating Force, but what tends to the greateft Body, except it be very lightly and infenfibly ; or
at'leaft are urged very nearly with equal Impreffions, and according to parallel Lines. All which things it were eafy. to apply to the Syftems of the Earth and Moon, of Fupiter and: his Satellites, of Saturn and his Satellites revolving about the Sun.
XXXI. If a primary Plapet revolving about the Sun carry a Moon along with ir, this will be fo mov'd about the: Primary, that it: will perpetually be accelerated from the Quadrature with the Sun, unto the Conjunction or Oppofition next following; but from the Conjunction to the Quadrature, it will be retarded $\%$ and confequently will be carried mone fwiftly about ihe Conjunction and Oppofition, buit more flowly about the Quadratures.
In Fig. 4. Plate 6e let. Q be: the Sun, S the primary Planet revolving in ES:E:its:annual Orb, Poo pa:Moon' defctibing its own meniftrual PeriddiA D.B C about the Primary ${ }^{\text {; }}$ ing which Orbit, let the Points A and B defign the: Syrigies with the Sun; that is, the: Conjunction and Oppofition: C and D the $Q u a d r a t u r e s ;$ that is, the Points diflant on this Side andion that a Quander of a Circle from theConjunctiomsi.Oppaition. Further,lerQS, oriQk; or.Qk, otie mean Diftance of the Moon or Satellitiffom the Sun, reprefent the Quantity of the accelothoing A Arraction; that, to wit, whereby the Secondary Plaïct tends to the Suri; where it is placedjat the fanie Difance from the Sun, as the Pilifury; and Paor prbeifuppafed to be the Place of Tha Satebit in itstown' Orbic 's And lar Q.E or lof bexaken in the: bipe P Q orp Q, produced if need be, which QL or Q1 let be to: QK or © O in : he duplicate Proporsion QK or Qk to Qpor Qp; that is, foxhat it may be thus, $P \mathrm{Q}$:
 Thofe Thitrgs bing thus, this Line QL or Q, which

Matbeinatical Pbilofophy. 201

which was laft found, will exprefs the accelerative Attraction of the Moon placed at L or 1 towards the Sun in Q. Then let S, P or $S ; p$ be joined; and LM orImdrawn parallel to it, and meeting QS in M or m . Here the accelerative Attraction in: QL or Q1, by the 22d Law of Motion, will be refolyed into the Attractions LM, and $I F$, or $M Q$; or into $1 \mathrm{~m}_{y}$ and $1 \mathrm{f},:$ ot m ©; and this with the Directions of thofe Lines. Of which Attractions, that which is reprefented by $M Q$ or $m Q$ is reduced to the Atrraction $m . S$; by taking away the Attraction as QS', which is common to the Primary and its Sa. telles; and which confequently brings in no Anomalies. By which means the Atrraction of the Sarelles, tending according to the Direction S Q, .which ought:to be teckoned in this: Place, is re--duced to the Astraction M S in the Place P, fo minch as the Satelles is, more attracted to the Sun than the Priniary. From whence MS in the former Cafe, and mS in the latter, will defign the Difference of the Attractions tending along SiQ: And comequently the Satelles, by this means, is urged with a threefold Attraction, or - rather with fuch an Attraction ias may very well be refolv'd into three. The firft and chief being that wherewith the Primary S drawis this Secondary P or $p ;$ the fecond that which is proportio nal to LM or I m, with the Direction of the Line LMor 1 m ; that is, with the Diridtion of PS or p . !parallel tb: M or Ins: From wance the whole Force, compounded: of thefe two Attriy ctions, when it refpects the Center of the Primary S, will make that the Body P or p; if it were imprefs'd with thefe alone, would even yet defribe: Areas about the fame Center $\$$ / proportional to the Times, iby Prop. 15. Bur thel Satelles is
atfo atted on with a third Force; with one that is as MS or mS , and with the Direction from M or m towards S : that is, from L or 1 towards F or f. This, in the Pofition P, tends more to the Sun than its Primary; and that according to the Direction parallel to QS by the Excef's MS. And in the Poftion p, it tends lefs to the Sun than its Primary; and this according to the fame Direction parallel to QS by the Defect m S. Which will come altogether to the fame, as if we fhould reckon the Excefs MS from L towards F; and the Defect $\mathrm{m} S$ from f towards 1 ; or the Excefs from M towards S, and the Defect from in towarts S; or as if the Satelles were difturbed on this Side and on that, by a double Sun placed oppofte each to other. For when the Primary is drawn back from its Secondary towards the Sun by a true Excelf of Attraction, there will be altogether, as to the Primary, all the fame fenfible Effects, (and thofe alone are what we are now fearching after) as would be if the Primary being unmov'd, the Socondary were drawn away by the fame Difference of Ateraction unto the Part oppofite to the Sun. But now, fince this third Force which arifeth from the Difference of * Attractions paraliel to $S Q$, doth not tend to the Center S, neither doth the total Force compounded of thefe three Attractions, that, to wit, whetewith the Satelles is mov'd, tend unto the faid Center. Wharefore, by Prop 17. and 18. the Satelles will not defcribe equable Areas about the Center of the Primary, or fuch as are proportional to the Times. But the Force reprefented by MS orm $\mathrm{S}_{\text {; }}$, will difturb the equable Defcription of Areas. In the Quadrant CA, of the Semi-circle CAD, fuppofing the monthly Motion to be perform'd from West to

Eaf

East through A,D,B,C, the faid Force accelerates the Motion of the Satelles about S , from C to A, by confpiring together with it; but after the Conjunction in A in the Quadrant AD, it retards the Motion by being oppofite to it. But the Satelles being come unto the Quadrature about D, the 3d Force MS or ms vanifheth away; (becaufe QK or Qk: QP or Qp; and confequently QL and Ql alfo are then equal.) And therefore the Force expreffed every where by the faid MS, can have no Effect in this Place. Therefore the Satelles, which about the Quadratures is urged by the reft of the Forces, and thofe only tending unto the Center of the Primary, will defcribe equable Areas by Rays drawn to the Center, or proportional to the Times. But whilit the Satelles goes over the Quadrant DB, Qm falls fhort of QS ; and if we refer the difturbing Force to the Satelles alone, it will tend from m to S, and will again accelerate the Motion thereof by confpiring together with it: But after the Oppormion in $B_{\text {, }}$ the Force will ftill tend from m towards S; but will now retard the Motion of the Satelles by being contrary thereto; untill again about the Quadrature $C, m S$ vanitheth away, and confequently its Effeas ceafe. Again, feeing the Force M $\$$ or $\mathrm{m} S$, which difturbs the Area in the Paffage of the Satelles from C to A, and from D to B, is continually increas'd, and in A and B becomes the greateft; and from thefe Points again is continually diminifh'd, whilft the Planet is carried from A to D, and from B to C, until it at length vanifheth away in the Points D and C; it is manifeft, that the Motion of the Satelles, as beheld from its Primary, is the fwifteft, cateris paribus, in the Conjunction and Oppofition \mathbf{A} and B , and Howeft in the Quadratures C and D. Q. E. D.

204 Matbematical Pbilofoply.

Coroll. (r.) From hence we may falve that Inequality in the Motion of the Moon, named by Aftronomy, The Variation; wherein the Moon is carried more fwifty in the Conjunction and Oppofitiona: than in the Quadratures; and this fo; that in moving from a Srrigy to an Octant, it gains about 35 . Minutes aboye the middle Motion; and loferh again the fame Quantity in its - Motion fromy an OAtant íqa Quadrature; and fo perpetually. And the like Anomaly is to be expected in the little Moons of \mathcal{F} fupiter and Saturn; although by reafon of their great Diftance from the Sun and from us, and of their fhort mentrual Periods it is not fenfible to us.

Corolle- (2:) Hence dllo it follows that the Orbit-oE:any Moon, ceteris paribus, will be more curve in the Quadratures than in the Conjunction and Oppoftiop. Apd confequently; if it be in ir felf Cifculary it will pecome fomething Elliptical, in fugh fort that the leffer Axis will be always placed in the Conjunction and Oppofition, and the groaterip the Quadratures. But if the Orbit be of it felf Elliptic about its Primary placed in one of the Foci, it will partake more of that Figure, than if it wore not affeced with this Anornaly, Cartes was the firf that I know of, that affgned this oblong Figure to the Orb of the Moon, which he did only by way of Hypothefis and Conjecture: But in the mean while he fell into a great Error, when he determin'd Shat thei Moon comes nearer to the Earth in all Conjunction apd Oppofition, and departs furcher off: in the Quadratures ; when on the contrary, By the proper Eccentricity of that Orb, the Line of the Apfides :being put. the Conjunction and Oppofition, sthe Moon is more remote from the Earth in the frighef Apfis, than in the Quadratures ;

Matbematical Pbilofopby. 205

tares; that Inequality which we have been fpeaktng of notwithftanding. But the great Dr. Halley was the firft who, from Obfervations, attributed this oblong Figure to the faid Orbit; or at leaft the firft that communicated the fame to the Publick; and from thence fhew'd, that the Lunar Theory was to be corrected : But as to the Demonftration of this Corollary, it is eafily deduced out of the Propofition. For Bodies which are fwifter, do decline lefs from the right Path than flower ones: And befides, the difturbing' Force MS or mS in the Conjunction and Op pofition, is not only the greateft in it Yelf, but is alfo direetly contrary to that Force wherewith the Central Body S draws the Body P os p ; and confequently diminifheth that Force by being contrary thereto. But the Body p or P will de-: cline lefs from the right Path, when it is lefs urged towards the.Central Body S; and confequently will be more carried in an Oblong Elliptic Path about its Primary.
May 21. 1705.

Lect. XIX.

XXXII. betwixt the Sun, and a primary Planet increas ${ }^{\text {d }}$ and diminifh'd by turns, the Action of the Sun be alternately increas'd and diminifh'd; the Radius of the Orbit of the Satelles will withal be increas ${ }^{\circ}$ d and diminifh'd., and the periodic Time of the Satelles about its Primary will be chang'd alternately ir,

206 Matbematical Pbilofopby.

that is, will be increas'd when the Radius is increas'd; and on the contrary, diminifh'd when it is fo.

The Force wherewith the Primary draws its Moon, is increafed when the Moon is in the Quadratures C and D, by the Addition of the Force S P or Sp ; the Force S M or Sm vanifhing away; and is diminifh'd when the Satelles is in the Conjuntion and Oppofition, by the taking away of the Force SM or S.M. And becaufe the Force S_{m} or S_{m} in the Conjunction and Oppofation, is twofold of $S i P$ or $S p$ in the Quadratures, where the Point R or r falls-in almoft with the Point B or A; the attractive Force of the Primary will be more increas'd than diminifh'd in every Synodical Month, and confequently is to be reckoh'd for abfolutely increas'd. Therefore the Force of the Sun being increas'd about the Peribelion of the Syftem, the attractive Force of the Primary will be more languid, and the Orbit will be enlarg'd; but the Force of the Sun being diminifh'd about the Aphelion of the Syftem, the attractive Force of the Primary will be more ftrong, and the Orbit will be contracted. But the periodic Time of the Satelles will be increas'd with the enlarging of the Orbit ; and on the contrary, diminifh'd with it : and thus every Year the middle Motion of the Satelles will be greater and leffer by turns ; and is to be accounted truly mean, only in a mean Diftance from the Sun.

Coroll. (x.) Hence we may folve that annual Inequality in the Moon, which refpects the middle Motion thereof; that, namely, in which the middle Motion of this Planet doth alternately exceed and fall thort of the.true middle Motion, by an Excefs or Defect of 12' almoft; exceeding it in the Paffage of the Earth from the remoter Apfis to the mean Diftance; and falling fliort thereof from the mean Diftance to the near-

Matbematical Pbilofophy. 207

er Apfis; and again, falling fhort from the neares Apfis to the mean Diftance, and exceeding it from the mean Diftance to the remoter Apfis: and fo perpetually. And the fame thing is to be judged of the Moons about Saturn and \mathcal{F} upiter, in their Proportion. Albeit this Inequality in thefe, and the reft likewife, is fo very fmall, that it may very well be neglected in moft Cafes.

Coroll. (2.) The truly original and primitive periodic Time of every Moon, that is, that Time in which it would revolve about its Primary, if it were without the reach of the Sun's Action, is at little fiorter than the middle periodic Time; and the orginal Diftance from its Primary, a little lefs than the prefent. Namely, becaufe if the Force of the Sun, which debilitates the Force of its Primary, were taken away, it would approach neater to its Primary ; and thus the periodic Time would be the fhorter.
Coroll. (3.) Hence alfo we may infer, with the Famous Dr. Gregory, that if any Primary Planet fhould, through the Acceffron of new Matter, become greater than it was, and from thence its Ateraction become proportionably greater; its Moon would revolve about it at a lefs Diftance, and in a fhorter time. As on the contrary, by the Diminution of the Matter of the Primary, the Orbit and periodic Time of its Mooni would be enlarged. And the fame thing would happen in any Primary, in cafe the Sun was increas'd or diminifh'd.
Coroll. (4.) Since therefore it is manifeat from:the moft ancient Aftronomical Obfervations, as compared with the latter, that the periodic Time of the Primary Planets about the Sun, and of the Moon abour the Earth, are the fame in this Age,ai they were 2000 Years ago ; it is certain, that the Quan-

508 Matbematical Pbilofophy.

Quantity of Matter botk in the Sun and in the Earth, is the fame that it was then, and hath had no fenfible Addition or Diminution.

Coroll. (5.) But if the Quantity of Matter in the Earth be fuppos'd to have been increas'd by Noab's Deluge, or by any other means, the Quantity of the periodic Month of the Moon muft neceffarily have been diminifh'd thereby.
XXXIII. If a Secondary Planet defcribes an Elliptic Orbit about its Primary, which is placed in the Focus of the Ellipfis; the greater Axis of this Ellipfis, or the Line of Afpes, will, by an angularMotion, go forward and backward by turns; but it will go forward more than it goes back; and in each Revolution of the Secondary, by the Excefs of the Progreffion, it will be carried towards the confequent Signs: That is, In the Conjunction \& Oppofition with the Sun, it will go for-. wards ; \& in the Quadratures it will go backwards.:

For the Force wherewith the Secondary - Planet Por p is urged towards its Primary abour the Quadratures; where the other Force $M \cdot S$ or $\mathrm{m}_{\mathrm{m}} \mathrm{is}$ vanifh'd away, is compounded of the Force L M orlm, and the Centripetal Force of the Central Bbdy S. . The former Force, if the Diftance be increas'd or diminif'd, is increas'd or diminifh'd almoft in the fame Proportion directly; fo that in the greater Diftance from the Primary, the Attraction towards the Center becomes. greater, and in a leffer Diftance lefs. But the. latter Force arifing immediately from the Primary, in a greater Diftance becomes lefs, and in a leffer Diftance greater; and is always in the duplicate Proportion of the Diftance reciprocally. And. confequently the entire Force, or the Sum of the Forces towards the Center of the Primary, doth, upon the Increafe of the Diftances, increafe in a leffer

Matbematical Pbilofophy. 202

leffer Proportion than the duplicate Proportion of the Diftance is ; that is, it is not fo much diminifh'd in a greater Diftance, nor is it fo much int creas'd in a leffer Diftance, as the Motion about the Focus of the unmov'd Ellipfis doth require. But in the Conjanction and Oppofition, the Force wherewith the Secotidary is urged towards its Primary," is the Difference betwixt the Force wherewith the Secoridary is drawn by the Primary, and the Force'KL or kl ; or in this Cafe S M or Sm . And that Difference, becaufe the Force SM or $S m$ is increas'd nearly in the very Proportion of the Diftance directly, decreafeth in lefs than a duplicate Proportion of the Diftance; and confequently is greater in a Teffer Diftance, and lefs in a greater; than fufficeth for the'defcribing an unmoved Ellipfis. But if the Centripetal Force decreafeth in more than-a duplicate Proportion of the Diftance, as it comes to pafs about the Conjunction and Oppofition; this is a little hite the:Cafe of the Decreafe of the Centripetal Force in the triplicate Proportion of the Diftance; from whence 2 Motion in a fpiral Line, without any Change of the Tangent to the Radius, would follow. The Satelles thetefore will revolve in fome moveable Ellipfis; or a greater angular Motion will be requir'd, that the Tangents oblique to the Radius fhould become perpendicular to the fame, that is, that the Satelles fhould come to its Apfides, than would be required if the Forces were in the duplicate Proportion of the Diftances reciprocally; that is, the Line of the Apfides will go forward. And on the contrary, if the Centripetal Force decreafeth in a lefs than duplicate Proportion of the Diftance, as it happens about the. Quadratures, the contrary Cafe follows; and the Motion of the Secondary will arife from a Motion different from
thatin a Spiral, which keeps che Angle of ther adius and Tangent: So that that Angle hould be fooner Chang'd, and fooner come unto a righe Line, than it would come if the Force were in the very duplicate Proportion of the Diftance reciprocally; that is_{2} the Line of Apfides will go back. But in the intermediate Places., betwixt the Conjunction or Oppolitions and the Quadratures, the Motion of the Aplis depends upon both Caufes. conjunctly; fo as to make that it fiould go forwards or backwards, accerding to the Exceff of this or that. From whence, fince the Borce K L or kl in the Conjunction and Oppolition, as we lately noted, is twice as great as the Force L M or 1 m in the Quadratures; the Excafs in every: whole Revolution will ber on the Side of the greater Force K 1 or $\mathrm{k} l_{\text {; }}$ and will transfer the Apfis: each Revolution towards the confequent Signs.

Coroll. (i.) Hence we may folve that Inequality, or progreflive and regrefliwe Motion of the Eunar Apfis; in which the Apogeum, is fo mor'd, that in its Conjunction apd. Oppoftion it goes forwards more fwiftly, and is its Quadragures. goes back more fiowly; and by the Excels of the progreffive Motion above the regreffive eyery Month, it is carried towards the confequent Signs: about three Degrees; and thus goes over a whole Circle in the Space of Ten Kears, or a liftle fooner. In the Moons of Fupiter, which are mov'd almoft in Circles, the Apfides are none ax all, or infenfible at moft, and confequentiy this Demonftration appertains not to them. In thole of Saturn it will have place, if at any time Some Eccentricity fhall be difcovered in.their Paths; bus by reafon of the Shormefs of their periodic Times, and their vaft Diffance from the Sun; and confequently the fmall Force of the fame.

Matbematical Pbilofophy. 211

 the Change of the Aponeum will be fo very Grraith that it cannot fatl under our Obfervation, much lefs be brought ander Computation.Cotoll (ii): Since therefore the Progrefs' or Regreff of the:Appides depehds upon the Decreafe of the Centripetal Fopce, which is made in a Propomtion greater or lefs chan the duplicate Proportion of the Diftance $S P$ or $S p$ in the Tranfic of the Body from the nearer: Apfis to the remorer; as llakewife upon the ake Increafe in the Retuin to the nexier Apfe; and confequently is greateft wherefthe Proportion of the Force in the Higher Appis to the Force in the nearer, is mont remore from the duplicate Proportion of the Diftances inverted; ; is manifeft, that the Apfides in their Cohjunction and Oppofition, by the ablatitious Forcerke on SM-LM, or $\mathrm{Sm}-\mathrm{Im}$, will go forwatd thete fwiftly; $S P$ or Sp being at that time the leaft of all; and SM or $S \mathrm{~m}$ the greatelt ofall; and SP or Sp, of rather the Sum of them on both Sides being the leaft of all in the Quadratures. Prom whence, in each Revolurion of the Satelles, whilft the Apfides are about the Con-jundioni and Oppofition, they will go forwards moft foiftly in the Conjunction andi Oppofition of the Satelles, and go back very flowly in the Quaidratupes thereof;: and confequently the Excefs. of the progreffive Motion above the Regreffive will be the greateft of all, and the Apfis will be moved very fwiftly nowards the confequent Signs.

Coroll. (3.). But if the Apfides be about the Quadratures, then contrary Caufes will produce contraty Effects; and the Apfides will go forwards more lowly than bèfore, when the Satelles is in the Conjunction and Oppolition, and go back mote fwiftly in the Quadratures of it $;$ yea, it may ceme to pals in ithe faid Pofition of the

Apfides in fome particular Revolution of the Sintelles, that the Regrefs of them in the Quadratures of the Satelles may furpals the Progrefs of tha fame, which is when the Satellis is in the Conjunction and Oppofition. But becaufe the ablatitious Force $S \mathrm{M}$ or Sm , that eaufeth the Progref's of the Apfides in the Conjunction and Oppafíion, is, ceteris paribus, about twice as much as the ad jectitious Force which brings in the Regrefs of the Apfides in the Quadratures of the Satelles; and, becaufe the Apfides do alfo tarry longer in the Conjunction and Oppofition than in the Quadratures; fince they move in the former Place, towards the confequent Signs with the Sum, they; go forward, and confequently do accompany him longer; but in the latter Place, moving to the, antecedent Signs, they fooner pals the Square of: the Sun, which moves in the mean while towards; the confequent Signs: From thefe Reafons it ap-; pears, that the Apfides go forward more fwiftly : and longer in their Conjunction and Oppofition, and go back more flowly, but not fo long in their Quadratures; and.that they by the Excefs of the Progrefs above the Regrefs in one entire Revolu-; tion of them to the Sun, i. e. in the Space of about Thirteen Months, are ftill carried towards the confequent Signs. Thus, in the Orbit of the Moon, the Apogeum thereof is moved fo unequally, that it is to be brought under Rule by an Equation amounting to 12 whole Degrees and a Quarter, as is to be feen in the Lunar Tables.
XXXIV. If a Satellite be mov'd in an Eccentric Orb about its Primary, the Eccentricity will be changed twice in every Revolution, and will be the greateft, when the Secondary is in the Coniunction and Oppofition with the Sun; and the .eaft, when it is in the Quadratures; and confequently

Matbematical Pbilofophy. 213

aquently will be increas"d cqntinually in the Paffage from the Quadratures to the Conjunction and Op poftion $;$, atid in the contrary Paffage continually din'nifh'd.

For"frice it appears by what hath already been detionftraied; that the Centripetal Force towards the Primary removid at a great Diftance, doth fometimfes tecreafe in a greater than the duplicate Proportion of the Diftance, fometimes in a lefs; and hinde the Motion of the Satellite in an imtróvéble Orbit, and with one certain Eccentricity, tepends tapon the Decreafe of the faid Force in the duphicare Proportiotr of the Diftance it felf; from the Cthange of this Proportion the Species of the Orblt muft neceffarily be changed. Thus, if the Cepripetal Forces increafe or decreafe in more: hhana peciprocal dipplicate Proportion of the Difftanes; it is manifeft, that the Satellite in fis Defcent from the higheft Apfis to the loweft, being perpetually innpelld towards the Center by the Acceffion of that hew Force, will incline thore to that Center, than it would have done if the Inereafe of the Centripetal Force had been onlyi it the duplicate Proportion of the Diftance diminifld; : and confequently will defcribe an Elliptic Orb inferiour to the former, and at the loweft Apfis approach nearer to the Center than it did in the higheft; and thus the Orb, by the Oc-. cafion of this new Force; is made more Eccentric: And now, if in the Return of the Satellite from the loweft Apfis to the higheft, the faid Force Should decreafe by the fame Degrees by which it did" before increafe, the Satellite would return to the former Diftance, keeping the Eccentricity latelyl obrain'd; whereas, if the faid Force doth decreafe in a greater Proportion than that in which it increas'd before; the Moon being in this Cafe lefs attracted,' will afcend unto an high-

21.4
 Matberiatical Pailofopty.

er Diftance, and fo the Eccentricity will'be ftill more increas'd.

In like nanner, if the Sastilite in its Defeent from the higheft.Apfis, be urged within: Force which is increas'd by Jefs than the Ausplicate Proportion of the Pifance dipinith'd is ismanifett, that it will deferibe an Elliptic Orbe exterior to the former (that that; I mean, where the Cent tripecal Force was fecjpriecally 2s the Square of the piftance;) and confequendy an Orb lefs excentrical ; and that $\mathrm{m}_{\text {the }}$: Eecentriciey is ftill mare diminih'd, if in the A fcene the Gentripetad Force decreales tefs pr mora Aowly thancithad in crealed before, If therefigre the Itoportion of the Increale and Deqfegif of the Eentripetal Force be increas'd in eact: Revolutions the Eci centricity likewife will ba increas'd; sand on the contrary it will be diminih'd: swhoreatbe Tanie Propontion:decreaforh. iSeaint therfore in eyery Revolurion $n_{\text {t }}$ that Forge decseqafech in the Gonjun: ction and Oppofition of thes: Satelles: int ageatar Propgrtion than thatiwhich is duplicato of the Diftance increas'ds and in the Quadratures of tho fame in a lefs, as is manifoft fromiwhat hath been already laid, it appears ; 䴓hat about the ConjunQtion and Oppofition of ther Satelles the Goccentri, city of the Orb defcrib't is perpetually increas'd, and diminifh'd aboug the Quadratures. And fince in many Revolutions compard amonglt themfelves, there is the greatent Proportion of De*: creafe in the Conjundion and Oppofition of the Apfides, and the leaft intither Quadiatures of thé: fame; it is alfo manifeft, that the greateft Eccentricity of the Orbit is when the Apfides are in the Conjunction and Oppofitions abd tho leaft when they are in the Quadraturest:; and bonfoquently that the Eccentricity is diminifi'd perpetually in the pating of the Aplides from the Conjunction
juination and Oppofition to the Quadratures of the Sun; and are perpetually increas'd in the paffing of the fame from the Quadratures to the Conjunction and Oppofition.

Corollarty. Hence we may forve that Eccentricity of the Lunar Orbit which is divers, and daily changing, as beinit greater in the Moon's Conjunction and Oppofition, lefs in the Quadratures'; and likewife continually increafing in the paffing of the Appogeum from the- ${ }^{\text {onjijunction and Oppofini- }}$ on to the Quadratures, and in the contrary Cafe concinually decreafing. For in Aftronomical Tables we find fo great a Diverfity alligned to this Ecceritricity, that the Diffance berwixt the Focus and the Center of the Ellipfis deferibd by this Planet, which we call the Eccentricity of the Orbit,' is fometimes of $\frac{66782}{1000000}$ Parts, fometimes of $\frac{43319}{3000000}$ only, fuch Parts we thean that roooooo are contain'd th the mean Diftance of the Moon. So that the Difference of Eccentricities is found to arife unto above half of the whole leaft Eccenitricity.

Fune 4. 1705.

LEc.t. XX. XXXV. Plane whereof is inclin'd to the Plane of the Primary, the Line of theNodes willbe moved whith an athgular Motioti towards the antecedent Sigtrs, but with an unequal Velocity: Moft fwiftly indeed when the Nodes are in the Quadrauures; afterwatds by Degrees more flowly, until

216 Matbematical Pbilofopby.

that be placed in the Conjunction andOppofition; and they wholly reft; and thus being always either Retrograde or Stationary in each Revolution of the Satellite, they move back. As likewife in the fame Revolution they go back more fwiftly, cateris paribus, when the Satellite is in the Conjunction and Oppofition, than when it is in the Quadratures.

For amongit the difturbing Forces, of which we have fpoken fo oft, the Force LM or 1 m which is parallel to SP or Sp , that is always fituate in the Plane of the Orbit of the Satelles, and can induce no Change of the Plane of the - Orbit. The other Force alfo MS or mS , fituate in the Plane of the Elliptic, when the Nodes are in the Conjunction and Oppofition, will be alfo placed in the Plane of the Orbit, as being pofited at that time in the common Interfection of both Planes. But when the Nodes are not in the Conjunction and Oppofition, this latter and greater Force, which is always in the Plape of the Elliptic, will not be in the Plane of the Orbit; and confequently will affect the Mocion of the Satellite, as to Latitude, and make the Line of Nodes to go back tnwards the antecedent Signs. For let the Nodes be fuppofed to be placed in the Quadratures, this latter Force, which always acts parallel to the Elliptic, will perpetually draw back the Satelles whilif it is paffing the Nodes on either Side, and about to go forwards in its owri Orbit, from the fame Plane; fo that the Place of the Interfection which is to be next, will be at "fome Diftance from the former Interfection, and towards the antecedent Sights. But when the Nodes are betwixt the Conjunction and Oppofition and the Quadratures, this latter Force will fometimes move them towards the confequent jigns, fometimes towards the antecedent; but

Matbematical Pbilofopby. 217

will always in an entire Revolution of the Satelles, by the Excefs of the fame Force towards the antecedent Signs; carry them back towards that Part: From whence, in the Conjunction and Oppofition of the Nodes, they will remain immoveable; in their Quadratures, they will go back moft fwiftly; and partaking in the intermediate Places of both Conditions, they will go back more flowly ; and confequently will always, in a compleat Revolution, be carried back towards the antecedent Signs, notwithftanding their being Retrograde and Stationary in particular Places of the Period. But it is to be noted, that when the Orbit is placed without the Conjunction and Oppofition, and Quadratures, whilf the Satellite goes forward from the afcending Node to the defcending, and, vice verfa, the Nodes go back more flowly, folong as the Force MS or $\mathrm{m} . \mathrm{S}$ refpects that Side of the Plane on which the Satellite is placed; and go forward fo long as that Force refpects the oppofite Side. Thus the Line of Nodes being placed in an Octant of the Sun, after its having been placed in the Quadratures, or about R and r, the Satellite baving pals'd the Plane of the Ecliptic about R, is then towards the Sur: but the difturbing Force from, R to the Quadrature C, tends to the contrary Part by an Octant of a Circle; which Force vanilhing away in the Quadrature, the Force tending to the Sun takes the Place of it, and continues throughout the three reft of the Octants: So that the Line of Nodes of the moveable Orbit doth firef go forward a little, then goes back a little more , and fo likewife in the other Semi-circle; until the fame Line coming to theConjunction and Oppofition, the Progrefs and Regrefs are in a manner equal ; but both of them very fmall, and of very fhort Continuance, by reafon of the near Coincidence of the Situation of the Plane with the Direction of the diffurbing Force. But that the Nodes

218. Matbematical Pbilofophy.

Nodes in the fame Revolution of the Satellite, go back more fwiftly, ceteris poribus, when the Sarellite is in the Conjunction and Oppofition, than elfewhere, is manifeft, by reafon the difturbing Force is greater in that Place; and confequently will obtain a greater Effed.
XXXVI. The fame things being fuppofed, the Inclination or acute Angle of the Plane of the Orb of the Satellite to the Plane of the Ecliptic, is perpetually changed ; and is then greateft; when the Nodes are in the Comjunction and Op pofition with the Sun ; and the leaft, ceetris paribus, when they are in the Quadratures: And is diminifh'd continually in the Paffage of the Satellite from the Quadratures to the Conjunction and Op: pofition, and increas'd continually from the Conjunction and Oppofition to the Quadratures. From whence it comes, that the Satellite being in the Conjunotion and Oppofition, the Inclinaticn of che Planes becomies the leaft; and returns to the formet Magnitude nearly, when the Moon comes to the next Node. And this Inclination of the Planes is diminifl'd, whilft the Nodes arte carried from the Conjunction and Oppofition to the Quadratures, and Becomes the leaft of all; ceeteris paribus, when the Nodes are in the Quadratures; then it increafeth by the fante Degrees sthereby it had decreas'd before; attd the Nodes being again return'd to the Conjunation and Oppofition; it returns to the former Magnitude. If the fortfier Propofition be rightly underftood, this will not fo much require a particular Explication. For like as, whilit the Boaly goes forward by the former Motion from L to F, if an attrasting Force, parallel to the Line L M, do fupervene, which attracts towfirds M and is reprefented by the line L M; the Body will go forwards in the Diagonial LQ, and the Angle of Inclination MLQ will be lefs than MLF the
-former Angle of Inclination: Or thus, like as whitet the Body goes forward from L to F by its proper Motion, if the like attracting Force parallel to the fame I M fuperventes, which autracts ahe contrary way, bit neverthelefs is reprefenced byy an equal Line, the Body will go forward in anbeher Diagonal, and the Angle will be greater than the former Angle: So it muft happen in like Thamer in our prefent Cafe, i. e. that a divers Inclination of the Plane will follow upon the Motion of the Nodes. For when the Nodes'are In sthe Quadratures, that Motion of them which perperudlly draws back the Satellite from the Plane of its Orb, diminifheth the Inclination of the Plane; in the mean while that the Satefle pafferh from the Quadratures to the Conjunction and Oppofition; and inereafeth the fante in the conorary Tranfit; from whence it comes, that the Satellite being placed in the Conjunition and Opporition, the Inclination becoties the leaft of ithl; and returnsito! its formet Quaitity nearly in the Accefs of the Nifoon to the next Node. But if whe Nodesbe found in the Octants next after their having been in the Quadratires, that is; about P and $p ;$ in this Cafe, actortiag to what hath boen fait alteady, the Inclimation of the Plane is perpectally aiminifh'd ffam either of the Nodes unto the lgoth Degrede from thence: then it is increafed for the Space of 45 Degrees; or in the Tranft: Shto the riext Quadratures; and afterwards againi 15 diminiif'd for the other 45°, or uhto the next Noide. So the Inclination is diminith'd mote than ixis incereas'd ; and fo is always lefs in the futblequantsinaie than in the foregoing. And by the like Reafoning, the Inclination is increafed moreithan it is alnathifh'd, when theNodes are in the othee Oetants, or about \mathbf{R} and r. Therefore the Inclipation is the-greatert of all, wholz the Nodes aro
in the Conjunction and Oppofition. In theirTran: fit from the Conjunction and Oppofition to the Quadratures, it is diminifh'd in the Accefs of the Satellite unto them; and becomes the leaft of all inhen the Nodes are in the Quadratures, and the Satellite in the Conjunction and Oppofition; then it increafeth by the fame Degrees by which it had decreas'd before ; and the Nodes coming to the -nexit Conjunction and Oppofition, it returns to -its former Magnitude. 2.E.D.

Corollary. From this and the former Propofticon, we may folve the moft known Phonomena of the Moon; I mean the annual Regrefs of the Nodes confifting of about $19 \frac{1}{3}$ Degrees, \& that Mutability of the Inclination of the Orbit of this Planet, in which when the Nodes are in the Quadratures; the Angle of Inclination contains only $4^{\circ} .59^{\circ} \mathrm{A}$ $35^{\prime \prime}$: But when they are in the Syrigies, the fame Angle is found to arife to about $5^{\circ}, 17^{\prime}, 20^{\prime \prime}$. is
XXXVIII. All the Inequalities which are in the Motipas of the Secondary Planets revolving about their Primaries, are famething greater in the Conjundion of the Satellire with the!Sun than they are in the Oppofition.

For fince QS bears a greater Proportion to QA than QB bears to $Q S$, by reafon that $S A$; $S B$, ceteris paribus, are equal, and that $Q S_{i}$ is greater than QA; the duplicate Proportion of QM to QS? will be greater ftill than the duplif cate Proportion of QS to Qm . And confes quently the Difference MS will be greater; than: the Difference mS ; and $\mathrm{IL} M$ greater than 1 m , From whence the Effects derived from thisForae, wilt be greater than thofe which are derived from: the other. ROE.D.

But it is to be noted, that the Diftance of the: Eapth from tha Sun is fo vaftly great, thize the Difference of; the Forces about the Conjunction:

Matbematical Pbilofopby. 221

 of the Moon with the Sun, and about the Oppofition of the fame, is very fmall, and hath fcarce been diftinguifhed yet by any Obfervations. From whence it is not to be wonder'd, that Aftro nomers have taken no notice of this Điftinction. IXXXVIII. The abfolute Force of the Sun in the difturbing the Secondary Planets; and the Effeats thereof in divers. Diftances from the Sun's is in the triplicate Proportion of thofe Diftances inverlly.

For let the Diftance of the Satellite from the Sun be altered; let the Radius of the Orbit of the Satellite be in the fame Proportion to the other Radius. In this cafe, the Diftance of the Secondary from its Primary, will be in a given Proportion to its Diftance from the Sun : From whence, aecording to this Hypothefis'; the abfolute dilturbing Force will be as the abfolute Force of the Sun, or in that duplicate Proportion. Thus the thing would be, if the Radius of the Secondary Syftem had increas'd or tecreas'd in' the fame Proportion, as the Diftatice of the Sun increas'd or decreas'd; fo that they should ftill keep the fame Proportion to one another, as before. But fince the Radius doth in no wife decreafe by the Accefs of the Sun, or increafe by the Recefs thereof, that duplicate Proportion will be to be increas'd again by the other Proportion of the Diftance of the Secondary from its Primary. From whence the entire compound Proportion will be triplicate of the former. 2.E.D.

As for Example : Let the Sun be fuppos'd as near again to the Earth, as it was before; or as so to 100 . And let. A B the Diameter be' equal to two Parts, the Quantity of the abfolute Force of the Sun at S in the leffer Diftance, will be Fourfold of the Quantity of the fame Force in the greater, Diftance: But the Force $S M$ in the leffer

Diftance,

Diftance, will be about: Eightfold of the fame Force in the greater Diftance: For $49 * 49$ $=2401 ; 200 \mathrm{~g} 0 \times 50=2500$. From whence $2900-2401=99 \cdot$ And $999 \times 99=9810 x$; and $100 \times 100-10000$. From: whence $10000:-4$ $9801=199$. Therefore the Difference of the ablolure Fracce is almoft in obe double Propörion; or an 199, is 10 :99. And the mear abfohute Forces themflves.ane in the Quadruple Proportion; or as 4 to 1 . Therefore the entire abfolute Fored contepounded of them, is $4 \times 2=8$ to $\mathrm{x} \times \mathrm{x}=\mathrm{I}$, or in the reciprocal triplicate: Proportion of the Diftance nearly. And Anceithe apparent Diame': ter: of the Sun is almoft in the triplicare Propomtion of the Diftaince, andrthe Force of the Cens tral Body: is alfo nearly the fame; the Sun's Force whereby he diafturbs the Sacollite, and the Effect of. it, I will be in the direct triplicate Praportion of the Sun's appanent Diamieten very nearly \therefore :

Scbatium: (z.). In the fame manier wherein the Sun placed: without the Drbic of the Secondary Planet difturbs the Motion thereof; the: fupen rior Planets will difturb the Motion of the lower, and Comets will difturb the Motion of all the Planets, Aradithe Actions of Planets and:Comets upon ather Hlamets, willproduce the like Effects; though far lefsindeed, byyteafon of the Smalnefs of their Bodiesificompared: with the Sun, and the vaft Diftances. But:fome Effeets there will be [.yea, of the Actionsalfo of the inferion Blanets upon. the fuperior] which if they continue; and be for the: most part directed: the fame way, will at length become fenfible As for Example: The Apfis of the Oxtio of the Earth will, afeer many Years, be moved towards the confequent Signs;; although this Motion muft neceffarily be very fmall, if compar'd with the: Motion of the

Apfides:

Aplides of the Moon the fame way. Thus, in deed, the Eccentricity of the Orbit of the Earth muft be fubject to fome Mutation; which, nevertheleff, is fo fnaall; that it can fcarce be colo lected from any Phanomenon.

Scholinem (2.) And thus the fuperior Planets will fenfibly difturb the Motions of one anothers; if they be great ones, and tarry, long abour theirmutual Heliocentrigk Conjunction, they being then placed at the leaft Diftance from one another. Thus the Action of Fupiter upon the. Secondarias of Saturn, aud of Satutm upon thofe of Fupiters the mutual Gravistion of all the Planets one to apother, which we have adready proved, being fappofed, is in, rio wife to be, flighiced, at what time they are feen from the Sum: in Conjunction. For they ara great Bodies, and far exceeding our Earth, in Magnitude, cand. are nean enough at that time to make the Effeats of their difturbing Forces become fenfible. And that they are indeed fenfible to us, will be. . frewn hereafrer from Aftronomical Obfervations. Schalinem (3.) It is eafy to eftimate the diver. Quantities of the Sun's difturbing Force in the Syftem of Fupiter and, that of Sasurm, from the, known' Quantity of the fame Force in the Ano-: malies of our Moon. For from the known Pro-: portions of the: Diftances of the Earth, and $\mathcal{F} h \rightarrow$. piter: and, Saturn: from the Sun; and the knowni Effects of the faid Force in the Mpon, by a cer-: tain Proportion of like Effects on both Sides, obu. ferved by Sir If wac Newton; the Effacts, of that. Force, in the Syitems of $\mathcal{F} u p$ iter and Sesurn, may: be determin'd without much Difficuley.

XXXIX A Rroblem. To find the Proportion betwixt the Force whereby the Motion of a Sat: tellite is diftubed :hy the Sung taud ithe Forceo

[^1]
224 Matbematical Pbilofophy.

whereby a Satellite is retained in its own Orb about its Primary, which is called its Gravitation towards its Primary.

For the whole difturbing Force is compounded of the difturbing Forces $L M$ or 1 m , and $S M$ or Sm : Arid alfo by reafon of the vaft Diftance of the Sun, the Line LQ or 1Q is almoft parallel to the Line M Q; and confequently theForce $L \mathrm{M}$ or 1 m is very near equal to its mean Quantity, of to the Radius of the Satelles S P or Sp: And likewife by reafon of the Suri's vaft Diftance $S M$ or $S m$, or $L P$ and $I p$, are equal to treble the Line KP or kp . From whence, fince in the Triangle SKP or Skp, which is Rectangular at K or k, the Angle K SP or kS p is the Diftance of the Satellite from the Quadrature ; and the Side K P or kp is the right Sineto the Radius S P; the diftorbing Force SM or Sm will be to the difturbing Force LM or $1 \mathrm{~m}_{\mathrm{g}}$ as is the Radius to the treble of the Right Sine of - the Diftance of the Satellite from the next Quadrature. From whence, if the Proportion of the difturbing Force S P or Sp to the Centripetal Force of the Primary, or to the Force of Gravity, were once known, the difturbing Force SM or Sm would eafily become known. Which therefore we find out by this Method. The difturbing Force SP. or $\$ p$ is to the Centripetal Force of the Primary towards the Sun, as the Line $S p$ or $S p$ is to the Line $S Q$; or as the Diftance of the Satelles from its Primary, is to the Diftance of the Sun from the fame Primary. But the Centripetal Force of the Primary towards the Sun, is to the Centripetal Force of the Secondary towards its Primary, as the Squares of the periodic Times drawn into the Radii of the Circles; or as $S Q$ is to $S P$ or $S p$; and as the Squares of

Matbernatical Pbilofopby. 225

the periodic Times together. From whence, by Equality of Proportion, the Quantity of the difturbing Force will be to the Force of Gravity (the former Proportion of SP or Sp to SQ deftroying the other reciprocal Proportion of $S Q$ to $S P$ or $S p$, as the Squares of the periodic Times. 2. E.D.

Coroll. . Since therefore the periodic Time of the Moon is 39343^{\prime}; and the periodic Time of the Earth about the Sun is $\varsigma 2 \varsigma 9699^{\prime}$; the difturbing Force SP will be to the Force of Gravity towards the Earth, which is at the Moon, as $39343 \times 39343^{\prime}$ is to $525969^{\circ} \times 525969^{\prime}$; that is, as 1547871649 is to 27664338896 r ; or as I is to ${ }_{1781}^{17}$. And fince the Force SM or Sm in its greateft Quantity, or in the Conjunction and Oppofition, is to the former Force as 3 to 1 ; the Force SM or Sm in the Conjunction and Oppofition, will be to the Force of Gravity as 3 is to ${ }^{17} 8_{13}^{113}$, or as I is to $59{ }^{9}$. Therefore that difturbing Force of the Sun SM or Sm, is in the Conjunction and Oppofition about a 6oth Part of the whole Force of Gravity in the Moon towards the Earth. Or rather the Force SP or Sp being taken away in this Cale from the Force SM or Sm, as may very well be done, the whole difturbing Force in the Conjunction and Oppofition will be to the Force of Gravity as I is to 89 rys, or a goth Part of the fame nearly. And in other Places, the Force. SM or Sm will be to the Force of Gravity, (the whole Sine being put to be equal to Unity) as treble the right Sine of the Diftance from the next Quadrature is to $178 \frac{1}{1}$.
XL. If many fluid Bodies, either diftinct, or gathered together into one Fluid, be moved about a primary Planet; each Part of the Fluid in jow performing its Motion about the Primary after the

226. Matbematical PbiloJopby.

manner of a Satellite, will come nearer to the Primary, cateris paribus, and be moved more fwiftly in the Conjunction and Oppofition of the fame, and of the Primary, than in the Quadratures. And the Nodes of this Ring, or its Interfections with the Plane of the Ecliptic, will reft in the Conjunction and Oppofition. But out of Conjunction and Oppofition, they will be carried towards the antecedent Signs; and this moft fwiftly in the Quadratures, more lowly in other Places. The Inclination of the Ring alfo will be varied; and the Axis thereof will be moved to and fro in each monthly Revolution ; and the Revolution being compleated, it will return to that Pofition which it had before; fo far as it is not carried about by the Preceffion of the Nodes. All thefe things do follow of their own accord, from what hath been already demonftrated; and fo do not require a peculiar Demonftration.

Corollary. From hence fome of the Phxnomena of the Ring of Saturn, if fo be it be a Fluid, may eafily be underftood. Yea, indeed, if it be folid, the Nodes of the fame; its Interfections I mean with the Ecliptic, will reft in their Conjunction and Oppofition, when the Sun is found in the Plane of the Ring, as well as in that of the Ecliptic. But out of the Conjunction and Oppofition they will go back, and this moft fwiftly in the Quadratures, and more flowly in other Places. The Inclination of the Ring will alfo be varied, and the Axis thereof in each Revolution about the Sun will nod, and twice vary its Inclination towards the Ecliptic, and twice return to its former Pofition, only it will be carried about by the Preceffion of the Nodes, as is manifeft from what has been already faid.

Matbematical Pbilofophy. 227

XLI. If a Fluid be contain'd in a Channel Form'd in the Surface of any Planet, Primary or Secopdary, and be uniformly revolv'd togerher with the Planet with a diurnal periodic Motion; each Part of this Fluid will be accelerated and retarded by turns, in irs Conjunction and Oppofition; or at Noon day and Midnight, will be Cwifter ; in the Quadratures, or at the 6th Houe Evening and Morning, it will be flower than the contiguous Surface of the Globe ; and thus it will flow in the Channel, and return back by turn perpetually. For the Fluid will be difturbed by the unequal Attraction of the Sun, becaufe the Attraction of the nearer Parts will be greater, and that of Parts more remote lefs; while the Force $L \mathrm{M}$ or 1 m will draw the Fluid down in the Quadratures, or at the 6th Hour in the Evening and Morning; and make that the Parts of it, which are placed there, thould defeend unto the Conjunction and Oppofition, or unto the Noon and Midnight; and the Force SM and Sm will draw the fame upwards in the Conjunction and Oppofition, or ftop the Defcent of it, and caule it to afcend unto the Quadratures and thus perperually.

Coroll. Hence we learn the Caufe of the Flux and Reflux of the Sea. If we allow the difturbing Fofce of the Moon, as well as of the Sun, and duly apply what hath been alreadly demonftrated to the prefent Cafe. But this fo well known and fupendious Phanomenon of Nature; will come to be treated of afterwards more largely and diftinctly; to which Place therefore we refer our Reader:

Q
LECT:

228 Matbematical Pbilofophy.

L е с т. XXI.
XLII. Globe perfectly fpherical at the Equator of the fame, and ftick to it ; there will indeed be no Motion of Flux and Reflux, but the vibrating Motion of \cdot Inclination, and the Preceffion of the Nodes, will remain. Let the Globe have the fame Axis with the Ring, and compleat its Revolution in the fame time; and with its Surface touch the Ring inwardly, and cleave to it; by its participating of the Motion thereof, the whole Frame will vibrate to and fro, and the Nodes will go back. For the Globe, as above fhew'n, is indifferent to receive all Impreffions. The greateft Angle of Inclination of the Ring without the Globe,would be where the Nodes are in the Conjunction and Oppofition. In their Progrefs from thence to the Quadratures, the Ring endeavours to diminifh its Inclination, and by that Endeavour impreffeth its Motion upon the whole Globe. The Globe retains the Motion imprefs'd, until that the Ring by a contrary Endeavour takes away this Motion, and impreffes a new Motion upon the contrary Part: And thus the greateft Motion of the decreafing Inclination is in the Quadratures of the Nodes, and the leaft Angle of Inclination is in the Octants after the Quadratures. Then the greateft Motion of Inclination is in the Conjunction and Oppofition, and the greateft Angle in the next Octants. And

Matbematical PbiloJophy. 229

the Cafe is the fame with a Globe without a Ring, which either is fomething higher in the Parts about the Equator than about the Poles, or confifts of a more denfe Matter. For that Excefs of Matter in the Parts about the Equator fupplies the Place of the Ring.

Coroll. (1.) For the fame Reafon that the redundant Matter of the Globe caufes the Nodes to go back, and confequently by the Increafe thereof caufeth the Regrefs to increafe, and by the Diminution thereof that the fame Regrefs fhould be diminified, and by its being taken away that the Regrefs fhould ceafe ; it will come to pafs, that if more than the redundant Matter be taken away, or, which comes to the fame, if the Globe be more deprefs'd, or of a rarer Subftance towards the Equator than towards the Poles, the Motion of the Nodes will be forward, or towards the confequent Signs.

Coroill. (2.) Hence alfo, from the Motion of Nodes, the Conftitution of a Globe may be gathered: To wit, if the Globe conftantly keep the fame Poles, and the Motion be towards the antecedent Sigms, the Matter about the Equator is redundant, but if towards confequent ones, deficient. Let us fuppofe a Globe uniform, and perfectly fpherical, firft to reft in a free Space, and then by fome Force, whatever it be, imprefs'd on the Surface, to be driven forwards, and from thence to acquire a Motion partly circular, partly ftreight forward. Becaufe the Globe is indif: ferent to all Axes paffing through its Center, and is no more determin'd to one Axis, or one Situation of the Axis than to another; it is manifeft, that it will never change its Axis, or the Inclination of the fame, by any Force of its own. Now, let the Globe be impell'd obliquely in that fame

Part of the Surface, as before by fome new Impulfe; fince the Impulfe, whether it be 'fooner or later, makes no Alteration in the Effect; it is manifeft, that thefe two Motions imprefs'd fucceffively, will produce the fame Morion, as if they had been imprefs'd at the fame time; that is, the fame as if the Globe had been impell'd at firf with a fimple Force compounded of both Impulfes; and confequently a fimple Motion about an Axis of a given Inclination. And the fame is the Reafon of the Second Impulfe made in any other Place of the Equator of the firfMotion, as of the firft Impulfe made in any Place whatever in the Equator of that Motion, which the fecond Impulfe without the firft would produce; and confequently.of Impulles made upon any Places whatever. Thefe will generate the fame circular Motion, as if they had been impref'd at one and the fame time upon the Place of the Interfection of the Equators of thofe Motions, which they had feverally generated, if they had been imprefs'd afunder. The Homogeneous and perfect Globe therefore doth not retain more diftinet Motions; but compounds all the imprefs d ones, and reduceth them to one; and is in it felf; perpetually revolv'd, by a fimple and uniform Motion, about a fingle Axis of a given Inclination, as being always invariable, Nor can a Centripetal Force, tending towards any extrinfick Body whatever, change the Inclination of the Axis, or Velocity of the Retation. If a Globe be underftood to be divided into two Hemifpheres by any Plane whatever paffing through its Center, and through the Center unto which the Force is directed, that Force will always urge both Hemifpheres equally, änd fo the Globe; as to the Motion of Circumrotation, will incline to neither Part. But let new Matter be

Matbematical Pbilofopby. 231

added fomewhere betwixt the Pole and the Equator, heaped up in the Form of a Mountain: This will both difturb the Motion of the Globe by the perpetual Endeavour of departing from the Center of its Motion, and will make the Poles to wander over its Surface, and to defcribe Circles about it felf, and its oppofite Point. Nor will that Irregularity be corrected, but either by placing the faid Mountain in one of the Poles, in which Cafe; as was faid before, the Nodes will go forwards; or in the Equator, and then the Nodes will go back; or by adding fome new Matter on the other Part of the Axis to counterpoife the Mountain in its Motion. And thus the Nodes will go forwards or backwards, as the Mountain; and the new Matter added on the oppofite Part, are nearer to the Pole, or to the Equator.

Coroll. (3.) Since therefore it is manifeft from Aftronomical Oblervations, that the Nodes of the Equator of the Earth do perpetually go back about $50^{\prime \prime}$ in every Year ; which Regrefs is called the Preceffion of the Equinox ; it follows, that the Equatoreal Parts of the Earth are higher than the Polar. And, vice versd, fince from the Di urnal Motion the Figure of the Earth is, as will be fhew'd afterwards, that of an oblate Spheroid, (the Polar Parts being more deprefs'd than thofe about the Equator;) it is manifeft from thence, that the Nodes of the Equator mult go back yearly.

Coroll. (4) From what hath been faid, it is alfo manifeft, that the Axis of the Earth will vibrate to and fro yearly; and in every annual Revolution be inclin'd twice towards the Equator, and twice return to the former Pofition. It is ma nifeft alfo, that the greateft Motion of the decreafing Inclination of the Plane of the Equator, Q 4 and

232 Matbematical Pbilooopby.

and of the Ecliptic, doth happen in the Quadratures of the Nodes; and that the leaft Angle of Inclination falls in the Octants after the Quadratures, or about the Middle of Leo or Aquarius. Laftly, that the greaseft Morion of Inclination falls in the Conjunction and Oppofition of the Nodes, or in the Equinoxes; and the greateft Angle of Inclination in the next Octants, or about the Middle of Taurus or Scorpio. But by reafon of the Smalnefs of thefe Motions, thefe Effects will be altogether infenfible, and to be difcover'd by no Obfervations of 'Aftronomers. But it is to be noted, that contrary Effects were to be attributed to our Earth, if fo be the Parts about the Equator were more deprefs'd than the Polar.

Coroll. (s.) And from hence the Evafion devifed by the Famous Dr. Gregory, to thew that the annual Parallax of the Fixed Stars is built upon a weak Foundation, and that neither the Diftance of the Fixed Stars, which are obferved, nor the annual Motion of the Earth, can be certainly concluded from thence; this Evafion, I fay, falls to the Ground. Let us produce in this place the Words of Dr. Gregory, and fpare fo much time as to debate this Matter with him particularly. Mr: Flamfteed's Method of obferving the Parallax of the Fixed Stars, hath been explain'd by us in our Aftronomical Lectures, to which I refer you. Now, from this Method rightly underftood, it is manifeft, that the Polar Star, for Inftance, is more diftant from the Pole about the Summer, than about the Winter Solftice; and this by a very fenfible Difference, as being about $40^{\prime \prime}$ or $45^{\prime \prime}$. From whence Mr. Flamfted concludes, that the Earth mult certainly be mov'd about the Sun, and that the Fixed Stars are fubject
ject to a Parallax fenfible enough, and that their Diffances confequently may be gathered from thence. Now, what doth Dr. Gregory fay to this? Doth he deny the Obfervation it felf? No, in no wife. Doth he affign for the Caufe of the faid Difference of Diftance, that very fmall Nutation of the Axis of the Earth, by which he fuppofeth, with Mr. Flamfteed, that the Inclination of the Ecliptic to the Equator is leffen'd about the Solftices, and increas'd about the Equinoxes? No, not this neither. For Mr. Flamsteed had Thew'd, that that very fmall Nutation doth rather confirm than weaken his Opinion. What therefore he attributes the faid Phænomenon to, as its Caufe, let us hear his own Words, Page 275. "This Method, faith he, fuppofeth the Axis of the "c Earth to be always moft exactly parallel to it "felf, when it is in the oppofite Points of its " own Orbit, where the Obfervations are made. [And why fhould it not fuppofe this, or that it is parallel to it felf exactly enough for the prefent Purpofe? But he goes on:] "Although that - frmall Nutation of the Axis, of which we fpoke "s juft now, doth in no wife hinder Mr. Flamfteed's " Obfervation; yet there is another Nutation of " it, which may produce the Diverfity of the "Diftance of the Polar Star from the Pole; that ${ }^{6} \sigma$ is, if the Sontbern Hemifphere of the Earth " be of a more denfe Frame than the Nortbern " (whether it be from hence that that hath lefs "Summer than this, and therefore more cold; ${ }^{6<}$ or from the Inequality of the Continents about " the Poles, or from fome other Caufe unknown "s to us ,) fince at the Winter Solftice, the Son"tbern Pole inclines to the Sun, and is withal "s 'nearer to it than the Nortbern; and in the Sum\cong mer Solftice this latter inclines to the Sun; the

234 Matbematical Pbilofophy.

" Axis of the Earth will be more inclin'd to the Plane of the Ecliptic in Winter Time, than in the Summer; and the Angle whereby the Polar Star is diftant from the Pole, would be lefs at the Winter than the Summer Solttice, altho' the Pole Star were placed at an infinite Diftance, and the Lines drawn from thence to the Magrius Orbis were to be reckoned for parallel. Since therefore the whole that can be made of Mr. Flamfeed's Obfervation is this, that the apparent angular Diftance of the Polar Star from the Pole, is lefs in the Summer Solftice than in the Winter; and this may arife from two Caufes, either from the Concourfe of right Lines drawn from the Earth to the Polar Star, in divers Situations of the Eath to that Star, if the Earth's Axis in one of the Obfervations be parallel to it felf in another, which Mr. Flamfteed fuppofeth; or from the Concourfe of right Lines coinciding with the Axis of the Earth in its divers Situations, the Polar Star being fuppos'd to be infinitely diftant; the Parallax of the Fixed Stars' cannot be certainly concluded from that Obfervation. Becaufe the whole Obfervation may confift, and the right Lines drawn from divers Places of the Earth in its Orbit to the Pole Star infinitely diftant may remain parallel ; tho' the Parallax of the great Orb, with refpect to that Star, be fuppos'd to be none at all. Yea, this Obfervation (faith he) doth not fo mach as prove immediately the annual Motion of the Earth. For although the Earth remains in the middle (making by its Rotation about its Axis, as in the Semi-Tychonic Syftem, the apparent Diurnal Motion of the Stars,)the Sun when placed in theSoutbermSigns may fo atcract theSoutbern Hemif-

Matbematical Pbilofophy. 235

" Hemifphere of the Earth, which is then trearer, of Mr. Flamfted and Dr. Hook on this Subject. But I anfwer,
(i.) That, as to the affigned Caufes of the Nutation of the Earth, the lefs Summer, to wit, of the Southern Hemifphere, and greater Cold, or the Inequality of the Continents about the Poles; if this Learned Man would derive that Denfity of the Soutbern Hemifphere above the Nortbern from thefe Caules, which may fuffice to the moving of the Earth fo many Seconds from its former Poficion ; he might as well go about to move Mount Caucafus from its Place with a Leaver. I do admire at his Ungeometricalnefs in this Bufinefs, that he would not firf eftimate in fome fort the Force and Quantity of thefe Caufes, before he attributed fo huge Effects to them. But bis Prudence is to be commended, that he added, or from fome otber CCaufe unknown to us: For he knew very well, that an unknown Caufe cannot be computed. But in the mean while I will fpeak freely and openly, that there can be no Caufe affign'd of this divers Denfity of the Hemifpheres of the Earth, which he fuppofes, but what is contrary to the Mechanical Formation of the Planets, and the modern Phenomena of Nature. For,
(2.) If

236. Matbematical Pbilofophy.

(2.) If one Hemifphere of the Earth was a little higher or denfer than the other, that Nutation of the Earth which he hath devifed, would in no wife follow from thence. For in this Cafe, the Axis of the Globe would nodd indeed, but fo that the Angle of the Inclination would twice in 2 Year return to its greateft, and twice to its leaft Quantity ; and this fo that that Angle would be of the fame Quantity in both the Solftices, which plainly undermines the Foundations of his Hypothefis.
(3.) From this unequal Altitude or Denfity of the Hemifpheres of the Earth, if fo be it exceeds the Altitude or Denfity of the Equator, the Progrefs of the Equinoxes would follow: Whereas it is a thing certain, and acknowledg'd by Mr. Gregory himfelf, and every one, that they continually go backwards, and not forwards. But if he affign the Inequality to be fuch only, as not to infringe, the greater Altitude or Denfity of the Equator; fo that fo much as the Parts about one Pole do exceed the Equatoreal Parts in Altitude, fo much the Parts about the other Pole fall flort thereof: Neither will this be any Help to his Caufe. For becaufe of the Defect of Force in one Hemifphere, which compenfates the Excefs in the other; the Forces on both Sides will be in a poize, and there will be no entire Force which fhould move the Axis, and caufe any Nutation. So that neither from that unequal Altitude or Denfity fuppos'd, will his fuppofed Nutation of the Axis in any wife follow.
(4.) If we fhould, for Difputation's Sake, fuppofe that Nutation of the Axis, neither yet would this Learned Man attain his Aim. For he fuppofeth fuch a Nutation, as would reduce the Axis in one of the Solftices unto the leaft Angle

Matbematical Pbilofophy. 237

of Inclination, and unto the greateft in the other. Now from the Principles of Sir Ifaac-Nevyton before laid down, which are Dr. Gregory's Principles likewife, it would follow, that the greateft Angle of Inclination of the Axis will be in the Octants after the Conjunction and Oppofition of the Nodes, and the leaft in the Octants after the Quadratures of the fame; fo that as we faid before, in both the 'Solftices themfelves, which are in the Middle betwixt the greateft and leaft Angle, no Diverfity at all' of the Angle of Inclination is to be expected. From whence alfo, which is to be noted by the way, both Mr. Flamsteed himfelf, and Dr. Gregory who follows him, are altogether miftaken, when they fuppofe that Nutation of the Axis, to which the Preceffion of the Equinoxes is owing, can have any place here.
(5.) If, laftly, we fhould be minded to fuppofe the Nutation of the Axis, to be in the Time, and to the Parts affign'd by Dr. Gregory; the Quantity of Inclination would be far lefs than to produce Mr. Flamfteed's Parallax. Let us grant to him, that the Axis of the Earth doth vibrate to and fro every Year; let us grant alfo, that in one of the Equinoxes this Nutation is to the one Part, and in the other Equinox to the contfary; fo that the greateft Difference poffible fhould arife from thence. Yet, how very fmall will this Difference be: To wit, according to the Calculation we made formerly, (fee Lect. Aftron. Page .) it is manifeft, that this huge Nutation which arifeth from the fenfible Altitude of about 17 Miles, whereby the Semi-diameter of the Equator exceeds half the Axis, did only amount to a Part of one Second. What therefore is this Minute Difference to the Parallax, which arifeth

238 Mathematical Pbilofopby．

to three whole Quarters of one Minute？This Caufe therefore is in no wife fufficient to that Effet．To conclude，it is moft certain that this Evation of Dr．Gregor＇s＇s，whereby he would thew that the annual Motion of the Earth dorth not follow upon Mr．Flampfeed＇s Obfervations，is no fmall Error of his，and leaves a blemifh upon 2 Work otherwife valuable for Demonftrations frially geometrical，a Beauty not to be met with often elfewhere in Phyfical Trats．
Scholiimm．But it is to be nored，that the Famous Mr．Flamffed hath not ordered his Reafonings al－ together rightly in this Place，which the Frencb have lately noted；and hath formetimes deduced the Parallax of the Fixed Stars from Phxnomena in no wife proving it．But yet when I looked tore narrowly into this Matter，Eleven of Fifteen remarkable Obfervations，which the Pronch allow to be true，and agreeing with their own，do even yet thew the Parallax of the Fixed Stars；and of thofe Four that feem to difagree with it，there is only one of that Quantity as to give us any Trouble in this Bufinefs；whichthere－ fore it is reafonable to think to be owing to fome Miftake，whecher in the obferving or in the wri－ ting．Efpecially fince the like Parallax feems ma－ nifeftly to appear from the accurate Obfervati－ ons of Dr．Hook．But thefe Things we leave to the further Diligence and Scrutiny of Aftrono－ mers．

Octob．29． 170ς.

Matbematical Pbilofopby. 239

Le c т. XXII.

F each particular Body of any Syftem, as A and B feverally confidered, draws all the reft of the Bodies with accelerative Forces, which are as the Squares of the Diftances from the attracting Body reciprocally, the abfolute Forces of all thofe Bodies will be one to another as are the Bodies themfelves.
Let the Body A, by its accelerating Force reprefented by a, draw the Body B; and becaufe of the Diftance which is on booh Sides the fame, let B reciprocally draw A by the Force reprefented by b. The Quanticy of Motion is on bath Sides equal, becaure of the Reaction that is on both Sides equal to the Action : And that Quanitity of Motion doth altogether arife from the Velocity drawn into che Quanticy of the Matter, Therefore the Rectangle $A \times b$ is equal to the Retangle $\mathbf{B} \times \mathbf{a}$. And confequently the aecelerating Force of the Body \mathbf{B} will be to that of the Body A, at equal Diftances, as the Body B is to A. And confequently the abfolute Forces of the Bodies will be one to another, as the Bodies themfelves: To wit, the Sum of equal Forces tending every where unto equal Parts, at equad Diftances. 是.E.D.
scholimm. By fuch like Propofitions, we are led unto the Analogy betwixt Centripetal Forces and Central Bodies, to which thofe Forces are directed. For it is reafonable to think, that the Forces which

240 Matbematical Pbilofopby.

 are directed towards Bodies, thould depend upon the Nature and Quantity of thofe Bodies, as it comes to pafs in Magnetics. And as often as thefe Cafes happen, the Attractions of Bodies are to be eftimated by affigning to each Part of them its proper Force, and fo gathering the Forces into one total Sum. But as for the Word Attraction, we ufe it here generally for any Endeavour whatfoever of coming unto another, which is found in Bodies, whether that Endeavour be from the Action of Bodies, either of themfelves tending to one another, or by mutual Emiffion of Spirits acting one upon the other; or whether it arife from the Action of the Ether, or Air, or any Medium whatever, corporeal or incorporeal, which forces the Bodies floating in it towards one another. In the fame general Senfe, we ufe the Word Impulfe; not confidering in this place the phyfical Species and Qualities of the Forces, but their Mathematical Quantities and Proportions; as we propos'd above in the Definitions. In which Confideration of them, the Quantities of the Forces are to be fearched out and defin'd, and thofe Proportions which follow upon any Conditions whatever that are fuppos'd. But when we defcend unto Phyfics, thefe Proportions are to be compared with the Phænomena, that it may be known what Kind of Force it is which agrees to each Kind of attractive Bodies. And then we may at length, and not till then, fafely difpute concerning the Species, Caufes, and phyfical' Reafons of Forces. Let us fee therefore by what Forces Spherical Bodies, fuch as are commonly the greater Bodies of the World, the Sun, Fixed Stars, Planets, and.Comets, confifting of attractive Particles in the manner juft now defign'd, ought
Mathematical Pbilofophy. 241

ought to act one upon another ; and what Sort of Motions will follow from thence.
XLIV. If towards each equal Points of a Sphe-rical Phyfical Surface of equal Thicknefs every where, but which Thicknefs is fo fmall that it is not to be regardrd, there be a Tendency of equal Centripetal Forces decreafing in the duplicate Proportion of the Diftances from the fame Points; any Corpafcle placed any where within this Surface, will not be attracted unto any Part by the faid Force ; but will either reft, or continue that Motion which is begun without any Difturbance, and in the fame manner as if it were acted upon with no Force at all from that Surface.

In Fig. s. Plate 6. let H I KL be that fpherical Surface, and \mathbf{P} a Corpufcle placed within it. Through P let there be drawn to the Surface any two right Lines, intercepting the very fmall Arches HK, IL. And here becaufe the Triangles HPI, LPK are fimilar [for the Arches HI and K Liare fo fmall, that they are to be taken for right Lines; and the Angles vertically oppofite at P are equal; and the Sides containing their equalAngles are (by III. 35 • withVI. 14. and VI. 6. of the Elem.) on both Sides proportional] therefore thofe Arches will be proportional to the Diftances HP and LP ; that is, P H will be to PL, or PI to PK, as IH is to KL. And any little Portions of the fpherical Surface at HI and K L, bounded on every Side by innumerable right Lines paffing through the Point P, whether they be Polygons or Circular, will-be fimilar Figures, and confequently in the duplicate Proportion of thofe Arches or Diftances from the Corpufcle. And the whole attracting Forces towards the contrary Parts will, by reafon of the nearer Situation of the leffer Surface, and the remoter

242 Matbematical Pbilojophy.

Situation of the greater, counterpoife and deftroy each other. -And by the fame Argument, all Attractions throughout the whole Surface will be deftroy'd by the contrary Attractions. And confequently the Body P will be' impell'd to no Part by thefe Attractions. 2. E. D.

Coroll. (I.) Since therefore any Sphere, which hath a Concave, Concentric, Spheric Space within, may rightly be diftinguifhed into innumerable fuch like fpherical Surfaces of an inconfiderable Craffitude; and fince from the Force of this Demonftration, no one of thefe Surfaces can attract a Body placed within it unto any Part: It is manifeft, that the whole Sphere can imprefs no Force upon the Corpufcle within it. But that this Corpufcle, if it was in Reft before, will ftill reft ; or if it was in Motion before, of what fort foever it were, it will ftill continue that Motion; any Attraction which may be in the exterior Sphere notwithftanding.

Coroll. (2.) And fince this thing may with $\mathrm{Pa}-$ rity of Reafon be demonftrated concerning any Corpufcles whatever, compounding what Body or Mafs of Matter foever; it appears, that all Bodies whatever, placed within fuch a Concave Sphere, are uncapable of receiving any Impreffion from any attractive Force of that Sphere.
Coroll. (3.) If therefore our Earth,as made of fuch Spherical Surfaces compos'd of attractive Particles, hath a Spherical Central Cavity, Animals placed there are affected with no Force of Gravity from thofe Surfaces, and perform their Motions with the fame Liberty, as they would do if there was no fuch thing as Gravity in Nature. And the fame is to be faid of the Planets and Comets; and of the Sun, and the Fixed Stars.

XLV. The

Matbematical Pbilofophy. 243

XLV. The fame Things fuppos'd as before, a Corpufcle placed without the fpherical Surface will be attracted to the Center of the Sphere by a Force reciprocally proportional to the Diftance from the fame Center.

In the double Fig. 6. Plate 6. let there be two equal Surfaces, (or rather the fame Surface put twice) one Mark'd with great Letters, the other with finall, AHKB, ahkb defctib'd from the Centers'S, s with equal Diameters AB, $\mathbf{a b}$; and let P p be two Corpufcles; (or rather one and the fame Corpufcle placed at divers Diftances from the Spherical Surface ; placed without in the Continuation : of thofe Diameters. Let the right Lines P H K, P I I: phk, pii be drawn from the Corpufcles, cutting off from the greatef Circles ATB, a tb equal Arches, HK, hk: and ITI, iti differing, the latter from the former, as little as may be. And let the Perpendiculars SD,sd be let fall to PK,pk: and SE; se to PI, pi; and IR, ir to PK, pk. Of which, let SD, sd cut PI, pi in the Points F and F. . Let there be let fall alfo to the Diameters the perpendicular Lines IQ,iq; and becaufe of the Equality of the Lines DS, and ds; ES, and e_{5}; and of the moft fmall vanifhing Angles DPE, dpe; the Lines PE, PF, and $p e, p f$ (the Difference FE, fe, and the little Lines DF, df vanifhing) may be accounted for equal ; as having their laft Proportion, thofe Angles DPE, dpe, and DSE,dse vanifhing away; the. Proportion of Equality. Thefe Things being thus, in the like Triangles PRI, PDF, and pri, pdf, PI will be to PF, as RI is to DF;: and pf : will be to pi , as D.For df is to ri: And both the equal Proportions being compounded into one, the Rectangle $\mathrm{PI} \times \mathrm{pf}$ will be to the R 2

Rect-

244 Matbematical Pbilofophy.

Rectangle $P \mathrm{~F}$ into pi , as the Rectangle $\mathrm{RI} \mathbf{x d f}$ is to the Rectangle DF $\times r i$; that is, as RI is to ri: that is, in the laft frmilar Triangles IR H, irh (becaufe of the right Angle at R and r; and the Angle R HI agreeing to the Angle rhi, if the equal Circles were applied to each other) as the vanifhing Arch IH is to the vanifhing Arch ih. Again, in the like Triangles PIQ, PSF: piq, psf, PiI is to PS as IQ is to SE, and ps is to pi as SE or se is to iq. And both the equal Proportions being compounded, the Rectangle PI \times ps will be to the Rectangle $\mathrm{PS} \times \mathrm{pi}$, as the Rectangle' $\mathrm{IQ} \times \mathrm{se}$ is to the Rectangle SExiq; that is, as IQ is to iq. And both the principal Proportions being compounded, the Quantity PI×PI×pf $\times \mathrm{ps}$ will be to the Quantity pi $\times \mathrm{pi} \times \mathrm{PF} ; \times \mathrm{PS} ;$ that is, $\mathrm{PIq} \times \mathrm{pf} \times \mathrm{ps}$ will be to $\mathrm{pi} 9 \dot{\times} \mathrm{PF} \times \mathrm{PS}$, as the Rectangle $\mathrm{IH} \times \mathrm{IQ}$ is to the Rectangle ih $\times \mathrm{iq}$; that is, as the Circular Surface or Ring which the fmalleft Arch IH will defcribe in the Circumvolution of the Semicircle AHTB about the Diameter A B, is to the Circular Surface or Ring which the fmalleft Arch ih will defcribe in the Circumvolution of the Semicircle $a h t b$ about the Diameter $a b$. And the Forces wherewith thefe Sutfaces do attract the Corpufcles Pand p, are, by the Hypothefis; as the Surfaces themfelves, fo far as the Squares of the Diftances do not increafe or diminifh the the fame Forces; and confequently thofe Forces are as the Surfaces themfelves applied to the Squares of their Diftances from the Bodies ; that is, as $\frac{P I{ }^{q} \times p f \times p \dot{s}}{\text { PIq }}$ is $\frac{\mathrm{piq} \times P \mathrm{P} \times \mathrm{PS}:}{\mathrm{p} q}$ or as $\mathrm{p} f \times \mathrm{p}$ s is to PF \times PS. There entire Forces likewife are to their oblique Parts, which by - $2 \mathrm{Re}-$

Matbematical PbiloJophy. 245

a Revolution made of the Forces tend to the Centers according to the Lines PS and ps, as PI is to PQ ; and as pi to pq ; that is, (becaufe of the like Triangles PIQ PSF; and piq, psf:) as PS is to PF, and as ps to pf. From whence, by Equality of Proportion, the Attraction of this Corpufcle P towards the Center S, will be to the Attraction of the Corpufcle p towards the Centers, as $\frac{P F}{P} p f \times p s$ is to $\frac{P}{P} \frac{f}{s}$ $\mathbf{P F} \times P S$; or as $P F \times p f \times p s \times p s$ is to $p f \times P F \times P S \times P S$, or alfo as $p s \times p s$ or $p s q$ is to $\mathrm{PS} \times \mathrm{PS}$ or PSq ; that is, as the Squares of the Diftances from their Centers reciprocally.

And by the like Argument, the Forces wherewith the remoter Surfaces defcribed by the Circumvolution of the remoter Arches H L and hl draw the Corpufcles, are as the Squares of the Diftances from their Centers repciprocally. And the Forces of all the like circular or annular Surfaces into which both the fpherical Surfaces may be diftinguifh'd, by taking always equal Arches, as HK, hk and ITI, iti; or, which is the fame, by taking the perpendicular S D equal to $s \mathrm{~d}$, and SE equal to se; the Forces of all thefe annular Surfaces, I fay, are in the faid Proportion. And from thence, the Sum of the Forces, or the Force of the whole fpherical Surfaces, will be exerted upon the Corpufcles in the fame Proportion. 2. E. D.

Coroll. (r.) Since therefore every entire Sphere may be rightly diftinguifh'd into innumerable fuch like concentrical fpherical Surfaces; and fince from the Force of this Demonftration any one of the Surfaces may fo attract that Corpufcle, that the Force of Attraction towards the Center is in the duplicate Proportion of the Diftance reciproR 3 cally \mathbf{i}

246 Matbematical Pbilofophy.

cally; it is manifeft, that the whole Sphere alfo doth fo attract that Corpufcle, that the Centripetal Force is in the duplicate Proportion of the Diftance from the Center reciprocally.

Corol. (2.) And fince the reft of the oblique Forces IQ, iq, eftimated from the oppofite Hemifpheres, are oppofite to, and deftroy each other ; the entire Force exercis'd upon the Corpufcle, will be altogether equal to that Force tending towards the Center.

Corol. (3.) And feeing the Demonftration would proceed in the like manner, if inftead of one Corpufcle, any Body compounded of thofe Corpufcles were fuppofed (for what agrees to one Particle muft, by the fame Reafon, agree to every one, and confequently to the Sum of them ;) it appears, that every Sphere confifting of Particles equally attractive, doth fo attract every Body, that the Quantity of the Actraction is in the duplicate Proportion of the Diftance from the Center of the Sphere reciprocally.

Corol. (4.) Therefore the Attraction of the Sphere is in the fame manner, as if the whole of the Forces tending towards the Center was gathered together in the Center it felf, and united and propagated it felf on every Side round about from that one Point.
XLVI. If unto each Point of any Spheres which are Homogeneous, or of the fame Denfity, equal Centripetal Forces do tend, decreafing in the duplicate Proportion of the Diftances from the Points ; and the Proportion of the Diameters of the Spheres to the Diftance of the Bodies from the Centers of the fame Spheres be given: the Forces wherewith the Bodies are attracted being compar'd amongt themfelves, will

-
-

Digitized by GOOg

Matbematical Pbilofopby. 247

be found proportional to the Semidiameters of the attracting Spheres.

That is, The Forces of the Spheres are as the attracting Particles themfelves, or, as the Spheres themfelves; that is, in the triplicate Proportion of the Semi-diameters, to wit, at equal Diftances. But when the Diftances are fuppos'd unequal, and unequal in the very Proportion of the Semi-diameters, the Forces will be diminifh'd in Proportion to the Diftances; that is, by the Hypothefis in the duplicate Proportion of the Se-mi-diameters of the Spheres. The remaining Forces therefore, which are to be eftimated from the Excefs of the triplicate Proportion above the duplicate, will be in the fimple Proportion of the Semi-diameters directly. 2. E. D.

Corol. (r.) Hence, if any Bodies be revolv'd in Circles about Spheres confifting of Matter equally attractive; and the Diftances from the Centers of the Spheres be proportional to the Diameters or Semi-diameters of the fame; the periodic Times will be equal. For the Equality of the periodic Times follows from the Forces in the direct Proportion of the Diftances; as we have fhew'd before.

Corol. (2.) And the Inverfe of it is alfo true ; if the periodicTimes be equal, the Diftances of the revolving Bodies from the Spheres, if fo be the fame be Homogeneous, or of the fame Denfity; will be proportional to the Semi-diameters of the Spheres.

Corol. (3.) And from the periodic Times given, together with the Diftances of the Bodies from the Spheres, the Denfities of the Spheres will alfo be given : To wit, by computing what periodic Times would follow from thence at Diftances proportional to the Semi-diameters of the Spheres, R 4 and

248, Matbematical Pbilofopby.
and by determining from the Excefs or Defect of the periodic Times, the Defect or Excefs of Denfities reciprocally proportional to the fame. Examples of which, in the Sun, Fupiter, Satuxn, and the Earth, will be produc'd hereafter.
XLVII. If unto each Point of fome given Sphere, which is Homogeneous, or of equal Denfity every where, there be a Tendency of equal Centripetal Forces decreafing in the duplicate Proportion of the Diftances from the Points; a Corpufcle placed within the Sphere, is attracted with a Force proportional to its Diftance from the Center thereof.

In the Sphere A BCD (of Fig. 1. Plate 7.) defcribed from the Center S, let the Corpufcle \mathbf{P} be placed; and from the Center S with the Interval SP, conceive an inner Sphere to be defcribed, to wit, PEQF. It is manifeft, by Prop. 44^{-} That the Concentrick Spherical Surfaces, of which the Difference of the Spheres is compofed, the Attractions in one part being every where deftroy'd by the contrary Attractions, do not act at all upon the Corpufcle P : There remains only the Attraction of the inner Sphere PEQF. Therefore the Centripetal Force decreafeth, by reafon of the leffer Sphere which attracts in the triplicate Proportion of the diminifl'd Diftance from the Center; but increafeth in the invers duplicate Proportion of the Diftance, becaufe of the Accefs to the Center. Therefore the remaining Force, to be eftimated from the Exicefs of the triplicate Proportion above the duplicate, will be in the direct Proportion of the Diftance from the Center.

Corol. (r.) If fuch a fort of Sphere be bored through the Center, all Bodies let fall from all Diftances, whether little or great, will defcend

Matbematical Pbilofopby. 242

unto the Center in an equal Space of Time ; in the Space, to wit, of $21^{\prime} .9^{\prime \prime}$. in our Earth, as we obferved before.

Corol. (2.) And if there be no Medium, which refifts the Motion of the defcending or afcending Bodies, every Body let fall will, when it hath paffed the Center, afcend as far beyond the Center as it before defcended to it ; and fo will, by a perpetual Afcent and Defcent, imitate the Motions of pendulous Bodies vibrating in a Cycloid. And thefe Vibrations, if we may fo call them, will be perform'd in equal Times.

Corol. (3.) But if, as many very fmall Inter-' vals as you will, Concentrical to fuch a Kind of Sphere, be fuppofed to be interpos'd betwixt any Spherical Surfaces whatever, and any Bodies whatever be underftood to be revolv'd in thefe Intervals about the Center, like fo many little Planets; the periodic Times of all thefe Planets will be equal every where. That is, every Period will be perform'd in the fame Space of Time, in which any Bodv whatever being let down would perform the whole Vibration compounded of Going and Returning : Thus, in our Earth, the faid circular Periods would be performed in 1 h. $24^{\prime} \cdot 36^{\prime \prime}$. As may eafily appear from what hath been demonftrated before.

Scbolium. It is to be noted, that thofe Surfaces, of which we fuppofe folid Bodies to be compos'd, are not purely Mathematical, or void of all Thicknefs; but fuch thin Orbs, that their. Craffitude is as nothing. In like manner by Points, of which we fay Lines are compos'd, and from thence Surfaces and Solids, Particles of equal Magnitude, but which is fo fmall that it is not to be regarded, are to be underttood.

Nov. 19. 1705.

LECT.

L. e c т. XXIII.

HEfameThingsbeingfuppos'd, a Corpufcle placed without a Sphere is attracted with a Force reciprocally proportional to the Square of its Diffance from the Sphere. For let the Sphere be diftinguifh'd into innumerable Concentrical Spherical Surfaces ; the Attractions of the Corpufcle arifing from each of the Surfaces, will be reciprocally proportional to the Square of the Diflance of the Corpufcle from the Center, by Prop. 45. And likewife by compounding, the Sum of Attractions, or the Attraction of the whole Sphere, will be in the fame Proportion. 2.E.D.

Corol. (r.) Hence, in equal Diftances from the Centers of Homogeneous Spheres, the Attractions are as theSpheres themfelves; or as the Cubes of the Diameters are one to another. For, by Prop. 46. if the Diftances be proportional to the Diameters, the Forces of the Spheres will be as the Diameters : Let the greater Diftance therefore be diminifh'd in that Proportion; and thus the Diftance being now made equal, the Attration will be increas'd in that duplicate Proportion, and confequently will be to the other Attraction in that triplicate Proportion of the Diameters, that is, in the Proportion of the Spheres themfelves.
Corol. (2.) In any Diftances whatever, the Attractions will be as the Spheres applied to the Squares of the Diftances.

Matbematical Pbilofophy. 251

Corol. (3.) If a Corpufcle placed without an Homogenenus Sphere, be drawn with a Force reciprocally proportional to the Square of its Diftance from the Center, and the Sphere in the mean time confifts of attractive Particles; the Force of every Particle will decreafe in the duplicate Proportion of the Diftance from that Particle.

Corol. (4.) Since therefore all the Planets, both Primary and Secondary, are attracted to the Sun; all the Secondaries about \mathcal{F} upiter are attracted to the Center of \mathcal{F} upiter; all the Satellites of Saturn to the Center of Saturn; and the Moon to the Centef of the Earth : Every one to its own Center in divers Diftances, with a Force reciprocally proportional to the Squares of the Diftances refpectively; the Force of every Particle compofing the Body of the Sun, Fupiter, Saturn, and the Earth, decreafeth in a duplicate Proportion of the Diftance from the fame Particle.
XLIX. If unto each Point of a given Ho: mogeneous Sphere, there be a Tendency'of equal Centripetal Forces decreafing in the duplicate Proportion of the Diftances from the Points; every other fimilar Sphere will be attracted with a Force reciprocally proportional to the Square of the Diftance of the Centers.

For the Attraction of every Particle is reciprocally, as the Square of the Diftance thereof from the Center of the attracting Sphere, by Prop. 45. and therefore it is the fame, as if the whole attracting Force lay in one fingle Particle fituate in the Center of this Sphere. But this Attraction is as great as the Attraction of the fame Corpufcle wou'd be, if fo be it were attracted by each Particle of the attracted Sphere with the fame Force Wherewith it attracts them, But this Attraction

252
 Matbematical Pbilofopby.

of the Corpufcle would be by the laft Prop. reciprocally proportional to the Square of the Diftance thereof from the Center of the Sphere; and confequently the Attraction of the Sphere, which is equal to the fame, is in the fame Proportion. Q. E. D.

Corol. (1.) Attractions of Homogeneous Spheres towards other Homogeneous Spheres, are, as it is in thofe of Points, or the moft minute Corpufcles, as the attracting Spheres applied to the Squares of the Diftances of their Centers from the Centers of thofe which attract.

Corol. (2.) The fame thing holds, where the attracting Sphere doth alfo attract it felf, For each Point of this will draw each Point of the other with the fame Force, whereby it is interchangeably drawn by them. And confequently fince in all Attractions, both the attrahent and the attracted Body are urged or acted upon; the Force of the mutual Attraction will be doubled, keeping the Proportions.

Corol. (3.) All thofe things which have been demonftrated above, concerning the Motion of Bodies, about the Focus of Conic Sections, do hold where the attracting Sphere is placed in the Focus, and the Bodies are mov'd without that Sphere.

Coral. (4.) But thofe things which were demonftrated concerning the Motion of Bodies about the Center of Conic Sections, do hold where the Motions are performed within the Sphere; to wit, where a Sphere not perfectly Concave, but full of Concave Parts, is fuppofed ; as we obferved before.
L. Prop. If Spheres which are diffimilar in the Procefs from the Center to the Circumference, (as to Denfity of Matter, and the attractive

Force,) are neverthelefs altogether fimilar in their Progrefs in a round in every given Diftance from the Center ; and the attractive Force of every Point decreafeth in the duplicate Proportion of the Diftance of the attracted Body: the whole Force wherewith one fuch Sphere draws the other, is reciprocally proportional to the Square of the Diftance of the Centers.

For fuch a fort of Sphere may always be divided into fimilar Concentrick Spherical Surfaces. And fince it hath lately been demonftrated othat every Surface feparately confidered, doth fo draw all other Surfaces feparately confidered, that the whole Force wherewith fuch a fpherick Surface draws any other, is reciprocally proportional to the Square of the Diftance from its Center ; the Propofition will appear manifeft of entire Spheres compounded of fuch Surfaces. e. E. D.
Corol. (i.) Hence, if many fuch like Spheres being like to one another in all things, do attract each other; the accelerating Force of each upon each will be at equal Diftances of the Centers, as the attracting Spheres themfelves; or as the Quantities of Matter contain'd in the fame.

Corol. (2.) And in all unequal Diftances whatever, as the attracting Spheres applied to the Squares of the Diftances betwixt the Centers of the Spheres.

Corol. (3.) But Moving Attractions, or the Weights of Spheres in Action upon or tewards Spheres at equal Diftances of Centers, are as the attracting and attracted Spheres conjunctly; that is, as the Contents of the Spheres produc'd by Multiplication. For fince the attracting Body, becaufe of Reaction, which every where is equal to Action, tho' tending to the contrary Part, is mov'd towards the Body attracted with the like

254 Matbematical Pbilofopby.

 tity of Motion, that is, with a Celerity recipro: cal to the Bodies; and this would be if there were properly no attractive Force of the Body which is attracted : And fince to thofe who inhabit any Sphere, the whole Velocity of Spheres approaching to one another is neceffarily referr'd to the other Sphere, and not to the Sphere they dwell upon; becaufe they cannot difcern their own Motion; hence it comes to pafs, that all the Centripetal Force of the other Sphere, that, to wit, wherewith it approacheth to thetr own, or that rather wherewith they are both of them carried with the fame Tendency towards the mutual Concourfe, and which is called the Weigbt of the other; is not onily proportional to the attracting Sphere, but to both Spheres taken together. This is that which goes by the Name of the Weigbt of any Body towards the Earth, which makes that that Body and the Earth are carried towards each other with a relative Velocity of Approximation. Thus we fhew'd before (Prop. 23.) that the Gravity of the Moon towards the Earth, is of that Quantity that it would fall to the Center of the Earth in the Space of 4 h : 20^{\prime}. almoft. Not that all that Velocity is to be referr'd to the Moon it felf; but that if all tho refpective. Velocity of approaching, arifing from the Motion of both Bodies, were to be referr'd to the Moon alone, as thofe that inhabit the Earth are wont to refer it ; this would make that the Moon would fall to the Center of the Earth in that Space of Time.Corol. (4.) In unequal Diftances Moving Attractions, or the Weights of Spheres towards Spheres, will be as thofe Contents applied to the Squares of the Diftances betwixt the Centers.

Corol. (ς.) The fame Things hold alfo, a fortiori, where the whole Attraction arifeth from the attractive Virtue of both Spheres mutually exercifed upon the other Sphere. For the Attration will be doubled, the Proportion being kept.

Corol. (6.) If feme fuch Spheres be revolv'd about others quiefcent each about each; and the Diftances betwixt the Centers of the revolving ones, and of the quiefcent, be proportional to the Diameters of the quiefcent; the periodic Times will be equal.

Corol. (7.) And, vice verfa, if the periodia Times be equal, the Diftances will be proportional to the Diameters.
Corol. (8.) All the fame Things which we demonftrated above, concerning the Motion of Bodies about the Foci of Conic Sections, do hold where the attracting Sphere of what Form and Condition foever, which hath been already den frrib'd, is placed in the Focus.
Corol. (9.) As alfo where the attracting Spheres revolve of what Condition foever, that have been, alceady defrrib'd, i. e. either wholly Homogeneous, or in the fame Diffances from the Centers so.

LL. If to each equal Point of Homogeneous Spheres, there be a Tendency of Centripetal Fopges equal at equal Diftances, but at divers Diftances directly 'proportional to the Diftances of the Points from the Bodies attracted ; the Force compounded of the Forces of all-the Parts: wherewith the two Spheres do mutually draw: each other, will be as the Diftance betwixt the Genters of the Spheres.

Cafe I. In Fig. 2. Plate 7. Let A C B D be a: Sphere compounded of thefe attractive Forces: S the Center of the fame: P a Corpufcle attract-

256 Matbematical Pbilofophy.

ed : PASB the Axis of the Sphere paffing through the Center of the Corpufcle: EF and ef two phyfical Planes of a Thicknefs not to be regarded, wherewith the Sphere is cut, which are alfo perpendicular to the Axis, and on this fide and on that equally diftant from the Center of the Sphere. The Points G and g, the Interfections of the Planes and the Axis: and H any phyfical Point in the Plane E F. The Centripetal Force of the Point H upon the Corpufcle P, exercifed along the Line P H, is, by the Hypothefis, as the Diftance it felf PH; which by Refolution of Forces is to be divided into GH, G P. From whence the Force along the Line PS, that is towards the Center S, is as the Length it felf $\mathbf{P G}$; [H G, or one Part of the Forces being :deftroy'd by the Force of the Point which is equally diftant from the Axis, on the other Side of the Avis directly oppofite in the fame Plane.] Therefore the Force of all the Points in the Plane EF; that is, the Force of the whole Plane, whereby the Corpufcle P is drawn towards the Center S, will in like manner be as the Number or Sum of the Points drawn into the Diftance PG: that is, as the Content under the Plane EF, and the Diftance PG. And in like fort the Force of the Plane ef, whereby the Corpufcle P is drawn towards the Center S, is as the equal Plane drawn. into the Diftance P G. And the Sum of the Forces of both Planes is as the Plane EF, drawn into the Sum of the Diftances $\mathrm{PG} \times \mathrm{Pg}$; that is, a's that Plane drawn into PS the double of the Diftance of the Center and the Corpufcle: [$\mathrm{Be}-$ caufe of the Lines PG, PS, Pg, which are Arithmerically proportional; and from thence the Sum of the Extremes equal to the Double of the Mean.] That is, as the Double of the Plane EF ; or the

Matbematical Pbilofophy. 257

Sum of the equal Planes drawn into the Diftance PS. And by the like Argument, the Forces of all the Planes in the whole Sphere, equidiftant on this fide and on that from the Center of the Sphere, are as the Sum of the Planes drawn into the Diftance PS: that is, as the whole Sphere drawn into the Diftance of the Center thereof from the Corpufcle. And becaufe the Sphere is given in every Diftance, the entire attracting Force will be as P S, the Diftance of the attracted Corpufcle from the Center of the Sphere. 2. E. D.

Cafe (2.). Now let the Corpufcle P draw the Sphere, to wit, all Points of it, with a Force directly proportional to the Diftance of the Points from the Corpufcle: And by the fame Argument it will be prov'd, that the Force wherewith that Sphere is drawn will be as the Diftance PS. 2. E.D.

Cafe (3.) Then let another Homogeneous Sphere be compounded of innumerable Particles, as P , attractive in like manner; that is, in the direct Proportion of the Diftance. And becaufe the Force wherewith every Particle is drawn, is as the Diftance of the Corpufcle from the Center of the firft Sphere drawn into the fame Sphere; and confequently is the fame, as if the whole proceeded from one fingle Point in the Center of the Sphere: The whole Force wherewith all the Corpufcles will be drawn in the $2 d$ Sphere, that is, that wherewith that whole Sphere is drawn, will be the fame as if that Sphere were drawn by a Force proceeding from one fingle Corpufcle placed in the Center of the firft Sphere. And therefore it will be proportional to the Diftances betwixt the Centers of the Spheres. 2. E.D.

258 Matbematical Pbilofophy.
Cafe (4.) Now let the Spheres draw one another; and the doubled Force will ftill preferve the former Proportion. 2.E.D.

Cafe (ς.) Next, let the Corpufcle p be placed within the Sphere A C B D: and here, becaufe the Force of the Plane ef upon the Corpufcle will be as the Content under that Plane, and the Diftance pg , or as ef $\times \mathrm{pg}$; and the contrary Force of the Plane EF, as the Content under that Plane and the Diftance pG , or as $\mathrm{EF} \times \mathrm{pG}$: or as ef $\times \mathrm{pG}$: Therefore the attracting Force will be as the Difference of the Gontents, that is, ef $\times \mathrm{pg}-\mathrm{pG}$; or as the double of ef drawn into half the Difference $\mathrm{pg}-\mathrm{pG},=2$ ef $\times \frac{1}{2} \mathrm{pg}$ - $\frac{1}{2}$ p : That is, becaure $S \mathrm{G}, \mathrm{Sg}$ are equal, as the Sum of the equal Planes drawn into half the Difference of the Diftances, or into pS the Diflance of the Corpufcle from the Center of the Sphere. And by the fame Argument, the Attraction of all the Planes in the whole Sphere, as EF, ef, equidiftant on this fide and on that from the Center; that is, the Attraction of the whole Sphere will be as the Sum of all the Planes, or the whole Sphere drawn into p S, the Diftance of the Corpufcle from the Center of the Sphere. Q. E. D.

Cafe (6.) And if a new Homogeneous Sphere placed within the former, be compounded of innumerable Particles as p; it will be prov'd, as before, that the Attraction, whether it be fimply of one Sphere into another, or mutual and on both fides, will be as the Diftance of the Centers pS . 2.E.D.
LII. If Spheres in the Progrefs from the Center to the Circumference (as to Denfity of Matter, and attractive Force) howfoever diffimilar, are neverthelefs in the Progrefs round about at

Matbematical Pbilofophy. 259

every given Diftance from the Center every where fimilar; and the attractive Force of every Point is directly as the Diftance of the attracted Body: The whole Foree wherewith two fuch Spheres will mutually draw each other, will be proportional to the Diftance betwixt the Centers of the Spheres.

For fuch a Sphere may always be divided into equal Circles EF, ef, and in the fame Diftances from the Centers G, g, into Homogeneous ones ; and fince from the Force of what hath been already demonftrated, every circular Perimeter, of which every whole Circle is compounded, doth afford a Force proportional to the Diftance from the Center of the Sphere; the whole Force will alfo be in the direct Proportion of the Diftance from the Center.

Corol. What has been above demonflrated in the Corollaries to the soth Prop. concerning the Attractions of Spheres where the Law of Attraction was in the duplicate Ratio of the Diftance inverlly, may be every where applied to this Place, mutatis rite mutandis. But efpecially thofe which we have formerly demonftrated, concerning Bodies moving about the Center of Conic Sections; obtain where all the Attractions are made by the Force of Spheric Bodies of the fame fort that was juft now defcribed; and the attracted Bodies are Spheres of the fame Kind.

Scbolium. We have now explained the twonotable Cafes of Attractions; to wit, where the Centripetal Forces decreale in the duplicate, or increate in the fimple Proportion of the Diftances Caufing the Bodies in bpth Cafes to be revolved in Conic Sections, to wit, by the firft Law about the Focus, by the fecond about the Center; (and the frot Cade ogreeing to Bodies placed without

260 Matbematical Pbilofopby.

the Spheres, but the latter agreeing to the Bodies placed within them:) And compounding the Centriperal Forces of fpheric Bodies decreafing by the fame Law in their Recefs from the Center, or increafing with the Bodies. Which is well worthy to be taken notice of, and 'is very ufeful to folve the Phxnomena of the Solar Syftem. It wou'd be tedious, and of little Ufe, friety to examine the other Cafes in this Place, which would exhibit Conclúrions lefs elegant, and more remote from the Conftitution of the "World. Therefore, fince we have already explained the Attractions of fpheric Bodies, we may go on to the Laws of Attraction of other Bodies confifting of like attractive Particles : But we don't defign to handle them in particular. Therefore we fhall only fubjoin fome more general Propofitions of the Forces of Bodies of the like fort, and of the Motions arifing from thence, which will be of Ufe in Phyficks.

Lect. XXIV.

LIII. ted from each other by a Space bounded on both fides with parallel Planes; and a Body in its Paffage thro'this Space be attracted or impelled perpendicularly to eitherMedium, \& be neither accelerated nor retarded in its way by any other Force; and if moreover the Attraction be every where the fame, at equal Diftinces, from both Planes taken along the Line of its Motion; the

Matbematical Pbilofophy: 261

the Sine of the Angle of Incidence upen.the one Plane, will be to the Sine of the Angle of Emergence out of the other Plane, in a given Proportions i. e. whatfover the Angle of Inclination fhall be, the Proportion of thofe Sines will always be found to be the fame.

Cafe (r.) Let (in Fig.7. Plate 7.) A a B b be two paraflel Planes. - Let a Body fall upon the former along G H, and be in its whole Paffage attracted or impell'd towards the Medium of Incidence; and by this Action defcribe a Curve HI, and then emerge by the Line IK. Let the perpendicular IM be erected upon the Plane of Emergence Bb , meeting both the Line of Incidence GH produc'd in M, and the Plane of Incidence A a in R. And let the Line of Emergence K I produc'd meet HM in L. Thus GM will be the Tangent of this Curve in the Point H; and the Line LK the Tangent of the fame in the Point I. Then, from the Center L with the Interval LI, Jet a Circle be defcrib'd, which may cut as well HM in P and Q , as M I . producid in N. And now in the firft place, if the Ateration or Impulfe be fuppos'd to be uniform, that Curve H I will, according to what hath betin demonftrated before, be a Portion of a Parabola; (fee Prop. 8.) and the Line LV, perpendicular to boib Planes, will be one of the Diameters thereof and the right Line H I, bifected by the fame LV in the Point C, will be an Ordinate of that Diameter. Now it is a Property of this Figure, that the Rectangle contain'd under the Latus rectum', belonging to the Vertex H, (which in this. Cafe is always given (by Corol. 2. Prop. 8.) by reafon of the Velocity of the Bodies here fuppos'd to be given;)' and the Abfcifs HD or I M, which is equal to it: is equal to the Square of the SemiS 3
ordinate

26_{2} Matbematical Pbilofophy.

ordinate DI or H M, which is equal thereto. The Tangent allo of this Parabola H M will be bifected in the Point L: (For in the like Triangles HCL, HIM, as HC is to HI, fo will HL be to HM. ${ }^{-}$Burt HC is half of HI ; therefore HL is allo balf of HM.) From whence, if you let down IO pe:pendicular to MI, M $\boldsymbol{O}^{\text {i and } O R}$ will alwnjs be equal; and the Equals IO,ON Eeing adaed, the Wholes M N, I R will likewife be equal. Since therefore $\mathbf{I R}$, the Diftance of the Planes, is given in all Inclinations'whatever ; M N alfo; which is equal to the fame, will be given in all Inclinations. And confequently the Rectangle NM \times MI will be to the Rectangle under the Latus rectum belonging to the Vertex \mathbf{H} and MI, as the given $N M$ is to the given Latus rectum, or in a given Proportion. Now the Rectangle unider H D or MI, and the Latus rectum, is equal to DIq or HMq. And therefore the Receangle $\mathrm{NM}+\mathrm{MI}$ is to HMq in a given Pro-

Corol... p. 36. Book.3. of the flem. portion. But NM + MI is equal to $P M+M Q$; that is, to the Difference of the Squares of ML and P_{2} or of ML and LI: And HMq hath a given Proportion to LM q, a fourth Pagt of it felf. :Therefore the Proportion of $M L q-L I q$ to $L M q$ is given ; and by dividing the Proportion of LIq to L.Mq, and the fubduplicate Proportion of the fame Line L I to LM. But in every Triangle, the Sines of the Angles are proportional to the oppofite Sides, (Corol. y. Prop. 20. Book 3: of the Elem.) Therefore the Proportion of the Sine of LMR, or of AHG, the Angle of Incidence, to the Sine of the Angle of Emergence MIK or LIR ; or of the Angle LIM the Complement of the fame unto two right Angles is ftill given. [For theSine of the Angle LIR,

Matbematical Pbilofopby. 263

and of LIM, the Complement of the fame unto two right Angles, is the fame.] Q. E. D.

Cafe (2.) Then let a Body pals fucceffively thro' divers Spaces bounded with parallel Plains, as (in Fig. 4. Plate 7.) A abB, B b c C, C cdD, ©rc. and be mov'd with a Force uniform in each Sphere taken a-part, and divers in the divers Spaces : Here, by what hath been demonftrated already, the Sine of Incidence on the Plane Aa, will be to the Sine of Emergence from B b in a given Proportion; and this Sine, which is the Sine of Incidence on the Plane Bb , will be to that of Emergence from the ${ }^{2} \mathrm{~d}$ Plane Cc in a given Proportion ; and the fame is to be faid of this laft Sine to the Sine of Emergence from Dd; and fo infinitely. And by Equality of Proportion, the Sine of Incidence on the firft Plane will be to the Sine of Emergence from the laft, in a given Proportion. Then let the Intervals of the Planes be diminifh'd, and the Number increas'd infinitely ; to the end that the Action of Attraction or Impulfe may be continual, according to any Condition which may be affign'd: And the Proportion of the Sine of Incidence on the firft Plane to the Sine of Emergence from the laft, will fill be given. 2. E. D.
LIV. The fame Things being fuppos'd, the Velocity of a Body before the Incidence will be to the Velocity of the fame after the Emergence, as the Sine of Emergence to the Sine of Incidence.

In the former Figure, let AH, Id be equal, and let the Perpendiculars A G, d K be erected, meeting the Lines of Incidence and Emergence GH, IK in G and K. In G H let T H be taken equal to IK, and TV be let down perpendicular to the Plane A a. And let the Motion of the

264 Matbcmatical Pbilofophy.

Body be diftinguifh'd into two, one perpendicular to the Planes $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}$, the other parallel to the fame. The Force of Attraction or Impulfe, whilft it acts along the perpendicular Lines, will not at all change the Motion along the Parallels; and therefore the Body by this Motion will, in equal Times, go over thofe Intervals of the Parallels, which are betwixt the Line A G and the Point H, and betwixt the Point I and the Line D K : that is, will in equal Times defcribe the Lines GH and IK. And therefore the Velocity foregoing the Incidence will be to that which follows the Emergence, as GH is to IK or TH; as AH or ID is to $\mathbf{v H}$; that is, (in refpect of the Radius TH or I K) as the Sine of Emergence to that of Incidence. Q.E.D.
LV. The fame Things fuppos'd; and that the Motion before the Incidence is fwifter than that afterwards; a Body by the inclining of the Line of Incidence will at length be reflected, and the Angle of Reflection will be equal to that of Incidence.

For (fee Fig. 5. Plate 7.) imagine that a Body doth, betwixt the parallel Planes $A a, B b, C c$, $\mathrm{Dd}, \notin c$. defcribe parabolick Arches, as above; and let HP, PQ, QR, éc. be thofe Arches. And let the Obliquity of the incident Line GH to the ift Plane A a be fuch, that the Sine of In. cidence is to the Sine of the right Angle; that is, to the Radius of the Circle, in that Proportion which the fame Sine of the firft Incidence hath to the Sine of the Emergence from the laft Plane Dd, into the Spaçe exprefs'd by DdEe. And here, becaufe of the Sine of Emergence now made equal to the Radius, or Sine of the right Angle, that Angle of Emergence will be a right one; and confequently the Line of Emergence
will now coincide with the Plane D d. Let the Body come to this Plane in the Point R : Here, becaufe the Line of Emergence coincides with the fame Plane, it is manifeft, that the Body cannot move farther, or towards the remoter Plane exprefs'd by Ee. Nor indeed can that go forwards in the Line of Emergence R d, becaufe it is perpetually attracted or impell'd towards the Medium of Incidence : Therefore it will return betwixt Cc and Dd , defcribing QRq the Arch of a Parabola, the principal Vertex whereof will be the Point R ; and it will. cut the Plane Cc in the fame Angle q , as it did before in Q . Then, in going forwards in the parabolic Arches qp, ph, orc. like and equal to the former QP, PH, it will cut the reft of the Planes in the fame Angles in p and h, as before in P and H ; and will at length emerge in the fame Obliquity in h, with which it fell upon H. Conceive now the Intervals of the Planes A a, B b, C c, D d, drc. to be diminifh'd infinitely, and their Number increas'd; fo that the Action of Attraction or Impulfe may be continual according to any Condition whatfoever; and the Angle of Emergence, which was before always equal to the Angle of Incidence, will remain ftill equal to the fame. e. E.D.

Scholium. Not unlike to thefe Attractions, as it feems, are the Refractions and Reflections of Light made according to a given Proportion of Secants, as Snellius difcover'd; and by confequence according to a given Proportion of Sines, as Des Cartes has expounded it: [For fince every Sine is to the Radius, as the Radius is to the Secant of the Complement ; and the Angle of Incidence betwist the Radius and the Plane, called by Snellius the refracting Angle, is: the Comple: ment of the Angle called by Cartes, that of Inci; dence

266 Matbematical Pbilofopby.

dence betwixt the Radius and the Perpendicular ; the Proportion of Secants with Srellius, will wholly agree and fall-in with the Proportion of Sines us'd by Cartes.] For that Light is propagated and returneth from the Sun to the Earth in about 7 or 8 Minutes Space, is what is now manifeft from the Phxnomena of the Satellites of \mathcal{F} upiter, confirm'd by the Obfervations of divers Aftronomers; and the Rays of Light which are in the Air, (as Grimaldus fome while ago difcover'd, by letting in Light through a Hole into a dark Chamber; and Sir Ifaac Nenvton hath more fully experimented) in their Paffage near the Angles of opake or tranfparent Bodies, are bowed about the Bodies, being, as it were, drawn towards them : And of thefe Rays, thofe which in that Paffage come nearer to the Bodies, are the more bowed; being, as it were, the more attracted, as Sir Ifaac himfelf diligently obferved, and hath lately fer forth at large in the 3d Book of his Opticks. Now, fince there is fuch an Incurvation of the Rays in the Air without the Knife, the Rays allo which fall upon the Knife mult have been bended in the Air before they touched the Knife : And there is the like Reafon for thofe which fall upon Glafs. The Refraction therefore of the Rays of Light is not made in the Point of Incidence, but by little and little in the continual Incurvation of the Rays, which happens partly in the Air, and before they touch the Glafs, and partly as it thould feem in the Glafs it felf after they have enter'd into it. Nor is the thing otherwife in Reflexions, as Sir Ifaac Ne2ptort hath Chew'd moft accurately in the Book juft before cired ; whither we refer our Reader, who is ftudious of thefe things. Now, becaule of the Analogy which is betwixt the Propagation of the Rays of Light and the Progrefs

Matbematical Pbilofophy. 267

of Bodies, it feem'd proper to prenife : the three foregoing Propofitions, as preparatory to true Optics. But we muft note by the way with Sir Ifaac Nenton, that fpheric Figures are moreaccommodate to Optic Ufes than any of the Conic Figures are. And according to his Opinion, if the Objective. Glaffes of Perfpectives were made of two Glaffes fafhion'd fpherically, and fitted to contain Water betwixt them ; it might come to pás,', that the Errors of Refractions, which happen in the extreme Surfaces of the Glaffes, would be corrected exactly enough by the Refractions of the Water. And he judgeth, that'fuch Objective Glaffes are to be preferr'd before Elliptic and Hyperbolic ones; not only becaufe they may be fafhion'd more eafily and exactly, but alfo becaufe they refract the Pencils of the Rays, fituate without the Axis of the Glafs', more accurately. Hownever, the divers Refrangibility of divers Rays will ever hinder Optics from being brought to Perfection by Figares of Glaffes, either fpherical or any other whatever. And unlefs the Errors arifing from the forefaid Head can be corrected, all our Labour will be employ'd to 'fmall purpofe in correcting the reft. But as concerning all there things, the Famous Author himfelf is to be read in that noble Optic Work mention'd before.

Scbol. (2.). But fince it hath feem'd good to that great Man, to propofe certain Propofitions in that Book without their Demonftrations; it will be worth our while to bring in in this place the Demonftrations of them, which have been either lately found out, or elfewhere delivered by the fame Author; that fo there may be nothing in that Fapmous Treatife, which Beginners may

268 Matbematical Pbilofopby.
ftumble at, as not having it demonftrated before them.

Dесет. 10. 1705.

LE C T. XXV.

 fpherical Surface, the CenPage 7. Cafe \mathbf{I} ter whereof is E. Let the 2. Book I. Co the Radius EC be bifected in the Point. T. And if the Points Q and q be marked in the Line EC, on the fame fide of the Point T: So that TQ, T E and Tq ; be Lines continually proportional ; and the Point Q be the Focus of the incident Rays; the Point q, will be the Focus of the Reflex Rays. For by the Hypothefis QT:TC: : TC: T: G . -and by compounding $Q T+T C=Q C \cdot Q T:$ $\mathrm{CT}+\mathrm{Tq}=\mathrm{Cq}: \mathrm{CT} \Rightarrow \mathrm{ET}$; that is, QC : QT: : Cq;ET. And by alternating QC: Cq:: QT:ET. But by V. 19. of the Elements, QT:ET::QE:Eq. Therefore by Equality QC:C q: : QE:Eq. From whence, in the Triangle, the Bafe whereof is $\mathbf{Q} g$, and the Vertex in the fpheric Surface ACB, fo near to the Point C, that the greater of its Sides hopuld be nearly equal to $Q C$, and the leffer to $q C$; the Bafe Q q will be fo divided by a Line drawn from the Point of the Sphere to the Center. E, that the Parts QE and Eq fhould be one ta another in the Proportion of the Sides QC and q C. And

Matbematical Pbilofopby. 269

And confequently; by VI. 3. of the Elements, the Line drawn from the Vertex of the Triangle fhrough the Center $E_{\text {, }}$, will bifedt the vertical Angle: of the Triangle, and make equal Angles son borh fides. Hrom whence the Radij paffing through' Q, becaufe that the Angles of Incidence and Reflection are equal, will be reflected to the Point q; and converlly., \&. E. D.
sProp, (2.) Let A C B be the refracting Surface of a Sphere, the Center whereof is E . In B the Radius E C produc'd on both fides, let the Points T and t be Lat. page 8. mark'd; fo that as well E T as Ct Cafe 3. γ which are equal one to the other) may be to the Radius. EC, as the leffer of the Sines of Incidence and Refraction is to the Difference of thofe Sines. Then let the Points Q and q be marked in the fame Line; fo that TQ may be to ET or Ct , as Et is to tq . But let the Places of the Points be fuch, that the Line tq may be on that fide of the Point which is contrary: to that fide which the Line TQ is' on, with refpect to the Point T. Now, if the Focus of the incident Rays be in the Point Q, the Focus of the Refracted ones will be in q . For by the Hypothefis, as TQ is to T.C, fo is E T to tq. And by compounding, TQ is to TQ+TC $=\mathrm{QC}$, as is $\mathrm{ET}=\mathrm{Ct}$ to $\mathrm{Ct}+\mathrm{tq}=\mathrm{Cq}$; and by alternating, $\mathrm{TQ}: \mathrm{Ct}:=\mathrm{QC}: \mathrm{Cq}$. And by compounding and inverting $T Q+C t=Q E::$ $\mathrm{T} \mathbf{Q}:: \mathbf{Q C + C q = Q q : Q C \text { . Or } \mathbf { Q q } : ~}$ QC:: QE:: QT. From whence, together with what Hugens bath demonftrated in his Diopwrics, page 26. \&zc. the Propofition; is manifeft.

Prop. (3.) Let A C B D (Page 8. Cafe 4.) be a refracting fpherical Glafs on both fides Convex or Concave, or at leaft Plano-convex or Planoconcave,

270
 Matbematical Pbilofopby.

concave, the Axis whereof (or Line which cuts both Sarfaces perpendicularly, and paffeth thro' the Center of the Sphere) is CD. In the Axis, let the Points F and f be the Foci of the refracted Rays, found as above: Thofe, to wit, which would agree to the Radii, parallel on both fides to the Axis, if there were only one refracting Surface. Let the.Line F f be bifected in the Point \mathbf{E}; and from the Center E, let a Circle be defcrib'd, with the Radius E.F or E f. Now, let any Point QO be the Focus of the incident Rays. Let QE be drawn interfecting the former Circle in the Points T and t, and let the Point q be marked in the fame Line, fo that the Line $t q$ may be to t E , as the fame t 碞 its Equal TE is to TQ. Then let the Line $t q$ lie on that fide of the Point t, which is contrary to that which T Q lies on, with refpect to the Point T. Thus the Point q will be the Focus of the refracted Rays; of thofe, to wit, which are near to the Axis, of which alone any Regard is to be had in thefe Ca fes. For by the Hypothefis, TQ:TE::tE: t q. Therefore by compounding $T Q: T E+T Q$, $=Q E:: t E: t E+t q=E q$. From whence by V. 12. of the Elements, TQ::QE: : TQ $+\mathrm{tE}=\mathrm{QE}: Q E+E q=Q$ q. From whence, together with what Hugens hath demonftrated in Page 67. Ovc. of his Dioptrics, the Propofition is manifeft.

Prop. (4.) The Mixture of the Rays of the Sun in pt, a refracting Glafs'(Book 1. Page 46.) is to the Mixture of the Rays of the Sun paffing through an empty Hole, th the Breadeh of the fame Glafs is to the Difference of the Breadth and Length of it, or as ag is to gm. For let a h be to am, as ing is to A G. In this Cafe the Space a h will be equal to atl the Areas of the lef-

Matbematical Pbilofopby. ${ }^{271}$

fer Circles, as being, in the duplicate Proportion of the Rays on both fides: And the Mixture of the Rays would be equal, if fo be all the leffer Circles did meet together in that Space. But fince they are difpers'd through the Space pt, the Mixture will be as gh to gm . From whence, fince the Mixture of the Rays in the Glafs P T, is to the Mixture of them as paffing through the empty Hole, as A G is to GM, or as ag to gh; and the Mixture in the Glafs $p t$, is to the Mixture in the Glafs P T, as gh is togm ; by Perturbation of Equality, the Mixture in the Glafs pt will be to the Mixture which agrees to the Rays paffing without Refraction, as ag is to $\mathbf{g m}$. 2.E.D.

Prop. (5.) If a Body in any given Velocity whatever, fall upon a Space (fee Book r. Page 57.) of an inconfiderable Breadth, and terminated on both fides with parallel Planes, and in its Paffage towards the remoter Plane, be attracted or impell'd perpendicularly ; in fuch fort, that the attracting or impelling Force is either every where the fame, or at leaft the fame at equal Diftances from that Plane ; the perpendicular Velocity of the Body, which hath now paffed that Space, will be equal to the Sum of the Squares of the former Velocity, and the fquare Root of the Velocity acquir'd in paffing through. But if the Body be retarded in its paffing through, the Difference of the fame Squares is to be taken inftead of the Sum of them; and thus the Prppofition will bold good. It follows from Newt. Mathem. Principl. Prop. 39. Probl. 27. Corol. 2.

Prop. (6.) If any Bodies or Rays of Light paffing through a Space, fuch as before, and bounded with parallel Planes, be acted upon in their paffing with a like Force, but which is fometipes Motion laft acquired will be in the fubduplicate Proportion of the Force, which begets the fame; in fuch fort, that the Squares of the Motions will always determine the true Proportions of the fame. Let AB be a refracting Surface, or let it reprefent a Space of a Thicknefs not to be regarded, bounded with parallel Planes, which is of a refractive Force. And let IC be a Ray of Light falling very obliquely upon the refractive Plane at the Point C, fo that ACI the Complement of the Angle of Incidence may be indefinitely fmall. And let CR be the refracted Ray. From any Point B , let the perpendicular BR be erected, cuitting the refracted Ray in R. Where if CR reprefent the Motion of the refracted Ray, which is refolv'd into two Motions C B and B R ; that Part of the Motion $C B$ will be parallel to the refracting Plane, and B R will be perpendicular to the fame; and fince the Motion along the Plane A B, is in no wife chang'd by the Force perpendicular to the fame, C B will be given, by reafon. of the given Velocity of the Rays, which here fuppos'd., And the Line B.R will be a Motion produc'd by the Refraction in a given Time; and it will be in the fubduplicate Proportion of the Force which produceth ir. For, becaufe of the given Latitude of the refractive Space, the Times of the Tranfit in which the refracting Force would act, will be reciprocally as the Velocines produced, or as the producing Forces reciprocally; and becaufe of the Velocity, the Force being given in the Proportion of the Times, the Line BR would be as the producing Forces reciprocally; and the Time being given, as the fame Forces directly. Therefore neither being given,

Mathematical Pbilofophy. 273

given; the Line B R will be in the fubduplicate Proportion of the Forces; for then the Times and Forces being reduc'd unto' an Equilibrium, neither will the Forte preponderate the Time, nor the. Time the Force; whieh no otherwife could anfwer each to other. Thiss, indeed, if the Forces be put to be in a quadruple Proportion; a double Velocity will be produc'd in halfotre Time; or the Line BR will be double of the fame Line, and thús every where. 2: E. D.:

Prop. (7.) In the Solution of the Rainbow; the Arch Q F and the Angle. A XR will be the greateft, where ND is to $C N$, as $\sqrt{I I-R R}$ is to $\sqrt{3 \mathrm{R} R}$. In which Cafe alfo, $2 \mathrm{R}: \mathrm{I}:=\mathrm{NE}$, N D_{i}; and the Angle AYS, which is made by the Rays A N and HS, will be the leaft, where $N D$ is to $C N_{s}$ as $I I-R R$ is to $\sqrt{8 R R}$. In which Cafeato, 3 R:I::NE:ND. Which twofold Propofition we will demonftrate with the Famous Sir $t \int$ gef Newton, in his Manufcript Optic Eetures.

Problem. If Rāys, whether parallel or inclin'd towards fome common Point, do fall upon a Sphere to be refracted there; to defign the Concoarfe of the refracted Rays without the Axis, Which are nex to one another, and lye in the fancerlane with the incident Rays. Let A N (in Fig. 6. Plate F.) be an incident Ray, NK the refracted Ray thereof; and NV in the Plane of the Trianige A N K, a right Line touching the Sphere in $\mathrm{N}:$ To AN draw NR perpendicular; and qeeting the Axis AC in R and $R V$ parallel, and meeting the Tangent NV in V. Likewife, draw NQ perpendicular to NK, and V Q paraler to the fatie, meeting it in Q and draw QC meeting $N \mathbf{K}$ in \mathbf{Z}, \mathbf{Z} will be the Cohifdurfe of the Rays neareft to $A N$. And let A n be

274 Matbematical P.bilofopby.

anocher of the incident Rays, infinitely near to the former A N, and meeting NR in G. Draw i Z meeting $N Q$ in H; and to $A N$ and $N K_{;}$ let down from C we Conter of the Sphere, the Perpendiculars:C D/ and C E, meering $A n$ and $n Z$ in d and e. Now, fince AN is fuppos'd to be infinitely near to An, the Arch N n, which is infinitely frall; may be reckoned for a rightLine coinciding with theTangent NV; and the Triangles NGn, NRV, as alfo NH n, NQV may be accounted for like. Where-
 Nn::NQ:NH): : EC:Ee. And converlly, DC: (DC-..Dd) dC:: EC:(EC... Ee) eC; and alternately, DC:EC::dC: e C. But DC is to E C, as the Sine of Incidence is to the Sine of Refraction, becaufe NK is the refracted Ray of A N and confequently alfo, dC is to e C as the Sine of Incidence to that of Refraction; and therefore, fince the Arigles D A d and E Z e be inffnitely fmall, and confequently $C d$ is perpendicular to $A n$, and C e to $n \mathbf{Z}$, or at leaft equipollent to perpendicular, $n \mathbf{Z}$ will be the refracted Ray of $A \mathrm{n}$. Q. $E_{1} D$.

Corol. (r.) ND:NE (or NP:NF): :NR: N Q. For N C being drawn, becaufe of tha Triangle ND C, like to the Triangle NRV; and the Triangle NEC like to the Triangle NQV : it is ND:NR (: : NC:NV): NE $: N Q:$ and alternately, $N D: N E: N R: N Q$. Hence refults a more ready Solution of the ProbIem; to wit, Erect N R, N Q perpendiculat, to the Rays AN, NK; of which two Perpetadicalars, let N R meet the Axis AC; and let the other $N Q$ be to $N R$, as NF işito NP. Then draw QC, which wif meet with NK. in the Cought Point Z.

Corol.

Matbematical Pbillopopy. 175

Corol. (2.) It is alfo thus, AN×DC×NE: $A D \times E C \times N:=N Z: E Z$. For $A D$: AN::DC:NR. And from thence $N R=$ $\frac{A N \times D C}{A D}$. Likewife, $N D: N E:: N R: N Q$. And from thence, $N Q=\frac{A N \times D C \times N E}{A D \times N D}$. And confequently, $A N \times D C \times N E: A D \times$ ND×EC(::NQ:EC)::NZ:EZ.

Corol. (3.) If A the Radiant Point be infinite-: ly diftant, or fend forth parallel Rays; it being put thes, $I: R:$: the Sine of Incidence : the Sine of Refraction; it will be $I \times N \mathbf{F}: \mathbf{R} \times \mathbf{N} \mathbf{P}:: \mathbf{N Z}$: E Z. For in this Cafe, A N and A D, fince they are infinitely long, ought to be reckon'd for equal ; and confequently by Corol. 2. of this, DC×NE:EC×ND::NZ:EZ. But by the Hypothefis, D C:EC::I:R ; and confequently $I \times N E: R \times N D(:: N Z: E Z):$: NP:NF. But it is to be noted, that the Refolution of the Problem is eafily accommodated to any Cafe whatever, mutatis mutandis; whether the incident Rays decline from fome one Point, or incline to the fame, or fall paraHel.

Problem (2.) From parallel Rays refracted unto a Circle, to determine that Ray; Part whereof being included in the Circle, hath a given Proportion to that Part of the fame Ray refracted, which is included in the fame Circle. Let A N be the incident Ray : (fee Fig. r. Plate 8.) N K the refracted: N P and N F, the Parts of them included in the Circle: CD and CE Perpendis culars let down to thofe Parts from the Center of the Circle ; and BC a Semi-diameter drawn paraltel to AN. And let it be C D:CE::I:R and $N P ; N F: ; p: q$. Thefe Things being put, T 2
that

276 Matbematical Pbilofophy.
that the Point N may be found, which determines the Rays AN and NK; erect at BC the Perpendicular B X, and let the Square thereof be to the Square of $B C$, as $\frac{q-p p}{p p}$ is to $\frac{I I-R R}{I I \text {. }}$ Thus r Xherig dawn, will eut the Circle in the int N. For by the Hypothefis $p: q$: NF::) ND: : NE. And I:R:
$\therefore C E$. Wherefore $\frac{q}{p} N D=N E$; and $\frac{R}{I}$ $1)=C E \quad$ Furthermore, fince $N D q+C D q$ $=N \therefore q)=N E q+C E q ;$ take from sence. ND q + CEA, and there will remain $C D q+C E q=N E q-N D q ;$ that is, by fubftituting the Values of $C E$ and $N E$, juft now found, $C \cdot D q-\frac{R R}{I I} C D q:=\frac{q q}{p p} N D q$ $N D q ;$ and by making a Reduction $\frac{I I-R R}{I I}$ $C D q,=\frac{q q--p p}{p p}, N q . \quad$ Which being refolved into Proportionality, $\frac{q q-p p}{p p}: \frac{I I--R}{I I}$ $(:: C D q: N D q):: B X q: B C q$. \quad E.D.

April 8. 1706.

LECT.

Mathematical Pbilofophy.

Lect. XXVI.

 HE Sun enlightning 2 tranfparent Sphere, to determine the greateft Inclination to the Axis of the Rays emerging after one Reflection. Let B N K (in Fig. 2. Plate 8.) be the propofed Sphere: B Q the Diameter, or the Axis parallel to the incident Rays: A N fome one of the incident Rays: NF the refracted Ray thereof: F G the reflected : and GR the again refracted; and thus the greateft Angle, which R G can make with the Axis BQ is to be fought.To which purpofe it is to be obferv'd, that in that Cafe alone, where R G is the moft of all inclin'd to BQ , the Rays which are the neareft to A N, can emerge parallel to R G. For in other Cafes, of the emerging Rays neareft to it, fome are continually more inclin'd to BQ , others lefs; and confequently are fomething inclin'd to one another.

It is alfo to be obferv'd, that the Rays which meet at the Point of Reflection, will emerge parallel. For draw an parallel to $A N$, and as near to it as may be; and let $n f$ be the refracted Ray thereof, fg the reflected; and $\mathrm{g} r$ the fecond refracted one. And the Points F and fcoinciding, when the Angles NFn and GFg are equal: and the Refractions at $\mathbf{N n}$ and $\mathbf{G g}$ be like, the emerging Rays $G R$ and $g r$ will be parallel, as well as the incident NA and an.

The Ray AN is therefore to be fought, the refracted Ray whereof concurs with the refracted

278 Matbematical Pbilofopby.

one of the Ray a n, which is neareft to it in the Point F. And indeed, by Corol. 3. Problem I. (if CD and CE be let down from the Center of the Sphere perpendicular to the Rays, and it being put $I: R:: C D: C E$.$) If thofe Rays$ meet in any Point Z, it will be $I \times N F: R \times N P$ ($:: \mathbf{N} \mathbf{Z}: E Z$) : : NF:EP, (the Point Z, to wit, falling at F , according to the Hypothefis, ::2;1. Wherefore $\mathrm{I} \times \mathrm{NF}=2 \mathrm{R} \times \mathrm{NP}$; and I: 2 R: : NP:NF. The Proportion therefore of $N P$ to NF is given; and from thence, by the 2d Problem, the Point \mathbf{N} will be given. To wit, Let the Tangent B X be drawn at the Top of the Circle, the Square whereof let it be to the Square of the Semi-diameter BC, as 4 R R - II is to $I I-R R$, and let $C X$ be drawn. For this will meet the Circle in N ; and from N when found, the other things will eafily be determin'd.

Corol. (r.) Hence it comes to be thus, 3 R R : II--RR: : C Nq:ND q. For fince it is, 4 R R-II: I I-R R: : B X q: BC q, by compounding it will be 3 R R:II-R R, (: : CXq:BCq):CNq:NDq.

Corol. (2.) It is alfo thus, $I: 2 \mathrm{R}:: \mathrm{ND}: \mathrm{NE}$. For it was above I: $2 \mathrm{R}: ; \mathrm{NP}: \mathrm{N} F$. And from thefe the Refolution of the Problem becomes more expeditious.

Scholium. With the greatef Inclination of the Radius RG, the greateft of the Arches FQ, bounded at the refracted ones NF, is alfo given. For the Angle F C Q fubtended by FQ , is equal to the Angle which C F and A N comprehend, i.e. equal to half of the Angle comprehended by R G and AN, or B Q ; and confequently that which is defin'd by the Ray A N.falling upon the Point which is now found, is the greateft of the Arches

Matbematical Pbilofopby. 279

Arches F Q, as well as-of the Angles comprehended by R G and B Q.

Problem (4.) The Sun illuftrating a pellucid Sphere, to determine the leaft Inclination to the Axis of the Rays emerging after two Reflections.

Let AN and an be two incident Rays very near to one another; and let them, after two Reflections in Ff and Gg, emerge along HS and h s. Now it is manifeft, that only in that Cafe where the acute Angle comprehended by BQ and SH is the leaft; thofe Rays HS and hs can be parallel, as was faid before of the Rays GR and gr : And where this happens, the Ray F G will be parallel to $f \mathrm{~g}$. From whence, double the Arch Ff($=$ to the Arch $\mathrm{Ff}+\mathrm{Gg}=$ to the Arch FG-fg= to the Arch NF-nf) is = to the Arch nN-Ff; and confequently triple the Arch $\mathrm{Ff}=$ is equal to the Arch Nn . And fince N F is divided in Z, in the Proportion of thofe Arches, as is manifeft ; N Z will be $=$ to $3_{3} \mathrm{ZF}$, or 3 EZ. Since therefore by Corol. 3. Problem I.
 therefore the Proportion of N P to N F is given; and from thence; by Prob. 2. the Point N will be given, by drawing B X, which may touch the Circle in the Vertex B; and the Square whereof is to the Square of BC, as $9 R R-I I$ is to II-R R : and by drawing CX to meet the Circumference in N . N therefore being found, the other things are eafily determined.

Corol. (I.) Hence it is, 8 R R:II-R R: : CNq:NDq. for 9 R R-II:II-RR: : $\mathrm{BXq}: \mathrm{BCq}$. And by compounding 8 RR : II-~RR(: CXq:BCq): :CNq:NDq.

Corol. (2.) It is alfo thus: I: ; R::ND: NE. Forafmuch as above it was, $I:{ }_{3} \mathrm{R}:: \mathrm{NP}$: N F.

280 Matbematical Pbilofopby.

- A Scbolium. The greateft Inclination of the Ray K T to the Axis, when it emerges after three Reflexions, will be determin'd in the fame manner as the greateft of the Arches $\mathbf{Q} \mathbf{G}$; to wit, in that Cafe F G and $f g$ will meet together in G, and the Arch Ff ($=$ to the Arch Fg-fg= to the $\operatorname{Arch} \mathrm{NF}-\mathrm{nf}$) will be equal to $\mathrm{Nn}-\mathrm{Ff}$: and from thence doubled, the Arch Ff will be = to the Arch N n and NZ will be equal. to 2 ZF , and confequently $4: 1:: N$ Z: E Z: (by Corol. 3. Prob. r.) I $\times \mathrm{N} F: \mathrm{R} \times \mathrm{N} P:$: or I: $4 \mathrm{R}:: \mathbf{N} \mathrm{P}: \mathrm{NF}$. And confequently by Prob. the $2 \mathrm{~d}, \mathrm{x} 6 \mathrm{R}$ R-II:II-R R ; : BXq:BCq. From whence it follows, 1 \& R R : II-R R ; : CNg:NDq; and I: $4 \mathrm{R}: s \mathrm{ND}: \mathrm{NE}$.

And fo if the leaft Inclination of a Ray eimerging after, four Reflexions be enquir'd, it will be determin'd by making it thus; $25 \mathrm{RR}-\mathrm{II}$: II-RR: : BXq: BCq. Or 24 RR:II-RR $:: C N q: N D q$. And $I: s R:: N D: N E$. And fo on in infinitum.

Scholium. From the Determination of the Bounds of the Rainbow by the Famous Newton, I will take occafion to folve a certain Phxnomenon, or rather the Abfence of a certain Phxnomenon, which fometime hath feem'd to me very difficult, and almoft infolvable. And it is this: Why we do not fee a Rainbow about the Sun, at the Diftance of about 26 Degrees; fince there the Rays come to our Eyes by a double Refraction without any Lofs in the Reflexion? For by Computation, there is in that Place a Conftipation of the Rays requifite and fufficient for affecting the Sight. And it increaferh the Doubt, that it feems probable at the firft that this fhould be the principal Rainbow of all, and decked with the moft lively Colours, as proceeding from double

Matbematical Pbilofaphy. 281

double Refraction, without any Lofs or Diminution of the reflected Rays. For, as the Primary Rainbow doth far exceed the Secondary, for that it proceeds from a double Refraction, and one fingle Reflexion, whereas in the Secondary there are two Reflexions; fo one would think, that the Rainbow which we fpake of, fhould, in the Splendor of its Colours, as much exceed the Primary one of the two laft mention'd, as that doth the Secondary; and Thould appear about the Sun like a moft noble Crown, whenfoever the Air affords fpherical Drops in that Angle of 26 Degrees for making a Rainbow. And it is to be admir'd, that this Difficulty hath never been touch'd upon-by thofe Philofophers that have treated of the Rainbow. But our Solution of it is this: We da therefore fee the Rays that are throng'd about the Limits F and G, rather than the other, becaufe fo many of them, as AN an, which enter'd the Drop of Rain parallelwife, return back in the fame manner, as R G, rg:SH,sh, and fo enter the Eye together; whereas on the other hand; unlefs they did come forth alfo in that parallel manner, they would make fome Angle, and fo could not enter the. Eye together, how thick and; throng foever they might otherwife be about the Point F and G. From whence, feeing the Rays. which come forth about the Point F, do not go forth parallel, but make a certain Angle; it is manifeft, that they cannot enter the Eye together, and confequently cannot afford a Rainbow.
LVI. All the Parts of an Homogeneal Mathematical Fluid, [that is, a Body, the Parts whereof yield to any Force whatever impref'd, and in yielding are eafily mov'd amongft themSelves,] which Fluid is inclos'd in any unmov'd: Yeffel, and prefs'd on every Side, are (if you let,

282 Matbematical Pbilofopby.

afide the Confideration of Condenfation, of Gravity, and of all Centripetal Force) equally prefs'd on all Sides; and remain every one of them in its Place, without any Motion arifing from that Preffure.

Cafe (r .) Let a Fluid, contain'd in a fpherical Veffel, be uniformly prefs'd together on all Sides: No Part of the fame will be mov'd by that Preffure. For as if fome Part as D (fee Fig. 3. Plate 8.) were mov'd thereby, all the like Parts at the fame Diftance from the Center muft be mov'd in like manner; and this becaufe the Preffure of them all is alike and equal, and we have excluded all Motion but what arifeth from the Preffure. But they cannot all come to the Center, but the Parts about the Center muft be condens'd, which is contrary to the Hypothefis; nor can they recede farther from it, but there will be a Condenfation about the Circumference, which is likewife contrary to the Hypothefis: nor can they be mov'd in a Circle about the Center; for every Force which fhould determine the Motion of any one Part, or of them all laterally, and to either this Side or that, is here excluded; much lefs can the fame Part be mov'd contrary ways at the fame time. Therefore no Part of the Fluid will, in this Cafe, be mov'd out of its Place. Q. E. D.
Cafe (2.) Each of the fpherical Parts of this Fluid are equally prefs'd on every Side. For let E F be one of thofe Parts; and if it be not equally prefs'd on all Sides, let the leffer Preffure be increas'd, until the Preffure be every where uniform and equal ; and then the Parts thereof, by the ift Care (which belongs as well to this little Sphere, as to one contain'd in a folid Veffel) will remain in their Places. But before that Increafe, they would remain in their Places by the fame firft

Matbematical Pbilofophy. 283

Cafe; [for we treat here of fuch a Fluid, the Parts whereof, as we there demonftrated, do remain in their Places;) and by the Addition of a new Force, they will be mov'd out of their Places by the Definition of a Fluid : Which two Things are contradictory. Therefore it was fally faid, that the Sphere EF was not equally prefs'd on every Side. 2. E. D.

Cafe (3.) Befides, the Preflure of the divers fpherical Parts will be equal. For the fpherical Parts prefs each other equally in the Point of Contact, becaufe that Reaction is always equal and contrary to Action. But alfo by the 2 d Cafe, all the fpherical Parts whatever, are equally prefs'd on all sides. Therefore any two fpherical Parts, not contiguous, are prefs'd with the fame Force, becaufe the intermediate fpherical Part toucheth both. 2. E. D.

Cafe. (4.) All the Parts of this Fluid are equally prefs'd on all Sides. For any two Parts may be touch'd by fpherical Parts in any Points whatfoever; and there they do equally prefs thofe fpherical Parts by the 3 d Cafe ; and becauffe of Reaction, which is always equal to Action, they are reciprocally equally preffed by them. Q. E. D.

Cafe (s.) Since therefore any Part whatever of this Fluid, as GHI, is inclofed in the reft of the Fluid, as in a certain Veffel, and is equally prefs'd on every Side; and the Parts thereof do equally prefs one another, and are at reft among themfelves; it is manifeft, that all the Parts of any Fluid whatever, as G HI, do equally prefs one another, and are at reft amongft themfelves. Q. E. D.

Cafe (6.) Therefore, if that Fluid be inclos'd in a Veffel which is not rigid or unyielding, and be not equally prefs'd on every Side, the fame will

284 Matbematical Pbilofopby.

 will give way tothe ftronger Preffure by the De finition of Fluidity.Cafe (7.) Therefore, in a rigid Veffel, a Fluid will not fuftain a ftronger Preffure on one Side than on another; but will give place to the fame : and that in a moment of Time, becaufe the ftiff Side of the Veffel does not purfue the yielding Liquor. But in yielding, it will prefs the oppofite Side; and fo the Preffure will incline to an Equality on every Side. And becaufe the Fluid, as foon as it endeavours to depart from the Part which is more prefs'd, it is ftopp'd by the Refiftance of the Veffel on the oppofite Part, the Preffure will on every Side be reduc'd to an Equality in a Moment of Time, without local Motion; and immediately the Parts of the Fluid will, by the sth Cafe, prefs one another equally; and be at reft amongit themfelves. Q.E.D.

Corol. Hence the Motions of the Parts of fuch a Fluid amongft themfelves cannot be chang'd by a Preffure, which is upon the external Surface of the fame in any Place thereof, unlefs either the Figure of the Surface be fomewhere chang'd, or all the Parts of the Fluid, in preffing one another more vehemently, or more remifsly, flide more eafily or difficultly amongft themfelves.

Corol. (2.). But fince the Definition and Affections of this Merhematical Fluid do feem altogether to agree with the Nature and Phonomena of natural Fluids; it is realonable, that the Demonftrations of thefe Cafes be applied to our natural Fluids, to Water efpecially, and the like. From whence it will be manifeft, that the reft of the interval Parts of a Fluid amongft themfelves, doth in no wife contradia the Nature of Fluidity; and that all the Motion of the Parts of Fluids amongt themfelves, is to be reckon'd as owing to

Matbematical PbiloJopby. 285

Fermentation, Heat, or other extrinfick Caufes, rather than to the Nature it Self of Fluidity. For, if the Parts of a Body be either fpherical, or fpheroidal, and perfectly polifh'd; fo that they. can never be join'd one to another, but rather do only touch another in phyfical Points; a Congeries of thefe Particles will compofe a Body; fuch as is commonly call'd a Fluid, altho' thofe Pard ticles be altogether at réf amongit themfelves: \mathbf{A}^{\prime} Fluid theiefore feems to confift of 'Parts very' moveable, but not neceffarily mov'd.

Fure 2. 1706.

Lect. XXVII.

F all the Parts of a fpherical homogeneous Fluid, which are at equal Diftances from the Center, and lie upon a concen-: trical, Spherical Bottom; do equally gravitate towards the Center of the whole; the Bottom fuftains the Weight of a Cylinder, the Bafe whereof is equal to the Surface of the : Bottom; and the Altitude is the fame as that of the Fluid, which lies upon the Bottom.

Let (in Fig. 4. Plate 8.) d.hm be the Surface of the Bottom, and a e ithe upper Surface of the' Fluid. Let the Fluid be diftinguifhed by innue: merable fpherical Surfaces, into concentrical Orbs of equal Thicknefs; and imagine the Force of Gravity to act only upon the higher Surface of every Orb, and that the Actions upon equal:

286 Matbematical Pbilofopby.

Parts of all the Surfaces are equal. The uppers moft Surface therefore a ei, is prefs'd by the fimple Force of its own Weight,wherewith as well all the Parts of the fupreme Orb, as the 2d Surface bf k (by Prop. 56.) are pref'd. Befides, the $2 d$ Sur. face bfk is prefs'd by the Force of its own Weight, which being added to the former Force makes a doable Preffure. By this Preffure, and by the Force of its own Weight withal, that is, by a treble Preffure, the 3 d Surface cg l is urg'd : And fo the 4 th Surface is urg'd wirh a fourfold Preffure, the sth with a fivefold, and fo on. The Preffure therefore wherewith every Surface is urg'd, is not as the folid Quantity of the Fluid which lies upon it, but as the Number of Orbs unto the Top of the Fluid; and is equal to the Gravity of the loweft Orb, multiplied by the Number of Orbs ; that is, to the Gravity of the Solid; the laft Proportion whereof unto the be-fore-defin'd Cylinder (if fo be the Number of Orbs be increas'd, and their Craffitưe diminifh'd infinitely; fo that the Action of Gravity be render'd continual from the loweft Suiface to the uppermoft) will become a Proportion of Equality. The loweft Surface therefore fuftains the Weight of a Cylinder, the Bafe whereof is equal to the Surface of the Bottom; and the Altitude the fame as that of the Fluid lying upon it. \&.E.D.

And by the like reafoning the Propofition is manifeft, where che Gravity decreaferh in any Proportion of the Diftance from the Center, which may be affign'd; as alfo where the Fluid upwards is more rare, and mone denfe benesth. 2. E. D.

Gorol. (1,) The Fluid therefore is not urg'd by the whole Weight of the incumbent Fluid ; bue fuftains only that Part of the Weight, which is defin'd
defin'd in this Propofition; the reft of the Weight being fuftain'd by the arched Figure of the Fluid.

Corol. (2.) If an entire Sphere confifteth of fuch a Fluid to the very Center, the Center will fuftain no Weight; the whole Weight being uptheld by the arched, or rather in this Cafe by the fpherical Figure of the Fluid.

Corol. (3.) But in equal Diftances from the Center, the Quantity of the Preffure is the fame, whether the Surface be prefs'd parallel to the Horizon, or perpendicular, or obliquely ; and whether the Fluid, as continued upwards from the Surface prefs'd, arifeth perpendicularly according to a right Line, or creeps along obliquely by crooked Cavities and Channels, and thofe regular or never fo irregular, wide or narrow. That the Preffure is nothing chang'd by thefe Circumftances, is gathered by applying the Demonftration of this Propofition to every Cafe of Fluids.

Corol. (4.) By the fame Demonftration (and Prop. s6. foregoing) it is collected, that the Parts of an heavy Fluid acquire no Motion amongft themfelves from the Preffure of a Body lying upon them; if fo be the Motion which arifeth from Condenfation be excluded.

Corol. (5.) And therefore, if another Body of the fame fpecifick Gravity, which cannot be condens'd, be immerg'd into this Fluid, it will acquire no Motion from the Weight of the Body lying upon it; it will not afcend nor defcend; nor will it be compell'd to change its Figure : If it be fpherical, it will remain fpherical ; if fquare it will remain fo, the Preflure notwithftanding; and this whether it be hard or foft, or even the moft Fluid ; whether it float freely in the Fluid, or fink. For every internal Part of the Fluid hath the Nature of a Body immers'd; and the

> fame

288 Matbematical Pbilofophy.

fame is to be faid of it, as of all Bodies immerg'd, which are of the fame Magnitude, Figure, and fpecifick Gravity. If the Body immerg'd fhould become liquid, keeping its Weight ftill, and put on the Form of a Fluid, if it before afcended or defcended ; or from the Preffure put on a new Figure, it would do the fame fill ; and that becaufe the !Gravity thereof, and the other Caufes of Motion, do remain. But by the sth Case of the former Propofition, it would now reft, and retain its Figure: Therefore it did fo before alfo.

Corol. (6.) Therefore a Body, which is fpecifically more heavy than the Fluid which is contiguous to it," will fink; " and that which is fpecifically lightef. will afcend; and will obtain fo much Motion and Change of Figure, as that Excefs or Defect of Gravity can caufe. For that Excefs and Defect hath the Nature of an Impulfe, wherewith the Body, otherwife conftituted in an不quilibrium with the Parts of a Fluid, is urged; and may be compared with the Excefs or Defect of Weight in either Part of a Balance.

Corol. (7.) Therefore the Gravity of Bodies placed in Fluids is twofold., the one true and abfolute; the other apparent, vulgar, and comparative. The abfolute Gravity is that whole. Force whereby a Body tends downwards, or would defcend in an empry Place. \because The relative, and vulgar Gravity is the Excefs of Gravity, whereby a Body doth tend more downwards than the Fluid that encompaffeth it. . The Parts of Fluids, and. of all Bodies, gravitate in their proper' Places with the former Sort of Gravity ; and therefore with their conjoin'd Weights, they compofe the Weight of the whole. For every whole is heavy, as may be experienced in Veffels full of Liquors; and the Weight of the Whole is equal to the

Weights

Matbematical Pbilofophy. 289

 Weights of all the Parts, and therefore is compounded of the fame; for it can be deriv'd from no where elfe. With the other Sort of Gravity, which may be called apparent, vulgar, and comparative, Bodies do not gravitate in their own places, or immers'd in their Fluids refpectively, that is, compar'd amongft themfelves, are not one heavier than another, but hindering the Endeavours of one another to defcend, they abide in their own Places, as if they were not heavy: Like as any heavy Bodies whatever, placed within a concave Sphere from the Equality of Gravitation every way, do appear in no wife to gravitate, as was obferv'd above. Thus the things which are in the Air, and do not overweigh, or defcend at all in the Air, as Clouds and Vapours are judged by the Vulgar not to gravitate at all. What things overweigh the Air, and confequently defcend in it, as not being fuftain'd by the Weight of the Air, as Hail and Drops of Rain; thefe the Vulgar judge heavy. The vulgar Weights are nothing elfe, but the Excefs of the true Weights above the Weight of the Air. From whence alfo thofe things are commonly efteem'd light, which are lefs heavy; and whilft they give way to the Weight of the Air, afcend upwards. And they may be faid to be comparatively light, but not abfolutely, for that they would defcend in a Vacuum. So likewife in Water, the Bodies which afcend or defcend by reafon of their leffer or greater Gravity, are comparatively and apparently light and heavy; and their comparative Levity or Gravity is the Defect or Excefs wherewith their true Gravity either is exceeded by the Gravity of the Water, or doth exceed it. But what things do neither afcend nor defcend albeit they by their true Weights in:creafe the Weight of the whole; yet compardtively, and in' the Senfe of the Vulgar (and of Philofophers too of late) they do not gravitate in the Water: For the Demonftration of thefe Cafes is the fame.

Corol. (8.) Thofe things which have been faid concerning Gravity, and the Force whereby Bodies defcend to the Center of the Earth, in either an abfolute, or reciprocal duplicate Proportion of the Diftances, are to be underftood to hold in all other Centripetal Forces both abfolute, and increas'd or diminifh'd, according to any Proportion whatfoever of the Diminution or Increafe of the Diftance.

Corol. (9.) And therefore, if the Medium, wherein any Body is mov'd, be urg'd either with its own Gravity, or any other Centripetal Force; fo that the Body, by means of the fame, is pufh'd on more forcibly than otherwife it would be; the Difference of the Forces is to be eftimated from that moving Force which, in what goes before, we have confider'd as a Centripetal Force. But, if the Body be urged more lightly, the Difference of the Forces is to be reckon'd for a Force which tends from the Center.

Corol. (ro.) Since Fluids, in preffing the included Bodies, do not change their external Figures'; it is manifeft, by the Corollaries of the foregoing Propofition, that they will not change the situation of the internal Parts amongft themfelves; and confequently will not hurt Animals immers'd in them, neither will they excite any Senfation in them, if Senfation depends upon the Motion of the Parts; only fo far forth as there Bodies may be condens'd by a Compreffion, which is on all Sides of them: And the fame is to be faid of any Syftem of Bodies whatever, which

Matbematical Pbilofophy. 291

which is encompafs'd with fome Fluid, and comprefs'd thereby. As to the Parts of the Syftem, and their Motions, it will be the fame as if it was in a Vacuum; and they will retain only their comparative Gravity, unlefs the Fluid do refift their Motions, or be neceffary to the keeping them together by its Compreffion.
LVIII. Fluids, which are not in a Defcent; do in every given Bafe prefs themfelves, and other Bodies, as well thofe which are immers'd, as the containing, in Proportion of the perpendicular Altitude, and not of the Quantity of the Matter ; that is, the Preffure of a Cylinder of Water, of the Heighth of four Feet, where the Area of the Circle of the Cylindrical Column is only of one Inch fquare, is equal to the Preffure of a Cylinder of Water of four Feet high, where the Area of the Circle of the Cylindrical Column is of 200 or 1000 fquare Inches, and thus every where; to wit, if the Bafe of the Water, communicating with the Water contained in the Tube, be in both Cafes equal. This is a moft known Ruie in Hydroftaticks, often found by Experiments, which I fiall endeavour to demonftrate as follows, it hot having been demonftrated hitherto, as I fuppofe, phyfically or mathematically. It is well known, that the Quantity of any moving Force, or the Effect anfwering thereto, doth arife from the Quantity of the Matter multiplied into the Velocity; and confequently that whatfoever the Matter which is mov'd be, as to its Quantity, the Preflure will be the fame, if the Velocity be reciprocally proportional thereto. Thus the Forces of the Balance, Leaver, and other fuch mectianical Inftruments, is deriv'd from the Combination of thefe two things, the Matrer and the Velocity; and you

292 Matbematical Pbilofophy.

may move any Weight whatfoever, by any Force how fmall foever, if the Diftance of the Preffure, or fmaller Weight from the Hypomochlion, be reciprocally proportionated to that of Weights. Thus one Poundweight, at the Diftance of four Feet from the Hypomochlium, is as much as four Pounds at thr Diftance of one Foot ; for here the fingle Pound is mov'd with a Velocity, which is fourfold of that of the other; and confequently is of equal Force in its Motion. Whilft it is moving, I fay, but not otherwife, as many feem to reckon. For if at any time the Machine refts, it is manifeft, that the Gravity, or Preffure, or Force, is now in Proportion to the Matter, and the four Poundweight is four Pounds, and the one Pound weight no more than one Pound. [If at any time the Machine refts, I fay. For indeed, if we Speak phyfically, or at leaft mathematically, no Body doth wholly reft ; but every Body is then faid to reft, when the Quantity of the Motion is fo fmall, that it cannot be perceiv'd.] According therefore to what hath been faid, the Water contain'd, and the Veffel alfo which contains it, are always in fome fort of Motion, and do never perfectly reft ; [which indeed if they did, a Column of Water, as I fuppofe, that is, an hundred-fold greater, and confequently of an hundred-fold greater abfolute Gravity, would prefs the Veffel an hundred-fold more:] But the abfolute Reft of the fame not being to be fuppos'd, it is to be faid, that the Preffure of a Column of Water, the Area of the Bale whereof is of one Foor, and that of a Columin whofe Bale is 100 Feet fquare, is the fame; while the Excefs, to wit, of the latter Columin, in refpect of an hundred-fold Magnitude and abfolute Gravity, is compenfated and counter-balanc'd by the hundred-fold greater

Matbematical Pbilofophy. 293

Velocity of Defcent in the leffer Column: And that the Cafe is the fame here with that of an inverted Syphon of unequal Legs, where the Water keeps an 不quilibrium, by reafon of the Velocities of Afcent or Defcent, which are in both the Channels reciprocally proportional to the Quantity of the Water.

Corol. (1.) Fluids therefore prefs, not in Proportion of the Quantity of the Matter preffing, but of the perpendicular Altitudes.

Corol. (2.) Therefore a Wooden Trencher, thruft down to the Bottom of a Bucket of Water, will rife to the Top, notwithftanding the Quantity of the Water which lies upon it is much greater than that which is under it ; for by reafon of the Communication which is, by the fmall Interval that is betwixt the Edge of the Trencher and the Bucket, betwixt that little Cylinder of Water that is under the Trencher, and that Cylinder which is above it; the Weight of the incumbent Water will make that which is under, to lift up the Trencher with a Force equal to the faid incumbent Weight.

Corol. (3.) There is no Occafion therefore for the Hylarchic Principle of the Famous Dr. More, for the folving this Effect.

Corol. (4.) Thus it is with Fluids not actually defcending. But if they, with the Veffel containing, do by the common Force of Gravisy of them all actually defcend ; the Communication of the Preffure, as I fuppofe, pafferh away, and the Effect thereof ceafeth; but this fo, that even ftill, as in the former Cafe, the Preffure is according to the perpendicular Altitude, and is the fame where that Altitude is the fame, whatfoever the Column is otherwife, as to its Magnitude, whether little or great: So that at length we

294 Mathematical Pbilefophy.

may make the Propofition more univerfal, and fay, without any Reftricion, that Fluids do prefs according to their perpendicular Altitudes, and not according to the Quantity of the Matter.

Novernher II. 1706.

Lect. XXVIII.

IIX. ${ }^{2}$ 象 pos'd of Particles which do flee from each other, be as the Compreffion; fo that if the preffing Force be two, or four, or eightfold, the Denfity thence arifing is fo likewife; the Centrifugal Force of the Particles is recipracally proportional to the Diftances from the Center: And, vice versa, where the faid Force is reciprocally proportional to the Diftances from their Centers, the Particles which flee from each other compofe an elaftic Fluid, the. Denfity where, of is proportional to the Compreffion.

Let q Fluid be underftood to be inclos'd in the çubic Space ACE, (fee Fig. 5. Plate 8.) and then to be brought by Compreffion into a lefs cubic Space ace. Here the Diftances of the Particles, by reafon of their keeping the like Situation amongtt themfelves in borh Spaces, according to the Nature of Fluidity, will be as the Sides of the Cubes A B,a b; and the Denfities of the Fluid, reciprocally as the cubic Spaces A C E, ace. Let the SquareDP be taken in theSide ABCD of the greater Cube,

Matbematical Pbilofophy. 295

Cube, equal to $d b$ the Square of the Side of the leffer Cube,: And by the Hypothefis, the Preffure wherewith the Square D P urgech the inclofed Fluid (or is urged thereby) will be to the Preffure wherewith the Square d b urges its inclofed Fluid, as the Dennities of the Medium are to each other; that is, a b cub. to A B cub. But the Preffure wherewith the Square B.D urgeth the inclofed. Fluid, is to that wherewith the - Square D P , urgeth its Fluid, as the Square-D B is to the Square DP, or as ABq is to abg . Therefore, by Equality, the Preffure wherewith the Square - Bu urgeth its Fluid, is to that wherewith the Shipare d b urgeth its Fluid, as $a b$ is to AB; of reciprocally, as the Diftance of the Particles. For the triplicate Proportion of the Sides ab and A. Bo being fubftracted from the duplicate Proportion of the fame; the fimple Proportion of the Sides, or the Diftance, of the Particles, remains reciprocally proportional to the Preffure of the fame upon the Veffel consaining. As for Example: Let the greater Cube be eight-fold of the lefTer, or the Side of the greater double of the Side of the leffer. Then indeed, the Denfity of the Fluid, in the leffer Veffel, will be eight-fold of the Denfity in the greater, by reafon of the fame Quantity of Matter contain'd in an eight-fold leis Space. And when by the Hypothefis, the Compreffion into the given Space was made exactly proportional to the Denfity, the whole Compreffion, or the compreffing Force, adequate to the fame in the leffer Cube, will be in the eight-fold Proportion of the Compreffion, of compreffing Force, in the greater: But the entire Surface, wherewith the Compreffion, or the Surface of every Square in the leffer Cube, is to the Surface of every Homologous Square in the

296 Matbematical PbiloJopby.

greater, in a fub-quadruple Proportion. The eight-fold Preffure therefore is to be compared with another Preffure of the fame Particle, difpers'd into a four-fold grearer Space: Therefore, in a Space four-fold lefs, the lame Quantitity of 'Matter, or the fame Parricle's of the Flaid, fuftain an eight-fold Preffure; wherefore' every fingle Particle muft needs fuftain a Preffure two-fuld greater; or, that the Centrifugal Forces of the Particles fhould be reciprocally proportionol to the Diftances of the fame: ${ }^{\text {IOQ.E. D. }}$

Thus if, by the Planes FGH, fghdrawh through the midft of the Cubes, the fluid be diftinguith'd into two parts: hefe wif midually prefs, each other with the fathe Force wherewith they are pref'd by the Planés A C, da that is, in the Proportion of a bto A B ; and confeguentJy the Centrifugal Force; whereby thefe Preffures are fuftain ${ }^{2}$ d, are in the fame Pinciction. Becaufe of the fame Number, and aine Situation of the Particles in both the'Cubes, the conjunct Force with all the Particles exercife upon all, according to the Planes F G H, fgh, are as the Force which each exercifeth upon each. Therefore the Force, which each exercifech upon each, according to the Plane FGH in the greater Cube, is to the 'Force which each exercifeth upon each, according to the Plane $f g h$ in the feffer Cube, as ab is to AB; that is, as we have already dermonftrated, reciprocally as the Diftances of the Particles from one another. Q. E. D. And, wice ver $\int a$, if the Force of each Particle be reciptocally, as the Diftance of the Particles, i: e. reciprocally as the Sides of the Cubes AB, a b; the Sums of the Forces will be in the fame Proportion, and the Preffure of the Squares DB, d b; as the Sums of the Forces; and the Preffute of the

Square

Mathematical Pbilofophy. 297

Square D P, to the Prefflure of the Square D B, 2 2 G, to A Bq. And by Equality, the Preflure of the Square D P, to the Preffure of the Square ab, as ab cub. to AB cub. for the Simple Proportioh being compoinded with the Duplicate, forms'a Triplicate brie'; fo that the Force of the Compteffion in the one, is to the Force of the Compreffion in the other, as the Denfity of the Fluid in the former, to the Denfity of the Fluid in the later. 2. E. D.

Corol. (1.) Since therefore it is maxhifen by Experiments, that the Denfity of our Afr, compreffd Rind ratified by Turns, is Proportional every where to "the "Eompreffing Force", "or the Compreffion it Telf; if feems that the Air confifts of Particles which flie from' ur chare away one another in the inveffe Proportion of the Diftances. For altho this Centrifugal Porce may feem Diametrically oppofite to the Eniverfal centriperal Force or Gravity which we fpake of, so that it cannot confif of the fathe yet it may come to" pafs, that Befides that gefferal Law of Grapity which beltoriss to Mater 35 fuch, and without any Refpeat tid to the Figdres, Forms, Ciltcurfitiahtes ${ }^{2}$ Mbtions of the fame; there miay be bther Lats, and natural Porces, whether of atttading, or the contrary, beloreviifg to. the Pecial Figurres, Foitms, Cirtuffatances or Mbtions of Partcles of Matter, and Ma pecaliaf Mather arfiesed to the fame, upor which many of the more difiticuft Pheniomena of Nature may depend. Thus indeed it feems, thiat the Syaftyctes of Air, when they have'acquifd that pec cullar Temperament, Figure 'or Forim, from wifich'they are firted to compore fuct an Elatic Fluid as we call Air, are immediately' fitbjea to the new and fpecial Law or Centrifugal Force belonging

298 Matbematical Philofophy.

belonging to fuch Particles,: and fuch only. For our moft perfpicacious Author doth juftly fufpect, that the greateft Part of the fecial Phenomena of Nature depend upon fuch a Force as hath been mentioned, and are owing to Caules not yet known, whereby Particles of Mapter are either driven upon one another, and fo cohere in regular Figures; or are driven away, and recede from one another. ; which Eorce being unknown, it is no wonder that Philofophers hithersa haye in vain attempted to explicate the Works of Nature; and which confeguently being now, by degrees difcover'd, or in the way to be fo it is to be hoped that jn Time, at leaft we Thall come ar leggth untg the nat the primary Caufes, yef the next to them, and fuch as will be as well accommodated to Geometrical Calculation, as Humane Ufesn

Scbolium. But what hath, beeen faid concerning the Centrifugal Forces of the Air, and fuch like Fluids; is to be underftood of cuch Forces only, as are terminated in the next parcicles, or diffus'd not much further:. Examples, of which we have in magnctic Bodies; the attractive Force of which is terminated almof in Bolies of their own Kipd which are next to them. The Loadfone Vertue is cypntracted by a plate, of Iron which is interpos'ds and almoft ferminated in the fame. For the more remote Bodies are not fo much drawn by the Magnet it felf, as by the Rlate. In likemanner, when Particles chafe away othèr Particles of their Kind which are next to them, their Force in the mean while not reaching unto remoter Particles; of them fuch Fluids will be compos'd, as we have beefi treating of in this propoficion.
suanow
\therefore © Coroí

Mathematical Pbilofopby. 299

Corol. (2.) By the fame Reafon it feems, that befides the general Force of Gravity, there are other attractive Forces peculiar to the Particles of fome Bodies, or to very fmall Diftances, and other Circumfances of particular Bodies, from whence Phenomena, otherwife unaccountable, will naturally proceed. From fuch an Attraction as this, the Refraction or Inflection of the Rays of Light in Pellucid, or about the Angles of opake Bodies, which, to wit, do attract before the Contact, and the more forcibly at the leffer Diftance; as our Author hath obferved in his excellent Optic Treatife. And from the like Caufe, as he notes in his Latin Edition of the fame Work, the Spheric Figure of little Drops both of Quick-Silver, and the like Fluids feems to arife. For thefe Particles, as it feems when at a little Diffance from each other, attrad ftrongly; and like as in the great Bodies the Planets, their Spherical Figure refults from an equal Gravitation of the Conftituapt Parts one towards another ; fo it is reafonable to derive the Spherical Figure of the litile Drops which we were fpeaking of, from an equal Centripetal Force of the Particles that compore them, whilit they approach to one anotherg efpecially fince we fee that thefe Particles da fo quickly, and in a Moment, and fo exactly caft themfelves into the faid Figure; as is manifeft in the known Phenomena of the Rainbow, which are wholly owing to an inftantaneous and moft exact Conformation of the Particles into that Figure. 'And to the fame Caufe are fome other Phenomena of Fluids, which are otherwife moft difficult to be folv'd, reafonably atribured, But this by the Way,

LX. The

300 Matbematical Pbilofopby.

LX. The Quantity of Matter in all Bodies, is exaaty proportional to their Weight.

For when the Reffitance of the Air is taken away, as is done in Mr. Boyle's Vacuum; all Bodies, whether they feem moft folid and heavy, or moft rare and light, defcend together with a common and given Velocity, as foon as they are let down from the fame Heighth. All PenduIous Bodies alfo whatever, where the Centers of V ibration are equidiftant from the Center of Sufpenfion, do even in the Air Defcend and Afcend together, for ágreat Space of Time, if they begin at the fame Time to vibrate, in an equal Atch of the fatme, or an equal Cycloid, or even an Arch unequal; and where an equal Arch is deYcrib'd, they are mov'd altogether with the fame Celerity, whether they be hard or foft, folid or ligulid ; whethet great or fmall, or of whatfoever Form and Figure. From whence it is manifeft, that the moving Force is every-where in the fame Proportion with the Matter to be mov'd; or that the fame Force off Gravity doth equally affect all Bodies in the rame Diftance from the Center of the Earth. For that great B'odies do, cateris paribus, defcend fomething more fwiftly, and keep their Motions fomething !longer ; this is from hence, namely, that the'Surface of Bodies, according to which they are expost to the Refiftance of the Air, or any Medium whatever, is in Similar Bodies, in the duplicate Proportion only of the Diameters, or Homologous Sides; Whereas the Solidity of the fame, according to Which, both the Quantity of Matter, and the Force of Gravity is to be eftimated, is in the tris plicate Proportion of the faid Sides: So that if the Diameter of a Ball of Stone be Three fold of that of another Ball of the fame Matter, the Surface

Matbematical Pbilofopby. 301

face of the fame, and confequently the Velocity being given, the Refiftance it meets with in the Air, will be only Nine-fold of that of the other; when, neverthelefs, its Solidity, and Qantity of Matter, and Gravity which is Proportional thereto, will be Twenty-feven-fold of the fame in the other. From whence it is no Wonder, that the Refiftance, which in Proportion of the Gravity, is fo much lefs in the greater Sphere, Should affect and retard the fame Sphere in a leffer Proportion than it affects and retards the leffer. But that there is fo great a Difference of Velocity of Defcent in the Air, betwixt Gold and Chaff, fuppofe, this depends not only upon this Difference of Surfaces, but efpecially upon the Difference of Specific Gravity, whereby Gold doth far more exceed the Gravity of the Air, than Chaff doth; but the Excefs of the Specific Gravity of a Body defcending in the Air, above the Specific Gravity of the Air it felf; this alone is that Gravity, which forces a Body which is placed in the Air to defcend, as we Thew'd above. And therefore it is not to be wonder'd, that Gold fhould fall in the Air much more fwiftly than Chaff, altho' in a Vacuum they are always obferv'd to defcend with equal Velocity.

Scboliwm. If the Velocity it Xelf of all Bodies in a Vacuum, upon the Surface of the Earth, be requir'd to be given in known Meafures; we are to know, that as well by the direct Obfervation of Bodies falling Perpendicularly, as by the Vibrations of Pendulums, and Computation made from thence by Hugens; it is with the Confent of Geometricians, determin'd to be of that Quantiey, that in one ad of Time, Bodies defcend is 1 Feet of Paris, or 16 Li Englifh Feet; or in the Space of one Hour, 2086;6000 Englif Feet, i. e. almoft

302 Matbematical Pbilofopby.
hlmoft 40000 Englijh Miles; as from the Calculation, according to which Bodies defcend, in the Proportiorr of the Time duplicated, it will prefently appear.
LXI. In Pendulous Bodies, which are refifted only in the Proportion of the Velocity, when the Vibrations are in a Cycloid, whether the Arches defcrib'd be greater or leffer, are every where Ifochronal.

The Truth of the Propofition, as fpoken of ind a Vacuum, where there is no Refiftance of the Medium, hath been dermonftrated above. And if the Refiftance be as the Velocity, or as the Arch every where to be defcrib'd ; the reft of the Velocity fhall likewife be in the fame Proportion; and confequently the Time of Vibrating will be equally retarded on both Sides, and the Vibrations will ftill remain as before, i.e. of equal Time. 2.E.D.
Corol. , Therefore refifting Mediums, make the Time of each Vibration longer than it would be in a Vacuum. And Experience teftifies this of Pendulum Clocks ; the Vibrations whereof, have been obferv'd to be perform'd fomething more quickly in a Vacuum, than in the Air. For the Refiftance takes off fomething from the Force of the moying Gravity, and confequently doth fomething refract or leffen its Effect, and the Velocity of the Motion.

$$
\text { Nov. 2§. } 1706 .
$$

LECT.

Matbematical Pbilofophy. 303

L e c т. XXIX.

 Odies mov'd with an unequal Velocity in a very Subtle Fluid, are refifted by the Fluid in the Duplicate Proportion of the Velocity.
For fince the Body which is mov'd the fwifter, doth both pafs through a greater Part of the Medium, in Proportion of its Velocity, and meets every unequal Part of the Medium with greater Force, in Proportion of the fame Velocity, the whole Refiftance arifing from both Caules conjoin'd, will neceffarily be in the Duplicate Proportion of the fame Velpcity. Which Proportion doth agree well with Experiments. Albeit the Defect, as to Slipperinefs of the Parts in the Air, which give Way, arifing from Elafticity, and fome Cohefion of the Parts of moft Fluids, muft needs fomething difturb that Proportion.

Corol. (2.) Since therefore, the Vibrations of Pendulums in a Cycloid, where the Refiftance is in the Simple Proportion of the Velocity, would be Ifochronal ; but the Refiftance in the Air, and fuch like Mediums, is almoft in the Duplicate Proportion of the Velocity; it is manifeft that the Times of Vibrations in a Cycloid, and much more in a Circle, are, when the Vibration is in the Air, not altogether in divers Arches, but in the greater Arches, fomething greater, by Reafon of the too great Refiftance.

304 Matbematical Pbilofophy.

Corol. (2.) Hencei it follows, that for the moft exactly obtaining the Equality of Times in Pendulum Clocks, it is requifite that the Pendulums fhould always defcribe the fame Arches; otherwife: by Reafon of the unequal Velocity, where the Arches defcribed are greater, the Motion will be llower; where leffer, it will be fwifter than it ought to be. From whence alfo the Caufe may be fhew'd, why greater Clocks, placed in a Ship, and tofs'd up and dowh, do not fo exactly thew the Hours, as thofe which are upon Land, and are at Reft. For by Reafon of the Concuffion, Arches are defcrib'd fometimes greater, and fometimes leffer; and from thence fome Inequality muft neceffarily follow.

Corol. (3.) Shorter Vibrations, whecher in a Cycloid, or in a Circle, are more Ifochronal than longer ; which is becaufe of the Refiftance of the difturbing Medium ; and the fhorteft are perform'd in the fame Times nearly as in a Va cuum ; where alfo the Cycloid, and Circle, do jult coincide, and the Vibrations in one, fcarce differ from thofe in the other. From whence alfo, the Pendulum Clocks, which are govern'd by a long Pendulum, do thew the Hours much more exactly, than thofe which have a thorter Pendulum; forafmuch as far leffer Arches are defcrib'd by thafe than thefe. But the Times of thofe Vibrations which are made in greater Arches, are fomething greater, becaufe the Refiftance whereby the Time is lengthened, is greater, in Praportion of the Length defcrib'd in the Defcent, (to wit, becaufe of the greater Velo city) than the Refiftance in the fubrequent Afcent, wheroby the Time is Contracted. But the Time of Vibrations, as well Thort as long, is alfo fomething lengthned by the Motion of the Medium.

Mathematical Pbilofoply. 305

dium. For when Bodies become flower in their Motion, they are a little lefs refifted; and when they are accelerated, a little more, than when they are mov'd uniformly; becaufe whilit the Medium goes forward the fame way with the Bodies; by that Motion which it hath receiv'd from them, in the former Cafe it is the more agitated, in the latter lefs; and confequently doth more or lefs confpire with the Bodies moved in it. It refifts Pendulums therefore in their Defcent more, in their Afcent lefs; and from both Caufes the Time is lengthened.
LXIII. All Sounds, whether fmall or great, do go almoft with one given Degree of Velocity; and this given Velocity is fo fwift that it conftantly goes about 1142 Feet in one Second of Time, which is Eight Miles in juft 37", or about 68520 Feet; that is, near 13 Miles in an entire firft Minute, or near 780 Miles in an Hour.

For all Sounds, whether great or fmall, muft go with the fame Velocity which a Stone, or other defcending Body falling from half the Height of the Armofphere, fuppofing it uniform, i. e. , juft fo high as by its Weight would reduce our Air on the Earth's Surface to its prefent Degree of Denfity; I fay all Sounds muft go with the fame Velocity, which a Stone at laft would acquire by falling from half that Height ; or, which is the fame thing, that Sounds muft go fo far as that entire Height comes to in the fame Time that the Stone would defcend from the one half of that Height ; becaufe the laft Velocity acquir'd, if it had been uniformly continued all that while, would have gone twice as far as that Line which had been deffrib'd by an unequal Velocity, gradually increafing from Reft, as we have above from Galileo demonftrated p.; and X

306 Matbematical Pbilofophy.

therefore in the fame time would have gone the whole Height of that uniform Atmofphere: Now this Stone falling from balf that Height; defcends to the Earth in about fuch a Space of Time as anfwers to the former Obfervations of the Velocity of Sounds. Now, that Sounds muft needs go with the fame Swifterefs that a Stone would arrive at from half that Height beforementioned, is thus demonftrated. The defcending Stone is urged downwards only by its own natural Gravity, or infinitely fmall Degree of Velocity uniformly imprefs'd upon it ; and fo its Velocity in equal Time has an equal Increafe, and becomes greater exactly in the Proportion of the Time of its Defcent. The Atmofphere's Tenfion or Elafticity, which conveys the Sound with its own natural Degree of Velocity, or attempt to Motion, arifes alfo in this Cafe from the natural Gravity of each phyfical Part of the upper Surface uniformly augmented by the Addition of equal Parts of the inferiol Surfaces quite down to the Bottom ; fo that in both Cafes, the Velocity actually acquir'd in one is the fame with the Conatus ad motum, the Tenfion or beginning Velocity of the other : Juft like two fmall or nafcent Quantities originally equal, and which afterward are augmented in the fame Proportion, whofe laft Quantities muft therefore be equal alfo. This being fo, and the Tenfion of the Parts of the Air being almoft the fame, whether the Motion or Sound be great or fmall ; 'tis plain, that tho' the Quantity of the Sound will be in Proportion to the Quicknefs of the Vibrations of the Sounding Body, and if that Velocity be increas'd by the Concurrence of the Wind, or diminifh'd by its Oppofition, the Sound will either be ftronger and reach farther, or be weaker and ftop

Matbematical Pbilofophy. 307

Cooner; yet will the Velocity of the Sound itfel ${ }^{\mathbf{s}}$ be always proportionable to the Tenfion of the Air which conveys it, and that Tenfion being nearly fix'd and certain', this Velocity of all Sounds muft be'nearly fix'd and certain. Now what Time is neceffary for the Defcent of a Stone from haif the Altitude of fuch an uniform Atmofphere, as we have before fuppos'd, will be thus computed. The 隹ecifick Weight of Water to that of Quickfilver, is known by many Trials to be as about I to $13 \frac{3}{4}$; and when the Mercury is ${ }^{2} \mathrm{o}$ Inches in Alcitude, the fpecifick Gravity of Air to that of Water is about that of I to near 900, as has been found alfo by many Tryals. Nay indeed, confidering that moft of the Elder and Foreign Experiments come nearer to that of I to a 1000 ; and that however the fpecifick Gravity of thofe Parts which are properly elaftical Air, if they were freed from Vapors and other Bodies which are not elaftical, and have nothing to do in the Conveyance of Sounds, would be then not the roooth Part; I fhall chufe ito rioo for the Proportion of Air properly fpeaking to Water: whence it will follow that true elaftical Air will be to Quickfilver as 1 to 1ς r25, and 30 Inches of Quickfilver, which is a Balance for an equal Column of Air, will correfpond to 39 times 15125 Inches of Air, or to 453750 Inches thereof; that is, to 37812 Englijh Feet, or about 7 Englijh Miles; which, if the Air were uniform in Denfity, would be its entire Altitude., But falling Bodies are known to defcend half that Alcitude, or 18906 Feer in about 34 Seconds of Time. Whence Sounds ought to propagate themfelves with fuch a Velocity, as will carry them 37812 Feet; the Altirude of the Air, if it were uniform in Denity; in che Space of a litele

308 Mathematical PbiloJopby.

above $; 4$ Seconds, the Time of a Stone's Defcent from half that Altitude; and by confequence will be propagated about 1142 Feet in one Second, about 68;20 Feet, or near 1; Miles in one whole Minute, i. e. near 780 Miles in an Hour, agreeably to the beft Obfervations. Sir Ifaac Newpton, in his firft Edition, Calculated the Velocity of Sounds to be fomewhat lefs, by taking only 1 to 850 for the Proportion of Air to Water, which in this Cafe, as he now owns, oughi rather to be taken as only i to about r100: And it plainly appears, that the Obfervations of the Velocity of Sounds do generally make it greater than his firft Numbers did allow. As to his Demonftration of the Conclufion we have here brought this Matter to, tho' it be extremely fubtil and ingenious, yet is it too long, too remote, and too intricate to be infifted on in this place; and therefore it was thought proper to make ufe of this more eafy and intelligible Method of Demonftration.

Coroll. (r.) If the Denfity of Air be increas'd or diminifh'd, the Sound it felf, or Violence of the Noife, will be increas'd or diminiff'd in the fame Proportion: Which thing doth well agree with the Experiments of Sounds made in rarified or condens'd Air.

Corol. (2.) If the Wind confpire with the Motion of the Air, the Sound or Noife will be increas'd and carried farther; as being now made up of the Sum of the Motions of the Sound it felf, and the Wind. If the Wind be contrary, the Sound will be diminifh'd, and fooner ftopp'd, as now confifting of the Difference of the faid Motions only. Which neyerthelefs is fo to be underftood, that the Veloci-

Matbematical Pbilofophy. 309

ty of the Sound it felf, which was defign'd above, alter but very little For Sound depends not on the continual Motion of the Air, but of the Pulfations of the fame propagated after the manner of Waves by Vibrations, and a continual Viciffitude of Goings and Returnings, as will be fhewn afterwards. And of what Sort foever the Difference of the Noife is, which arifeth from the different State of the Sonorous Body, or of the Wind ; yet the Denfity of the Air, and its Elafticity, do remain almoft the fame; and fo the Effects of them, or the Velocity of the propagated Sounds, will remain likewife almoft equal.

Corol. (3.) Sounds therefore, of what Kind foever, whether they be great or finall, are propagated through Air of a given Denfity and Elafticity almoft with the fame Velocity; as the Experiments alfo, which have been made by Philofophers, do fhew.

Corol. (4.) The Velocity of Sounds there-- fore in any Place whatever being given, or that whereby they go about 1142 Englifh Feet in one Second; from the Interval of Time of Sounds given, there is given withal the Interval of Diftance of the Sonorous Body. Thus, for Inftance, if we number ro" of Time betwixt the Fire of a Cannon feen, and the Sound heard; it is manifeft, that the Gun is 11420 Feet diftant, or fomewhat above two Miles. As likewife, if $s^{\prime \prime}$ pafs betwixt our feeing the Flafh of Lightning, and hearing the Thunder, we may reckon that the Thunder-Cloud is about 5710 Feet, or a little above one Mile diftant from us.

Decemb. 2. 1706.
LE C T.

Lect. XXX.

LXIV. vers Velocities is in the duplicate Proportion of the Velocity ; fo in divers Denfities the Velocity being given, it is in the direct Proportion of the Denfity it Self; but the Denfity and Velocity being given in the duplicate Proportion of the Diameters; and confequently the Refiftance in general is in a Proportion compounded of the duplicate Proportion of the Velocity, and the fame Proportion of Diameters, and the fimple Proportion of the Denfity of the Medium directly.

Thefe. Things are eafy, and ftand in no Need of Demonftration. For if two Spheres do exceed one the other, as to their Diameters, in the double Proportion, or be as 2 to 1 , and the greater be mov'd with a Velocity double to that of the other, and in a fluid Medium double to the other in Denfity; it is plain, that in any given Space of Time the whole Refiftance of the greater Sphere, or Motion loft, is to the whole Refiftance the leffer Sphere meets with, or its Motion loft, as $2 \times 2 \times 2 \times 2 \times 2$ to $1 \times 1 \times 1 \times 1 \times 1$, or as $\mathbf{3}_{2}$ to I ; and thus every where. But it is to be noted, that Refiftance proceeds equally both from Fluids and Solids, cateris paribus; unlefs fo far as in a very fluid Medium, when the Motion is fomewhat flow, the Medium it felf by a Circulation of Motion, and an Impetus thereby made
on the hinder Part of the Body mov'd in it, doth fomething promote the Motion of the Body; which reciprocal Imperus of the Medium on the Body ought to be lefs in fwifter Motions of the Body, and in very fwift ones none at all; as our Famous Author found the thing to happen in very accurate Experiments, which he made aboutt it.

Corol. (1.) The Mediums therefore in which Projectiles are, carried the fartheft without any fenfible Diminution of Motion, are not only very fluid, but much rarer than the Bodies moved in them; otherwife they would prefently ftop the Motion of the Projectiles, and bring it to reft.

Corol. (2.) From whence it follows, that our Air, or all the Matrer contain'd in it, is very fmall, if it be compat'd with the Matter in Bodies, that ape carried forward very far and fwiftly in it; and is fo far from the Cartefian Plenum, that it doth not indeed poffefs the 20000 th Part of the containing Space.

Corol. (3.) And it follows alfo, that the Ether, or all the Matter contain'd in the Planetary Spaces, thro' which the Planes have revolv'd for $\mathrm{f} \rho$ many thoufands of Years with fuch Velocity, and this without almoft any Lofs of Motion at all, is very fmall, if compared with the Matter contain'd in the Planets themfelves; fo that, as will eafily appear by Calculation, that Space ought rather to be counted a Vacuum than otherwife:

Corol. (4.) The whole Cartefian Philofophy therefore falls to the ground, which is entirely built upon a Plenum, and a Celeftal Matter, X 4 which
which he calls His ift and ad Elements. Nor can that ingenious Fiction any longer fubfift, when its Bafis is thus deftroy'd by our Author's Experiments, and what he hath demonftrated: Efpecially when He has not only taken away that Plenitude of Matter, but fhew'd alfo that there is nothing of the forefaid Matter in the Pores of Bodies. For by the Experiment of a very long Pendulum vibrating in the Air a long while, and by eftimating the Loff of Motion, when compar'd with the Refiftance of the Air made upon its Surface, he found that either there was none at all, or a plainly infenfible Refiftance in the internal Parts. From whence it is rightly concluded, that there is either none at all, or a plainly infenfible Quantity of any fubtle Matter in the Pores of Bodies; whereas, from the Cartefan Plenitude, compared with the feecifical Gravity of the Pendulum, it ought to be far greater than the grofs Subftance it felf of the Pendulum.
LXV. No Rectilinear Preffure.can be propagated through a Fluid, in right Lines only.

1. For fince the Parts of a Fluid are always in Motion everỳ way, or are at leaft every way eafily moveable, and will upon any Occifion be actually mo'v'd ; it cannot be, but that any Preffure whatever, which is fift communicated in a right Line, muft urge the contiguous oblique Parts more or lefs; and that thefe oblique Parts muft urge others in like manner that are placed obliquely; and thus in infinitum. The Preflure therefore, as foon as it is propagated to Particles which do not lie in the right Line, will begin to divaricate, and be propagated obliquely for ever; and when fome Part of the Preflure is intercepted by fome Obfacle,

Matbematical Pbilofophy. 313

Obftacle, the remaining Part now, as well as before, will divaricate into all the Spaces beyond the Obftacle.

- Corol. (r.) Hence the Reafon appears, why Sounds let into a Chamber, either by the interpos'd Walls, or through the Windows, fpread themfelves into all Parts of the Chamber, and are heard at all Angles, not only as reflected from the oppofite Walls, but as propagated thro': the Air on every Side from the Window.

Corol. (2.) The Rays of Light which are propagated through the Ether, or Air, or any other Fluids whatever always in right Lines, are not Impulfes or Modifications of that Fluid, as it is in Sounds, but real Corpufcles flowing from the Fountain of Light, and propagated by a true Motion through the Medium; as moft of the orher Phænomena of Light do alfo thew,

LXVI, Every tremulous Body in an Elaftic Medium will propagate the Motion of Pulfes on every Side forwards; but in a Medium not Elaftic, it will excite a circular Motion.

Cafe (r.) For the Parts of the tremulous Body, in their alternate going and returning, will in their going drive forwards, and confequently prefs and condenfe the Parts of the Medium next thereto; and in their returning will permit the faid Parts of the Medium to expand themfelves, and return to their former Situation. Which certain Parts of the Medium going and returning alternately, as doth the tremulous Body it felf, will act in the fame manner upon the Parts of the Medium next to them, as the tremulous Body did

314 Matbematical Pbilofophy.

did upon them; and will propagate the faine tremulous Morion to thofe further Parts of the Medium, and thefe laft will propagate it to others more remote than themfelves; and thus in infinitum. And in every one of the defigh'd Divifions of the Medium, the Parts will be alternately condens'd and relax'd ; in their Going çondens'd, and in eheir Return relax'd, like as it is in the treimulous Body that began the Motion. Not that they all goand return at the fame time, but alcernately; for the Expanfion of the fortgoing Divifion makes the Condenfation of the 2 d , and is at the fame time with it, as the Expanfion of the $2 d$ is at the fame time that the Condenfation of the 3 d is. But the Parts which go, and in going ate condens'd, becaufe of their progreffive Motion wherewith they ftrike Obftacles; are Pulfes; and therefore fucceffive Pulfes will be propagated from every tremalous Body through an Elaftic Medium; and this at Diftances from each other nearly equal, becaufe of the equal Intervals of Time, wherein the Body doth by each Trétior excite each Pulfe. 2. E. D.

Corol. (.t.) Altho' the Parts of 2 tremilon's Body do go and return according to fome certain and determinate Direction, or Part; yet the Pulfes propagated from thence through the fluid Medium will, by the foregoing Propofition; fread themfelves every way on the Sides; and will be propagated every way from the tremulous Body as the Center, according to Surfaces almoft fpheric and concentric. Of which we have an Example in Waves; which if they be rais'd by 2 tremulous Finger, will not only go forward, according to the Direction of the Motion of the Finger, but will prefently be propagated on all

Matbematical Pbilofophy. 315

Sides, and encompafs the Finger in the Form of concentric Circles; for the Gravity of the Water fupplies in 2 fort the. Place of Elafticity.

Corol. (2.) Hence we may collect, that the Number of the propagated Pulfes is the fame with the Number of the Vibrations of the tremulous Body, and is not multiplied in the Progrefs. For every phyfical little Line, as foon as by the Expanfion it hath return'd to its firft Place, would reft there, were it not urged with a new Motion by the Force of the tremulous Body it felf, or the Pulfes propagated from it. And therefore it will actually reft, when Pulfes ceafe to be propagated from that Body.

Corol. (3.) Hence the Reafon appears why Sounds, when the Motion of the fonorous Body ceafeth, do prefently ceafe; and are hear'd at a great Diftance no longer than at a leffer: For the Caufe ceafing, the Effet muft needs ceafe alfo.
Corol. (4.) Hence we may underftand the Caufe of the Inoreafe of Sounds, in the Stenteropbonick Tubes. For a reciprocal Motion is wont, in each Recourfe, to be increas'd by the Caufe that produces it: For the Motion in the Tube, which hinders the Dilatation of the Sotnd, is reverberated more ftrongly; and therefore is the more increas'd from the new Motion imprefs'd in each Reflexion. And fince all that Force of the fono-: rous Body, or Voice, which otherwife muft in the fame time have been propagated through an entire Sphere, which hath the I.ength of the Tube for its Radius, is now fhut up within the Hollow of the Tube, and goes out of the Aper:ture with a great Strength ; it is evident, that the tremu-

316 Matbematical Pbilofophy.

tremulous Motion of the Air, or the Violence of its Pulfes, is greatly increas'd from thence, and confequently ought to reach unto a much greater Diftance; but this fo notwithftanding; that the Velocity of the Propagation doth every where remain ftill the fame and unvaried. The Sound therefore, as I fuppofe, is increas'd in thefe Tubes in theProportion of the wholefphericSurface aforefaid, to that Part of it which is contain'd within the Aperture of the Tube. But it would be worth the while that Experiments fhould be made about this Matter, to determine whether the Increafe of Sounds in thefe Tubes be in that Proportion which hath been defin'd; that we may hereafter pronounce with more Certainty, and may be able to accommodate thefe Tubes more to the Ufe of Mankind.

Cafe (2.) But if the Medium be not Elaftic, becaufe the Parts thereof which are preffed by the vibrating Parts of the tremulous Body cannot be condens'd, the Motion will be propagated in on Inftant to Parts where the Medium doth more eafily give way; that is, to Parts which the Body would otherwife leave empty behind it. The Cafe is the fame here, as with Projectiles in general in any Medium whatever. The Medium, in giving way, doth not go back in infinitum, but by a Circulation comes at length to the Spaces which the Body leaves behind it. Thus it is that the Medium gives way to a tremulous Body alfo, by a circular Retroceffion; and as often as the Body returns to its former Place, the Medium is repell'd from thence, and returns to its former place.

Matbematical Pbilofopby. 317

Corollary: The Cartefans therefore are miftaken, who fuppore that the Agitation of the Parts of the Sun, or any Flame, fuffices to a Preffures, which is to be propagated through the Ambient Mediam in right Lines, fo as to conftitute the Rays of Light. For fuch a Preffure ought to be, not from the Agitation only of the Parts of the Flame, but from the Dilatation of the whole.

Decem. 9. 1706.

L E C T. XXXI.

LXVII. long, be revolv'd in an uniform and infinite Fluid about its own Axis, the Pofition whereof is given, and the Fluid be mov'd round by the Inipulfe of this Cylinder only; and every Part of the Fluid perfeveres uniformly in its Motion; the periodic Times of the Fluid will be as their Diftances from the Axis of the Cylinder directly ; and the Velocities will be every where equal.

For let the Fluid be diftinguifh'd into inntmerable Cylindrical. Orbs concentric to the Cylinder; and of the fame. Thicknefs every where; And becaufe the Fluid is fuppos'd to be homogeneous,

318 Mathematical Pbilofopby.

 neous, and the Cylinder, by its circular Motions; endeavours to put all the conciguous Parts of the Fluid, and through themi the further Parts in ins: friitwn, into its own angular Motion, and confequently into a Velocity of Motion that is in dired Proportion of the Diftance, fo that each of them fhouldbe turn'd about in the fame periodic Time with it felf; it is plain, that every Orb doth then ceafe frour further Acceleration, and that the Parts of them perfevere uniformly in their Motions, where the Refiftance or Impreffion on the Concave Part, is equad to the Refiftance or Impreffion on the Convex Part : (For otherwife the ftronger Force prevailing, the Motion will be changed on that Part.) Therefore, where the refpective Velocity, according to which Refiftance will arife in the given Surface, fhall be in the reciprocal Proportion of the Surface, the Impreffions on both parts will be equal ; that is, in the prefent Cafe, where the angular Velocity is in the reciprocal Proportion of the Diftance it felf; or where the abfolute Velocity is always equal, the periodic Times alfó will be in the direet Proportion of the Diftance. 2.E.D.Corol. (r.) If the Fluid be not infritite, but contain'd in a Cylindrical Veffel; the exterior Cylinder alfo will be turn'd round, and its Motion will be accelerated until the periodic Times of both Cylinders, and of the inclos'd Fluid, be equal one to another. But if the exterior Cy linder be violently detain'd, it will endeavour to retard the Motion of the Fluid; and unlefs the interior Cylindefs preferve its Motion by fome Force ; continually impref'd, it will make the fame: to ceafe by Degrees.

Matbematical Pbilofophy. 319

Corol. (2.) Bat fince the periodic Times of the Planets are not in the Proportion it felf of their Diftances from the Sun, but in a Proportion which is fefqui-alteral of the fame; and confequently their abfolute Velocities are not every where equal, but in a fubduplicate Proportion of the Diftances, as all Aftronomers acknowledge; it appears, that the Conftitution of fuch an Ethereal Fluid doth in no wife agree to the Solar Syftem; nor deth the Suppofition of it any ways help the Cartefian Vortices.
LXVIII. If a folid Sphere, in an uniform and infinite Fluid, be revolv'd uniformly about its own Axis, the Pofition whereof is given; and by the Impulfe of this alone the Fluid be turned round, and every Part of the Fluid perfeveres uniformly in its Motion; the periodic Times of the Parts of the Fluid will be as the Squares of the Diftances from the Center of the Sphere.

Let the Fluid be diftinguifh'd into innumerable Concentric Spherical Orbs of the fame Thicknefs: : And, as before, the Fluid will then only perfevere in its uniform Motion without any Acceleration or Retardation where the angular Motions of the Parts of the Fluid about the Axis of the Globe be reciprocally as the Spheric Concentric Surfaces themfelves, or as the Squares of the Diftances from the Center of the Globe reciprocally; or laftly, as the periodic Times of the Parts which are reciprocally proportional to the angular Velocities themfelves; where thefe be as the Squares of the Diftances from the Center of the Globe directly.

Corol. (r.) If the Fluid be not infinite, but contain'd in a fpheric Veffel; the fpheric Veffel alfo will be turned round, and its Motion will be accelerated until the periodic Times of the Sphere,

320 Matbematical Pbilofopby.

and Veffel, and inclos'd Fluid, be equal to one another. But if the fpheric Veffel be violently detain'd, it will endeavour to retard the Motion of the Fluid; and unlefs the Sphere preferve its Motion by fome Force continually imprefs'd; will make that the fame, as, in the former Cafe; fhould by Degrees ceafe.

Corol. (2.) But fince the periodic Times of the Planets are not in the duplicate Proportion of their Diftances from the Sun, as we have feen already; it is manifeft, that the Conftitution of fuch an Ethereal Fluid doth in no wife agree to the Solar Syftem; nor are the Cartefian Vortices in any wife help'd from the Suppofition of the fame.

Corol. (3.) Since the Bodies, which being carried in a Vortex, go perpetually the fame round without cenfiderable Accefs to theCenter;orRecefs from it ; (as it is in all Planets; both Primary and Secondary;) they muft needs be of the fame Denfity with the Vortex, and be carried along together with the contiguous Parts: And fince this Sort of Vortices muft be fo mov'd, that the periodic Times fhould be in the duplicate Proportion of the Diftances (contrary to what happens in all the Planets;) it is manifeft, that the Planets are not carried along in Corporeal Vortices. Which alfo will be made more manifeft from the following Propofition.
LXIX. . The Velocities of all the Planets; whether Primary or Secondary, about their Central Bodies, by being in the reciprocal fubduplicate Proportion of the Diftances from their Centers, do wholly overthrow the Cartejan Hypothefis of Vortices.

For the Planets, as is now known every where; do revolve each of them about the Central Body

Matbematical Pbilooophy. 321

 in Ellipfes; and this in fuch fort, that by Rays drawn to their Foci they defcribe Areas proportional to the Times; and that the Velocities Thould be in the reciprocal fubduplicate Proportion of the Diftances. But the Parts of an Ethereal Vortex cannot be revolv'd with fuch a Motion. For (in Fig. 6. Plate 8.) let A D, B E, C F be three Primary Orbs defcrib'd about the Sun S. Of which let the outmoft C F be Concentric to the Sun; and let the Aphelia of the two inner be A and B, and their Perihelia D and E . Therefore the Body which is revolv'd in the Orb C F will, by a Ray drawn to the Sun in defcribing Areas, which are proportional to the Times, be moved with an uniform Motion: But the Body which is revolv'd in BE will, according to the Laws of Aftronomy depending both upon Geometrical Demonftrations and Celeftial Obfervations, be mov'd more flowly in the Aphelion B,and more fwiftly in the Perihelion C; when yet, according to Mechanic Laws, the Matter of the Vortex murt to be mov'd more fwiftly in the narrower Space which is betwixt A and C, than in the wider Space which is betwixt D and F ; i. e. more' fwiftly in the Aphelion than in the Perihelion: As for Example: In the Beginning of the Sign Virgo, where Mars's Aphelion now is, the Diftance betwixt the Orbs of Mars and Venus is, to their Diftance in the Beginning of Pifces, almoft in the fefqui-alceral Proportion, or as 3 to 2 : And therefore the Matter of the Vortex betwixt thofe Orbs in the Beginning of Pijces, ought to be carried more fwiftly than in the Beginning of Virgo, in the fame fefqui-alteral Proportion. For by how much the narrower or ftraiter the Space is through which the fame Quantity of Matter pafferh in the Time of one Revolution, with fo
322

 Matbematical Pbilofopby.much the greater Velocity it muft pafs thro' is. Therefore if the Earth refting relatively in this heavenly Matter be carried along by the fame, and revolv'd about the Sun together with it ; the Velos locity thereof, in the Beginning of Pifces, ought to be to the Velocity of the fame, in the Beginning of Virgo, in the fefquialteral Proportion, or as 3 to 2. From whence the apparent Motion of the Sun, in one Day's Time in the Beginning of Virgo, ought to be greater than 70°, and in the Beginning of Pifces lefs than 48'; when yet (by the Teftimony of Experience) that apparent Motion of the Sun is fwifter in the Beginning of $P_{i} j_{c e s}$, than in the Beginning of Virgo; and therefore theVortex is mov'd more fwiftly in the Beginning of Virgo, than in the Beginning of Pifces. The Hypothefis therefore of Vortices doth wholly contradict the Aftronomical Phænomena; and Terves not fo much to explicate, as to difturb the Celeftial Motions.

Scboliam. Hitherto we have delivered the Principles of Natural Philofophy out of our Famous Author; yet, fpeaking properly, we have delivered them not Philofophically or Phyfically, but rather Mathematically. Forafmuch as we have hitherto confidered the general Laws and Conditions of Motions and Forces, which chiefly belong to Aftronomy and Natural Philofophy, moftly in a Mathematical and Univerfal Method: Neverthelefs, that our Work fhould not feem altogether dry and barren, we have every where illuftrated it with Scbolic, and Corollaries Aftronomical, Phyfical, Optical, and alfo Mechanical ; and fo have prepared the Way to true Philofophy and Aftronomy, that is, the Nenvtonian. It remains, that we come now at length to the Nature of Things, and to the Philo-

Matbematical Pbilofophy. 323

Philofophical Caufes of thefe Phxnomena, both Aftronomical and Phyfical, and to the true Syitem of theWorld; and that we fet before you the Frame and Conftitution of the fame Syftem, fo far as it depends upon the Principles already laid down; omitting here, or only lightly touching upon thofe Things, which we had obferv'd in the foregoing Scbolia or Corollaries.

$$
\text { Far. 29. } 1700_{7}^{6} .
$$

*

L e c T. XXXII.

LXX. with its own Satellites, if they have any, encompafs the Sun with their Orbs, and revolve about it.
That Mercury and Venus revolve about the Sun, is manifeftly demonftrated from their Faces exadly imitating thofe of the Moon; as is every where now known by Telefcopic Obfervations.' For fometimes they fhine with a full Face about the Conjunctions, but with the leaft apparent Diameters; they being then fituate beyond the Sun, and imitating a Full Moon: and then with an obfcure Face about the other Conjunctions, but with the greateft apparent Diameters; they being then fituate on this Side the Sun, and imitating a New Moon. And they appear likewife of a gibbous or hollow Face about the Octants, and of an halved and dichotomous one about the Quadratures, like as

324 Matbematical Pbilofophy.

it is is in the Moon: Sometimes' they pals thro' the Difcus of the Sun, and appear as Spots therein, inducing a partial Eclipfe; and fometimes they pafs beyond the Body of the Sun, being in the mean while invifible to us. From whence it is certain, that thefe two Planets are revolv'd about the Sun, and not about the Earth. And altho' Mercury is fo rarely feen, as appearing to us only about its greateft Elongations, and when it paffeth over the Sun, that all thie faid Faces cannot be actually obferv'd fo clearly in this Planet, as in Venus; yet notwithftanding, fince what Faces of Mercury can be feen, do exactly anfwer to this Pofition; and fince thofe of Venus, a Planet of the fame Condition, lie open to our Obfervation, and do every where fully anfwer the faid Pofition ; there is no room to doubt concerning the reft as to Mercury. From the full Face of Mars alfo, near the Conjunction with the Sun, and the gibbous Face thereof in the Quadratures, it is manifeft, that it revolves about the Sun. The fame thing is alfo demonftrated concerning Fupiter and Saturn, from their Faces which are always full, as it ought to happen at fo great a Diftance. For albeit thefe Planets ought to have their Faces about the Quadratures fomething diminifh'd; yet fince that Diminution of Light is fo very fmall that it can fcarce, or rather not at all be obferv'd and feen by us, their full Face is to be reckoned to agree very well with the faid Pofition. But that the Orbit of the Earth encompaffeth the Sun, is abundantly manifeft from the annual Parallax, which we have elfewhere explained.

Corollary. From hence with De Cartes, and the reft alfo of the Aftronomers of the foregoing Age, we gather that the Ptolemaic Syftem of the World, whicn

Matbematical Pbilofophy. 325

which alone was cultivated and celebrated for fo many Ages foregoing, comes to nothing. And we gather alfo, that the Tycbonic Syftem, which was afterwards receiv'd and celebrated by fo many and great Aftronomers, doth wholly fall to the Ground ; and doth not in any wife agree with the Phxnomena, which have been oblerv'd of late. And laftly we gather, that the Copernican Syftem, which hath for fo long a time been approw'd of and follow'd by moft of the beft Aftronomers, is the true Syftem of the World, and is that alone which dqth prefent to us that Order of all the Planets, which agrees to the Nature of Things, and to Aftronomical Obfervations. Therefore it may juftly feem ftrange, that the Famous Dr. Gregory, that Excellent Interpreter of the Newtonian and Copervican Aftronomy, a Man fo well skill'd in the true Mundane Syftem, Should beftow fo much Time and Pains in delivering and fetting off thofe and other falfe and imaginary Hypothefes. When it is fo certain, that the Pytbagorean or Copernican Order of the Planets is that alone which is 'True and Genuine; and that the reft of the Hypothefes are only fictitious, To what Purpofe flould we mix the Truth with mere Shadows, and difturb the Contemplation of the Nature of Things with manifeft Falfities? Let therefore thofe, once indeed moft Noble, moft Famous Syftems, be now banifhed for ever out of the Aftronomical World; and that only be admitted, cultivated, delivered and taught, which now, at length, we find to be the only one that correfponds to the true Order of Nature, and to real natural Caufes. But this by the way.

326 Matbematical Pbilooophy.

LXXI. The periodic Times of the fix Primary Planets, are in the fefqui-alteral Proportion of their mean Diftances from the Sun.

This Proportion, which was firft found out by Kepler, the Parent of the Newtonian Philofophy, is now acknowledg'd by all. The Meafure of the periodic Times is agreed upon amongft all Aftronomers; but as for the Magnitudes of the Orbs, the fame Kepler and Bullialdus have exceeded all others in the Diligence they have us'd for determining the fame: And the mean Diftances which anfwer to the periodic Times, do not fenfibly differ from the Diftances which they have found, and are for the moft part in the Middle betwixt them ; as may be feen in the following Table.

The mean Diffances of the Planets from the Sun.
Saturn. Fupit. Mars. Earth. Venus. Mercu.

And now we will give the true Periods, as alfo the Diftances which come neareft to the Truth, from Mr. Flamfteed's Parallax of the Sun, viz. of ${ }^{\prime} \mathrm{so}$ ".

Mathematical Pbilofopby． 327

Mercury	D． 87	H．$:$	
		23	6
V enus	둥아 224.	16	49
${ }_{\text {Morth }}$ \＆$\}$	免盛 365	6	9
Mars	686	23	27
Fupiter		12	20
Saturn	足忽 10759		3^{6}

Mercury		32，000，000
Versu＇${ }^{\text {－}}$	E	尔
rrtb		－00
Mars	号	123，000
Fupiter	断	
Saturn		777，000，000

Now，as to the Methods of finding thefe．Di－ ftances，they are thus determin＇d．

Of the Diftances of Venus and Mercury，as compar＇d with that of the Earth，there is no room to doubt ；fince thefe are gathered by plain Trigonometry from their greateft Elongations， known by eafy Obfervation．As for the Superi－ ors，all manner of Difpute concerning their Di－ ftances from the Sun，which are deduc＇d from the Arch of Retrogradation，is taken away by the Eclipfes of the Satellites of Fupiter reduc＇d to an accurate Calculation，according to the other Diftances，and which agree with the Obferva－ tion，for by thofe Eclipfes，the Pofition of the Shadow which $\mathcal{F u p i t e r}$ cafts，is determin＇d；and by this means 7upiter＇s Heliocentric Longitude is had，whilft his Geocentrical is had immediate－ ly by Obfervation．Therefore in the Plane Tri－ angle connecting the Centers of the Sun，Fupiter， and the Earth ${ }_{2}$ all the Angles are given，and con－
fequently

328 Matbematical PbiloJopby.

fequently the Proportion of the Sides is alfo given ; or the Proportion of the Diftances of Fupiter and the Earth from the Sun.

Corollary. Therefore the Proportion of the Diftances from the Sun, is given exactly in all the Planets; fo that if the Diftance of any one of the Planets was given in fome known Meafure, as in Miles or Semi diameters of the Earth, we Thould withal have the true or abfolute Diftances of all: But this is what is yet wanting.
LXXII. The fix Primary Planets do always, by Rays drawn to the Sun, defcribe equal Areas in equal Times, and in general Areas proportional to the Times. This Equality of the Areas in equal Times, which is another Foundation of the Nevptonian Philofophy, is owing likewife to the Obfervation of the fame Kepler. Whilft the five other Planets are, in refpect of our Earth, fometimes Progreffive, fometimes Stationary, and then Retrograde ; they do always go forward, in refpect of the Sun, and that with an uniform Motion nearly, fuch that it is fomething fwifter in the Perihelia, and flower in the Aphelia, to preferve the forefaid Proportionality of Areas. This Propofition, which is well known to Aftronomers, is demonftrated as \mathcal{F} upiter in a peculiar manner; viz. by the Calculation of the Eclipfes of its Satellites, which is built upon this Hypothefis, and is exactly agreeable to the Obfervation. For by thefe Eclipfes, as we have faid already, ${ }^{\text {Fupiter's }}$ Longitude and Diftance from the Sun are exactly determin'd.
LXXIII. The Moon, by Rays drawn to the Center of the Earch, defcribes in equal Times Areas almoft equal ; and in general, Areas almoft proportional to the Times.

Matbematical Pbilofophy. . 329

This appears from the apparent Motion of this Planet, as compar'd with its apparent Diameter, which is in the general nearly reciprocally proportional to the Diftance. I faid in the Propofition, almoft proportional ; becaufe the exact Proportionality is fomething difturb'd by the Sun's Force, as we have explained that Matter elfewhere: But taking away that Difturbance, the Propofition would be as exact and full, as in the Primary Planets; and that for the fame Reafon.
LXXIV. The Satellites of 7 upiter do, by Rays drawn to the Center of Fupiter, defcribe Areas nearly proportional to the Times: And their periodic Times are in the fefqui-alteral Proportion of their Diftances from their Centers.

Both Parts of the Propofition are manifeft from Aftronomical Obfervations. For their Orbs do not differ fenfibly from Circles Concentric to Fupiter, and their Motions in thefe Circles are found to be almoft uniform; And as for the Proportion of the periodic Times here meant, it is what all Aftronomers agree in. Befides, Mr. Flamfteed, who hath ftated all Things moft accurately by the Micrometer, and the Eclipfes of thefe Satellites, hath, both by Letters written to Sir IJaac Newton, and by his Numbers themfelves communicated to him, fignified that that fefqui-alteral Proportion doth hold here as exactly as poffible, fo far as he can difcover by Obfervation. Which will be manifeft from the following Tables. .

The Periodic Times.

		H.				
1		18				
2	3	13				
3	I6	3 16				

Tbe Diftances from the Center of Jupiter:

LXXV. The Satellites of Saturn do, by Rays drawn to the Center of Saturn, dcfcribe Areas proportional to the Times: And their periodic Times are in the fefqui-alteral Proportion of their Diftances from the Center of theirPrimary.

Both Parts likewife of this Propofition are prov'd from Aftronomical Obfervations: For their Orbs fcarce differ fenfibly from Circles concentric to Saturn, and their Motions are found to be almoft uniform in thefe Circles. And as concerning the Proportion of the periodic Times, this will appear to every one that will take the Pains to compute it from the following Table, which we here prefent the Reader out of Mr. $\mathrm{Hu}-$ gens's Cofmotbeoros, Page ror, roz.

The Period. Times. Difances from tbe Center of $\overline{7}$; both by Obferv. and Period.

Lect,

Lec т. XXXIII.

 H E Force whereby the Primary Planets are perpetually drawn back from right Lines, and retain'd in their Orbs, does refpect the Sun; and is as the Squares of the Diftances from the Center of the Sun reciprocally.
For on account of the forefaid Proportionality of Areas, this Force muft tend to the Sun; and becaufe the periodic Times are in the Sefqui-alteral Proportion of the Diftances, the Quantity of the Force muft be every where in the reciprocal duplicate Proportion of the Diftances; as we demonftrated before : But this 2 d Part is alfo demonftrated moft fully from the Figure of the Orbs. For, if the Planets were mov'd about the Sun in fpiral Lines, cutting the Rays in a given Angle, the Centripetal Force would be in the triplicate Proportion of the Diftances, or as the Cubes of the Diftances, reciprocally. But if they were mov'd about the Sun in Elliples, which have the Center of the Sun in their Center, the faid Force would be in the direct Proportion it felf of the Diftances: But when the Ellipfes, in which they are mov'd, have the Center of the Sun not in their Center, but in one of their Foci, as the Cafe really is, and all Aftronomers do acknowledge; then the faid Force muft needs be in the duplicate Proportion of the Diftances reciprocally.

Which

332 Matbematical Pbilofopby.

This is alfo demonftrated by the Quiefcence of the Aphelia. For where the faid duplicate Proportion doth hold exactly, there the Aphelia muft reft; when the faid Proportion approacherh to the fimple direct Proportion, then the Aphelia mult go back; but when it inclines to the triplicate Proportion, they muft go forwards.
LXXVII. The Force wherewith the Satellites of Fupiter and Saturn are perpetuallv drawn back from right Lines, and retain'd in their Orbs, reSpect the Centers of Fupiter and Saturn refpectively ; and are as the Squares of the Diftances from thofe Centers reciprocally.

For on account of the aforefaid Proportionality the Areas about the Centers of Fupiter and Saturn, the faid Force muft tend to thofe Centers; and becaufe of the fefqui-alteral Proportion which the periodic Times have to the Diftances, the Quantity of that Force muft be every where in the reciprocal duplicate Proportion of the Di ftances, by what was in the foregoing Propofition mention'd to have been demonftrated by us before. But we can fetch no Argument to prove this latter Part of our prefent Propofition from the Figure - of the Orbs; for that thofe Orbs, of which we fpeak at prefent, are Circles, or Ellipfes pot fenfibly different therefrom : Nor confequently from the Quiefcence of any Aphelia; for in Circles where there can be no Line of the Apfides, there are no Aphelia.
LXXIX. The Force wherewith the Moon is perpetually drawn back from a Rectilinear Motion, and retain'd in its Orb, refpects the Center of the Earth ; and is as the Squares of the feveral Diftances from the fame Center reciprocally.

For on account of the Equality of Areas about theCenter of the Earth in equalTimes, excepting fo far as the fame is difturb'd by the Force of the Sun ; the faid Force muft tend unto the Earth : And becaufe of the Elliptic Figure of the Orbit, which hath the Center of the Earth in one of the.Foci, the Quantity of the Force muft be every where in the reciprocal duplicate Proportion of the Diftances. For altho' the Figure of the Lunar Orbit be not exactly Elliptic, and confequently the Center of the Earth is not placed exactly in one of the Foci of the fame Orbit; yet notwithftanding, fince all this Variety doth arife from the difturbing Force of the Sun only, the Figure is to be underftood to be in it felf, or primarily an exact Ellipfis, and to have the Earth placed in one of its Foci ; and confequently to have the Centripetal Force in the duplicate Proportion of the Diftances reciprocally: Yea, whilft the thing is as it is, the very flow Motion of the Moon's Apogeum Thews, that that Force is in the faid duplicate Proportion very nearly, if not exactly. For by our Author's Calculation, it appears from the flow Progrefs of the Apogeum, that the Centring Force of the Moon towards the Earth, comes above fixty times nearer to the duplicate than to the triplicate Proportion. Which finall Difference arifing, as was faid; from the Action of the Sun, is to be neglected. It remains therefore, that this 2d Part of our Propofition holds good, as it was propounded. Which will alfo be more fully manifeft, by comparing the Centripetal Force of the Moon with the Force of Gravity upon the Surface of the Earth: Which will be done in the next Propofition.
LXXIX. The Moon gravitates perpetually towards the Earth ; and by the Force of Gravity

334 Mathematical Pbilofophy.

is always drawn back from a Rectilinear Motion; and retain'd in its Orb.

For by Experiments of Pendulums, which have been made as exactly as could be, it appears that the Force of Gravity upon the Surface of the Earth, is of the fame Quantity with the Centripetal Force of the Moon; which hath been Shew'd to be in the duplicate Proportion of the Diftances reciprocally : And confequently from the faid Experiments, that Quantity of the Moon's Centripetal Force is more fully demonftrated; and at the fame time it is 'fhew'd, that that Centripetal Force of the Moon is no other than that Force which we call Gravity. For if any fhould fay that it is different from it, it muft be acknowledg'd however that that Centripetal Force of the Moon, whatever it is, would be felt upon the Face of the Earth; which Force therefore, as join'd with the Force of Gravity, would make Bodies to fall to the Earth as fwift again as they do, and in the Space of one Second of Time to defcribe 32 $\mathbf{2} \mathbf{2}$ Englifh Feet inftead of 16 Lr. [Unlefs any one fhould fay, that this Force of Feet 16LI, in one 2d of Time, is indeed a Coms pound Force, compounded of that Force wherewith the Moon tends to the Center of the Earth, and that Tendency thither which Bodies upon the Face of the Earth would have without it.]
LXXX. The Secondaries of Fupiter and Sa: turn gravitate towards fupiter and Saturn refpectively, and the Planets which are mov'd about the Sun, immediately gravitate to the Sun; and by the Force of Gravity are drawn back from Rectilinear Mocions, and retain'd in their Orbs.

For the Revolutions of all thefe Planets about their refpective Centers, are Phænomena of the fame Kind with the Revolution of the Moon about

Matbematical Pbilofopby. 335

about the Earth; and therefore ought to depend upon Caufes of the fame Kind : Efpecially when it hath been demonftrated, that the Forces on which thefe Revolutions depend, refpect the Centers of Fupiter, Saturn, and the Sun; and that in departing from Jupiter, Saturn, and the Sun, they decreafe in the fame Proportion, as the Force of Gravity decreafeth in the Recefs from the Earth.

Corol. (1.) Therefore Gravitation is towards all the Planets. For it is certain, that Venus, Mercury, and the reft of the Planets, are Bodies of the fame Kind with Fupiter and Saturn: But we note alfo in this place, that by the 5th Law of Motion Gravitation is reciprocal ; and that as the Secondaries of Fupiter and Saturn gravitate towards their Primaries refpectively, fo their Primaries gravitate refpectively towards them ; and the Earth towards the Moon; and the Sun towards all the Planets, both Primary and Secondary.

Corol. (2.) The Gravity which refpects every Planet, is reciprocally as the Square of the Diftance from the Center thereof.
LXXXI. All Bodies gravitate towards each of the Planets; and their Weights towards the fame Planets, at equal Diftances from the Center of the Planet, are proportional to the Quantity of Matter in each.

The Defcent of all heavy Things towards the Earth, if you fet afide that unequal Retardation which arifeth from the Refiftance of the Air, is in equal Times, as hath been obferv'd now for a long time, and we alfo noted before; whether the defcending Bodies be great or fmall, foft or hard, or of whatfoever Texture of Parts. Which exactly agrees with the Experiments of Pendu-

336 Matbematical Pbilofopby.

Jums defcending in Arches, whether Circular of Cycloidal. For all Bodies being let down at the fame Diftance of the Center of Ofcillation from that of Sufpenfion, and in equal Arches, make their Afcent and Defcent in equal Spaces of Time, and vibrate for a long while. Therefore, fince the Obliquity of the Curvilinear Motion is, in this Cafe, every where like and equal; the fame Bodies let down together in a Vacuum would, in equal Times, defcribe equal Spaces in a perpendicular Defcent; and confequently are impell'd with a Weight every where exactly proportional to the Quantity of the Matter. For where a double or treble Quantity of Matter is urged with a Force double or treble, and no otherwife ; the Velocity of the Motion will always be equal: that is, where any equal Particle of any Body whatever is urged with an equal Force of Gravity, the Sum of all, whether in a great Body or a fmall, will be urged with a proportional Force of Gravity ; and all, neitheir accelerating nor hindring one another's Endeatours, will always defcend with equal Velocity, and-will in the fame degree gravitate towards the Earth. That the Thing is thus in the Experiments of Pendulums, we Thew'd before; and our Author try'd the Matter particularly in Gold, Silver, Lead, Glafs, Sand, common Salt, Wood, Water, and Wheat. He took two wooden Boxes round and equal, and fill'd one with Wood ; and the fame Weight of Gold he hanged, as exactly as he could, in the Center of Ofcillation of the other. The Boxes hanging by equal Cords; of Eleven Foot each, made Pendulums altogether equal, as to Weight, Figure, and the Refiftance of the Air. And being placed juft by one another, they were found to vibrate equally, and to go and come together

Matbematical Pbilofophy. 337

gether for a long while. And in Bodies of the fame Weight, the Difference of the Quantity of Matter, which would fcarce amount to the roooth Part of the whole, might, by thefe Experiments, be manifeftly difcovered. But now that the Nature of Gravity towards the reft of the Planets, and:towards the Sun it felf, is the fame as that towards the Earth, there is no reafon to doubt. Which is alfo manifeft from the Spherical Figure of all, which can fcarce be deduced from any Thing elfe, than an Equilibrium of all the Parts, mutually gravitating towards each other. Furthermore, let Terreftrial Bodies be fuppos'd to be lifted up unto the Orb of the Moon, and being together with the Moon, depriv'd of all Motion, to be let down to fall to the Earth. By what hath juft been demonftrated it is certain,that in equal Times they would defcribe Spaces, equal to thofe which the Moon it felf would defcribe; and confequently, that they are to the Quantity of Matter in the Moon, as their Weights to its Weight. Befides, becaufe the Satellites of $7 \mathrm{~F}-$ piter and Saturn are revolv'd in Times, which are in the Sefquialteral Proportion to their Diftances from the Centers of Fupiter and Saturn refpectively ; their accelerating Gravities towards 7 upiter and Saturn will be reciprocally, as the Squares of the Diftances from thofe Centers; and therefore in all equal Diftances from Fupiter and Saturn, their accelerating Gravities will become equal, and will equally affect all Bodies. And therefore in falling in equal Times, from equal Heights, they would defcribe equal Spaces, like as it comes to pafs in heavy Bodies on this our Earth. And by the fame Argument, the Planets about the Sun let down at equal Diftances from the Sun, would in their Defcent

33^{8} Matbematical Pbilooopby.

towards the Sun, in equal Times, defcribe equal Spaces. Moreover, that the Weights of $\mathfrak{F u p i t e r}$ and Saturn, and their Satellites towards the Sun are Proportional to the Quantity of Matter, is manifeft from the Motion of the Satellites, which is moft Regular ; and their Orbits, which are almoft Concentrical with their Primaries. For if fome of thefe were more Attracted to the Sun in the fame Quantity of Matter than others are, the Motion of the Satellites would be difturb'd by the Inequality of the Attraction; and fo far difturb'd that if at equal Diftances from the Sun, the accelerating Gravity of one of $\mathcal{F} u-$ piter's Satellites towards the Sun, were greater or leffer than the accelerating Gravity of Fupiter it felfrowards the Sun, though it were but by one ionoth Part of the whole Gravity ; then, according to our Author's Computation, the Diftance of the Center of the Orb of the Satelles from the Sun, would be greater or'leffer than the Diftance of Fupiter from the Sun, by a 2000th Part of the whole Diftance; or in a Sub-duplicate Proportion of the Diftance; that is, by a sth Part of the Diftance of the outmoft Satelles, from the Center of Fupiter; which Occentricity of the Orb would be very fenfible. But the Orbs of the Satellites of $\mathcal{F u p i t e r}$ are concentrick to \mathcal{F} upiter, and therefore the accelerating Gravities of 7 .upiter, and his Satellites towards the Sun, are equal to one ahother. And by the fame Argument, the Weights of Saturn, and its Satellites towards the Sun, at equal Diftances from the Sun, are as the Quanticies of Matter in them. And the Weights of the Moun and Earth towards the Sun, are likewife exactly Proportional to the Mafs of Matter contain'd in them. And the Thing is the fame, as to the Weights of each Part of every Planet, to-

Matbematical Pbilofopby. 339

 wards any other whatever ; whether they be Internal Parts, or External: For if fome Parts did gravitate more, others lefs, than according to the Quantity of the whole Matter,' the whole Planet, or Satelles, would, according to the Kind of Parts with which it moft abounded, gravitate more or lefs than according to the Quantity of the whole Matter ; which is contrary to Experience.$$
\text { Nor. 34. } 1707
$$

LECT. XXXIV.

 Oroll. (r.) Hence the Weights of Bodies do in no wife depend upon their Forms and Texture...
For if they were varied wirh the Forms, they would be greater and lefs, according to the Variety of the Forms in equal Matter; which is altogether contrary to Experience.

Coroll. (2.) Tharefore all Bodies which are about the Earth, whether Wood, or Metals, or Stones, or Water, or Air, or Vapours,' gravitate towards the Earth, and according to the Proportion of the Matter, are equally heavy. If Bark, or Wooll, or Air, be of the Weight of one Pound in a Vacuum; and Gold, or Silver,

340 Matbematical Pbilofophy.

or Brafs, be of the fame Weight there, the Quantity of Matter will be equal in thent all.
Coroll. (3.) Therefore the Weight of all Bqdies whatever in a Vacuum, is the moft certain Teft of the Quantity of the Matter. For in Bodies equal in Bulk, there is wont to be fo great Difference as to the Denfity, that from the apparent Magnitude, the Quantity of the Matter can in no wife be determin'd. But fince the Quantity of the fame is every where Proportional to the fame Weight, it may be determin'd moft certainly from the fame Weight.

Coroll. (4.) Therefore there muft needs be a Vacuum. For if all Spaces were full, the Specifick Gravity of that Fluid, wherewith the Region of the Air, yea, and the Vacuum of Mr. Boyle would be filled, by reafon of the Denfity of the Matter, which is the greateft that can be, and moft perfect or abfolute, or rather infinite, would not fall below, but exceed the Specifick Gravity of Quick-Silver, or Gold, or any other Body, which is counted the denfeft and heavieft. And therefore Gold it felf could not defcend in the Air, which is contrary to Experience. To omit here chofe Arguments which are brought to prove that there could be no Motion in a Plenum, which indeed feem folid enough in themfelves to determine us to the fame side of the Queftion.

Coroll. (5.) Since therefore the Quantity of the Matter is every where known from the Weight, as well as the Refiftance; and fince it appears from the Weight, that almoft all Bodies upon the Face of the Earth contain more void Space than folid Matter in them'; fince alfo, from the very little, and almoft impercéptible Réfitance of Planets anid Comets, it appears,

Matbematical Pbilofopby, 341

that the Heavenly Spaces are void of all Matter ; yea, that the Planets and Comets themfelves, and alfo the Sun and fixed Stars, are, as it were, Points in Comparifon of the void Space : It is plain, that Nature is fo far from abhorring aVacuum, as fome have imagined, the Cartefians efpecially, that it feems to contain little in it befides a Vacuum: So little can Human Wit perform, in tracing out the Works of God, where Mathematical Reafonings, and Experiments, are wanting.

The moft fagacious Mind of Cartes himfelf, too much deftitute of thefe Foundations, was never able to find out the true Phyfical Caufes of Things, and thofe which would agree to the later Difcoveries.

Corol. (6.) The Force of Gravity is of a different Kind from the Magnetick Power. For the Magnerick Attraction is not in Proportion to the Matter attracted; fince fome Bodies are more, others lefs, others not at all attracted. And the Magnetick Force is far greater, according to the Quantity of the Matter, than the Force of Gravity, fince a very fmall Loadftone may exceed the attracing Force of the whole Earth it felf, and lift up an Iron Key from it. Nay, the Magnetick Force may be increas'd or remitted in the fame Body; and in the Recefs of the Magnet, it decreafeth in more than a duplicate Proportion of the Diftance, which yet is the perpetual. Proportion of Gravity; becaufe the Force is much ftronger in the Contact of the Surfaces, than when the Bodies are in the leaft feparated from one another.
LXXXII. The Force of Gravity hath Place in all Bodies, all thofe at leaft, which are in the Syftem of the Sun, and is Proportional to the Quantity of Matier in each. Z 3 Thate

34^{2} Matbematical Pbilofophy.

That all the Planets do gravitate towards each other; and that the Gravitation towards every one Separately confider'd, is reciprocally as the Square of the Diftance of Places from the Center of the Planet, we have already prov'd. If there fhould any Doubt arife here; it muft certetindy bo about the Gravity of one primary Planee towards another ; for as for the common Gravity of all towards their Central Bodies, the Thing, by what hath been before demonftrated, is plainer, than to be in any wife denied. But as for the other, we have a plain Proof of that alfo. For when fome Years ago, Saturn tarried along while near its Conjunction with Fapiter; ${ }^{\prime}$ and confequently, by reafon of the Magnitude and Nearnefs of its Body, could not but have fome fenfible Effect, in difturbing the Satellites of Fipiter, if fo be Fupiter, with its Satellites, did gravitate towards Saturn, according to the general Law of mutual Attraction, the Thing was found to be indeed thus: For Mr. Fldimfied himfelf, who at firft denied any fuch Difturbance in the Motions of the Secondary Planets of Fupiter, the Thing being better confidered, and the Obfervations being more exactly compared with the Calculations, ingenioufly confefs'd, that that Univerfal Law of Gravity holds in this Cafe alfo; and that thofo Motions did indeed appear difturb'd by the Neighbourhood of Saturn, and accordingly differ'd from the former Calculations. It follows therefore, by Prop. 81. and the Corollaries thereof;' that every Planet gravitates towards every Planet, and that this Gravitation is Proportional to the Matere contained in them. Moreover, fince alf tho Parts of every Planet, as of Mercury for Inftance, do gravitate towards every other Planet, as Venws for Inftance; and the Gravity of every Paricle

Matbematical Pbilofophy. 343

is to the Gravity of the whole, as the Matter of the Part to the Matter of the whole; and fince alfo all Re-action, by the Sixth Law of Motion, is equal to Action; Venus will reciprocally gravitate towards all the Parts of Mercury ; and the Gravity of Venus towards every Part, will be as the Gravity of the fame towards the whole, as the Matter of the Part is to the Matter of the whole.

Carollary. Therefore the Gravity towards every whole Planet arifeth from, and is compounded of the Gravity towards each Part; jike as it comes to pafs in Magnetick and Electrick Attractions, where by how much the greater the Attrahene is, fo much the greater, ceteris paribus, is the Attraction : For all Attraction towards the whole, arifes from the Attractions towards each Part; nor can the Thipg be conceiv'd otherwife. This will be more eafily underitood in Gravity, if we conceive many of the leffer Planets, which attract all Bodies feverally, to meet together, and to make one great Planet. For the Force of the whole mult be compounded of the Forces of the compounding Parts, and be the adequate Refult of the fame.

But now, if any one fhould in the fame Place object; That all the Bodies with us, on the Face of the Earth, ought to Gravitate, thiss towards each other ; whereas fuch a Sort of Gravitation is never perceiv'd: The Anfwer is ready, namely, That although the Bodies now fpoken of, do indeed Gravitate towards each other, yet fince the Gravitation of any particular Body tcwards another, is to the Gravitation of that Body towards the whole Earth, at the fame Diftance, as the other Body is to the whole Earth; ix muft needs

344 Matbematical Pbilofopby.

be far lefs than to fall under the Notice of Senfe: Corol. (2.) The Gravitation towards each equal Particle of a Body, is reciprocally as the Square of the Diftances from the Particles.
LXXXIII. If the Matter of Two Globes gravitating each towards the other, on every Side in Places equi-diftant frcian the Cenier, be homogeneous, the Weight of cither Globe towards the other, will he reciprocally as the Square of the Diftance betwixt the Centers.
After that our Author had found that the Gravity towards the whole Planet doth arife from, and is compounded of the Gravities towards the Parts, and is towards each Part reciprocally proportional to the Squares of the Diftances from the Parts; he yet doubted, whether that duplicate reciprocal Proportion would hold exactly in the whole Force compounded of the many Parts, or only very nearly. For it might be that that Proportion, in greater Diftances, might hold well enough; but near the Surface of the Planet, by Reafon of the unequal Diftances of the Particles, and their unlike Situations, it might notably err. But at length, by Prop. 44 and 45 , and their Corollaries, he underftood that the fame Proportion holds exactly in fuch fpherical Bodies, as are equally denfe every where at the fame Diftanc̣e from the Centers.
LXXXIV. A Prob. To determine the Weights of Bodies towards the Planers or the Sun, at given Diftances from the Centers of them.
Cafe (r.) To determine the Weights of Bodies placed without the Surface of the Planers at equal Diftances. Now fince the Weights,at equal Diftances, are as the Quantities of Matter in the Planets

Matbematical Pbilojopby. 345

towards which the Gravitation is; and fince that Weight or Quantity of Matter is known only by the Quantity of the Attraction, as the Caufe by the Effect ; and fince, laftly, that Quantity of Attraction is directly proportional to the Squares of the Velocities in thefe equal Circles, or reciprocally to the Squares of the periodic Times; the Proportions of the Weights will eafily be known from the Squares of the Velocities. From the periodic Times therefore of the Planets that have others revolving about them, which Times were declared before; the Proportion of the Weights towards the Swn, Fupiter, Saturn, and the Earth refpectively, will be as follows.

Now the fame Numbers which fhew the Proportion of the Weight, thew likewife ofe Proportion of the Quantity of the Matter. But as for reducing the periodic Times agreeing to the real Diftances, to periodic Times agreeing to any given Diftance, it is eafily done by this Analogy; As the Cube of the real Diftance is to the Cube of the Diftance given; fo is the Square of the real periodic Time, to the Square of the periodic Time fought. The fquare Root therefore of this Number will give the periodic Time which is fonght: And by this means the Proportions of the Weights and Matter in the Sur, in Fupiter, in Saturn, and the Earth, are obtain'd. And altho' the Moon, which hath noSatelles about it, doth afford no fuch Argument as this of a Satellit's Weight towards

346 Matbematical Pbilofophy.

wards it, or the Quantity of its own Matter ; yet notwithttanding, fince it prefents to us another Argument of the fame Thing, to wit, in the Flux and Reflux of the Sea; we thought it not improper to fet down in this place, and by way of Anticipation, that Gravitation towasds this Planet, which will afterwards be pror'd froth that Flux and Reflux.
Cafe (2.) To determine theWeights of Bodies at the Diftances of the Semidiameters of the Planets, or upon their Surfaces. This is done by the fame Method as in the former Cafe, and by the like Analogy accommodated to thefe particular Diftances. In which Calculation, if we. take Mr . Flamfteed's Semi-diameters of the Planets for the true ones; they will fand thus:
$\left.\begin{array}{l}\text { The Sur } \\ \text { Saturn } \\ \text { fupiter } \\ \text { Mars } \\ \text { The Earrtb } \\ \text { Moom } \\ \begin{array}{l}\text { Venus } \\ \text { Mercury }\end{array}\end{array}\right\}$ is in Diameter

The Weight therefore of equal Bodies upon the Surfaces of thofe Stars, is as follows:

April 26. 1708.
LECT.

Matbematical Pbilofophy. 347

$$
\text { Lect. } X X X V \text {. }
$$

 Problem. Ta determine the Denfities of the Planets; Since we haye the Quantity of the Matter in five Planets determin'd in the former Cafe of the laft Propofition; and in the latter Cafe; we have the Diameters of the Planets determin'd according to Mr. Flamfted; it will be no difficult thing, from the given Quantity of Matter contain'd in the given Spheres, to compute the Denfity of the fame Matter; which is done to hand in the following Table.

LXXXVI. Gravity in proceeding from the Surfaces of the Planets downwards, decreafeth in the fimple Proportion of the Diftances from the Centers very nearly.

For if the Matter of the Planet were every where the fame as to Denfity, this Proportion would hold exactly by Prop. 47. And where it obtains not exaetly, the Difagreement is no other than fuch as the unequal Denfity ought to produce.

Corollary. Therefore the Gravity of Bodies on the Surfaces of the Planets, is the greateft of all, and

348 Matbematical Pbilofopby.

and on both Sides decreafeth; and is upwards in the reciprocal duplicate Proportion of the Diftance, and downwards in the fimple Proportion direct.
LXXXVII. ${ }^{*}$ The Motion of Planets and Comets may be maintain'd for a very long Space of Time in the Heavens.

For fince the Refiftance of Mediums, which alone can ftop or retard thefe Motions once begun, is diminifh'd in Proportion to the Weight or Denfity of the Matter; fo that Water, which is near 14 times lighter than Quickfilver, doth refift lefs in the fame Proportion; and Air, which is almoft a thoufand times lighter than Water,doth refift lefs in the fame Proportion: If we look beyond our Atmofphere, which doth it felf alfo wax more rare by degrees, as it were infinitely, into the Heavens, where the Weight or Denfity. of the Medium is vaftly diminifh'd, above what it is in any Part of our Atmofphere; the Refr ftance will be fo very fmall,' that for fome thoufands of Years it can fcarce become any whit fenfible; accordingly it is evident that it hath been infenfible, becaufe the Celeftial Motions have endured from the Infancy of Aftronomy unto this Day, without any notable Change or Lofs of Motion.

Corollary. Bat fince, in an infinite Duration, that very fmall Refiftance, if there be any, muft needs retard and ftop all thofe Motions; it is manifeft upon this Hypothefis; that the prefent State of the Heavens neither was eternal à parte ante, nor fhall be fo à parte poff. And this will hold good upon another Account alfo, efpecially if with Sir Ifaac Nenton we fuppofe the Force of Gravity to obtain not only in the Solar Syftem, but alfo thro the whole Univerfe. For if the Fixed Stars,

Matbematical Pbilofopby. 349

Stars, or Suns with their Planets and Comets, of whatfoever Number they are, fo that it be not infinite, be fubject to the Force of Gravity ; In an infinite Time it would have come to pafs thoufands of Years ago; that they would have been gathered together into one Heap, and have been reduc'd to reft in the Center of the Univerfe. Which thing alfo would, fome time or other, come to pafs in an infinite Time yet to come, without the Interpofition of the Divine Providence. As therefore the prefent State of Things had a Be ginning, which is owing to the good Will, Wifdom, and Power-of Almighty God; fo at length it may and will have an End upon the foregoing Hypothefis, that is, according to the Natural or Eftablifh'd Order of Things; unlefs it thould pleafe Almighty God, by his extraordinary Interpofition, to prevent it: Without whofe continual Interpofition, on which this wonderful Force of Gravity wholly depends, it cannot laft the leaft Space of Time.
LXXXVIII. The common Center of Gravity of the Earth, Sun, and all the Planets, either refts, or is mov'd uniformly in a right Line. This is manifeft from what hath been demonftrated before: But indeed it appears by no certain Token, whether it refts or is mov'd. This only is to be concluded, That if it be mov'd, and with it the whole Solar Syftem, the Motion muft needs be very flow [unlefs it be mov'd uniformly and evenly with the Centers of other Syftems.] For the Fixed Stars, which encompals us on every Side, neither appear greater nor lefs to us at this Day, than they did to the Ancient Aftronomers 2000 Years ago. Which Phænomena feems to Ihew the reft, or at leaft the very flow Motion of the faid Center.

350 Matbematical Pbilofopby.

Corol. (1.) Hence the common Center of Gravity of the Sun, and all the Planets, is to be reckon'd for the Center of the Solar Syftem, or Planetary World. For fince the Sun, and all the Planets, gravitate towards one another, and therefore are in perpetual Agitation, more or lefs, according to the Force of their Gravity, as it hath been fhew'd under the foregoing Laws of Motion; it is plain, that their moveable Centers ought not to be reckon'd for the quiefcent Center of the World. If that Body indeed is to be placed in the Center, towards which all other Bodies do moft gravitate, and which is next of all to the unmoveable Center, as it is reafonable that we Thould efteem it; that Privilege certainly is to be allow'd to the Body of the Sun; which therefore, fpeaking phyfically, is defervedly accounted the Center of the Planetary World. But, if we would Speak accurately and -mathematically, fince the Sun it felf is mov'd, and no fenfible Boa dy doth reft in the Center; the Center of Gravity of the whole Syftem is to be chofen for the real Center of our World, which Center doth indeed moft probably reft, and the Center of the Sun comes very near to it. Upon,the whole therefore, Phyfically the Sun, but Mathematically the Center of Gravity is the Center of our World. 4. Corol. (2.) There is therefore no perfect Reft of a real Being in Nature. For fuppofing that the common Center of the Syftem doth reft, that is the only thing (if we may fo call it) which doth reft ; all the Parts of the Syitems being in perpetual Motion. I faid real Being ; becaufe this Center of Gravity is not a phyfical Body, or any thing real, or other than a Mathematical Point, i.e. 2 plain Nothing : from whence, in confequence of our prefent Argument, it is to be faid that nothing

Matbematical Pbilofophy. 35 I

real doth reft, or that there is not any real and abfolute Reft in the whole Solar Syftem.
LXXXIX. The Body of the Sun doth never reft, but is in a perpetual Agitation: tho' it never departs far from the common Center of Gravity of all the Planets. For fince the Quantity of Matter in the Sun is to the Quantity of Matter in Fupiter, as 229600 is to 208L72, or as 1100 to 1 ; and the Diftance of Fupiter from the Sun is to the Semi-diameter of the Sun, as $424,000,000$ is to 381,730 , or as 1100 to x ; that is, in the fame Proportion or thereabouts; the common Center of Gravity of the Sun and Fupiter, which is placed at a Diftance reciprocally proportional to thofe Bodies, will fall upon the Surface of the Sun almoft. By the fame Argument, fince the Quantity of Matter in the Sun, is to the Quantity of Matter in Saturn, as 229,600 is to 97 L328, or as 2360 is to 1 ; and the Diftance of Saturn from the Sun is to the Semi-diameter of the Sun, as $777,000,000$ is to 381,730 , or in fomething lefs Proportion; the common Center of Gravity of Saturn and the Sun will fall upon a Point fomething below the Surface of the Sun. From whence the common Center of Gravity of Fupizer and Saturn, as placed on one Part, and of the Sun as placed on the other, will in no wife be diftant by a whole, Diameter of the Sun from its Center. And in purfuance of the fame Argumentation, if the Earth and all the inferior Planets are, in the Libration, underftood to be fet on the fame Side of the Sun: By reafon of the Nearnefs and Smalnefs of thofe Planets; the common Center of Gravity of all will fcarce be diftanti from the Center of the Sun one entire Diameter thereof. But in other Cales, which cominonly happen, the Diftance' of the Centers

35^{2} Matbematical Pbilofophy.

is lefs; and where the Planets placed on this Side and on that do counterpoize one another, none at all. Therefore, altho' the Center of Gravity be indeed fuppos'd to reft; the Sun, by Reafon of the various Situation of the Planers, will be mov'd a little towards. all Parts; but will never depart far from that common Center of Gravity.
XC. All the Primary Planets are mov'd in Ellipfes, which have a common Focus in the Center of the Sun; and by Rays drawn to that Center, they defcribe Areas proportional to the Times. This is true alfo in the Secondaies, as revolving about the Centers of their Primaries. We deduc'd thefe things above from Aftronomical Phxnomena ; but now the Principles of thefe Motions being known and eftablifhed, from thefe we gather thefe heavenly Motions a priori. For from the Direction of Gravity towards the Centers of the Sun and primary Planets, the forefaid Proportionality of the defcribed Areas doth follow; and from the Law of Gravity towards thofe Centers, which is in the reciprocal duplicate Proportion of the Diftance, that Elliptic Figure of the Orbs about thofe Centers placed in the Foci is neceffarily deriv'd, as we have demonftrated above out of our Author. And thefe things would be exactly thus, if the Sun and the Primary Planets refted from aeting mutually upon one another. For their Orbs would be in Geometrical Srictnefs Elliptical; and the defrribed Areas would be exactly proportional to theTimes. However, thofe mutual Actions of the Sun and Planets upon one another are fo very fmall,that they ought not to be regarded. And the Motion of the Planets about the Sun as moveable, or any other Planet as fuch, is lefs difturb'd than it would be if the fame were unrioveable, as we oblerv'd before :

From

Matbematical Pbilofophy. 353

From whence fpeaking phyfacally, the propsoltion is ftill to , be accounted true.' The Action indeed of fopiter upon Saturn, and its - five Sarellites; and of Sativn μ pon Fupiter and its foti'r Starellits, is niot alcogether to be neglectede Since ihefe Planets ase great ones, and placed atiarvery great Diftance from the Sun. From whences by theirmuthal Attractions about their Hélideentric Conjunetions; which, by reafon of
tithe Dlownels of thet: Motions, endure for no

- frofll Tife; fome:Inequalities will arife on both
: Sides, fos duell in the Figures of their Orbits, as in theirdNotions; but yef farce to be fo much diftinguifh'd in the unequal Motions of the Primaries themiflives, as fnithoife of their Secondaries, of crofe about $\mathcal{F} x p$ ixcref efecially;

5. Sebblium: According to our Author's Compuuatorn, one difturbing force or Gravity of Saturn

- mbraads the Sam mbout the Comprotion of thofe

5 phairess, as is is to 204; br thereabouts. And the Difference of the Gravities sof the Sun towards Saturn; and of Faipifer towards. Satyrn, is to the
\therefore Gploity of Fupiter:towands the SuA, as i to 1923. To which Differenco the greatelt difturb-ing- Torce of :Sation towards $\mathcal{F} 4$ piter is proportifohalf From whence the Diftumance of the Orb of olypior is far lefs than is that of saturn:. But the Difturbances, which are in the reft of theOrbs, afetfo very fmall, that they are not to be regarded.
XCI. The Aphelia and Nodes of the Orbs doiteft: Becaufe of the Force of. Gravity in the duplicate Proportion of their Diftances reciprocally s the Aples and Aphelia ought to reft of themforves; as was noted before. And becaufe the fame Foice doth always refpect a Point almoft innoveable; the Planes of the Orbs ought

354 Matbematical Pbilofophy

 alfo to reft'; and whent the Planes reflif the Hodes it is to to nored, that in Sucdeffion of Tixabefome Ine edtatities will arife frommohe Actiotso of Plagets and "Comets" upon sone anothen ; ibuortbat they will be fo very "fmalt: that by reafon thesapo they are not to be tegarded It is alla to teq, that we go in this palacef fuppofe, wish shiAftronothers the Reflof the Centè of Grewiey of the

are not yet able to dumininftate ihat Reft, estritere Thifify fuppofed, we fhalldeduce the following

Coroit:" (1.:) 'The Fiparddrstars, refti; bechule: that they keep their given: Poftrionsis towainds the Aphelia and'Nodes 'which'ridfuc This will fem a new Why" ©of reaforiot yam iAftronatoy ysiso infer the Reft of phe Fsxded Brarsifromotie Reet of the Sy ftem' of the Plandergyodheneas, ooh the coparrary, "we have hitherto bean swont to deternine the Motiofts' of "hee Ptanets: from the, Guppofed Reft of the Fixed Stars.: UAndighiys it nuvá peeds have
 of the Cefefftial Motionswewitra tnkhown. ol
 Stars, even thie Anyatdo, 3 incfo: very fmath chay it fcaice falls under the 'Obfervationi vof cye imoft accurate Obfervarss.n Thid Force ofuntide 8 Stars,

Corol! (3!) Frönu whibace ic followfig hat $74=$ It diciary Affrology, as iettse tadeat I whictildepegas not
 \because Plainets, bute ol thes Fixsed astars allsbriswants all fure Peditidation's finod infuppofent the Forces of thofe Bödjes ro: be exceeding greay for which the foregoing Corollary has rightly obferv'd,

.Matbematical Pbilofophy., 355

 are indeed very fmall, or rather none at all. But : we may gad ethis alfo: on che prefent Cafe, that 2r the influential Fofce of an'thereft of the Planets, exceping the Sun and M十on, which Aftrologers "talk fo midich of, is eitither by reafon of the Ime! menfe-Diftance, or the Smallnefs of their Bodies, fic fo véry firtle in our, Afrnofphere, and about the Earth that Yi'can feafed be by any fure Token -s dijcertp'd", To fár is it "frẹn' being able to produce thofe great and wornerful Effects which they$3: 1$ Tuppore. Thofe who, Ifke Idolaters, conceive the
\because Stats to "bé:Gớs, or thar Gods poffers and ani" mate the ${ }^{\prime \prime}$, "have fomewhat wherewirhal they - may matintain their liypothefis: But as for them - who thave quitted Co"grofs an Error as that, it is a' Wonder fidwo they mould come to adhere thus \because obiftinately fill, to thofe Aftrological Trifles and Ábfurdities.
sonay 17. 1708.

L E C TH XXXVI.

 Planers are uniform and equable ;'añd the Librations of the Món arifes from its Diurnal equable Motion, as :compar'd with its Menftrual Inequatible, and perform'd according to an Axis inclin'd to irs Orbit.

Thefe Things are noted elfewhere; and there: fort ure tried not make màny Words abaut them now.But becaufe the Dayofiti Moon, revolving A 2
Un_{i}

356 Matbematical Pbiloopphy.

Uniformly about its own Axis, is a Month; (I mean here the Periodic Month;) The fame Face of this Planet will alwaysnearly refpect the Superior Focus of the Ellipfis, but not the Earth, which is placed in the Inferier Focus; becaufe the Angular Motion alfo about that Focus is almoft equai, but about the Earth plainly unequal. And therefore, according to the Situation of the Superior Focus, it will decline commonly on this Side, and on that from the Earth, and will Thew to us fometimes more Eafterly, fometimes more Wefterly Parts; which is tbe Libration of the Moon ass to Longitude. But the Libration of the fame acs to Latitade, wherein fometimes more Nortberly, and at other times more Soutberly Parts are prefented to us, muft: arife from the Inclination of the Moon's Axis to, the Plane of the Orbit ; as is manifeft to him that confiders it.

Corollary. We may note alfo in this place, as we have done elfewhere, how exaftly thefe two Motions of the Moon, which in no wife depend one upon the other, to wit, the Diurnal and Menftrual, do agree together; fo that the one hath noe been found for above thefe 2000 Years, to overgo the other in the leaft. Which could not be witbout the Providence of Gad:

XCIIL. The Axes of the Sun and Planets, which are poved with 2 Diurnal Mocion, are lefs thanchofe Diameters which are Perpendicular to thofe Axes. Oie the Figure of the Sun and Planets, which are revolv'd each about its own Center, is thas of an Oblate Spheriod ; that is, that of a Solid produc'd by the Revolution of as Ellipfis about its Leffer Axis.

Matbematical PbiloJopby. 357

The Planets, and all the Celeftial Bodies whatever, if all Circular Diurnal Motion were takern away, muft needs, by reafon of the equal Gravitation of the Parts on all Sides, put on a Spherical Figure. But on the fame Diurnal Motion it will come to pafs, that the Parts necoffarily receding from theAxis of Motion, and thereby detracting from the Gravity about the Equator, muft endeavour to afcend, where the Motion is the fwifteft. And therefore in that Place the Matter of the Planet, unlefs it be very Solid, will by its Afcent unto the Equator increafe the Diameters of the fame ; but will diminiff the Axis at the Poles, the Gravity of the Parts being nothing diminif'd there. Thus the Diameter of 7 Fupiter (the Obfervations of Ca/fins and Mr. Flamfteed agreeing thereto) is found to be thorter about the Poles than from Eaft to West. And by the fame Argument our Earth ought to have its Axis Ieffor than the Diameters of the Equator. For unlefs the Thing were fo, and that our Earth were fomething higher at the Equator than about the Poles, the Seas, by reafon of the greater Gravity there, would fettle downwards about the Poles,and inA fcending about the Equator would overflow all. :But by reafon of the greater Velocity of the Diurnal Motion, and the leffer Denfity; Fupiter ought to have a much more fenfible Difference of its Diameters than any other of the Planets, or than the Sun it felf. From whence Aftronomical Obfervers have hitherto been able to difcover this Difference in no other Plaper but this. But that our Earth is of this Figure, appears not only from the Argument juft now produc'd, but alfo from the moft accurate Experiments which have been made by Pendulums. For by how much the nearer Pendulum-Clocks, of the fame Length of the Pendulum, are brought to A 2.3 the

358 Matbematical Pbiloopby.

the Equator, fo much the more Slow heir vibrations are oblerv'd to be; and by how much the nearer they come to the Poles, their Vibrations are found fo much the quicker: becaufe the Center of the Earth, which in the former Cafe is more remote, and in the latter nearer, doth promote the Acceleration and Retardation of the pendulous: Bodies refpectively; as it mút rieceffarily come to pafs according to the preféht Propofition.

Scbolium. If you would know exactly the Proportion of the Axis of every Planet unso the Diameters of the Equator, you muft go through the manifold Intricacies of our Author's Calculation. But if you would have the Benefit of this Calculation without the Trouble of the fame, take it thus. By Calculation out Author found that the Centrifugal Force of the Parts of the Earth under the Equator, a:ifing from the Diurnal Motion, is to the Force of Gravity upon the Superficies of the Earth, as r is to 28.9° From whence if(in Fig. I. Plate 9.) A PBQ reprefents the Figure of the Earth, produced from the Revoliation of ap Ellipfiss about the Leffer Axis P'Q; and ACQ, acq be a Canal full of Water, reaching from the Pole, $\mathrm{Qq}^{\text {i }}$ to the Center $\mathrm{C} \mathrm{c}_{2}$ and from thence going forwards towards the Equator A a ; the Weight of the Water in the Leg of the Canal ACCa, is to the Weight of the Water in the other Leg Q.C c q, as 289 is to 288 almoft. Becaufe the Centrifugal Force arifing from the Circular Motion, wili fuftain and take away one Part from the 289 parts; and the Weight 288 in the other Tube will fuftain the reftof the Parts. For the Thing is not only true in - the Surface of the Earth, but in all the Parts of both the Tubes, becaure the Centrifugal Force,

Matbematical Pbilofophy. 359

Force, and the Gratity of the inferior Farts, as taken every where at proporcional Diftances from the Genter, are diminim'd in the fame Propottion in the Progrefs to the Center. And then, by continuing the Calculation, the Gravity' to wards the Earth in the Place of will be to the Gravity in the Place A, as sor is to s 00 ; and the Centrifugal Force, $\frac{1}{196}$ will make that the Excefs of Altitude in the Leg AC d a , fhould be a ${ }_{88}^{38}=\frac{1}{2 i g}$ th Pary of: the Altitude in the other Leg QC cq; or in our Earth, that the Semi-diameter of the Earth at the Equator, hould exceed, the Semiaxis ϕ. Semi-diameter at the Poles'by about $17 \frac{1}{6}$ Milest Thefe Things, I fay, will be thus, in Cale that the Earth confilts of an uniform Matter: For if the Matter at the Center be more denfe, as certainly it ought to be, than at the Surface; the Excefs of Altitude at the Equator mult be fomething greater: becaufe that if the redundant Matter at the Center, whereby the Denfity is made greater, be fubducted and confidered Separately ; the Gravity towards the reft of the Earth uniformly denfe, will be rectiprocially as the Diftance of the Weight from the Center ; but the Gravitation towards the fame redundant Matter, will beireciprocally as the Square of the Diftance from that Matter nearly. Therefore the Gravity under the Equator, which is towards that redundant Matter, will be lefs than the Gravity was towards the Place of that Matter by the foregoing Calculation; and therefore the Earth there, by Reafon of the Defect of Gravity, will afçefd lomething higher than was defin'd above. But now the French have found by Experiments, that che length of Pendulums performing their Vibrations in one Second of Time towards rhe? Equator, is lefs thay that in which they rorfom

360 Matbematical Philofophy:

the fame towards the Poles in a greater Proportion than the foregoing Calculation requires. And therefore the Earth feems to be much higher at the Equator, than the foregoing Compuration makes it to be, and indeed no lefs than $3 \mathrm{i} \frac{1}{2}$ Mites: and accordingly to be denfer at the Center than in Mines near the Surface, as Reafon altogether requires.

Corol. (r.) If the Excefs of Gravity in the Parts about the Poles, above that which is in the Equatoreal Parts, were once more exaély defin'd by more accurate Experiments made to that Purpofe, we fhould at length have an univerfal Meafure determin'd ; that, to wit, which would exactly define the due Length of a Pendulum for Seconds, in the feveral Places which lie betwist the Equator and the Poles. From whence, as well an Equation of Time, which is now indicated by equal Pendulums in divers Places, as the Proportion of the Semi-diameters of the Earth, and of the Denifity of the fame at the Center, fo that the fame be fuppos'd to increafe uniformly, will become known.
Corol. (z.) Since the Proportion is the fame in a Canal full of Water, as in one fill'd with any other Fluid; and the fame alfo as in thie Earth, which is fuppos'd to be fluid within; while in the mean cime in a folid Earth the thing is orherwife; fince alfo it is known by Experiments and Obfervations, that the Earth is indeed higher at the Equator than at the Poles: from thehce it is manifeft, that eicher' the whole Earth was fluid, when its diurnal Motion firt tegart' ; or at leaft that if contain'd a great Fluid within, which, by yielding, might give place to the Elevation at the Fguator, and Depreffion'ar the Poles.
Corol. (3.) If the diurnal Motion of the Earth

Matbematical Pbilofophy. 3^{61}

 flould bergradually retarded, unlefs it contain'd within it fome great Fluid, which would give way torbe Change of its Figure; the Seas would defcend towards the Poles, and overflow all there. Carol, (4) If the diurnal Motion of a Planet, of a graater or leffer Magnitude, but of a given Denfity, be accelerated or retarded in any Proportion whatever, the Centrifugal Force will be increas'd or diminin'h'd from thence in the duplicate Proportion thereof; becaure of the In creafe or Diminution, both of the Curvature and the Velocity in the fame Proportion; and therefore the Difference of Semi-diameters will be increats'd or diminifh'd in that fameduplicate Proportion. But if the Denfity be increas'd or dimininh'd in any Proportion whatfoever, becaufe the Gravity is increas'd or diminiih'd in the fame Proportion, the Difference of Semiddiameters will be increas'd or diminifh'd in that fame Proportion alfo: That is, the Difference of Semi-diameters will be in a Proportion compounded of the duplicate Proportion of the periodic Times, and the fimple Proportion of the Denfity, both reciprocal. From whence, fince the Difference of Semi-diameters in the Earth is $\frac{3}{687}$ Parts of the whole Semi-diameter ; and the Square of she periodic Time in $\mathfrak{F} u p$ iter, which periodic Time is ' $9^{\text {h }}$. 56 ', is to the Square of $24^{\text {h }}$. the periodic Time in the Earth, as 5 to 29 ; and the Denfity of \mathcal{F} upiter is to the Denfiry of the Earth, as 1 is to $5:$ the Diffarence of the Semi-diameters in fupiter will be to the Difference of the Semi-diameters in the Earth, as$\frac{29}{5} \operatorname{in} \frac{1}{1} \operatorname{in} \frac{1}{229}$ is to 1 , or as One is to Eight. Therefore the Semi-diameter of the Equator

362. Matbematical Thilofopher

 of, the Equator of Fupiter, is to the Semi-axis as 9 to 8. Prom whence, by the way it is no wonder that To great a Differefice' fiothd He open', to Aftronomicil Obfertation. ", Buit it is to bei remarkd, that thele Things are thus, where the Denfity of the Planet is uniform! But if the Matter of 7 yujter be đenfer at'the Center'tian at the Circumference, as It was before obfert'din' general ; the Difference of Semi-diameters: will be greater ftil, and more ealy to be obrervat: Let the Aftronomical Obfervers therefore Itake notice how far this Corolaty agrees with the Diamerers of Fopiter, which are meafurd F by the Micrometer,XCIV. The Increafe of Weight in going forwards from the Equator to the Poles, is very near ás the Square of the right Sine of Tatitude; or, which is the fame, as tferderfed Sines of Latis, tude themfelves,

Becaufe thee Weights of the unequal Legs of the Capal of Water ACQ qca are equal, and da poize one another; añd the Weights of the Parts, like or fimilar to the whole Legs, and which are alike fituated, are to one another'as the Weights" of the Wholes, and confequently are cqual betwixt themfelves; the Weights of the Parts which are equal, and alike, likuated in the Legs will be reciprocally as the Legs: that is; reciprocilly as the Diffanqes lof the Bodies from the Censer of the Eatohici And the thing is the fame, iarallihomogeneous anid equal Bodies.whatfoever,' 'Which are alike fituated in the Legs of the Cartal Bodies placedcin: the uppetmoft Parts of the Canals, or in the Surface of the Earth, witl have their Weights in that Proportion to one anpther reciprocally, as their Diftanoes from the Center are : And the fame is to be faid of Wẹights,

Matbematical Pbilofophy. 3^{63}

in any other Regions whatever; through the whole Surface of the Earth:. And the Increafe of Weight in the"Earth, which is a Spheroidal Oblate Body', ax the Famous Dr. Gregary hath demonftrated (Aftion. Book III. Propsis2.) is as the Square of the right Sine of the Latieude of the Place, or, which comes to the fame, as the verfed. Sine of Latitude nearly.

Coroll. Since therefore Dr. Gregory hath demonitrated in the fame Place, that the Longitudes of Pendulums vibrating in equal Time, are betwixt themferveras the Diftances from the-Center of the" Earth reciprocally; the Difference of.s the Length of Pendulums will be as the Square of the right Sine of Latitude: And thus every where.
XCV. The unęqual Motions of the Satellites of Fupiter and Saturn are plainly like and analo-r gous to the unequal Motions of the Moon, and arife from like Caufes:

I mean the Motion of the Nodes in Antecedentia, and of the Apres fometimes in Antecedentia, but more llowly; and fometimes in Confequentia more foriftly; and by the Excefs of' this-latter Motion their' being mov'd in Confeguentia uponthe Whole ; the Motion of Variation, and the reft of the like : Motions, muft be the fame in thefe Secondary Planets as in the. Moon, and therefore do not require to be diftincty: handled. It is true, that by Reafon of the Smallnefs of thefe Inequalities' and Slownefs: of thefe Motip. ons in the other Secondaries, their Motions ap. pear very'regular, when compared with the $\mathbf{M o w}$ tions of the Moon; which hath made fomer of the later Aftronomers to deny all Mation to the: Nodes of thofe other Secondaries., Neverthelefs, - Mr, Flamfteed, in conferring his Obfenvations with thofe

364 Matbematical Pbilofopby.

 thofe of Mr. Caffini, hath found that the Nodes. of thofe about 'fupiter do indeed go back though more flowly; and it is not to be doubted, but that Time will more certainly and exactly difcover and determine the fame, and all the other mencion'd Inequalities in the Satellites, both of Fupsterand Saturn.May 31. 1708.

Le c T. XXXVII.

 He Flux and Reflux of the Sea arifes from the Gravitation of the Water towards the Sun and Moon, or the Attractions of thofe Luminaries.
That the Sea in the Spaee of every Day, as well Lunar as Solar, ought to fwell twice, and twice to fettle and fall-back, is manifeft from what hath been demonftrated above. But that the greateft heighth of the Water doth not fall juft at the Appulfe of the Luminaries to the Meridian, but follows the fame by the Space of about three Hours, is what we fhall now undertake to explicate. That the thing is indeed f 0 , appears from the Obfervations of the Tides, as well as in the Atlantic Ocean, and the whole Eaftern Tract of the Etbiopic betwixt France and the Cape of Good Hope, as upon the Coaft of the Pacific along Cbils and Peru. In all which Shores, the High-Water fatts about chree Hours after the Time aforefaid; unlefs

Matbematical Pbilofopby. 365

 unlés it be where the Mocion is not retarded by its being propagated through Shallows. Now the Reafon is this: When the Luminary is in the Meridian, the attraCting Force is then certainly at the greateft, but the Effeet of that Foroe is not yet come to its Height. For all imprefs'd Motion perfeveres uniformly until a contrary Moxion deftroys, or at leaft retards it. The Flux of the Sea;; or Ocean rather, which for thè Six Morning Mours, if we may fo call them when we fpeak of the Moon, is continually increat'd ; and bya) its confpiring with the diurnal Motion, accelerated; ought, by reafon of this its greater Celerity, to go forwards ttill farther, and to accumulate the Waters more and more, patil the fame Force, by tending afterwards contrary to the diumal Motion, doth by degrees retard the Courfe of that Motion which is going forwatds; and by and by to make the fame Waters to proceed: with fo low a Motion, that a Reflux of the Ocean follows: Which Retardation of the Motion ought to be moft notable about the Octants; of the third
Hour. Examples of fuch 1 the greateft Effects, as following fome pace of Tine afeertheir greareft Cailes, we have yéarly in the greatelt Heat of the Summer', and Cold of the 'Winter; which falls not in the Solltices themfeives; but about the Ottants, if I may fo fpeak, about a Month and an half after and in every Summer-day, in'the greateft Heat of the Day" which happens an Hour or two after Noon, rather than at the Noon it felf. So in the prefent Cafe, whilft after the greateft Force of all,' and that raifing of the Waters which is thereby, Forces next to the grettreft, and not yet turned to the contrary Patt, do ?till operate; the Forces which are lefs than the greateft, being fuper-added to the Mocions which

: 366 Matbematical Pbilofopby.

v were Atir'd up by: the greateft and go forward :by their own proper Tendency, muft needs ob-
\therefore thin a greater, Effea, than Forces ftill increafing,

- fuper-added ta leffer Motions could have. Then

1. it is to be noted alfo, that the atracting Force it

- : Self, which fifes the Water direcily upwards s_{2} doth
s! fearce fenfibly fall Chort, of its , greateft Quancity
- for an Hour or two after the Appulfe of the Lu-

7 - minary to the Meridian, altho the Birection of
tithe Attradtion which accelerates of retard the Waters, be directly upwards, in the Meridian it
\therefore felf, and from thence is chang'd. The Warers therefore will be moft accumulated, where the

- Parts, which have juft nomp pars'd the Meridian with the srogeteft Velocity do fall upon ether
1 Parts whigh had before been jelarded at the Oua-
: drature ; and fo by conf piring with the Endea\because vour of the other, do make thie, greateit. Frood of M; all: which, happens about the third Hour For \therefore in this place, we intend not fo much the, vulgar
I: Hours, as, thofe which are reck on'd from the Ap$\therefore: 1$ pulfe of the Sum and Mopn to the Meridian of ${ }_{2 r}$. the Places as welt below an aboye the Horizon; f1. 2nd by the Hours of a Lunar. Day we whiderifand 10 24 Parts of that Time, which the Moon, By its rimpparentrdigragh, Motion, is, revolv'd to the Me-
ridian of any Place.
:XGVIh - The Tides which Idepend on the Force of the Sun, and on the Force of the Moon Lif Ceverally, do not makg a dquble Tide, but a fingle n one; whichats to be ettimate from the Conjunsif ction of their Porces.
- I/ For like as any Body whatever, which is im-- thonefód byoa douple Force, eannor go foryards in Il: itwo Liness but from the Conjunction of the Forgit ces wilt progeed in the Diagonal of a Paralteloto cranainaino dame maner as if it hat been acted

Matbematizal Pibilofoploy. 367

 upon by one ringe Force, according to the Di-I- fection of the Diadonal ; fo thofertwo Motions, si which the two Lediniaries do excife tefpeavely, will not appeat leverafly; but will make" one\therefore mix'd Motion In the Conjunction and Oppofi-- Ho nof taf Eumingries, their Effects winbe convighe and the greatelt Floods of outl wih be -rimater ar arfing fromith Sum' bf when Forces at -is bat ine In thg ©iaqfatures of thofe Lami-- naties the Suh whilite up the-wdert; whilf the Moon depreffeth if Ha uepress is where the os dopondifs it ut atra there the Flood will - bavene ceat of dut as" being bhe :Refule of J, the Differe of the Forces iidnlyl And \rightarrow beçajifer 'as' it apperro ry 'Experience, the siforce and Effed of the Moor in xhe prefent st Catas much getar prith that of the Sun, the
 at thind duhat Hour mut with out the Syeygies and no whad atares, the greateft Flood of ally which by
 -ot Lunti Hour, and by be'Solar Forcealone in the suthira Soldr Hold ewilf, by the? Compofition of now Forces fafl ded fome lhtermediate Time, boquict whir be muéh nearer tó the, third Lunar
 inghenty in the paffirt bo the Moom from the ens gyay ges to the ofagratures auwhich Time the is sha soidr Hourgoe before the driird Iunar, the
 of ehfide und Houf; and this loy cthe greateft
 to Moprs SAnd the greateitheighth of the . Water
 is refyas, whilft the Moorn pafferl fromithe Quaa dmatres to the ${ }^{\text {Ti Sy }}$ \therefore grexte Intervali, 2 firtle after the Octants of the Moon,

368 Matbematical Pbilofopby.

Moon: Thus will the thing be in the Oceani; or open Sea: For in the Mopths of Rivers, the greater Floods, cateris paribus, réguire 'the longer Time, and fo come anto their Heighth a little more flowly.
XCVIII. The Tide ought to be different, ac' cording to the different Diftances of the Luminaries from the Earth, both every Year and every Month; and this in the criplicate recipracal Proportion of thofe Diftances, or, in the tripticite di= reet Proportion of the apparent Diamerers.

This we have demonffrated before ; Nor is it to be urohdred at, that thete Effects should be breater at lefs Diftances, and Ieffer at greater. Wherefore the Sun in Winter'Time, when it is about the Perigee, will make, the Tides after the Syzygies to be fomething greater, becaule of the greater: Sume of the Forges i, and chofe after the Quadratures to be fomething lefs, becinufe of the Difference of the Forces, than they will be id Summer-Time; cetriss paribus. And the Moori. every Manth: when it is about the Peripee; will make greater Tides than is Days before and after, when ic is in the Apogee. From whence, if the Perigee; Situation of, ihe Moon happens:about the Coppungtion, the, Day H Hood will be increas s'd, and chei Aight-Flogd dimintith'd; but if that Situation happens afopt the Opbeftion, the Night-Flood wh be increaged, shat the Day-Flbod diminifede th From whence atto it comes to pals; that two Thes hereferaeft of all do nof follow one anoshern two syzzy ies together. For if the Moon te in Qpe of ithe Syz eties gbout the Pedigee and raifeth the greatef fitie ai that Time; by the Capianaign of iss Ercte wirth that of the Sun ; in the other of the syizy gies it muft neeat be abous; the A A pges, and have lefs Force.

Mathematical Pbilofophy: ${ }^{369}$

XCIX. The Tides likewife oughit to be divers; according to the divers Declination of the Luminaries from the Equator.
For if the Lumingry were placed in either of the Poles, it would draw the Water conflantly without Intention or Remiffioh of the Action and confequently would make no Reciprocation of the Water. Thetefore the Luminaries, in depart ing from the Equator towards elther Pole, will by degrees lofe their Effects; and therefore will raife leffer Tides after the Solfticial Syzygies, than after the Equinoctial. But after the Solfticial Quadratures, the Tides will become greater than after the Equinoctial; becaufe the Effect of the Moon, which is now placed above the Equator, doth moft of all exteed the Effect of the Sunt Therefore the greateft Tides fall after the Equinoctial Syzygies, and the leaft after the fame Quadratures of rhe Luminaries; and the greateft Flood about the Syzygies is always attended with the leaft about the Quadratures, as Experience teftifies. But by the leffer Diftance of the Sun from the Earth in Winter Time than in Summer, it comes to pafs, that the greateft Tides and the leaft do oftner precede the Vernal Equinox, than follow it; and do oftrier follow the Aurumnal Equinos, thàn precede it.
C. Some Phaniomena of the Tides, and Eff feets of the Lumbinities, are divert, according to the divers Latitude of Places in the Earth; and efpecially as to the Night and Day-Floods, which follow one another immediately.
In Fig. 2. Plate 9. let ApEP defign the Earth; covered on every fide with deep Water. Lef G be the Center thereof. pP the Poles. AE the Equator. Fany Place without the Equator، Ff the Parallel of the Place. Dd the correfpona
dent Parallel on the other fide of the Equator: H that Place of the Earth which is directly ander the Moon's Place, which was Three Hours before, or the middle Point of the elevated Water. h the Place oppofite thereto, or the Point of the Water in the other Part of the Earth, where the Water is moft elevated. K k , Places diftant 90 Degrees from thence. CH, Ch the greateft Altitudes of the Sea, meafured from the Center of the Earth; and CK, Ck the leaft Elevations. And if from the Axes Hh, Kk an Ellipfis be defcrib'd; and then by the Revolution of this Ellipfis about the greater Axis Hh , there be defcrib'd a Spheroid HPKhpk; this will defcribe the Fiquie of the Sea nearly: and CF, Cf;CD, Cd will be the Elevations of the Sea in the Places Ff and Dd. Moreover, if in the forefaid Revolution of the Ellipfis, any Point whatever, as \mathbf{N} defcribes the Circle N M, which cuts the Parallels Ff D d in any Places, as R, T, and the Equator A E in S, CN will be the Heighth of the Sea in all the Places R, S, T fituate in this Circle.: Hence, in the diurnal Revolution of any Place whatever, as F, the Flood will be the greateft there, three Hours after the Appulfe of the Moon to the Meridian above the Horizon; afcerwards the Ebb will be the greateft in \mathbf{Q}, three Hours after the fetting of the Moon; then the Flux will be the greateft in f, three Hours after the Appulfe of the Moon to the Meridian below the Horizon; and laftly, the Ebb will be the greateft in Q , three, Hours after, the rifing of the Moon ; and the latter Flood in f, will be lefs than the former Flood in F. For the whole Ocean is, diftinguifh'd into two Hemifpherical Floods; one : in the Hemifphere K HkC, which looks to the North; the other in the oppofite Hemifphere

Matbematical Pbilofophy. 371
Khkc, which looks to the South; which therefore we may call the Nortbern and Soutbern Floods. Thefe Floods, which are oppofite each to other, come by turns to the Meridian of each Place, with the Interval of about 12 Lunar Hours beitwixt. For fince the Nortbern Regions do more partake of the Nortbern, and the Soutbern Regions do more partake of the Soutbern Flood ; from thence there proceed Tides alternately greater and Iefs in each Place without the Equator. But the greater Tide, when the Moon declines towards the Vertex of the Place, will fall about three a-Clock after the Appulfe of the Moon unto the Meridian above the Horizon; and the Flood, when the Moon changeth its Declination, and recedes from the Vertex, will be changed into a lefs: And the greateft Difference of Floods will, for this Reafon, fall upon the Times of the Solftices, efpecially if the Moon's afcending Node be-in the Beginning of Aries; that fo the Moorn, when it is neareft to the Vertex, and the remoteft from it, may have the fame diurnal Revolution. And this is confirm'd from Experience; by which it is found, that the Morning Tides do in Win-ter-Time exceed the Evening; and in Summer the Evening exceed the Morning Tides : At Plimouth, for Inftance, by the Heighth of one Foot, and at Brifol of fifteen Inchess; as appears from the Obfervations of Mr. Cpleprefs and Mr. Sturmy. But that there Differences do not feem fo great as might be expected in Places fo remote from the Equator, may be pwing to fome other Caufe. The Motions defcrib'd hitherto are fomething chang'd by that Force of the Reciprocation of the Waters, wherewith the Tide, even though the Actions of the Luminaries:hould ceafe, might endure for fome Time. This Confervation of

372 Matbematical PbiloJopby.

the Motion once imprefs'd, doth diminifh the Difference of the alternate Tides; and makes the Tides next after the Syzygies greater, and diminifhes thofe rext after the Quadratures. For from hence it comes to pals, that the alternate Tides at Plimoutb and Briftol do not differ much more than by the Heighth of 12 or 15 Inches; and that the greateft Tides of all in the fame Ports, are not thofe which are next after the Syzygies, but the third Tides after them; which agrees exactly with what was faid before. For all thefe Motions are retarded, in their paffing thro ${ }^{3}$ Shallows; fo that the greateft Tides of all in fome Streights, and the Mouths of fome Rivers, are the fourth or even the fifth after the Syzygies.

$$
\text { Nov. 8. } 1708 .
$$

L е с т. XXXVIII.

 HE Phænomena of the Flux and Reflux of the Ocean in particular Places, as Streights, Ports, Mouths of Rivers, fmall Seas, and which communicate little or not at all with the Ocean; in thofe alfo which are far diftant from the Equator, do recede more than a litele from the general Laws of the Tide before fet down, and are commonly altered by thofe particular Circumftances.

As for Example; it may come to pafs, that the Tide may, be propagated from the Ocean thro' di-

Matbematical Pbilojophy. 373

vers Streights, and quicker through fome than others; in which Cafe, the fame Tide being divided into two or more which come fucceffively, may make new Motions of divers Kinds. It may come to pafs alfo through the Length of the Way, or the various Winding of the fame, or by means of Obftacles which are in the Way, that the Tide may be diminifh'd and almoft ftopp'd. (From whence it comes, that where there be a great Number of Illands, as the Moluccoes, the Pbilippines, in the Mexican-Bay, the Antilla, there is almoft no Flux, or far lefs than in the wide and open Ocean.) Again, a Tide which is in a mean State in the Ocean may become very great in Ri vers, becaufe of the Narrownefs of the Paffages, and the Heighth of the Shores. In fmall Seas alfo, there is none, or a very fmall Tide. For fince the greateft Tide ought to happen in the deep Ocean only, which is open to the Eaft and $W_{\text {eft }}$ for the Space of 90 Degrees; by how much lefs the Sea is, fo much the lefs the Acceleration and Retardation of the Waters, that is, the Flux and Reflux, muft needs be ; Nor can it be great, unlefs thie Sea doth communicate freely with the Ocean. For if it communicateth not, or but little therewith, as it is in the Mediterranean, a lefs Tide for that Reafon is to be expected. In thofe Seas alfo which are remov'd far from the Equator, where the Tide mult be propagated in a lefs degree, efpecially if they have but little Communication with the Ocean ; and fo will be but fmall, as it comes to pafs in the Baltic and the Nortbern Seas. Which happens alfo in the Euxine and CaSpian Seas, not only by reafon of their fomething Nortberly Situation, and their fmall Communication with the Ocean, if they have any at all, but by reafon alfo of the Smalnefs of thofe Seas. In

374 Matbematical Pbilofopby.

Seas which lie open, and extend themfelves a great way from the East to the West, as in the Pacific Sea, and the Parts of the Atlantic and Etbiopic Sea without the Tropics, the Water is wont to be elevated unto the Heighth of $6,9,12$, or is Feet. And in the Pacific Sea, which is deeper and wider, the Tides are faid to be greater than in the Atlantic and Etbiopic. In the Etbiopic Sea, the Elevation of the Water betwixt the Tropicks is lefs than that in the Temperate Zones, by reafon of the Narrownefs of the Sea betwixt Africa, and the Soutbern Part of America. In the Middle of the Sea the Water cannot afcend, but it mult deffend at the fame time to both Shores, the Eaffern and Wefern; when yer in our narrow Seas it ought to defcend by turns unto the Shores. For this Reafon the Flux and Reflux muft be very fmall in Illands, which are very remote from the Continent. In fome Ports, as hath been very lately obferv'd, where the Water paffing thro' fhallow Places is forc'd to fow in and out with a grear Violence, to fill and empty by turns narrow Bays, the Tides are greater than ufual; as at Plimoutb and Cbepfow-Bridge in England, the Hills of St. Micbael and the City of Avrancbes in Norman$d y$, Cambaia and Pegu in the Eaff-Indies. In thefe Places the Sea coming and going back with 2 great Velocity, fometimes overflows the Shoars, and then leaves them dry for many Miles. Nor can the Force of Flowing in and Reflowing be ftopp'd, until the Warer be elevated or deprefs'd 30, 40, 50 , or fometimes 60 Feet. And the thing is the fame, in fome meafure, in long, fhallow, and narrow Streights, as the Magellanic and that wherewith England is encompafs'd. But in Shores which haye a fteep Defcent towards a deep and geen Sea, where the Water may be raisd and

Matbematical Pbilofofby. 375

fettle freely without any acceffional Force of flowing in and returning; the Tide, if we would determine the general mean Quantity, is to be reckon'd to arife to the Heighth of about 12 Feet, i. e. if we meafure from the Low to the High-Water Mark. But of all Sea-Tides, that is the moft to be admir'd, which Dr. Halley Speaks of from the Oblervations of Mariners, as being in a Port of the Kingdom of Tunquin at Bathbam, in the Nortbern Latitude of 20°. 50°. There the Water, on the Day following the Paffage of the Moon over the Equator, ftagnates; then the Moon declining to the Nortb, it begins to ebb and flow, not twice as in other Ports, but once only in a Day; and the High-Water falls at the fetting of the Moon, and the Low-Water at the rifing of the fame; and this Tide is increas'd with the Declination of the Moon until the feventh or eighth Day; and for the other feven Days, it decreafes by the fame Degrees by which it increafed before ; and the Moon changing its Declination, it ceafeth; and from thence is prefently changed into a Reflux. For then the Reflux falls at the fetting of the Moon, and the Flux at the rifing, until this Planer doth again change its Declination. There is a double Entrance into this* Port, and the neighbouring Streights; the one from the Cbinefe Ocean, betwixt the Continent and the Leuconian Ifland ; the other from the Indian Sea, betwixt the Continentand the Ife of Borneo. It feems probable, that two almoft equal Tides do come into this Port from che]different Tides of this Ocean; the former of which precedes the other by the Space of almoft fix Hours, and falls 3 Hours after the Appulfe of the Moon to the Meridian of the Port. When the Moon in this its Appulfe to the Meridian is in the Equator,there will come at each Ix Hours End equal Fluxes, which falling upon

376 Matbematical Pbilofopby.

mutual Refluxes will make the flame equal to the Fluxes; and fo will caufe that for that Day the Water will feem to be moved with no Tide at all. When the Moon declines from the Equator, the Tides in the Ocean will become by turns greater and leffer, as we Mew'd in the laft Propofition but one; and from thence two greater Fluxes, and two leffer ones, will be propagated into this Port by turns. But the two greater Fluxes, by. joining their Waters, will make the higheft Flux in the middle Time betwixt both; the greater Afflux and the lefs will make that the Water fhould afcend unto a mean Heighth in the middle Time betwixt them; and betwixt the two leffer Fluxes, the Water will afcend unto the leaft Altitude. Thus, in the Space of 24 Lunar Hours, the Water will come not twice, as it is in other Places, but once only unto its greateft Alritude, and once unto its leaft ; and the greateft Altitude, when the Moon declines to the Pole which is above the Horizon of the Place, will fall fix Hours after the Appulfe of the Moon to the Meridian of the Place; and the Moon changing its Declination, it will be chang'd into a Reflux. Therefore one Tide coming in the Space of 12 -Hours from the Indian Ocean, and the other in the Space of 6 Hours from the Cbinefe Ocean through thofe Streights refpectively, which were before-mentioned; and fopalling one at the third, and the other at the ninth Lunar Hour, feem to make thofe anomalous Tides. But thefe and fuch like particular Rhænomena are every where to be left to the Obfervations of the neighbouring Shores and Seas.

Scholiump. If we would decline the Intricacy and Tedioufnefs of our Author's Calculation, and defre only to know the Quaptities of the Forces, 4.: thy

'Matbematical Pbilofopby. 377

they äre thus: The Sum of the Sun's Forces, as well in depreffing the Waters in the Places which are 90 Degrees from it, as in elevating them in the Places which are under it, and thofe oppofite thereto, if they be taken conjunctly; or the whole Force of the Sun to move the Sea is to the Force of Gravity with us, as I is to 12,868,200. But fince the Centrifugal Force of the Parts of the Earth arifing from its diurnal Motion, which is to the Force of Gravity as I to 289, doth make that the Heighth of the Water under the Equator Should exceed its Heighth under the Poles, by the Meafure of 89820 Feet of Paris: The Solar Force of which we now treat, fince it is to the Force of Gravity as 1 to $12,868,200$, and confequently to that Centrifugal Force as 289 ta 12,868,200, or as 1 to 44,527 ; it will make, that the Heighth of the Water in the Places under the Sun, and oppofite therto, fhould exceed the Altitude of it in the Places which are 90 Degrees diftant from the Sun, by the meafure only of ons Foot of Paris, and a little above 1 Inches; according to this Analogy $44,527: 1:: 85,820: 1 \frac{17}{15}$. and $\frac{1}{6}$ an Inch. Now the Force of the Moon for the moving of the Sea, which is the principal Force, is to be dey, duced from the Proportion which it bears to that of the Sun, and to bediftinguifh'd by the Effects on Sums of the Motions in the Syzygies, and the Differences in the Quadratures: By this Computation, the Force of the Moon is to the Farce of the Sun, when Obfervations are compar'd together, as 4 L 48 to inearly, or in a round Number almoft five-fold.

Coroll. (r.) Since therefore, as we have feen before, the Sun's Force ought to elevate the Water unto the Heighth of almoft two Feet, the Moon's Force; which is almoft five times as great; oughe to eleyate the Water unto the Heightḥ

378 Mathematical Pbilofophy.

Meighth of about 9 Feet; and the Lunar Force and the Sun's conjoin'd, as in the Syzygies, will elevate the fame unto near II; and when the Sun's Force is fubftracted from the Moon's, as in the Quadratures, will elevate it about 7 Feet: Now this Force doth abundantly fuffice to caufe all the Motions of the Sea, and doth very well agree with the Quantity of the Motions defin'd above; and by anfwering fo well to the fame, doth plainly confirm the Truth of that Caufe of the Tides which we have affign'd.

Corol. (2.) Since the Force of the Moon to move the Sea is to the Force of Gravity, according to what hath been demonftrated before, only as I is to 2871400; it is manifeft, that that Force is far lefs than to be perceiv'd in any Experiments of Pendulums, or in any Static, or Hydroftatic Experiments whatfoever. This Force can have a fenfible Effect in the Sea only.

Corol. (3.) Forafmuch as the Force of the Moon to move the Sea, is to the Sun's Force upon the fame as near $\boldsymbol{\rho}$ to I ; and thofe Forces are as the Denfries of the Bodies, or the Quantities of Matter contain'd in equal Space, and as the Cubes of the Diftances or Diameters conjundly; for Bodies equally denfe are as the Cubes of the true Diameters directly, in refpect of the fame Diftance; and the moving Forces in this Cafe are alfo as the Cubes of the Diftances reciprocally, or as the Cubes of the apparent Diameters directly; and confequently it is the fame thing whether the Sun be nearer or more remote, greater or lefs, fo that the apparent Diameter be certain and determinate: For thefe Reafons the Denfity of the Moon will be to that of the Sun, as is its Effect, or as. $4[48$ to r ; and as the Cube of the apparent Diameter of the Moon is to the Cube of the Sun's

Matbematical Pbilofopby. 379

apparent Diameter, i.e. as 4 L 48 to I ; and as 720 to 672 conjunctly $=4[48 \times 720$ to 100×672, or as 67 to 32 almoft; but the Denfity of the Sun to the Denfity of the Earth, is as roo to 396. Therefore the Denfity of the Moon to the Denfity of the Earth, will be as 21 to 17, nearly, or almoft as ρ to 4. Therefore the Body of the Moon is confiderably Denfer; and if I may ufe fuch an Expreffion, more Terreftrial than the Earth itfelf, as we obferv'd before, by way of Anticipation.

Coroll. (4.) From whence, fince the true Diameter of the Moon is to that of the Earth, as 5 to 18 , or as 1 to 3 L65; the Mafs of the Moon will be to that of the Earth, as the Cubes of thofe Numbers, compounded with the Proportion of Denfity, or as 1×5 to 49×4; that is, as 1 to 40 , very near.

Coroll. (5.) The Accelerating Gravity, or the Weight of equal Bodies on the Surface of the Moon, will be as the Quantity of Matter in the Moon, to the Quantity of Matter in the Earth, with the Reciprocal Duplicate Proportion of the Diftance from the Centers compounded ; that is, as 1×13 is to 40×1, or near a third Part of the Accelerating Gravity on the Surface of the Earth, 26 we noted formerly by way of Anticipation.
CII. The Figure of the Body of the Moon (abftracting from the Elevation of the Equatoreal, and the Depreffion of the Polar Parts, depending upon the Diurnal Motion,) is fomething Oval, or that of an Oblong Spheroid; the greateft Axis whereof produced, paffeth thro' the Center of the Earth; and exceeds the Leffer Axes Perpendicular to the fame by the Excefs of about 187 Feet. If then the Body of the Moon Were Fluid like our Sea, the:Force of the Earth to elevate

380 Matbematical Pbilofopby.

up that Fluid in the hither and oppofite Parts, would be to the Force of the Moon upon our Sea, as the attracting Force of the Earth is to that of the Moon ; Or as the Quantity of Matter in the Earth is to that in the Moon, by reafon of the equal Diftances; if the Leffer Diameter of the Moon did not change that Proportion. That whole Force therefore from the Compofition of thofe Proportions, will be in a Proportion compounded of 40 to 1 , and 1 to 3.65 ; or as 40×1 is to 1×3 l65; that is,' as 40 is to ${ }_{3}[65$. .From From whence, fince by what was before demonftrated, our Sea is lifted up about 9 Feet by the Force of the Moon, the Lunar Fluid ought to be lifted up about 93 Feet by the Force of the Earth. And for this Caufe the Moon is of a Spheroidal Figure ; the greater Axis whereof being produced, would pafs thro' the Center of the Earth, and exceed the Diameters or Perpendicular Axes by about 187 Feet.

Corollary. And from thence perchance it is; that the fame Face of the Moon is turn'd more directly to the Earth than otherwife it would be. For the Moon cannot Reft in another Situation, but by Librating to and fro, will always return to this Situation. Neverthelefs, the Librations, by reafon of the Smallnefs of the Force in fuch a fmall Excefs of the Greater Axis above the Leffer ones, will be exceeding Slow; fo that the Face which ought always to look to the Earth, may look to the Other Focus of the Lunar Orbit, by reafon of the Equability of the Angular Motion about it, as was explain'd before, and not prefently be drawn back from thence and turned to the Earth,

Matbematical Pbilojophy. 381

CIII. Comets are higher than the Moon; and are moved in the Region of the Primary Planets.
CIV. Comets are mov'd in Conic Sections; having their Focus in the Center of the Sun; and by Rays drawiri to the Sun, defcribe equal Area's in equal Times, and in general Area's proportional to the Times.
CV. The Bodies of Comets are Solid, Compact, Fixed, and Durable, like the Bodies of the Planets; and they are commonly encompafs'd with huge Atmofpheres; and do always acquire Tails from their Neighbourhood to the Sun; but thefe fometimes longer, and fometimes fhorter.

Thefe Propofitions contain our famous Author's Cometography, fo far as concerns our prefent Purpofe.

Now they are propounded fo clearly and fully by our Author himfelf, that they in no wife need our Explication. Wherefore what follows, we Thall take Word for Word out of him.

Novemb. 15. 1708.
[EGT)
3^{82} Matheriatical Pbilofopby:'

* *

Le c.t. XXXVII.

 HAT Comets are higher than the Moon, and fhew themfelves to us in the Region of the Planets.

As the Want of a Diarnal Parallax hath raifed Comets above the Sublunary Regions; for tbair Defcent inso the Planetary Regions; is argued from their Annual Parallax.: For thofe Gomens which go forwardsaccording to the Order of the Signs, ave all of them m_{y} about the Time of; their Difappearance, either Slower than ufual, or Retograde, if the Earth be betwixt them and the Sunn $;$ but fwifter than Ordinary, if the Earth. tends towards the Oppofition. And on the Contrary, they which go contrary to the Order of the Signs, are fuvifter than ufual at the Time of their Difappearance, if the Eatth be betwixt them and the Sup; and flower that ordinary, or Retrograde, if the Earch be placed on the Comrary frde:: This happens efpecially from the Motion of the Earth in its various Situation; and it is here as it is in the Planets, which according as the Motion of the Earth confpires with them, or is contrary to them, are fometimes Retrograde, fometimes feem to be mov'd more llowly, fometimes more fwiftly. If the Earth goes tothe fame Part with the Comet, and is carried about the Sun with an Angutainnotpn more fwiftly, the Comet as feen from the Eàrth, by reafon of its Nower Motion, appears Retrograde ; but if the Earth be carried

Matbematical Pbilofophy. 3^{83}

more flowly, the Motion of the Comet (that of the Earth being fubftracted) becomes at leaft nower. And if the Earth becarried to the contrary Part, the Comet from thence appears fwifter. Now from this Acceleration, or Retardation, or Retrograde Motion, the Diftance of: the Comet is thus Collected.

In Fig. 3. Plate 9. let r QA, r Q B, r QC' be Three obferv'd Longitudes of the Comet about the Time of the Beginning of its Motion; and let r.QF be the Longitude laft obferv'd, when the Comet begins to difappear. Let the Right Line A B C be drawn; the Parts whereof AB, and BC, which lie betwixt the Right Lines QA and $Q B, Q B$, and $Q C$, are one to the other. as the Times betwixt the Three firft Obfervations. Let AC be produc'd to G; that $A^{\prime} G$ may be to A B, 25 the Time betwixt the firf Obfervation and the laft, is to the Time betwixt the firt Ob fervation and the fecond ; and let QG.be join'd.: Now if the Comet were mov'd uniformly in a: Right Line, and the Earth either refted or wentforward uniformly in a. Right Line, the Angle \uparrow Q G would be the Longitude of the Comet at. the Time of the laft Oblervation; the Angle FQG therefore, which is the Difference of the: Longitudes, arifes from the Inequality of the Motions of the Comet and the Earth. But this: Angle, if the Earth and the Comet be moved to: contrary Parts, is added to the Angle A Q G; and; fo renders the apparent Motion of the Comet fwifter; but if the Comet goes to the fame Part; with the Earth, it is fubftracted from the fame, and renders the Motion of the Comet either Slower, or: perhaps Retrograde, as was faid abeve.

This

384 Matbematical Pbilofopby.

This Angle therefore arifes chiefly from the Motion of the Earth, and is juftly to be recs koned for the Parallax of the Comet : fome Increafe or Decreafe of it, to wit, which may atife from the Comet's uneven Motion in its own Orb; being here neglected. But the Diftance of the Comet is thus Collected from the Parallax.

In Fig: 4. Plate9. let $\$$ reprefent the Sun, act the Orbis Magnur, a the Place of the Earth in the firft Obfervation, c the Place of the Earth in the fecond Obfervation, T the Place thereof in the laft Obfervation, and T \boldsymbol{r} a Right Line drawn towards the Beginning of Aries. Let the Angle $T \mathrm{~T} V$ be taken equal to the Angle r QF; that is, equal to the Longitude of the Comet when the Earth is in T. Let ac be join'd, and drawn out to g , that ag may be to ac, as AG is to AC, and g will be the Place which the Earth would reach unto at the Time of the laft Obfervation, its Motion being continued uniformly in the Right Line $a c$; and therefore if $g v$ be drawn Parallel to $T r$, and the Angle $r^{g} g V$ be taken equal to ${ }^{r} \mathbf{Q G}$, this Angle $\mathbf{r} g V^{\text {will be equal }}$ to the Longitude of the Comet feen from the Place g, and the Angle TVg will be the Parallax. which arifeth from the Transferring of the Earth out of the Place g into the Place T; and confeguently V will be the Place of the Comet in the Plane of the Ecliptic. Now this Place V is wont to be below the Orb of 7 upiter.

The fame Thing is Collected from the Curva: ture of the Way of Comets. Thefe Bodies go forward almoft in great Circles, fo long as they are mov'd more fwiftly; but in the End of their Cotrfé, when that Part of the apparent Mation which arifeth from the Parallax bears a greater Proportion to the whole apparent Motion, they

Matbematical Pbilofophy. 385

they are wont to decline from thefe Circles; and as oft as the Earth is mov'd to one Parr, to be carried to the contrary. This Deflexion arifes from the Parallax, becaufe that it anfwers to the Motion of the Earth ; and the notable Quantity of it hath by my Computation placed Comets when they difappear far enough below the Orb of 7 upiter. From whence it follows, that in theirPerigees and Perihelia, at which Times they are nearer, they defcend oftentimes below the Orbs of Mars and the inferior Planets.

The Nearnefs of Comets is alfo confirm'd from the Light of their Heads. For the Splendor of a Celeftial Body which is illuminated by the Sun, and goes off into far diftant Regions, is diminifh'd in the Quadruplicate Proportion of the Diftance ; i...e. in one Duplicate Proportion, by reafon of the increafe of the Diftance from the Sun; and alfo in another Duplicate Proportion, by reafon of the Diminution of the apparent Diameter. From whence, if both the Quantity of Light, and the apparent Diameter of the Comer be given, the Diftance alfo will be given, by faying that the Diftance is to the Diftance of a Planet in the entire Proportion of Diameter to Diameter directly, and in the fubduplicate; Proportion of Light to Light inverly. Thus the leaft Diameter of the Capillitium of the Comet of the Year 1682, being obferv'd by the Famous Mr. Flamfteed thro' a Telefcope of 16 Feet, and meafur'd by a Micrometer, was 2'.- $\mathbf{o n}^{\prime \prime}$. But the Nucleas, or Star it felf, had fcarce the rioth Part of this Breadth, as being only 11 or $12^{\prime \prime}$ over. But in the Light and Clearnefs of the Head, it exceeded the Head of the Comet of 1680 , and even came near to Stars of the firft and fecond Magnitude. Let us fuppofe Saturn with his Ring to beabout 4 Times brighter

386 Matbematical Pbilofophy.

than that Star ; and becaufe the Light of the Ring doth almoft equal the Light of the Intermediate Globe, and the apparent Diamerer of the Globe is about $2 \mathrm{I}^{\prime \prime}$; and confequently the Light of the Ring and Globe together doth almoft equal the Light of a Globe, the Diameter whereof is $30^{\prime \prime}$; the Diffance of the Comet will be to the Diftance of Saturn, as 1 to $\sqrt{4}$ inverny, and $12^{\prime \prime}$ to $30^{\prime \prime}$ directly ; i. e. as 24 to 30, or 4 to 5. Again, the Comet of the Year 1665, in the Month of April, as Hevelius writes, did in Clearnefs exceed almoft all the Fixed Stars; yea, and Saturn it felf in regard of the Colour, which was far more lively. For the Comet was more lucid than that other which had appear'd in the End of the foregoing Year, and was to be compared with Stars of the firft Magnitude. The Breadth of the Capillitium was about 6'; but the Nucleus, as compared with the Planets, by means of a Telefcope, was plainly lefs than Fupiter ; and fometimes was judged to be lefs than the intermediate Body of Saturn, fometimes equal thereto. Moreover, feeing the Diameter of the Capillitium of Comets doch feldom exceed 8^{\prime} or $12^{\prime \prime}$, and the Diameter of the Nucleus or Central Star is about a roth, or perhaps a 15 th Part of the Diameter of the Capillitium; It is manifeft that thefe Stars are for the moft part of the fame apparent Magnitude with the Planets. From whence, fince their Light may oftentimes be compar'd with that of Saturn, and fometimes doth exceed it ; It is manifeft all the Comets in their Periheiia are placed either beneath Saturn, or not far above it. They are widely miftaken therefore, who Remove thefe Stars into the Region of the Fixed Stars ; where certainly they could no more be Illuminated by our Sun, than the Planets which are here, are Illuminated by the Fixed Stars.

We

Matbematical Pbilofophy. 387

We have, whilf we have been Reafoning hitherto, not confidered the Obfcuration of Comets by that very copious and grofs Fume, wherewith the Head is encompals'd, which always fhines as through 2 Cloud. For the more obfcure the Body is rendred by this Fume, fo much the nearer it mult needs approach to the Sun, that it may equal the Planets in the Plenty of Light reflected from it. From thence it feems probable, that Comets defcend far below the Sphere of Saturn, as we have prov'd from their Parallax. But the fame Thing is efpecially confirm'd from their Tails. Thefe arife either from the Reflexion of the Fume difpers'd through the Ether, or from the Light of the Head. In the former Cafe the Diftance of the Comets is to be diminifh'd, left the Fume which always arifeth from the Head, Should be propagated with an incredible Velocity and Expanfion through too large Spaces. In the latter all the Light, as well of the Tail as of the Capillitiwn, is to be referr'd to the Nucleus of the Head. Therefore if we imagine all this Light gathered together within the Difque of the $N u-$ cleus, the Nuclens would now certainly, as often as it fends forth a very great and chining Tail, much exceed Fupiter it felf in Splendor. Since therefore is emits more Light, notwithftanding that it hath a much lefs Diameter, it muft be much more Illuminated by the Sun, and confequently much nearer to the Sun. Moreover, the Heads which lie hid under the Sun, and do at that Time put forth very great and refplendent Tails, like Beams of Fire, as fometimes hath been feen, ought by the fame Argument to be placed beneath the Sphere of Venus. For all that Light, if it be fuppos'd to be gathered together into the Star, would fometimes exceed Venus if Cc 2
felf,

388 Mathematical Pbilofophy.
$\mathrm{f}_{\text {elf, that }}$ I may not fay many Venu's in Splendor.

Laftly, The fame Thing is gathered from the Increafe of the Light of the Head in the Recefs of Comets from the Earth towards the Sun, and Decreafe of the fame in their Recefs from the Sun towards the Earth. For the latter Comet of 1669, (as Hevelius obferv'd) from what Time it begun to be feen; remitted always of its Motion, and confequently had pafs'd the Perigee ; but the Splendor of the Head daily increas'd, until the Comet, cover'd with the Solar Rays, ceafed to appear. The Comet of Year 1683, as the fame Hevelius obferv'd, in the End of the Month \mathcal{F}_{u} $l y$, when it was firft feen, mov'd very flowly, making about 40^{\prime} or 45^{\prime} every Day in its Orb. From that Time its Motion was continually increas'd until Septemb. 4. at which Time it arofe to about 5 Degrees. In this whole Time therefore it approach'd to the Earth. Which is alfo collected from the Diameter of the Head, meafur'd by a Micrometer: which Hevelius found Aug. 6. to be only 6 '. $5^{\prime \prime}$, the Hair included; whereas Sept. 2. it was $9^{\prime} \cdot 7^{\prime \prime}$. The Head therefore, in the Begining of its Motion, appear'd far lefs than in the End; but neverthelels in the Beginning, in the Neighbourhood of the Sun, it was much brighter than about the End, as Hevelius relates. Therefore in all this Time, by reafon of its Departure from the Sun, it decreas'd as to Light, notwithftanding its Accefs towards the Earth.

The Comet of the Year 16i8, about the Middle of December; and that of 1680 , about the End of the fame Month, mov'd moft fwiftly; and confequently they were then in their Perigees: But the greateft Splendor of the Heads happened almoft a Fortnight before, when they had juft got

Mathematical PbiloJophy. 389

out of the Rays of the Sun ; and the greateft Splendor of the Tails was a little before, when they were nearer to the Sun. The Head of the former Comet, according to the Obfervation of Cyfatus, Decemb. 1. feem'd greater than a Star of the firft Magnitude; and Decemb. 16. (it being now in its Perigee,) it had fallen off a little in its Magnitude, but very much in its Splendor or Clearnefs of Light. Fan. 7. Kepler being uncertain of the Head, made an End of Obferving. December 12. the Head of the latter Comet was feen and obferv'd by Mr. Flamfteed, in the Difance of 9 Degrees from the Sun ; which a Star of the 3 d Magnitude fcarce could have been. Decemb. 15. and 17. the fame appear'd as a Star of the 3 d Magnitude, being at the fame time rendred lefs confpicuous by the Brightnefs of the Clouds which were about the Sun fetting. Decemb. 26. It ing mov'd very fwiftly, and being then almoft in its Perigee, it was lefs than the Star call'd Os Pegafi, one of the third Magnitude. Fan. 3. It appear'd as a Star of the fourth Magnitude. Fan. 9. as one of the sth. Fan. 13. by reafon of the Splendor of the Moon increafing, it difappear'd. Fan. 25. It fcarce equall'd a Star of the feventh Magnitude. According to this, if we take equal Times from the Perigee on this Side and on that, the Head, which being placed in Regions very remote, ought, by reafon of equal Diftances from the Earth, to have fhone equally; did on the Part betwixt the Perigee and the Sun, fhine moft of all, on the other Part vanifh'd out of fight. Therefore from the great Difference of Light in thefe two Situations, the great Vicinity of the Comet to the Sun, in the former Situation, is rightly concluded. For the Light of Comets is wont to be regular, and to appear the greateft of C c 3
all,
all, when the Heads are moved moft fwiftly, and confequently are in their Perigees; only fo far as it becomes greater in the Neighbourhood of the Sun.

Coroll. (r.) Comets therefore fhine by the Reflexion of the Light of the Sun.

Coroll. (2.) We may gather from what hath been faid, why Comets do fo much frequent the Region of the Sun. If they were feen in Regions far beyond Saturn, they ought always to appear in the oppofite Part to the Sun. For thofe which were in this Part would be nearer to the Earth, and the Sun by its Interpofition would obfeure the reft. But in running over the Hiftories of Comets, I have found that four or five Times more have been difcover'd in the Hemifphere that is towards the Sun, than in the Oppofite, befides others, no doubt not a few, which the Light of the Sun hath wholly bidden. TheThing is this; In their Defcent to our Regions, they neither fend forth Tails, nor are fo illuftrated by the Sun as to be feen by the naked Eye, until they have defcended beneath 7 upiter. Now the far greater Part of the Space defcribed in fo fmall an Interval about the Sun, is on that fide of the Earth which looks to the Sun ; and in that greater Part thefe Stars, as being then, for the moft Part, nearer to the Sun, are wont to be enlightned.

Coroll. (3.) From hence it is manifeft that the Heavens are deftitute of Refiftance. For Comets taking oblique Ways, and fometimes contrary to the Courfe of the Planets, are mov'd every Way moft freely, and hold their Motions for a long time, contrary to the Courfe of the Planets. I aiki miftaken, if they be not a kind of Planets; and which being in perpetual Motion, return in a Round. For whereas fome Writers will have them

Matbematical Pbilofopby. 391

to be Meteors,taking theirArgument from the perpetual Changes of the Heads of them, This feems to want all Foundation. Their Heads are encompafs'd with huge Atmofpheres, and the Atmofpheres ought to be more denfe beneath. From whence it comes to pafs, that it is not the Bodies themfelves of the Comets, but Clouds about them, which thofe Mutations are feen in. Thus, if the Earth were feen from the Planets, it would thine without doubt by the Light of its Clouds, and the firm Body would almoft lie hid under thofe Clouds. Thus the Girdles of 7 upiter, which are form'd in the Clouds of that Planer, change their Situation amongft themfelves; fo that the firm Body of 7 upiter is difficultly difcern'd thro' thofe Clouds. And much more ought the Bodies of Comets to be hid under their Atmofpheres, which are both more deep and more craffe.

Now to him that Revolves in his Mind the Orb of the Comet of 1680 , and 168°, and the reft of the Phxnomena it will be eafily manifeft, that the Bodies of Comets are Solid, Compact, Firm and Durable, like the Bodies of the Planets. For if they were nothing elfe than Vapours or Exhalations of the Sun, Earth and Planets, this Comet ought in its Tranfit through the Neighbourhood of the Sun to have been immediately diffipated. For the Heat of the Sun is as the Denfity of the Rays; that is, reciprocally, as the Square of the Diftance from the Sun. And therefore, fince the Diftance of the Comet from the Sun, Decemb.8. at which Time it was in its Perihelion, was to the Diftance of the Earth from the Sun, as 6 to rooo, or thereabouts; the Heat of the Sun upon the Comet at that time was to the Heat of the Summer-Sun with us, as $1,000,000$ is to 36 : or as 28,000 is to I . Bat the Heat of boiling

392 Matbematical Pbilofophy.

Water is about three times greater than that Heat which the dry Earch conceives from the SummerSun, as I have try'd my felf; and the Heat of Redhot Iron (if I guefs right) is about three or four times greater than the Heat of boiling Water; and confequently the Heat which the dry Earth in the Comet contracted from the Rays of the Sun when it was in its Perihelion, might be about 2000 times greater than that of Red-hot Iren. Now by fo great an Heat as this, Vapours and Exhalations, and all Volatile Matter muft have been prefently confum'd and diffipated.

Tle Comet therefore, in its Perihelion, contracted an immenfe Heat from the Sun, and would hold that Heat for a very long time. For a Globe of Red-hot Iron of one Inch Diameter, would fcarce lofe all its Heat in one Hour's Space, if it were expos'd to the open Air. But a greater Globe would keep its Heat longer, and this in the proportion of its Diameter; becaufe the Surface (according to which it is coold by the Contact of the, Ambient Air) is in that Proportion lefs, if compar'd with the quantity of the hot Matter included. And therefore a Globe of Red-hot Iron, of the Bignefs of this Earth; i.e, of $40,000,000$ Feet Diameter, would fcarce be wholly cool'd in fo many Days, or so,000 Years. I fufpect neverthelefs, that the Continuance of Heat,' by reafon of latent Caufes, is increas'd in lefs Proportion than that. of the Diameter; and wifh that the true Proportion were fearched out by Experiments.

Furthermore, it is to be noted, that the Comet in the Month of December, when it was fo heated by the Sun, fent forth a Tail far greater, and more refplendent than it had done before in November, when it had not yet reached to its

Matbematical Pbilofophy. 393

Perihelion. And in general, all the Tails which exceed in Magnitude and Brightnefs are then feen, whên the Star hath lately pals'd through the Region of the Sun. The Heating therefore of the Comet conduceth to the Magnitude of the Tail. And from thence I am apt to conclude, that the Tail is nothing elfe but a moft thin Vapour, which the Head or Nucleus of the Comet emits through its Heat.

Now there is a threefold Opinion concerning the Tails of Comets; that they are either the Beams of the Sun propagated thro' the Tranllucid Bodies of thofe Stars ; or arife from the Refraction of the Light in the Progrefs thereof, from the Head of the Comet to the Earth ; or, laftly, are a Cloud or Vapour arifing continually from the Head of the Comet, and which is turn'd off to the Part oppofite to the Sun. The firft is the Opinion of thofe who are not yet inftructed in the Knowledge of Optics. For the Beams of the Sun, let into a dark Chamber, are not feen there, any further than the Light is reflected from the Particles of Duft and Fumes floating in the Air; and confequently are much more bright in the Air when

- ftuffed with grofs Fumes, and frike the Senfe more forcibly ; in a thinner Air are lefs perceiv'd, and in the Heavens, where there is no reflecting Matter, are not to be perceiv'd at all. Light is not feen as it is in the Beam, but as it is from thence reflected to our Eyes. For Sight is only by Rays which fall upon the Eyes. Some reflecting Matter therefore is requir'd in that Part of Heaven which the Tail takes up; Otherwife the whote Heaven it felf, which is illuminated by the Sun, would fhine uniformly. The Second Opinion is urged with many Difficulties. The Tails are never varied with Colours, which yet are infeparable

394
 Matbematical Pbilofopby.

feparable Concomitants of Refractions. The Light of the Fixed Stars and Planets, which is diftinatly tranfmitted to us, fhews that the Celeftial Medium is without any refractive Force. For as for what is faid, that the Fixed Stars have fometimes been feen with bright Streams by the Egyptians; this, becaufe it is a thing which happens very feldom, is to be afcribed to the accidental Refraction of the Clouds. The Radiation alfo, and twinkling of the Fixed Stars, is to be referr'd to Refractions both in the Eyes and the tremulous Air; becaufe, when they are feen through a Telefcope, it vanifheth away.

By the Tremor of the Air, and afcending Vapours it comes to pafs, that the Rays are eafily turn'd off by Turns from the narrow Space of the Pupil of the Eye; but from the wider Aperture of the Object Glafs never. From hence it is, that in the former Cafe a twinkling is produc'd, but in the latter none at all; and the Abfence of it in the latter Cafe demonftrates the regular Tranfmiffion of Light through the Heavens, without any fenfible Refraction. And if any one Thould fay in this Place, that Tails are not wont to be feen in the Fixed Stars, only becaufe their Light is weak and feeble; fo that their Secondary Rays have not Force enough to move the Eyes, that Tails fhould appear about them; He may take notice, that the Light of Fixed Stars may be increas'd by Telefcopes above an Hundred Times, and yet no Tails are feen. The Light of Planets alfo is greater than that of Comets, but yet they have no Tails; yea, and Comets have the longeft Tails, when the Light of their Heads is weak and very obtufe. For the Comet of 1680, in the Month of December, at what time its Head did fcarce equal a Star of the Second Magnitude, fent forch 2 Tail of notable Splendor unto 40, 50, 60

Degrees

Matbematical Pbilofophy. 395

Degrees of Length, and more. Afrerwards, Fan. 27, and 28, the Head appear'd as a Star of the Seventh Magnitude only; but the Tail, which was of 2 dim Light indeed, but fenfible enough, was feven or eight Degrees long, and with a very obfcure Light, which could fcarce be perceiv'd, it was ftretch'd forth 12 Degrees, and more, as was faid above. And Febr. 9, and 10, when the Head could no longer be feen with the naked Eye, I faw a Tail two Degrees long through a Telefcope. Furthermore, if the Tail proceeded from the Refraction of Celeftial Matter, and turn'd afide from the Oppofition to the Sun, according to the Figure of the Heavens ; that Deflection ought in the fame Regions of Heaven always to be to one Part. But the Comet of 1680 , Decemb. the 28th. at $8 \frac{1}{2}$ a Clock in the Evening at London, was in $\neq 8$ deg. 4^{\prime} ', with a Northern Latitude 28 deg. 6 ; the Sun being in $\leqslant 18$ deg. 26. And the Comet of the Year 1557, Decemb. 29, was in $\begin{aligned} \\ 8 \text { deg. } 41^{\prime} \text {. with }\end{aligned}$ Northern Latitude 28 deg. 40^{\prime}; the Sun alfo being in vs about $\mathbf{1 8}^{\circ} .26$. In both Cafes, the Earth was in the fame Place, and the Comet appear'd in the fame Part of Heaven ; yet notwithftanding in the former Cafe (by mine own and others Obfervations) the Tail of the Comet declin'd with an Angle of $4 \frac{1}{1}$ Degrees from Oppofition to the Sun towards the North; whereas in the latter (according to Tycbo's Obfervation) the Declination was 21 Degrees towards the Soutb. The Refraction therefore of the Heavens being taken away, it remains that the Phænomena of the Tails are deriv'd from fome reflecting Matter.

Now that the Tails do proceed from the Heads, and do afcend towards the Region oppofite to the Sun, is confirm'd from the Laws which they oblerve. As that lying in the Plains of the Orbs

396 Matbematical Pbilofophy.

of the Comets paffing through the Sun, they de:cline from Oppofition to the Sun, always unto that Part which the Heads going forward in thofe Orbs do leave behind them. That they appear to the Spectator when placed in thefe Plains, turn'd away directly from the Sun; but the Spectator going afide from thefe Plains, the Deviation is perceiv'd by degrees, and grows every Day greater. That the Deviation, cateris paribus, is lefs when the Tail is more oblique to the Orb of the Comet, as alfo when the Head of the Comet approacheth nearer to the Sun; efpecially if the Angle of Deviation be taken at the Head of the Comet. Befides, that the Tails which deviate not, are ftraight ; but thofe which do, are bowed. That the Curvature is greater, where the Deviation is greater, and more fenfible when the Tail, cateris paribus, is longer; for in fhort Ones the Curvature is hardly perceiv'd. That the Angle of Deviation is lefs at the Head of the Comet, greater at the other End of the Tail; and confequently, that the Tail on its Convex-fide looks to that Part from which the Declination is, and which is in a Right Line drawn from the Sun through the Head of the Comet in infinitum. And that the Tails which are longer and broader, and fhine with a more lively Light, are upon their Convex-fides fomething more fplendid, and bounded on the Concave-fide with a Limit not very diftinct.

The Phxnomena therefore of the Tail depend upon the Motion of the Head, and not upon that Region of Heaven in which the Head is feen; and therefore are not made by a Refraction of the Heavens, but arife from the Head, which affords Reflecting Matter. For as in our Air the Smoke of a Body fet on Fire afcends upwards, and that either P'erpendicularly if the Body reft-

Mathematical Pbilofopby. 397

eth; or Obliquely, if it be mov'd to one Side: So in the Heavens, where Bodies gravitate to the Sun, the Fumes and Vapours ought to afcend from the Sun (as hath been already faid) and this in a: Right Line if the Body refts, but Obliquely, if the Body be mov'd, and in going forwards always forfakes the Places from which the upper Parts of the Vapour had afcended. And that Obliquity will be lefs, where the Afcent of the Vapour is more quick; as in the Neighbourhood of the Sun, and near to the Surface of the fmoking Body. Now from the Diverfity of the Obliguity, the Column of the Vapour will be bowed. And becaufe the Vapour on that fide of the Column which goes before is fomething more frefh, for this Reafon it will be fomething more Denfe in the fame Place, and will therefore reflect Light more copioully, and be bounded with more diftinct Limit. A's to the fudden and uncertain Agitations of their Tails, and of the irregular Figures of the fame, which fome defcribe', I add nothing here; becaufe they either arife from the Mutations that are in our Air, and the Motions of the Clouds which do in fome part obfcure the Tail; or perchance from Parts of the Via Laflea, which may feem united with the Tails that pafs by them, and taken to be Parts of them.

Now that Vapours 'which fuffice to fill fuch vaft Spaces may arife from the Atmofpheres of Comets; will be underftood from the Rarity of our Air. For the Air, near to the Surface of the Air, poffeffes 8 so Times more Space than a Quan: tity of Water of the fame Weight; and therefore a Cylindrical Column of Air 850 Feet high, is of the fame Weight with a Column of Water of the fame Breadth, which is only one Foot high. But

398 Matbematical Pbilofophy.

a Column of Air arifing to the Top of the At: mofphere, doth equal in its Weight a Column of Water, which is about 33 Foot high ; and therefore if the inferior Part of the whole airy Column be taken away, which is of the Heighth of 890 Feet, the upper remaining Part will be equal in its Weight to a Column of Water of 32 Feet high. But from thence (according to the Hy porhefis which hath been confirm'd by many Experiments, namely, that the Compreflion of the Air is as the Weight of the Atmof phere which lies upon it, and that Gravity is reciprocally, as the Square of the Diftance from the Center of the Earth) by making Computation according to Coroll. Prop. XXII. Book II. I found that Air, at the Heighth of a Semi-diameter of the Earth, from the Surface of the fame, is rarer than it is with us in a Proportion far greater than is that of all the Space beneath the Orb of Saturn to a Globe of one Inch Diameter. And therefore a Globe of our Air of one Inch Diameter in that Rarity, which it would have in the Heighth of a Semidiameter of the Earth, would fill all the Regions of the Planets unto the Sphere of Saturn, and much farther. Therefore fince Air, which is yet higher, grows more rare infinitely; and the Armofphere of a Comet, in afcending from its Center, is about ten times higher than the Surface of the $N u$ cleus, and when the Tail doth afcend yet higher, the Tail ought to be rare in the higheft degree. And altho' by reafon of the more grols Acmofphere of Comets, and the great Gravitation of Bodies towards the Sun; and the Gravitation of the Particles of the Air and Vapours towards one anpther ; it may come to pafs, that the Air doth not grow Rare in fo great a Degree in the Hea-

Matbematical Pbilofopby. 399

venly Spaces and in the Tails of Comets ; yet is it manifeft from this Computation, that a very fmall Quantity of Air and Vapours fufficeth abundantly to all thofe Phxnomena of the Tails. For the great Rarity of che Tails is alfo collected from the Stars which are vifible through them. The Atmofphere of the Earth Onining with the Light of the Sun, doth by its Craffitude, which is but for a few Miles, [frequently] both obfcure, and even hide all the Stars and the Moon it Celf; but the leaft Stars are obferv'd to be vifible without any detriment of their Clearnefs through the Tails of Comets, which are of an exceeding great Depth, and are at the fame time illuminated with theLight of the Sun. Nor is the Splendor of many of their Tails wont to be greater, than is that of our Air, when in a dark Chamber it reflects the Light of the Sun in the Form of a Beam, for the Breadth of an Inch or two.

In what Time the Vapour afcends from the Head to the End of the Tail, may almoft be known by drawing a Right Line from the End of the Tail to the Sun, and noting the Place where that Line cuts the Trajectory. For a Vapour in the End of the Tail, if it afcends ftraight from the Sun, begun to afcend from the Head, at what Time the Head was in the Place of Interfection. And tho' it doth not afcend ftraight from the Sun; yet by retaining that Motion which the Comet had before its Afcenfion, and Compounding the fame with the Motion of its Afcenfion, it afcends Obliquely. From whence the truer Solution of the Problem will be, that the Right Line which cuts the Orb, be Parallel to the Length of the Tail; or rather (by reafon of the Curvi-linear Motion of the Comet) that the fame deflect a little from the Line of the Tail.

By this means I found, that the Vapour which was in the End of the Tail, Fan. 25. began to afcend from the Head, Decemb. the irth, and confequently had fpent above 45 Days in its Afcenfion. But all that Tail which appear'd Dec. 10. had afcended in the Space of thofe two Days which had pafs'd from the Time of the Perihelion'. Therefore the Vapour afcended moft fwiftly in the Neighbourhood of the Sun, and afterwards went on afcending with a Motion ftill retarded by its own Gravity; and by its afcending increas'd the Length of the Tail ; but the Tail, fo long as it appear'd, confifted almoft all of the Vapour which had afcended from the Time of the Perihelion; and the Vapour which afcended firf, and compofed the End of the Tail, vanifhed not out of fight before that it ceafed to appear, by reafon of its great Diftance both from the Sun which illuftrated it, and from our Eyes. From whence alfo the Tails of other Comets which are fhort, do not afcend with a fwift and perpetiual Motion from the Heads, and fo prefently vanifh away, but are permanent Columns of Vapours, propagated from the Heads" with a very flow Motion of many Days; which by partaking of that Motion of the Heads which they had at the Beginning, go on to be mov'd through the Heavens; together with the Heads. And from hence it is again collected, that the Heavenly Spaces are deftitute of all Force of Refifting; fince not only the Solid Bodies of Planets and Comets, but alfo the exceeding thin and rare Vapours of the Tails of Comets do perform their Motions in them moft freely and fwiftly; and hold the fame for a very long Time.

Mathematical PbiloJophy. 401

Kepler afcribes the Afcent of the Tails from the Atmofpheres of the Head, and their Progrefs to the Part oppofite to the Sun, to the Action of the Rays of Light, which carries away with them that Matter of which the Tail confifts. And it is not altogether unreafonable to think, that a very thin Air may give way to the Rays of Light in freo Spaces; notwithftanding that grofs Subftances cannot in our Regions be fenfibly impell'a or mov'd by the Solar Rays. Another is of Opinion, that there may be as well Light as heavy Particles of Matter ; and that the Matter of the Tails are light, and by their Lightnefs afcend from the Sun. But fince the Gravity in Terreftrial Bodies is as the Matter in thofe Bodies, and confequently cannot be increas'd or diminifh'd, the fame Quanrity of Matter remaining; I am prone to think, that that Afcent doth rather arife from the Rarefaction of the Matter of the Tails. The Smoke in a Chimney afcends by the Impulfe of the Air in which it floats. That Air being rarified by the Heat, afcends by reafon of the Diminution of its Specific Gravity, and carries away the Smoke entangled in it, together with it. What hould then hinder, but that the Tail of a Comet fhould afcend in the fame manner from the Sun? For the Rays of the Sun do not agitate the Mediums through which they pafs, but in their Reflection and Refraction. The Reflecting Particles being heated by that Attion, will heat the Ethereal Air which is about them.

This, by the Heat communicated to it, will grow rare; and by reafon of the Diminution of its Specific Gravity, by that Rarenefs will afcend, and D d
carry

402. Matbersatical Pbilofophy.

carry away the Refleating Particles, of which the Thitreonfifts. It conduces alfo! to the Afcent of the Vapours, that they are turn'd about the Sung and by that Ataion endeavour to Recede from the Sun ; whilf the Atmofphere of the Sun, and the Matter of the Heavens, do either wholly reft, or are turn'd round flowly, only with a Motion, which they have receiv'd from the Rotation of the Suin: Thefe are the Caures of the Afcent of the Tails in the Neighbourhood of the Sun where the Orbs are more Curve, and the Comets are within the more Denfe, and by that means the more heavy Atmofphere of the Sun. For the Tails which arife then, will, by keeping their Motion, and Gravitating in the mean while towards the Sun, be mov'd about the Sun in Ellipfes after the manner of the Heads, and by that Motion always accompany the Heads, and ftick to them. For the Gravity of Vapours towards the Sun, will no more caule that the Tails fhould fall from tho Heads afterwards towards the Sun, than the Gravity of the Heads can make, that chey fhould fall from the Tails. Therefore by their common Gravity they will either fall together towards the Sun, or be retarded together in their Afcent; and confequently that Gravity hinders not, but that the Tails and Heads fhould moft eafily receive, and afterwards moft freely keep any Pofition to one another, whatfoever it is, which they may receive from the Caufes which have been mention'd, or any other whatever.

The Tails therefore which arife in the Perihelia of Comets, will go away with their Heads into far diftant Regions; and after a long Series of Years, return with the fame to us.; or rather being

Matbematical Pbitofophy: 403

being there Yatified, will by liftle and little vanifh away. For afeerwards, in the Defcent of the Heads to the Sun, new litte fliote Tails ought to be propagated from their Heáds by a flow Motion, and afterwards to be Immenfely increas'd in the Perihelia of thofe Comets which defentd into the Atmolphere of the Sun. For the Vapour in thofe moft free Spaces is perperually rarified and dilated. By which means it comes to paf, that the Tail is broader at the upper End, than near the Head of the Comet. Now it feems feafoniable to think, that the Vapour being by that Rarefactlon perpetually dilated, is difperfed git length through the whole Heaven, and is by little and little drawn unto the Planets, and ming: led with their Atmofpheres. For like as the Seas gre altogether requii'd unto the Conftitution of this out Earth; a and this, that Vapours may be raib'd fufficiently out of them by the Heat of the Sun' ; which being gather'd together into Clouds, mäy fall down in Rains, and water and noutifh all the Earth, for the Procreation of Vegetables; or being Condens'd in the cold Tops of Mountains, (as foine do reafonably enough fuppoife) runs down unto the Heads of Springs and Rivers: So to the Prefervation of Seas and Rivers in Planets, Comets feèm neceffary; ; from the Condens'd Vapours and Extialations whereof, what Liquor is fpent by Vegetation and Corruption, and turn'd into dry Earth, is continuálly fuppliéd and renew'd. For. all Vegetables grow from Liquars or Juices; and then in greagt Part they pals by Putrefation inito dry Earth, and Mud arifeth perpetually from the putrefied Liquors. Hence the Bulk of dry Earth is continually increas'd ; and what is Humid, unile's it be ihcreas'd from elfewhere, ouight perD. 2 petually

404 Matbematical Pbilofopby.

petually to decreafe, and at length to fail. Yea; I fufpea that that Spirit which is the leaft indeed, but the moft fubtile and the beft Portion of our Air, and which is requir'd to the Life of all things, doth come from Comets efpecially.

The Atmofpheres of Comets are in their Dofcent to the Sun diminifh'd by running out into Tails, and (on that Part certainly which looks to the Sun) become more narrow: And on the other hand in their R'ecefs from the Sun, at which time they run lefs out into Tails, they are enlarg'd; if to be Hevelizus hath rightly noted the Phanomenons thereof. But they appear the leaft, when their Heads having been juft now heated at the Sun, iffue forth in great and refulgent Tails; and their 'Nucleus's are perhaps furrounded with a more craffe and black Fume in the loweft Parts of their Atmofphere. For all Smoke which is firred up by a very great Heat, is wont to be fo much the more craffe and black. Thus the Head of the Comet of which we have been treating, did at equal Diftances from the Sun and the Earth, ap-: pear more obfcure after the Perihelion than be-fore. For in the Month of December, it was compar'd with Stars of the third Magnitude ; whereas in November it equall'd Stars of the firft and fecond. And they who had feen both, defcribe the former Comet as the greater. For November the 19th, this Comet, how obtufe foever the Light was wherewith it fhined, did then equal Spica Virginis, as it appear'd to a Young-man of Cambridge, and fhin'd more clearly than it did afterwards. And Mr. Storer, in Letters which fell into my Hands, wrote, that the Head of it in December, at which time it fent forth the greatelt and moft refulgent

Matbematical Pbilofophy. 405

fulgent Tail of all, was fmall, and in its vifible Magnitude, did fall far Short of what it appear'd before the Rifing of the Sun in November. The Reafon whereof he gueffed to be this, That the Matter of the Comet at the beginning was more copious, and was wafted by degrees.

We may here allo fitly Note, 'that the Heads of other Comets, which have fent forth moft great, and refulgent Tails, are defcrib'd as being fomewhat dim and fmall. For in the Year 1668, March 5. New-Style, at 9 a-Clock in the Evening, the Reverend Father Valentine Eftance, being then in Brafile, faw a Comet near to the Horizon at the Soutb Weft, of a very little Head, and fcarce to be feen, but with a Tail exceedingly Refulgent; fo that thofe who ftood on the Shore might eatily fee the Image of it reflected from the Sea. It had the Appearance of a Bining Beam, of the Length of 23 Degrees, inclining from the Weft to the South, and almoft Parallel to the Horizon. But this great Splendor endur'd only for two Days, and from that time notably decreas'd.; and in the mean while that the Splendor decreas'd, the Tail did increafe in Magnitude. From whence alfo it is faid to have poffefs'd in Portugal almoft 2 4th Part of Heaven, (or 45 Degrees) ftretching from the Weft to the Eaft, with a very great Splendor ; nor did it all appear notwithftanding, the Head ftill in thefe Regions lying hid below the Horizon. From the Increafe of the Tail, and Decreafe of the Splendor it is manifeft, that the Head was receding from the Sun; and was next to it about the beginning, as it was in the Comet of 1680. And we read of a like Comet in the Years 1101, or 1106; "The Star whereof was fmall D d 3 "and

406 Matbematical Pbilofopby.

6 and oblcure (as was that of 1680 ,) but the Splendor which went forth from thence was very clear; and as it were a great Beam, reaching to the Eaft and Nortb, as Hevelius hath it, out of Simeon, the Monk of Durbam. It appear"' in the Beginning of February about. Evening, at the South-VVeft." But from thence, and the Situation of the Tail, it is gathered, that the Head was near to the Sun. "It was diftant, fairh © Mattbery of Paris, about one Cubit from the ${ }^{\sigma}$ Sun, from the third, (more truly the fixth * Hour) until the ninth, fending forth a long "Ray from ir felf." Such alfo was that fiery: Comet defcrib'd by Arifotle, Book 1. Me: teor 6. "The Head whereof was not feen the "firt Day, becaufe that it had Set before the "Sun, or at leaft under the Rays of the Sun; ${ }^{c}$, but the following Day it was feen as far as its ${ }^{2 c}$ Situation allow'd. For it had left the Sun but of with a Diftance as fmall as might be; and then "Set By reafon of the very great Ardor [of the ".Tail,] the difpers'd Fire of the Head did not "G yet appear; but afterwards, when the Tail did "c burn lefs, the Head was reftor'd to its former Ap${ }^{6}$: pearance. And it extended its Splendor unto " a third Part of Heav'n, (i. e. unto 60 Degrees.) "Now its Appearance was in Winter-tjme, and "A Afcending unto the Girdle of Oriom, it there " Vanifh'd:

That Comet of the Year 468 , which camé; with a very long Tail out of the Rays of the Sun, feem'd to equal, if not exceed a Star of the firft Magnitude ; but there have not a few greater Comoss appear'd, which have had Morter Tails. Some of them are related to have been equal to \mathcal{F} upiter. Others to Vepus, or eyen to the Mopa.

Matbematical Pbilofoply. 407

I faid before, that Comets are a kind of Planets, Revolving in very eccentric Orbits about the Sun. And like as amongft the Planets, which have no Tails, thofe are wont to be lefs which are revol'd in leffer Orbias, and nearer to the Sun ; fo likewife is it reafonable to think, that the Comets, which in their Perihetia approach nearer to the Sun, are for the moft Part leffer, and are Revolv'd in leffer Orbits. But as for the Trantverfe Diameters of their Orbirs, and their Periodical Times, we leave theefe Things to be deter min'd from the Comparionn of Comers, returning in the Game Orbits after long Intervals of Time:
D d 4
LECT

408 Matbematical Pbilofophy.

Lect. XXXIX.

 Aving finin'd the Explication of Sir Iface Nevton's Philofophy, we will now endeavour to Explain Dr.Halle's Cometography, which is built upon that Philofophy. And tho' this Work of Dr. Halle's be an excellent Piece, yet is it fonething too fuccind and obfcure; as being only preparatory to a greater Work intended; and indeed is no-where elfe reprefented plain enough for Beginners: My Purpofe therefore is to give you the whole in the Author's own Words; but fo, that I intend to improve it all along, and illuftrate it with a Commentary. The Hiftorical Preface, which is prefix'd to the fame, needs no Explication: However, I fhall not think much to tranfcribe it, that no Part of this excellent Work may be wanting in this Place.

A SY.

A
 SYNOPSIS
 OFTHE

 Aftronomy of Comets.

 Aftronomy of Comets.}

By Edmund Halley, L.L.D. Savilian. Profeffor of Geometry at Oxford.
 HE Ancient Egyptians and Cbahdeans (if we may credit Diodorise Siculus) by a long Courfe of Obfervations, were faid to be able to predict the Apparitions of Comets. But fince they are alfo faid, by the help of the fame Arts, to have. prognofticated Earthguakes and Tempefts a: 'tis paif all doubt, that their Knowledge in thefe Matcers, was the Rofult rather of meer Aftrological: Calculation, than of any Aftronomical Theories. of the Celeftial Motions. And the Greekes, who were the Conquerors of both thofe People, Scarce. found any ocher Sort of Learning amonget them, tham
than this. So that 'tis to the Greeks themfelves as the Inventors (and efpecially the great Hipparcbws) that we owe the Aftronomy we have, and which is now improv'd to fuch a heighth. But yet, amongft the Greeks, the Opinion of Ariflotle (who wou'd have Comets to be nothing elfe, but Sublunary Vapours, or Airy Meteors) prevail'd fo far, that this moft difficult part of the Afronomical Science lay altogether nogketed for no Body thought it worth while to take notice of, or write about, the wandring uncertain Motions of what they efteemed Vapours floating in the 压ther; whence it came to pals, that nothing certain, concerning the Mation of Cometí, Ican be found eraidfmitted from them to us.

But Semeca the Philofopher, having confider'd the Phænomena of two remarkable Comets of his Tima, made no fruple to place them at mongft the, Celeftial Bodies; believing them to be Stars of equal Duration with the World, tho he owns their Motions to be govern'd by Laws not as then known or found out. And at laft (which was no untrue or vain Prediction) he foretelis, ehat there friould: be Ages fomerime hereafter, "to whom Time and Diligence Thou'd infold all thefe Myfteries, and who. fhou'd wonder how tewas podible the Ancients codid be ignomite of them, after fome lucky Interpreter bf Nature had hrewrs, in $2 w$ bat parts of tbe Heariens ithe. Comets wamderidg: mubat fort of Beings and bow greati thay woro. a Yet almoft alf the Ni Atronomers differ'd from this Opidioni of semecag neither did' Senieca himileff think fit to fet. down thofe Pliznomena of the Motion, by which ho was enabled to maintain his Opinion; nor the Times of thofe Appearinces, which might be

Afroungy of: COMEx.

of ufe to Pofterity, in arder to the determining thefe things. And indeed, upon khe turning aver very many Hiftories of Comets, I find nothing at ant that can be of fervice in this affar, before A. D. 1337. at which time Nisephorus Gregoress, a Comfantioupoliten Hiftorian and Aftro nomepr, did pretty accurately defcribe the Pach of a Cpmet amongtt the Fix' S Surs but was too lax as to the Account of the Time; ; fo that this moft doubful and uncertain Gomet, only deferves to: be inferted in qur Catalogue, for the fake of its appearing near Four-hindred Years aga.

The next of our Comets was in the Year 4472 ; which being the fwifteft of all, and neareft ta the Earth, was, oblerv'd by Regiomentanus: This Comet Cfo Yearful upon the account both of the Magnitude of its-Body and the Tail') mov'd forty Degrees of a greac Cirche in the Heavens in the Space of one Day, and was the forf, of which any proper Obfervations are come down to us. But all thofe that confider'd Comets, until the Time of Txcbis Brabe (ithat great Reftorer of A Aropomy, believt, them to be below the Moon and fro took bur Lintle Notice of thép, reckoning them pe ofher than V. apours.
 ing the scudy of the scars, and having gotten large Lnifruments for the performing Cedeftial Meqfuratiops, with far greacer Care and Certaipty than the Apcients cou'd ever hope for') there apeapara very remarkable Comet, to the Obfervation of which Tycbo vigoroufly applied himplf; and found by many juft and fàithful Trials, that jo had no Diurpal Parallax that was perceprible: And, confeguently was. not only no Aerial Vapour, but allo mich bigher than the

412 ASYNOPSIs of the

the Moon ; nay, might be plac'd amongft the Orbs of the Planets, for any thing that appear'd to the contrary ; the cavilling Oppofition made by fome of the School-men in the mean time, being to no purpofe.
Tycbo was fucceeded by the moft Sagacious Kepkr. He having the Advantage of Tycbo's Labours and Obfervations, found out the true Phyfical Syftem of the World, and vaftly improv'd the Science of Aftronomy:

For he demonftrated that all the Planets perform their Revolutions in Elipric Orbits, whofe Plains paß tbro tbe Center of tbe Sun, obferving this Law, that the Arief's of the Elliptic Settors, taken at the Center of the Suin (whicb be proved to b_{c} in tbe common Focus of tbefe Ellipfes) are alyyays proportionial. to the Times in, wbich the correfoondent. Elliptical. Arcs are deferib'd. He difcover'd alfo that tbe Diffances of the Planets from the Sun are in tbé Sefquialitera ratio of the Periodical Times, or (which is all one) that the Cubes of the Diftances are as the Squares of the Times. This great Aftronomer had the opportunity of ablerving two Cormets, one of which was a very remarkable one. And from the Oblervations of thefe (which afforded fufficient Indications of an Annual Parallax) he concluded, That the Comets movid freely tbro' tbe Planetary Orbs, withb a Motion not mucb diffrent from a Rectilimear one; but of wbat kind be con'd not precifely determine. Next, Hevelius (a noble Emulator of Tycbo Brabe) following in Kıpler's Siteps, embraced the fame Hypotheris of the Reatilinear Motion of the Comets, himfelf accurately obferving many of them: Yet he complain'd that his Calculations did not perfectly agree to what he obferved in the Heavens: And was aware; that the Patb of a Comea
war bent into a Curve Line concave towards tbe Sun. At length came that prodigious. Comet of the Year 1680 ; which defcending (as it were from an infinite Diftance) perpendicularly towards the Sun, arofe from him again with as great a Velocity.

This Comet, (which was feen for four Months continually) by the very remarkable and peculiar Curvity of its Orb (above all others) gave the fitteft Occafion for inveftigating the Theory of its. Motion. And the Royal Obfervatories at Parit, and Greenvich having been for fome time founded, and committed to the Care of moft excellent Aftronomers, the apparent Motion of this Comet was moft accurately (perhaps as far as humane Skill cou'd go) obferv'd by Mrs. Cafini and Flamfteed.

Not long after, that great Geometrician the Illuftrious Newton, writing his Matbematical Principles of Natural Pbilofopby, demonftrated not only that what Kepler had found, did neceffarily obtain in the Planetary Syftem ; but alfo, that all the Phanomena of Comets wou'd naturally follow from the fame Principles; which he abundantly illuftrated by the Example of the aforefaid Comet of the Year 1680 ; Shewing at the fame time, a method of delineating the Orbits of Comets Geomerrically ; therein folving (not without meriting the higheft Admiration of all Men) a Problem, whofe Intricacy render'd it fcarce Acceflible to any but himfelf. This Comet he prov'd to move round the Sun in 2 Parabolical Orb, and to defcribe Area's (taken at the Center of the Sun) proportional to the Times.

Where:

Wherefore (following the Steps of To Great \% Man) I have attempted to bring the fame Me thod to Arithmetical Calculation; and that with all the Succers I cou'd wilh. For, having colleated all the Obfervations of Comets I coind I have fram'd this following Table, the tefult of a prodigious deal of Calculation; which, tho' But frall in Bulk, will be no unacceptable Pre fent to Aftronomers. For thele Numitbets are cas pable of reprefenting all that has beeit yet obi fervd about the Motion of Comets, by the help only of the annex'd Gerieral Table; in the mau king of which I fpard no Labour, that it might come forth perfeet, ts a Thing confectated to Poterity, and to liat as long as Aftrotiomy ie felf.

The Aftronomical Elements of the Mations in à Parabolic Orb of all the Comets tbat bave been bitberto duely obferv'd.

This Table needs little Explication, fince 'tis plain enough from the Titles, what the Numbers mean.' Only it may be obferv'd, that the Perihalium Diftances, are eftimated in fuch Parts, as the Middle Diftance of the Earth: from the Sunt, contains Fooooo.

A General Table for Calculating the Motions of Comets in a Parabolical Orbit.

Med mot.	$\left\{\begin{array}{l} \text { Angul. }{ }^{2} \\ \text { peribelio. } \\ \hline \mathrm{gr} . \quad " \quad \end{array}\right.$	$\begin{aligned} & \text { Logar. } \\ & \text { pro dift. } \\ & \text { a Sole. } \end{aligned}$	$\frac{\begin{array}{l} \text { Med. } \\ \text { mot. } \end{array}}{0}$	$\int \begin{aligned} & \text { Ang. }{ }^{2} \\ & \text { peribelio } \\ & \mathrm{gr}_{0}^{\prime} \end{aligned}$	Lagar. pro dift. d sole.
	1.31 .40	0.000077	41	53.29.44	00098300
2	3. 3.15	0.000309.	42	54.27.32	0.102019
3	4.34.43	0.000694	43	55.24 .21	0.105752
4	6. 6. 0	0.001231	44	56.20.12	0.109490
	7.37. 1	0.001921	45.	57.15 .6	0.113240
6	9. 7.43	0.002759	46	58. 9. 3	0.116995
7	10.38. 2	0.003745	47	59. 2. 4	0.120756
	12. 7.54	0.004876	48	59.54.11	0.124518
9	13.37 .17	0.00615 .1	49	60.45 .25	0.128278
10	15.6.7	0.007564	50	61.35 .45	0.132035
11	16.34.20	0,009115	51	62.25.14	0.135792
12	18.1.54	0.010798	52	63.13 .52	0.139544
13	19.28.47	0.012609	53	64. 1.40	0.143291
14	20.54.54	0.014550	54	64.48.38	0.147029
15	22.20 .14	c. 016607	55	65.34.50	0.150762
16	23.44 .44	0.018783	56	66.20.13	0.154482
17	25.8.22	0.021072	57	64.04.50	0.158192
18	26.31. 8	0.023470	58	67.4842	0.161890
19	27.52.55	c.025969	59	68.31 .50	0.165578
20	29.13 .47	0.028570	60	69.14.16	0.169254
21	30.33.40	0.031263	61	69.55.58.	0.172914
22	31.52.32	0.034045	62	70.36.56	0.176557
23	33.10.23	0.036916	63	71.17 .16	0.180188
24	34.27.12	0.039864	64	71.5656	0.183803
25	35.42.59	0.042892	65	72.35 .57	0.187404
26	36.57.41	0.045989	66	73.14.15	0.190978
27	38.11 .20	0.049154	67	73.51 .59	$0.19454{ }^{\circ}$
28	39.23.54	0.052382	68	74.29. 6	0.198085
29	40.35.23	0.055668	69	75.05.38	0.201614
30	41.45.47	0.059009	70	75.41 .35	0.205122
31	42.55.06	0.062400	71	76.16 .56	0.200612
32	44. 3.20	0.065838	72	76.51 .43	0.212080
33.	45.10.29	0.069319	73	77.25 .57	0.215529
34	46.16.35	0.072839	74	77.59.41	0.218963
35	47.21.36	0.076396	75	78.32 .54	0.222378
36	48.25:33	0.079984	76	70, 5.35	0.225769
37	49.28.27	0.083600	77	7 37.45	0.229142
38	50.30.19	0.087244	78	80. 9.23	0.232488
39	51.31 .8	0.0909:0	79	80.40.34	0.235809
40	\$2.30.56	0.094596	80	1.11.16	0.239127

The General Table continued::

mot.	$\frac{\text { Peribelio. }}{\mathrm{gr}^{\prime}}$	pro dift. a Sole.		Angul. a Peribelio. r. ' "	Logar. pro dift. d Sole.
81				2.32.41	
82		0.245684	144	3.00.31	784
83	$82.40 .4^{\circ}$	0.248933	146	7.47	0.416132
84		0.252159	148	103.54.31	
85	83.38. 4	0.255366	150	104.20.43	0.424676
86	84. 6. 8	0.25	52	104.46.22	0.428866
87	84.33 .49	0.2617 .20	154	105.11 .33	0.433012
88	85. 1. 5	0.264865	156	105.36.16	0.437110
89	85.27 .58	c. 267989	158	106.00.32	0.441164
90	8554.27	0.271092	160	106.24 .23	0.445178
91	86.20 .34	0.274176	62	47	44
92	86.46 .20	0.277239	164	107.10.44	0.453060
93	87.11 .43	0.280284	,	107.33.17	0.456936
94	87.36.45	0.283306	68	107.55.27	0.460772
95	88.01 .27	0.286308	170	108.17.14	$0 \cdot 464208$
96	88	0.289293	172	37	0.468318
97	88.4	0.292252	174	108.59 .39	0.472030
98	89.13 .32	0.295201	176	109.20.20	0.475705
9.9	89.36.54	0.298122	178	109.40 .40	0.479340
100	90.00 .00	0.301030	80	110.00 .40	0.482937
102		0.306782	182	110.20 .20	8
104	91	0.312469	184	110.39 .41	23
106	92.12 .14	0.318060	86	110.58 .44	512
108		0.323587	188	11	0.496965
110	93.3	0.329042	190	111	0.500384
11	94	0.3	192		0.503769
114	94.53.30	0.339736	194	112.11 .5	0.507121
115	95.31.22	0.344979	196	112.29 .34	0.510441
11	96.8 .22	0.350153	198	112.46 .55	0.513729
120	96.44 .30	0.355262	200	$113 \cdot 4.00$	0.516984
12	97.19 .48	0.360	204	.25	
124	97.54.17	0.365284	208	114.9.52	0.529705
126	98.28.00	0.370200	212	114.41 . 23	0.535886
128	99.00.57	0.375052	216	115	0.531958
130	99.32.11	0.379842	220	115.41 .51	0.537922
132	100.	0.384576	224	116.10 .52	0.553782
134	100.35 .45	; 0.389252	228	116.39 .7	0.559538
136	101. 5.48	0.393858	232	$117.06 .3^{8}$	0.565199
13^{8}	101.35 .22	0.398428	236	117.33 .27	0.570762
140	102.4.19	0.402930			

The General Table continued.

Med. mot.	Angul. peribelio. Logar. pro dif. gr. ${ }^{\prime} " 1$ Sole.	Med. mot.	Ang. d peribelio gr. 71	Logar. pro diff. a Sole.
24		62		
248	118.49 .570 .586912	640		
252	119.14-140.59212:	660	138.33 .2	. 902401
256	119.37 .560 .5972	68	139.	56
260	120.1. 60.602301	700	139.28	12
$\overline{264}$	$120.23 .44{ }^{0.607274}$	720	139.54	
268	120.45 .520 .612174	740		49
272	121. 7.300 .616998	760	,	0.946951
276	121.28 .390 .621750	780	141.	955124
280	121.49 .220 .626438	800		3082
284	0.6	820		0.970836
288	122.29 .280 .635608	840		0.978397
292	$122.48 .54{ }^{0.640098}$	860	142	0.985771
296	123. 7.570 .644525	880	142.4	,
300	123.26 .36 c. 648893	900	143.7	
310	124.11 .400 06	920	143.25 .51	1.006871
320	124.54 .360 .669880	94	$143 \cdot 43.21$	1.013586
330	$125.35 .344^{0.679876}$	960	144.00 .18	1.020155
340	126.14.44 c.689568	980	144.16 .46	1.026583
350	126.52 .120 .698970	1000	144.32 .46	1.032876
360	127.28. 60.7	1500	149.2	88
370	128. 2.330 .716976	0	152.26 .1	1.246058
380	128.35 .380 .725606	2500	154.	I.313703
390	129.7.270.734006	3000	156.	8678
400	129.38. 4 C.742186	3500	157.22 .49	4974
410	130.7 .340 .750160	4000	158.24.36	54950
42	130.36. 20.75	4500	159.16 .36	1490125
430	131. 3.300 .765516	5000	160. 1.12	1.521527
440	131.30 .20 .772918	5500	160.40 .5	I. 549874
450	131.55 .410 .780148	600	161.14 .24	1.575718
450	132.20 .3 C 0.787216	6500	161.45 .001	1.599460
470.	132.44 .320 .794122	700	162.12 .34	1.621417
480	133. 7.500 .800882	7500	162.37 .341	1,6418;8
490	133.30 .250 .807494	8000	163.00 .231	1.660922
	133.52 .200 .813969	8500	163.21 .201	1.678834
52	134.34.18 0.826522	9000	163.40 .42	1.695708
540	135.14. 00.838600	5900	163.58 .38	1.711662
550	135.51 .280 .850187	10000	164.15 .201	1.726784
580	${ }_{136.27 .60 .861369 ~}^{1}$	50000	170.52. 02	2.197960
600	137.00.570.872155	10000		655

Tbe Conftruction and Uje of tbe GeneralTable.

AsS the Planets move in Elliptic Orbs, fo do the Comets in Parabolic ones, having the Sun in their common Focus, and defribe equal Areas in equal Times. Now fitce"all Parabola's are fimilar to one another', therefore ${ }^{\text {t }}$ if any determinate Part of the Area of a given Parabola, be divided into any number of Parts lat liberty', 'there will be a like divifion " made in all Parabola's under the fame Angles, " and the Diftances will be proportional': Con" fequently this one Table of ours will ferve for "all Comets." Thus far Dr. Halley.

But it is to be noted, that our famous Author Toth not affert in this Place ${ }^{\circ}$ the Trajectories of $\mathrm{Co}-$ mets to be compleatly Parabolical'; but only means, 'that, whereas they are indeed Elliptical, they are withal fo Eccentrical, that that Part of the Orbits of Planets which refpects the Planetary World, and which we the Inbabitants of this Earth can fee, doth fo little differ from the curveft Part of a Parabolic Line, that it may fafely, and without any fenfible Error, be affum'd to be a Parabola. For it was before nored, that there may be Ellipfes of all Species", and that "the Concentrical do at tength degenerate into Circles, "the infinitely Eccentrical into Parabola's." Nor is it therefore to be wonder'd at, if inftead of an Ellipfis, a Figure of more difficult Contemplation, and generally of an unknown Species, we chufe to ufe a Parabola, a Figure more eafy to be Contemplated, and of one Species only ; in that Place, efpe-
cially where the Phxnomena of Comets mark out to us Trajectories fcarce other than Parabolical.: We have before Thew' $\mathrm{d}^{\text {"that }}$ the Proportionality of the Area to the Time is common to Comets as well as Planets"; and fhall not go over the fame Thing again. It is alfo manifeft, that like Figures, as Circles and Parabola's do admit and require, that the like Divifions of them, or their Proportional or Correfpondent Parts fhould be exprefs'd by the fame Numbers." But let our Author proceed.
" Now the Manner of the Calculation of this " Table is thus: In Fig. 5. Plate 9. let S be " the Sun, POC the Orbit of a Comet, P the "Serihelion, O the Place where the Comet is " 90 gr . diftant from the Perihelion, C any o*s ther Place. Draw the Right Lines C P, C S, "c and make ST, SR, equal to CS; and having "© drawn the Right Lines C R, C T, (whereof the "s one is a Tangent, and the other a Perpendicu:" lar to the Curve.) let fall CQ Perpendicular ${ }^{6}$ to the Axis PSR.

It is here it is in the Planetary Aftro: nomy, (where we firf enquire the Place of the Planet, or the Angular Diftance from the Axis of the Ellipfis, which we call the True Anomaly of the fame, together with the abfolute Diftance from the Sun; Even fo here, we mult in the firft Place find out the like Angle and Diftance. But it is to be noted, that according to the Nature of atl [Parabola's, the Line SO is half the Latus Rectum. S P is a $4^{\text {th }}$ Part of the fame Latus Rectum, or half of SO; and that a Tangent C T being drawn unto any Point C, and there being erected Perpendicular to the fame the Line CR, cutting the Axis; and there being let down from the fame

Afronomy of COMETS.
 421

Point C, to the Axis, the Perpendicular CQ cutting the Axis in Q; SC, SR and ST are equal amongft themfelves; and the Line $Q R$ is equal 'to SO, or half the Jatus Rectum. All which Things are well known from the Conics. But our Author proceeds.
" Now any Area, as COPS being giv'n, it ". is sequir'd to find the Angle CS P, and the Di${ }^{\prime}$: ftarice C S. From the Nature of the Parabola RQ is ever $=\frac{1}{1}$ the Parameter or Latus Rectum of the Axis, and confequently if the Parameter be put $=2$, then $R Q=1$. Let $C Q=z$; PQ fhall $=\frac{1}{2} \mathrm{zz}$, and the Parabolic Segment : $C Q P=\frac{r_{1}}{2} z z z ;$ But the Triangle CSP will $=\frac{1}{4} z$, and fo the Mixtilineal Area COPS $=$ $\mathrm{r}^{2} \mathrm{z}^{3} \times \frac{1}{4} \mathrm{z}=\mathrm{a}$, whence $\mathrm{z}^{3} \times 3 \mathrm{z}=12 \mathrm{a}$. Where${ }^{c}$ © fore refolving this Cubical Equation, z, or the Ordinate CQ will be known.

Thus far our Auther. But it is to be well obferv'd, that we have here the Analytical way for finding the Coequate Anomaly in a Parabola from the Mean Anomaly given, that is, from the Area defcrib'd, which is every-where Proportional to the Time of the Defcription. Nor can the Angle CST, or the Coequate Anomaly be found di-rectly from the Given Area or Mean Anomaly,: without Analyfis. But that upon the Hypothefis, that the Line C Q, which is firft to be foughi, (for when that is found, the Angle C.ST will eafily be found, as will be manifeft prefently) be called z , the Line PQ will be equal to $\frac{1}{2} \mathrm{zz}$, is eafy to be demonftrated: For as $R Q=1$, is to: $C Q=z$; fo the fame $C Q=z$ is to $Q T$, or z2, the half whereof confequently $Q P$ will be equal to tzz . , But that the Parabolic Segment COP, according to the fame Hypothefis, will be

$$
\text { E e } 3
$$ rightly

rightly exprefs'd by is 22 zz , eafily follows from the Conics. For the Area COPSQ is to the Triangle CPQ, or CPT equal to the fame)as 4 to 3 ; and confequently the Parabolic Area COP is ${ }_{\text {to }} \mathrm{CPQ}^{2}$ a to 3 ; and fince the Triangle CPQ made of the Perpendicular CQ or z, drawn into half the Bafe $\frac{1}{2} z z$, becomes $\frac{1}{4} z z z$, the 3 d Part of it will be $\mathrm{I}_{2} 2 \mathrm{zz}$, equal to the Parabolic Area COP. The Triangle CSP aloo is made of the Perpendicular z, drawn into half the Bare $\frac{1}{4}$; equal to $\frac{1}{4} z$; and confequently the Sum of the Area's COP and CSP; or the whole Area COPS, Proportional to the Time, will be equal to the Sum of thefe Quantities, which is called a : or there will arife this Equation $\frac{1}{5} z^{3} * \frac{1}{4} z *=a$; and by multiplying on both Sides by $12, z^{3}+3 z$ $=12 \cdot a$; which is a Cubic Equation, the 2d and $4^{\text {th }}$ Terms whereof are wanting. The Root therefore of this Equation being found, or the Value of 'z being found in Numbers by Dr. Halley's Mèthod, or otherwife, the Length of the Line CQ will be known. Q.E.I. And now let us hear our Author himfelf.

Dr. Halley. "Now let the Area OPS be pro«s pos'd to be divided into One Hundred Parts : "c this A rea is ${ }_{\text {in }}^{2}$ of the Square of the Parameter, and
"c confeguently 12 a is equal to that Square $=4$.
"If therefore the Roots of thele Equations $2^{\prime}+$
${ }_{6} 6$
cc $32=0,04: 0,08: 0,12: 0,16$, ơc. be fucceffively extracted, there will be obtain'd fo ${ }^{6 c}$ many z or Ordinates $C Q$ refpectively, and ${ }^{66}$ the Area SO P will be divided into One Hun${ }^{5}$ dred equal Parts. And in like manner is the Cal"culation to be conimued beyond the Place \mathbf{O}. "Now the Root of this Equation (finee. R Q is
KI) is the Tabular Tangent of the Angle \% CR Q, or of the Angle CSP, wherefore the

Aftronomy of Comexs. 423

Angle, C S P is given. And R C, the Secant of the fame Angle CR Q , is a mean Prcportional between R Q , or Unity and RT, which is the double of SC, as is plain from the Conics. But if $S P$ be put $=\mathrm{r}$, and fo the Latus Retuum $=4$ (as in our Table) then R T will be the Diftance fought, viz. the double of SC in the former Parabola. After this manner therefore, I compos'd the foregoing Table, which ferves to reprefent the Motions of all our Comets; of which hixherto there has been none obferved, but thofe that come within the Laws of the Parabola,

Now that the Area OPS is a twelfth Part of the Square of the Latus Rectum, it is manifett: Becaufe, according to the Conics, the Area OPS is $\frac{2}{3}$ of the Rectangle of OS, muk tiplied by SP ; that is, of the Rectangle of half the Latus Rectum, multiplied by a $4^{\text {th }}$ Part of the fame. For $\frac{1}{3} \times \frac{1}{8}=$. But any Numbers, as 4.8. 12.16. If they be put in the 2d Place of Decimals, as here is done, will rightly exprefs 100th Parts. And we are therefore content with a Right Angle as the principal Guide of Computation, becaufe we want an entire Period in Parabola's. But becaufe of the equal Angles S C, S R, the external Angle of the Ifofccles Triangle CRS will be equal to the double Angle CR S. And there being giv'n confequently by the Tables of Tangents the Angle C R Q, the Double thereof, or the Angle CS T ; that is, the Coequate Anomaly of the Comet is found. In like manner, the Angle CS T being now giv'n, if you make by the Golden Rule : As $\mathrm{RQ}=\mathrm{I}$ is to the Secant of that Angle to be taken out of the fame Ta-

E e 4
bles;

424 ASYNOPSIS of the

bles; fo that Secant is to the 3 d Proportional R T; The half hereof RS is equal to S C, or to the Diftance of the Comet from the Sun. श.E.I.

Nov. 29. 1708.

Lect. XL.

 Halley. "It now remains, that we Dr. © © o give the Rules for the Calculation, to fhew the way of 'ee:ermining the "¿Vifible Place of a Comet, by thefe Nunbers. The Velocity of a Comet "c moving in a Parabola, is every-vbere to the Velo"city of a Planet defcribing a Circle about the Sun, at ce the fame Difance from the Sun, as $\sqrt{ } 2$ to x . as "" appears from Cor. 7. Prop. 16. Lib. r. of the " Princip. Pbil. Nat. Matb. If therefore a Comet "" in its Perihelion were fuppos'd to be as far di"flant from the Sun as the Earth is, then the${ }^{"}$: Diurnal Area which the Comer wou'd defcribe, "'.woud be to the Diurnal Area of the Earth, as
$" V_{2}$ to 1 . And confequently, the Time of the "Annual Revolution, is to the Time in which " fuch a Comer wou'd defribe the Quadrant of "" its Orbic from the Perihelium, as 3.141 r9, ob:c. "(that is the Area of the Circle) to $\sqrt{\frac{8}{9} \text {..- }}$

That the Velocity in a Parabola is to the Velocity at the fame Diftance in a Circle', as V_{2} is to r , or as 10 to 7 almoft, was demonftrated in Prop. XXII. foregoing; or rather deduced

Afronomy of Comets. 425

deduced as it were a Corollary, from the Na ture of Circular and Parabolic Curvity, and the Proportion of the Subtenfes of the Angle of Contact. But the Annual Time in an Ellipric Circle; or the Time of an Entire Revolution, reprefented by the whole Area of a Circle, which is to be eftimated from the Multiplication of half the Circumference by the Radius; will be to the Time of the Defcription of a Quadrantal Arch in a Parabola, which is to be reprefented by a Quadrantal Area of the Parabola, to be eftimated from the Multiplication of $\frac{2}{3}$ of balf the Latus Rectum, by a quarter of the fame Latus or Radius; as the Area's themfelves; or as the Heighths of the Rectangles to the Common Bafe; only fo far as the Velocity of Defcription in a Parabola doth difturb and diminifh that Proportion of the Times, in the Proportion of 1 to V_{2}; and therefore inftead of 2, let $\downarrow \frac{4}{9}$ be taken: and let the Numerator be doubled, becaufe of the Square Number two, the double of Unity ; that is, for the Circle, let the Area of it $3,14 \mathrm{I}, 59$, be taken, for the Parabola $\mathrm{V}^{\frac{8}{9}}$. And thus the'Truth of our Author's Reafoning will eafily be underftood.

Dr.Halley. "Thereforethe Comet wou'd deferibe " that Quadrant in 109 Days, 14 Hours, 46 Mito the Area POS) being divided into One " Hundred Parts, to each Day there wou'd be al" lotted 0.912.280 of thofe Parts, the Log. of ${ }^{6}$ which, viz. 9.960128 , is to be kept for con"tinual ufe. But then the Times in which Co${ }^{6}$ mets, at a greàter or lefs Diftance, wou'd de${ }^{6}$ fcribe fimilar Quadrants, are as the Times of "f the Revoltarions in Circles; that is, in the Sef${ }^{6}$. quiplicate Ratio of the Diftances: Whence the \because Diur-

426 ASYNPSIS of the

"c Diurnal Areas eftimated in Centefimal Parts of " the Quadrant (which Parts we put for Mea"fures of the mean Motion, like Degrees) are ${ }^{*}$ in each, in the Subfefquialtera proportion of the Diftance from the Sun in the Perihe. lion.
Mr. Wbiftos. The Mean Diurnal Motion, to wit, $0,912,280$, to be expref'd by a Negative Logarithm after the Old Manner- $0,039,872$, is in this Place exprefs'd in a New Way by a Pofitive One 9,960, 128, to avoid the Difficulty about the Negative Characteriftic ; but is prefently made equivalent to the wonted Form, by cafting away Ten in the Addition when occafion thall require. But our Author obferves here rightly, that in divers Parabola's, a Quadrant is always reckon'd of the fame Number of Parts, I mean an Hundred; in fuch Sort neverthelefs, that thofe Parts be indeed unequal, and according to the Magnitude of the Parabola greater or lefs, but not in that Proportion greater or lefs, in which the Diftances increafe or decreafe from the Sun, but in the Subfefquialteral Proportion of the fame: So that the Squares of the Diftances be betwixt themfelves, as the Cubes of thefe Parts reciprocally.

Dr. Halley. "Thefe neceffary Things premis'd, «D let it be propos'd to compute the apparent Place "c of any one of the foremiention'd. Comets for a"ny given Time. Therefore,

[^2]Aftronomy of Comets. 427
there be added the constant Log. 9.960.128, and the Complement Arithmetical of three bales of the Log: of the Peribelign Distance of the Comet from the Sum: The Sum will bet be Log. of the mean: Morion, to be fought is the first Column of the general Table,
3.' With the meas Motion let there be taken the corrolpandent Angle from the Peribelios in the Table, and. the Log for the Diftenoe from the Swine: Then in Comelts Hit yare Direct, add, and in Retrograde ones: Subtract; if the Time be after the Perihelion, the Angie this foussh, to :or frame the Peribelion: or in Direct: Comets? Enbftrect ; and ins Retrograde ones add; if the, Time be before the Peribelioni, the foreSaid Angle to or: fromelthe Place of the Paribelion; and fo ave fall have the Place of this Contest jo its Orbit. And to the Logo. for the Distance found, let there be added the -Log. of theDifencextr: obi Reribelian, and the Sow will be the Logo: of the we Difamas.of the Comet from the Sro.
4. The Place of it bo Noideg together with the Place of the Cone in iss Orbit, being given, let the Diftance of, the Comes fran the Node be found; then the Inclinations of the Plane being given; there will be given also (frow the camion Rules of Trigonometry) the Comet's Place rediced to the Ecliptic, the Inclination or Heliocentric Latitude, and the Log of the Curt Difance.
5. From theferbings, given (by the vary fame. Rules that wive find the Planet's Places, from the Sing's Place and Diftance given) we may obtain the Apparent or Geocentric Place of the Comet, together with she Apparent Latitude. And this it may be worth while to illeftrate by an Example or typo."]

428 ASTNOXIS of the.
As to the Place of the Sun, and the Diftance thereof from the Earth, we have ellewhere taught how to find both by Aftronomical Calculation. But the Logarithms of the Diftances, we through fome neglect, omitted in that Place; and ctierefore Thall add them in the End of this Work : But the' Logarithm of Days is therefore added to the Giver Logarichm of one Day, that the Motion of one Day may be underftood to be multiplied by the Number of Days: For it is kmown, that the Addition of Logarithms doth infer the Multiplication of Numbers correfponding to thofe Logaritims,

And thefe Things maj fuffice, if fo be the Comet be rappos'd to pals in ins Perihelion at aiDiftance equal to 2 Radius of the greac Orb: But if_{x} which commonly is the Cale, the Comer doth not pafs at that Diftance, but:at:a greatergmas it is fometimes ; or at a lefs, as oftner happens; that Area, proportional to the TMne, is to be increas.d or diminighd ; and this ja the Sub-fefquialteral Propertion of that leaft Diftance from the Sun; fo that at length that Area may rightly seprefent the Mean Arionalys From whence tha Logarithm of that Sefqui-plicate Diftance is to be added to the former Sum of the Logarithms, and the Radius to be fubftracted according to the Exigence of the Golden Rule, to be praatis'd in Logarithms; or which is the fame; the Arithmetical Complement only of that Sefqui-alteral Logarithm is to be added. Neither ought it to feem ftrange, that in leffer Diftances we, by adding the Logarithm, obtain the true Proportion increas'd, and the fame in greater Diftances diminifh'd : For Multiplication by a Fraction, or Decimal
cimal Parts, doth no lefs diminifh the Sum, than Mulciplication by whole? Nunabers doth increafe it. And the Tbing is the fame in Logarithmetical Addition. But we are to obferve, that the Logarithms marked in"the 3 d Column of the Ge neral Table, Ire not the Logarithm's of the Numbers of the Diftances from the Sun, to be added over and above the Radius to the Mean Diftance; but of Numbers, by the Multiplication of which, that true Diftance were to be obtained. From whence the Logarithms of the fame being fuperadded to one another, will eafily give us the Logarithm of that whole Diftance from the Sun. Thefe Things being well underftood, we fhall be able to undertake and perform the Calculation.

EXAM:

$$
\vdots \varepsilon
$$

Examplet.

Let it be requir'd to find the Place of the Coimet of the Year 1665, March $1^{d}, 7^{\text {h }}, \infty 0^{\prime}$, P. M. London That is, $96^{d}, 19^{h}, 8^{\prime}$, aftor the Pcribelion, wbich bappen'd Novemb. $24^{\circ}, 11^{\text {h }}, 52^{\prime}$.

Log. Dift. Perihel. Log. Sefquialt.	-. OI 1044 0. 016566
Comp. Arith.	9. 983434
	9. 960128
Log. Temp.	I. 985862
Log. Med. Mot.	1. 929424
Medius Motus	85.001
Perihel. \&	10. 41. 25
Ang. Correfp.	82.38.05-
Comet in Orb. ${ }^{\text {¢ }}$	17. 3.20
Afcend. Nod. II	21. 14.00
Com. à Nodo	34. 10. 40
Red. ad Eclip.	32.19.05
Com. Helioc. 8	18. 54.55
Incl. Bor.	11.46. ${ }^{\circ}$
Log. pro dift.	-. 255369
Log. Perihel.	o. OIIO44
Co-fin. Incl.	9. 990754
Log. dift. Cur	-. 257167
Log. dift. ${ }^{\circ}$	9. 997918
Vif \bigcirc -	21.44. 45
Com. Vifus ${ }^{r}$	29.18. 30
Lat. Vifa (Bor.)	8. 36.15

Exam-

Afronomy of Comet s. 431

ExAMPLEII.

Let it be requir'd to find the Place of the Comet of the Year 1683, July $23^{\circ}, 13^{\text {h }}, 35^{\prime}$, P. M. London: Or, $13^{h}, 40^{\prime}$ Equat. Time. That is, $21^{d}, 10^{b}, 50^{\circ}$ after the Peribelion.

Log. Dift. Perihel.	9. 748343
Log. Sefquialt.	9. 622514
Comp. Arith.	-. 377486
	9. 960128
Log. Temp.	1. 2110723
Log. Med. Mot.	I. 648337
Medius Motus	44. 498
Perihel. II	25.29. 30
Ang. Correfp.	56. 47.20
Comet. in Orb. \boldsymbol{r}	28. 4^{2}. 10
Nod. Defcend. \#	23. 23. 00
Com. ${ }^{\text {a Nodo }}$	35.19.10
Red. ad Eclip.	4. $4^{8.30}$
Com. Helioc. $\#$	28. 11.30
Incl. Bor.	35. 2. 00
Log. pro dift.	-. 111336
Log. Perihel.	9. 748343
Co-fin. Incl.	9. 913187
Log. dift. Curt.	9. 772866
Log. dift. ${ }^{\circ}$	-. 006104
\bigcirc Locus §	10.41. 25
Com. Vifus \square^{5}	5.11. 50
Lat. Bor.	28. 52. 00

430
 ASynopsis of the

But now, that we may rightly perform this Calculation; It is to be noted,
(r.) That the Logarithm of the leaft, or perihelion Diftance, is only fet down here, that we may obtain the other Logarithm, which is Sefquialteral of the fame, or is thereto as 3 to 2 .
(2.) That the Arithmetical Complement of this laft Logarithm being added to the Conftant Logarithm of one Day, doth make the Logarithm of the whole Time before or after the Perihelion. For working by Logarithms, the Numbers in the former of the Examples will be thus. The Logarithm of one Day is $9,960,128$; and the Logarithm of Days is $1,985,862$. Thefe alone being added together, would make the Logarithm of the Mean Motion, if the Perihelion Diftance were equal to Unity, or the Radius of the great Orb: But when the Area of that Mean Motion is to be increas'd in the Proportion of that Sefquialteral Perihelion Diftance to the Radius of the Annual Orbit, that : Sefquialteral Logarithm $0,016,566$, is to be added to the former Logarithm; and the Logarithm of the Number ro is to be fubftracted; or, which comes to the fame, the Arithmetical Complement of the Sefqui-alteral Logarithm is only to be added : which is done in this Place. Now the Mean Motion will eafily be known, when the Logarithm of the fame is given.
(3.) The Mean Motion, or Mean Anomaly, being now given, the Angle Correfponding thereto in the General Table, is $83^{\circ} \cdot 38^{\prime} \cdot 5^{\prime \prime}$. (the intermediate proportional Parts being everywhere found, where there is Occafion, by the Golden Rule.) Which being deducted from the Place of the Perihelion in Leo $10^{\circ} .4 \mathrm{I}^{\prime} .25^{\prime \prime}$, becaufe of the Retrograde Motion of the Comet giveth

Afronomy of COMETS.

us the Place of the Comet in its own Orb, 17°. $3^{\prime} .20^{\prime \prime \prime}$, in Taurus,
(4)) Subftract this Place from the Place of the defcending Node in Gemini ; the Remainder will be the Diftance of the Comet from the Node; 34°. $10^{\prime} .40^{\prime \prime}$.
(5.) And now that we may reduce the Place of the Comet in its own Orb to the Ecliptic, ws muft refolve a Rectangular Spherical Triangle; and from the Given Angle and the Hyporenule, muft find the other Sides. And for Reduction to the Ecliptic, for the Heliocentrical Longitude, the following Analogy will fuffice.

As Radius - 10, 0.00,000 is to Cofin.of the Ang. 210. $18^{\prime \prime} .30^{\prime \prime} .-9.969 .248$ So is Tangent, - 34 ro. ro. $40 .-9.83 \mathrm{r} .890$
 $=2^{\circ} .19^{\prime} .5^{\prime \prime}$
Then for the Inclination, or Heliocentrical Latitude,

As Radius, 10.000 .000
To \sin. - $34^{\circ} .10^{\prime} .40^{\prime \prime} .-9.749 .553$
So is Sine of
the giv'n Ang. 21. 18. $30-9.560 .369$ To Sine of Ang. foughe $\}$
(6.) For obtaining the Logarithm of the true Diftance of the Comet from the Sun, we mult add the Logarithm for the Diftance from the Sun, which in the General Table belongs to the Mean Motion, to the Logarithm of the leaft ob perihelium Diftance; that is, o. 255.369, to p. or 1. 044, which make $0.266,412$. And then fay,

As Radius - - 10.000 .000
To Dift, from Sun - o, 266.413.
F
$\$ 9$

$$
\begin{array}{ll}
\text { So is Co-fin of Inclin. m- } & \text { 9. } 990.754 \\
\text { To Curt. Dift. } & 0.257 .167
\end{array}
$$

Or, which comes to the fame; the three Logarithms are to be added, and the Logarithm of the Radius to be caft away; as is done in our Examples.
(7.) For obtaining the Geo-centrical Longitude of the Comet, or the vifible Place in the Ecliptic, do thus. Subftract the Helio-centrical Longitude $1^{s} \cdot 18^{\circ} \cdot 54^{\prime} 55^{\prime \prime}$ out of the true Place of the Sun in the Ecliptic $11^{s} .21^{\circ} .44^{\prime} .45^{\prime \prime}$; there will Remain the Angle of Commutation $10^{\circ} .2^{\circ} .49^{\prime} .50^{\prime \prime \prime}$; the Complement whereof unto a Circle is $1^{3} .27^{\circ} \cdot 10^{\prime}, 10^{\prime \prime}$, or, 57°. 10^{\prime}. $10^{\prime \prime}$. The half hereof is $28^{\circ} .35^{\circ} \cdot 5^{\prime \prime}$. From whence fay,
As dift. of the Earth - 9.997 .918
To Curt. Dift.of theCom.10.257.167
So is Radius - 10.000 .000
To Tangent - $10.259 .249=61^{\circ} .10^{\circ} .3^{\prime \prime}$
Now 45 Deg. being caf 2way, there' refts-16.10.3. Therefore,
As Radius
To Tang. $16^{\circ} \cdot 10^{\circ} .3^{\prime \prime} .-9.462 .265$
So is Tang. of Semi-Sumı.-- $9.7 i^{6.294}=28^{\circ} .35^{\prime} .5^{\prime \prime}$. To Tang. of Semi-differ. $-9.198 .559=8.58 .36$.

Which Half-difference being taken away out of the Half-Sum,there remains $19^{\circ}: 36^{\prime}: 29^{\prime \prime}$; that is, the Parallax of the Orb. Buc the Parallax being in this Cafe fubftracted from the Heliocentrical Place of the Comet, the Geocentrical Place of the fame is $\gamma .29 .18^{\circ}$. 26. Something more exactly, as I fuppofe, than our Author's Calculation hath it.

But if the Curtated Diftance of the Comet from the Sụn be lefs than the Diftance of the Earth from the Sun, as it is in the other Example, we muft work
in the Calculation, as is done for the Inferior Planets, (Hike as we have Calculared here, as we do for the Superior.) And the Half-difference of the Angles, which in that Cale will reprefens the Elongation from the Sun, is to be added to the Longitude of the Sun in the Ecliptic, or fubftracted from the fame, for obtaining the Geocentrical Place of the Comet.
(8.) For determining the Geocentrical Latitude of the Comet, we are to Work thus; (the Angle of Elongation being made up of the Aggregate of the Half-Sums.)

As Sin. of Ang. of Commut. 57.10.10. 9.924.42\% Is to Sia. of Ang. of Elong. 37.33 .4 I . 9.785 .053 So is Tang. of Inclination- 11.46.44, 9.3 19:161 To Tang. of Latitude -(8.36.09.) 9.179.791
"At the Inftant of Time fpecified in the firft Example, 'rwas obferv'd (at London) that the Comec applied to the fecond Star of Aries; fo that it was found to be 9 ' more Northerly, and a' $^{\prime}$ to the Eqit, according to Dr. Hook's Obfervation. But at that of the fecond Example, I my felf (near London, with the fame Inftruments whereby I formerly obferv'd the Southern Conftellations) found the Place of the Comer to be $\overline{T 0}, 5^{\circ}, 11^{\prime \prime} \frac{3}{3}$, and 28°, s 2^{\prime} North Latitude, which agreed exactly with the Obfervation made at Greenwich, almoft 25 the very fame Moment.
"As for the Comet of the Year 1680, which came almoft to the very Sun it felf (being in its Perihelion, not above one third of the Semidiameter of the Sun diftant from the Surface of it,) fince the Latus Rectum of its Orb is fo very fmall, it could hardly be contained within the Limits Ff 2
$\stackrel{6}{6}$ of

A Synopsis of the

"S of the General Table, becaufe of the exceffire' "c Velocity of the Mean Motion. Wherefore in * this Comet, the beft way will be (after the " Mean Motion is found) to get from thence (by "' the help of the foregoing Equation $z^{3}+3 z=\frac{4}{100}$ "" of the Mean Motion) the Tangent of half the "Angle from the Perihelion, together with the
65 l.og. for the Diftance from the Sun. Which being found, we are to proceed by the Came Rules, as in the reft.
"After this manner therefore, the Aftronomical Reader may examine there. Numbers, which I have calculated with all imaginable Care, from the Obfervations I could meet with. And I thefe Papers might chance to be loft, which every Man would not be capable to retrieve, by reafon of the great Difficulty of the Calcuilation. "Now it may not be amifs to put the Reader Is' in mind, that our five firf Comets, (the third " and fourch oblerv'd by Peter Apian, the fifth by ${ }^{6}$ © Paulus Fabricius) as alfo the renth, feen by Maft-
${ }^{6} \mathrm{lin}$, if I miftake not, in the Year I 596 , are not as fo certain as the reft; for the Obfervations " were made neither with fufficient Inftru-
"s ménts, nor due Care, and upon that account are at difagreeing with themfelves, and can by no 4 mézins be reconcil'd with a regular Computus. ${ }^{6}$:The Comet which appear'd in the Year 1684 , \% was orily taken notice of by Blancbinus, who "Oblerved it at Romine: And the laft, which ap-

Afronomy of Comits. 43 즈․

 peard in the Year 1698, was feen only by the Parifian Obfervers, who determin'd its Courfe after a very uncommon manner. This Comet was a very obfcure one, and altho' it map'む fwift, and came near enough to our Earth ${ }_{i}$, yet we, who are wont not to be incurious in chefe Matters, faw nothing of it. For want of Ob fervations, I have alfo left out of the foregoing Catalogue, thofe two remarkable Comess whicha have appear'd in this our Age, one in Novemz ' ber in the Year 1689, the other in February, is the Year 1702. For they directing their Courfes towards the Southern Parts of the Wofld,' and being fcarce confpicuous any where, in Europe, met with no Obfervers proper for the purpofe. But if any one fhall bring from lydia; or the Southern Parts, an accurate:Series of $\mathbf{O b}$. fervations, I will willingly fall to wark ggain; and undergo the Fatigue of reprefenting their Orbits in Numbers, as I have done the reft,"By comparing together the Elements of the Motions of thele Comets; 'tis apparent, thent Orbits are difpos'd in no manner of Order, not can they; as the Planers are, be comprehended within a Zodiac; moving indifferently every way, as well recrograde as direx; from whence it is clear, they are not carry'd about or mov'd in a Vortical Syftem. Moreover, the Diftances in their Perihelia are fometimes greater, fome:times lefs; which makes me fufpect, there may be a far greater Number of them, which may move in Regions more remote from the Suri; and being therefore very obfcure; and wanting Tails, may pafs by us unfeen.
${ }^{66}$ Hicherto I have confider'd the Orbits of Comets as exactly Parabolic; upon which Suppo: fition it wou'd follow, that Comets being im: pell'd towards the Sun by a Centripetal Force;

438 ASINOisis of the

"s would defcend as from Spaces infinitely diftant, and by their fo falling acquire fuch a Velocity, as that they may again fly off into the remoreft Parts of the Univerfe, moving upwards with a perperual Tendency, fo as never to return again to the Sun. But fince they appear frequeatly enough; and fince none of them can be found to move with an Hyperbolic Motion, or a Motion fwifter than what a Comet might acquire by its Gravity to the Sun, 'tis highly probable they rather move in very Eccentric Ellipric Orbits, and make their Returns after long Periods of Time: For fo their Number will be determinate, and, perhaps, not fo rery great. Befides, the Space between the Sun and the Fix'd Stars is fo immenfe, that there is room enough for a Conet to revolve, tho the Period of its Revolution be vaftly long. Now, the Latus Re\&um of an Ellipfis, is to the Latus Rectum of a Parabola, which has the fane Diftance in its Perihelium; as the Diftance in the Aphelium in the Ellipfis, is to the whole:Axis of the Ellipfis. And the Velocities are in a Subduplicare Ratio of the fame: Wherefore in very Excentric Orbits the Ratio comes very near to a Ratio of Equality; and the very fmall difference which happens on account of the greater Velocity in the Parabota, is eafily compenfated in determining the Situation of the Orbit. The principal Ufe therefore of this Table of the Elements of their Motions, and that whictị indeed induced me to conftruet it, is, that whenever a new Comet Thall appear, we may be able to know, by comparing together the Elements, whether it be any of thofe which has appear'd before; and confequently to determine its Period, and the Axis of its Orbit, and to foretel its Return. And, indeed theré are many things which make me believe that

$\beta 6$

 the Comet which Apian obferv'd in the Yeas 1531, was the fame with that which Kepler and Longomontanus more accurately defcrib'd in the Year 1607; afid which I my felf have feen return, and obferv'd in the Year 1682. All the Elements agree, and nothing feems to contradict this my Opinion, befides the Inequality of the Periodic Revolutions. Which Inequality is not fo great neither, as that it may not be owing to Phyfical Caufes. For the Motion of Saturn is fo difturbed by the reft of the Planets, efpecially Jupiter, that the Periodic Time of that Planet is uncertain for fome whole Days tor gether. How much more therefore, will a Comet be fubject to fuch like Errors, which rifes almoft four times higher than Saturn, and whofe Velocity, tho' increafed but a very little, would be fufficient to change its Orbit, from an Ellips tical to a Parabolical one. And I am the more confirmed in my Opinion of its being the fame; for that in the Year 1456, in the Summer-time, a Comet was feerr paffing Retrograde between the Earth and the Sun, much after the fame manner: Which tho' nobody made Obfervations upon it, yet from its Period and the manner of its Tranfit, I cannot think different from thofe I have juft now mention'd. And fince looking over the Hiftories of Comets I find, at an equal Interval of Time, a Comet to have been feen about Eaffer in the Year 1305, which is anpther double Period of 15 I Years before the former: Hence I think I may venture to foretel, that it will return again in the Year 1758. And, if it Thould then fo return, we fhall have no reafon to doubt but the reft may return alfo: Therefore Aftronomers have a large Field wherein to exercife themfelves for many Ages, before they will be able to know the Number of thefe many and
440 A Synopsis of the

"great Bodies revolving about the common Cen-
${ }_{6} 6$ ter of the Sun, and to reduce their Motions to certain Rules. I thought indeed that the Comet which appear'd in the Year 1532, might be the fame with that obferv'd by Hevelius in the Year 1661. But Apian's Obfervations, which are the only ones we have concerning the firft of thefe Comets, are too rude and inaccurate for any

Aftronomy of Comets. 445

 ance, and its Situation in the Heavens. Thefe Words being very much to our purpofe, it may not be amifs to recite them. In ipfis Ludorum meorum diebus, fydus crinitum per feptem dies, in regione Cali qua fub Septentrionibus,eft con β ectum. Id oriebatur circa undecimam boram diei, clarumq; ©- amnibus terris conficaum fuit. Now thefe Ludi were dedicated Veneri genetrici, (for from Venus the Cafars would be thought to be defcended,) and began with the Birth-day of Auguftus, viz. Sept.23. (as may be collected from a Fragment of an Old Roman Calendar extant in Gruter, pag.135.) and continued for 7 Days,during which the Comet appeared. Nor are we to fuppofe that it was feen only thofe 7 Days, but poffibly both before and after. Nor are we to interpret the Words Sub. Septentrionibus, as if the Comet had appear'd in the North, but that it was feen under the Sep tem triones, or brighter Stars of Urfa major. And as to its rifing Hora undecima diei, it can no ways be underftood, unlefs the word diei be left out, as it is by Suetonius; for it muft have been very far from the Sun, either to rife at Five in the Afternoon, or at Eleven at Night ; in which Cafes it muft have appeared for a long time, and its Tail have been fo little remarkable, fhat it could by no means be call'd, Clarum or omnibus Terris conficicuum Sydus. But fuppofing this Comet to have traced the fame Path with that of the Year 1680, the afcending part of the Orb will exactly reprefent, all that Auguftus hath faid concerning it; and is yet an additional Argument to that drawn from the Equality of the Period. Thus 'tis not improbable but this Comet may have four times vifited us at Intervals of about 575 Years: Whence the Tranfverfe Diameter of its Elliptic Orb will be found $1{ }^{3} 575 \times 575$ times greater than the annual Orb;
442
 ASYNOPSis of the

cs
or 138 times greater than the mean Diftance of the Sun ; which Diftance, tho' immenfely great, bears no proportion to that of the Fix'd Stars.
" I have lately found out a ready Method to compute the Motion of Comets in thefe Elliptic Orbs, of which perhaps fhortly we may exhibit a Specimen, giving this Comes for an Example. In the mean time, thofe that $d=$ fire to know how to conftruat Geometrically the Orb of a Comet, by three accurate Obfervations given, may find it at the End of the 3d Book of Sir Ifacac Newton's Principles of Natural Philofophy, entituled De Syfemate Mundi, in the Words of its renowned Inventor. Which have fince been more fully explain'd by my very worthy Collegue Dr. Gregiry, in his learned Work of Aftronomia Pbyfica or Gecmetrica.
"One thing more perhaps it may not be improper or unpleafant to advertife the Aftronomical Reader; That fome of thefe Comers have their Nodes fo very near the Annual Orb of the Earth, that if it fiall fo happen, that the Earth be found in the Parts of her Orb next the Node of fuch a Comer, whilft the Comet paffes by; as the apparent Motion of the Comet will be incredibly fwiff, fo its Parallax will become very fenfible; and the proportion thereof to that of the Sun will be given. Wherefore fuch Tranfits of Comets do afford us the very beft means, tho' they feldom happen, to determine the Diftance of the Sun and Earth: Which hitherto has only been attempeed by Mars in his Oppofition to the Sun; or elfe Venus in Perigro, whofe Parallaxes, tho' triple to that of the Sun, are fcarce any ways to be perceived by our Inftruments; whence we are ftill in great Uncertainty in that Affair. This Ufe of Comets
was the ingeniousThought of that excellent Geometrician Mr. Nicoles Fatio. Now the Comet of 1472, had a Parallax above twenty Times greater than the Sun's. And if the Comet of 1618, had come down, about the middle of March, to his defcending Node; or if that of 1684, had arriv'd a little fooner at its afcending Node, they would have been yet much nearer the Earth, and confequently have had more notable Parallaxes. But hitherto none has threaten'd the Earth with a nearer Appulfe, thian that of 1680. For by Calculation I find, that Novemb. $11^{0}, 1$, ${ }^{\text {h }}$, 6', P. M. that Comet was not above the Senidiameter of the Sun to the Northwards of the Way of the Earth. At which time, had the Earth been there, the Comet would have had a Parallax equal to that of the Moon, as I take it. This is fpoken to Aftronomers: But what might be the Confeguences of fo near an Appulfe ; or of a Contact, or, laftly, of a Shock of the Celeftial Bodies, (which is by no means impoffible to come to pafs,) I leave to be difcufs'd by the Studious of Phyfical Matters.

$$
F^{\prime} I N I S
$$

ERRATA.

DAge 4. Line 15 , dele, p. 5. l. ult. dele made lefs by the Diftance HI. p. 10. 1. s. dele X. J. 28. read mI. p. 11. L. 22. r. Plate I. Fig. 3. p. 12. 1. 12. dele or R Z. 1. 13, r. Pl and K T. 1. 17. del. T. P 13. 1. 26. r. fince. 1. 29. r. Semi-ordinates. p. 15. 1. 21. r. as long again os. p. 17.1.8. r. LL. 1. 25. r. of the. p. 18. 1.4. 5. del. wobether of the following seations, or of the former. .1. 32. r. KH. DH. 1. 34. r. ib, bb. i a. ba. p. 19. 1. 8, 9. r. dokble. p. 21. ․ 9. r. Fig. 6. p. 27. 1. 20. del. fould be laid downo lo 32. del. Jao p. 28.1. 3I, del. therefore. p. 29. 1. 5. del. not. l. 6. del. to. p. 3 1. 1. penulc. r. 21. 1. ule r. therefore where the ambient Bodies are moued, thafe tbat relatively reft in thofe ambient Bodies are really nowed p. 38.

ERCR $\mathbf{R} \mathbf{T}$

I. 6. r. a certain. P; 43: l. 17 del. the l. 33. r. of. p.44.1. 1 to f. the. p. 46 . 1. 12. r. it. p. 56. 1. 18. r. coming 2oith -p. 61. 1. 3^{2}. r. $\frac{8}{7}$ or $1 \frac{3}{5}$. 1. 37. r. $\frac{1_{5}^{2}}{5}$ or $2 \frac{2}{5} \cdot$ p. 7c. 1. 29.' r. this. p. 74. I. q. r. Axels, Ropes, Strings. p. 77.1. 27. r. C E. p. 78°. jle 7.r. Corollary after. p. 88. 1. 14. r. C HB. p. 94. 1. ulf. r. if in. p. 97. 1. 11. r. Plate 3. Fig. 5. p. 98. 1. 19. r. $d b, D$ B 'p. 99.1.3I. r. Eb. p, 105.1. 21. r. ax. .1. 26. r.ed. L. 31. r.gq 'P. 106.1.2s, r. a b1. 1. z'9. r.1b. 1. penult. r. Lines. p. 108 1: 20_{p} del.bg. p. 1 3. I. 1. r. are. I. 9. r. E F. I: 29. r. were the Dejcent. :p.116.1.8. r.are! Li DI, r. EA. p. 120.1 pehult. r. Te. p. $12 \mathrm{ri}^{\prime}$. d. g. r. I. Te. : I. 30; r. Fl. 1. 35, 36.r. l. and m. p. 122.1.3. r.Tb. p.123.1.18. r.cr. p. 124. 1. 5. del.D. 1.1s.r.s F $_{3}$ "sg poill be leffer. po.126.1.23. r. \triangle i. 1. penult. r. Δ i. quareds - Jo is the Quadruple of the. p. 127.1. 30. del. of. p. 128.1.2. r. toideuble. I. 28, 29. r. sg, the loneft borizontal Range is the balf. -pis29, penult. r. or $90+49$ p. 131. 1 31. r. m P. . . penult. r. in n_{0} p. 134. l. 16. r. Fig. 6. p. 140 1.1,13. r. I, I. 20, 21. r. the Dimidiate or Subduplicate of 81 to 9 . i. e. that of 81 to 270 p. 144.1.21. r. along Bc. p. 150.1:8. r. ñearer. p.152.1.30. r. at p.153.1.13.r: Point D. p. 161. I. 21.'r. Pf. p. 156. 1. 3. r. Fig.3. J. 12.' r.bestaken as the Diftance, as., p. 168.1 .10. 7. Pq PF: 1. 20. r. as alfo dop q and x i. p. 169.1. 11, 12.r. at the Same Diffance. 1. 1 5. r. the. p. 171.1. 9 r, moill. p. 175. I. 6. ${ }^{i}$ r. at l. penult. t. A B'd. p. 176. 1. 14. r. +̌ 1.17. r. AD. 1. 24 r. 18. r. 50. 1. 26. r. 11 30. or. p. 177. 1. penult. r. 1×10. rp. 178.1. 5. r. B D. ; p.i180. l. 2. r. ARPB. p. 181. 1.16. r. ARPV: p. 185.1. 17. r. 2 119.1.25. r. Fh. 1. antepen. r. sq.
 25. r. Fh. I. 32 del. T. p. 188.1.5. r. the Number 2. p. 192. 1. 29. r. Coroll. 1. p، 193: 1. 2. del. and. p. 196. 1. 34. del. 2phich. p. 197.1.25. r. a. p. 200,204, doc. r. Syzygics. p. 210. I. 28, 29. r. nine: p. 2419. 1. í2. r. Attrafion. p. 237.1. दू2. r. pag. l.34. r. 31. p. 241.L ig.r. H I, KL. p. 256.1.31.r. + 1. 32. del. PS. p. 260. 1. 21.r. Decemb. 3. 1705. 1. ult. r. on the Same S.de of the Plane. p. 262. feppe for ti. r. x. 1. 29. r. that of the . p. 265 . I. penult. r. Angle of. Incidenie:. p. 269 J. i1. -del: B. 1. 13. Marg: del. Latt: p. 270. 1. 14. del. 0.1. 3 1. \& p. 271. 1. 7, 10, 11, 12. inflead of Glafs.r. SpeCfrum. p. 273. 1. ult: r. For. 'p. 279.1. 22. add and.I.X.NF nill be equal to 3 $R \times N P$. or $I: 3 R:: N P: N F$. p. 280. 1. 4. r. as well ast. 1. 8. r. the doubled arc Ff. p. 284. 1. 34. r. internal. r. 286. l.18. r. a. p. 3c3. 1. antepenule. r. the iame in. p. 305. I. ult. r. p. 106. p. 321. l. 22. tel. to. p. 345..r. 227500.220. $94-$ -p.347. t. 1.23. 100. $25 \frac{1}{2}$. 19. 15. p. 365.1. 1. del. not. 1. 3 r, r. treo or three Howrs. p. 372 2.1. 4. r. Now. 1p. 375. J. 4. r. fcarce 10. P. 3^{83}-16.24. T.RC.

$$
\underline{\rho}
$$

.

[^0]: $1 ;$
 \therefore tions

[^1]: 6.

 where

[^2]: ["1. Let tbe Sun's Place be bad, and the Log. of its Diftance from the Eartb.
 2. Let the difference between the Time of the Peribelion and tbe Tìme given be gotten, in Days and Decimal Parts of Days. To tbe Log. of this Number; let

