Feedback

X
Optimales Energiemanagement mild elektrifizierter Antriebe unter realen Betriebsbedingungen mittels Prädiktionsalgorithmen aus dem Bereich des Maschinellen Lernens

Optimales Energiemanagement mild elektrifizierter Antriebe unter realen Betriebsbedingungen mittels Prädiktionsalgorithmen aus dem Bereich des Maschinellen Lernens

de

0 Ungluers have Faved this Work
This study explores energy management for hybrid electric vehicles. It analyzes strategies for system design and vehicle implementation. Focus is on ECMS, DP, and PMP. Predictive energy management and data-driven methods like Markov Chains, FFNN, and RNN are discussed. Online-ECMS shows significant savings potential.

This book is included in DOAB.

Why read this book? Have your say.

You must be logged in to comment.

Rights Information

Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.

Downloads

This work has been downloaded 0 times via unglue.it ebook links.
  1. 0 - pdf (CC BY-SA) at OAPEN Library.

Keywords

  • Artificial Neural Networks
  • Dynamic programming
  • Dynamische Programmierung
  • Energiemanagementstrategien
  • energy management strategies
  • Hybrid electric vehicles
  • Hybridelektrische Fahrzeuge
  • künstliche neuronale Netze
  • Machine learning
  • Maschinelles Lernen

Links

DOI: 10.5445/KSP/1000179948

Editions

edition cover

Share

Copy/paste this into your site: