Feedback

X
Machine Learning for Brain Disorders

Machine Learning for Brain Disorders

0 Ungluers have Faved this Work
This Open Access volume provides readers with an up-to-date and comprehensive guide to both methodological and applicative aspects of machine learning (ML) for brain disorders. The chapters in this book are organized into five parts. Part One presents the fundamentals of ML. Part Two looks at the main types of data used to characterize brain disorders, including clinical assessments, neuroimaging, electro- and magnetoencephalography, genetics and omics data, electronic health records, mobile devices, connected objects and sensors. Part Three covers the core methodologies of ML in brain disorders and the latest techniques used to study them. Part Four is dedicated to validation and datasets, and Part Five discusses applications of ML to various neurological and psychiatric disorders. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Comprehensive and cutting, Machine Learning for Brain Disorders is a valuable resource for researchers and graduate students who are new to this field, as well as experienced researchers who would like to further expand their knowledge in this area. This book will be useful to students and researchers from various backgrounds such as engineers, computer scientists, neurologists, psychiatrists, radiologists, and neuroscientists.

This book is included in DOAB.

Why read this book? Have your say.

You must be logged in to comment.

Rights Information

Are you the author or publisher of this work? If so, you can claim it as yours by registering as an Unglue.it rights holder.

Downloads

This work has been downloaded 25 times via unglue.it ebook links.
  1. 25 - pdf (CC BY) at Unglue.it.

Keywords

  • Biology, Life Sciences
  • biomarkers
  • Brain Disorders
  • clinical data
  • Data science
  • deep learning
  • Electronic Health Records
  • Life sciences: general issues
  • Machine learning
  • Mathematics & science
  • mobile devices
  • neural networks
  • neuroimaging
  • Neurology
  • Neurosciences
  • omics
  • Psychiatry
  • statistical learning
  • thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences

Links

DOI: 10.1007/978-1-0716-3195-9

Editions

edition cover

Share

Copy/paste this into your site: