Explore
Polynomials: Special Polynomials and Number-Theoretical Applications
Ákos Pintér (editor)
2021
0 Ungluers have
Faved this Work
Login to Fave
Polynomials play a crucial role in many areas of mathematics including algebra, analysis, number theory, and probability theory. They also appear in physics, chemistry, and economics. Especially extensively studied are certain infinite families of polynomials. Here, we only mention some examples: Bernoulli, Euler, Gegenbauer, trigonometric, and orthogonal polynomials and their generalizations. There are several approaches to these classical mathematical objects. This Special Issue presents nine high quality research papers by leading researchers in this field. I hope the reading of this work will be useful for the new generation of mathematicians and for experienced researchers as well
This book is included in DOAB.
Why read this book? Have your say.
You must be logged in to comment.
Rights Information
Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.Downloads
This work has been downloaded 35 times via unglue.it ebook links.
- 35 - pdf (CC BY) at Unglue.it.
Keywords
- (p, q)-cosine Bernoulli polynomials
- (p, q)-numbers
- (p, q)-sine Bernoulli polynomials
- (p, q)-trigonometric functions
- 2D q-Appell polynomials
- 2D q-Bernoulli polynomials
- 2D q-Euler polynomials
- 2D q-Genocchi polynomials
- Apostol type Bernoulli
- Bernstein operators
- Carlitz-type degenerate (p,q)-Euler numbers and polynomials
- Carlitz-type higher-order degenerate (p,q)-Euler numbers and polynomials
- degenerate Carlitz-type (p, q)-Euler numbers and polynomials
- degenerate Euler numbers and polynomials
- degenerate q-Euler numbers and polynomials
- determinant expressions
- Euler and Genocchi polynomials
- Euler numbers and polynomials
- Euler polynomials
- Generating matrix functions
- higher degree equations
- Kansa method
- Mathematics & science
- Matrix recurrence relations
- meshless
- multiquadric
- Operational representations
- q-cosine Euler polynomials
- q-exponential function
- q-sine Euler polynomials
- q-trigonometric function
- radial basis function
- radial polynomials
- rate of approximation
- recurrence relations
- Reference, information & interdisciplinary subjects
- Research & information: general
- Shivley’s matrix polynomials
- summation formula
- symmetric identities
- the shape parameter
- twice-iterated 2D q-Appell polynomials
- Voronovskaja type asymptotic formula