Feedback

X

Deep Learning Applications with Practical Measured Results in Electronics Industries

0 Ungluers have Faved this Work
This book collects 14 articles from the Special Issue entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries” of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods.

This book is included in DOAB.

Why read this book? Have your say.

You must be logged in to comment.

Links

DOI: 10.3390/books978-3-03928-864-9

Editions

edition cover
edition cover

Share

Copy/paste this into your site: