Explore
Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems
Fouzi Harrou (editor) and Ying Sun (editor)
2020
0 Ungluers have
Faved this Work
Login to Fave
Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems.
This book is included in DOAB.
Why read this book? Have your say.
You must be logged in to comment.
Rights Information
Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.Downloads
This work has been downloaded 63 times via unglue.it ebook links.
- 63 - pdf (CC BY-NC) at OAPEN Library.
Keywords
- Alternative & Renewable
- Alternative & renewable energy sources & technology
- Energy technology & engineering
- Power resources
- Technology & Engineering
- Technology, engineering, agriculture