Explore
On the Stability of Objective Structures
Martin Steinbach
2021
0 Ungluers have
Faved this Work
Login to Fave
The main focus of this thesis is the discussion of stability of an objective (atomic) structure consisting of single atoms which interact via a potential. We define atomistic stability using a second derivative test. More precisely, atomistic stability is equivalent to a vanishing first derivative of the configurational energy (at the corresponding point) and the coerciveness of the second derivative of the configurational energy with respect to an appropriate semi-norm. Atomistic stability of a lattice is well understood, see, e. ,g., [40]. The aim of this thesis is to generalize the theory to objective structures. In particular, we first investigate discrete subgroups of the Euclidean group, then define an appropriate seminorm and the atomistic stability for a given objective structure, and finally provide an efficient algorithm to check its atomistic stability. The algorithm particularly checks the validity of the Cauchy-Born rule for objective structures. To illustrate our results, we prove numerically the stability of a carbon nanotube by applying the algorithm.
This book is included in DOAB.
Why read this book? Have your say.
You must be logged in to comment.
Rights Information
Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.Downloads
This work has been downloaded 41 times via unglue.it ebook links.
- 41 - pdf (CC BY-NC-ND) at logos-verlag.de.
Keywords
- applied mathematics
- Discrete subgroup of the Euclidean group
- Elasticity theory
- Mathematical model
- mathematical modelling
- Mathematical physics
- Mathematics
- Mathematics & science
- Objective structure
- Physics
- Stability Theory
- thema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematics::PBWH Mathematical modelling
- thema EDItEUR::P Mathematics and Science::PH Physics::PHU Mathematical physics