Explore
With growing interest in data mining and its merits, including the incorporation of historical or experiential information into statistical analysis, Bayesian inference has become an important tool for analyzing complicated data and solving inverse problems in various fields such as artificial intelligence. This book introduces recent developments in Bayesian inference, and covers a variety of topics including robust Bayesian estimation, solving inverse problems via Bayesian theories, hierarchical Bayesian inference, and its applications for scattering experiments. We hope that this book will stimulate more extensive research on Bayesian fronts to include theories, methods, computational algorithms and applications in various fields such as data science, AI, machine learning, and causality analysis.
This book is included in DOAB.
Why read this book? Have your say.
You must be logged in to comment.
Rights Information
Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.Downloads
This work has been downloaded 21 times via unglue.it ebook links.
- 21 - pdf (CC BY) at mts.intechopen.com.
Keywords
- Computer modelling & simulation
- Computer science
- Computing & information technology
- thema EDItEUR::U Computing and Information Technology::UY Computer science::UYM Computer modelling and simulation